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ABSTRACT 

PROTEOGENOMIC STUDY OF NITROGEN-FIXING CYANOBACTERIUM 

ANABAENA CYLINDRICA 

YEYAN QIU 

2018 

Cyanobacteria are gram-negative photosynthetic bacteria. In some filamentous 

cyanobacteria such as Anabaena cylindrica, every 10th to 20th vegetative cells can 

differentiate into nitrogen fixing heterocysts. Heterocyst can induce the neighboring cells 

developing into spore-like akinetes. The specialized cell functions and resourceful 

networks have contributed to the prosperity of cyanobacteria for over 2 billion years, but 

the genetic mechanisms for multi-cellular differentiation are barely known, especially for 

akinete formation.  

The heterocysts, akinetes and vegetative cells of Anabaena cylindrica were isolated for 

proteomic study. This study identified a total of 1395 proteins, including 664 proteins from 

akinetes, 751 proteins from heterocysts, and 1236 proteins from vegetative cells. There 

were 45 proteins (33 novel proteins) found exclusive in akinetes, 57 heterocyst-specific 

proteins (33 novel proteins), including nif gene products, and 485 proteins exclusively in 

vegetative cells. HAVe model was proposed that akinetes, unlike the typical spores of 

bacteria, perform unique biochemical functions that collaborate with both heterocysts and 

vegetative cells.  

Regardless of nitrate availability, some vegetative cells of Anabaena cylindrica are 

programed to differentiate semi-regularly spaced, single heterocysts along filaments. Since 

heterocysts are non-dividing cells, with the sole known function for solar-powered N2-



 

 

xiii 

fixation, is it necessary for heterocyst to retain entire genome (7.1Mb) from its progenitor 

vegetative cell? By sequencing the genome of isolated heterocyst, I discovered that at least 

six DNA elements (0.12 Mbp) are deleted from the heterocyst genome during heterocyst 

development. The six-element deletions restore five genes (nifH1, nifD, hupL, primase P4, 

acyl_5725 (hypothetical protein) that were interrupted in the genome of vegetative cells. 

More deletions are expected to be identified in the completed genome of heterocyst, a 

uniquely solar-powered, oxic N2-fixing cell. To my best knowledge, this is the first report 

that (1) different genomes may occur in distinct cell types in a single bacterium; and (2) 

genome editing is coupled to cellular differentiation and/or cellular function in a 

multicellular cyanobacterium. 

 In response to environmental changes, Anabaena cylindrica differentiate three cell types, 

vegetative cells for photosynthesis, heterocysts for nitrogen fixation, and akinetes for stress 

survival. Cell-surface polysaccharides play important roles in bacterial ecophysiology. In 

this study, specific cell-surface sugars were discovered in heterocysts, akinetes and 

vegetative cells of A. cylindrica using 20 fluorescein labeled lectins. Both N-

acetylglucosamineor-binding lectins WGA and succinylated WGA bound specifically to 

the vegetative cells.  Akinetes bound to three mannose-binding lectins (LCA, PSA, and 

ConA), and one of the galactose-binding lectins (GSL-I). ConA also bound to heterocyst, 

and the binding was diminished in the heterocysts of an all4388 mutant, in which the 

putative polysaccharide export protein gene all4388 was disrupted. 

Above proteomics, genomics and genetic research greatly added to our understanding of 

the cell development in A. cylindrica and clarify the patterns of gene expression in 
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heterocysts, akinetes and vegetative cells, which pave the way for further study of 

Anabaena cylindrica. 
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INTRODUCTION 

Cyanobacteria are ancient gram negative photosynthetic bacteria and some of them can 

fix atmospheric nitrogen. Among these nitrogen-fixing cyanobacteria, a group of 

filamentous cyanobacteria applies the cell differentiation strategy that progenitor 

vegetative cells fix the carbon from CO2, and about 10% of the population are 

differentiated into specialized N2 -fixing cells called heterocysts. Vegetative cells and 

heterocysts are in a reciprocal relationship by exchanging the fixed carbon and nitrogen 

through the filaments. When the cells are stressed from environmental conditions like 

cold or desiccation, a third cell type, spore-like akinetes can be formed from vegetative 

cells in some of these nitrogen-fixing filamentous cyanobacteria. The young akinetes are 

usually formed at both sides of heterocysts, and they'll fall off from the filaments while 

maturing.  

These photosynthetic, nitrogen-fixing, akinetes forming cyanobacteria encounter several 

challenges from self-development and environmental factors to thrive, which provide us a 

unique model to study cell differentiation; the incompatible of nitrogenase activity and 

the O2 from photosynthesis and environment; the nutrients exchange between vegetative 

cells and heterocysts, even more complicated akinetes formation adjacent to heterocysts; 

the programming of the differentiation that how the cells' fates are determined and the 

development processes. We have little knowledge of these cell interactions and 

development so far, with examining the proteomics from these three distinct cell types 

will deepen our understanding of their unique functions. 

On the other hand, heterocyst itself is very important for studying its oxic nitrogen-fixing 

nature, which is of great potential for future sustainable agriculture production. 
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Vegetative cells giving birth to heterocysts is a process that is crucial for acquisition of 

nitrogen fixation, but also the termination of cell division where the gene regulation could 

occur at any level of the central dogma. Our first-time genomic and transcriptomic 

analysis combined with proteomics on heterocysts will provide a comprehensive vision 

for heterocysts functions. As, this fundamental knowledge progress, we hope that our 

findings help pave the way for a greener biological nitrogen fixation era. 

OBJECTIVES 

The objectives of this study were to: 

I. Investigate the proteomics of purified vegetative cells, heterocysts and akinetes to 

reveal their differentiation, exclusive functions, network etc. 

II. Explore the genomics of heterocysts to further clarify the gene rearrangement 

including the nif genes, which probably associated with other exclusive functions. 

III. Discover different polysaccharide among the surface of vegetative cells, 

heterocysts, and akinetes.   
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CHAPTER 1: Literature Review 

1.1 Cyanobacteria overview 

Cyanobacteria, oxyphototrophic eubacteria, are one of the oldest species on the earth that 

lead to rapidly accumulated atmosphere oxygen levels during the episode of the Great 

Oxidation Event around 2.5-2.3Ga (Bekker et al., 2004; Schirrmeister, Gugger, & 

Donoghue, 2015). The facilitation of oxygen on the earth allowed for the evolutionary 

emergence of the complex life forms on earth. 

1.1.1 The classification of cyanobacteria 

Cyanobacteria autotrophic lifestyle enabled them to conquer almost every terrestrial and 

aquatic habitat - marine, fresh water, soil, and even Antarctic rocks, which constitute one 

of the largest group of gram-negative prokaryotes (Büdel, 2011). Rippaka et al. proposed 

five subsections (section I, II, III, IV, and V) in cyanobacteria based on a comparative 

study of 178 cyanobacteria strains (Stanier, Deruelles, Rippka, Herdman, & Waterbury, 

1979). These subjects collected from 22 genera were distinguished from their 

phycological classification, including cell structure, cell division, and development. 

Subsections I and II are unicellular cyanobacteria. Cyanobacteria in section I are 

reproduced by binary fission or by budding, for example, Synechococcus and Gloeothece. 

Cyanobacteria in section II are given rise to small daughter cells called baeocysts resulted 

from multiple fission or are reproduced by both multiple fission and binary fission, like 

Chroococcidiopsis cyanosphaera. Subsection III, IV and V are filamentous 

cyanobacteria. Subsection III are the filamentous cyanobacteria that cell division happens 

only in one plane, such as Spirulina and PseudAnabaena. Cyanobacteria from section IV 

and V can form heterocysts, a specialized cell type that responsible for nitrogen fixation 
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in the absence of combined nitrogen. The difference is that the cell division in section IV 

cyanobacteria only in one plane while in more than one plane from section V. The 

examples of section IV and V are Anabaena and Nostoc, Fischerella and 

Chlorogloeopsis, respectively. This five subsections classification of cyanobacteria has 

been widely accepted and used so far. 

Table 1-1 The five subsections classification in cyanobacteria based on cell morphology 

and cell replication approaches (Stanier et al., 1979)  

 

1.1.2 The evolutionary and applicable importance of cyanobacteria 

The occurrence of free oxygen is probably one of the most important biogeological 

events that facilitated colorful oxygen-dependent life forms on the earth. This 

breakthrough resulted from cyanobacteria, which is the pioneer of photosynthesis and 

spread the phototrophy to eukaryotic lineages. 

1.1.2.1 Cyanobacteria - an ancestor of chloroplast 

Several phylogenetic studies have established that chloroplast, the primary plastid, exist 

in photosynthetic eukaryotes arose from cyanobacteria through endosymbiosis 
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(Giovannoni et al., 1988). The incorporation has greatly modified the earth's ecology and 

played a crucial and fundamental role in evolution. The origin of chloroplast from 

cyanobacteria has been testified by multiple approaches, such as the 16S rRNA and 

protein markers. Due to pitfalls in the reconstruction of ancient evolutionary events, like 

dilution of phylogenetic landmarks, site saturation, horizontal gene transfer, the debates 

have been focusing on the closest lineage of cyanobacteria to chloroplast (Rajaniemi, 

Hrouzek, Rantala, & Hoffmann, 2017; Turner, 1999; Zhaxybayeva, Gogarten, 

Charlebois, Doolittle, & Papke, 2006). Recently, the identification of core genes enabled 

a highly resolved cyanobacterial tree and these core sequences were used to track the 

origin of the chloroplast. Up till now, the chloroplast is thought to be originated among 

members of one of the major cyanobacterial lineages that contain filamentous nitrogen 

fixing cyanobacteria (Ochoa de Alda, Esteban, Diago, & Houmard, 2014). 

1.1.2.2 Cyanobacterial applications in biofuel production 

Cyanobacteria are autotroph photosynthetic microorganism that some can fix nitrogen as 

well. They convert CO2 and H2O to carbohydrates utilizing sunlight. The biofuel is 

developed aimed to replace traditional fuels, coals by the production of renewable 

energy. Until the third-generation biofuel, to get final energy stock, additional chemical 

or biological processes had to be used. The processes including fermentation, gasification 

are a waste of energy and decrease the efficiency of biofuel production. Cyanobacteria 

itself inherited all the pathways to energy stock but lacking the pathway to produce 

specific biofuel products. Only by directing the reactions by inserting necessary genes 

without disrupting the cell structure and cycle, the bio-products can be harvested 

continuously as they are secreted from the cyanobacteria cells. 
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The genetic engineering in cyanobacteria is well studied that several transformation 

methods could be used to incorporate foreign genes, such as conjugation, natural 

transformation, and electroporation (J Elhai, Vepritskiy, Muro-Pastor, Flores, & Wolk, 

1997). Usually, the transformation of unicellular cyanobacteria is easier due to the natural 

transformation properties that the DNA can be naturally transported across the cell 

membrane and naturally transformed. The transformation in some filamentous 

cyanobacteria is tricky due to the restriction enzymes who can degrade the foreign DNA. 

Majority of biofuel research has been done in unicellular cyanobacteria, but the high 

carbon and nitrogen fixation rate in filamentous cyanobacteria have refocused 

researchers' attention. The foreign genes can be incorporated either into chromosome or 

plasmids. The insertion in the chromosome is stable but needs to be aware of not 

interrupting other genes, and the insertion in self-replicated plasmids will have multiple 

copies that numbers are unknown. Antibiotics resistance can also be introduced to select 

the successful transformants.  

Several biofuels have been successfully produced using cyanobacteria as host, such as 

ethanol and terpenes (Halfmann, Gu, Gibbons, & Zhou, 2014; Hellier, Al-Haj, Talibi, 

Purton, & Ladommatos, 2013). The productivity can be improved by modifying the 

pathways towards the biofuel products and shutting down some other unnecessary 

pathways. The advancements in cyanobacteria genomics, transcriptomes, proteomics, and 

metabolomics will deepen the understanding and help improve the biofuel production in 

the future. 



7 

 

 

 

1.2 Activities in cyanobacteria 

1.2.1 Photosynthesis  

Cyanobacteria are the one of oldest auto phototrophic microorganism that utilize solar 

energy to support living by photosynthesis carried by vegetative cells. Cyanobacteria 

have competitive advantages in absorbing a wide range of wavelengths of lights by 

phycobilisomes and proceeding photosynthesis even at a low CO2 concentration by 

carboxysomes. 

1.2.1.1 Phycobilisome and photosystems 

Cyanobacteria appear blue-greenish color because of phycobilisomes, which are light 

harvesting antennae of photosystem II (Figure 1-1) (D. Campbell, Hurry, Clarke, & 

Gustafsson, 1998). The phycobilisome is attached to the photosynthetic membrane 

surface instead of integrating into membrane as most light-harvesting antenna do. The 

phycobilisomes absorb wide wavelength range of light between 500-650nm and transfer 

the solar energy to chlorophyll for photosynthesis (Liu, Chen, Zhang, & Zhou, 2005). 

There are two types of phycobiliprotein structure: pigmented phycobiliproteins (PBPs) 

that absorb solar energy and nonpigmented linker polypeptides to stabilize the complex. 

PBPs were classified into four groups, allophycocyanin (APC), phycoerythrin (PE), 

phycoerythrocyanin (PEC) and phycocyanin (PC). The composition and organization of 

the phycobilisome rods and core are variable in different cyanobacteria; the three-

cylinder core and six-peripheral rod configuration is common (Glazer, 1978).  

Phycobilisomes are stable but dynamic structure for cells to adapt different 

environmental changes. Complementary chromatic adaption, which is the process that 

composition of phycobilisome alters in response to the prevalent wavelengths of light 
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exists in some of the filamentous cyanobacteria to utilize available light efficiently. 

Phycobilisome degrades when the nutrient is limited and its degradation provides a 

substantial amount of nitrogen; also, when the cells are absorbing light of metabolic 

arrest to avoid photodamage (Grossman, Schaefer, Chiang, & Collier, 1993). 

 

Figure 1-1 Photosystems in cyanobacteria (D. Campbell et al., 1998). 

Photosystem I and photosystem II are embedded in thylakoid membrane; photosystem I 

function as light-driven, cytochrome c6: ferredoxin oxidoreductase (Golbeck, 1994), and 

photosystem II acts as light-driven, water:plastoquinone oxidoreductase (Guskov et al., 

2009). Cyanobacteria usually have a lower amount of PSII; The ratio of PSI to PSII is 

about 3 to 5.8 (Murakami & Fujita, 1988). The conversion of energy from solar to 

chemical form is the result of two chemical RCs: P680 (chl a-complex in PSII) and P700 

(chl a/a'-complex in PSI) acting in tandem to deliver excitation energy and initiates the 

conversion of energy (Renger & Renger, 2008). Energy rich compounds - NADPH and 
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ATP that formed by electron transport - drive CO2 fixation and nitrogen fixation (Tabita, 

1994).  

1.2.1.2 CO2 concentration - carboxysome 

RuBisCo, Ribulose-1,5-biophosphate carboxylase oxygenase, an enzyme catalyzes the 

fixation of CO2 molecule in the first major step of carbon fixation. Two limitations of 

RuBisCo could affect the efficiency of carbon fixation; its low affinity to CO2 and the 

side reaction with O2 (G Bowes, 1991). Cyanobacteria emerged with increasing O2 ratio 

in the air, which posed a challenge to cells how to increase CO2 within the cells to meet 

the requirement for RubisCo. Besides, vegetative cells are considered as O2 tank due to 

the photosynthesis, which O2 can also being the substrate for RubisCo and the products 

are phosphoglycolate and 3-phosphoglycerate (Badger et al., 1998). Phosphoglycolate 

goes through photorespiration that two molecules of phosphoglycolate are transformed to 

one molecule of CO2 and one molecule of 3-phosphoglycerate, which decrease the 

efficiency of photosynthetic capacity (Gi Bowes, Ogren, & Hageman, 1971).  

In cyanobacteria, to improve CO2 concentration around RuBisCo and prevent the 

penetration of O2, CO2 concentration mechanism (CCM) and its components have been 

identified. The CCM components at least include two bicarbonate transporters and two 

CO2 uptake systems to accumulate HCO3
- in the cytosol within the cell (Badger & Price, 

2017). Carbonic anhydrase in further transform HCO3
- to CO2 in the compartment 

surrounding RubisCo, which is named carboxysome. Two carboxysomes were 

discovered: α and β carboxysomes, which β carboxysome is more commonly studied. In 

both carboxysomes, the carboxysomes shell consist of several small polypeptides (8-12 

kDa) that are homologous with each other; and two larger polypeptides that do not bear 
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homology: CsoS2 (80 -90 kDa) and CsoS3 (55 - 65 kDa) in α carboxysome; CcmM (55 -

70 kDa) and CcmN (26 kDa) in β carboxysome (Kaplan & Reinhold, 1999). The shell of 

carboxysome also prevents the diffusion of CO2 to maintain higher concertation within 

the carboxysome, where the mechanisms are not well known yet. 

1.2.2 Nitrogen fixing in cyanobacteria 

Some cyanobacteria are capable of aerobic nitrogen fixation. Nitrogenase is the enzyme 

complex that responsible for nitrogen fixation, which is O2-sensitive (Gallon, 1981). The 

O2 generated from photosynthesis along with O2 from the environment. The aerobic 

nitrogen fixation and the sensitivity of nitrogenase to O2 creates a paradox in 

cyanobacteria. Nitrogenase activities were measured in Gloeocapsa and Anabaena 

cylindrica, which were examples of unicellular and filamentous cyanobacteria by 

acetylene reduction under alternating light-dark cycles revealed their different activity 

patterns as early as the 1980s (Millineaux, Gallon, & Chaplin, 1981). Recent studies have 

further shown different strategies carry on in unicellular and filamentous cyanobacteria: 

temporal and spatial separation of nitrogen fixation and photosynthesis (Stal, 2001).  

1.2.2.1 Circadian clock in unicellular cyanobacteria 

Briefly, the circadian clock in unicellular cyanobacteria is the temporal separation of 

photosynthesis and nitrogen fixation that the former occurred in the day and the latter 

happened in the night to avoid the poisoning of O2 to nitrogenase. Two marine 

cyanobacteria strains, Cyanothece BH63 and BH68 were first exposed to 12 h light-dark 

cycle and had shown the aerobic nitrogenase activity being only confined to the dark 

period (Reddy, Haskell, Sherman, & Sherman, 1993). The circadian rhythms with 

photosynthesis in Synechococcus sp. PCC 7942 was also observed by introducing Vibrio 
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harveyi luciferase structural genes (luxAB) downstream of psbAI gene promotor, which 

encodes for photosystem II protein (T. Kondo et al., 1993).  

A variety of circadian clock mutants were isolated (Takao Kondo, Tsinoremas, Golden, 

& Johnson, 1994) and the gene cluster of controlling circadian clock kaiABC was 

discovered by mutational analysis that deletion of any of these three genes would cause 

arhythmicity of circadian outputs (Ishiura, 1998; Xu, 2000). By gene mapping, the 

promoters of kaiABC were identified that kaiA promoter is on the upstream of kaiA; and 

kaiB promoter controls kaiB and kaiC (Ishiura, 1998). KaiC is crucial and its expression 

shows a direct correlation with significant phase shifting; and its ATPase activity and 

autophosphorylating defines the circadian rhythm (Terauchi et al., 2007). KaiC 

phosphorylation occurs at serine and threomine residues that KaiA enhances this process 

while KaiB functions as an attenuator (Kitayama, Iwasaki, Nishiwaki, & Kondo, 2003). 

The technique of stochastic gene expression advanced measuring gene expression at the 

single-cell level by a SsrA-tagged fluorescent protein YFP-SsrA to report the periodic 

activity of kaiBC promoter (Figure 1-2) (Chabot, Pedraza, Luitel, & Van Oudenaarden, 

2007).  
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Figure 1-2 Stochastic gene expression of kaiBC to monitor circadian rhythms in single 

Synechococcus PCC 7942 cells using fluorescence microscopy (Chabot et al., 2007). 

1.2.2.2 Heterocysts in filamentous cyanobacteria 

Heterocysts are specialized cells in filamentous cyanobacteria that can fix nitrogen, 

which nitrogenase activity had been reported since the 1960s (Fay, Stewart, Walsby, & 

Fogg, 1968; Stewart, Haystead, & Pearson, 1969). The photosynthesis and nitrogen 

fixation were spatially separated by located in vegetative cells and heterocysts, 

respectively. The photosynthesis activity was deactivated in heterocysts primarily due to 

their loss of photosystem II, where O2 is produced. The absence of photosystem II was 

discovered by the low yield of chlorophyll a fluorescence, besides, the fluorescence yield 

did not show any light-induced changes and no Hill-reaction (O2-releasing reaction) 

activity was detected (Donze, Haveman, & Schiereck, 1972). Except for the O2 that 

generated from photosynthesis, aerobic nitrogen fixing heterocysts developed several 

mechanisms to exclude the O2 from the environment and neighboring vegetative cells.    
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The primary barrier to O2 is thickening envelope formed in heterocysts outside of normal 

gram- negative outer membrane (Figure 1-3). The extra envelope in heterocysts consists 

of inner laminated glycolipid and outer homogeneous polysaccharide layers. The barrier 

function of these two layers was testified that the mutants lacking either of the 

heterocysts specific glycolipid or polysaccharide resulted in the failure of aerobic 

nitrogen fixing in heterocysts, and the restoration of aerobic nitrogen fixation occurred 

after the complementation of the knock out genes (Murry & Wolk, 1989). At pole that 

connecting heterocysts and vegetative cells, both layers became thicker to create a narrow 

cytoplasm channel that allowing the substances exchanges between these two types of 

cells (Walsby, 2007). Increase respiratory activity was observed in isolated heterocysts 

with dual functions that to arrest the possible O2 within the heterocysts and provide ATP 

for nitrogen fixation (Fay & Walsby, 1966). 

 

Figure 1-3 The scheme of heterocyst envelope structure (Walsby, 2007). 

1.3 Multicellularity in filamentous cyanobacteria 

The studies have shown that the multicellularity of cyanobacteria occurred around the 

GOE period with multiple evidence, including 16S rRNA phylogenetic study 
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(Schirrmeister et al., 2015) and discovered fossils (Schirrmeister et al., 2015). In further, 

the multicellular morphotype evolved early in the cyanobacterial lineage, and most of the 

extent exhibited cyanobacteria with morphological diversity on the earth today - even 

including most single cell species - were evolved from these ancient multicellular 

lineages (Bettina E Schirrmeister, Alexandre Antonelli, & Homayoun C Bagheri, 2011). 

The property of multicellularity could have provided cyanobacteria advantageous 

conquering to more diverse habitats and facilitated new lineages diversity. The progenitor 

vegetative cells can differentiate into heterocysts, akinetes, and homogonia but varied 

from species and different environmental conditions. 

1.3.1 Mother cell - vegetative cells 

Vegetative cells are the center for carbon fixation, which transformed CO2 in the air to 

fixed carbon by utilizing the solar energy, and the mother cells for cell reproduction by 

cell division. The cells doubling time varies in different species and growth conditions: 

the typical range in unicellular cyanobacteria (e.g. Synechococcus elongatus PCC 7942 

and Synechocystis sp. strain PCC 6803) is between 7 to 12 h (Mori & Hirschie, 1996); the 

filamentous cyanobacteria (e.g. Anabaena strains) is between 18 to 36 h (Prasanna, 

Kumar, Sood, Prasanna, & Singh, 2006). The vegetative cells cycle would maintain when 

the nutrients are sufficient, but heterocysts form when lack of combined nitrogen and 

akinetes form when lack of phosphate and in response to other stresses. 

1.3.2 Nitrogen fixing cells - heterocysts formation and its space pattern 

Heterocysts are formed in a beautiful spacing pattern that every 10 to 20 vegetative cells 

along the filaments when nitrogen-fixing filamentous cyanobacteria are stressed from 

nitrogen deprivation (C Peter Wolk, Ernst, & Elhai, 1994). The mechanism of patterning 
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and heterocysts differentiation has been well studied that could be classified into four 

phases: introduction, patterning, commitment and morphogenesis (Figure 1-4) (Hanlon & 

Cozy, 2016).  

 

Figure 1-4 Heterocysts differentiation. (A) Anabaena PCC 7120 were grown in a 

combined nitrogen-replete medium that cells were uniform (left), but after nitrogen step-

down 24 h, the heterocysts (arrows) were formed about every 10 vegetative cells. (B) 

Phases of heterocysts differentiation: induction, patterning, commitment, and 

morphogenesis. The arrows indicate activation and T bars indicate repression (Hanlon & 

Cozy, 2016). 

The metabolite of Krebs cycle 2-oxoglutarate (2-OG), is also called α-ketoglutarate, 

which serves as carbon skeleton for ammonium assimilation (Vázquez-Bermúdez, 

Herrero, & Flores, 2000). When cells are starved for the combined nitrogen, 2-OG are 

accumulated and its accumulation resulted in the complex interactions involved in 

heterocyst differentiation (Laurent et al., 2005). Two proteins activities respond to the 

increase of 2-OG levels in the cyanobacteria cells, NtcA and PII (Forchhammer, 2004). 

NtcA is the main factor; the knockout of glnB which encodes for PII would only impair 



16 

 

 

 

the heterocysts functions (Laurent et al., 2004). NtcA is a universal transcription factor 

that controls several downstream genes which are involved in carbon and nitrogen 

metabolism, including hetR and patS (Herrero, Muro-Pastor, Valladares, & Flores, 2004).  

HetR is the master positive regulator that functions in heterocyst pattern formation, which 

is a DNA binding protein and its homodimer by a disulfide bond is required for the DNA 

binding activity (Black, Cai, & Wolk, 1993; Huang, 2004). HetR binds to the promotor 

region of hetR, hepA and patS, suggesting its direct control over these genes (Rivers, 

Videau, & Callahan, 2014).  On the country, patS is an inhibitory gene involved in 

heterocysts development, and studies have shown that the patS knockout mutant formed 

30% of heterocysts instead of 10% as normal (C. C. Zhang, Laurent, Sakr, Peng, & Bedu, 

2006). Some data suggested that the HetR could be the PatS receptor; and HetR DNA-

binding activity is inhibited by PatS-5 sequence RGSGR (Huang, Dong, & Zhao, 2004a). 

Above all, this patterning phase is dynamic that the ratio of HetR and PatS determines the 

heterocysts development and the ratio is affected by HetR and PatS competitive 

interactions (I. Y. Khudyakov & Golden, 2004).  

The commitment phase is usually irreversible and controlled by a cluster of hetP genes 

and hetZ (Hanlon & Cozy, 2016). Asl1930, alr3234, alr2902 and hetP share a functional 

domain, and have been confirmed that Asl1930 and alr3234 delay the commitment; 

alr2902 inhibit development while hetP push the commitment forward. HetZ has the 

similar function as hetP and both genes are to execute the decision made by hetR and 

patS (Patrick Videau et al., 2014).  

The morphology and physiology characteristics are distinguished from vegetative cells 

after the commitment phase, since where heterocysts acquire diazotrophic activity. The 
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heterocysts are terminal cells that are non-dividing, non-growing cells. Cell division 

protein, FtsZ, could not be detected in mature heterocysts (C.-c. Zhang, 2000). 

1.3.3 Spore-like cells akinetes 

Akinetes are spore-like cells in cyanobacteria, which are formed under stress of deficient 

in phosphate, cold and desiccation (Arizmendi & Serra, 1990). But akinetes are different 

from traditional spores in several aspects. Compared with the smaller size of spores, 

usually, akinete size is bigger than vegetative cells, especially akinete size is almost 20 

times bigger than vegetative cells in Anabaena cylindrica. Akinetes are not entirely 

resting cells s it typically contains similar proteins, DNA and RNA to vegetative cells. 

which giving reason to depict that akinetes are cells departing from vegetative cells after 

cell division, but prior to the stage of chromosome-replication (Fay & Walsby, 1966). 

The reason of akinete giant size is the conspicuous granulation formed by high 

concentrations of cyanophycin, which is a nitrogen storage polymer made from an equal 

ratio of arginine and aspartate (C Peter Wolk et al., 1994). These granules prepare for the 

germination of akinetes to produce vegetative cells when the environment becomes 

favorable. Several physical factors increase the akinetes formation frequency, including 

the temperature fluctuations, the light intensity and concentration of high filterable 

reactive phosphorus (FRP) (Moore, Donohue, Garnett, Critchley, & Shaw, 2005).  

Akinetes are usually formed adjacent to of heterocysts, where it is believed that 

heterocysts induce the neighbor vegetative cells into akinetes. But akinetes and 

heterocysts share homologues that they have similar polysaccharide composition out 

layer but vegetative cells do not. Three heterocyst genes have been identified that are also 

involved in the akinetes formation, such as hepA, devR and hetR (Meeks, Campbell, 
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Summers, & Wong, 2002). HepA is required for the heterocysts polysaccharide layer 

formation; the cell envelop of heteocysts and akinetes altered in ∆hepA mutant of 

Anabaena variabilis (Leganés, 1994). DevR is a heterocysts gene that required for the 

formation of polysaccharide layer, ∆devR mutant failed to fix nitrogen in aerobic 

condition but do so in anoxic conditions. DevR did not show essential role to akinetes 

formation, but increase the akinetes frequency in old culture of Nostoc sp. ATCC 29133 

with the overexpression of devR (Elsie L Campbell, Hagen, Cohen, Summers, & Meeks, 

1996).  HetR, the mater regulator in heterocyst differentiation, was reported that ∆hetR 

mutant block both the differentiation of heterocysts and akinetes(Leganés, Fernández‐

Piñas, & Wolk, 1994). An exception was found ∆hetR in N. punctiforme form large 

akinete-like and cold resistant cells after the depletion of phosphate (Wong & Meeks, 

2002). We do not know much about the mechanisms of akinetes differentiation and 

formation. One only akinete marker protein AvaK was identified in Anabaena variabilis 

that shows exclusive existence in akinetes (Zhou & Wolk, 2002).  

1.4 Omics study in cyanobacteria 

The omics study including genomics, transcriptomics, proteomics, and metabolomics 

provides a comprehensive picture of genetic and regulatory pathways within cells. With 

the advance of DNA sequencing techniques and related analytic methodology, more 

cyanobacteria strains were discovered and our knowledge of this group of bacteria has 

been deepened in multiple angles although challenges still yet to be overcome. In this 

thesis, genomics and proteomics of A. cylindrica are focused on. 
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1.4.1 Genomics in cyanobacteria 

1.4.1.1 The overview of cyanobacteria genome sequencing 

The first cyanobacteria genome sequence was reported from Synechocystis sp. PCC 6803 

in 1996 (Kaneko et al., 1996). With the rapid advancement of next-generation DNA 

sequence, so far there are over 400 cyanobacteria genome sequences available in public 

database including NCBI and cyanobase (http://genome.microbedb.jp/cyanobase/). The 

current completed cyanobacteria genomes account for only 0.6% of available prokaryotic 

genomes, which is far underrepresented. The main reason is the difficulty to obtain 

axenic cyanobacteria culture due to the tight associations of cyanobacteria and other 

symbiont microbes. Multiple chemical and mechanical methods, including washing, 

filtering, and streaking were employed to exclude other microorganisms but the purifying 

process is always a time-consuming process and sometimes fail (Waterbury, 2006). 

Several new sequencing techniques arise, like single-cell genomics and metagenomics in 

microbial consortia, but still facing methodological challenges and limited access 

(Davison, Hall, Zare, & Bhaya, 2015). The other challenge is lacking geographical 

diversity. Current cyanobacteria were deposited under Pasteur Culture Collection (PCC) 

located at Paris resulted in that majority available cyanobacterial genomes were from 

European. The consequence is the over-representing of some species, for example, 45 out 

of 166 genomes in Prochlorococcus spp. are belonging to one species - Prochlorococcus 

marinus. 

Genomics of the axenic cyanobacteria were routinely acquired from next-generation 

sequence and sequence assembly. The assembly includes the steps of reading quality 

control, de novo assembly, scaffolding, assembly statistics and genome annotation. 
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Various software and servers were developed for assembly purposes, including FastQC, 

PRINSEQ, SPAdes, CLC and Platanus. The failure of assembly still occurs due to the 

general reasons that multiple numbers of chromosomes, the occurrence of repeated 

regions and abundance of mobile genetic elements.  

1.4.1.2 The composition of cyanobacteria genome 

The cyanobacteria so far sequenced have one or more chromosomes with the sizes 

ranging from 1.4 to 8.2 Mb, and multiple plasmids up to 12. Polyploidy occurs during 

exponential growth that the cyanobacteria contain up to 218 chromosomes. Based on the 

functions, the genome of cyanobacteria can be divided into two categories: core genome 

and accessory genome. The core genome encodes for indispensable biochemical 

pathways and the complex protein structures, while the accessory genome is more 

probably subjected to horizontal gene transfer. As mentioned before, a high abundance of 

repeated sequences was spotted that increase the difficulty of the genome assembly. The 

genome content could be changed over time due to adaptation for different conditions or 

neutral processes. Two adaptation strategies have been revealed from cyanobacteria 

genomic analyses that genomic expansion through the increase of gene families and 

genomic reduction through the elimination of genes. The genome size, gene number, and 

G-C percentage are subjected to change over these adaptations (Larsson, Nylander, & 

Bergman, 2011). 

1.4.1.3 Genomes in differentiated cells 

The heterocysts and akinetes are differentiated cells from mother cells - vegetative cells. 

The heterocysts are terminal nitrogen-fixing cells that no longer divide, and akinetes are 

spores-like cells that are capable for the germination to generate vegetative cells later. 
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Some changes of the genomes composition in heterocysts and akinetes varied from 

vegetative cell have been identified, such as akinete chromosome number is increased up 

to 450 times; a few nif gene elements were deleted in heterocyst genome (Haselkorn, 

1992; Sukenik, 2012). 

1.4.1.3.1 The genome rearrangements in heterocysts 

Heterocysts are nitrogen-fixing cells and the nif genes encode for the key enzyme - 

nitrogenase, which converts atmospheric N2 into ammonium. But a couple of nif genes 

sequenced from vegetative cell genome were interrupted by some insertion elements that 

resulted in the disruption of nif genes expression and in further nitrogenase synthesis and 

assembly. In six Anabaena and three Nostoc strains, an 11 kb element within the nifD 

gene and a 55 kb element within the fdxN gene have been confirmed that got deleted in 

heteocysts using southern analysis (Claudio D Carrasco & Golden, 1995). These 

rearrangements seem to be exclusive in some heterocystous cyanobacteria that the nif 

genes rearrangements have been confirmed that they do not occur in non heterocystous 

cyanobacteria, such as Trichodesmiumm sp. strain NIBB 1067 (Zehr, Ohki, & Fujita, 

1991). These nif genes rearrangements have high importance for the acquirement of 

intact nif gene open reading frame and nitrogen fixation activity. But our knowledge of 

heterocyst genome rearrangement is limited to these couple of nif cluster genes, and little 

known about the heterocyst genomics until this dissertation.  

1.4.1.3.2 The multiple genome copies in akinetes 

Single akinetes were isolated to study the genome contents compared with vegetative 

cells in Aphanizomenon ovalisporum (Assaf Sukenik, Kaplan-levy, Welch, & Post, 

2011). In this species, vegetative cells contain normally 8 genome copies; in contrast, 
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akinetes have on average of 119 genome copies. Especially some late stage of akinetes 

have up to 450 genome copies. On average, akinetes have 15-fold higher genome copies 

than vegetative cells. At the same time, accumulated ribosomes were also observed in 

akinetes using 16S rRNA probe in situ hybridization. The mechanisms of nucleic acid 

content accumulation in akinetes have not fully understood yet, where inorganic 

polyphosphate bodies that absent in akinetes but high abundance in vegetative cells were 

suspected associating with this process. One thing is certain that the multiple genome 

copies are beneficial for cell division upon germination and probably related to extended 

survival. 

1.4.2 Transcriptomics in cyanobacteria 

The most common mechanism for gene expression control is transcriptional regulation. 

The transcriptome study has advanced our understanding of gene expression and 

regulation pattern, including sRNA regulators. Genome-wide transcriptional start sites 

(TSS) map was reported in Prochlorococcus and interestingly hundreds of TSS were 

found within the genes (Voigt et al., 2014). Besides RNA polymerase, transcription 

factors (TFs) are a family of proteins which initiate and regulate gene transcription. 

Transcription is initiated by TFs that bind to specific sequences of DNA in the promoter 

region – transcription factor binding sites (TFBSs). These specific DNA binding 

sequences are called DNA motifs (Figure 1-5). So far over 27 putative TFs have been 

reported in cTFbase (Wu et al., 2007), which is a database collection of the TFs in all 

cyanobacteria. A regulon is a gene group that shares the same regulatory DNA motifs, so 

usually is controlled by the same regulatory gene that expresses a protein acting as a 

repressor or activator. OmpR, the archetypal DNA binding protein, binds to different 
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regulons related with acid resistance in Escherichia coli (Quinn, Cameron, & Dorman, 

2014). Previous studies in Cyanothece 51142 showed a strong functionally associated 

coregulation in distantly located genes. Also, both the clusters of nif and the ribosomal 

genes are organized as regulons of more than one transcriptional unit (Stockel et al., 

2008).  

 

Figure 1-5 Overview of transcription factor binding to the promotor, and association 

with RNA polymerase to initiate transcription. The TFBSs are conserved DNA motifs 

among regulons. 

Comparative transcriptomes have been widely used to identify the response of 

cyanobacteria to different environmental factors as well. Cyanobacteria have a high 

transcriptional expression, especially, antisense transcription from three-quarters of all 

genes in Prochlorococcus has been detected that was substantially higher than other 

bacteria (Voigt et al., 2014). To study circadian clock, a total of 6766 mRNAs and 1322 

proteins have been tested at four-time points during a diurnal light-dark cycle in 

Cyanothece sp. PCC 7822 (Welkie et al., 2014). The strong correlation of antisense gene 

expression with light was observed and similar robust oscillating expression was found in 

Cyanothece 51142 as well (Stockel et al., 2008). Comparative gene expression of Nostoc 
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puntiforme grown in different medium revealed that the enriched transcriptomes of genes 

that encoding core metabolic functions that grown in ammonium than steady-state N2 

grown culture, which most up-regulated gene expression are related with heterocyst 

differentiation and N2 fixation (E. L. Campbell, Summers, Christman, Martin, & Meeks, 

2007). A total of 1,036 and 1,762 transcribed genes were reported during the 

development of heterocyst without combined nitrogen and in hormogonia that induced by 

ammonium; commonalities and two distinguished pathways were clarified between these 

two differentiated structures. Besides, the distinct up-regulation genes that involved with 

the differentiation of heterocysts, akinetes, and hormogonia were also identified in 

Nostoc punciforme (Christman, Campbell, & Meeks, 2011).  

1.4.3 Proteomics in cyanobacteria 

Proteomics is a most direct methodology to visualize the metabolic activity within the 

cells as the proteins are the functional performers. The proteomics techniques mostly 

used in cyanobacteria are 2DE, two-dimensional gel electrophoresis; nSAF, normalized 

spectral abundance factor; iTRAQ, isobaric tags for relative and absolute quantitation.  

As the advance in the proteomics sequence technique, proteomics has been applied to 

study cyanobacteria in different aspects in the past decade, such as cell structures, protein 

to protein interactions and the cell's response to different conditions. The cyanobacteria 

are gram-negative bacteria with their unique characteristics and functions, such as 

photosynthesis and nitrogen fixation. Proteomics has been identified in different levels of 

study that helped us advanced our understanding towards this microorganism.  

Carboxysome is a special structure developed in cyanobacteria to concentrate CO2 within 

the confined space. Matthew et. al. isolated the carboxysome and identified its nanoscale 
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structure and proteomics, which greatly deepened our understanding of this organelle 

(Faulkner et al., 2017). One fact that circadian clock of cyanobacteria regulates the 

separation of photosynthesis in the day and nitrogen fixation during the night. The 

proteomics of Synechococcus elongatus PCC 7942 identified from the day and night 

revealed the multi-protein complexes difference and revealed cell activities during these 

two phases (Guerreiro et al., 2016). The proteomics tested the response of Microcystis 

aeruginosa to N, P or N and P limitation that N-limitation increased proteins for C 

metabolism; P limitation reduced C and N assimilation (Yue, Peng, Yin, & Xiao, 2015). 

Comparative proteomics has also been utilized to study the mechanisms of toxin 

producing in some types of cyanobacteria by identifying the proteins expression levels in 

toxin producing and non-toxin producing cyanobacteria (D'Agostino et al., 2016). With 

the filamentous cyanobacteria, the proteomics among differentiated cells will greatly help 

us understand their specialized functions which are lacking. Currently, a lot of proteomics 

databases are available and two of the biggest cyanobacterial database are Cyanobase 

(Fujisawa et al., 2017) and Cyanobacterial KnowledgeBase (CKB) (Peter et al., 2015). 

Up to this dissertation, there has been no proteomic study for akinetes although serval 

proteomic studies have been reported for heterocysts, vegetative cells, carboxysomes. 
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CHAPTER 2: Unique Proteomes Implicate Functional Specialization across 

Heterocysts, Akinetes, and Vegetative Cells in Anabaena cylindrica 

2.1 Abstract 

In response to environmental changes, vegetative cells of Anabaena cylindrica can 

differentiate into two other cell types: a heterocyst for oxic N2-fixation, and an enlarged 

spore called akinete for stress survival. Akinetes normally differentiate from vegetative 

cells adjacent to heterocysts. Heterocysts inhibit nearby cells from differentiating into 

heterocysts but can induce adjacent cells to become akinetes, a rare embryogenetic 

induction in prokaryotes. The mechanism for a patterned differentiation in A. cylindrica 

has been little studied. Here, we isolated three types of cells from A. cylindrica to identify 

their proteomes using LC-MS/MS.  

A total of 1395 proteins were identified, including 664 proteins from akinetes, 751 

proteins from heterocysts, and 1236 proteins from vegetative cells. There were 45 

proteins (33 novel proteins) found exclusive to akinetes, 57 heterocyst-specific proteins 

(33 novel proteins), including nif gene products, and 485 proteins exclusively in 

vegetative cells. Our proteomic data suggest that akinetes, unlike the typical spores of 

bacteria, perform unique biochemical functions that collaborate with both heterocysts and 

vegetative cells. A HAVe model for collaboration among heterocysts, akinetes, and 

vegetative cells is proposed to illustrate the metabolic network of cyanophycin and 

carbohydrates based on the distribution of their biosynthesis-related proteins in three 

types of cells. Interestingly, cell division proteins, DNA replication proteins, some 

carboxysomal proteins including RuBisCO and proteins in photosystems I, II were found 

abundant in heterocysts, the non-dividing cells dedicated exclusively to oxic N2-fixation. 
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The identification of the akinete and heterocyst proteomes enables the pursuit of genetic 

studies into the patterned differentiation of akinetes and heterocysts. 

KEYWORDS: cyanobacteria, spores, oxic nitrogen fixation, comparative proteomics, 

cellular differentiation, HAVe model.  
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2.2 Introduction 

Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis (Gantt, 

2011), and are widely believed to be the ancestors of chloroplasts (Martin et al., 2002). 

Many cyanobacteria are also capable of photosynthetic fixing atmospheric dinitrogen 

(N2) (Kumar, Mella-Herrera, & Golden, 2010). While some cyanobacteria follow a 

single-cell lifestyle, multicellularity in this group first evolved 2.5 billion years ago (B. E. 

Schirrmeister, A. Antonelli, & H. C. Bagheri, 2011). Many cyanobacteria are capable of 

complex biochemical transformations in response to different physicochemical 

environments. Photosynthesis occurs in light and yields oxygen while N2 fixation 

requires a highly reduced environment (Kumar et al., 2010). Unicellular cyanobacteria 

such as Cyanothece sp. ATCC 51142 solve this through a circadian clock to separate 

photosynthesis and N2 fixation temporarily into the light and dark periods (Cerveny, 

Sinetova, Valledor, Sherman, & Nedbal, 2013). Spatial division of labor in multicellular 

cyanobacteria appears more efficient at energy capture than temporal separation as occurs 

in unicellular cyanobacteria (Rossetti, Schirrmeister, Bernasconi, & Bagheri, 2010). 

Some filamentous cyanobacteria can differentiate to form four cell types: photosynthetic 

vegetative cells, N2-fixing heterocysts, akinetes, and small motile filaments called 

hormogonia (Flores & Herrero, 2010; Rippka & Herdman, 1985). Akinetes developed 

from vegetative cells but are capable of germinating to produce young vegetative cells. 

Heterocysts develop from vegetative cells to form terminally differentiated, non-dividing 

cells functionally specialized for oxic N2-fixation. Heterocysts are formed in filamentous 

cyanobacteria in response to the depletion of fixed nitrogen (Mitschke, Vioque, Haas, 

Hess, & Muro-Pastor, 2011). They develop every 10 to 20 cells along the filament 
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(Kumar et al., 2010), and are larger and more round than vegetative cells. The cell 

envelope of heterocysts is thicker, and with two additional envelope layers: heterocyst-

specific glycolipids (HGL) and an outer polysaccharide layer (HEP). These extra two 

envelope layers impede the entry of oxygen to protect nitrogenase in the heterocysts 

(Flores & Herrero, 2010). Heterocysts have diminished levels of pigments, and 

photosystem II is degraded to shut down O2-producing reactions (Donze et al., 1972; 

Thomas, 1970). Thus, the heterocyst creates a micro-oxic environment to house the 

oxygen-sensitive nitrogenase. However, photosystem I (PS I) is kept intact to generate 

ATP using light energy for N2-fixation through cyclic photophosphorylation (Tel-Or & 

Stewart, 1976; C. P. Wolk & Simon, 1969). Theretofore, nitrogen fixation in heterocysts 

is a uniquely solar-powered process, which is distinct from N2-fixation by any other N2-

fixing bacteria. The wall between vegetative cells and heterocysts contains intercellular 

channels called septosomes, which allow for the exchange of metabolites. Reductants 

such as sucrose and fixed carbon are obtained from vegetative cells, while heterocysts fix 

N2 and provide amino acids to the vegetative cells in a filament (Muro-Pastor & Hess, 

2012; Thomas, Meeks, Wolk, Shaffer, & Austin, 1977).  

Some cyanobacteria can form akinetes, spore-like cells resistant to desiccation and 

freezing temperatures, that are able to germinate into new vegetative cells under 

favorable conditions (Perez, Forchhammer, Salerno, & Maldener, 2015). Unlike 

endospores of Bacillus, akinetes are susceptible to heat and long-term exposure to 

vacuum (Olsson-Francis, de la Torre, Towner, & Cockell, 2009). Akinetes are larger than 

vegetative cells (Singh & Montgomery, 2011) and contain large quantities of reserve 

products, mainly glycogen (Sarma, Ahuja, & Khattar, 2004) and the nitrogen storage 
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polypeptide polymer cyanophycin (A. Sukenik et al., 2015). Akinetes are enveloped in a 

thick protective coat (Meeks et al., 2002). They begin to differentiate from vegetative 

cells during the late exponential phase of growth. Increasing culture density and 

decreasing light penetration accelerate the formation of akinetes. Intriguingly akinetes 

normally form adjacent to heterocysts in Anabaena cylindrica (Figure 2-1A), implying 

that these akinetes may play a role in the transportation of N and C between vegetative 

cells and heterocysts besides their survival role in stress conditions. The significant 

morphological and metabolic changes observed in heterocysts and akinetes suggest 

unique phenotypes underpinned by complex regulatory pathways. 

Many genes have been reported to be involved in regulating heterocyst differentiation. 

HetR is a master regulator specifically required for heterocyst differentiation (Buikema & 

Haselkorn, 1991; Huang, Dong, & Zhao, 2004b; Zhou et al., 1998). Several regulatory 

genes nrrA (Ehira & Ohmori, 2011), ccbP (Y. Hu et al., 2011), hetN (Higa et al., 2012), 

hetF, patA (Risser & Callahan, 2008), patN (Risser, Wong, & Meeks, 2012), patU (Meeks 

et al., 2002), hetZ (W. Zhang et al., 2007), patS (H. X. Hu et al., 2015; Yoon & Golden, 

1998) and hetP (P. Videau et al., 2016) were also found to play very important roles 

during heterocyst differentiation and its pattern formation. The heterocyst-specific NsiR1 

small RNA was recently discovered as an early marker in this process (Muro-Pastor, 

2014). Although these genes are clearly involved in the regulation of heterocyst 

development, their biochemical functions remain to be determined. Unfortunately, the 

genetic regulation of akinete formation is completely unknown. So far, the only reported 

akinete-specific protein is AvaK from Anabaena variabilis (Zhou & Wolk, 2002). There 

has been no proteomic study for akinetes to date although a quantitative shotgun 
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proteomics study of heterocysts was reported for Anabaena sp. PCC 7120 (Agrawal et 

al., 2014; Ow et al., 2008; Panda, Basu, Rajaram, & Kumar Apte, 2014; Pandey, Rai, & 

Rai, 2012) and Nostoc punctiforme (Liang et al., 2012; Sandh, Ramstrom, & Stensjo, 

2014). 

A. cylindrica can form N2-fixing heterocysts under both depleted and replete nitrate 

conditions (Meeks, Wycoff, Chapman, & Enderlin, 1983), which is different from other 

heterocyst-forming cyanobacteria, such as Anabaena sp. strain PCC 7120 (Borthakur & 

Haselkorn, 1989), Anabaena variabilis (Thiel, Lyons, Erker, & Ernst, 1995) and Nostoc 

punctiforme (Summers & Meeks, 1996), whose vegetative cells can differentiate into 

heterocysts only in response to deprivation of combined nitrogen. Moreover, vegetative 

cells of A. cylindrica can also differentiate into akinetes (arrowheads labeled A), spore-

like cells for stress survival. Akinetes (15 20 μm in length) are about 10 times larger 

than vegetative cells, and normally develop adjacent to heterocysts within the same 

filament (Figure 2-1A), providing a rare opportunity to elucidate what appears to be an 

embryogenetic induction in a prokaryote (C P Wolk, 1966). Unfortunately, the 

differentiation of akinetes, heterocysts as well as akinete juxtaposition to heterocysts have 

not heretofore been studied genetically due to the lack of a genetic transformation method 

for this organism.  

We sought to characterize the phenotype of akinetes of A. cylindrica through proteomic 

analysis, contrasting it to the phenotype of heterocysts and vegetative cells. A. cylindrica 

ATCC 29414 was selected for this study because it differentiates readily into both 

heterocysts and akinetes in dilute Allen and Arnon medium (AA/8) without combined 

nitrogen (N. T. Hu, Thiel, Giddings, & Wolk, 1981). Its akinetes are large and readily 
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separated from heterocysts and vegetative cells. Our proteomic data suggest that akinetes, 

unlike the typical spores of bacteria, perform unique biochemical functions that 

collaborate with both heterocysts and vegetative cells. 

2.3 Material and Methods 

2.3.1 Isolation of akinetes and heterocysts 

Isolation of akinetes and heterocysts was based upon the CsCl density gradient 

centrifugation (C. P. Wolk, 1968) with the following modification. Briefly A. cylindrica 

ATCC 29414 was grown in nitrate free AA/8 medium under continuous light (60 

µE/m2/s, 150 rpm, 30°C) for 30 days (OD7000.15) to allow heterocyst and akinete 

development. Cultures were harvested (6,400 × g 15 min, 4°C), resuspended in ddH2O, 

and the vegetative cells were disrupted by passing the suspension through a Nano 

DeBEE-30 high pressure homogenizer (BEE International) at 4,500 psi and then at 5,000 

psi. Akinetes and heterocysts were sedimented (4,000 × g 10 min, and 4°C) and washed 

four times with ddH2O to remove the vegetative cell debris. There were two distinct 

layers formed in the last wash pellet. The upper layer was suspended in 1.55 g/mL CsCl 

density solution, and transferred into in an ultracentrifugation tube. The bottom layer was 

suspended in 1.45 g/mL CsCl and carefully transferred on-top of the upper layer 

suspension in the same ultracentrifugation tube. Two distinct fractions were collected 

from the first CsCl density gradient centrifugation (17,000 × g, 60 min, 4°C in a fixed 

angle MLA-55 rotor, Beckman Coulter), each was sedimented (4000 × g, 30 min), and 

washed with 3x ddH2O. The heavy fraction was suspended in 1.45 g/ml CsCl solution 

and re-centrifuged as before. The light fractions from the first and second centrifugations 

were pooled, suspended in 1.45 g/ml CsCl solution, and re-centrifuged. The supernatant 
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fraction from this third centrifugation was suspended in 1.3 g/ml CsCl solution and re-

centrifuged. The resultant pellets from the second and third centrifugations (containing 

highly purified akinetes) and pellet from the 4th centrifugation (containing highly purified 

heterocysts) were washed with ddH2O as above. The purity of the heterocysts (99.52 ± 

0.48%) and akinetes (96.17 ± 0.72%) was examined by differential interference contrast 

microscopy (AX70 upright, Olympus).  

 

Figure 2-1 Anabaena cylindrica ATCC 29414 has three types of cells in filaments (A). 
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The purity of the isolated akinetes (B) and heterocysts (C) was analyzed by differential 

interference contrast microscopy. A: Akinetes or developing akinetes, H: Heterocyst, V: 

Vegetative cell. Scale bar for panel A-C is 20 µm. The purity of the heterocysts and 

akinetes was 99.52 ± 0.48% and 96.17 ± 0.72%, respectively. 

2.3.2 Total protein extraction and SDS-PAGE purification 

The purified heterocysts or akinetes were suspended in Phosphate Buffered Saline (PBS, 

0.01M, pH7.0) containing 1% N-lauroyl sarcosine and protease Inhibitors [Complete, 

Mini Protease Inhibitor Cocktail Tablets (Roche) at 1 tablet per 10 mL]. Cells were 

disrupted on ice by ultra-sonication (Branson digital sonifier 450) for 12 x 5 s bursts with 

15 s intervals at an amplitude of 60%. Cell lysates were collected (13,000 × g 20 min) 

respectively. To extract total proteins from the vegetative cells, A. cylindrica ATCC 

29414 cells grown in 1.0 litter  of AA/8N (N. T. Hu et al., 1981) for 8 days 

(OD7000.042) were harvested (6,400 × g, 15 min, 4°C) and resuspended in PBS buffer 

(PBS, 0.01M, pH7.0) containing 1% N-lauroyl sarcosine and protease inhibitors 

(Complete, Mini Protease Inhibitor Cocktail Tablets (Roche) at 1 tablet per 10 mL). 

Vegetative-cell lysate was obtained by passing the cell suspension through a Nano 

DeBEE-30 High-Pressure Homogenizer (BEE International) once at 1,000 psi (only the 

vegetative cells were disrupted at this pressure), and removing unbroken cells via 

centrifugation (4,000 × g, 10 min, 4°C). 

Total proteins from each type of cell lysate were precipitated with 10% trichloroacetic 

acid (TCA) overnight at 4°C, sedimented (16,000 × g, 30 min), the pellets were washed 

three times with 80% methanol and three times with 80% acetone. The pellets were 

resuspended in 300 L of sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
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(SDS-PAGE) loading buffer containing 1% N-lauroyl sarcosine, boiled for 3 min, 

clarified by centrifugation at 16,000 × g for 20 min at 25°C, and 70 L was subjected to a 

12% SDS-PAGE (Bio-Rad Mini-PROTEAN® Comb, 5-well, 1.0 mm) at 200 mV for 

approximately 15 min, until all the proteins just entered the resolving gel. The gel was 

stained with Coomassie Brilliant Blue R-250 for band excision and analysis.  

2.3.3 In-gel tryptic digestion and protein identification by LC-MS/MS 

The protein gel bands were excised and in-gel tryptic digestion was performed according 

to Shevchenko (Shevchenko, Wilm, Vorm, & Mann, 1996) with the following 

modifications. Briefly, gel slices were dehydrated with acetonitrile (ACN) for 

approximately 5 min incubation and repeated this process until they appear to shrink in 

size and show a chalk white color. The time required and number of washes vary with gel 

size and composition. The chalk white color gel was then incubated with 100 mM 

ammonium bicarbonate (NH4HCO3) containing 10 mM dithiothreitol (DTT, pH  8.0) 

for 45 min at 56°C, dehydrated again and incubated with 100 mM NH4HCO3 containing 

50 mM iodoacetamide for 20 min in the dark, and then washed with 100 mM NH4HCO3 

and dehydrated again. Approximately 50 µL trypsin solution (0.01 µg/µL sequencing 

grade modified trypsin (Promega, #V5111) in 50 mM NH4HCO3) was added to each gel 

slice so that the gel was completely submerged, and then incubated at 37°C for overnight. 

The tryptic peptides were extracted with 60% ACN/1% TCA from the gel by water bath 

sonication (Aquasonic 150T sonicating water bath which puts out 135W. Sonication is 

done 2 x 20s) and concentrated in a SpeedVac to 2 µL. 

For heterocyst and akinete samples, the extracted peptides were re-suspended in 20 µL 

2% ACN/0.1% trifluoroacetic acid (TFA), 10 µL was injected by a nanoAcquity Sample 
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Manager and loaded for 5 min onto a Symmetry C18 peptide trap (5 µm, 180 µm x 20 

mm) (Waters) at 4 µL/min in 2% ACN/0.1% Formic Acid. The bound peptides were 

eluted onto a BH130 C18 column (1.7 µm, 150 µm x 100 mm, Waters) using a 

nanoAcquity UPLC (Waters) (Buffer A = 99.9% Water/0.1% Formic Acid, Buffer B = 

99.9% Acetonitrile/0.1% Formic Acid) with a gradient of 5% B to 30% B over 228 min, 

ramping to 90% B at 229 min and holding for 1 min, and then ramping back to 5% B at 

231 min, and holding for equilibration prior to the next injection for a total run time of 

240 min. The eluted peptides were sprayed into an LTQ-FT-ICR Ultra hybrid mass 

Spectrometer (Thermo Scientific) using an ADVANCE nanospray source (Bruker-

Michrom). Survey scans were taken in the FT (25,000 resolution determined at m/z 400) 

and the top five ions in each survey scan were then subjected to automatic low energy 

collision-induced dissociation (CID) in the LTQ.  

For the vegetative-cell sample, 5 µL of the extracted peptide suspension was injected (to 

the sample loop which is then backflushed using solvent A directly to the column) by 

EASYnLC and the peptides separated through an Acclaim PepMap RSLC column (0.075 

mm x 150 mm C18, Thermo Scientific) with the same gradient as above. The eluted 

peptides were sprayed into a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer 

using a Nanospray Flex™ Ion Sources (Thermo Scientific). Survey scans were taken in 

the Orbi trap (35,000 resolution determined at m/z 200) and the top ten ions in each 

survey scan were then subjected to automatic higher energy collision-induced 

dissociation (HCD) with fragment spectra acquired at 17,500 resolution (by convention 

this is a dimensionless measurement).  
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For protein identification, the resulting MS/MS spectra were converted to peak lists using 

Mascot Distiller, v2.5.1.0 (www.matrixscience.com) and searched against a protein 

sequence database containing A. cylindrica ATCC 29414 

(http://scorpius.ucdavis.edu/gmod/cgi-bin/site/Anabaena02?page=gblast), A. cylindrica 

PCC 7122 entries 

(http://www.ncbi.nlm.nih.gov/genome/?term=Anabaena+cylindrica+7122+genome) and 

common laboratory contaminants downloaded from www.thegpm.org.  All searches 

were performed using the Mascot searching algorithm, v 2.4. The Mascot output was then 

analyzed using Scaffold, v4.3.4 (www.proteomesoftware.com) to probabilistically 

validate protein identifications at 1% FDR. The quantification value was calculated using 

Normalized Total Spectra (For details, see Supplementary Materials). The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange 213 

Consortium via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset 

identifier PXD006041. 

2.4 Results 

2.4.1 Proteomic analysis of heterocysts, akinetes, and vegetative cells  

To unlock the cellular function of akinetes and the protein network among akinetes, 

heterocysts, and vegetative cells in A. cylindrica ATCC 29414, we performed proteomics 

through LC-MS/MS. A total of 12616 tryptic peptides were collected and 1426 proteins 

were identified, including 1395 ORF proteins from A. cylindrica ATCC 29414, 14 

proteins from common laboratory contaminants, 14 decoy proteins for determination of 

the false discovery rate, and 3 ORFs (Anacy_0074, Anacy_3940 and Anacy_5216) in A. 

http://www.ncbi.nlm.nih.gov/genome/?term=anabaena+cylindrica+7122+genome
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cylindrica PCC 7122 matched to intergenic regions of A. cylindrica ATCC 29414 

genome. 

Our LC-MS/MS proteomics analysis identified 664 proteins from akinetes, 751 from 

heterocysts, and 1236 from vegetative cells, with 448 proteins common to all three cell 

types. There were 45 akinete-specific, 57 heterocyst-specific, and 485 vegetative cell-

specific proteins (Figure 2-2). Interestingly, phycocyanin alpha (ORF: 3613) and beta 

(ORF: 3614) subunits, allophycocyanin beta subunit (ORF: 1908), phycobilisome protein 

(ORF: 1909), beta subunit of mitochondrial ATP synthase (ORF: 3788), translation 

elongation factor 1A (EF-1A/EF-Tu, ORF: 5853) and ribulose 1,5-bisphosphate 

carboxylase (RuBisCO) large (ORF: 6007) and small subunit (ORF: 6009) were among 

most abundant proteins in all three cell types. 

 

Figure 2-2 Venn analysis showing the proteomic profiles from akinetes (A), heterocysts 

(H), and vegetative cells (V). 45 A: 45 proteins were detected exclusively to akinetes; 57 

H: 57 proteins were found to be heterocyst-specific; 485 V: 485 proteins were found 

exclusively in vegetative cells; 57 A+H: 57 proteins were detected in both akinetes and 
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heterocysts; 144 V+A: 144 proteins were detected in both vegetative cells and akinetes; 

189 V+H: 189 proteins were detected in both vegetative cells and heterocysts; and 448 

A+V+H: 448 proteins were found to be common to all three cell types. 

2.4.2 Nitrogen fixation in heterocysts 

The nif genes encode subunits of nitrogenase for reducing atmospheric N2 to ammonia. 

Other heterocyst-specific genes encode proteins involved in regulating heterocyst 

development and N2 fixation, and inactivation of these genes showed diminished or 

ceased diazotrophic growth in the presence of oxygen due to impaired nitrogenase 

activity, or forming no or dysfunctional heterocysts (Lechno-Yossef, Fan, Wojciuch, & 

Wolk, 2011). The above genes are collectively called ‘FOX’ genes (incapable of N2-

fixation in the presence of oxygen) (Lechno-Yossef et al., 2011). LC-MS/MS identified 

27 FOX proteins (Appendix Table 1) and 57 heterocyst-specific proteins. Heterocysts had 

19 Fox proteins but eleven were also found in akinetes (Appendix Table 1). 

2.4.3 Distinct distribution of Photosystem I and II proteins  

PS I and PS II are well-known hallmarks primarily associated with the photosynthetic 

characteristics of vegetative cells. Of 20 photosystem proteins identified, all were present 

in vegetative cells, consistent with vegetative cells bearing both PS I and PS II proteins 

for fully functional photosynthesis and electron transfer (Appendix Table 1). The 

protochlorophyllide reductase subunit N catalyzing the penultimate step of chlorophyll 

biosynthesis (Yamazaki, Nomata, & Fujita, 2006), PS I assembly protein Ycf3 (Wilde, 

Lunser, Ossenbuhl, Nickelsen, & Borner, 2001), and PS II reaction center Psb28 protein 

(Dobakova, Sobotka, Tichy, & Komenda, 2009) were unique to vegetative cells of A. 

cylindrica. Notably, there were several PS I and PS II proteins in high abundance in both 

https://en.wikipedia.org/wiki/Nitrogenase
https://en.wikipedia.org/wiki/Ammonia
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akinetes and heterocysts respectively (Appendix Table 1), e.g., PS I P700 apoprotein A2, 

PS II 44 kDa subunit reaction center protein, and PS II chlorophyll-binding protein CP47, 

suggesting that PS I and PS II may function partially in both heterocysts and akinetes.  

2.4.4 Akinete-specific protein AcaK43 (ORF: 1647) in A. cylindrica 

The first reported akinete-specific protein was AvaK from Anabaena variabilis (Zhou & 

Wolk, 2002). AvaK homolog AcaK43 (ORF: 1647) was among the top 20 most abundant 

proteins in A. cylindrica akinetes (85.25 counts) and heterocysts (90.73 counts), while 

only trace amount was detected in vegetative cells, which is consistent with the previous 

report in A. variabilis that AvaK is an akinete marker protein (Zhou & Wolk, 2002). 

However, our proteomic data showed that AcaK43 was abundant in heterocysts of A. 

cylindrica. Fluorescence of GFP (green fluorescent protein) from PacaK43-gfp (promoter of 

acaK43 fused to gfp) originates primarily in both akinetes and heterocysts of A. 

cylindrica (Zhou et al, unpublished observation). Furthermore, proteins homologous to 

AapN, Hap, Aet identified as akinete-specifically expressed genes using differential 

display at mRNA level in Nostoc punctiforme (Argueta, Yuksek, Patel, & Summers, 

2006) were below the limit of detection in our proteomic study. The presence of AcaK43 

in both akinetes and heterocysts suggest that A. cylindrica is distinct from A. variabilis 

and N. punctiforme although they all are akinete/heterocyst-forming cyanobacteria. 

2.4.5 DNA/RNA/protein biosynthesis patterns among akinetes, heterocysts, and 

vegetative  

LC-MS/MS identified a number of proteins related to nucleotide synthesis, DNA packing 

and repair, RNA and protein synthesis, and cell division within akinetes (Appendix Table 

2). Nucleotide synthesis related protein (phosphoribosylformylglycinamidine synthase II) 



41 

 

 

 

was found to be akinete-specific. Although DNA polymerases, single-strand binding 

protein (SSBP) and DEAD/DEAH box helicase domain-containing protein involved in 

DNA replication were not detected in akinetes, DNA gyrase subunit A and the DNA 

gyrase modulator Peptidase U62 were only found in akinetes. Akinetes have more 

chromosome copies per cell than in vegetative cells (A. Sukenik, Kaplan-Levy, Welch, & 

Post, 2012), so DNA gyrase might play an important role in DNA wrapping and 

packaging (Gore et al., 2006). Furthermore, DNA gyrase in akinetes may minimize the 

potential damage caused by light energy to these resting cells (Napoli et al., 2004). 

Moreover, a similar distribution pattern of DNA replication proteins was seen in 

heterocysts. 

DNA-directed RNA polymerase subunits alpha-, beta, beta and gamma were abundant in 

akinetes. However some proteins required for transcription (like RNA polymerase sigma 

factor) and translation (like signal recognition particle protein, some tRNA and ribosomal 

proteins) were only found in heterocysts and vegetative cells (Appendix Table 2), 

suggesting a very active transcription and translation occurred in heterocysts and 

vegetative cells. Thirteen out of 25 tRNA synthetases and 23 out of 50 ribosomal proteins 

were absent in akinetes. Most transcriptional regulators were also undetectable in 

akinetes. These data imply that akinetes retain a less active transcription machinery and a 

very weak translational capability. 

The proteomics data showed that amidohydrolase 2 (ORF: 3947) and taurine catabolism 

dioxygenase TauD/TfdA (ORF: 3933) were the third and fifth most abundant akinete-

specific proteins, while the other two amidohydrolases were vegetative cell-specific 

(Appendix Table 2). TauD/TfdA, which can degrade taurine and be a source of sulfur 



42 

 

 

 

(Shen et al., 2007), was found in akinetes as well. However, phosphoadenylylsulfate 

reductase, involved in sulfur (Wang et al., 2004) and pyrimidine metabolism 

(http://www.genome.jp/kegg-bin/show_pathway?ec00240 +1.8.1.9), was absent in 

akinetes. Certain enzymes involved in amino acid metabolism were only found in 

heterocysts and/or vegetative cells, such as arginine (Arg) biosynthetic enzyme, 

acetylglutamate kinase (Ramon-Maiques, Marina, Gil-Ortiz, Fita, & Rubio, 2002), and 

lysine biosynthetic enzyme diaminopimelate epimerase (Hor et al., 2013). Interestingly, 

saccharopine dehydrogenase required for lysine degradation (Serrano, Figueira, Kiyota, 

Zanata, & Arruda, 2012) was only present in akinetes.  

2.4.6 Cell division 

Heterocysts, terminally differentiated N2-fixing cells, do not divide and need not pass 

DNA information to the next generation, which is consistent with the absence of key 

DNA replication enzymes (DNA polymerase) in heterocysts. Similarly, no DNA 

polymerases were detected in akinetes, suggesting that akinetes are not dividing either. 

Akinetes of A. cylindrica store twice as much DNA and 10-fold more protein than 

vegetative cells (Simon, 1977), preparing them for germination when environmental 

conditions become favorable. Surprisingly, septum formation protein Maf (Briley, 

Prepiak, Dias, Hahn, & Dubnau, 2011), participating in cell division in Bacillus subtilis, 

was found to be heterocyst-specific. Cell division protein FtsZ (Bi & Lutkenhaus, 1990) 

and septum site-determining protein MinD (Maurya, Modi, & Misra, 2016) were more 

abundant in heterocysts and akinetes than in vegetative cells (Appendix Table 3). We 

speculated that, instead of involvement in cell division, these proteins might be critical in 

maintaining septum homeostasis among heterocysts, akinetes, and vegetative cells. 

http://www.genome.jp/kegg-bin/show_pathway?ec00240
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2.4.7 Heterocyst-specific envelope glycolipid and lipopolysaccharide lipid A 

Cyanobacterial heterocysts provide a micro-oxic environment to support the oxygen-

labile nitrogenase fixing N2 in an oxic milieu. The heterocyst glycolipid (HGL) layer is 

an important part of the system for maintaining a micro-oxic environment in heterocysts 

(Murry & Wolk, 1989). Our proteomics study identified multiple heterocyst-specific 

proteins required for synthesis, export, and deposition of envelope polysaccharides and 

glycolipids (Appendix Table 3). For instance, we found polyketide synthase thioester 

reductase subunit HglB (Fan et al., 2005), an enzyme for synthesizing glycolipid 

aglycones. DevA and DevB are two components of DevBCA exporter (Fiedler, Arnold, 

Hannus, & Maldener, 1998) necessary for the formation of the laminated layer of 

heterocysts (Zhou & Wolk, 2003). Hexapeptide repeat-containing transferase is a sugar 

transferase which might play a critical role in synthesizing different sugars from the fixed 

carbon source provided by adjacent vegetative cells (Vaara, 1992). Furthermore, glycosyl 

transferase (HglT, ORF: 3521) required to glycosylate the glycolipid aglycone (Awai & 

Wolk, 2007) was present only in heterocysts and akinetes (Appendix Table 3). ORF: 

2637 and ORF: 2638, orthologs of LpcC and Omp85 involved in lipopolysaccharide lipid 

A biosynthesis to form a permeability barrier at the outer membrane (Nicolaisen, Hahn, 

& Schleiff, 2009), had different distribution, with high abundance of Omp85 in akinetes, 

supporting the hypothesis that the lipopolysaccharide layer plays an important role in 

increasing stress tolerance of akinetes in A. cylindrica.  

2.4.8 S-layer proteins and ATP-binding cassette (ABC) transporter 

The A. cylindrica genome encodes seven S-layer domain-containing proteins 

(Supplementary Figure S2) and two S-layer like proteins. S-layer proteins can be self-
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assembled to form an array on the surface of the cell (Smarda, Smajs, Komrska, & 

Krzyzanek, 2002). They have multiple functions, including the maintenance of cell 

integrity, a permeability barrier, pathogenesis, and immune response (Gerbino, Carasi, 

Mobili, Serradell, & Gomez-Zavaglia, 2015). Our LC-MS/MS identified all nine S-layer 

proteins (Appendix Table 3, Figure 2-3). Most S-layer proteins, e.g., all4499 and alr4550 

(Oliveira et al., 2015), along with other extracellular proteins, such as FG-GAP repeat-

containing protein HesF (Oliveira et asl., 2015) (Appendix Table 3), have been identified 

as exoproteins. The abundance of these nine S-layer proteins was different, with one S-

layer protein (ORF: 1127) unique to akinetes, and two other S-layer proteins (ORF: 5127 

and ORF: 2780) absent in vegetative cells (Appendix Table 3), implying unique 

functionality associated to different cell types.  

 

Figure 2-3 The alignment of six S-layer proteins identified in proteomics. 



45 

 

 

 

2.4.9 Polysaccharide and Peptidoglycan in cyanobacterial cell wall 

We identified a total of 17 proteins involved in peptidoglycan and lipopolysaccharides 

(LPS) formation, among them, 7, 10, and 16 proteins related to peptidoglycan and 

lipopolysaccharides were found in akinetes, heterocysts and vegetative cells, respectively 

(Appendix Table 3). Most cyanobacteria have an additional polysaccharide layer in the 

cell envelope (Cardemil & Wolk, 1976, 1979). S-layer proteins are anchored to the cell 

surface through non-covalent interactions with cell surface structures, usually containing 

LPS (Gandham, Nomellini, & Smit, 2012). UDP-glucose/GDP-mannose dehydrogenase, 

which takes part in the synthesis of LPSs (Muszynski, Laus, Kijne, & Carlson, 2011) was 

found in heterocysts and vegetative cells, but absent in akinetes. Notably, orthologs of 

Alr2887 (ORF: 153) involved in heterocyst-specific glycolipid export and All4388 (ORF: 

1651) involved in heterocyst envelope polysaccharide deposition (Maldener, Hannus, & 

Kammerer, 2003) were shown more abundant in akinetes and heterocysts (Appendix 

Table 3), suggesting a role in envelope formation of heterocysts and akinetes. 

2.4.10 Glycogen serves as a form of energy storage 

Glycogen is a multibranched polymer of glucose serving as the major carbon storage in 

cyanobacteria (Diaz-Troya, Lopez-Maury, Sanchez-Riego, Roldan, & Florencio, 2014). 

Glycogen biosynthesis is coupled to photosynthesis, and its conversion into glucose in 

the dark is necessary to maintain cell metabolism. ADP-glucose pyrophosphorylase 

(AGP) and glycogen synthase are required for synthesis of glycogen. Interestingly, 

glycogen synthase was highly abundant in akinetes and rare in vegetative cells. Neither 

akinetes nor heterocysts contained the five proteins involved in glycogen degradation 

(Table 2-1).  
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Table 2-1 Proteins involved in metabolism of cyanophycin, glycogen, and sucrose in 

akinetes, heterocysts, and vegetative cells (enzymes responsible for anabolism are 

highlighted in grey) 

ORF Annotation 

Akinete Heterocyst 

Veget. 

Cell 

Normalized quantitative value 

Cyanophycin/arginine 

1510 cyanophycin synthetase 2.66 0 0 

1272 

Cyanophycinase, Serine peptidase, 

MEROPS family S51 

7.99 4.90 0.45 

3212 putative cyanophycinase 0 12.26 0 

1511 Cyanophycinase 0 9.81 2.26 

4256 

isoaspartyl dipeptidase, peptidase T2, 

asparaginase 2 

0 0 4.96 

2185 acetylglutamate kinase 0 9.81 0.90 

1480 

N-acetyl-gamma-glutamyl-phosphate 

reductase 

10.66 19.62 5.86 

3400 

Nitrogen regulatory protein P-II (GlnB, 

GlnK) 

5.33 29.43 5.86 

Sucrose/trehalose 

4634 sucrose synthase SuS-B 21.31 0 0 

3602 sucrose synthase SuS-A 15.98 0 0 

4573 neutral invertase InvB 0 0 0.45 
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3842 sucrose phosphatase SPP 0 7.36 1.35 

238 malto-oligosyltrehalose synthase  5.33 0 0 

Glycogen 

1048 glycogen synthase 21.31 12.26 1.35 

2144 phosphoglucomutase/phosphomannomutase 13.32 12.26 20.30 

3396 

phosphoglucomutase/phosphomannomutase 

alpha/beta/subunit 

5.33 2.45 1.80 

6292 1,4-alpha-glucan-branching enzyme 2.66 0 0.45 

5134 glycogen debranching enzyme GlgX 0 0 0.45 

341 

Phosphoglycerate/bisphosphoglycerate 

mutase 

0 0 0.45 

5891 Phosphoglycerate mutase 0 0 0.45 

6104 

phosphoglycerate mutase, 2,3-

bisphosphoglycerate-independent 

0 0 3.61 

5419 phosphoglycerate mutase 0 0 0.90 

 

2.4.11 Cyanophycin and β-aspartyl-arginine 

Cyanophycin (CpG), or multi-L-arginyl-poly-L-aspartic acid granule polypeptide, is a 

non-ribosomally produced amino acid polymer composed of an aspartic acid (Asp) 

backbone and Arg side groups. In heterocysts, nitrogenase converts N2 to ammonia and 

then forms glutamine (Gln). Gln can serve as ammonium donor for the synthesis of Asp 

by aspartate aminotransferase, also known as glutamic oxaloacetic transaminase (Xu et 

al., 2015). Gln is also the precursor for biosynthesis of Arg and proteins involved in Arg 
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biosynthesis, and it was found in high amount in heterocysts, such as acetylglutamate 

kinase (Minaeva, Forchhammer, & Ermilova, 2015; Pang et al., 2015), ArgL (ORF: 

1480) (Leganes, Fernandez-Pinas, & Wolk, 1998), and nitrogen regulatory protein P-II 

GlnB (ORF: 3400) (Llacer et al., 2007; Paz-Yepes, Flores, & Herrero, 2009) (Table 2-1). 

Asp and Arg are further condensed by cyanophycin synthetase into CpG (Ziegler et al., 

1998). This nitrogen storage molecule can be degraded by cyanophycinase (Picossi, 

Valladares, Flores, & Herrero, 2004) to produce β-aspartyl-arginine. Cyanophycin 

synthetase was below the limit of detection in heterocysts, but all three putative 

cyanophycinases in the A. cylindrica genome were present in high amounts (Table 2-1), 

supporting a previous finding that cyanophycinase activity is high in heterocysts (Gupta 

& Carr, 1981). Asp and Arg can also be transported into akinetes for further condensation 

into CpG by cyanophycin synthetase (ORF: 1510) and stored. CpG can be degraded by 

cyanophycinase (ORF: 1272) (Table 2-1) to support growth of other cells in the filament 

and/or germination in a favorable environment.  

2.4.12 Sucrose as a reducing power for N2 fixation and compatible solute 

Sucrose, a universal vehicle of reduced carbon in plants, appears to have a similar role 

within the diazotrophic cyanobacterial filament (Kolman, Nishi, Perez-Cenci, & Salerno, 

2015). Sucrose synthesized by sucrose phosphate synthase and sucrose phosphate 

phosphatase (SPP) is believed to occur in Anabaena strains (Cumino, Curatti, Giarrocco, 

& Salerno, 2002). Sucrose is then transported into heterocysts (Juttner, 1983) and further 

hydrolyzed by a specific invertase (InvB) (Lopez-Igual, Flores, & Herrero, 2010; Vargas, 

Nishi, Giarrocco, & Salerno, 2011). The bidirectional enzyme sucrose synthase SuS-A, 

on the other hand, exhibited optimal activity at pH 7.5-8.2 in the sucrose-synthesis 
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direction and at pH 5.9-6.5 in the reverse direction (Porchia, Curatti, & Salerno, 1999). 

Our proteomic data identified SPP (ORF: 3842) (Cumino, Ekeroth, & Salerno, 2001) 

present in heterocysts and vegetative cells, but not in akinetes. More strikingly, we 

detected both SuS-A (ORF: 3602) and SuS-B (ORF: 4634) in high amount, but no 

invertase in akinetes. Invertase in heterocysts was below the limit of detection in 

heterocysts. We speculated that the high amount of sucrose synthase present in akinetes 

might be involved in breaking down sucrose transported from vegetative cells for 

synthesizing rese0rve glycogen (Perez, Forchhammer, Salerno, & Maldener, 2016), 

polysaccharides to build akinete envelope, and/or for synthesizing trehalose as an 

osmoprotectant (Sakamoto et al., 2009) by akinete-specific malto-oligosyltrehalose 

synthase (ORF: 238) orthologous to All0167 (Higo, Katoh, Ohmori, Ikeuchi, & Ohmori, 

2006). Trehalose may play a role in the long-term survival of akinetes under dry 

conditions. 

2.5 Discussion 

Some filamentous cyanobacteria can differentiate nitrogen-fixing cells called heterocysts. 

Normally 2 ~ 10% of vegetative cells develop into heterocysts. In A. cylindrica, 

vegetative cells adjoining heterocysts develop into akinetes (Figure 2-1A). The vegetative 

cells capture sunlight energy to fix CO2 and heterocysts carry out solar-powered N2-

fixation. Although akinetes are known as spore-like structures for survival under the 

unfavorable condition, our proteomic data indicate that akinetes may also play an active 

role during filamentous growth. Based on the distribution of cyanophycin, glycogen, and 

sucrose biosynthesis-related proteins, a putative network for fixed nitrogen and 

carbohydrate among Heterocysts, Akinetes and Vegetative cells, or designated HAVe 
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model, is proposed for A. cylindrica (c). This is the first comprehensive comparison of 

proteins of akinetes, heterocysts and vegetative cells of A. cylindrica. These findings 

support new insight into the metabolic differences and increase our understanding of the 

roles played by these three very different but adjacent cells. The distinct distribution of 

FOX proteins, PS I & II proteins, and AcaK43 in heterocysts, vegetative cells, and 

akinetes, respectively, is consistent with previous findings, supporting the reliability of 

our proteomic data. Only the RuBisCO results are inconsistent with the previous 

observations. We observed high abundance of RuBisCO large and small subunits, and 

some carboxysomal microcompartment proteins (CcmN, CcmM, ORFs: 2671-2672) in 

all three cell types (Cameron, Wilson, Bernstein, & Kerfeld, 2013)). However, Cossar et 

al. reported that RuBisCO protein was undetectable in mature heterocysts of A. cylindrica 

(Cossar et al., 1985). Several lines of evidence from Anabaena strain PCC 7120 have 

shown that promoter activity of RuBisCO was barely detected in heterocysts using PrbcLS-

luxAB as a reporter (J. Elhai & Wolk, 1990), and RuBisCO large and small subunit 

transcripts were not detected in heterocysts by in situ hybridization (Madan & 

Nierzwicki-Bauer, 1993). Whether RuBisCO plays a role in both heterocysts and akinetes 

of A. cylindrica remains to be further investigated. 



51 

 

 

 

 

Figure 2-4: The HAVe (Heterocysts, Akinetes and Vegetative cells) model suggesting 

metabolic networks of cyanophycin and carbohydrates among heterocysts, akinetes, and 

vegetative cells. 

The proteome of vegetative cells confirmed much of what is known about these 

workhorses. The large complement of PS I and PS II proteins supported active 

photosynthesis while RuBisCO, carboxysomal proteins, and other enzymes of the Calvin 

cycle supported carbon fixation. The glucose and fructose produced are likely 

synthesized into sucrose in vegetative cells and then supplied to the adjoining akinetes 

and heterocysts as primary energy and carbon source (Figure 2-1A). The HAVe model 

was supported by the findings of carbohydrate-related proteins in this proteomics study. 

In vegetative cells, fructose 6-phosphate is generated via the Calvin cycle during 

photosynthesis, which is then converted to sucrose by sucrose-phosphate synthase (SPS) 

and sucrose-phosphate phosphatase (SPP) (Cumino et al., 2002). Sucrose can be broken 
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down by invertase in vegetative cells, or transported to akinetes where sucrose is cleaved 

into glucose and fructose, serving as building blocks for other carbohydrate biosynthesis, 

e.g., peptidoglycan, lipopolysaccharide, and glycolipid as envelope materials; glycogen 

storage molecules; and/or trehalose osmoprotectant. The paucity of FOX proteins along 

with key components of nitrogenase such as NifD, NifN and NifU not detected supported 

absence of nitrogen fixation. The FOX protein, Histone-like DNA binding protein Hana 

was most abundant in vegetative cells, consistent with observations that a strong HanA-

GFP fluorescent signal co-localized with DNA in vegetative cells (Lu, Shi, Chen, & 

Wang, 2014). A HanA mutant exhibited slow growth, altered pigmentation, and inability 

to differentiate heterocysts (I. Khudyakov & Wolk, 1996). FOX proteins unique to 

vegetative cells included a trace amount of HepN (Lechno-Yossef, Fan, Ehira, Sato, & 

Wolk, 2006), InvA, FraG, PrpI, NifU-like, DevR (Elsie L Campbell et al., 1996), and 

H6L region containing protein (ORF: 2881). Vegetative cells obtain fixed nitrogen from 

either heterocysts or adjoining akinetes in the form of β-aspartyl-arginine. β-aspartyl-

arginine is further degraded into Asp and Arg by isoaspartyl dipeptidase (ORF: 4256) in 

vegetative cells (Table 2-1, (Burnat, Herrero, & Flores, 2014)). Asp and Arg, in turn, 

serve as precursors for the biosynthesis of other amino acids and nucleotides, the building 

blocks for DNA, RNA, and protein biosynthesis. Vegetative cells contained abundant 

enzymes for nucleotide and amino acid biosynthesis. Forty-nine out of 50 ribosomal 

proteins and translation factors were found in vegetative cells as well. These data suggest 

that DNA, RNA, and protein biosynthesis occurs actively in vegetative cells to maintain 

their cellular function and cell division.  
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The heterocyst proteome supported what is known about these specialized cells, but also 

indicated some novel functions. Heterocysts contained all the proteins required for 

nitrogen fixation, including several proteins absent in akinetes and vegetative cells 

(Appendix Table 1, S1). These included nitrogenase molybdenum-iron protein NifN (Y. 

Hu, Fay, Lee, Wiig, & Ribbe, 2010), the Fe-S cluster scaffold protein NifU that facilitates 

functional expression of nitrogenase in heterocysts (Nomata, Maeda, Isu, Inoue, & 

Hisabori, 2015), and DevA required for heterocyst maturation (Maldener, Fiedler, Ernst, 

Fernandez-Pinas, & Wolk, 1994). Nitrogenase iron protein NifH (Mevarech, Rice, & 

Haselkorn, 1980) had high abundance in heterocysts but was barely detected in 

vegetative cells and undetectable in akinetes (Appendix Table 1). Thus, the distribution 

of both Nif and Fox proteins indicated that N2-fixation only occurred in heterocysts. 

Ammonia produced by nitrogenase is incorporated into glutamine (Gln), serving as 

ammonia donor to Asp and Arg. Asp and Arg are condensed by cyanophycin synthetase 

into cyanophycin in heterocysts (Burnat et al., 2014). The high levels of three 

cyanophycinases in heterocysts (Table 2-1) indicate that the bulk of fixed nitrogen is then 

available as β-aspartyl-arginine, a nitrogen vehicle to be transferred intercellularly to be 

either hydrolyzed into Asp and Arg in the vegetative cells, or condensed into storage 

cyanophycin granule by cyanophycin synthetase in adjoining akinetes. All but three 

photosystem proteins occurred in heterocysts. The abundance of several PS I and PS II 

proteins implied at least partial functioning of PS I and PS II (Appendix Table 1). 

Generation of oxygen (O2) through PS II runs counter to the reductive process of 

nitrogenase. Nitrogenase is very sensitive to oxygen (O2), so the heterocysts must create a 

micro-oxic environment. Cytochrome C oxidase subunit II is the last enzyme in the 
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respiratory electron transport chain. Valladares et al. showed that Cox2 and Cox3 

transcription was up-regulated in heterocysts after nitrogen step-down in an NtcA- and 

HetR-dependent manner, and inactivation of both coxB2 and coxA3 results in the 

inability of Anabaena sp. PCC 7120 to grow diazotrophically under aerobic conditions 

(Valladares, Herrero, Pils, Schmetterer, & Flores, 2003). Consistent with their 

observation, CoxB3 was found in akinetes and heterocysts, and CoxB2 was only found in 

heterocysts (Appendix Table 1). Taken together, as cytochrome C oxidase has high 

affinity to oxygen, it may play a role of consuming residual oxygen in heterocysts, and 

keeping nitrogenase in its active state. The high abundance of RuBisCO in heterocysts 

may play a role in removing residual oxygen by oxidizing Ribulose 1,5-bisphosphate into 

3-PGA and 2-phosphoglycolic acid (Eisenhut et al., 2008). Flavodiiron protein Flv3B 

(ORF: 1739, a homolog of all0178) was identified to be abundant in heterocysts, which 

may also be responsible for light-induced O2 uptake in heterocysts to protect nitrogenase 

activity (Ermakova et al., 2014). 

The key DNA replication proteins (DNA polymerases, SSBP) were not detected in 

heterocysts, consistent with terminal nature of the cells (Appendix Table 2). However, 

the presence of gyrase and helicase might play an important role in DNA rearrangement 

observed in heterocysts (Golden, Robinson, & Haselkorn, 1985). Like vegetative cells, 

heterocysts contained a broad spectrum of proteins involved with transcription and 

translation. Heterocysts are encased in a thick envelope to supply a micro-oxic 

environment for the protection of nitrogenase. Proteomic data indicated a number of 

heterocyst-specific proteins for synthesis, export, and external assembly of envelope 

polysaccharides and glycolipids (Appendix Table 3).  
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Heterocysts were also decorated with six of the seven S-layer secretion proteins in Gram-

negative species. Secretion relies on specific ATP-biding cassette (ABC) transporters and 

outer membrane pores (Awram & Smit, 1998; Kawai, Akatsuka, Idei, Shibatani, & 

Omori, 1998). Heterocysts had several more ABC transporters (14) than did akinetes (7) 

or vegetative cells (10) (Appendix Table 3). The differential compositions of S-layer 

proteins and ABC transporters in the three cell types may contribute to the differences in 

cell envelope structure, including the greater resistance to cell disruption of heterocysts 

and also akinetes. 

Akinetes appear to play a role as nitrogen and carbon storage cum transfer unit in 

filaments of A. cylindrica (Figure 2-1A). With this model fixed carbon enters into 

akinetes from vegetative cells and is converted to glycogen by glycogen synthase, or into 

trehalose for osmoprotection during the survival stage. Heterocysts flanked by akinetes 

on both sides would then obtain carbon for energy via akinetes. Similarly, akinetes 

receive β-aspartyl-arginine from heterocysts. This dipeptide is then either converted to 

cyanophycin for temporary or long-term storage or transferred to the adjoining vegetative 

cells to support the growing chain. Our proteomic data also indicated that akinetes have 

less active transcriptional and translational machinery. Importantly, proteomic data 

indicated a cell envelope that was different to those of vegetative cells or heterocysts. 

Akinetes were decorated with all seven S-layer proteins detected. The suite of 

peptidoglycan synthesizing machinery and cell wall hydrolases differed (Appendix Table 

2), as did the complement of membrane transporters and enzymes involved in 

polysaccharide structures. It is worthy to note that ORF2780 protein, homologous to 

carbohydrate-selective porins (OprB), functions as a sugar porin responsible for the 
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optimal uptake of both fructose and glucose in Nostoc punctiforme ATCC 29133 

(Ekman, Picossi, Campbell, Meeks, & Flores, 2013). The distinct distribution of OprB in 

akinetes and heterocysts at high abundance suggests a role in sugar uptake in these 

differentiated cells, consistent with the previous observation of carbon movement from 

vegetative cells to heterocysts of A. cylindrica (C. P. Wolk, 1968), which might also be 

true of carbon movement from vegetative cells to akinetes. 

Akinetes have been viewed as spore like cells with the role of species survival under 

drought conditions. Their location between nitrogen-fixing heterocysts and carbon-fixing 

vegetative cells, combined with high levels of cyanophycin synthetase, cyanophycinase, 

sucrose synthetase, and glycogen synthetase suggests a critical role for akinetes during 

growth of A. cylindrica as demonstrated by the HAVe model. The role of the various 

genes and their regulation, as well as metabolite exchange among akinetes and their 

adjoining heterocysts and vegetative cells will need to be investigated in future work. 
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CHAPTER 3: Developmentally Regulated Genome Reduction in Nitrogen-Fixing 

Heterocysts of Anabaena cylindrica ATCC 29414 

3.1 Abstract 

Regardless of combined nitrogen availability, vegetative cells of Anabaena cylindrica 

differentiate semi-regularly spaced, single heterocysts along filaments. Since heterocysts 

are non-dividing cells, with the sole function for solar-powered N2-fixation, is it 

necessary for heterocyst to retain entire genome (7.1Mb) from its progenitor vegetative 

cell? By sequencing the genome of isolated heterocyst, we discovered that at least six 

DNA elements (0.12 Mbp) are deleted from the heterocyst genome during heterocyst 

development. The six-element deletions restore five genes (nifH1, nifD, hupL, primase 

P4, acyl_5725 (hypothetical protein) that were interrupted in the genome of vegetative 

cells. A. cylindrica has two nifH genes, nifH1 interrupted in vegetative cells and nifH2. 

Like the other four genes, the nifH1 editing appears to be accomplished during the pro-

heterocyst stage or before, while expression of two nifH is restricted to mature 

heterocysts. To our best knowledge, this is the first report that (1) different genomes may 

occur in distinct cell types in a single bacterium; and (2) genome editing is coupled to 

cellular differentiation and/or cellular function in a multicellular cyanobacterium. 
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3.2 Introduction 

Nitrogen is one of most important, abundant life elements in bio-macromolecules such as 

DNA, RNA, and proteins. Although nearly 80% of air is the N2 gas, most of the 

organisms are unable to use this form of nitrogen to make these essential bio-

macromolecules. Fortunately, some cyanobacteria can photosynthetically fix atmospheric 

nitrogen gas (N2) into a form that can be used by other organisms. Through billions of 

years of evolution, Anabaena species has gained the unique capability of using solar 

energy to reduce atmospheric N2 to ammonia in specially differentiated N2-fixing cells 

called heterocysts (Golden & Yoon, 2003; C. P. Wolk, 1996). The sole function for 

heterocysts is its solar-powered, oxic N2-fixation. Thus heterocysts also offer scientists a 

rare opportunity to unlock the mystery of genome requirements for photosynthetic N2-

fixation. Unlocking genomic secrets of heterocyst would guide scientists to genetically 

engineering crops (leaves) to make self-fertilizing plants/crops using sunlight and 

atmospheric N2 gas, just as heterocysts have done for billions of years.  

Regardless of combined nitrogen availability, some vegetative cells of Anabaena 

cylindrica ATCC 29414 (hereafter A. cylindrica) can initiate a development program to 

form heterocysts that are present singly at semi-regular intervals along the filaments 

(Meeks et al., 1983). Heterocysts are morphologically and biochemically specialized for 

solar-powered, oxic N2-fixation. By sequestering nitrogenase within heterocysts, A. 

cylindrica can carry out the two incompatible biochemical processes simultaneously, the 

O2-producing photosynthesis and the O2-labile fixation of N2.  Heterocyst-based N2-

fixation is a uniquely oxic, solar-powered process, which is distinct from anaerobic N2-

fixation by any other bacteria. This provides great potential for application in agriculture 
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compared to all other N2-fixing bacteria whose inability to use solar energy, but also 

requiring anaerobic condition.  

Unlike vegetative cells, heterocysts are terminally differentiated cells that have two extra 

O2-impermeable layers of glycolipids and polysaccharide to exclude the O2 who 

inactivates nitrogenase (Murry & Wolk, 1989; Zhou & Wolk, 2003). The heterocysts 

normally develop and mature within 24 hours, the period that from vegetative cells to 

morphologically distinguished mature heterocysts is called pro-heterocyst stage.  A 

mature heterocyst is larger, more regular in shape with less granular cytoplasm than a 

vegetative cell, and it has thickened cell walls and a refractive polar granule at each end 

of the cell (Walsby, 2007). Cells with these characteristics, but lacking the thickened cell 

walls and the polar granules, are counted as pro-heterocysts (Adams & Carr, 1989).  

Many genes have been identified to be involved in regulating heterocyst differentiation. 

HetR is a master transcription regulator specifically required for heterocyst differentiation 

(Buikema & Haselkorn, 1991; Huang et al., 2004b; Zhou et al., 1998).  Several other 

regulatory genes such as nrrA (Ehira & Ohmori, 2011), ccbP (Y. Hu et al., 2011), hetN 

(Higa et al., 2012), hetF, patA (Risser & Callahan, 2008), patN (Risser et al., 2012), patU 

(Meeks et al., 2002), hetZ (Zhang, 2007 ), patS (H. X. Hu et al., 2015; Yoon & Golden, 

1998), hepK (Zhou & Wolk, 2003) and hetP (P. Videau et al., 2016) were also found to 

play critical roles during heterocyst differentiation.  

During heterocyst development in Anabaena sp. PCC7120, at least three DNA elements 

(11-kb, 55-kb and 9.4-kb inserted, respectively, within nifD, fdxN and hupL) are 

programmed to excise from the heterocyst genome by developmentally regulated site-

specific recombination (Golden, Carrasco, Mulligan, Schneider, & Haselkorn, 1988; 
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Golden et al., 1985; Haselkorn, 1992). Both deletions of the 11-kb and 55-kb elements 

had been proven to be necessary for the heterocyst-based N2-fixation, but not required for 

the differentiation of heterocysts in Anabaena sp. PCC7120 (Meeks et al., 2002), while 

the 9.4kb deletion has no effect on both N2-fixation and heterocyst formation  (C. D. 

Carrasco, Holliday, Hansel, Lindblad, & Golden, 2005). 

The nitrogenase complex is encoded by a group of genes called nif genes. Many 

heterocyst-forming cyanobacteria have nif (nitrogen fixation) genes (e.g., nifD, nifK, 

nifH, fdxN) interrupted by DNA elements that might be excised during heterocyst 

development (Hilton, Meeks, & Zehr, 2016). Since heterocysts are terminally 

differentiated, non-dividing cells, with the sole function for solar-powered N2-fixation, is 

it necessary for heterocyst to retain the entire genome (7.0Mb) from its progenitor 

vegetative cell? To answer this question, we isolated heterocysts from A. cylindrica and 

sequenced the genomic DNA from heterocysts and vegetative cells. The genome 

sequencing of heterocysts and vegetative cells through the Illumina NextSeq technology 

produced 34,079,110 and 34,052,152 150 bp reads in pairs respectively for a ~799 x 

coverage of each genome. Assembly of both genomes yielded 1,819 and 566 contigs 

from heterocyst and vegetative cells respectively with N50 values of 44,251 and 35,464 

bp respectively. After analysis of the heterocyst genomic sequence data and confirming it 

with quantitative PCR, we discovered that at least six DNA elements (0.12 Mbp) are 

deleted from the heterocyst genome during heterocyst development. The five-element 

deletions restore five genes (nifH1, nifD, hupL, primase P4, acy_5725 (hypothetical 

protein) that were interrupted in vegetative cells. To our best knowledge, this is the first 

report that (1) different genomes may occur in distinct cell types in a single bacterium; 
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and (2) genome editing is coupled to cellular differentiation and/or cellular function in a 

multicellular cyanobacterium. 

3.3 Material and Methods 

3.3.1 Isolation and purification of heterocysts 

Heterocysts were obtained from A. cylindrica ATCC 29414 grown in 5 L of AA/8 

medium free of combined nitrogen (N. T. Hu et al., 1981), shaking at 150 rpm under 

illumination (50-60 µE·m-2·s-1 at the culture surface) for 7 days to an OD700 of 0.03. 

Cultures were harvested by centrifugation at 6,000 x g for 15 min and re-suspended in 80 

mL dd H2O. Vegetative cells were disrupted by passing suspensions through a Nano 

DeBEE 30 High-Pressure Homogenizer (BEE International) at 15,000 psi (lb/in2) three 

times. The suspensions were centrifuged down at 4,000 x g for 10 min. To separate the 

debris of vegetative cells from heterocysts, pellets were re-suspended in 1mL ddH2O, and 

the suspension was centrifuged at 1,100 x g for 5min. Two layers were formed: bottom 

green pellet and top lose yellow pellet. The top yellow pellet of vegetative cells debris 

was discarded and the bottom green heterocysts pellet was washed by re-suspending with 

1mL ddH2O and re-centrifuging at 1,100 x g for 5min. This wash step was repeated 4 

times. After each washing step, the heterocyst fraction was checked microscopically in 

order to ensure that heterocysts were pure. The purified heterocysts were stored at -80C. 

3.3.2 Isolation of genomic DNA  

 Anabaena cylindrica ATCC 29414 was grown in 50mL AA/8 medium (free of combined 

nitrogen) and AA/8N (nitrate-containing medium) (N. T. Hu et al., 1981) for 7 days, and 

OD700 were 0.03 and 0.028, respectively. To extract the DNA from vegetative cells, the 

cultures were centrifuged at 13,000g for l5 min, 500 µL of 10% sucrose buffer (50mM 
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Tris-HCl, pH 8.0, 10mM EDTA) was to suspend the cell pellets, 50 µL of 125mg/mL 

lysozyme (Sigma), 150 µL 10% SDS and 10 µL RNase of 10 mg/mL were added. The 

800 µL suspension was incubated at 37°C for 1 hr. Then total amount of the suspension 

was measured, equal amount of saturated phenol (pH6.6±0.2) was added, and the 

reagents were mixed together by vortexing. The suspension was centrifuged at 13,000g at 

room temperature for 10 min. The top aqueous solution was transferred to a new 1.5mL 

Eppendorf tube and equal amount of chloroform solution (chloroform: isoamyl aclcohol 

= 24:1) was added. Vortexed the tube and the suspension was centrifuged at 13,000g at 

room temperature for 10 min. The top aqueous solution was then transferred to new tube 

and equal volume of pre-cold isopropanol was added to precipitate total DNA. Some 

white pellet was obtained after centrifuging at 13,000g at 4°C for 10min. The supernatant 

was discarded, and the pellet was washed first with 70% ethanol and then 95% ethanol. 

The white pellet was air-dry for 5 min, and final 30 µL ddH2O was added to dissolve the 

total DNA.  

To break the heterocyst and extract its genomic DNA, the purified 13.1mg (wet weight) 

of heterocysts stored at-80°C freezer were re-suspended in 500µL 10% sucrose buffer 

(50mM Tris-HCl, pH 8.0, 10mM EDTA). The suspension was centrifuged at 13,000 x g 

for 5 min. After removing the supernatant, another 500 µL 10% sucrose buffer was added 

to suspend the pellets, and 50 µL of 125mg/mL lysozyme was added. The total 

suspension was incubated at 37°C for 1.5hr. The suspension was sonicated at amplitude 

70% for 10s with 0.5s pulse on and 0.5s pulse off. The sonication process was repeated 3 

times. TissueLyser II (Qiagen) was further used to break heterocysts at frequency of 30/s 

for 8 min. The sample was frozen in liquid nitrogen immediately for 2 min and defrosted 
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at 80°C for 2 min. The TissueLyser, liquid nitrogen freezing, defreezing processes were 

repeated for another 3 times. Then 150 µL of 10% SDS, 150 µL of 0.5M EDTA (pH=8.0) 

were added to the suspension and incubated at 80°C for 30 min. 10 µL of RNase 

(10mg/mL) was added into the tube and incubated at room temperature for 15 min. The 

heterocyst DNA extraction procedures followed the same saturated-phenol method as 

described for vegetative cells. Final volume of 15 µL of ddH2O was used to dissolve 

DNA. All the DNA was quantified by Qubit 3.0 (Thermo scientific).  

3.3.3 RNA isolation  

To extract RNA from vegetative cells, A. cylindrica was grown in 50mL AA/8 or AA/8N 

(N. T. Hu et al., 1981) for 7 days, and OD700 reaches 0.03. These cultures were collected 

for RNA isolation using RNeasy Mini Kit (Qiagen) with modification. 50 mL cultures 

were centrifuged down and 450 µL of lysis buffer RLT with 2 µL ß-Mercaptoethanol was 

added to suspend the culture pellets, then 50 µL 125mg/mL lysozyme was added to the 

suspension and incubated at 37°C for 30 min. The following RNA extraction was 

followed the instruction of the RNeasy Mini Kit (Qiagen). To eliminate genomic DNA 

contamination, an additional DNase treatment was performed according to the RNeasy 

kit instruction with the RNase-free DNase set (Qiagen).  Finally, 30 µL of RNase-free 

ddH2O was used to elute the RNA. The purified RNA was quantified using the 

NanoDrop 2000 spectrophotometer (Thermo Scientific). The RNA sample was stored at -

80C.  

To extract RNA from heterocysts, 15mg of purified heterocysts (wet weight) stored at -

80°C freezer were suspended in 450 µL of buffer RLT with 2 µL ß-mercaptoethanol, 50 

µL of 125mg/mL lysozyme was added to the suspension and incubated at 37°C for 30 
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min, then 100 µL 10% SDS and 10 µL of 30 units DNase I (RNAase-free, Qiagen) were 

added and incubated at 37°C for 20 min and subsequently at 95°C for 5 min. The 

suspension was frozen in liquid nitrogen and defrosted at 60°C (before all the suspension 

was completely thawed). This freezing and thawing process was repeated twice. The 

following heterocyst RNA extraction procedures were the same as described for 

vegetative cells. Final volume of 20 µL RNase-free ddH2O was used to elute heterocysts 

RNA. All the RNA was quantified by NanoDrop 2000 spectrophotometer (Thermo 

Scientific). 

3.3.4 Genome sequencing  

Sequencing libraries for the vegetative and heterocyst DNA samples were produced using 

a Nextera XT library preparation kit (Illumina) following the protocol described by the 

manufacturer. Libraries were quantified using a Qubit 3.0 and quality checked with an 

Agilent Bioanalyzer (Agilent). Equimolar amounts of both libraries were loaded as part 

of an Illumina NextSeq 500 high output run producing 2x150 bp paired ends reads. 

3.3.5 Bioinformatics analysis  

Read trimming, assembly and mapping were carried out using CLC Genomics 

Workbench 10.1.1 (Qiagen). Trimming was carried out using a Q of 20 as cutoff, 

eliminating any read with any ambiguous nucleotide and removing the 5 and 15 terminal 

nucleotides in the 3’ and 5’ ends respectively. Assembly of the trimmed reads was 

accomplished by setting an arbitrary minimum contig length of 3,000 bp and using the 

automated function to select a word size of 23 and a bubble size of 50; finally, reads were 

mapped (mismatch cost: 2, insertion cost: 3, deletion cost: 3, minimum length fraction: 

0.5 and minimum similarity fraction: 0.9) to the assembly and the results used to correct 
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the contigs sequences. To detect possible deletions trimmed reads were mapped to the 

reference genome of A. cylindrica PCC 7122 using the large gap read mapper function 

(mismatch cost: 2, insertion cost: 3, deletion cost: 3, minimum length fraction: 0.9, 

minimum similarity fraction: 0.95 and randomly assigning those reads mapping in 

multiple locations). 

3.3.6 PCR confirming the edited genes 

Primers ZR1676 (0.5 µM) and ZR1677 (0.5 µM) were used to amplify intact nifH1 using 

genomic DNA from heterocysts and vegetative cells of A. cylindrica ATCC 29414. The 

891bp band was extracted using DNA extraction kit (Qiagen), and cloned into pCR2.1-

TOPO vector (Invitrogen), and transformed it into TOP10 competent cells. The putative 

white colonies were verified by colony PCR (cPCR) with primers M13F and M13R. 

Then cPCR confirmed 3 colonies were grown in LB with Amp (100g/ml) and Km 

(50g/ml) overnight, and the plasmids were extracted and sent for DNA sequencing. The 

intact nifD, hupL, primase P4 and acy_5725was PCR amplified by Phusion High-Fidelity 

DNA Polymerase (NEB) with specific primers listed in Table 3-1. The PCR products 

amplified with genomic DNA from heterocysts and vegetative cells of A. cylindrica were 

purified with Qiagen PCR clean kit for DNA sequencing. 

Table 3-1 Primers used in the identification of deletions and gene expressions 

Gene Primer Sequence 

rnpA ZR1693 TTGGATACTGCCCCTGCAACAAC 

(acy_1194) ZR1694 ATTCTGCTGACTTTGGCTTCAC 

nifH1 ZR1676 ATGAGTACCGACGCAAATATTAG 
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ZR1677 ACTACTTGGTAGCACCTGCGGGC 

 ZR1679 GTGGTTTTGCTATGCCTATCCGT 

 ZR1680 AAACGTTCAGCCAAGGTTTCGATC 

 ZR1681 CGGATGACTGTTAACGAGTAC 

nifH2 ZR1470 CCCTTGCTGCTATGGCAGAAATGGG 

 ZR1471 CAACACCGGGTTCTGGACCACCAG 

nifD ZR1738 TGGTACAATCAACGAAATGTTGATG 

 ZR1739 TACCTTCTCAGCATTTGCTTGG 

 ZR1740 GTGAAAGAGAAGTATGTATTCC 

 ZR1736 GTGTTTCTAGACGGAAGCTTTAGCC 

 ZR1735 ATCCCCCGTTCCTTAGGAGCA 

 ZR1737 GCAGTCATTACACCAGGAAGGG 

Primase P4 ZR1749 GGTGAGAGAAGCTAAAATCCCTAGAATC 

 ZR1748 GAAGGCGTTAGCACCTTCAAACTGG 

 ZR1750 TGTCCATGGCCAGTAGCCAAATTG 

 ZR1751 CATTCCACCGACGTTCAATTAATTC 

 ZR1752 TTATCGCCACATGATCGCCTTCAAC 

hupL ZR1741 CGCTTTGCTGCCTTCACAGG 

 ZR1742 CCTAACCAAACTGGTTCTAACC 

 ZR1743 TTGAGGGACGTAACGCTGCTG 

 ZR1734 GCACTAGACCAGGAATATGCACCTTC 

 ZR1733 ATGCCAATTCAAACCTTAGATATTTC 

Acy_5725 ZR1744 ATGATAGATTTTCTTAAGGGAAATGAGAG 
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 ZR1745 GGCATTTGGTGGCCTGTAGC 

 ZR1746 CACTCGATTGGATGACTATAACTGG 

 

3.3.7 Quantitative polymerase chain reaction (qPCR) 

To determine the ratios of the edited genome vs unedited genome in heterocysts, 

vegetative cells grown in AA/8 or AA/8N, two pairs of primers for qPCR for each 

individual gene are listed in Table 3-1. Ten ng DNA isolated from vegetative cells grown 

in AA/8, AA/8N and 10 ng DNA isolated from heterocysts were added to 20 µL reaction 

with 0.2 unites of Phusion High-Fidelity DNA Polymerase (NEB), 1X Phusion buffer, 

dNTP (0.25 mM), and primers (0.5 µM). Each qPCR reaction had 5 replicates. The RT-

PCR program was: 95°C for 10 min, 40 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 

30 s, and dissociation stage of 95°C for 15 s, 55°C for 30 s, 95°C for 15 s.   

3.3.8 Reverse transcription qPCR (RT-qPCR) 

200 ng of total RNA was reverse-transcribed into cDNA in a 20 μL reaction mixture with 

specific reverse primers listed in Table 3-1, using the Omniscript RT kit (Qiagen). The 

ones without reverse transcriptase were used as control. The reverse transcription 

reactions were incubated at 37°C for 1 hr. Then all the reactions, with and without 

reverse transcriptase were diluted 100 times for following RT-PCR.  Five µL of 1:100 

diluted cDNA samples above, Phusion (0.2 unit), Phusion buffer, dNTP (0.25 mM), 

primers (0.5 µM), 1 x SYBR and 1 x ROX fluorescent dyes (Invitrogen) in total 20 µL 

reaction. Each reaction was with 5 replicates. The RT-qPCR program was: 95°C for 10 

min, 40 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, and dissociation stage of 

95°C for 15 s, 55°C for 30 s, 95°C for 15 s.   
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3.3.9 Determining the frequency of heterocysts 

A. cylindrica can form heterocysts in both AA/8 (without combined nitrogen) and AA/8N 

(with combined nitrogen). The same cultures that used for isolation of genomic DNA 

(above) were used to determine the frequency of heterocysts using microscopy. Pictures 

were taken and the total numbers of heteocysts and vegetative cells were counted to 

determine the heterocysts frequency in both AA/8 and AA/8N growth media. 

3.4 Results 

3.4.1 Isolation and purification of heterocysts 

Approximately 4.46% (Fig. S1 A) of A. cylindrica vegetative cells grown in AA/8 

medium (free of combined nitrogen) can form heterocysts (Figure 2-1A), and the 

heterocysts were purified to a purity of 99.52 ± 0.48% (B).  Unlike the other heterocyst-

forming cyanobacteria, such as Anabaena sp. PCC7120, Anabaena variablis 

ATCC29413 and Nostoc punctiforme ATCC 29133, A. cylindrica can also form 

heterocysts with a frequency of 2.04% (Fig. S1B) when grown with combined nitrogen 

medium AA/8N.  

Sequencing of heterocyst and vegetative cell genomes. The sequencing in the Illumina 

NextSeq platform of heterocyst and vegetative cells genome libraries produced 

34,079,110 and 34,052,152 150 bp reads in pairs respectively for a ~799 x coverage of 

each genome. Assembly of both genomes yielded 1,819 and 566 contigs from heterocyst 

and vegetative cells respectively with N50 values of 44,251 and 35,464 bp respectively. 

The cumulative lengths of both assemblies were 27,543,022 and 8,228,290 bp compared 

to the 7,062,258 bp of the reference genome of A. cylindrica PCC 7122 and associated 

known plasmids. Mapping reads to the reference genome of A. cylindrica PCC 7122 
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detected three major deletions present in a significant portion of the template molecules. 

The three major deletions are ∆5,736bp in nifH1, ∆15,190bp in nifD and ∆20,842 bp in 

hupL. A fourth deletion was found in one of the plasmids (NC_019773) both in the 

heterocyst and the vegetative genomes. 

3.4.2 Five interrupted genes in vegetative cell genome are precisely edited in 

heterocysts to be intact and functional 

We extracted and sequenced both genomic DNA form heterocysts and vegetative cells.  

By mapping both the short reads and the contigs to the reference genome of A. cylindrica 

PCC 7122, along with specific PCR confirmation, at least six large DNA elements 

(5736bp nifH1-element, 74986bp 5’-nifD element, 15190bp 3’-nifD-element, 59225bp 

primase P4-element, 20842bp hupL-element, 39998bp hypothetical protein (acy_5725)-

element present in vegetative cells) are precisely deleted from heterocyst genome (Figure 

2-2), thus, the DNA element interrupted five genes (nifH1, nifD, primase P4, hupL, 

acy_5725) are restored to be intact and functional in heterocysts. 

3.4.3 nifH1 editing in heterocysts or vegetative cells 

Two PCR products (6628bp and 891bp) were amplified with genomic DNA from 

vegetative cells grown in AA/8 (lane 2 in Figure 3-1B) and AA/8N (lane 4 in Figure 

3-1B) with primers ZR1676/ZR1677, while only one product of 891bp was amplified in 

heterocyst genomic DNA (Figure 3-1B). The three 891bp-products were cloned into 

pPCR2.1-TOPO vector (Invitrogen) for DNA sequencing. These three 891bp PCR 

product sequence were confirmed to be identical to the coding region of nfH1in the 

contig 48. In other words, both the heterocyst genomic sequence contig 48 (GenBanK 

acess #: 2063644) and intact nifH1 PCR product sequence confirmed that a 5736bp 
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element with sequence CCGTGAAG at both ends inserted within nifH1 in vegetative 

cells was precisely cut out to restore an intact nifH1 during heterocyst development. 

Interestingly, the intact nifH1 was also amplified from the genomic DNA isolated from 

vegetative cells grown in AA/8 and AA/8N media (Figure 3-1B, lanes 2 &4). Further 

quantitative PCR (qPCR) with specific primers (Table 3-1) targeting on the edited nifH1 

and total nifH1 (both unedited and edited) was performed with genomic DNA isolated 

from different types of cells. The qPCR data (Figure 3-1C) showed that nearly 100% of 

interrupted nifH1 was edited to be intact in genome of heterocysts, while only 20.10% 

(AA/8) and 4.87% (AA/8N) of interrupted nifH1 was edited to be intact in genome of in 

vegetative cells that are grown in the medium without combined nitrogen (AA/8) and 

with combined nitrogen (AA/8N).  
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Figure 3-1 nifH1 editing in heterocyst and vegetative cells. A) DNA edits ratios figures 

(nifH1 as one example of five DNA elements deletion). B) Intact nifH1 were confirmed 

in heterocysts and partial population of vegetative cells. C) The ratios of edited nifH1. 

The amounts of DNA were measured by RT PCR from DNA harvested from vegetative 

cells grown without (-N) or with (+N), and heterocysts. The amounts of total nifH1 DNA 

and edited nifH1 DNA were determined from the Ct of nifH1 total and nifH1 edited by 

using primers ZR1681/ZR1677, and ZR1679/ZR1680, respectively. The nifH1 edited 

DNA ratios were calculated by 2^[Ct(nifH1 total)- Ct(nifH1 edited)]. The error bars 

indicate standard deviations. 

3.4.4 Expression of nifH1 and nifH2 

A. cylindrica ATCC29414 has two nifH genes, nifH1 interrupted in vegetative cells and 

nifH2. There were only 20.10% (AA/8) or 4.87% (AA/8N) of the edited nifH1 detected 

by qPCR in the genome of “vegetative cells”. These small portions of “vegetative cells” 

may be responsible for pro-heterocysts or developing heterocysts. Thus, the nifH1 editing 

is accomplished during the pro-heterocyst stage or before, while expression of two nifH 

detected by reverse transcription qPCR (RT-qPCR) is restricted to mature heterocysts 

(Figure 3-2). 
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Figure 3-2 Expression of rnpA (acy_1194), nifH1 and nifH2 in vegetative cells grown 

without (-N) or with (+N), and heterocysts. A). The amounts of rnpA transcripts were 

measured by RT-qPCR harvested from vegetative cells grown without (-N) or with (+N), 

and heterocysts, and calculated as 2^[Ct(rnpA non-RT)- Ct(rnpA RT)] with primers ZR1693/ 

ZR1694. B) The amounts of nifH1 and nifH2 transcripts were calculated as 2^[Ct(nifH1 

non-RT)- Ct(nifH1 RT)] with primers ZR1679/ZR1680 and ZR1470/ZR147, 

respectively. C) The abundance of nifH1 relative to rnpA. The relative abundance of 
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nifH1 to rnpA was determined by transcripts (nifH1)/transcripts (rnpA). The error bars 

indicate standard deviations. 

3.4.5 nifD editing in heterocysts or vegetative cells 

A 1543bp fragment was amplified with genomic DNA from heterocysts as well as from 

vegetative cells grown in AA/8 (lane 3 in Figure 3-3) or AA/8N (lane 2 in Figure 3-3) 

with primers ZR1735, ZR1736 (Figure 3-3). The three 1543bp fragments were purified 

by gel extraction and sent for DNA sequencing. These three PCR product sequences were 

confirmed to be identical to the coding region of nifD (1503bp). In other words, two 

DNA elements (74986bp 5’-nifD element, 15190bp 3’-nifD-element) inserted within nifD 

was precisely removed to restore an intact nifD during heterocyst development (Figure 

3-3). Further quantitative PCR (qPCR) with specific primers (Table 3-1) targeting on the 

edited 5’-nifD, 3’-nifD and total nifD (both unedited and edited) was performed with 

genomic DNA isolated from different types of cells. The qPCR data (Figure 3-3 B&C) 

showed that  6.49% of 5’-nifD was edited (a 74986bp 5’-nifD element was removed) in 

heterocysts, while the edited 5’-nifD in vegetative cells account for only 7.86 x 10-4 

(AA/8) and 3.25 x 10-4 (AA/8N) of total nifD.  For 3’-nifD editing, approximately 

70.66% of 3’-nifD was edited (a 15190bp 3’-nifD-element was removed) in heterocysts, 

while in vegetative cells the edited 3’-nifD accounted for only 4.91 x 10-3 (AA/8) and 

4.16 x 10-3 (AA/8N). 
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Figure 3-3 nifD editing in heterocyst and vegetative cells. A) cPCR confirmation of 

intact nifD. B) The ratios of edited nifD N-M (N-terminus-middle), and nifD M-C 

(middle –C-terminus) to total nifD region DNA. The amounts of DNA were measured by 

RT PCR from DNA harvested from vegetative cells grown without (-N) or with (+N), 

and heterocysts. B) The amounts of total nifD DNA and edited nifD N-M DNA were 

determined from the Ct of nifD total and nifD N-M edited by using primers ZR1735/ 

ZR1737, and ZR1738/ ZR1739, respectively. The nifD N-M edited DNA ratios were 

calculated by 2^[Ct(nifD total)- Ct(nifD N-M edited)]. C) The amounts of total nifD DNA and edited 
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nifD M-C DNA were determined from the Ct of nifD total and nifD M-C edited by using 

primers ZR1735/ ZR1737, and ZR1740 / ZR1736, respectively. The nifD M-C edited 

DNA ratios were calculated by 2^[Ct(nifD total)- Ct(nifD M-C edited)].The error bars indicate 

standard deviations. 

3.4.6 Expression of nifD 

The expression of nifD was determined by RT qPCR across vegetative cells and 

heterocysts. In vegetative cells of AA//8, AA/8N, the transcipts of nifD were 48.32 and 

43.10, while in heterocysts it was 5111.33 (Figure 3-4).  

 

Figure 3-4 Expression of nifD in vegetative cells grown without (-N) or with (+N), and 

heterocysts. The amounts of nifD transcripts were measured by RT-qPCR harvested from 

vegetative cells grown without (-N) or with (+N), and heterocysts, and calculated as 

2^[Ct(nifD non-RT)- Ct(nifD RT)] with primers ZR1738/ZR1739. The error bars indicate standard 

deviations. 
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3.4.7 primase P4 editing in heterocysts or vegetative cells 

An 1111 bp band was amplified with genomic DNA from vegetative cells grown in 

AA/8, AA/8N and heterocysts DNA with primers ZR1748, ZR1749 (Figure 3-5). The 

three 1111 bp bands were purified by gel extraction and sent for sequencing. The three 

1111bp fragments were purified by gel extraction and sent for DNA sequencing. These 

three PCR product sequences were confirmed to be identical to the coding region of 

primase P4. In other words, the 59225bp primase P4-element inserted within primase P4 

was precisely removed to restore an intact primase P4 during heterocyst development 

(Figure 3-5). Further quantitative PCR (qPCR) with specific primers (Table 3-1) targeting 

on the edited and total primase P4 (both unedited and edited) was performed with 

genomic DNA isolated from different types of cells. The qPCR data (Figure 3-5 B) 

showed that 67.13% of primase P4 gene was edited in heterocysts, while the edited 

primase P4 gene in vegetative cells accounted for only 2.79 x 10-4 (AA/8) and 2.45 x 10-4 

x 10-4 (AA/8N) of total primase P4 gene. 

  

Figure 3-5 Primase P4 editing in heterocyst and vegetative cells. A) The PCR 

confirmation of intact primase P4. B) The ratios of edited primase P4. The amounts of 
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DNA were measured by RT PCR from DNA harvested from vegetative cells grown 

without (-N) or with (+N), and heterocysts. The amounts of total primase P4 DNA and 

edited primase P4 DNA were determined from the Ct of primase P4 total and primase P4 

edited by using primers ZR1749 /ZR1750, and, ZR1751/ZR1752, respectively. The 

primase P4 edited DNA ratios were calculated by 2^[Ct(Primse P4 total)- Ct(primase P4 edited)]. The 

error bars indicate standard deviations. 

3.4.8 Expression of primase P4 

The expression of primase was determined by RT qPCR across vegetative cells and 

heterocysts. The transcripts of primase P4 in vegetative cells grown in AA//8 or AA/8N 

was 3.09 and 4.15, while in heterocysts it was 9.47 (Figure 3-6).  

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Expression of primase P4 in vegetative cells grown without (-N) or with 

(+N), and heterocysts. The amounts of primase P4 transcripts were measured by RT-

qPCR harvested from vegetative cells grown without (-N) or with (+N), and heterocysts, 
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and calculated as 2^[Ct(primase P4 non-RT)- Ct(primase P4 RT)] with primers ZR1751/ZR1752. The 

error bars indicate standard deviations. 

3.4.9 hupL editing in heterocysts or vegetative cells 

A 1034bp fragment was amplified with genomic DNA from vegetative cells grown in 

AA/8, AA/8N and heterocysts DNA with primers ZR1743, ZR1734 (Figure 3-7 A). 

These three 1034bp PCR product sequence were confirmed that a 20,842bp element, 

inserted within hupL, was precisely removed to restore an intact hupL during heterocyst 

development. Further quantitative PCR (qPCR) data (Figure 3-7 B) showed that 51% of 

hupL was edited in heterocysts, while the edited hupL in vegetative cells accounted for 

only 4.61% (AA/8) and 2.38% (AA/8N) of total hupL. 

 

Figure 3-7 hupL editing in heterocyst and vegetative cells. A) The PCR confirmation of 

intact hupL. B) The ratios of edited hupL. The amounts of DNA were measured by RT 

PCR from DNA harvested from vegetative cells grown without (-N) or with (+N), and 

heterocysts. The amounts of total hupL DNA and edited hupL DNA were determined 
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from the Ct of hupL total and hupL edited by using primers ZR1743/ZR1734, and, 

ZR1741/ ZR1742, respectively. The hupL edited DNA ratios were calculated by 2^[Ct(hupL 

total)- Ct(hupL edited)]. The error bars indicate standard deviations. 

3.4.10 Expression of hupL 

The expression of hupL was determined by RT qPCR across vegetative cells and 

heterocysts. The transcripts of hupL in vegetative cells grown in AA//8 or AA/8N was 

77.96 and 157.90, while in heterocysts it was 2695.00.  

 

Figure 3-8 Expression of hupL in vegetative cells grown without (-N) or with (+N), and 

heterocysts. The amounts of hupL transcripts were measured by RT-qPCR harvested from 

vegetative cells grown without (-N) or with (+N), and heterocysts, and calculated as 

2^[Ct(hupL non-RT)- Ct(hupL RT)] with primers ZR1741/ ZR1742. The error bars indicate standard 

deviations. 
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3.4.11 Acy_5725 editing in heterocysts or vegetative cells 

A 744bp fragment was amplified with genomic DNA from vegetative cells grown in AA/8, 

AA/8N and heterocysts DNA with primers ZR1744, ZR1745 (Figure 3-9). These three 

744bp PCR product sequence were confirmed that a 39998bp acy_5725-element, inserted 

within acy_5725 encoding a hypothetical protein, was precisely removed to restore an 

intact acy_5725 during heterocyst development. Further quantitative PCR (qPCR) data 

showed that 90.76% of acy_5725 was edited in heterocysts, while the edited acy_5725 in 

vegetative cells accounted for 63.49% (AA/8) and 50.73% (AA/8N) of total acy_5725. 

 

Figure 3-9 acy_5725 editing in heterocyst and vegetative cells A) cPCR confirmation of 

intact acy_5725 by amplifying 744 bp using ZR1744/ZR1745. B) The ratios of edited 

acy_5725 The amounts of DNA were measured by RT PCR from DNA harvested from 

vegetative cells grown without (-N) or with (+N), and heterocysts. The amounts of total 

acy_5725 DNA and edited acy_5725 DNA were determined from the Ct of acy_5725 
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total and hupL edited by using primers ZR1744/ZR1745, and, ZR1744/ ZR1746, 

respectively. The acy_5725 edited DNA ratios were calculated by 2^[Ct(acy_5725 total)- 

Ct(acy_5725 edited)]. The error bars indicate standard deviations. 

3.4.12 Expression of acy_5725 

The expression of acy_5725 was determined by RT qPCR across vegetative cells and 

heterocysts. The transcripts of hupL in vegetative cells grown in AA/8 or AA/8N was 

2.33 and 5.01, while in heterocysts it was 3.37.  

 

Figure 3-10 Expression of acy_5725 in vegetative cells grown without (-N) or with (+N), 

and heterocysts. The amounts of hupL transcripts were measured by RT-qPCR harvested 

from vegetative cells grown without (-N) or with (+N), and heterocysts, and calculated as 

2^[Ct(acy_5725 non-RT)- Ct(acy_5725 RT)] with primers ZR1744/ ZR1745. The error bars indicate 

standard deviations. 
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3.5 Discussion 

3.5.1 nifH1 editing is accomplished in an early stage of heterocyst development  

Heterocyst is a specially differentiated, non-dividing cell with a unique function of solar-

powered nitrogen fixation. During the heterocyst development, six large DNA elements 

(from 5,736bp nifH1-element to 74,986bp 5’-nifD element) that respectively interrupted 

five genes (nifH1, nifD, hupL, primase P4, and ac5725) in the genome of its progenitor 

vegetative cell were precisely deleted from the heterocyst genome of A. cylindrica, thus, 

the five interrupted genes are restored to be functional in heterocysts. Furthermore, our 

qPCR data demonstrated that small portion of genomic DNA isolated from vegetative 

cells also have these six DNA elements removed. For example, nearly 100% of 

interrupted nifH1 was edited in genome of heterocysts (Fig. 2C), while only 21.10% 

(AA/8) and 4.87% (AA/8N) of interrupted nifH1 was edited to be intact in genome of 

vegetative cells that are grown in the medium without combined nitrogen (AA/8) and 

with combined nitrogen (AA/8N). The ratios of the edited nifH1vs.total nifH1 in 

vegetative cells had a good correlation with the heterocyst frequencies (Fig. S1). That is, 

the higher heterocyst frequency of 4.46% (AA/8) vs. 2.04% (AA/8N, Fig. S1), the higher 

nifH1 editing of 21.10% (AA/8) vs.4.87% (AA/8N) in vegetative cells. Therefore, a small 

fraction of “vegetative cells” here may represent a stage of pro-heterocysts or even earlier 

stage of heterocyst development. We conclude that nifH1 editing, like the other four 

genes, is accomplished in a stage of pro-heterocyst or even earlier stage of heterocyst 

development. 

Among the five interrupted genes, three genes (hupL, primase P4, and acy_5725) have 

no known function for N2 fixation. Although nifH is essential for N2 fixation, A. 
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cylindrica has two nifH genes, nifH1 interrupted in vegetative cells and nifH2 that is an 

orphan nif gene.  nifH2 is 1.8 Mbp away from nif cluster (nifB-nifS-nifHD). Both nifH1 

and nifH2 are highly expressed in heterocysts, interestingly, the expression of nifH2 in 

heterocysts was four times higher than the expression of nifH1. 

For cyanobacteria, these developmental DNA rearrangements are exclusively seen in 

developing heterocysts, but not yet seen in vegetative cells. Similarly, in B. subtilis the 

DNA rearrangements are seen in every mother cell but never in the forespore. Both the 

heterocyst and the mother cell are terminal cells (non-dividing cells), providing no DNA 

for the next gereration. 

3.5.2 Genes in deletion elements 

In the five deletion elements, a total of 172 genes (Appendix Table 4) were speculated by 

comparing with the gene annotation in A. cylindrica PCC 7122. There are 87 hypothetical 

and 10 unknown genes, 14 integrase genes, 5 resolvase genes, 5 transposase genes, 7 

ATPase genes, 15 tRNA genes, 14 DNA replication and transcription genes, 1 

photosystem genes and 13 other functions genes.   

Heteroycsts are terminal, non-dividing specialized nitrogen-fixing cells. The deletions of 

15 tRNA genes, 14 DNA replication and transcription genes, 1 photosystem genes 

probably contribute to the lost or decrease of DNA replication, photosynthesis and 

transcription levels in heterocysts, which need to be further studied.  Since vegetative 

cells are for photosynthesis and heterocysts are specialized for nitrogen fixation, the gene 

interruptions could be served as silencing these nitrogen fixation genes in vegetative 

cells, and re-initiate the nitrogen fixation by removing these elements in heterocysts. At 
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the same time, some functions can be deactivated in heterocysts by the losing of these 

elements.  

3.5.3 Mechanism of DNA excision 

Phage integrases are site-specific recombinases that mediate controlled and precise DNA 

integration and excision in these DNA elements deletions. Both integration and excision 

require integrase, the enzyme that mediates the site-specific DNA recombination. 

Excision also requires a phage-encoded accessory protein, an RDF or a Xis (Fogg, 

Colloms, Rosser, Stark, & Smith, 2014). In Anabaena PCC 7120 genome, three genetic 

elements: 11,278 kb nifD, 59,428 kb fdxN and 9,419 kb hupL interrupted these three 

genes (nifD, FdxN and hupL) (Kaneko et al., 2001). During development of heterocyst 

they are excised by site-specific recombination mediated by three different excisases 

(XisA, XisF, XisC, respectively).  Each excisase are encoded within the specific DNA 

element. It has been reported that the excision of nifD element of Anabaena PCC 7120 

does not occur in a xisA mutant strain (Trivedi et al., 2016).  

Circularized phage genome can integrate via the phage attachment site attP into the 

bacterial host attachment site attB. The integration reaction produces the prophage 

flanked by the new attachment sites, attL and attR, which are hybrids containing half of 

attP and half of attB. Excision occurs between attL and attR to regenerate attP on the 

excised phage genome and attB on the host chromosome (Fogg et al., 2014). The direct 

repeat sequences in the DNA elements of nifH1, nifD N-M, nifD M-C, primase P4, hupL 

are CCGTGAAG, TATACCCTG, TACTCCG, AGTATATG and GCAGTTATATGG, 

these specific sequences may serve as the recognition sequence for precise excision of 

each specific DNA element. 
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3.5.4 Primase P4 restoration 

nifD is composed of three fragments (N, M, C) that are interrupted with two DNA 

elements: N-M 75 kb and M-C 15 kb. Primase locates in N-M 75 kb element and is 

composed of two fragments that are interrupted with a 60 kb element. Our real-time PCR 

data suggested that there exists three populations varying among the different edits at the 

75kb region: intact nifD N-M (75 kb DNA element was deleted), intact primase (60 kb 

DNA element that inside of 75 kb was deleted), and unedited with 75 kb DNA elements. 

These three population ratios in heterocysts are 6.5%, 67.1%, 70.7%, respectively. The 

nifD and primase transcription activities are much higher in heterocysts compared to 

vegetative cells which the genes editing ratios are low. The nifD and primase activity 

were restored to intact gene by removal of the DNA elements. Primase is responsible for 

building that RNA primer upon the parent strand at the base of the replication fork, 

besides, primase acts as a molecular brake to prevent the leading strand from outpacing 

the lagging strand by halting the progression of the replication fork in DNA replication 

(Jong-Bong et al., 2006). The restored primase P4 gene sequence and the increased 

transcript activities possibly contribute to slow down the DNA replication, which is 

consistent with that heterocyst is non-dividing cell with little or no requirement for DNA 

replication. 
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CHAPTER 4: Identification of surface polysaccharides in akinetes, heterocysts and 

vegetative cells of Anabaena cylindrica using fluorescein-labeled lectins 

4.1 Abstract 

In response to environmental changes, Anabaena cylindrica differentiate three cell types, 

vegetative cells for photosynthesis, heterocysts for nitrogen fixation, and akinetes for 

stress survival. Cell-surface polysaccharides play important roles in bacterial 

ecophysiology. In this study, specific cell-surface sugars were discovered in heterocysts, 

akinetes and vegetative cells of A. cylindrica using 20 fluorescein labeled lectins. Both 

N-acetylglucosamineor-binding lectins WGA and succinylated WGA bound specifically 

to the vegetative cells.  Akinetes bound to three mannose-binding lectins (LCA, PSA, and 

ConA), and one of the galactose-binding lectins (GSL-I). ConA also bound to heterocyst, 

and the binding was diminished in the heterocysts of an all4388 mutant, in which the 

putative polysaccharide export protein gene all4388 was disrupted. Identification of 

distinct cell-surface sugar added our understanding to the role of polysaccharide for each 

cell type, and the identification may be applicable for fluorescence-activated precision 

cell sorting for comparative “omics” studies among the three cell types. 

KEY WORDS: cyanobacteria, lectins, specific polysaccharides, spore, heterocyst, 

nitrogen fixation  

4.2 Introduction 

Cyanobacteria are ancient photosynthetic gram negative bacteria, some of which can also 

fix nitrogen (Fay 1992; Bergman et al. 1997; Berman-Frank et al. 2003). A matrix of 

polymeric substances surrounds cyanobacterial cell to form a protective boundary between 

the bacterial cell and the immediate environment (De Philippis et al. 2001). Extracellular 
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polymeric substances (EPS) are attached to the cell surface as capsular polysaccharide 

(CPS) or delivered to the culture medium as released polysaccharides.  CPS can appear as 

a sheath, usually a thin, defined layer loosely covering cells, or a thick layer tightly 

associated with a single cell, or slime, which surrounds the cells. In addition, the cells are 

covered by lipopolysaccharides (LPS) anchored in the outer membrane (Kehr and 

Dittmann 2015) and underneath the CPS. This network of polysaccharides is critical for 

fundamental function, including cell gliding (Wilde and Mullineaux 2015), uptake of 

heavy-metals (Volesky and Holan 1995), biosurfactants (Paniagua-Michel Jde et al. 2014), 

recognition between symbiosis partners (Schussler et al. 1997; Marczak et al. 2017), 

providing protection against phagocytic predation, desiccation, and lysis by bacteria, 

viruses (Cheng and Costerton 1975; Dudman 1977) and fungi (Gerphagnon et al. 2013). 

Cellulose, which is a component of the extracellular matrix of several cyanobacteria of 

Sections I, III and IV, and consists only of glucose, is among the best-characterized 

polysaccharides in cyanobacteria (Nobles et al. 2001). The high diversity of 

monosaccharide building blocks defines the unique properties of cyanobacterial EPS, and 

clearly sets them apart from other bacteria (Pereira et al. 2009). 

Anabaena cylindrica ATCC 29414 (hereafter A. cylindrica) is a filamentous 

cyanobacterium presenting an example of multicellular differentiation process in 

prokaryotes. Approximately 4-6% of the progenitor photosynthetic vegetative cells can 

develop into nitrogen-fixing heterocysts (Meeks et al. 1983). Heterocysts inhibit nearby 

cells from differentiating into heterocysts but can induce adjacent vegetative cells to 

become akinetes, an embryogenetic-type induction in A. cylindrica (Wolk 1966; Hirosawa 

and Wolk 1979; Zhou and Wolk 2002). The structure of cell wall changes dramatically 
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when vegetative cells develop into akinetes and heterocysts, which are both specialized 

cells with thickened cell walls. Morphological changes include the deposition of two 

additional envelope layers around the heterocyst; an inner “laminated” layer composed of 

heterocyst glycolipid layer (HGL), and an outer polysaccharide (called heterocyst envelope 

polysaccharide or HEP) layer (Cardemil and Wolk 1979; Cardemil and Wolk 1981; Zhou 

and Wolk 2003; Nicolaisen et al. 2009). A cluster genes were found to be required for the 

synthesis of HEP in Anabaena sp. strain PCC 7120 (Huang et al. 2005). The HEP layer is 

sometimes subdivided into a well-defined homogeneous inner layer and an external fibrous 

layer (Zhou and Wolk 2003; Kumar et al. 2010). The CPS of mature akinetes is crucial for 

the stress tolerance during desiccation, freezing and thawing (Tamaru et al. 2005; Perez et 

al. 2016).  

Our previous proteomic study of vegetative cells, heterocysts and akinetes in A. cylindrica 

identified that a polysaccharide export protein coded by acy1651 had much higher 

abundance in heterocysts and akinetes than in vegetative cells (Table 3), which suggested 

that this polysaccharide export protein (Acy1651) may play a role in polysaccharide 

deposition on different cell types.  

Lectins are carbohydrate-binding proteins that can selectively recognize specific 

carbohydrate structures or sugar moieties (Brooks 2017). In this study, we identified the 

presence of specific sugar moieties in the surface of vegetative cells, heterocysts and 

akinetes of A. cylindrica by evaluating lectins' specific binding to each cell type. To study 

the role of Acy1651 (a polysaccharide export protein) in polysaccharide transportation 

and deposition, we have to examine the heterocyst-specific surface sugar monomers in 

heterocysts of FQ1595 (Lechno-Yossef et al. 2011), a ∆all4388-Anabaena sp. PCC 7120 



89 

 

 

mutant strain (all4388 is the homologous gene of acy1651), due to lacking genetic tool 

for A. cylindrica to make a ∆acyl1651mutant. 

4.3 Materials and methods 

4.3.1 Lectin bindings to three types of cells of A. cylindrica 

Culture preparation: Anabaena cylindrica ATCC 29414  (hereafter A. cylindrica) was 

grown in 50 mL AA/8 medium free of combined nitrogen (Hu et al. 1981) under continuous 

light (60 µE/m2/s, 150 rpm, 30°C) for 10 d, yielding an OD700 of 0.149. Microscopy 

confirmed the formation of both heterocysts and akinetes. The 10-day’s A. cylindrica 

culture (1.3 mL) was collected by centrifugation (13,000 x g)   and was washed with 

Phosphate Buffered Saline (PBS) (10 mM, pH7.4) three times and re-suspended in 1 mL 

of HEPES buffer (10 mM, pH 7.5) ready for lectin-binding assay below. 

Lectin binding experiments: Three screening kits of fluorescein-conjugated lectins 

(catalog No. FLK-2100, FLK-3100, FLK-4100) were obtained from Vector Laboratories 

(Table 1). Because the uncertainty of surface sugar quantity across the three cell types, the 

initial testing concentration of lectin was 100 µg/mL, and then increased the concentration 

based on the testing results. The details of finally used concentration of for each lectin were 

specified in Table 1. Lectins were added to each cell suspension, incubated for 60 min in 

the dark at room temperature, briefly vortexing the suspension every 15 min. The cells 

were harvested by centrifugation for 1 min at 13,000 x g. The cell pellets were washed 

three times with PBS to remove the unbound lectins. All processing was performed in the 

dark. The final cell pellet was re-suspended in 20 µL of PBS and 5µL of cells applied onto 

a slide for fluorescence microscopy. 
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A. cylindrica cells were examined with a BX53 fluorescence microscope (Olympus) 

under bright field for visualizing the three different cell types along the filaments. 

Fluorescence from the fluorescein-conjugated lectins was recorded using a GFP-4050A 

filter (EX466/40, EM525/50, DM495, BrightLine®) with 250 msec exposure time, and 

autofluorescence was recorded using a TRITC-B filter (EX543/22, EM593/40, DM562, 

BrightLine®) with 250 msec exposure time.



91 

 

 

 Table 4-1: Lectins used to visualize extracellular polysaccharides, and final concentrations of each lectin applied 

 

Lectin 

Common 

Abbreviation 

Primary sugar 

specificity 

Primary sugar  

specificity 

concentrations 

(µg/mL) 

Concanavalin A ConA Mannose αMan, αGlc 120 

Len culinaris lectin LCA Mannose αMan, αGlc 120 

Pisum sativum agglutinin PSA Mannose αMan, αGlc 120 

Dolichos biflorus agglutinin DBA N-

Acetylgalatosamine 

αGalNac 120 

Soybean agglutinin SBA N-

Acetylgalatosamine 

α>βGalNAc 100 

Sophora japonica agglutinin SJA N-

Acetylgalatosamine 

βGalNAc 100 

Vicia villosa lectin VVL N-

Acetylgalatosamine 

GalNAc 100 

Ricinus communis agglutinin I RCA I Galactose,  Gal 120 
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N-

Acetylgalatosamine 

Peanut Agglutinin PNA Galactose Fucα6GlcNAc 120 

Griffonia Simplicifolia lectin I GSL I Galactose αGal, αGalNAc 100 

Erythrina cristagalli lectin ECL Galactose Galβ4GlcNAc 120 

Jacalin Jacalin Galactose Galβ3GalNAc 120 

Ulex Europaeus agglutinin I UEA I Fucose αFuc 100 

Phaseolus vulgaris 

Erythroagglutinin 

PHA-E Complex structures GalβGlcNAcβ2Manα6(GlcN

Acβ4)(GLcNAcβ4Manα3)Ma

nβ4 

100 

Phaseolus vulgaris 

Leucoagglutinin 

PHA-L Complex structures Galβ4GlcNAcβ6(GlcNAcβ2

Manα3)Manα3 

100 

Wheat Germ agglutinin WGA N-Acetylglucosamine GlcNAc 160 

Wheat Germ agglutinin, 

succinylated 

Succinylated 

WGA 

N-Acetylglucosamine GlcNAc 160 

Griffonia simplicifolia lectin II GSL II N-Acetylglucosamine α or βGlcNAc 120 
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Datura stramonium lectin DSL N-Acetylglucosamine (GlcNAc)2-4 100 

Lycopersicon esculentum lectin LEL N-Acetylglucosamine (GlcNAc)2-4 100 

Solanum tuberosum lectin STL N-Acetylglucosamine (GlcNAc)2-4 100 
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4.3.2 Examination of heterocyst surface sugar in all4388 mutant of Anabaena sp. 

PCC 7120 (hereafter A. PCC 7120) 

A. cylindrica A. PCC 7120 is close to A. cylindrica, but does not form akinetes. The 

all4388 is homologous (68% identities) to acy1651 encoding a putative polysaccharide 

transporter in A. PCC 7120. The all4388-knockout mutant FQ1595 (hereafter ∆all4388) 

was obtained from Dr. Wolk laboratory (Lechno-Yossef et al. 2011). The ∆all4388 

mutant and wild-

neomycin (sigma-aldrich) and Bg11 medium respectively under continuous light (60 

µE/m2/s, 150 rpm, 30°C) for 7 d, reaching OD700 0.1. The cultures were harvested by 

centrifugation for 5 min at 4,000 x g, the cells were washed three times with Bg110 

(without combined nitrogen), and re-suspended in 25 mL Bg110 to induce development 

of heterocysts.  After 48h induction, 1.3 mL of culture was collected, washed with 1.0 

mL PBS for three times, and suspended in 1 mL of HEPES buffer (10 mM, pH 7.5). The 

heterocyst signature lectin ConA was added at 120 µg/mL, and the binding activity was 

observed by fluorescence microscopy as described above.above. 

4.4 Results 

4.4.1 The specific polysaccharides identified in akinetes, heterocysts and vegetative 

cells  

The A. cylindrica appeared green-blue filaments, with yellowish heterocysts (Figure 4-1 

column I, Ht). Vegetative cells and akinetes (Ak) displayed strong red auto-fluorescence 

when viewed with the TRITC-B filter, but not the heterocysts (Figure 4-1 column IV). 

Heterocysts showed a diminished red auto-fluorescence (Figure 4-1 column IV) due to 

the absence of phycobilisomes, which involved in light absorbance. Among the 20 
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fluorescein-conjugated lectins tested (Table 4-1), seven lectins showed some binding to at 

least one of three cell types (Table 4-2 and Figure 4-1). ConA gave strong signals in 

heterocysts, akinetes and the terminus of terminal cells in filaments (Figure 4-1A & B, 

column II &III). PHA-E also bound to the terminus of the terminal cells (Figure 4-1F, 

column II & III). GSL-I, LCA, and PSA showed a binding pattern similar to ConA for 

the developing akinetes or akinetes (column II & III in Figure 4-1, A, C, D, E). 

Succinylated WGA and WGA exclusively bound to vegetative cells (Column II in Figure 

4-1, G &H), but this binding was not as intense as the other lectins. The other 13 lectins 

(Table 4-1) did not show detectable binding to any type of cells of A. cylindrica, 

including the group of lectins that bind to N-acetylgalactosamine, suggesting that few if 

any traces of N-acetylgalatosamine exist on the cell surface of A. cylindrica. 

Table 4-2: Surface polysaccharide identified in all cell types by lectins bindings 

Lectins Polysaccharide 

Vegetative 

cells 

Heterocysts Akinetes 

Terminal 

cells 

Con A Mannose - + + + 

GSL I Galactose - - + - 

LCA Mannose - - + - 

PSA Mannose - - + - 

PHA E 

Complex 

oligosaccharide 
- - - + 

WGA 

N-

Acetylglucosamine 
+ - - - 
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Succinylated 

WGA 

N-

Acetylglucosamine 
+ - - - 

 

4.4.1.1 Akinete specific surface polysaccharides  

Akinetes was bound by the highest number of lectins: ConA, GSL-I, LCA, and PSA 

(Figure 4-1 A, and C-E, respectively), which implied that akinete cell surfaces had the 

greatest variety of sugars: both terminal mannose and galactose. GSL-I binding to the 

akinete surface showed "fuzzy" fluorescence (Figure 4-1, C) compared with the smooth 

binding surface by ConA (Figure 4-1, A), LCA (Figure 4-1, D) and PSA (Figure 4-1, E). 

The fact that GSL-I is a galactose-binding lectin, and the other three are mannose-binding 

lectin, suggesting the structural difference of galactose and mannose on the akinete 

surface. The mannose-containing polysaccharides are probably associated with the 

akinete surface tightly while the galactose-containing polysaccharides are more like 

“microfibers” stretching out of cell wall.   
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Figure 4-1: Seven fluorescein-conjugated lectins were identified to have specific binding 

affinity to different cell types of A. cylindrica. Photomicrograph of A. cylindrica stained 

with ConA (A & B), GSL I (C), LCA (D), PSA (E), PHA E (F), WGA (G), and 

succinylated WGA (H) observed under bright field (column I), FITC (column II), FITC-

TRITC merge (column III) and TRITC (column IV). The different cell types were labeled 

as pink (akinetes), yellow (heterocysts), white (vegetative cells), blue (blunt end of 

terminal cells), and purple (tip end of terminal cells) arrows respectively. 

Akinetes are enlarged spore-like cells that differentiated from vegetative cells. In A. 

cylindrica, akinete size is about 10 times larger than vegetative cells, which is different 
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from bacterial spores. Yet the akinete formation mechanism is barely known. In our 

lectin research, LCA and PSA showed the affinity to akinetes during akinete 

development. Figure 4-1D-II revealed the two akinetes both bound with LCA. Figure 

4-1E-II shows the PSA bound to a young akinete and one partial of vegetative cells, 

which potentially developed into an akinete. These results suggested mannose's 

appearance is an earlier indicator of akinete differentiation. 

4.4.1.2 Heterocyst specific surface polysaccharides  

Heterocysts bound only to ConA (Fig. 4-1A-II) that prefers to bind to mannose, glucose. 

Heterocysts are morphologically and biochemically specialized N2-fixing cells that form 

an additional two-layer of cell wall with an inner layer of glycolipids and an outer layer of 

specific polysaccharides to block the environmental O2 (Zhou and Wolk 2003).    

4.4.1.3 Vegetative cell-specific surface polysaccharides 

Both WGA and succinylated WGA primarily (if not specifically) bound to filamentous 

vegetative cells (Figure 4-1 G-H, column II), which suggesting the existence of N-

Acetylglucosamine on the surface of vegetative cells. Each filament has two ends: 

Tapering-end and blunt-end (Figure 4-1 B, column I). Both ConA (Figure 4-1 B, column 

II & III) and PHA-E (Figure 4-1 F, column II & III) specifically bound to the blunt-end 

vegetative cells, which suggesting that mannose/glucose and complex oligosaccharides 

deposited at only the blunt-end vegetative cells, not the tapering-end vegetative cells.  

4.4.2 ConA binding activities in A. PCC 7120 and ∆all4388 mutant 

Our proteomics study detected the high abundance of polysaccharide export protein 

(Acy1651) in heterocysts and akinetes of A. cylindrica 29414 (Table 4-3). To study the 

role of Acy1651, Anabaena PCC 7120 and its ∆all4388 mutant were examined for ConA-
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binding activity.  A. PCC 7120 is genetically close to A. cylindrica 29414 except for no 

formation of akinetes.  

ConA also bound to the heterocysts of A. PCC 7120, which suggesting the presence of 

mannose/glucose-containing polysaccharide on the surface of heterocysts (Figure 4-2A, 

column II). The similar binding pattern indicated similar polysaccharide composition of 

EPS in A. PCC 7120 and A. cylindrica 29414. ConA fluorescence was observed much 

stronger on the mature heterocyst (yellow arrowed in Figure 4-2A) than the younger 

heterocyst (yellow arrowed in Figure 4-2B). Different ConA-binding activities were also 

observed in different stage of heterocyst development (Figure 4-1A, column I & II) even 

if the morphology of heterocyst was not easily distinguishable (data not shown). The 

differential ConA-fluorescence from the developing heterocysts suggested the 

accumulation of mannose/glucose-containing polysaccharides during the development of 

heterocysts. 

Functional heterocysts formed about 24 h after nitrogen step-down in wild type A. PCC 

7120, while the ∆all4388 mutant still formed heterocysts, but they were not as 

distinguishable (yellow arrowed in Figure 4-2C, column I & II) as in wild type, and they 

cannot fix nitrogen (Ernst et al. 1992; Maldener et al. 2003; Lechno-Yossef et al. 2011). In 

∆all4388, ConA no longer binds to heterocysts (Figure 4-2C), which suggesting that 

mannose/glucose-containing polysaccharides are missing from the heterocyst surface due 

to the absence of this polysaccharide export protein, All4388. It was noticeable in ∆all4388 

mutants that some cell junctions were enriched in mannose/glucose-containing 

polysaccharides bound by ConA (Figure 4-2 C-II). 
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Figure 4-2 Characterization of the surface sugar in A. PCC 7120 and ∆all4388 mutant by 

ConA staining. Heterocysts in A. PCC 7120 was specifically binding by ConA (A-B), and 

this recognition was diminished in ∆all4388 mutant heterocysts and strong ConA signal 

was detected between the junction of cells (C).  

Our heterocyst signature ConA was observed attaching to the heterocysts in A. PCC 

7120, which implied that mannose was a major component of EPS as well. The similar 

binding pattern indicated similar monosaccharide composition of EPS in A. PCC 7120 

and A. cylindria 29414. ConA binding activity varied with different factors, for example, 

the growth stages of neighboring vegetative cells and the developmental stage of 

heterocysts. Comparing the vegetative cells in Figure 4-2A and Figure 4-2B, we could 

see the vegetative cells in Figure 4-2B were dividing and the ones in Figure 4-2A were 

not. ConA fluorescence was observed much stronger on heterocysts in Figure 4-2A than 

in Figure 4-2B. ConA binding was observed in the early stage of heterocysts 

development when the morphology of heterocyst was not easily distinguishable. 

However, the mature heterocysts had stronger fluorescence (yellow arrow in Figure 

4-2A) compared with young ones (yellow arrow in Figure 4-2B). The differential 

fluorescence suggested the accumulation of mannose-containing polysaccharides during 

the development of heterocysts. 
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Functional heterocysts formed about 24 h after nitrogen step-down in wild type A. PCC 

7120, while the ∆all4388 mutant still formed heteocysts, but the shape was not as 

distinguishable as in wild type, and they cannot fix nitrogen (Lechno-Yossef et al., 2011). 

In ∆all4388, ConA lost binding to heterocysts (Figure 4-2C), which indicated that 

mannose-containing polysaccharides is missing from the heteocyst EPS due to the 

absence of this polysaccharide export protein. It was noticeable in ∆all4388 mutants that 

some cell junctions were riched in mannose-containing polysaccharides (Figure 4-2C-II)  

4.5 Discussion 

4.5.1 Specific EPS of akinetes, heterocysts and vegetative cells 

The only detectable sugar moiety in vegetative cells was N-acetylglucosamine, which is a 

derivative of glucose. Glucose is the sole component of cellulose, which is the basic and 

most common building blocks of polysaccharide in cyanobacteria (Nobles et al. 2001). N-

acetylglucosamine was not detectable in heterocysts and akinetes. This result is consistent 

with our previous proteomic study in A. cylindrica 29414 where two enzymes involved in 

N-acetylglucosamine metabolism: UDP-N-acetylglucosamine-N-acetylmuramyl-

(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (acy4163) 

and UDP-3-O-acyl N-acetylglucosamine deacetylase (acy2637) were only detected in 

vegetative cells (Qiu et al, unpublished data).  

The previous research also indicates that heterocysts and akinetes bear extra 

polysaccharide layers to adapt their own functions (Zhou and Wolk 2003; Singh and 

Montgomery 2011; Perez et al. 2016; Perez et al. 2018). Both heterocysts and akinetes 

differentiated from vegetative cells, heterocysts can induce their neighbor vegetative cells 

to become akinetes at both sides (Figure 4-1C-I). We found that ConA can bind both 
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heterocysts and akinetes (Figure 4-1 column II), which is consistent with the presence of 

both mannose and glucose moieties in the envelope of heterocysts and akinetes (Cardemil 

and Wolk 1979). Although galactose residues were nearly equal present in the envelope 

polysaccharide of both heterocyst and akinete (Cardemil and Wolk 1976), the galactose-

binding GSL-1 exclusively bound to akinetes,  not the heterocysts (Figure 4-1C. II-III).  

Similarly, the mannose unit is present in both heterocyst and akinetes (Cardemil and 

Wolk 1979), while two mannose-binding lectins LCA and PSA exclusively binds to 

akinetes, not the heterocysts (Figure 4-1 D &E, column II). The presence of common 

ConA-binding polysaccharides in the surface of heterocysts and akinetes suggest that a 

similar sugar composition in polysaccharide exists between these two cell types, but the 

distribution of sugar residues in the cell surface are distinguished each other and distinct 

from their progenitor vegetative cells. The galactose is one of the components in 

hemicellulose, which could contribute to the properties of akinetes, such as dormancy, 

being non-motile, and able to geminate (Perez et al. 2018). The greatest number of sugar 

residues detected in akinetes is also consistent with the finding that akinetes have higher 

lectin binding activity (Tien et al. 2005).  

4.5.2 The directional motility force and the polysaccharide secretion 

Recent evidence supported that a Type IV pilus-like nanomotor structure drives the gliding 

motility and polysaccharide secretion in filamentous cyanobacteria (Khayatan et al. 2015). 

The structure of specific slime-secreting pores in  two cyanobacteria (Synechocystis and 

Nostoc punctiforme) were characterized and designated as junctional pore complexes (JPC), 

which suggested that polysaccharide secretion does not simply provide a suitable surface 

for gliding, as in other bacteria, but rather generates the directional force for movement 
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(Wilde and Mullineaux 2015). Our results showed that the secretion of certain 

polysaccharides (PHA-E, ConA in Figure 4-1, column II & III) occurred at only one 

terminus of a filament in A. cylindrica, which possibly serves as the directional force for 

filament movement.  Based on our observation on motility of 27 A. cylindrica filaments, 

we found that A. cylindrica has an average gliding motility with 0.157±0.019 m.S-1 and a 

rotating motility with 0.152±0.022 m.S-1 on AAN-1.2% agar plate. However, a young, 9 

cell-filament can glide much faster (at 1.219 m.S-1) than a long filament. A real time 

movie showing the motility of A. cylindrica on AAN agar plate is provided in supplemental 

materials (A. cylindrica motility video). 

4.5.3 The role of Acy1651, a polysaccharide export protein, in oxic nitrogen fixation  

The polysaccharide layer is essential for heterocysts to fix dinitrogen in an oxygen-

containing milieu. Fox genes (capable of N2-fixation in the presence of oxygen) are genes 

required specifically for oxic nitrogen fixation, including the ones that are required for 

formation of the heterocyst polysaccharide layer (Zhou and Wolk 2003; Huang et al. 2005). 

Our previous proteomic study discovered that a polysaccharide export protein (Acy1651) 

is highly expressed in both akinetes and heterocysts, but barely detectable in vegetative 

cells (Table 4-3). The distribution of the polysaccharide export protein Acy1651 is 

consistent with the distribution of the ConA-binding polysaccharide in heterocysts (Figure 

4-2). Wolk et al and others reported that inactivation of the acy1651 homologous gene 

all4388 in A. PCC 7120 did not affect the heterocyst formation, but the mutant heterocyst 

failed to fix nitrogen aerobically (Ernst et al. 1992; Maldener et al. 2003; Lechno-Yossef 

et al. 2011). In the ∆all4388 mutant, the lacking ConA-binding suggest that 1) Acy1651 

may involve in the transportation of mannose-containing polysaccharides and in formation 
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of a polysaccharide layer in heterocysts; and 2) The dysfunction of heterocysts resulted 

from the missing mannose-containing polysaccharides on their surface that could be a key 

component for oxygen exclusion and therefore the ∆all4388 mutant heterocysts lost the 

aerobic nitrogen fixation function. 

4.5.4 Future application of identified signature lectins in vegetative cells, heterocysts 

and akinetes 

We found signature lectin bindings in all three types of cells. ConA for heterocysts and 

akinetes, GSL-I, LCA and PSA for akinetes, PHA-E for terminal cells, and succinylated 

WGA and WGA for vegetative cells. Akinetes are enlarged spore-like cells that 

differentiated from vegetative cells. Akinete of A. cylindrical is about 10 times larger than 

its vegetative cells, which is different from bacterial spores. Yet the akinete formation 

mechanism is barely known. In our lectin binding assay, LCA showed affinity to 

developing akinete. Figure 4-1 D-II showed that the two akinetes both bound with LCA, 

the smaller one was a developing akinete, which may develope into an akinete. These 

results suggest that mannose's appearance could serve as an earlier molecular marker for 

akinete differentiation. 

The isolation of these three cell types is important since heterocysts are an elegant model 

system to study the uniquely oxic nitrogen fixation, and akinetes for stress tolerance and 

germination studies. Traditionally, these type cells had been isolated using CsCl density 

centrifugation (Wolk 1968), but its purity has some concerns in comparative omics studies. 

These fluorescein-labeled lectins coupled with flow cytometry may be applicable for 

fluorescence-activated cell sorting and precision isolation of specific cell type, and further 
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facilitate the comparative omics studies, such as genomics, transcriptomics, proteomics, 

metabolomics among these three types of cells. 
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APPENDIX 

Table 1: Distribution of FOX proteins, photosystem I and II proteins, and akinete marker 

protein in akinetes, heterocysts, and vegetative cells. 

ORF Annotation 

Akinete Heterocyst 

Veget. 

Cell 

Normalized quantitative value 

FOX genes 

2715 Histidine kinase HepN 0 0 0.45 

4573 Neutral invertase InvB 0 0 0.45 

4916 

Hypothetical protein Npun_R1723, 

FraG/SepJ 

0 0 0.45 

6434 Protein serine/threonine phosphatase PrpJ1 0 0 0.45 

222 Nitrogen-fixing NifU-like protein 0 0 0.9 

1433 Response regulator receiver protein DevR 0 0 0.9 

2881 

ParB-like partition protein, HGL region 

containing 

0 0 1.8 

3957 Processing proteinase Abp2 0 0 2.71 

3514 

Polyketide-type polyunsaturated fatty acid 

synthase PfaA/HglF 

0 2.45 0 

5142 FHA domain containing protein FraH 0 2.45 0.45 

4208 

FHA modulated glycosyl 

transferase/transpeptidase PBP3 

2.66 2.45 0.45 
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3826 

Glucose-6-phosphate 1-dehydrogenase 

Zwl 

7.99 2.45 1.35 

5437 

Nitrogenase molybdenum-iron protein 

alpha chain NifD 

10.66 4.9 0 

907 

Nitrogenase molybdenum-iron cofactor 

biosynthesis protein NifN 

0 7.36 0 

3521 Glycosyl transferase (group 1) HglT 2.66 7.36 0 

1865 

Hypothetical protein Npun_F0815, Asp-, 

glu- rich product 

0 7.36 5.86 

4777 cytochrome c oxidase subunit II coxB2 0 7.36 0 

1565 Histidinol dehydrogenase HisD 5.33 9.81 9.02 

6242 ABC transporter related DevA 0 12.26 0 

6485 Histone-like DNA-binding protein HanA 2.66 12.26 19.4 

715 

Polyketide synthase thioester reductase 

subunit HglB 

0 14.71 0 

6701 Fe-S cluster assembly protein NifU 0 22.07 0 

3078 cytochrome c oxidase subunit II coxB3 10.66 22.07 0 

911 

Nitrogenase FeMo beta subunit protein 

NifK 

10.66 22.07 0.45 

153 Outer membrane efflux protein HgdD 23.98 22.07 4.06 

3764 Hypothetical protein Npun_R5769 Abp3 37.3 34.33 11.73 

3480 

Putative transcriptional regulator (Crp/Fnr 

family) DevH 

37.3 44.14 12.18 
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1651 Polysaccharide export protein 39.96 49.04 2.26 

3002 Nitrogenase iron protein NifH 0 61.3 0.45 

Photosystems 

3318 Photosystem I assembly BtpA 0 2.45 0.45 

5296 Photosystem I assembly protein ycf3 0 0 1.35 

1589 Photosystem I assembly Ycf4 2.66 4.9 4.06 

4482 Photosystem I P700 apoprotein A2 50.62 17.17 12.18 

5755 Photosystem I iron-sulfur center 18.65 26.97 18.04 

2498 

Photosystem I reaction center protein PsaF, 

subunit III 

13.32 12.26 44.66 

2501 Photosystem I reaction center subunit XI 45.29 122.6 59.09 

1809 Photosystem I reaction center subunit IV 5.33 29.43 74.88 

833 Photosystem I reaction center subunit II 39.96 100.54 163.3 

1817 

Photosystem II reaction center Psb28 

protein 

0 0 1.35 

6255 

Photosystem II oxygen evolving complex 

protein PsbP 

5.33 4.9 4.96 

3007 Photosystem II protein D2 13.32 9.81 4.96 

83 Photosystem II reaction center protein H 0 2.45 4.96 

2046 Photosystem q(b) protein 5.33 9.81 7.22 

1649 

Photosystem II 44 kDa subunit reaction 

center protein 

47.95 22.07 10.83 
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5644 

Photosystem II chlorophyll-binding protein 

CP47 

47.95 29.43 14.89 

3469 Photosystem II 11 kDa protein 21.31 22.07 17.59 

3312 

Photosystem II oxygen evolving complex 

protein PsbU 

5.33 12.26 31.58 

4725 

Photosystem II manganese-stabilizing 

protein PsbO 

42.62 71.11 104.66 

755 Photochlorophyllide reductase subunit N 0 0 0.45 

Akinete marker protein (AcaK43) 

1647 

PRC-barrel domain-containing protein 

AvaK 

85.25 90.73 1.35 

 

 

Table 2: Proteins involved in biosynthesis of DNA, RNA, and protein, as well as cell 

division in akinetes, heterocysts, and vegetative cells respectively 

ORF Annotation 

Akinete Heterocyst 

Veget. 

Cell 

Normalized quantitative value 

DNA replication and repair 

DNA gyrase, helicase, and topoisomerase 

4759 Single-strand binding protein 0 0 3.1577 

3320 

DEAD/DEAH box helicase domain-

containing protein 

0 2.45 4.51 
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5326 Peptidase U62, modulator of DNA gyrase 2.66 0 0 

3692 DNA gyrase subunit A 2.66 0 0 

2972 Protein splicing (intein) site 5.33 2.45 0.90 

5282 DNA topoisomerase I 10.66 0 2.71 

5834 Microcin-processing peptidase 2 13.32 2.45 1.35 

5835 Peptidase U62 modulator of DNA gyrase 13.32 7.36 5.86 

DNA polymerase 

257 

Phage SPO1 DNA polymerase-related 

protein 

0 0 0.45 

3596 DNA polymerase III, delta subunit 0 0 0.45 

Nucleotide biosynthesis 

6322 

5-(carboxyamino)imidazole 

ribonucleotide synthase 

0 0 0.45 

3851 

ATP phosphoribosyltransferase catalytic 

subunit 

0 0 1.35 

339 Dihydroorotase 0 2.45 0 

4205 Adenine phosphoribosyltransferase 0 2.45 4.51 

2020 Uracil phosphoribosyltransferase 0 2.45 2.26 

2639 

Phosphoribosylaminoimidazole-

succinocarboxamide synthase 

0 7.36 1.80 

6314 

Phosphoadenylylsulfate reductase 

(thioredoxin) 

0 7.36 11.28 

2240 Phosphoribosyltransferase 0 19.62 5.41 
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4194 

Phosphoribosylformylglycinamidine 

synthase II 

2.66 0 0 

2553 Adenylosuccinate synthetase 2.66 0 2.26 

3424 Phosphomethylpyrimidine kinase 2.66 0 0.90 

6546 Dihydroorotase 2.66 2.45 0 

2309 Orotate phosphoribosyltransferase 2.66 2.45 1.80 

6261 

Bifunctional 

phosphoribosylaminoimidazolecarboxami

de formyltransferase/IMP cyclohydrolase 

5.33 0 1.80 

6333 Adenylosuccinate lyase 7.99 0 4.96 

Transcriptional regulation 

RNA polymerase 

608 

RNA polymerase, sigma 70 subunit, 

RpoD subfamily 

0 0 0.45 

1794 

DNA-directed RNA polymerase subunit 

omega 

0 0 3.61 

2126 

RNA polymerase, sigma subunit, 

RpsC/SigC 

0 0 3.61 

1436 RNA polymerase sigma factor 0 0 3.16 

1465 

RpoD family RNA polymerase sigma 

factor 

0 0 0.45 

1436 RNA polymerase sigma factor 0 0 3.16 
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1571 

DNA-directed RNA polymerase gamma 

chain 

5.33 0 4.96 

2612 

DNA-directed RNA polymerase subunit 

alpha 

15.98 29.43 13.08 

1572 

DNA-directed RNA polymerase beta' 

subunit 

37.30 2.45 3.16 

1569 

DNA-directed RNA polymerase subunit 

beta 

39.96 2.45 3.61 

Transcriptional regulator     

3282 

SOS-response transcriptional repressor, 

LexA 

0 0 0.45 

2666 Transcriptional regulator, LysR family 0 0 9.92 

5981 

Transcriptional regulator, BolA protein 

family 

0 0 1.35 

3539 Signal recognition particle protein 0 0 4.511 

4517 Two component transcriptional regulator 0 2.45 0.90 

1692 Transcriptional regulator, GntR family 0 4.90 0.45 

3023 Transcriptional regulator 0 4.90 0.90 

3487 Transcriptional regulator, LysR family 0 4.90 3.61 

1692 Transcriptional regulator, GntR family 0 4.90 0.45 

4132 Anti-sigma-factor antagonist 0 7.36 1.80 

6455 Response regulator receiver protein 0 12.26 2.26 
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1420 

Two component LuxR family 

transcriptional regulator 

5.33 4.90 3.16 

4375 Putative transcriptional regulator 7.99 0 0.45 

1173 

Two component Transcriptional regulator, 

Winged helix family protein 

10.66 29.43 5.86 

3590 

Two component LuxR family 

transcriptional regulator 

26.64 14.71 10.83 

557 AbrB family transcriptional regulator 39.96 31.88 29.32 

Protein synthesis 

Amino acid synthesis 

524 Amidohydrolase 2 0 0 0.45 

1031 Amidohydrolase 0 0 0.45 

6700 

Aromatic amino acid beta-eliminating 

lyase/threonine aldolase 0 4.9 0 

985 Diaminopimelate epimerase 0 4.90 4.06 

2185 Acetylglutamate kinase 0 9.81 0.90 

2435 Aspartate-semialdehyde dehydrogenase 0 4.90 1.35 

6314 

Phosphoadenylylsulfate reductase 

(thioredoxin) 

0 7.36 11.28 

2446 Saccharopine dehydrogenase 7.99 0 0 

3933 

Taurine catabolism dioxygenase 

TauD/TfdA 

23.98 0 0 

3947 Amidohydrolase 2 31.97 0 0 
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tRNA synthetase 

260 

Aspartyl/glutamyl-tRNA amidotransferase 

subunit A 

0 0 4.06 

5328 Cysteinyl-tRNA synthetase 0 0 0.45 

39 Glutamyl-tRNA reductase 0 0 0.45 

5530 Isoleucyl-tRNA synthetase 0 0 0.45 

2962 Leucyl-tRNA synthetase 0 0 1.35 

4316 Methionyl-tRNA synthetase 0 0 1.35 

520 Putative histidyl-tRNA synthetase 2 0 0 6.32 

1748 Seryl-tRNA synthetase 0 2.45 2.71 

1102 Tryptophanyl-tRNA synthetase 0 2.45 0 

3220 Tyrosyl-tRNA synthetase 0 2.45 1.35 

81 Peptidyl-tRNA hydrolase 0 4.90 4.06 

3740 Methionyl-tRNA formyltransferase 0 7.36 4.06 

4380 

Phenylalanyl-tRNA synthetase alpha 

subunit 

0 14.71 3.16 

1850 

Glutamyl-tRNA(Gln) amidotransferase, B 

subunit 

2.66 0 5.86 

2270 Glycyl-tRNA synthetase alpha chain 2.66 0 0 

6531 Histidyl-tRNA synthetase 2.66 7.36 2.71 

6635 Arginyl-tRNA synthetase 5.33 0 4.51 

2649 Glycyl and Arginyl tRNA synthetase 7.99 0 10.83 

4909 Prolyl-tRNA synthetase 7.99 0 4.96 
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3273 Glutamyl-tRNA synthetase 7.99 2.45 1.80 

3210 Lysyl-tRNA synthetase 10.66 0 3.61 

495 

Phenylalanyl-tRNA synthetase, beta 

subunit 

10.66 0 0 

3786 Valyl-tRNA synthetase 10.66 0 2.26 

817 

Threonyl-tRNA synthetase / Ser-

tRNA(Thr) hydrolase 

13.32 0 0.45 

4277 Asparaginyl-tRNA synthetase 15.98 0 0 

Ribosomal protein     

685 50S ribosomal protein L28 0 0 4.06 

1006 Ribosomal protein S21 0 0 8.57 

1567 Ribosomal protein S20 0 0 10.38 

1713 30S ribosomal protein S18 0 0 4.06 

1999 Ribosomal protein L27 0 0 4.51 

2591 Ribosomal protein S19 0 0 13.98 

2594 LSU ribosomal protein L16P 0 0 9.02 

2595 Ribosomal protein L29 0 0 6.77 

2598 Ribosomal protein L24 0 0 4.96 

2603 LSU ribosomal protein L18P 0 0 3.61 

2617 50S ribosomal protein L31 0 0 3.61 

3791 30S ribosomal protein 3 0 0 2.71 

4679 50S ribosomal protein L20 0 0 9.92 

5266 Ribosomal protein S15 0 0 3.16 
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2554 50S ribosomal protein L25 0 2.45 4.96 

2592 50S ribosomal protein L22 0 2.45 7.22 

2596 30S ribosomal protein S17 0 2.45 4.51 

4086 30S ribosomal protein S6 0 2.45 4.06 

2613 50S ribosomal protein L17 0 4.90 10.38 

2973 50S ribosomal protein L9 0 4.90 11.28 

6002 Ribosomal protein L11 methyltransferase 0 4.90 0 

2588 LSU ribosomal protein L4P 0 12.26 10.83 

6310 

Sigma 54 modulation protein/ribosomal 

protein S30EA 

0 19.62 18.50 

1549 50S ribosomal protein L7/L12 2.66 0 22.56 

2590 50S ribosomal protein L2 2.66 2.45 10.38 

2609 SSU ribosomal protein S13P 2.66 2.45 13.08 

5950 30S ribosomal protein S12 2.66 2.45 3.16 

1543 50S ribosomal protein L19 2.66 4.90 3.61 

2615 LSU ribosomal protein L13P 2.66 7.36 10.83 

2589 LSU ribosomal protein L23P 2.66 9.81 7.67 

2601 50S ribosomal protein L6 2.66 9.81 7.67 

5954 Ribosomal protein S10 2.66 12.26 11.73 

1548 50S ribosomal protein L10 5.33 4.90 3.61 

3538 30S ribosomal protein S16 5.33 4.90 12.18 

5685 30S ribosomal protein S14 5.33 4.90 8.12 

5951 SSU ribosomal protein S7P 5.33 4.90 20.75 
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2610 SSU ribosomal protein S11P 5.33 7.36 3.61 

2616 30S ribosomal protein S9 5.33 7.36 8.12 

2597 LSU ribosomal protein L14P 5.33 12.26 8.57 

2586 LSU ribosomal protein L3P 5.33 19.62 7.67 

4920 SSU ribosomal protein S4P 7.99 2.45 4.96 

2605 50S ribosomal protein L15 10.66 14.71 17.14 

1547 50S ribosomal protein L1 10.66 26.97 21.65 

2600 30S ribosomal protein S8 13.32 9.81 8.12 

2604 30S ribosomal protein S5 13.32 17.17 24.36 

2599 50S ribosomal protein L5 13.32 22.07 21.65 

1546 50S ribosomal protein L11 15.98 22.07 16.24 

2593 SSU ribosomal protein S3P 18.65 14.71 9.47 

4068 SSU ribosomal protein S2P 21.31 12.26 10.83 

5643 30S ribosomal protein S1 26.64 26.97 4.96 

Translation initiation factor     

2608 

Bacterial translation initiation factor 1 

(bIF-1) 

0 0 5.86 

5811 Translation initiation factor IF-3 0 0 5.41 

3766 Translation initiation factor IF-2 13.32 0 2.71 

5952 

Translation elongation factor 2 (EF-2/EF-

G) 

50.62 7.36 12.63 

5953 

Translation elongation factor 1A (EF-

1A/EF-Tu) 

175.82 193.72 72.63 
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ORF#: open reading frame # were given by 

http://scorpius.ucdavis.edu/gmod/cgibin/site/Anabaena02?page=gblast  

Table 3: Proteins involved in synthesizing and transporting polysaccharides and 

peptidoglycan in akinetes, heterocysts, and vegetative cells (low similarity of the S-layer 

domain containing proteins are highlighted in grey) 

ORF Annotation 

Akinete Heterocyst 

Veget. 

Cell 

Normalized quantitative value 

Membrane transporter 

S-layer protein 

3288 S-layer domain-containing protein 5.33 2.45 3.61 

5127 porin; major outer membrane protein 5.33 4.90 0 

1127 S-layer domain-containing protein 37.30 0 0 

1753 S-layer domain-containing protein 39.96 24.52 23.46 

2713 porin; major outer membrane protein 50.62 90.73 5.86 

2780 hypothetical protein all7614 66.60 110.34 0 

1756 S-layer region-like 90.57 139.77 14.89 

1758 hypothetical protein all4499 191.80 223.14 60.45 

3008 hypothetical protein alr4550 359.63 328.58 41.50 

ABC transporter 

4203 

ABC-type transporter, integral membrane 

subunit 

0 0 0.45 
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5640 ABC transporter-like 0 0 0.45 

241 

ABC-type transporter, periplasmic subunit 

family 3 

0 2.45 0 

3481 

periplasmic phosphate-binding protein of 

phosphate ABC transporter 

0 2.45 1.80 

4968 ABC transporter related 0 2.45 0 

767 ABC transporter-like 0 4.90 0 

2712 

ABC-type metal ion transporter, periplasmic 

subunit 

0 4.90 0.45 

3485 

phosphate ABC-transporter periplasmic 

phosphate-binding protein 

0 4.90 1.35 

3524 ABC transporter, phosphate-binding protein 0 9.81 3.61 

6242 ABC transporter related 0 12.26 0 

6227 

nitrate ABC transporter, ATPase subunits C 

and D 

0 17.17 16.69 

3042 

molybdenum ABC transporter, periplasmic 

molybdate-binding protein 

0 24.52 0 

1130 ABC transporter related 2.66 0 0 

6476 

periplasmic sugar-binding protein of ABC 

transporter 

5.33 17.17 11.28 

2319 substrate-binding protein of ABC transporter 7.99 7.36 0 

1135 

ABC transporter, substrate-binding protein, 

aliphatic sulphonates 

10.66 0 0 



153 

 

 

5097 ABC transporter ATP-binding protein 10.66 17.17 2.26 

4212 

phosphate ABC transporter, periplasmic 

phosphate-binding protein 

13.32 22.07 15.34 

1132 

ABC transporter, substrate-binding protein, 

aliphatic sulphonates 

26.64 0 0 

Cell wall and secretion proteins 

Cell division 

668 

Cell division transporter substrate-binding 

protein FtsY 

0 0 0.45 

2065 

Septum formation topological specificity 

factor MinE 

0 0 0.90 

6254 Septum formation protein Maf 0 7.36 0 

2066 septum site-determining protein MinD 2.66 4.90 1.80 

4730 cell division protein FtsZ 10.66 12.26 3.61 

Cell wall hydrolase/autolysin and secreted extracellular protein 

2682 secretion protein HlyD family protein 0 0 0.45 

1424 secretion protein HlyD 0 0 0.90 

4502 Type II secretion system F domain protein 0 0 2.26 

4500 type II secretion system protein E 0 0 6.77 

2516 cell wall hydrolase/autolysin 0 2.45 0.90 

5393 general secretion pathway protein H 0 4.90 78.49 

5458 cell wall hydrolase/autolysin 0 9.81 0 

3516 Secretion protein HlyD 0 24.52 0 
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5545 secretion protein HlyD 2.66 7.36 2.26 

6481 general secretion pathway protein D 7.99 0 7.22 

6360 FG-GAP repeat-containing protein 7.99 58.85 1.35 

4111 outer membrane secretion protein Alr0267 37.30 85.82 3.16 

Extracellular biomolecules 

Glycolipid 

2637 

UDP-3-0-acyl N-acetylglucosamine 

deacetylase 

0 0 0.90 

2668 hexapaptide repeat-containing transferase 0 2.45 0 

715 

polyketide synthase thioester reductase 

subunit HglB 

0 14.713 0 

3516 Secretion protein HlyD 0 24.52 0 

4208 

FHA modulated glycosyl 

transferase/transpeptidase 

2.66 2.45 0.45 

3521 glycosyl transferase, group 1 2.66 7.36 0 

153 outer membrane efflux protein 23.98 22.07 4.06 

2638 surface antigen (D15) 37.30 4.90 2.71 

Peptidoglycan 

6325 

peptidoglycan binding domain-containing 

protein 

0 0 2.71 

6200 

N-acetylglucosamine 6-phosphate 

deacetylase 

0 0 0.90 
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4163 

UDP-N-acetylglucosamine--N-

acetylmuramyl-(pentapeptide) 

pyrophosphoryl-undecaprenol N-

acetylglucosamine transferase 

0 0 0.45 

2637 

UDP-3-0-acyl N-acetylglucosamine 

deacetylase 

0 0 0.90 

4461 N-acetylmuramic acid-6-phosphate etherase 0 0 0.45 

5297 

UDP-N-acetylmuramoylalanyl-D-glutamate--

2,6-diaminopimelate ligase 

0 2.45 0.90 

4123 UDP-glucose/GDP-mannose dehydrogenase 0 2.45 9.47 

1382 

peptidoglycan binding domain-containing 

protein 

0 4.90 11.28 

5461 

peptidoglycan binding domain-containing 

protein 

0 4.90 2.71 

715 

polyketide synthase thioester reductase 

subunit HglB 

0 14.71 0 

5462 UDP-N-acetyl glucosamine-2-epimerase 2.66 2.45 1.35 

2312 penicillin-binding protein, transpeptidase 2.66 4.90 1.80 

2648 

UDP-N-acetylmuramoyl-L-alanyl-D-

glutamate synthetase 

5.33 0 0.90 

5403 N-acetylmuramoyl-L-alanine amidase 5.33 0 0.45 

3772 

peptidoglycan binding domain-containing 

protein 

5.33 14.71 10.38 
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2518 N-acetylmuramoyl-L-alanine amidase 10.66 14.71 0.45 

1651 polysaccharide export protein 39.96 49.04 2.26 

 

 

Table 5. The 172 Genes in five DNA elements in vegetative cell genome are deleted 

from heterocyst genome during heterocyst development 

Gene No. start end Fuction notes 

 nifD 74986 bp DNA element (2414668--2489653) 
 

Anacy_2118 2414799 2416202 integrase family protein 

Anacy_2119 2416248 2418260 primase P4 
 

Anacy_2120 2418679 2419248 Resolvase domain protein 

Anacy_2121 2419238 2420899 Integrase catalytic region 

Anacy_2122 2420889 2421860 AAA ATPase 
 

Anacy_2123 2422388 2422804 hypothetical protein 

Anacy_2124 2422902 2423372 hypothetical protein 

Anacy_2125 2423714 2424988 hypothetical protein 

Anacy_2126 2425425 2427335 plasmid recombination protein 

Anacy_2128 2427587 2427808 hypothetical protein 

Anacy_2129 2427795 2428217 protein of unknown function DUF132 

Anacy_2130 2428598 2428891 hypothetical protein 

Anacy_2131 2428965 2429717 hypothetical protein 

Anacy_2132 2429913 2430932 integrase family protein 

Anacy_2133 2431099 2431497 hypothetical protein 
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Anacy_2138 2434809 2435492 transposase IS891/IS1136/IS1341 family 

Anacy_2139 2435498 2436601 protein of unknown function DUF955 

Anacy_2140 2437099 2437557 hypothetical protein 

Anacy_2141 2437734 2438585 chromosome partitioning ATPase 

Anacy_2142 2439349 2440320 AAA ATPase 
 

Anacy_2143 2440310 2441971 Integrase catalytic region 

Anacy_2144 2441961 2442530 Resolvase domain protein 

Anacy_2145 2442923 2443345 integrase family protein 

Anacy_2147 2443972 2444364 death-on-curing family protein 

Anacy_2148 2444361 2444585 addiction module antidote 

Anacy_2149 2444882 2446606 von Willebrand factor type D protein 

Anacy_2150 2446845 2446970 hypothetical protein 

Anacy_2151 2446970 2447260 hypothetical protein 

Anacy_2152 2447461 2448189 hypothetical protein 

Anacy_2153 2448186 2449142 protein of unknown function DUF1814 

Anacy_2155 2451088 2451809 IS1 transposase 

Anacy_2156 2455423 2455665 hypothetical protein 

Anacy_2157 2455682 2455816 hypothetical protein 

Anacy_2158 2456122 2456775 plasmid segregation oscillating ATPase ParF 

Anacy_2159 2456762 2457031 hypothetical protein 

Anacy_2160 2457157 2457429 hypothetical protein 

Anacy_2161 2457433 2457774 hypothetical protein 

Anacy_2162 2457913 2458995 Photosystem Q(B) protein 
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Anacy_2163 2459210 2459602 protein of unknown function DUF1311 

Anacy_2164 2459977 2460486 hypothetical protein 

Anacy_2165 2461139 2461936 hypothetical protein 

Anacy_2166 2461985 2463262 

transposase IS204/IS1001/IS1096/IS1165 

family protein 

Anacy_2167 2463930 2464526 hypothetical protein 

Anacy_2168 2464788 2465228 transcriptional regulator, XRE family 

Anacy_2169 2465462 2465764 fertility inhibition FinO-like protein 

Anacy_2170 2466490 2469597 hypothetical protein 

Anacy_2171 2470363 2470899 HNH endonuclease 

Anacy_2172 2472087 2472863 HNH endonuclease 

Anacy_2173 2474103 2474672 Resolvase domain protein 

Anacy_2174 2474662 2476323 Integrase catalytic region 

Anacy_R0025 2471106 2471180 tRNA-Asp 
 

Anacy_R0026 2471266 2471341 tRNA-Cys 
 

Anacy_R0027 2471449 2471519 tRNA-Trp 
 

Anacy_R0028 2471525 2471601 tRNA-OTHER 

Anacy_R0029 2471789 2471862 tRNA-Phe 
 

Anacy_R0030 2471872 2471946 tRNA-Asn 
 

Anacy_R0031 2472871 2472944 tRNA-Gln 
 

Anacy_R0032 2473093 2473169 tRNA-Pro 
 

Anacy_R0033 2473173 2473246 tRNA-Leu 
 

Anacy_R0034 2473267 2473344 tRNA-Leu 
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Anacy_R0035 2473350 2473424 tRNA-Lys 
 

Anacy_R0036 2473426 2473499 tRNA-Leu 
 

Anacy_R0037 2473606 2473683 tRNA-OTHER 

Anacy_2177 2477480 2478643 hypothetical protein 

Anacy_2178 2478915 2479235 hypothetical protein 

Anacy_2179 2479969 2480235 

DNA-directed RNA polymerase omega subunit 

family protein-like protein 

Anacy_2180 2480396 2480665 hypothetical protein 

Anacy_2181 2480713 2480982 hypothetical protein 

Anacy_2183 2481650 2482054 hypothetical protein 

Anacy_2184 2482049 2482243 hypothetical protein 

Anacy_2185 2482361 2482660 hypothetical protein 

Anacy_2186 2482664 2482981 hypothetical protein 

Anacy_2187 2482981 2483253 hypothetical protein 

Anacy_2188 2483231 2483821 hypothetical protein 

Anacy_2189 2483862 2484227 hypothetical protein 

Anacy_2190 2484413 2485057 hypothetical protein 

Anacy_2191 2485059 2485940 hypothetical protein 

Anacy_2192 2485941 2488484 Collagen triple helix repeat-containing protein 

Anacy_2193 2488481 2489029 hypothetical protein 

Anacy_2194 2489029 2489343 hypothetical protein 

 nifD 15190 bp DNA element (2490117--2505306) 
 

Anacy_2196 2490592 2491215 hypothetical protein 
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Anacy_2197 2491391 2492125 protein of unknown function DUF820 

Anacy_2198 2492191 2492766 protein of unknown function DUF820 

Anacy_2199 2492872 2493387 Peptidylprolyl isomerase 

Anacy_2200 2493543 2494121 hypothetical protein 

Anacy_2203 2495051 2496595 SPFH domain, Band 7 family protein 

Anacy_2204 2497374 2497619 prevent-host-death family protein 

Anacy_2205 2497616 2498020 PilT protein domain protein 

Anacy_2206 2498084 2498566 hypothetical protein 

Anacy_2207 2498646 2499248 hypothetical protein 

Anacy_2208 2499261 2499485 hypothetical protein 

Anacy_2209 2499485 2499904 hypothetical protein 

Anacy_2210 2499897 2500121 hypothetical protein 

Anacy_2211 2500236 2501465 hypothetical protein 

Anacy_2212 2501827 2503104 

transposase IS204/IS1001/IS1096/IS1165 

family protein 

Anacy_2213 2503101 2503667 hypothetical protein 

Anacy_2214 2503768 2505069 phage integrase family protein, XisA 

Anacy_R0038 2497013 2497088 tRNA-Lys 
 

Anacy_R0039 2497088 2497163 tRNA-Ile 
 

 hupL 20842 bp DNA element (2030665--2051506) 

Anacy_1762 2030785 2032245 integrase family protein 

Anacy_1763 2032725 2033351 

Curculin domain protein (mannose-binding) 

lectin 
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Anacy_1764 2033725 2033949 protein of unknown function DUF433 

Anacy_1765 2033933 2034259 hypothetical protein 

Anacy_1766 2034565 2034681 hypothetical protein 

Anacy_1767 2034784 2035125 hypothetical protein 

Anacy_1768 2035130 2035462 RNA-binding domain, S1 

Anacy_1769 2035653 2035889 hypothetical protein 

Anacy_1771 2036388 2036588 hypothetical protein 

Anacy_1772 2036588 2036848 hypothetical protein 

Anacy_1773 2037013 2037282 hypothetical protein 

Anacy_1774 2037220 2037603 

putative transcription regulator with HTH 

domain 

Anacy_1775 2037578 2037886 Protein of unknown function DUF2136 

Anacy_1776 2038225 2038542 hypothetical protein 

Anacy_1777 2038539 2038886 transcriptional modulator of MazE/toxin, MazF 

Anacy_1778 2039031 2039321 hypothetical protein 

Anacy_1779 2039311 2039694 hypothetical protein 

Anacy_1780 2039894 2040112 hypothetical protein 

Anacy_1783 2041171 2043003 peptidase M12A astacin 

Anacy_1784 2043073 2043261 hypothetical protein 

Anacy_1785 2043402 2044133 

uncharacterized protein involved in ubiquinone 

biosynthesis 

Anacy_1786 2044522 2045193 regulatory protein TetR 

Anacy_1787 2045395 2045910 hypothetical protein 
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Anacy_1788 2046109 2046966 hypothetical protein 

Anacy_1789 2047091 2048641 AAA ATPase 
 

Anacy_1790 2048885 2049412 hypothetical protein 

Anacy_1791 2050113 2050637 

protein of unknown function DUF1993-

containing protein 

Anacy_1792 2050652 2051062 hypothetical protein 

 nifH1 5736 bp DNA element (2407440--2413175) 
 

Anacy_2109 2407838 2408236 hypothetical protein 

Anacy_2110 2408381 2409601 

transposase IS204/IS1001/IS1096/IS1165 

family protein 

Anacy_2112 2410215 2410493 hypothetical protein 

Anacy_2113 2410520 2410843 hypothetical protein 

Anacy_2114 2410836 2411255 hypothetical protein 

Anacy_2115 2411404 2411646 hypothetical protein 

Anacy_2116 2411639 2413066 phage integrase family protein, XisA 

 pAnacy03 - 39998 bp DNA element (72642--112639) 

Anacy_6026 73061 73630 Resolvase domain protein 

Anacy_6027 73620 75281 Integrase catalytic region 

Anacy_6028 75271 76242 AAA ATPase 
 

Anacy_6029 76474 77523 hypothetical protein 

Anacy_6030 77545 78186 Thymidylate kinase 

Anacy_6031 78201 79454 hypothetical protein 

Anacy_6032 79467 79904 hypothetical protein 
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Anacy_6033 80079 80360 hypothetical protein 

Anacy_6034 80696 81499 hypothetical protein 

Anacy_6035 81509 83506 pentapeptide repeat protein 

Anacy_6037 84237 85154 hypothetical protein 

Anacy_6038 85699 86550 integrase family protein 

Anacy_6039 86690 87550 integrase family protein 

Anacy_6040 87811 88122 hypothetical protein 

Anacy_6041 88178 89593 hypothetical protein 

Anacy_6042 89593 89772 hypothetical protein 

Anacy_6043 89765 90358 hypothetical protein 

Anacy_6044 90429 91103 hypothetical protein 

Anacy_6045 91272 92120 hypothetical protein 

Anacy_6046 92124 92549 hypothetical protein 

Anacy_6047 92914 93090 hypothetical protein 

Anacy_6048 93120 93314 hypothetical protein 

Anacy_6049 93307 93549 hypothetical protein 

Anacy_6050 94121 96385 hypothetical protein 

Anacy_6051 96385 98103 

Site-specific DNA-methyltransferase (adenine-

specific) 

Anacy_6052 98100 98360 hypothetical protein 

Anacy_6053 98440 99018 protein of unknown function DUF820 

Anacy_6054 99095 100378 

restriction modification system DNA specificity 

domain protein 



164 

 

 

Anacy_6055 100382 100714 hypothetical protein 

Anacy_6056 100711 100956 hypothetical protein 

Anacy_6058 101187 104363 

type I site-specific deoxyribonuclease, HsdR 

family 

Anacy_6059 104528 104857 hypothetical protein 

Anacy_6060 105114 105875 Cobyrinic acid ac-diamide synthase 

Anacy_6061 105872 106243 hypothetical protein 

Anacy_6062 106436 107083 integrase family protein 

Anacy_6064 109257 109826 Resolvase domain protein 

Anacy_6065 109816 111477 Integrase catalytic region 

Anacy_6066 111467 112438 AAA ATPase 
 

 

 

Fig. S1 Heterocysts are formed in both +N and –N cultures. A) Approximately 4.46% of 

A. cylindrica vegetative cells grown in AA/8 medium can form heterocysts. B) 
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Approximately 2.04% of A. cylindrica vegetative cells grown in AA/8N medium can 

form heterocysts.  
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