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ABSTRACT 

ADAPTIVE INTERVENTIONS TREATMENT MODELLING AND REGIMEN 

OPTIMIZATION USING SEQUENTIAL MULTIPLE ASSIGNMENT 

RANDOMIZED TRIALS (SMART) AND Q-LEARNING 

ABIRAL BANIYA 

2018 

Nowadays, pharmacological practices are focused on a single best treatment to 

treat a disease which sounds impractical as the same treatment may not work the same 

way for every patient. Thus, there is a need of shift towards more patient-centric rather 

than disease-centric approach, in which personal characteristics of a patient or 

biomarkers are used to determine the tailored optimal treatment. The “one size fits all” 

concept is contradicted by research area of personalized medicine. The Sequential 

Multiple Assignment Randomized Trial (SMART) is a multi-stage trials to inform the 

development of dynamic treatment regimens (DTR’s). In SMART, a subject is 

randomized through various stages of treatment where each stage corresponds to a 

treatment decision. These types of adaptive interventions are individualized and are 

repeatedly adjusted across time based on patient’s individual clinical characteristics and 

ongoing performance. The reinforcement learning (Q-learning), a computational 

algorithm for optimization of treatment regimens to maximize desired clinical outcome 

is used in optimizing the sequence of treatments. This statistical model contains 

regression analysis for function approximation of data from clinical trials. The model 

will predict a series of regimens across time, depending on the biomarkers of a new 

participant for optimizing the weight management decision rules. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background 

 

 On a daily basis decision makers or doctors play a vital role of 

recommending treatments to patients in any kind of pharmacological practice [1]. 

Managing or treating a chronic illness generally involves a sequence of treatment 

decisions in which factors such as response to previous treatments, severity of 

symptoms and medicinal side-effects are to be taken under consideration while 

deciding on if, when and how current treatment status needs to be altered. 

Previously, these decisions were made based on identifying a single best treatment 

for a particular disease, however, the clinical treatment design has begun to shift 

towards more patient- centric approach rather than disease-centric one [2]. The 

notion “Personalized Medicine” is based on the fact that two patients given the same 

treatment may well respond differently or in other words a treatment that worked 

for one patient may not work for the other. Further, Topol writes that “We have 

entered a new era of medicine, in which each person can be near fully defined at 

the individual level, instead of how we practice medicine at the population level 

[3].” Therefore, Personalized Medicine underpins the posit that rather than direct 

focus on disease diagnosis and treatment allocation, pharmacological practices 

should aim towards more personalized approach which takes into account the 

patient’s biomarkers or characteristics and these should dictate the treatment that 

will work best for an individual. 

 As the personalized medical decision-making process is sequential and 

involves careful assessment of patients’ individual characteristics and their ongoing 

performance so that the nature of outcomes can be improved over time. Dynamic 
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Treatment Regime (DTR) also known as adaptive interventions [4] or adaptive 

treatment strategies [5] follows a sequential decision-making protocol comprising 

of series of treatment decisions that take the current patient’s health information 

and their past treatment history as inputs and outputs the time and procedure for 

treatment alteration. Hence, the Adaptive treatment strategies (ATSs) are a vastly 

expanding area of clinical research and is preferred as more formal means of 

implementing personalized medicine. The strategy discussed in ATS is the 

allocation of treatment at each sequential treatment decision point that depends 

upon patient’s history of covariates and past treatments. In a simple scenario, we 

can consider a single decision point rule where a patient is prescribed drug A if he 

is overweight otherwise prescribed drug B. This scenario can occur in sequence at 

each lengthy follow-up visit of the patient where treatment allocation decision is 

undertaken each time. The follow-up visits can be considered as number of stages 

in the DTR setting where in each stage the treatments are tailored to alterations in 

patient’s characteristics and their response to previous treatments. 

 The ATS or DTR strategy involves multistage treatment decisions, thus we 

need to design a multistage and sequential clinical trial for obtaining a high-quality 

observational training dataset. Hence, a Sequential Multiple Randomized Trials 

(SMART) design randomizes the treatments based on individual patient’s 

biomarkers and clinical history at each stage of sequential decision-making process. 

This design supports adaptive interventions that adapts to the system dynamics in a 

multi-stage trial through a sequence of decision rules which dictate the intervention 

path in order to maximize the long-term primary outcomes [6]. Using this SMART 

design, researchers can collect or construct high quality training data which can 

identify treatment allocation strategies that will eventually optimize patient’s health 
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status. The concept of adaptive interventions mainly consists of two main 

components: 

• Individualized interventions based on patient’s characteristics and 

needs. 

• Interventions are time varying as they repeatedly adapt over time 

responding to participants ongoing performance and varying needs. 

 Thus, we need an experimental setup with a sequence of decision rules 

called DTR where patients covariates and treatment history are taken as input and 

the recommended treatment decision rule is the output of the system. In this 

experimental setup, the goal is to figure out the optimal sequential decision rule 

described as one that maximizes the desirable clinical outcome. Approximate 

dynamic programming and Q-learning a generalization reinforcement learning and 

regression analysis technique with function approximation for obtaining an optimal 

decision sequence in clinical interventions and services, are very popular as the 

nature of clinical decision making is sequential. This reinforcement learning 

method called Q-learning is particularly more appealing as it is easy to implement 

and perhaps more importantly can be understood by non-statistical personals. The 

algorithm involves learning an optimal regimen from patient’s data generated using 

clinical reinforcement trial [7]. Q-learning involves approximating the Q-functions 

defined by time indexed parameters of patients’ biomarkers that is obtained by 

regression analysis at each intervention stage. The regression based approximation 

of Q-function is implemented using linear model. In this model, the inputs are the 

training data generated from SMART design and the outputs are the approximated 

functions for potential final outcome. Finally, the optimal treatment policy or the 
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potential final outcome is defined by the treatment sequence that maximizes these 

Q-functions. 

1.2 Literature Review 

 

 Reinforcement learning was introduced in pharmacological practice by 

Pineu et al. (2007) to represent the concept of adaptive interventions by applying 

hypothetical SMART study on alcohol dependence [8]. Pineau considered using 

reinforcement learning for data analysis of studies that involved patients 

randomized to multiple clinical trials, sequentially or more precisely SMART 

designs. Similarly, in same year, Murphy et al. (2007, Neuropsychopharmacology) 

suggested that Q-learning can be an important breakthrough for designing ATS and 

constructing decision rules in chronic psychiatric disorders [9].  

 Further, Ma et al. in years of 2015 and 2016 published two different works 

on establishing Personalized Treatment Rules in the field of oncology [10, 11]. 

First, they provided an overview on statistical methods to establish optimal 

treatment rules for individualized medicine and also discussed examples in different 

medical context, oncology being the emphasis. Various statistical inference 

methods for identifying Individualized Treatment Rules (ITR) such as Multiple 

Regression for Randomized Clinical Trial Data, Survival Analysis and methods for 

observational data and high- dimensional biomarkers were introduced. Also, they 

discussed some advanced methods of inference such as Robust Inference and data 

mining using machine learning and the performances of these methods were 

evaluated for ITR. Secondly, Ma et al. implemented Bayesian Predictive 

Framework for integrating high-dimensional set of genomic features data with 

clinical responses and treatment histories of patients. However, unsupervised 

clustering with microevolutionary process was used which was very complicated as 
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personalized medicine in field of oncology may have some limitation because of 

the fact that biomarkers or characteristics obtained from small set of sample or panel 

genes is never adequate to describe heterogeneity inherent to the diseases. 

 Between years 2011-14 Q- learning, a reinforcement learning algorithm, 

has been a popular method for determining optimal treatment regimen operating 

data generated from clinical trials assignment. In 2011, Zhao et al. implemented Q-

learning for learning an optimal regimen using training data generated from clinical 

trials assigned to patients with Non-Small Cell Lung Cancer [7]. The combination 

of “clinical reinforcement trial” assignment for obtaining training dataset and 

support vector regression for Q-function approximation were incorporated to 

estimate optimal regimens that are individualized to patients’ subpopulation. 

Although the simulation studies depicted small estimation bias while using sample 

size 𝑁 ≥ 100, several challenges were faced in determining appropriate sample 

size and learning generalization error for clinical reinforcement trial design. 

 In 2012, Shani and Moodie et al. performed two different experiments that 

involved adaptive interventions, clinical trial assignments and treatment regimen 

optimization. First, Shani et al. introduced Q-learning and the use of Q to indicate 

the quality of given or chosen treatment [12]. They implemented Q-learning which 

is a regression based function approximation method, with linear estimates to 

prescribe adaptive interventions for children with ADHD and the training data was 

obtained from ADHD SMART study (Center for Children and Families, SUNY at 

Buffalo, William E. Pelham as PI). The operation of this learning algorithm was 

illustrated for using in data from SMART design with different settings such as 

SMART design with no embedded tailoring variables, re-randomization depending 

upon intermediate outcomes, re-randomization depending upon an intermediate 
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outcome and prior treatment. The advantages such as inclusion of both direct and 

indirect effects during intervention stages, control for optimal-second stage 

intervention while operating effects of first-stage interventions and reduced 

potential bias of Q-learning over other regression based approach were also 

discussed. 

 Furthermore, Moodie et al. implemented Q-learning and mentioned that it 

is a popular method for estimating DTRs [13]. This reinforcement learning method 

was used to examine the effects of breastfeeding on verbal cognitive ability and 

growth of infant and it was based on observational data from Promotion of 

Breastfeeding Intervention Trial. First, the authors discussed the use of Q-learning 

according to different settings such as with multiple regression models, non-regular 

settings and with observational dataset. Secondly, they discussed upon the 

simulation study for comparison of performances using the Q-learning with certain 

adjustments such as inclusion of (1) covariates as linear terms in Q-function, (2) 

propensity score (PS) in Q-function (3) including quintiles of PS as covariates in 

the Q-function and (4) Inverse Probability of treatment weights (IPTW). Finally, a 

case study was presented on The Probit Study that analyzed the breastfeeding and 

vocabulary test results. In this case study hospitals and other polyclinics that were 

affiliated with Republic of Belarus were randomized to breastfeeding promotion 

intervention model presented by WHO/UNICEF. The intervention or decision rule 

suggested 98% infants, at age 6.5 months who were breastfed until 3 months scored 

maximum in vocabulary and only 33% scored maximum who were breastfed until 

6 months. Finally, it was concluded that Q-learning is an appealing method for 

constructing DTR and recommended that the covariates in the model for Q-

functions should be directly included during function approximation process. 
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Whereas if the relationships between input cofounders and outcome are not properly 

understood than it is necessary to consider splines of polynomial functions to ensure 

adequate model fit. 

 Conditional mean and variance modelling for smooth transformation of 

data before applying non-smooth and nonmonotone operation of Q-function 

approximation using regression analysis method was introduced by Laber et al. in 

2014, for adequate fitting and well interpretable model [14]. In Q-learning the value 

that maximized the second-stage Q-function or the optimal value is assigned as 

potential optimal outcome for first-stage regression, this process is replaced by two 

ordinary mean-variance function modeling described in Interactive model building 

technique called IQ- learning. The model was implemented in Monte Carlo 

simulations and Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D,2004) study that involved a sequentially randomized study of major 

depressive disorder [15]. Although the process of defining contrast and main effect 

functions for assigning optimal second stage outcome seems appealing, the 

modelling of conditional distribution of these estimated contrast functions is 

complicated and it may result as inadequate model subsequently.  

 Lastly, Schulte et al. in 2014 implemented Q and A learning methods to 

estimate the optimal treatment regimens and the contrast between these two 

statistical estimation methods was also discussed [16]. A-learning posits that the 

entire Q-function is not needed to be defined for optimal regime estimation, 

however, this statistical framework only requires the regression model representing 

treatment contrasts and probability of a particular treatment being assigned to a 

patient at each intervention given the patient information at these points. Further, 

the simulation study was performed for one decision and two decision points and 
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also applied to STAR*D study which involves four stages with each stage 

consisting 12 weeks of treatment period. This study suggested that although A-

learning is more robust to model misspecification than Q-learning but its 

performance degrades when there are more than two treatment options at each stage 

and the decision rules for defining optimal treatment regime is very complex. It is 

also mentioned that Q-learning is more practical and more familiar to data analysts 

as it consists preset of standard model diagnostic tools. 

 Therefore, in summary the above literature discussed different statistical 

estimation methods such as IPTW, PS in Q-functions, A-learning including the 

reinforcement learning approach of Q-learning and implemented them in medical 

research such as ADHD studies, breastfeeding case-study, STAR*D study for 

estimating optimal treatment regime. However, no such research or data analysis 

has been done on weight management treatment plans and although there are some 

limitations on operating Q-learning it seems more practical and adequate for 

defining ATS. Similarly, the SMART design for obtaining training data is a 

promising way for using this optimization algorithm as it defines sequential 

decision making and randomizes treatment at each decision points so we can 

observe the treatment that results maximum potential outcome or in other words 

optimal treatment decision. 

1.3 Motivation and Objectives 

 

 There is a need of an accurate mathematical model for trial assignment and 

optimization of adaptive treatment strategies or personalized treatment regimens for 

weight management plans in Sanford Profile. 

 The main objective of this research was to design a Sequential Multiple 

Randomized Trial (SMART) for trial assignment to operate adaptive interventions 
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and restructure the Sanford Profile weight management dataset per this design and 

eventually use this dataset for implementing Q-learning, a reinforcement learning 

algorithm that involves function approximation using regression analysis to 

optimize the sequence of decision rules for personalized treatment. Thus, in order 

to achieve this objective, the following tasks were performed: 

1) Restructuring of Sanford Health Data on weight management according to 

SMART design with two stages or decision points and two treatment 

options at each of these points for preparing a training dataset with 210 

observations. 

2) Implementing Q-learning algorithm which involves regression analysis for 

function approximation where input are the training data and output is the 

approximated function for potential final outcome. 

3) The regression summary at each stage is obtained which gives the estimated 

coefficients of each independent predictor variables in approximated 

regression function. It also provided the values of Residual Standard Error 

which is the standard deviation of the residuals or error giving how close 

the fit of regression line is to the points. 

4) Graphical analysis was performed using regression diagnostics plots for 

each stage regression to further analyze the fit adequacy and check 

underlying assumption of applied regression model. 

5) The optimization of adaptive decision rule was presented according to 

maximum values of Q-functions and treatment resulting maximum Q-value 

was assigned as optimal intervention rule. 
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6) The regime value was estimated using weighted average of the outcomes 

observed from patients in trial and the regime with maximum estimated 

value was assigned as optimal treatment regime. 

1.4 Organization of the Thesis 

 

 Chapter 1 provides the introduction on the subject and also background 

about personalized medicine. Numerous literature that describes various models on 

personalized healthcare are also described in this chapter. Also, the need of 

mathematical model and optimization is explained in this chapter. Similarly, 

Chapter 2 defines the theory behind the model and also provides the definition and 

scopes of personalized medicine. In this chapter different framework such as 

SMART design, reinforcement learning and statistical inference which are 

implemented in the model are also described.  

 Chapter 3 defines the overall methodology for development of the model 

which is further employed to prescribe personalized treatment rule. In this chapter 

methods of acquiring training data, mathematical framework for model, 

optimization assumptions, residual analysis and sampling for model validation are 

described. Chapter 4 shows the results obtained by applying model to define 

treatment rule for future patients. In this chapter the results of data restructuring, 

regression analysis, residual diagnostic plots and regime value estimates can be 

observed. Lastly, Chapter 5 describes the summary of the model and conclusions 

from the model employment. Also, in this chapter the future work is listed so that 

useful modifications and enhancement to the present model can be applied.  

 

  



11 
 

CHAPTER 2 

THEORY 

2.1 Personalized Medicine 

2.1.1 Definition and scope 

 Personalized Medicine is a medical term that highlights the methodical use 

of individual patient’s information for optimizing that patient’s health. This 

pharmacological paradigm is motivated by the fact that patients usually respond 

differently to a treatment when primary outcome and side effects are compared among 

a group of patients. The heterogeneity in treatment response among a group of patients 

when a treatment is assigned to them has caused the ideological transition of researchers 

from the notion of one-size-fits all to more logical method of personalized medicine. 

Benefits of personalized medicine include improved compliance or adherence to 

prescribed treatment which will result in enhanced patient care and reduces the overall 

cost of healthcare. The phrase personalized medicine is not only popular in medical 

community or among physicians but is also making its mark among many quantitative 

researchers or statisticians. The reason behind this growth of interest is due to the 

methodological challenges involved in constructing the treatment rules in personalized 

medicine as they are evidence-based, and data driven. Thus, there is a broader scope 

and unprecedented surge of interest among statisticians, engineers, computer scientists 

and other quantitative researchers in this field of research which are leading to many 

efficient methodological developments. 

 Dynamic treatment regimen, an important aspect of personalized medicine 

defines a set of treatment rules at each treatment decision time and these treatment rules 

are tailored to an individual patient according to the patient’s biomarkers, history, 

characteristics and response to previous treatments. These decision rules prescribe the 
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treatment the physician should follow or treatment decision she/he should take at each 

decision points and the characteristics that influence the treatment decisions can be 

demographics, case history, genetic information and other medical parameters of an 

individual patient.  

 The concept of personalized medicine was described and appreciated in 

medicine since 1960s and soon the publication followed on the Medline interface in 

1999 [17]. Thus, tailoring treatments based on an individual patient’s biomarkers has 

become a focus area for researchers in area of personalized medicine. Figure 2.1 shows 

the evolution of personalized medicine from year 2000 to 2015 and various stages of 

progress within these years [18]. From years 2000-2005 numerous projects were 

undertaken for profiling personal genome with the aim providing personal genome 

information to general public at a low cost. The era of personalized medicine began in 

21st century medicine history which mainly focuses on pharmacogenetics, molecular 

diagnostics and empirical treatments. Similarly, years 2005-2010 witnessed an 

evolution in modern medicine by introduction of bioinformatics, genetic screening, 

pharmacoproteomics and pharmacogenomics. Furthermore, years 2010-2015 have seen 

substantial amount of development in field of personalized medicine as in these years 

the concept of presymptomatic treatment, integrated healthcare, automated systems and 

rational therapies came into practice. 

 Therefore, when integrating the pieces on a drawing board, the 

evolutionary process of transfer from conventional medicine to personalized medicine 

is inevitable and modern technologies in field of medicine has made medical 

professionals who are trained in prebiotechnology era to retire and move towards use 

of these newer technologies that involves genomic knowledge, molecular medicine, 

pharmacogenetics and pharmacogenomics. Also, there is a need to bridge the gap 
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between these two instances of medicine or in other words between conventional and 

personalized medicine. For this purpose, Genomics and Personalized Medicine Act [19] 

was passed in 2006 by the US government.     

 

              

        

  

         

   

   

 

     

  

  

 

Figure 2.1. Evolution of Personalised medicine [18] 
 

2.1.2 Medical Decision-Making Process 

 As mentioned in earlier chapters, the decision-making process is vital in 

pharmacological practice as these decision rule is critical to the patient’s well-being in 

long run. Although, decision makers try their best and take decisions as per their 

experience for improvement in patient health, these decisions may not comply and may 

provide altered results depending on the varying patient’s characteristics and 

biomarkers. This is where personalized medicine comes in useful as the personalized 

treatments march towards realizing a set of decision rules that governs the decision-

making process or in other words informs a physician what to do in each decision-

making stage where each decision solely depends upon the patient’s characteristics such 
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as demographics, case history, genetic information, etc. For developing these decision 

rules generally, the notions from decision theory such as utility are taken into 

consideration and the decisions are undertaken based on these notion’s values. 

 Decision-theoretic approach have been taken into consideration since long 

time in medical and health care decision-making. Parmigiani on 2002, asserted that the 

decision theory ideas contribute in structuring and formally defining the goal and assists 

in gathering, organizing and integrating the quantitative information that are required 

for medical decision-making process [20]. Further, Parmigiani describes the Bayesian 

approach for medical decision-making. However, here we consider different approach 

and introduce single-stage and multi-stages decision problems in context of 

personalized medicine and describe them mathematically. 

2.1.2.1 Single-stage Decision 

 To understand the general idea of how decision theory, contributes to the 

notion of personalized medicine, consider a single-stage decision problem where the 

clinician should prescribe a single optimal treatment for an individual patient. When 

this patient comes for a regular clinic visit the clinician will be able to observe certain 

characteristics of the patient such as biomarker, results of some diagnostic test or results 

from previous treatment. We consider these variables as history of the patient and 

denote them by o, based on the values of o the decision-maker has to decide for example 

whether to prescribe treatment a or a’. Thus, this setting is asking for a decision rule 

which can be for example, “administer treatment a to the patient if his individual 

characteristic o is lower than some threshold value, prescribe treatment a’ otherwise”. 

Hence, decision rule is nothing but mapping of current state of patient that is described 

by available information prior to treatment, into the space of possible treatment 

decisions that a clinician can prescribe. 
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 The decision-making process involves statistical evaluation of the utility 

of decision undertaken and the state at which this decision is made. The utility function, 

u(o,a) describes the utility of prescribing treatment a at state o. Wald (1949), described 

the foundations of general theory of statistical decision functions and derived that the 

statistical decision problems can be expressed in form of opportunity loss (or regret) 

function denoted as: 𝐿(𝑜, 𝑎) =  𝑠𝑢𝑝⏟
𝑎

𝑢(0, 𝑎) − 𝑢(𝑜, 𝑎), where the supremum is taken 

over all possible treatment decisions at point a [21]. After describing the loss function 

L(o,a) the goal now is to search for the treatment decision that minimizes this loss 

function at state o and the decision that results in minimum loss function is equivalent 

to optimal treatment decision. As the optimality of treatment decision depends upon the 

state o which differ from one individual to other, thus this type of decision-making is 

personalized. An alternative to loss function is formulating the problem directly in 

terms of utility itself but the twist here is that the treatment decision which maximizes 

the utility is chosen as optimal one for given state o. There are various ways for defining 

utility function depending on the problem definition, one way is to assign it the 

conditional expectation of primary outcome (Y) at the given state, i.e. 𝑢(𝑜, 𝑎) =

 𝐸𝑎(𝑌|𝑜). The expectation value is calculated according to the probability distribution 

at treatment decision a. 

 Another method of describing optimal treatment is derived from different 

econometrics and bio-medical literatures is known as welfare contrast [22-27]. The 

welfare contrast gives the difference between the utilities of two different treatment 

decisions, in our case, treatments a and a’. It is represented mathematically as, 

𝑔(𝑜, 𝑎, 𝑎′) = 𝑢(𝑜, 𝑎) − 𝑢(𝑜, 𝑎′) where, 𝑔(𝑜, 𝑎, 𝑎′) gives the welfare contrast value and  

𝑢(𝑜, 𝑎), 𝑢(𝑜, 𝑎′) are the utilities corresponding to treatment decisions a and a’, 

respectively. In this case, we should note that a denotes the optimal decision so the 
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value of 𝑔(𝑜, 𝑎, 𝑎′) is the regret of administering treatment decision a’. Thus, the 

treatment that results in minimum regret value is considered as optimal treatment 

decision at point o. The welfare contrast is also known as blip value in case of multi-

stage decision problems which is described next [28]. 

2.1.2.2 Multi-stage Decision 

 As we move ahead from single-stage to multi-stage treatment decisions we 

need to consider the effects of decisions made at each stage as the decision taken at one 

stage can affect those made on later stages. Also, in multistage scenario instead of only 

considering which treatment to choose among the treatment choices we need to be 

conscious about which treatment to follow after a treatment is prescribed. In this 

context, a Dynamic Treatment Regime (DTR) is administered to an individual patient 

and can be described as a set of decision rules, where one treatment decision is made at 

each intervention stage. These treatment rules adapt according to the state or 

characteristics of patients which is time varying and depends on previous treatments or 

patient’s history. For assigning decision rule at each stage the system takes the patient’s 

individual characteristics such as biomarkers, response to previous treatments and other 

demographics as input, and outputs the optimal recommended treatment for that 

individual which may be drug dosage, timing of treatment, treatment type, etc. DTRs 

are also known as treatment strategies [5, 29-31], adaptive treatment strategies [32, 33] 

or treatment policy [34-36]and can be understood as the system that supports a decision 

maker for making clinical or treatment decisions in medical scenario. 

 The next goal in multi-stage decision is the optimization of these DTR’s 

that involves first definition of the optimization criteria and then use of some 

optimization algorithm to obtain maximum utility. The optimization criteria are defined 

by the maximization of utility functions which can be quantiles such as median or other 
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characteristics of outcome distribution. The primary goals in this multi-stage decision 

scenario can be listed as follows: 

• Comparison of utility between two or more treatment rules in every decision-

making stage. 

• Optimization of DTR or identifying optimal treatment decision in each decision 

stages by comparing utility values of each treatments and assigning the one 

with maximum utility value as optimal. 

 Thus, the key in estimating optimal regimen is defining the utility 

functions where the process is data-driven and an extension to single-stage decision 

problems described earlier. To achieve these goals different utility functions were 

considered in various literatures in past such as multiple stage-specific regret (loss) 

functions [37], stage-specific blip functions (welfare contrasts) in structural nested 

mean models framework [28]. Along with it other method known as Q-learning will 

be implemented for further analysis in this thesis. Q-learning uses conditional 

expectation of primary outcome or potential outcome as the utility function and the 

potential outcome framework is discussed next. 

2.1.3 Framework on Potential Outcomes  

 The potential outcome framework is used to quantify the result of 

assigning a treatment in different stages of a dynamic treatment rule. Hence, comparing 

this outcome value we will be able to estimate the utility values and build an optimized 

decision rule. The framework was introduced by Neyman [38] for analyzing statistical 

problems in agricultural experiments where time-dependent randomized trials were 

considered. This presented framework was further extended by Rubin [39] and Robins 

[40] in time-dependent randomized trials and observational data in the context of 

dynamic treatment regimen. Thus, we can define potential outcomes as the set of all 



18 
 

outcomes that is obtained when a treatment or a sequence of treatments is administered 

to an individual patient. 

 Now, consider a two stage DTR setting where A1 denotes the treatment at 

first stage and similarly A2 denotes that at second stage. Next, we need to consider the 

baseline information which describes the characteristics of an individual before the 

treatment at stage 1 is prescribed and it is denoted by X1. Further, X2 denotes the 

additional information such as result of treatment at stage 1 and other biomarkers. Let 

Y denote the final outcome after treatment at stage 2 is given and it is also our outcome 

of interest. The observed data trajectory of an individual patient would be (X1, A1, X2, 

A2, Y), where we can define potential outcome prior to second stage treatment as 

X2*(a1), if treatment A1=a1 and that at end of second stage treatment as Y*(a1, a2) for 

treatment sequence of A1=a1 and A2=a2.  

 Furthermore, in this framework of potential outcome following three 

assumptions are important for estimating effects of dynamic treatment regimens: 

• Stable Unit Treatment Value Assumption (SUTVA) [40] states that there 

should not be any disturbance in treatment between individuals or one patient’s 

potential outcome should not be interfered by treatment allocated to another 

patient. This assumption provides the stability or consistency in a way where 

potential outcome will be equal to observed outcome or in other words it 

maintains the connectivity between potential and observed outcomes. It can 

also be expressed mathematically as X2*(a1) = X2 and Y*(a1, a2) = Y.  

• Next, the assumption of sequential ignorability which is also known as no 

unmeasured confounding or conditional exchangeability) defines that, 

depending upon the time-dependent covariates and treatment history up to time 

tj, assigning treatment at stage Aj can be made independent of potential 
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outcomes of the individual. If j= 1,2, and for regime (a1, a2), 𝐴1 ⊥

[𝑋2
∗(𝑎1), 𝑌∗(𝑎1, 𝑎2)]|𝐻1 and 𝐴1 ⊥  𝑌∗(𝑎1, 𝑎2)|𝐻2. The assumption always 

holds for the process of sequential randomization which is usually performed 

in the experimental setting of SMART design but must be evaluated according 

to the problem or observational dataset in hand. 

• At last, we need to consider the assumption of positivity, which defines the 

feasibility of a set of regimes for which treatment history with positive 

probability of observation should also have positive probability of the 

treatment results following the decision rule up to time tj with defined covariate 

or treatment history. If this assumption is violated, we need to reconsider the 

treatment regimens as violation of it will make us unable to estimate the effects 

of DTRs. 

 Hence, the goal of DTR is to treat a patient with optimal treatment 

depending upon the characteristics or evidence provided prior to treatment assignment. 

The Bellman’s principle of optimality states that, “An optimal policy has the property 

that whatever the initial state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first 

decision”[41]. Thus, we can use the theory of dynamic programming where by 

knowing the functional distribution of the potential outcomes (e.g. X2*(a1) and Y*(a1, 

a2)) we can estimate the optimal decision resulting maximum average outcome. For 

implementation of above discussed processes and also making sure that all three 

assumptions are not violated an experimental design is needed such as SMART which 

is explained next [42]. 
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2.2 Sequential Multiple Assignment Randomized Trials (SMART) designs 

2.2.1 Definition and applications 

 As observational data are usually high dimensional, and they also tend to 

violate sequential ignorability assumption of DTR estimation we need to move towards 

more practical and experimental setting. For this purpose, numerous literature on 

clinical trial design employing experimental data are present [5, 29-32, 42, 43] that 

defines construction of sequential multiple assignment randomized trial (SMART) 

where a patient is randomized more than one time through all possible treatment options 

at each stage and the treatment resulting maximum utility is selected as optimal 

treatment that defines DTR. The SMART design offers randomization of treatment 

options based on the individual patient’s biomarkers and clinical history. The design 

also supports adaptive interventions which adapts to the system dynamics in a multi-

stage trial through a sequence of decision rules that dictates the intervention path in 

order to maximize long-term primary outcomes [6]. 

 The main difference between Randomized Control Trial (RCT) and 

SMART design is that the first one makes comparison between two or more treatments, 

whereas the later compares the treatment regimens and constructs two or more decision 

rules. The SMART design carries out the trial assignment process and within these 

assigned trials the physician recognizes an optimal one, that maximizes the patients 

well-being parameter is assigned to the patient. Hence, the SMART design enables an 

agent to figure out the best treatment at some treatment stage or decision point, the 

optimal treatment sequence depending upon response to previous treatments and 

intermediate outcomes, best timing and modes of treatment delivery, and the process of 

individualizing sequence of treatments according to biological, diagnostic and other 

patient information. 
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 Generally, SMART design consists of two stage randomizations, where in 

first stage patients are randomized to either of two or more treatments and it is followed 

by periods of patients visit to clinic. The randomization process at second stage depends 

upon response to previous treatment and patient characteristics over that time period. 

So, in some SMART design programs a patient may or may not be randomized in the  

second stage depending upon the response from first stage treatment. Thus, these 

different types of randomization process differentiate one design from other and types 

of SMART designs are discussed in next topic. 

2.2.2 Types of SMART designs 

 There are commonly three ways in which SMART designs are constructed 

and it can be more clearly shown in tree-diagram as in Figures 2.2, 2.3 and 2.4. 

SMARTs with two stages and two or three treatment decisions per stage are the ideal 

ones as the trial assignment in these kinds are more feasible and less time consuming. 

However, designs like this can contain more than two stages and more than two or three 

treatments for each stage. There is no compulsion that treatment in each stage should 

be unique for example, in Figure 2.2, treatments C and D can be same as treatments G 

and H, or E and F can be same as I and J. Similarly, it applies to SMART designs shown 

in Figure 2.3 and 2.4. Further, the treatment options at first stage and that in second 

stage can be same e.g., in Figure 2.2, treatments E or F can be same as treatment B and 

I or J can be same as A. 
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Figure 2.2. SMART design with two treatment options at each decision points where 

both responders and non-responders are re-randomized to available treatment options 

depending upon an individual’s status [42]. 

     

   

          

  

   

          

Figure 2.3. SMART where only non-responders are re-randomized [42]. 

 

 

 

 

 

Figure 2.4. SMART where re-randomization depends on both responder status and 

initial treatment [42]. 
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 All above figures represent different types of SMART designs where there 

is distinction in process of re-randomization represented by letter R. Figure 2.2 shows 

the design where all patients are re-randomized to available treatments depending upon 

their response to previous treatments. This type of design was used for trial assignment 

in alcohol dependency [44] who do not respond to Naltrexone, a placebo treatment for 

alcoholics. If we observe this design closely we can find that there are eight ways of 

assigning dynamic treatment regimens embedded within this design.  

 Similarly, Figure 2.3 shows most general type of SMART design where 

re-randomization of treatments depends upon the response status of the target group. 

Thus, in this type of design the responders are continued to a treatment without 

randomization process whereas, only non-responders are randomized as our goal here 

is to access best second-stage treatment option for these non-responding groups. These 

kinds of design are mainly used for trial assignment in areas of ADHD [45], acute 

myelogenous leukemia [46, 47], small-cell lung cancer [48], neuroblastoma [49, 50], 

diffuse large cell lymphoma [51], multiple myeloma [52], and metastatic malignant 

melanoma [53]. There are six embedded dynamic treatment regimes in this type of 

SMART design. 

 Lastly, Figure 2.4 shows the next possible type of SMART design in which 

the non-responders to a particular treatment that was assigned in first stage will only be 

randomized in second stage of treatment decision. This type of design was used for trial 

assignment in treatment for nonverbal children who were 5-8 years old with autism 

spectrum disorders [54] under the project called the Adaptive CCNIA Developmental 

and Augmented Intervention Study. Therefore, these are the main three types of 

SMART design popular in medical literatures and implemented in trial assignment for 
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personalized medicine. Further, in next topic we discuss about the design framework of 

SMART for Sanford profile project. 

2.2.3 Design Framework 

 As we are now familiar to different types of SMART designs and that they 

are employed for trial assignment in estimation of optimal DTR. However, in Sanford 

project the observational dataset is restructured according to SMART design as shown 

in Figure 2.5, where, each subject or patient is randomized to treatment at each decision 

points among the available treatment options. 

 

   

 

 

 

 

 

Figure 2.5. SMART design with two randomized stages and two treatment options at 

each stage. Patients are randomized to treatments from left to right to one of the two 

treatment options. 

 In the SMART design shown in Figure 2.5, first all the patients receive same 

initial treatment called baseline treatment that can be any kind of standard care. Then, 

after some time period the patients are driven forward to stage 1 in the design where 

they are randomized to one of the two treatment categories namely “switch” or 

“augment” current treatment. Again, after another period of time, patients in stage 1 are 

re-randomized in stage 2 to again either of the two treatments, “switch” or ‘augment”, 

the current treatment(s) from stage 1. Many different variations exist in designing of 

SMART, for example, the number of treatments at each stage can be more than two and 
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also there can be more than two stages. However, here we employ a two-stage SMART 

with randomized binary treatments at each stage for dataset restructuring and making 

this conducive for applying Q-learning, an optimization process for estimation of 

optimal decision rule that will be discussed on later chapters. As the patients are 

randomized to binary treatments these intervention options at each stage are coded 

either -1 or 1. Thus, this type of adaptive intervention setting consists of four decision 

rules embedded in total. 

2.3 Reinforcement learning and Q-learning  

2.3.1 History and Definition 

 Machine learning, a branch of artificial intelligence has become a popular 

field of research for statisticians and data analyst over last few decades. The field of 

machine learning that involves stochastic sequential decision process is referred to as 

reinforcement learning (RL) in the realm of computer science. If we go back in history 

then we will be aware that the term “reinforcement” was coined from learning behavior 

of animals in experiments involving animal psychology where it points out the relation 

between occurrence of event and the response, so there is greater probability that the 

same response will occur again if the same situation is given. Let’s consider xt as state, 

at as action and rt as reward from the action being taken in an environment where time 

t is discrete then the process of reinforcement learning involves: 

• Trying a sequence of actions (at). 

• Recording the consequences or rewards (rt) of these actions. 

• Statistically estimating the relationship between actions (at) and their 

consequences (rt). 

• Finally, selecting the action that produces most favorable consequence. 
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Figure 2.6. Block diagram showing basic processes involved in reinforcement 

learning. 

 Thus, as shown in Figure 2.6, reinforcement learning quantizes the 

interaction between a learning agent and the environment it wants to learn about [55]. 

In this process, first an agent (physician) observes the status of states and put forward 

or takes an action (treatment decision) from a set of possible actions. Then, the 

environment (patient) responds to these actions by observing or outputting a reward 

(patient’s well-being) and makes a transition to new state.  

 Additionally, from computer science perspective various complication or 

computational issues may arise when there is an interaction between learning agent and 

the environment it wants to learn from and in this case reinforcement learning is most 

promising field to address these issues [55]. Although, most of the optimal control 

theory and adaptive design requires some model that defines the physical state of the 

system, reinforcement learning or more specifically Q-learning needs no such model as 

it is a model-free method that can be used for obtaining personalized therapies. RL is 

mainly popular in areas of machine learning, operations research, control theory and 

game theory [56], however, there its popularity has grown also in statistical and 

biomedical communities that uses RL for optimization of DTR’s [57]. 
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 Dating back to history, first methods for solving multi-stage decision 

problems are dynamic programming (DP) algorithms which was introduced by Bellman 

in 1957 [41]. However, these classical DP techniques has some limitation while they 

are implied in field of RL. These limitations can be summarized in two points: First, 

these algorithms require a complete model of system dynamics which is we need to 

have full knowledge of learning environment and multivariate distribution of data in 

statistical terms. However, it is very complicated and impractical to have this 

knowledge in areas of bio-medical and healthcare. Second, DP algorithms are proven 

to be computationally expensive process and for high-dimensional medical data they 

may face another problem called “curse of dimensionality”. Anyway, DP is important 

in a sense that it gave the theoretical foundation for RL processes. Similarly, major 

breakthrough occurred in the field of RL when Watkins on 1989 [58] introduced the Q-

learning algorithm, which was implemented to solve multi-stage decision problems 

depending upon the training data trajectories. Thus, Q-learning algorithm is able to 

solve these issues of traditional DP algorithm and hence, it is also called approximate 

dynamic programming algorithm. 

 In the field of health and medical studies, RL has used in treatment of 

behavioral disorders where patients were administered multiple treatments in different 

treatment stages [8]. Similarly, Q-learning was implemented for defining decision rules 

in chronic psychiatric disorders [9] and also been successfully applied for segmenting 

prostrate in transrectal ultrasound images [59]. Thus, summarizing on advantages of 

RL we can say that this method does not rely on physical dynamics or accurate model 

for describing time dependent optimal treatment strategies derived through clinical 

training data. This feature, helps in applying heterogenic treatment across patient that 

captures the notion of individualized therapies. Next, the process of RL focuses on long-
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term benefits of a treatment decision rule to an individual by considering response of 

previous treatment, patient’s history and also delayed effects of treatment assigned.  

2.3.2 Mathematical Definition 

 In clinical scenario, reinforcement learning involves trying a sequence of 

treatment actions, recording the results of these treatments and statistically estimating 

the relations between these treatments and their results. The treatments assigned to the 

patient interacts with them and known as the “environment” which may be human body, 

DNA or proteomics etc. These interactions happen continuously during trial assignment 

and thus, the environment interacts with the actions and provides the feedback as 

potential outcomes. Mathematically, let’s denote the environment (states) and possible 

actions (“treatments”) as X and A, respectively. Both of these variables are random and 

time-dependent thus, 𝑋𝑡
̅̅ ̅ = {𝑋1, 𝑋2, … , 𝑋𝑡}. and similarly, define actions as 𝐴𝑡

̅̅ ̅ =

{𝐴1, 𝐴2, … , 𝐴𝑡}. When the values of random variables X and A are realized, we denote 

them in lower case as 𝑥𝑡̅ = {𝑥1, 𝑥2, … , 𝑥𝑡}  and 𝑎𝑡̅ = {𝑎1, 𝑎2, … 𝑎𝑡}. Assume P as 

distribution of above finite longitudinal trajectories when sampled. The distribution of 

each present state Xt is conditional on previous state values of (𝑋𝑡−1
̅̅ ̅̅ ̅̅ , 𝐴𝑡−1

̅̅ ̅̅ ̅̅ ). Let’s 

denote these conditional densities as {𝑓1, … , 𝑓𝑇} and again the expected values for each 

distributions P is denoted as E. 

 As patients are given a treatment at in time t, after each of these time steps 

of t they receive a numerical reward say rt which represents patient’s status or well-

being after that treatment. Mathematically, the reward function is depended upon: 

previous state 𝑥𝑡̅, action 𝑎𝑡̅, and current state xt+1, where t= 0, 1, …, T and represented 

as: 

𝑟𝑡 = 𝑅(𝑥𝑡̅, 𝑎𝑡̅, 𝑥𝑡+1)                                               (2.1) 
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 In RL however, to learn what to do when similar events happen in future, 

first we need to map situations from state space X to actions to be taken from action 

space A, depending on the goal which may either be to maximize or minimize the 

expected value of discounted return: 

𝑅𝑡 =  𝑟𝑡 + 𝛾𝑟𝑡+1 +  𝛾2𝑟𝑡+2 + ⋯ +  𝛾𝑇𝑟𝑡+𝑇 =  ∑  𝛾𝑘𝑟𝑡+𝑘

𝑇

𝑘=0

 

In equation (2.2), 𝛾 denotes the discount rate whose values ranges from 0 ≤ 𝛾 ≤ 1, 

which means that the future rewards are discounted geometrically depending on the 

value of 𝛾. The different values of discount rate affect whether the future rewards are 

taken into consideration or not. For example, if 𝛾 = 0, then in the same equation (2.2) 

we can observe that 𝑅𝑡 =  𝑟𝑡, which means only immediate reward is considered, 

whereas, when 𝛾 = 1 the future rewards are strongly taken into account and under these 

circumstances the reward function are either maximized or minimized over the long 

run. 

 The next important factor of RL algorithm is an exploration “policy” or 

treatment policy in medical terms. The policy is represented as p and defined as the 

mapping of state 𝑥𝑡̅ and action 𝑎𝑡−1̅̅ ̅̅ ̅̅  to the probability 𝑝𝑡(𝑎| 𝑥𝑡̅ , 𝑎𝑡−1̅̅ ̅̅ ̅̅ ), which is the 

probability of action a being taken when given history is (𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ). It can be described 

in other way as the sequence of decision rules for e.g. {𝑑1, … , 𝑑𝑇} and it can also be 

considered as an action i.e. {𝑑1, … , 𝑑𝑇} = 𝑎𝑡 in a nonstationary, non-Markovian but 

deterministic system. In the training data, if its distribution is denoted by Pd then the 

expectations with respect to these distributions can be denoted as Ed. The goal of RL 

study is to find out the treatment that results in maximum reward for the patient or in 

other words seek for the policy that yields maximum value of expectations with respect 

to sum of rewards over time. 

(2.2) 
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 Another key estimation in RL system is the estimation of value function, 

which is defined as state or state-action pair function that combines the total reward an 

agent can gather, considering all expected future reward when starting from a given 

state. Suppose, D is the set consisting of all policies such that 𝑑 ∈ 𝐷 then the value 

function denoted by V(x) is defined as the sum of expected rewards with initial state x 

and following the policy 𝑑 ∈ 𝐷. Mathematically, value function is denoted as: 

𝑉(𝑥) = 𝐸𝑑[𝑅𝑡|𝑥𝑡 = 𝑥] = 𝐸𝑑[∑ 𝛾𝑘𝑇
𝑘=1 𝑟𝑡+𝑘|𝑥𝑡 = 𝑥]  

As the state or state-action pairs are time-dependent, value function for a history set 

(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ) is given by: 

𝑉𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ) = 𝐸𝑑 [∑ 𝛾𝑘𝑟𝑡+𝑘|

𝑇

𝑘=1

𝑋𝑡
̅̅ ̅ = 𝑥𝑡̅ , 𝐴𝑡−1

̅̅ ̅̅ ̅̅ =  𝑎𝑡−1̅̅ ̅̅ ̅̅ ] 

The main difference between equations (2.3) and (2.4) is the function pair they define, 

as equation (2.3) defines the state-value functions of policy d whereas equation (2.4) 

defines action-value function for policy d [57]. 

 Now, next goal is to estimate the best policy that would maximize the final 

reward in the long run. Thus, optimal value function can be defined as: 

𝑉𝑡
𝑜𝑝𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ) =  𝑚𝑎𝑥𝑑𝜖𝐷𝑉𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ )

= 𝑚𝑎𝑥𝑑𝜖𝐷𝐸𝑑 [∑ 𝛾𝑘𝑟𝑡+𝑘|

𝑇

𝑘=0

𝑋𝑡
̅̅ ̅ = 𝑥𝑡̅, 𝐴𝑡−1

̅̅ ̅̅ ̅̅ =  𝑎𝑡−1̅̅ ̅̅ ̅̅ ] 

 On the basis of equation (2.5), we can define an optimal policy as the 

policy that results in maximum value of value function 𝑉𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ). The optimal policy 

is denoted as dopt and if this policy exists we can further establish the Bellman optimality 

equation for this optimal policy. The Bellman optimality equation gives the relationship 

(2.3) 

(2.4) 

(2.5) 



31 
 

between values of the current state and its successor states and it shows the fact that 

optimal policy yields the best expected result or is the best action with respect to current 

state. The Bellman optimality equation for 𝑉𝑡
𝑜𝑝𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ) can be derived as follows: 

𝑉𝑡
𝑜𝑝𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ) = 𝑚𝑎𝑥𝑎𝑡

𝐸𝑑𝑜𝑝𝑡[∑ 𝛾𝑘𝑟𝑡+𝑘|∞
𝑘=0 𝑋𝑡

̅̅ ̅ = 𝑥𝑡̅, 𝐴𝑡−1
̅̅ ̅̅ ̅̅ =  𝑎𝑡−1̅̅ ̅̅ ̅̅ ] 

                          = 𝑚𝑎𝑥𝑎𝑡
𝐸𝑑𝑜𝑝𝑡[𝑟𝑡 + 𝛾 ∑ 𝛾𝑘𝑟𝑡+𝑘+1|∞

𝑘=0 𝑋𝑡
̅̅ ̅ = 𝑥𝑡̅ , 𝐴𝑡−1

̅̅ ̅̅ ̅̅ =  𝑎𝑡−1̅̅ ̅̅ ̅̅ ] 

               = 𝑚𝑎𝑥𝑎𝑡
𝐸[𝑟𝑡 + 𝛾𝑉𝑡+1

𝑜𝑝𝑡(𝑋𝑡+1
̅̅ ̅̅ ̅̅ , 𝐴𝑡

̅̅ ̅)|𝑋𝑡
̅̅ ̅ = 𝑥𝑡̅, 𝐴𝑡−1

̅̅ ̅̅ ̅̅ =  𝑎𝑡̅] 

                                                       = 𝑚𝑎𝑥𝑎𝑡
∑ 𝑃𝑥𝑥′

𝑎
𝑥′ [𝑅𝑥𝑥′

𝑎 + 𝛾𝑉𝑡+1
𝑜𝑝𝑡(𝑥′)] 

Where, 

𝑃𝑥𝑥′
𝑎 = Pr{𝑥𝑡+1̅̅ ̅̅ ̅̅ = 𝑥′|𝑥𝑡̅ = 𝑥, 𝑎𝑡̅ = 𝑎} 

𝑅𝑥𝑥′
𝑎 = 𝐸[𝑟𝑡|𝑥𝑡̅ = 𝑥, 𝑎𝑡̅ = 𝑎𝑥𝑡+1 = 𝑥′] 

 Equations (2.7) and (2.8) denotes two forms of Bellman equations for 

𝑉𝑡
𝑜𝑝𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ ). Also, for a policy to be optimal i.e.𝑑𝑜𝑝𝑡, it must satisfy: 

𝑑𝑡
𝑜𝑝𝑡(𝑥𝑡̅, 𝑎𝑡−1̅̅ ̅̅ ̅̅ )𝜖 arg 𝑚𝑎𝑥𝑎𝑡

𝐸[𝑟𝑡 + 𝛾𝑉𝑡+1
𝑜𝑝𝑡(𝑋𝑡+1

̅̅ ̅̅ ̅̅ , 𝐴𝑡
̅̅ ̅)|𝑋𝑡

̅̅ ̅ = 𝑥𝑡̅ , 𝐴𝑡−1
̅̅ ̅̅ ̅̅ =  𝑎𝑡̅] 

 Thus, above mathematical definition of Reinforcement Learning technique 

depicts that observing reward of present state and transition to next state does not 

require knowledge for model of the environment. Both of these processes are 

determined by the consequences of interaction between environment and the actions 

taken. This aspect of RL differentiates it from other form of Dynamic Programming. 

2.3.3 Q-function Estimation 

 Q-learning is a reinforcement learning technique which targets on 

estimating and maximizing the above discussed value function, rather than minimizing 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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regret or any other blip function. The blip function is the concept fundamental to DTR 

estimation and is also known as contrast function which is defined as the difference 

between expected outcome of a patient under two different treatments [60]. The value 

functions are also called Q-functions in Q-learning scenario. So, to estimate these Q-

functions we should first consider the dimension of state variables in state-space (X) 

and treatment actions in action-space (A). In order to obtain the estimated values of 

these Q-functions various approaches such as linear least square regression, Support 

vector machines regressions, extremely randomized trees, etc. are implemented. 

However, it has been observed that estimation of these functions is mainly the 

approximation of least squares value iteration [61-63].  

 For estimating Q-function, first we need to define an error parameter (𝜃𝑡) 

for the tth Q-function and this parameter should satisfy: 

𝜃𝑡𝜖 arg 𝑚𝑖𝑛𝜃 𝐸𝑛[𝑟𝑡 + 𝑚𝑎𝑥𝑎𝑡+1
𝑄𝑡+1(𝑋𝑡+1

̅̅ ̅̅ ̅̅ , 𝐴𝑡
̅̅ ̅, 𝑎𝑡+1; 𝜃𝑡+1) − 𝑄𝑡(𝑋𝑡

̅̅ ̅, 𝐴𝑡
̅̅ ̅; 𝜃)]2 

Q-learning is a regression-based approximate dynamic programming algorithm that 

depends on Q-functions where, input to the system are the training data and output is 

the function approximation for estimating potential final outcome. The SMART design 

assists in providing the training data as it consists of trial assignment or treatment 

decision for an individual at different time interval. The number of Q-functions to be 

estimated depends upon the number of stages in SMART design. Therefore, for a two-

stage SMART, we should follow a bottom to top (backwards) approach, i.e. initially 

second stage Q-function should be approximated then we should move on to do that for 

first stage. Further, if we consider two treatment options available at each treatment 

stages then we need to code these treatment options as 1 and 0. Suppose, A1 gives the 

treatment decision at stage 1 and A2 gives that at stage 2, then based on the training 

data, the regression model at stage 2 or Q2 can be defined as: 

(2.10) 
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𝑄2(𝑋, 𝐴2; 𝜃) = 𝛽0 + 𝛽1𝑋 + (𝛽2 + 𝛽3𝑋)𝐴2 

Where, 𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝛽3) are the values of regression coefficient or intercept values 

and X gives the values of states indicating the response of treatment or summary of side 

effects up to the end of first decision point. For low dimensional action space, it is 

conducive to implement multiple regression models for function approximation 

however, as the dimension increases it becomes necessary to move towards quadratic 

or higher order regression analysis. 

2.4 Probabilistic Framework 

 The number of stages in a RL problem, where in stage there is interaction 

between the agent and the environment can be of finite or infinite numbers. However, 

the infinite-horizon problem is beyond the scope of this thesis. So, let’s consider a RL 

problem with finite number of stages say K and let j be one of the stages within K where, 

1 ≤ 𝑗 ≤ 𝐾. Thus, at stage j suppose the agent observes a state Oj which may belong to 

a vector consisting of discrete or continuous variables and to have further interaction to 

the environment the agent then executes an action Aj which should belong to a vector 

of discrete variables. The interaction between agent and the environment through the 

executed action results in a real-valued reward say Yj. After, this interaction the agent 

moves on to the next stage. Here, as the problem is of finite- horizon we can define 

𝑂̅𝑗 = (𝑂1, … , 𝑂𝑗) and 𝐴̅𝑗 = (𝐴1, … , 𝐴𝑗). Now, the history set Hj can be defined as the 

vector of all the covariates information consisting the elements say (𝑂̅𝑗, 𝐴̅𝑗−1) at stage 

j.  Then, the reward can be denoted as the function of history set Hj, the current action 

executed Aj and the transition to next state Oj+1 i.e. 

𝑌𝑗 = 𝑌𝑗(𝐻𝑗, 𝐴𝑗 , 𝑂𝑗+1) = 𝑌𝑗(𝑂̅𝑗,𝐴̅𝑗 , 𝑂𝑗+1) 

(2.11) 

(2.12) 
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In statistical term, the reward is considered like potential outcome and in some cases, 

there can be only one ultimate reward with all previous rewards assumed to be 0. 

 Now, let’s define a policy d as a vector of all the decision rules and are 

determined through mapping from history space (Hj) to the action space (Aj) i.e. 

𝑑𝑗: 𝐻𝑗 → 𝐴𝑗, for 1 ≤ 𝑗 ≤ 𝐾. For a stochastic process the policy defines the mapping of 

the history space to the space of probability distributions of the action space and is 

denoted as 𝑑𝑗(𝑎𝑗|ℎ𝑗). Also, the policy space can be defined as the function space of 

collection of these policies that are mapped between history and Action space, this 

function space is denoted as D. 

 Furthermore, let’s consider a finite-horizon trajectory of training data set as 

{𝑂1, 𝐴1, 𝑂2, … , 𝐴𝐾 , 𝑂𝐾+1}. The training dataset consists of the records for n number of 

individuals, so, we will have n number of these trajectories. If the subjects are sampled 

randomly following some fixed probability distribution say 𝑃𝜋. However, the 

probability distributions of each Oj that are conditional on (Hj-1, Aj-1) are unknown thus, 

suppose these conditional densities as {𝑓1, … , 𝑓𝐾} and corresponding policies as 𝜋 =

(𝜋1, … , 𝜋𝐾), then depending on history Hj the probability that action aj is taken is given 

by 𝜋𝑗(𝑎𝑗|𝐻𝑗). We consider that all the actions have positive probability of being 

executed. Then, the likelihood of trajectory {𝑜1, 𝑎1, 𝑜2, … , 𝑎𝐾, 𝑜𝐾+1} under the 

probability distribution 𝑃𝜋 is given by: 

𝑓1(𝑜1)𝜋1(𝑎1|𝑜1) ∏ 𝑓𝑗(𝑜𝑗|ℎ𝑗−1, 𝑎𝑗−1)𝜋𝑗(𝑎𝑗|ℎ𝑗)𝑓𝐾+1(𝑜𝐾+1|ℎ𝐾, 𝑎𝐾)

𝐾

𝑗=2

 

Now, we denote the expectation value of the policy with respect to distribution 𝑃𝜋as 

𝐸𝜋. Again, let’s denote the distribution of an arbitrary policy 𝑑 = (𝑑1, … , 𝑑𝐾) as 𝑃𝑑 and 

(2.13) 
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this policy is also responsible for action generation. So, d is the deterministic policy and 

the likelihood of trajectory {𝑜1, 𝑎1, 𝑜2, … , 𝑎𝐾, 𝑜𝐾+1}  under distribution 𝑃𝑑 is given by: 

𝑓1(𝑜1)𝕀[𝑎1 = 𝑑1(𝑜1)] ∏ 𝑓𝑗(𝑜𝑗|ℎ𝑗−1, 𝑎𝑗−1)𝕀[𝑎𝑗 = 𝑑𝑗(ℎ𝑗)]𝑓𝐾+1(𝑜𝐾+1|ℎ𝐾, 𝑎𝐾)

𝐾

𝑗=2

 

Also, if we consider the policy d as a stochastic process then the likelihood becomes: 

𝑓1(𝑜1)𝑑1(𝑎1|𝑜1) ∏ 𝑓𝑗(𝑜𝑗|ℎ𝑗−1, 𝑎𝑗−1)𝑑𝑗(𝑎𝑗|ℎ𝑗)𝑓𝐾+1(𝑜𝐾+1|ℎ𝐾, 𝑎𝐾)

𝐾

𝑗=2

 

The expectation with respect to the distribution Pd is denoted by Ed. Then, the goal of 

statistical RL is to learn an optimal policy say d* that has the greatest possible expected 

value within that class. 

 The value function can be defined as total expected future reward from a 

particular starting state and then after choosing actions according to some policy. Thus, 

at state o1 with respect to an arbitrary policy d we can denote the value function as 

follows: 

𝑉𝑑(𝑜1) = 𝐸𝑑[∑ 𝑌𝑗(𝐻𝑗 ,

𝐾

𝑗=1

𝐴𝑗 , 𝑂𝑗+1)|𝑂1 = 𝑜1] 

When considered j stages, the value function for history hj is the total expected rewards 

from stage j (1 ≤ 𝑗 ≤ 𝐾)onwards and is denoted as: 

𝑉𝑗
𝑑(ℎ𝑗) = 𝐸𝑑[∑ 𝑌𝑘(𝐻𝑘,

𝐾

𝑘=𝑗

𝐴𝑘 , 𝑂𝑘+1)|𝐻𝑗 = ℎ𝑗] 

Then, we set 𝑉𝐾+1
𝑑 (∙) = 0 and by definition we know 𝑉1

𝑑(⋅) = 𝑉𝑑(⋅), the value 

functions can be now recursively expressed as: 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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𝑉𝑗
𝑑(ℎ𝑗) = 𝐸𝑑[∑ 𝑌𝑘(𝐻𝑘, 𝐴𝑘 , 𝑂𝑘+1)|𝐻𝑗 = ℎ𝑗]

𝐾

𝑘=𝑗

 

= 𝐸𝑑[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1)|𝐻𝑗 = ℎ𝑗] + 𝐸𝑑[ ∑ 𝑌𝑘(𝐻𝑘, 𝐴𝑘, 𝑂𝑘+1)|𝐻𝑗 = ℎ𝑗]

𝐾

𝑘=𝑗+1

 

= 𝐸𝑑[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1)|𝐻𝑗 = ℎ𝑗] + 𝐸𝑑[𝐸𝑑[ ∑ 𝑌𝑘(𝐻𝑘, 𝐴𝑘 , 𝑂𝑘+1)|𝐻𝑗+1]|𝐻𝑗 = ℎ𝑗]

𝐾

𝑘=𝑗+1

 

= 𝐸𝑑[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1)|𝐻𝑗 = ℎ𝑗] + 𝐸𝑑[𝑉𝑗+1
𝑑 (𝐻𝑗+1)|𝐻𝑗 = ℎ𝑗] 

= 𝐸𝑑[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1) + 𝑉𝑗+1
𝑑 (𝐻𝑗+1)|𝐻𝑗 = ℎ𝑗], 1 ≤ 𝑗 ≤ 𝐾 

Finally, the optimal treatment strategy can be defined under the value function as: 

𝑉𝑗
𝑜𝑝𝑡(ℎ𝑗) = 𝑚𝑎𝑥𝑑∈𝐷𝑉𝑗

𝑑(ℎ𝑗) 

The optimal value functions also satisfy the Bellman equation as: 

𝑉𝑗
𝑜𝑝𝑡

(ℎ𝑗) = 𝑚𝑎𝑥𝑎𝑗∈𝐴𝑗
𝐸[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1) + 𝑉𝑗+1

𝑜𝑝𝑡
(𝐻𝑗+1)|𝐻𝑗 = ℎ𝑗 , 𝐴𝑗 = 𝑎𝑗] 

Also, the value of policy d denoted as Vd is given by taking the average value or 

marginal mean outcome over all possible initial observation and can be expressed as:   

𝑉𝑑 = 𝐸𝑂1
[𝑉𝑑(𝑂1)] = 𝐸𝑑[∑ 𝑌𝑘(𝐻𝑘, 𝐴𝑘 , 𝑂𝑘+1

𝐾

𝑘=1

)] 

The probabilistic framework discussed above considers a classical RL approach 

where optimal rule is chosen as the one that maximizes the value function. However, 

we can consider Q-function that are nothing but action-value functions where “Q” 

stands for quality of actions and can be considered as a substitute to Vd.  Thus, the Q-

function at stage j considering the policy as d can be defined as the total expected future 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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reward starting from history set hj and undergoing actions aj according to the policy d. 

Mathematically, 

𝑄𝑗
𝑑(ℎ𝑗 , 𝑎𝑗) = 𝐸[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1) + 𝑉𝑗+1

𝑑 (𝐻𝑗+1)|𝐻𝑗 = ℎ𝑗 , 𝐴𝑗 = 𝑎𝑗] 

Also, the optimal Q-function at stage j can be expressed as: 

𝑄𝑗
𝑜𝑝𝑡(ℎ𝑗 , 𝑎𝑗) = 𝐸[𝑌𝑗(𝐻𝑗 , 𝐴𝑗 , 𝑂𝑗+1) + 𝑉𝑗+1

𝑜𝑝𝑡(𝐻𝑗+1)|𝐻𝑗 = ℎ𝑗 , 𝐴𝑗 = 𝑎𝑗] 

Therefore, in medical decision-making scenario it is a subject of extreme 

interest in estimating the value of  𝑄𝑗
𝑜𝑝𝑡

, which can directly estimate the optimal policy 

and enables an agent for choosing an optimal treatment decision. 

  

(2.22) 

(2.23) 
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CHAPTER 3 

METHODOLOGY 

3.1 Training Data Acquisition 

 The training data are the clinical trials from Sanford profile health and they 

consist of body weight of patients over multiple time points, resulting in a dataset which 

consists of trajectories with patient baseline weight, weight after 4 months and final 

weight after 12 months. There are two treatment decision points at 4 months and 12 

months period and the dataset also consists of other patient characteristics such as 

gender, age, race, etc. Although there are various possible ways for data collection 

Clinical trials can be taken as very reliable source in case of applying reinforcement 

learning approaches. Also, the block diagram for visualizing the process or 

methodology used in this thesis for obtaining optimal DTR can be shown as: 

 

 

  

 

 

 

 

Figure 3.1. Block Diagram showing the process of building a Mathematical Model for 

estimating optimal DTR. 

For deriving the data using clinical trials design, “Sequential Multiple 

Assignment Randomized Trial” (SMART) design method is very promising as 
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suggested by various studies [8, 31, 64]. This type of trial design method pairs the 

treatment decisions or in RL term, actions to their corresponding results or clinical 

outcomes (states). There are multiple stages where an agent or clinician should make 

treatment decisions, at each stage one treatment is randomly assigned with probability 

0.5 to participants then the result is observed. So, an individual is randomized through 

different treatment plans which enables a decision-maker to observe the final outcomes 

considering all possible treatment patterns. For example, if we consider a trial with 

three stages namely pre-treatment (S0), mid-treatment (S1) and post-treatment (S2) and 

two treatment decisions at each stage that are actions a1 and a2. Then, for pre-treatment 

stage we may randomly choose one treatment decision for some patients and another 

treatment for some others and evaluate the initial results observed from these 

treatments. After the first treatment stage in design we further randomize treatments 

(a1, a2) for patients to observe the treatment outcomes under these stages. At last, we 

would have then assigned all possible four patterns of treatment assignment randomly 

to a group of patients and observed their outcomes. Hence, after we have performed 

this trial assignment we can observe a training dataset which can be further used to 

define an optimal treatment decision for an individual and it will be discussed later in 

this chapter. 

 As discussed earlier the design of this thesis focuses on weight management 

treatment plan for patients enrolled in Sanford Profile Health. Therefore, the important 

goal here is to prescribe an optimal weight management treatment plans for an 

individual with certain attributes and prove that this treatment plans will work best for 

her/him depending upon her/his characteristics. In this scenario, for obtaining the 

training data the restructuring of Sanford Health Data according to SMART design is 

the preliminary task for data acquisition. Thus, the dataset consists of baseline_weight, 
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month4_weight and month12_weight which are patients’ pre-treatment weight, mid-

treatment weight and post-treatment weight respectively. The dataset also consists of 

the information about treatment assigned at stages A1 and A2, which are the mid-

treatment and post-treatment decisions respectively. As, there are two treatment options 

are each stage these two treatments are coded as 1 and -1. Various patient’s attributes 

such as gender, race, heights are also available in the dataset.  

3.2 Model Definition 

3.2.1 Mathematical Framework 

3.2.1.1 State and Action Modelling 

 In many medical settings representing state space is very important for 

defining a mathematical model as general medical outcome are mixed values of discrete 

categorical and continuous variables. The state space in medical scenario are typically 

of high dimension and this may pose several difficulties in state space representation 

such as: 

• State that can define sufficient statistic for the problem. 

• Effect in modelling due to irrelevant state variables. 

• Curse of dimensionality due to high dimensional spaces. 

• Need of defining appropriate state variables. 

 A state model can be defined as one having sufficient statistic in a 

statistical sense if it can specify the relevant parameters, completely of the associated 

distributions with the help of comprehensive information that it should contain [65]. 

Further, as we are considering the context of RL, a state representation should be able 

to sufficiently specify the distribution of future rewards and state transitions. Also in 

RL, policy d is the mapping from state to action space, therefore if the state lacks the 
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sufficient information about the associated distributions then the policy also may lack 

quality. In Medical terms, it is very complicated to know the sufficient quantity or 

quality of state variables so more or less we have to rely on our intuition for selecting 

appropriate state variables. 

 Therefore, we need to be careful in including those state variables that are 

relevant in defining the overall statistic of the model and avoiding source of errors and 

data inefficiency. In RL problems as the number of state variables grows, the system 

tends to be affected by “curse of dimensionality”, which explains that the number of 

states increase exponentially with respect to number of dimensions in the system. The 

effect of this curse can also be observed while increasing the number of data to obtain 

a particular confidence boundary [65]. Discretizing the state variable may seem 

effective in tackling these drawbacks, however, it should be performed very carefully, 

which requires complete knowledge of specific limitations in behavior of relevant state 

variables. In some cases, the discretization method may not be very complicated as for 

e.g. mapping of blood pressure into hypotension, prehypertension, etc., on other hand, 

in many cases this type of categorization may not be straightforward which can 

introduce bias in value function estimation. Thus, in that case, methods such as 

function approximation and other regularization techniques are robust and are 

important in reducing the effect of dimensionality and overall presence of irrelevant 

state variables in the system, so, these methods are of great help when such obstacles 

are encountered [66].  

 The mathematical model for Sanford Profile defines five state variables 

namely, gender, race, parent_BMI, baseline_BMI and month4_BMI where gender and 

race gives the respective information about an individual coded as 0 and 1. Similarly, 

parent_BMI defines the averaged Body Mass Index (BMI) of patient’s parents and 
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baseline_BMI, month4_BMI are the pre-treatment and mid-treatment BMI values of 

the patient. There are also two treatment decision points and two treatment options 

coded as 1 and -1 at each of these decision points.  

 After defining the state space next, we need to define the set of action space 

or treatment interventions to be precise. The set of actions may change as we move 

from one stage of randomization to another in a SMART trial design. Generally, 

majority of DTRs consists of small and discrete set of actions for e.g. Treatment 1 vs. 

Treatment 2. However, we may consider some cases where the action space is 

continuous which is beyond the scope of this thesis. Action space being continuous 

also poses numerous problems in trial design and further optimization of DTR. As we 

know that RL problem tries to optimize the DTR setting by maximizing the outcome 

over action space after each iteration. Therefore, maximizing outcome over continuous 

action space can introduce bias in learning as it requires numerical approximation. In 

addition to that, the RL algorithm randomizes all possible treatment or actions and 

selects the one with maximum reward, so, exploring or randomizing in continuous 

space is numerically infeasible. Thus, discrete action space with few dimensions 

generally results in rapid and confident attainment of RL solutions. 

 In our case, there are two treatment actions available at each stage in the 

SMART design. The decisions are denoted as A1 and A2 in the first stage and second 

stage decision respectively of the model and the treatments are coded -1 and 1 defining 

two different types of actions in an action space. 

3.2.1.2 Time Horizon 

 After defining state and action spaces we need to define the time limit or 

choose the time horizon for the mapping between these spaces to continue in the system. 
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In RL problem the time horizon can be categorized into either “finite” or “infinite” 

cases. In case of finite time horizon, the problem of decision making terminates after 

some finite number of time period or steps. In most of the cases the number of time 

steps or at least the upper bound of time period are known in advance to the agent. Any 

kind of medical therapy that aims in moving patients from “bad” to “good” state can be 

thought of as a finite time horizon as in these cases the goal is to cure a disease or be at 

remission. 

 Alternatively, in case of treatments with short time steps and those with 

chronic conditions it is beneficial to assume an infinite time horizon of treatment 

decisions. The RL problem in this scenario should be able to operate and provide 

decision rules indefinitely. An example for infinite time horizon case can be one where 

response to treatment of a patient may be unstable and due to this a continual treatment 

is required, otherwise the patient condition may deteriorate and may end up in state of 

relapse. 

 In our case as the stages of treatment are not infinite and there are two 

possible treatment options at each stage thus, it is a finite horizon problem with definite 

number of time steps. As the problem statement of the research suggests estimating the 

optimal treatment decision rule for patients’ weight management, the treatments 

decision made should work in patients’ well-being and after the state of well-being or 

weight management is obtained these treatments are not continued, however, regular 

exercise and balanced diet are essential for sustaining the lost weight. 

3.2.1.3 Reward Function 

 In RL problem, the result of mapping between state and action space is 

eventually depicted upon the reward function, from which an agent can estimate the 

cost or utility of employing an action at some stage of clinical trial. The reward function 
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can be linear, nonlinear or discontinuous, however, only requirement is that it should 

bounded by entire state and action space. Studies also show that the choice of reward 

function effects the learning rates in RL algorithms [67, 68]. 

 An efficient reward function should always clearly reflect the desired goal 

and can only be a simple function for e.g. in game playing an agent can define a reward 

function as it wins or loses the game [69, 70]. Mathematically, the reward function in 

this case can be simply defined as: 

𝑅(𝑠, 𝑎) = {
1  𝑎g𝑒𝑛𝑡 𝑤𝑖𝑛𝑠 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝑠,
0                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Above equation shows a simple reward function where choosing a reward is based upon 

whether an agent wins or loses the game. The agent is rewarded 1 if it wins whereas it 

is awarded 0 otherwise. 

 Similarly, reward function in medical setting should define the tradeoffs 

between the costs of treatments and costs of symptoms. For instance, in HIV model 

[71] following reward function was considered: 

𝑅(𝑠, 𝑎) = 𝑐1𝑎1
2 + 𝑐2𝑎2

2 + 𝑐3𝑠𝑉 + 𝑐4𝑠𝐸 

In above equation (3.2), a1 and a2 are the real-valued actions that represents the drug 

dosage levels similarly, sV and sE are the state variables that denotes viral load and 

immune response, respectively. Also, the coefficients c1 to c4 are constants whose 

values should define the priorities of the agent and should narrow the differences in 

range between state and action spaces. In this scenario, it is favorable to an agent in 

minimizing the treatment and viral load whereas maximizing a good immune response. 

Thus, to achieve this goal through above reward function coefficients c1, c2 and c3 must 

be negative whereas, c4 should be positive.  

(3.1) 

(3.2) 
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 In case of Sanford Health Data, gender, race, baseline_BMI, parent_BMI, 

and month4_BMI are the state variables and two treatments each at stages A1 and A2 

are the actions. Then here in this model we can define the reward function as: 

    𝑅2(𝑆, 𝐴) = 𝛽1𝑆𝑔 + 𝛽2𝑆𝑝 + 𝛽3𝑆4 + 𝛽4𝐴2(𝑆𝑝 + 𝑆4) 

𝑅1(𝑆, 𝐴) = 𝛽5𝑆𝑔 + 𝛽6𝑆𝑟 + 𝛽7𝑆𝑝 + 𝛽8𝑆𝑏 + 𝛽9𝐴1(𝑆𝑔 + 𝑆𝑝) 

Equation (3.3) denotes the second stage reward function or which can also be viewed 

as second stage value function in Q-learning algorithm that will be discussed later. In 

this reward function, Sg, Sp and S4 are the state variables representing gender, 

parent_BMI and month4_BMI respectively. Similarly, A2 is the treatment action 

undertaken at stage 2 and 𝛽1, 𝛽2, 𝛽3, 𝛽4 are the coefficients of respective state variables. 

Additionally, as we have considered a two stage SMART trial design there should be a 

reward function defined for stage 1 of trial assignment as well which is denoted by 

equation (3.4). In this function, state variables Sr and Sb representing race and 

baseline_BMI are included and A1 defines the treatment action taken at stage 1 also, 

𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9 gives the coefficients for each of state variables and interaction 

between them. Now, the next goal is to estimate these coefficients through regression 

analysis and then approximate the above functions or estimate the values for interaction 

between action space and state space. 

3.2.1.4 Function Approximation Algorithm 

 After the representation of state and action space, choice of favorable time 

horizon and assignment of effective reward function, we further need to implement one 

of the many RL algorithms for representing and estimating the value function. In case 

of continuous state space and discrete action space with appropriate dimension we can 

use a simple tabular Q-function approximation algorithm. Also, in case of high 

(3.3) 

(3.4) 
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dimensional dataset it is beneficial to use methods which can eradicate the issues that 

can occur due to this high dimensionality and heterogeneity of the data. However, in 

both cases we need to be sure about selecting the proper state space variables and 

perform efficient trial assignment for good approximation of these value functions. 

 As we described previously that Q-learning is an efficient reinforcement 

learning technique that is used to estimate and maximize the value function and this 

algorithm also estimates the policy that maximizes the value of expected future reward 

by relating the state and action space through function approximation.  

 First, to elucidate the idea, we will describe Q-learning for two treatment stages 

and then also generalize it to K stages (𝐾 ≥ 2). Q-learning algorithm involves 

backward induction process so the function approximation of last intervention or 

second stage in our case is initiated at first, this serves to control for effects of both past 

and subsequent adaptive intervention options. In a two-stage SMART study, training 

data for a single patient follows the trajectory 𝐷 = {(𝑋1,𝑖, 𝐴1,𝑖, 𝑋2,𝑖, 𝐴2,𝑖, 𝑌𝑖)}𝑖=1
𝑛 . Where 

the longitudinal data D consists of independent identically distributed copies of the 

quintuple (𝑋1, 𝐴1, 𝑋2, 𝐴2, 𝑌), that gives the data collected on single subject [14]. Each 

quintuple is called trajectory as they are time ordered, for example, if a trajectory 

defined as 𝑋1 ∈ ℝ𝑝1 is the baseline covariate information, then 𝐴1 ∈ {−1,1} is the first 

treatment option, 𝑋2 ∈ ℝ𝑝2 is the covariate information collected between first and 

second treatment assignments, denoting predictive variables, 𝐴2 ∈ {−1,1} is the second 

stage treatment and finally, 𝑌 ∈ ℝ is the primary outcome response variable or terminal 

reward. Y1 and Y2 can be observed at the end of each stage in two-stage DTR policy, 

however, in case of single terminal outcome Y can be viewed as a reward where Y1=0 

and Y2=Y. The baseline covariates are the quantitative or qualitative variables that are 

measured before randomization process which influences the value of primary outcome 
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variable, Y that is to be analyzed [72]. For notational easiness and compactness, we 

represent information available prior to the tth treatment assignment by Ht. Hence, 

H1=X1 and 𝐻2 = (𝑋1
𝑇 , 𝐴1, 𝑋2

𝑇) 𝑇. As we consider a two-stage intervention we need to 

define two stage Q-functions as:  

𝑄2(ℎ2, 𝑎2) = 𝐸(𝑌|𝐻2 = ℎ2, 𝐴2 = 𝑎2) 

𝑄1(ℎ1, 𝑎1) = 𝐸(𝑚𝑎𝑥𝑎2∈{−1,1}𝑄2(𝐻2, 𝑎2)|𝐻1 = ℎ1, 𝐴1 = 𝑎1) 

 Thus, a two-stage DTR consists of two decision rules suppose, (d1, d2) where 𝑑𝑗(𝐻𝑗) ∈

{−1,1}. Now, to estimate the optimal DTR, 𝑑𝑜𝑝𝑡 = (𝑑1
𝑜𝑝𝑡, 𝑑2

𝑜𝑝𝑡) first, we need to define 

the optimal Q-functions for two stages treatment decisions which can denoted as 

follows: 

𝑄2
𝑜𝑝𝑡(ℎ2, 𝑎2) = 𝐸[𝑌2|𝐻2 = ℎ2, 𝐴2 = 𝑎2] 

𝑄1
𝑜𝑝𝑡(ℎ1, 𝑎1) = 𝐸[𝑌1 + 𝑚𝑎𝑥𝑎2

𝑄2
𝑜𝑝𝑡(ℎ2, 𝑎2)|𝐻1 = ℎ1, 𝐴1 = 𝑎1] 

After approximating above Q-functions using regression analysis which will be 

discussed later we can estimate the optimal DTR i.e. (𝑑1
𝑜𝑝𝑡, 𝑑2

𝑜𝑝𝑡), using backward 

induction as in dynamic programming as: 

𝑑𝑗
𝑜𝑝𝑡

(ℎ𝑗) = arg 𝑚𝑎𝑥𝑎𝑗
𝑄𝑗

𝑜𝑝𝑡
(ℎ𝑗 , 𝑎𝑗)  , 𝑗 = 1,2 

 In general, function Qt (ht, at) measures the quality of treatment 𝑎𝑡when this 

treatment is assigned to a patient with history ℎ𝑡. Here, the Q- functions at both stages 

are defined as unknown conditional expectations where second stage Q-function, 

𝑄2(ℎ2,𝑎2) is the conditional expectation of potential response Y when treatment 𝑎2 is 

assigned to a patient with history ℎ2. Similarly, in stage 1 Q-function, 𝑄1(ℎ1,𝑎1) 

measures the quality of assigning treatment 𝑎1 to the patient with characteristics defined 

by set ℎ1, where, the predicted future outcome 𝑌̃is given by the maximum value of 

𝑄2(ℎ2,𝑎2) i.e.𝑌̃ = 𝑚𝑎𝑥𝑎2∈{−1,1}𝑄̂2(ℎ2,𝑎2, 𝛽̂2). To obtain the values of these unknown 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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conditional expectations we can use linear regression model for curve fitting or function 

approximation, it is common practice to use linear model for Q-functions represented 

as: 𝑄𝑡(ℎ𝑡;  𝑎𝑡;  𝛽𝑡) =  ℎ𝑡,0
𝑇 𝛽𝑡,0 + 𝑎𝑡ℎ𝑡,1

𝑇 𝛽𝑡,1, where ℎ𝑡,0and ℎ𝑡,1 are the same subvectors 

of ℎ𝑡  and  𝛽𝑡 = (𝛽𝑡,0
𝑇 , 𝛽𝑡,1

𝑇 )𝑇. The Q-learning algorithm using linear models for the Q-

functions can be summarized in following three steps: 

• Estimate 𝛽2 and then, Q2 via least-squares regression of Y on H2 and A2 using 

the following model: 

𝛽̂2 = arg 𝑚𝑖𝑛𝛽2
∑{𝑌𝑖

𝑛

𝑖=1

− 𝑄2(𝐻2,𝑖, 𝐴2,𝑖; 𝛽2)}2 

• Calculate predicted future outcomes 𝑌̃ assuming optimal second-stage 

decisions, 

𝑌̃ = 𝑚𝑎𝑥𝑎2∈{1,−1}𝑄2(𝐻2, 𝑎2; 𝛽̂2) = 𝐻2,0
𝑇 𝛽̂2,0 + |𝐻2,1

𝑇 𝛽̂2,1| 

Then estimate 𝛽1 , and hence Q1, again using least-squares regression of 𝑌̃ on 

H1 and A1 using the model,   

𝛽̂1 = arg 𝑚𝑖𝑛𝛽1
∑{𝑌̃𝑖 − 𝑄1(𝐻1,𝑖, 𝐴1,𝑖; 𝛽1)

𝑛

𝑖=1

}2 

• Calculate the estimated Q-learning optimal treatment policy, 𝑑𝑗
𝑜𝑝𝑡 =

(𝑑1
𝑜𝑝𝑡, 𝑑2

𝑜𝑝𝑡)  as, 

𝑑𝑗
𝑜𝑝𝑡 = arg 𝑚𝑎𝑥𝑎2∈{−1,1} 𝑄𝑡(ℎ𝑡, 𝑎𝑡, 𝛽𝑡̂) 

Now, the above process can be generalized to K>2 number of stages, where first 

we need to define the optimal Q-function by using backward induction as: 

𝑄𝑗
𝑜𝑝𝑡(𝐻𝑗 , 𝐴𝑗) = 𝐸 [𝑌𝑗 + 𝑚𝑎𝑥𝑎𝑗+1

𝑄𝑗+1
𝑜𝑝𝑡(𝐻𝑗+1, 𝑎𝑗+1)|𝐻𝑗 , 𝐴𝑗] ,     𝑗 = 1, … , 𝐾 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Also, for values of j=K, K-1, …, 1, as we are moving backward through the stages the 

regression parameter can be estimated using: 

𝛽𝑗̂ = arg 𝑚𝑖𝑛𝛽𝑗

1

𝑛
∑(𝑌𝑗𝑖 + 𝑚𝑎𝑥𝑎𝑗+1

𝑄𝑗+1
𝑜𝑝𝑡

𝑛

𝑖=1

(𝐻𝑗+1, 𝑎𝑗+1; 𝛽̂𝑗+1) − 𝑄𝑗
𝑜𝑝𝑡(𝐻𝑗𝑖, 𝐴𝑗𝑖; 𝛽𝑗))2 

Finally, the optimal DTR for K stages, i.e. (𝑑̂1
𝑜𝑝𝑡, … , 𝑑̂𝐾

𝑜𝑝𝑡) can be obtained as: 

𝑑̂𝑗
𝑜𝑝𝑡(ℎ𝑗) = arg 𝑚𝑎𝑥𝑎𝑗

𝑄𝑗
𝑜𝑝𝑡(ℎ𝑗 , 𝑎𝑗; 𝛽̂𝑗),      𝑗 = 1, … , 𝐾 

The Flowchart for above mentioned algorithm is presented as follows: 

 

 

 

 

   

 

 

 

 

(3.15) 

(3.16) 

Training data for 2-stage randomization design: 

𝐷 = {(𝑋1,𝑖, 𝐴1,𝑖, 𝑋2,𝑖, 𝐴2,𝑖, 𝑌𝑖)}𝑖=1
𝑛  

History set: 𝐻𝑡 = (𝑋𝑡−1, 𝐴𝑡 , 𝑋𝑡) 

 

Regression analysis: 

Linear model for Q-function: 

𝑄𝑡(ℎ𝑡, 𝑎𝑡; 𝛽𝑡) = ℎ𝑡,0
𝑇 𝛽𝑡,0 + 𝑎𝑡ℎ𝑡,1

𝑇 𝛽𝑡,1 

Two stage Q-functions: 

𝑄2(ℎ2, 𝑎2) = 𝐸(𝑌|𝐻2 = ℎ2, 𝐴2 = 𝑎2) 

𝑄1(ℎ1, 𝑎1) = 𝐸(𝑚𝑎𝑥𝑎2∈{1,−1}𝑄2(ℎ2, 𝑎2)|𝐻1 = ℎ1, 𝐴1 = 𝑎1) 

 

Q-learning Algorithm: 

Q1. Modeling: Regress Y on H20, H21, A2 to obtain 

𝑄̂2(𝐻2, 𝐴2; 𝛽̂2) = 𝐻20
𝑇 𝛽̂20 + 𝐴2𝐻21

𝑇 𝛽̂21 

Q2. Maximization: Define  𝑌̃ = 𝑚𝑎𝑥𝑎2∈(−1,1}𝑄̂2(𝐻2, 𝑎2, 𝛽̂2). 

𝑌̃ = 𝐻20
𝑇 𝛽̂20 + |𝐻21

𝑇 𝛽̂21|, is the predicted future outcome 

assuming an optimal decision is made at stage two. 

Q3. Modeling: Regress 𝑌̃ on H10, H11, A1 to obtain 

𝑄̂1(𝐻1, 𝐴1; 𝛽̂1) = 𝐻10
𝑇 𝛽̂10 + 𝐴1𝐻11

𝑇 𝛽̂11. 
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Figure 3.2. Flowchart for Regression analysis and Q-learning estimation 

3.3 Model Implementation 

3.3.1 Framework on Sanford Health Data 

 Profile by Sanford is a personalized weight management plans that 

combines healthy grocery food with nutritious meal replacement products. These plans 

are created by physicians and researchers. In this weight management plans, there are 

mainly three core principles, which are: 

• Nutrition 

• Activity 

• Lifestyle 

The Profile is a personalized plan as the meal plan and activities are developed for each 

profile member. The main steps involved in this weight management plans are: 

• Reduce, in which food with low carbohydrate but high protein is given to 

the patients. 

• Adapt, where more healthy foods are introduced after certain period of time. 

• Sustain, where the lost weight is maintained by means of exercise and 

careful diet. 

Major protocols in personalized meal plan under Profile by Sanford can be listed as 

follows: 

Estimate Q-learning optimal treatment policy: 𝑑𝑗
𝑜𝑝𝑡

=

(𝑑1
𝑜𝑝𝑡

, 𝑑2
𝑜𝑝𝑡

) as: 

𝑑𝑗
𝑜𝑝𝑡

= arg 𝑚𝑎𝑥𝑎2∈{1,−1} 𝑄𝑡(ℎ𝑡, 𝑎𝑡 , 𝛽̂𝑡) 
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• Reboot Protocol: 

 The reboot Protocol focuses the body to burn the stored fats by means of 

physical exercise or meal replacements. There are mainly five profile meal 

replacement plans consisting of lean and green evening meals, snacks and 

vegetables. 

• Balance Protocol: 

 The Balance protocol takes in consideration the members or patients with 

special medical or Dietary requirements and takes a balanced approach 

accordingly. 

• Additional Protocol: 

 This protocol provides special plans for pregnant and nursing moms as 

well as teens who are obese. 

 The Sanford Profile data used for this research needed a serious 

restructuring for obtaining an appropriate training dataset which would be conducive 

for application of algorithm that can estimate the optimal DTR. Initially, the dataset 

consisted of patients’ id, their respective weights and the date these weights were 

recorded. On the top of that the weights were not even arranged according to patients’ 

id, so, one patient’s weight taken at point t1 may appear at top of dataset whereas that 

taken at different point t2 may appear later in it. Thus, the first modification needed was 

on the dataset, to arrange the weights according to their respective user-id or patient’s 

id. After this modification was performed using MATLAB different state variables 

were further added along with weights measured at baseline (before any treatment is 

administered), after 4 months (after treatment at first stage) and after 12 months (after 

second stage treatment). Similarly, the BMI of each patients for each measured weight 
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was also calculated using equation (3.17) and also the treatment options at each 

treatment stages were randomized for every subject. 

𝐵𝑀𝐼 =
𝑚𝑎𝑠𝑠𝑙𝑏

ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑛
2 × 703 

Figure 3.2, shows the initial dataset by Sanford Profile which required a serious 

arrangements and restructuring. Arrangement of weights according to respective 

patient’s id was performed using Matlab programming which involved using cell 

format for each patient and also noting the weights after 4 months and 12 months 

according to the dates of weight measurement available in the dataset. After, the 

arrangement the restructuring process the dataset is shown in figure 3.3, where in first 

column the patient id was arranged and second column gave the respective weight in lb 

taken at date given by the third column. 

 

 

 

 

  

 

 

 

    

  

 

 

(3.17) 
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Figure 3.3. Initial Profile by Sanford dataset that required a serious restructuring. 

 

  

 

   

 

 

 

 

 

 

Figure 3.4. Arranged and restructured Sanford dataset. 

 Figure 3.3, only shows the raw form of arranged dataset with only weights 

as possible state variable. However, there is need of additional state variables and 

further the BMI for each patient so that the relationship between these variables and the 

response can be implemented using RL algorithm and Q-learning for estimating 

optimal DTR. The whole training dataset that meets all above requirements along with 

the results from employing the algorithm will be described in the result and discussion 

chapter, Chapter 4.  

3.3.2 R environment and coding  

 The Q-learning algorithm is implemented in R environment for estimating 

optimal DTR using the package iqLearn [75], which can be used with dataset from two-

stage SMART trial design with binary treatments at each treatment stages. The dataset 
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used was obtained from Sanford Health that contained the weight of patients measured 

at different time periods and the study was to observe the effect of meal replacement 

plans on adolescent obesity. This dataset consists of four covariates information at the 

start of first stage namely, gender, race, parent_BMI and baseline_BMI. Similarly, at 

second-stage or after the first treatment is administered, co-variate “month4_BMI” is 

collected. The treatment variables are denoted by “A1” and “A2” for first and second 

treatment stages, respectively. The primary outcome “month12_BMI” is observed at 

the end of stage two. 

 In Q-learning the function “qLearnQ1” recommends the estimated optimal 

treatment for first-stage with history set h1. Similarly, function “qLearnQ2” 

recommends the optimal treatment for second-stage having history, h2. The residual 

plots can be accessed for regression using “plot.qLearnS1” and “plot.qLearnS2” for 

first stage and second stage regression, respectively. The outcome of these residual 

plots will be discussed in chapter 4. Further, the plug-in value of any treatment decision 

rule can be estimated  using the function “value”. This function gives the estimated 

values of all possible treatment decisions rules embedded in the SMART design. Thus, 

the decision rule yielding maximum plug-in value is chosen as the optimal decision 

rule. Similarly, The adequateness of regression analysis or closeness of regression line 

fit can be observed and analyzed by using “summary” command. This will give us all 

the values of regression coefficients or parameters involved in the regression equation 

along with the R-squared value.  

 Therefore, for Q-function approximation and estimation of optimal 

decision rule R-software environment was favorable as it enables one to perform both 

graphical and statistical analysis of fit adequacy of a regression model and verify the 

underlying assumptions [73]. 
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3.4 Optimization Assumptions and Residual Analysis 

The multiple regression analysis is a statistical tool for analyzing and modeling 

the relationship between dependent and independent variables. The simple model for 

linear regression can be considered as 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀, where x is the independent 

variable and y the dependent variable. The independent variable is considered as 

predictor or regressor variable whereas dependent variable is the response variable. The 

term 𝜀 in the model gives the difference between the observed value and the predicted 

value by the model and is known as error. To obtain close fit of regression line the error 

term  𝜀 should be minimized. 

 Now, there are some important assumptions that are needed to be established 

before employing simple linear regression in the mathematical model. These 

assumptions help to define the criteria for verifying the results and also to underpin the 

notion that errors are independent random variables and requirement of hypothesis 

testing and interval estimation. The main assumptions in the study of simple linear 

regression analysis are listed below [74]: 

• The relationship between the response variable y and the corresponding 

regressor variables should be approximately linear. 

• The error term 𝜀 has zero mean. 

• The error term 𝜀 has approximately constant variance 𝜎2. 

• The errors are independent. 

• The errors follow normal distribution.  

For examining the adequacy of the model, the validity of above assumptions should be 

met and if these assumptions are violated the linear model can be infected by various 

model inadequacies resulting serious consequences in model fit. The violation of these 
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assumptions can lead us to an unstable model where providing different sample leads 

to varying model or results with conflicting conclusions. One of the diagnostic method 

for examining the violations of these regression assumptions if to study the residuals of 

the model. 

 Therefore, residual analysis is not only a prominent way for checking the 

violation of linear regression assumption and adequacy of model fit but also a standard 

approach that should be followed while using regression based method, such as Q-

learning, for function approximation to estimate DTR [75, 76].  So, first to define the 

residuals in regression analysis, consider first the following expression: 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖,     𝑖 = 1,2, … , 𝑛 

Where 𝑦𝑖 is the observed or real value of the dependent variable that is obtained from 

the training dataset, and 𝑦̂𝑖 is the corresponding fitted value or the predicted value by 

the model. Then, as equation (3.18) suggests the residual can be defined as the deviation 

between the value of the response variable that is obtained from the training data and 

that obtained from the fitted value in the regression model. Thus, analysis of residuals 

can help in examining above assumptions as residuals define the error between the 

realized value from the model and the observed value in the data. Several model 

inadequacies can be detected by plotting residuals and observing the violation of 

assumptions which leads to an effective investigation of if the regression model fits the 

training data satisfactorily and if the assumptions of linear regression analysis are met. 

 To properly understand the process of residual analysis the basic properties of 

residuals should be understood. The important property of residual is that their mean is 

zero, and the approximate average variance is estimated as: 

(3.18) 
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∑ (𝑒𝑖 − 𝑒̅)2𝑛
𝑖=1

𝑛 − 𝑝
=

∑ 𝑒𝑖
2𝑛

𝑖=1

𝑛 − 𝑝
=

𝑆𝑆𝑅𝑒𝑠

𝑛 − 𝑝
= 𝑀𝑆𝑅𝑒𝑠 

Where 𝑛 − 𝑝 gives the degree of freedom associated with the n residuals and p is the 

number of parameters. The residuals are independent of each other and the residual 

values can be scaled. Standardized residuals are one of the process for scaling the 

residuals which is useful for finding the observations that are ouliers or extreme values 

in which the observations are separated from the core part of data in some way.  

 The average variance of residuals in data is approximated by 𝑀𝑆𝑅𝑒𝑠, which is 

given by equation (3.19), using the value of 𝑀𝑆𝑅𝑒𝑠 from it the values of residuals using 

standardized residuals, can be scaled as: 

𝑑𝑖 =
𝑒𝑖

√𝑀𝑆𝑅𝑒𝑠

 ,     𝑖 = 1,2, … , 𝑛 

The values of standardized residuals have approximately unit variance and contain a 

mean of zero. The data point with large standardized residual say, di>3 denotes a 

potential outlier. 

 Model checking using Residual Diagnostic plots was introduced by Henderson 

et al. in 2010 [77], which was used for checking model misspecifications for estimating 

optimal DTR. As mentioned earlier, graphical analysis of residuals is very effective 

way to analyze the fit adequacy of a regression model and check the underlying 

assumptions. The residual diagnostic plots at each stage of regression presents the plots 

between residuals and fitted values, normal Q-Q plot, scale location plot and residual 

vs leverage plot. The plot between residual and fitted values shows if residuals have 

non-linear patterns and normal Q-Q plot shows if residuals are normally distributed. 

Similarly, scale-location plot checks the assumption of constant variance of residuals 

and residuals vs leverage checks to find out influential cases if any. These all plots are 

(3.19) 

(3.20) 
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meant to check if above listed assumptions for linear regression models are violated or 

not to access a good fit. In the model, there are two stages and two subsequent 

regression analysis with residuals defined as difference between potential final outcome 

and outcome form the estimated Q-functions. 

3.5 Sampling for Model Validation 

The model validation is one of the most important step in a mathematical model 

building process which includes the process of measuring the extent of clinical benefit 

while applying the treatment rule for future patients. Generally, there are two ways to 

validate a model which are, external validation process and internal validation process. 

The external validation process employs the training data for model building whereas 

uses test or validation data to validate the model. On the other hand, the internal 

validation uses the same single dataset for both model building and validating agendas. 

Bootstrapping is one of the internal model validation process where samples are 

generated from population dataset in which the samples are drawn with replacement. 

Also, the sample size of both dataset is same and the validation process begins by 

testing the model on these bootstrap samples. 

The bootstrap as discussed earlier involves random sampling with, replacement 

of data points from original dataset which are then later used for establishing statistical 

inferences. Along with it the bootstrapping method can be used to approximate the 

confidence intervals (CI) for estimated regression coefficients in a regression analysis. 

For example, the 95% CI of a sample mean can be obtained by using following steps: 

• Let’s consider n observations with sample data points (𝑌1, 𝑌2, … , 𝑌𝑛), where 𝑌̅ 

gives the sample mean of this sample dataset. 
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• If SD is the standard deviation of sample then SE, the standard error of sample 

mean is then: 

𝑆𝐸 =
𝑆𝐷

√𝑛
 

The value of above SE gives the closeness of sample mean to the unknown 

population mean. 

• Now, the 95% CI can be obtained by using the expression (𝑌̅ − 1.96 ∗ 𝑆𝐸, 𝑌̅ +

1.96 ∗ 𝑆𝐸). 

• As the sample size increases and as the sampling distribution of sampling mean 

is closer to normality the CI moves closer towards the validity. 

One of the very popular bootstrapping methods for computationally 

constructing CIs is the double bootstrap method which was explained by Davison and 

Hinkley in 1997 [75] and further implemented by Nankervis in 2005 [78]. In context of 

estimating optimal DTR using Q-learning, Chakraborty et al. in 2010 [79] used double 

bootstrapping method for estimating the CIs of the regression coefficients in multiple 

regression model of Q-functions.  

Now, in double bootstrap method first an estimator of a parameter and its 

bootstrapped counterpart are defined. So, let 𝜃 be the estimator of parameter 𝜃 and 𝜃∗ 

be the bootstrap version of that estimator. Then as it is known from above that the 

100(1 − 𝛼)% percentile bootstrap CI is given by (𝜃∗
(

𝛼

2
)
, 𝜃∗

(1−
𝛼

2
)
), where 𝜃∗

𝛾 is the 

100𝛾𝑡ℎ percentile of the bootstrap distribution. Then the double bootstrap CI was 

calculated as follows: 

(3.21) 
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• A first set of bootstrap samples say B1 from original dataset was constructed. 

For this sample, the bootstrap version of estimator 𝜃∗𝑏 was estimated, where 

b=1,…, B1.  

• Depending on first set of bootstrap samples, i.e. B1 the second set of bootstrap 

samples, B2 was constructed and the double bootstrap version of 

estimator, 𝜃∗∗𝑏𝑚 was calculated, where, b= 1,…, B1 and m=1,…,B2. 

• The value of 𝑢∗𝑏 =
1

𝐵2
∑ Ι[𝜃∗∗𝑏𝑚 ≤ 𝜃]

𝐵2
𝑚=1  was estimated, where 𝜃 is the 

estimator obtained from original data. 

• Now, lastly the double bootstrap CI was obtained by calculating the interval 

(𝜃∗
𝑞̂(

𝛼

2
)
, 𝜃∗

𝑞̂(1−
𝛼

2
)
), where 𝑞̂(𝛾) = 𝑢(𝛾)

∗  or the 100𝛾 − 𝑡ℎ percentile of 

distribution 𝑢∗𝑏, b = 1,…, B1. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Results from Sanford Health Data 

4.1.1 Data Restructuring 

 The data obtained from Sanford Health needed a critical restructuring to 

make it conducive for implementing SMART design and further Q-learning for 

optimization process. As mentioned in previous chapter the received dataset only 

consisted of user_id or patient’s id along with their respective weights and date the 

weight was measured, however, the data were not arranged and required the weights 

taken after 4 months and 12 months. As, all patients were not able to continue the 

treatment for whole year or in other words there were some dropouts before 12 months 

period, only 210 patients data were selected for analysis who continued their treatment 

until 1 year period or more. 

 Furthermore, covariates such as gender, race, height, parent’s BMI and 

treatment decisions at each stage were randomized and annexed to the restructured 

dataset. According to the heights assigned to each patients the BMI after 4 months and 

after 12 months of treatment were calculated using the equation (3.17). Thus, the 

restructured data consists of 210 rows of patients and 9 columns of covariates and some 

head rows of the dataset can be observed below in figure 4.1. 

 The restructured dataset of figure 4.1, consists of required input covariates 

and treatment decisions for each stages of a two-stage SMART design. The data are 

restructured in a way where inputs to the first stage regression analysis are gender, race, 

parent_BMI and baseline_BMI and that to the second stage regression analysis are 

again gender, parent_BMI and month4_BMI along with the treatment decisions A1 and 
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A2 for first stage and second stage treatments respectively. After, restructuring of data 

the multiple regression was employed for approximating the functions for second stage 

and first stage of SMART design. The summary and discussion of the regression 

analysis is described next. 

Figure 4.1. The head rows of restructured dataset consisting of randomized covariates 

and required BMI information for implementing SMART design. 

4.1.2 Initial Data Assessment 

The initial assessment was performed on the restructured dataset where 

first response after 12 months was observed for female and male and race A and race 

B (races under comparison) using box-plots. Similarly, box-plots were again used to 

observe the effect of treatments (e.g. Augment and Switch) on response after 4 months 

and after 12 months. 

In figure 4.2, for data following a normal distribution, the mean value of 

BMI after 12 months for female is lower than that for male. Similarly, race B has lower 

mean value for BMI after 12 months compared to race A. Additionally, comparing 

response after 4 months for treatment stage 1, there is not much difference in average 
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BMI between treatments augment and switch. However, for second stage the average 

BMI after 12 months decreases for treatment augment compared to switch.  

 

Figure 4.2. Box-plots of response after 4 months and 12 months according to gender, 

race and treatment decisions at each stage. 

After average BMI for 4 months and 12 months response were observed 

according to gender, race and treatment stages using Box-plots, scatter-plots matrix was 

used to observe relationship between response and predictors. First the relation between 

second stage response variable, month12_BMI was compared with predictors 

parent_BMI, baseline_BMI and month4_BMI.  

From figure 4.3, it can be clearly observed that the response month12_BMI has 

a strong linear relationship with the predictors baseline_BMI and month4_BMI. This 

also validates the case of linear model being employed for estimating Q-function for 

stage 2 regression analysis. Similarly, figure 4.4, below shows the relation between 

response i.e. month4_BMI and predictors which also has a strong linear relationship 

and linear model is defined for first stage regression analysis too. 
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Figure 4.3. Scatter-matrix plots for second-stage regression predictor and response 

variables showing a linear relationship. 

 

 

Figure 4.4. Scatter-matrix plots for first-stage regression predictor and response 

variables showing a linear relationship. 
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4.1.3 Regression Analysis  

 The multiple regression is implemented initially to second stage of 

SMART design as Q-learning is a backward induction method. In second stage, as 

mentioned earlier the input to the regression formula are gender, parent_BMI, 

month4_BMI and treatment decision (A2). The stage two multiple regression model 

equation is represented below as: 

y = 𝛽0+𝛽1gender+𝛽2 parent_BMI+𝛽3month4_BMI+A2*(𝛽4 

parent_BMI+𝛽5month4_BMI)

 

 

In above equation 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 are the coefficients of the independent variables 

gender, parent_BMI, month4_BMI and interactions between parent_BMI and 

month4_BMI respectively. Also, y is defined as the negative percent change in BMI at 

month 12 from baseline BMI i.e., 𝑦 = −100 ∗ (
𝑚𝑜𝑛𝑡ℎ12𝐵𝑀𝐼−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐵𝑀𝐼

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐵𝑀𝐼

).Now, the goal 

is to estimate these coefficients so that the function given by the equation (4.1) can be 

approximated. After applying the multiple regression, following summary for second 

stage was obtained: 

Table 4.1 Summary table for stage 2 regression analysis 

 

  

  

 

 

  

  

(4.1) 
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The information about estimated values of regression coefficients, residuals, standard 

error of estimated coefficients and other such as R-squared error can be obtained from 

above Table 4.1.  

 Furthermore, in simple linear regression model the coefficients are the constants 

that represent the intercept and the slope of the linear model. The first column 

“Estimate” of the table coefficients gives the estimates of all the expected values of the 

coefficients as described by equation (4.1).  Similarly, the second column “Std. Error” 

gives the error in estimated coefficients. The lower values of this standard error suggest 

good quality of regression line fit.  The t value on the third column gives the measure 

of how many standard deviations is the estimated coefficients away from 0. Further the 

distance closer to decision rule of rejecting null hypothesis, enabling the declaration of 

strong relationship between predictor variables and the response variable. The asterisk 

(*) alongside the values represent the level of significance three being the most 

significant estimate. Finally, the column “Pr (>t)” describes the probability of 

observing the value equal or greater than t value. The smaller p values in this column 

suggests that the relationship that is observed between the predictor and response 

variable is not by chance or fluke. Thus, these small p-values for estimates slope or 

intercepts suggests that the null hypothesis can be rejected and concludes a good 

relationship between treatment decisions and the patient co-variates. 

 Next, is the residual standard error that measures the quality of regression line 

fit and is defined as the average distance or deviation of the response (treatment 

outcome) variable from the linear regression line. As, the regression line cannot be 

perfect, and every model is presumed to have some error term E and this error term 

should be as minimum as possible so that the prediction is accurate and consistent. 

From Table 4.1, after observing the error value of 0.63, it can be deduced that the 
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predictor variable can deviate from the regression line approximately by this error term 

on average during the prediction of response variable. Also, the degree of freedom 

defines the number of data points that was taken into consideration while estimating 

the regression parameters. 

 Similarly, the Multiple R-squared and Adjusted R-squared statistics also 

provides the measure of closeness of fit between the model and its fitting to the actual 

data. So, R2 term defines the measure of linear relationship between the independent 

and response variable whose values lie between 0 and 1. If the value of this term is 

closer to 0 than the regression line will poorly explain the variance in response variables 

whereas values closer to 1 will provide good regression line fit. In case suggested by 

above Table 4.1, approximately 88% of variance observed in response variable can be 

well explained by the predictor variables. However, in multiple regression setting the 

value of R2 increases as the number of predictor variable increases or as more variable 

are introduces to the model. So, to minimize this effect the adjusted R2 is preferred more 

as it considers and adjusts the effect of number of variables considered for regression 

analysis. 

 Lastly, the F-statistic, as shown in table 4.1, can also be a good estimator of 

relationship between the dependent and independent variables in a regression model. 

As the value of this statistic moves further from 1 or is greater than 1 the better is the 

model or it well explains the relationship. However, its value is also dependent upon 

the number of variables considered on the model. Generally, if the number of data 

points are small the value of F-statistic little bigger than 1 is sufficient in rejecting the 

null hypothesis and accepting the notion that there is a good relationship between 

predictor or response variable or good fit of regression model is obtained through 

regression analysis. In case of second stage regression analysis for Q – function 
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approximation 184.4, F-statistic value was obtained that is larger than 1  in relation to 

size of data employed. So, from the results of second stage multiple regression model 

it can be posited that there is good linear fit and the model can be implemented for 

predicting treatment rule for future patients. 

 Now, Table 4.2, below shows the summary of regression analysis for function 

approximation in stage 1 of SMART design. As Q-learning process follows backward 

induction, the predicted future outcomes 𝑌̃ assuming an optimal decision was 

prescribed in the second-stage, was calculated as follows:

 

 

𝑌̃ = 𝑚𝑎𝑥𝑎2∈{−1,1}𝑄2(𝐻2, 𝑎2; 𝛽̂2) = 𝐻2,0
𝑇 𝛽̂2,0 + |𝐻2,1

𝑇 𝛽̂2,1| 

After predicting the future outcomes, the value of coefficients and error minimization 

process was undertaken using least-square regression method and following summary 

table was obtained: 

Table 4.2 Summary table for stage 1 regression analysis 

 

 

     

 

 

  

 

(4.2) 
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As discussed for table (4.1), summary for second stage regression analysis, table 

(4.2) shows the summary table for first stage regression. Here also, first the coefficients 

of independent variables were estimated for the equation (4.2) as shown below:

 

 

y = 𝛽0+𝛽1gender+𝛽2race +𝛽3 parent_BMI+ 𝛽4baseline_BMI+A1*(𝛽5 gender + 𝛽6 

parent_BMI)

 

 

Similar to summary table (4.1), in table (4.2) the estimated coefficients of equation (4.3) 

are listed. Using these estimates, the function can be approximated and used to compare 

the Q-values for different set of covariates and treatment decisions and then finally the 

optimal treatment decision can be estimated as it is the set of inputs that results in 

maximum Q-value.  

 From table (4.2), the values of coefficient estimates, error while estimating these 

coefficients and various other information about adequacy of regression line fit such as 

Residual standard error and adjusted R-squared values can be obtained. The value of 

1.847 was obtained for the residual standard error value during first stage regression, 

this means that the values of independent variables can deviate from regression line by 

value of 1.847. Similarly, the multiple R-squared error was 0.9549 and that for adjusted 

one was 0.9531, referring to the statement that approximately, 95% of variable that is 

observed in response variable can be well explained by the predictor variables. Also, 

the F-statistic value of 534.6 was observed which is much greater than 1 and p-value 

obtained was significantly lower than 1. Therefore, from these results it can be stated 

that good linear fit was observed during regression analysis for first stage treatment 

decision in SMART design and this estimated function can be implement while 

prescribing first stage treatment for patients with totally different sets of input 

covariates. 

(4.3) 
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4.1.4 Regression Diagnostic Plots 

 As mentioned in earlier chapters, the graphical analysis of residuals is very 

effective way to analyze the adequacy of fit and to check the underlying assumptions 

of any regression model. As residuals are the difference between the observed value 

and predicted value from the model, there are mainly four plots that comes into 

consideration while describing residual diagnostics and they are plot between residuals 

and fitted values, the normal Q-Q plot, the scale-location plot and the residual versus 

leverage plot. Now, each plot obtained for first and second stage multiple regression 

analysis is described below. 

 First, the plot between residuals and fitted values shows if the residuals 

have nonrandom patterns or not. This plot is also useful for verifying the assumptions 

made for linearity and homoscedasticity (constant variance assumption). In this 

scenario, the model said to not meet the linear model assumption, if very large residuals 

with big positive or negative value were observed. So, these residuals should not be 

very far from 0 so that the assumption of linearity is met, similarly, it was also needed 

to make sure that there is no pattern observed or the residuals are equally spread around 

line y=0 for accessing the assumption of homoscedasticity. The residual versus fitted 

plot for second stage regression analysis is shown below: 
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Figure 4.5 Residual versus fitted plot for second stage multiple regression 

 

Figure 4.5, shows the residuals versus fitted plot for multiple regression while 

prescribing second stage treatment decision in SMART design. From the plot, it can be 

observed that the residuals are homogenously spread above and below 0 and no pattern 

can be observed for residual vs fitted line. Thus, both the assumptions of linearity and 

homoscedasticity were met. Again, for first stage regression analysis following plot was 

obtained: 

 

 

 

 

 

 

Figure 4.6 Residual versus fitted plot for first stage multiple regression 

Figure 4.6, shows the plot between residual and fitted values for multiple regression in 

first stage of treatment decision using SMART design. From this plot, it can be 

observed that again the residuals are uniformly distributed along 0 and there is no 

pattern if a line is drawn for fitting the data points. Thus, in case of first stage regression 

also the assumptions of linearity and homoscedasticity were met. 

 Next, the normal Q-Q plot for both first and second stage regression were 

investigated for evaluating the normality assumption of linear regression which 

basically, compares the standardized residuals to theoretical quantiles or normal 

observations. If the observations follows or lies along the 45-degree line then it can 
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deduced that the normality assumptions hold. It can also be observed from following 

figure 4.7, which shows the Q-Q normal plot for second stage regression analysis. 

 

 

 

 

 

 

 

Figure 4.7 Normal Q-Q plot for second stage multiple regression analysis 

Figure 4.7, shows that most of the observations follows or lies on the 45-degree dotted 

line hence, the normality assumption is validated for linear regression. Also, it can be 

asserted that for a linear regression analysis the model fitting is good and assumption 

of normality is observed. Again, the normal Q-Q plot for first stage regression analysis 

is shown below: 

 

 

 

 

 

 

 

 

Figure 4.8 Normal Q-Q plot for first stage multiple regression analysis 

 



73 
 

Figure 4.8, shows the normal Q-Q plot for multiple regression analysis while 

prescribing treatments for first stage in SMART design. Here, also much of the 

observations are in the 45-degree line and the analysis can be asserted to the point that 

normality assumption of the linear regression holds in this case too and the regression 

fit is good. 

 Further, to validate the assumption of homoscedasticity which states that, the 

variance of residuals is constant for any different predictor values, in linear regression 

model fitting procedure scale-location plot can be used to check if there is some pattern 

or if the variance is constant for values of independent variables. The scale-location 

plot is plotted between the square rooted values of standardized residuals and predicted 

values from the model. Following figure, figure 4.6 shows the scale-location plot for 

predictor values of second treatment decision stage in SMART design which is used to 

estimate optimal DTR. 

 

 

 

 

 

 

Figure 4.9 Scale-Location plot for second stage regression analysis 

 

In Figure 4.9, the plot examines if the residuals are equally spread along the different 

ranges of predictor variables. Therefore, as it can be observed in figure 4.6, a horizontal 

line with equally spread random points along it can be conjectured that the variance of 

residuals is constant and hence, the assumption of homoscedasticity is validated. Also, 

the scale-location plot for regression analysis in first stage of treatment decision is 
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shown in figure 4.10 below. In the figure 4.10, it can be observed that the variance is 

again constant along different values of predictor variables and the assumption of 

homoscedasticity is valid in this case too. Thus, both of the plots strengthen the 

conjecture of good regression model fit and underpins the significance of approximated 

functions, while implementing these functions as base of prescribing treatments in two 

consecutive stages suggested by the SMART design in our model.   

 

 

 

 

 

 

 

Figure 4.10 Scale-Location plot for first stage regression analysis 

Lastly, for the next graphical analysis which considers the “Cook’s distance” to 

measure the influence of each observation while predicting the values of regression 

coefficients, the following terms should be defined: 

• The observations with large residuals compared to other observations in the 

model are known as outliers. For example, if the observed value of one of the 

observation is very much different than that of the predicted value obtained 

using regression model, then this observation can be categorized as an outlier. 

• Next, the leverage points of each observation are needed to be considered while 

analyzing the goodness of model fit. A leverage point can be defined as the 

distance of an observation from its mean value. 

• Also, the observation with significant leverage can change the slope of 

regression line resulting this observation to be very influential. Hence, these 
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influential points have substantial influence on goodness of fit in any regression 

model. 

Now, the graphical analysis of plots between leverage and standardized residuals also 

defines a statistic measure term called “Cook’s distance”. The Cook’s distance 

measures the influence of an observation on the overall regression model for example 

change in regression coefficients. Thus, this statistical tool analyzes the amount or 

extent of changes that occurs in model if an observation is omitted. Generally, the 

observations with high influence on the model has cook’s distance close to one or larger 

compared to other observations. Figure 4.11 below shows the residual versus leverage 

plot for second stage regression analysis in SMART design. From the plot, it can be 

observed that the model is not affected by influential points majority of observations 

lie within 1 cook’s distance. Therefore, the model for regression analysis in second 

stage treatment decision is not affected by the influential points. 

 

 

 

 

   

Figure 4.11 Residuals vs Leverage plot for second stage multiple regression analysis 

Similarly, the residual versus leverage plot for first stage regression is also shown in 

figure 4.12, below. Also, from figure 4.12, it can be observed that no observations have 

cook’s distance greater or equal to 1 and there are no major influential observations. 

However, the regression line is stretched due to the observations with high leverage, 
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but the influential points are minimal so that they will not affect the overall regression 

model. 

 

 

 

 

 

 

 

Figure 4.12 Residuals vs Leverage plot for first stage multiple regression analysis 

 

Therefore, from above residual diagnostics, it can be deduced that the coefficients 

which were estimated for regression function are correctly specified as the assumptions 

of linear regression analysis are verified using residual diagnostic plots. 

4.1.5 Optimal Treatment Decision Rule 

 Now, after the Q-functions at both treatment stages are approximated using 

multiple regression method, the other set of input covariates from new patient can result 

in output which is treatment resulting maximum Q-value at respective stages. For 

example, in stage 1 the problem is to prescribe an optimal treatment for patient with 

new set of input covariates, thus, to do that first the values of Q-functions are 

approximated for each available treatment options and the one resulting maximum Q-

value is defined as the optimal treatment decision.  

Table 4.3 Optimization of adaptive decision rule according to maximum value of Q-

functions 

Combination of history set Treatment = 1 Treatment = -1 Optimal Treatment 

Q2 value, c (1,30,24) 0.3803014 -0.01900676 1 
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Q1 value, c (1,0,34,30) 1.023668 1.23254 -1 

Q2 value, c (1,30,45) -0.9962029 -0.8904261 -1 

Q1 value, c (1,0,25,30) -2.055502 2.866527 -1 

 

Table 4.3, above shows different values of Q-functions at stages Q2 and Q1, where the 

inputs are distinct set of biomarkers belonging to a fresh patient or patient having first 

clinic visit. Thus, the set of biomarkers or history set for these patients are given as 

input to the model and defined as the argument of set c, for example, c (1,30,24) in first 

row gives the information about gender, BMI after four months and BMI after 12 

months, respectively of a new patient in program. Using this information, a history set 

is constructed and is used for estimating the values of Q-functions by keying the history 

set values as inputs or values of predictor variables in the approximated Q-functions of 

the model. As the values of regression coefficients are already approximated through 

regression analysis, the Q-functions values for newly constructed history set can be 

easily estimated using these biomarkers of a new patient.  

 Furthermore, the Q-values at each treatment stages are noted for assigned 

treatment decisions (1 or -1) in that particular stage and the treatment resulting in 

maximum Q-value is selected as optimal treatment decision. It can be observed in table 

4.3 that in stage 2 for c (1,30,24), treatment coded 1 is chosen as optimal treatment 

decision because it has greater estimated value of Q2, which is 0.3803014 in comparison 

to Q2 value from treatment decision -1. Similarly, for stage 1 for c (1,0,34,30), treatment 

-1 results in maximum Q1 value of 1.23254, hence, treatment -1 is chosen as optimal 

treatment for this stage. So, at last the optimal treatment decision rule can be assigned 

as (-1,1) for the patient with covariates c (1,0,34,30) and c (1,30,34), in first and second 

stages respectively.  Thus, as it can be assumed that different patients have different 
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history set so, the model will follow different optimal path resulting the model to be a 

personalized treatment regimen model. 

4.1.6 Estimating Regime Values 

 The next comparison that can be done is between the estimated optimal 

regime and the standard care decision rule or a constant regime that recommends same 

treatment regime for all patients. Thus, the way to do this comparison is by estimating 

the value function that is defined as:

 

 

𝑉̂𝜋 =  
∑ 𝑌𝑖𝕀{𝐴1𝑖 = 𝜋1(ℎ1𝑖)}𝕀{𝐴2𝑖 = 𝜋2(ℎ2𝑖)}𝑛

𝑖=1

∑ 𝕀{𝐴1𝑖 = 𝜋1(ℎ1𝑖)}𝕀{𝐴2𝑖 = 𝜋2(ℎ2𝑖)}𝑛
𝑖=1

 

In above equation (4.4), the value Yi is the response for ith patient, (A1i, A2i) are the 

randomized treatment decision and (h1i, h2i) are the histories that are observed before 

treatment. Thus, the value estimator defined by equation (4.4) is nothing but the 

weighted average of outcomes observed from patients in the trial that received 

treatment according to the decision rule π. This estimator is also known as the Horvitz- 

Thompson estimator [80].  

 In R-environment, the function value( ) within package iqLearn is used to 

estimate the regime values which returns the value estimated of all regimes in the 

design. Figure 4.10, below shows the bar graph for the estimated value of each possible 

regimens, namely A1A1, A1A2, A2A1 and A2A2.     

(4.4) 
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Figure 4.13 Estimated regime values for different decision rules 

 

Thus, from above figure 4.13, it can be observed that the regime value for decision 

regime A1A1 is very small and that for A1A2 is negative, meaning that the patient’s 

health is degrading. The decision rule with maximum regime value is A2A2, so, this 

decision rule is assigned as the optimal decision rule and will perform very well for 

patient’s well- being if prescribed. Again, for the patient with different set of observed 

histories following estimated regime values were obtained: 
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Figure 4.14 Estimated regimes values for patient with separate set of observed history 

 

In figure 4.14, all the decision rule can result in the well-being of the patient as no 

decision rule has estimated regime value below zero. However, the regime with A2 and 

A1 as treatment decisions in stage 1 and stage 2 respectively has the maximum 

estimated regime values. Therefore, for this patient with new set of history treatment 

regime A2A1 can be considered as the optimal decision rule.  

4.2 Discussions 

 This section of the chapter discusses the results that was obtained above 

and how these results can be interpreted for future implementations. So, first the results 

were obtained in Data restructuring section, which highlights the importance of 

acquiring the training data and remodeling it so that it could be used for training the 

model. The raw data that was obtained from Sanford Health needed serious 

restructuring so that it can be conducive to SMART design which is an essential part of 

the mathematical model. The restructured dataset as shown in figure 4.1, can be easily 

implemented for training the model as the input covariates and output response are 

clearly defined and available. Similarly, the gender, race, height and treatments which 

are randomized in the model are done so that the results explaining relationships 

between these predictors to response is obtained during regression analysis.  

 Next, results were about the multiple regression analysis for both first and 

second treatment stages in SMART design. The regression summary tables obtained 

are shown on table 4.1 and table 4.2, which gives the values of estimated regression 

coefficients, error during the estimation, the residual standard error and quantiles of the 

residual. The regression analysis was chosen as the method of inference and the values 

obtained from regression summary tables were analyzed for goodness of regression fit. 
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These tables not only provide the values of estimated regression coefficients but also 

gives the information about ability of regression analysis to account for total variation 

in the dependent variable or in other words the quality of fit. The Residual standard 

error for stage 2 and stage 1 regression were 0.63 and 1.847, respectively which can be 

considered minimal so, as residual standard error is the standard deviation of the 

residuals, it’s minimal value results in good quality of regression line fit. Similarly, the 

Multiple R-squared value, also known as coefficient of determination is the proportion 

of variance in data that is explained by the model and it is proportional to number of 

predictor variables. The value of 0.8796 and 0.9549 were obtained for Multiple R-

squared valued in second stage and first stage regression analysis respectively, 

indicating that the independent variable explains an estimated 88% variation in 

dependent variable of second stage and 95% variation in that of first stage regression. 

Therefore, the regression summary table indicated toward good regression line fit and 

the estimated values of coefficients can be further used in approximating the Q-

functions. 

 After the restructured training data was implemented to obtain the 

estimated values of regression coefficients and analysis of goodness of fit, the graphical 

analysis of residual diagnostics was performed to analyze the fit adequacy of the 

regression model and also to check the underlying model assumptions. The assumptions 

that are needed to be verified for linear regression are assumptions of linearity, 

Homoscedasticity, Independence and Normality. Figure 4.5 and 4.6, shows the residual 

versus fitted values plots for second stage and first stage regression analysis 

respectively. It can be observed from these plots that the residuals which is the 

difference between observed final outcome and predicted outcome from the model, are 

not very large as there is not big positive or negative values. Also, to verify the 
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assumption of linearity, the residuals from residuals versus fitted values plots are not 

too far away or in other words close to 0. Next, the normal Q-Q plots are shown in 

figure 4.7 and 4.8 for again second stage and first stage regression analysis respectively. 

Usually, the normal Q-Q plots are used to evaluate the normality assumption of linear 

regression by comparison of residuals to normal observations. As in both figures (4.7 

& 4.8) the observations lie along the 45-degree dotted line, hence, it can be assumed 

that the normality assumptions hold in both cases. Similarly, the third plots given in 

figures 4.9 and 4.10 shows the scale-location plots which are used for checking the 

assumption of homoscedasticity which means there is constant variance in residuals. 

Thus, to verify the homoscedasticity assumption it was observed and made sure that 

there was no significant trend or pattern in the residuals and as in figures 4.9 and 4.10 

the fitted line is approximately horizontal that describes no pattern for both cases, 

verifying the assumption of constant variance in residuals. The fourth and final plots in 

figures 4.11 and 4.12 are the residual versus leverage plots for second stage and first 

stage regression respectively. This plot is used to observe the Cook’s distance which 

measures the influence of each observation on the regression coefficients. Thus, it can 

be observed in figure 4.11 that the fitted line is flat, and no influential points are 

affecting the model, also the cook’s distance for each observation are below 1 and not 

significant, indicating lack of influential data points. However, figure 4.12 shows that 

the fitted line is somewhat stretched by the influential observations in the dataset, 

resulting in significant cook’s distance of those data points which required further 

investigation. Although, some influential points are affecting the first stage regression 

analysis it does not affect the goodness of fit or fit adequacy of the model as all the 

model assumptions are verified. 
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 Now, after fitting the model to training data and evaluating the 

performance by assessing model goodness-of-fit and prediction, the model should be 

applied to prescribe treatment rules for future patients. This application can be obtained 

either by estimating optimal treatment decision rules as in Table 4.3 or estimating the 

regime values, shown in figures 4.13 and 4.14. In Table 4.3, two new patients with 

different history set are selected and the values of Q-functions prescribing both 

treatment decisions are obtained for these two regression stages. The Q-values for both 

treatment decisions are recorded and the one resulting maximum Q-value is selected as 

the optimal treatment. In this scenario, the first patient should follow the treatment 

regime (-1, 1) and second should follow (-1, -1). Again, figures 4.10 and 4.11 shows 

the estimated values of all possible regimes in a bar-plot. Here, the regime with 

maximum regime value is selected as optimal decision rule. Thus, from figure 4.10 as 

regime A2A2 has highest estimated value, it should be selected as optimal decision rule, 

whereas in figure 4.11 which is for another patient, regime A2A1 has maximum 

estimated regime value so, it should be selected as optimal decision rule in this case. 

Therefore, various statistical analysis was implemented upon the restructured training 

dataset and the model performance along with model goodness-of-fit were also 

predicted, giving overall good model fit. Hence, the constructed mathematical model 

can be used for acquiring prognostic and predictive covariates which can be 

implemented for selecting optimal treatment decision rule. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Summary 

 Personalized medicine emphasizes on the fact that there is a great 

variability among individuals which plays a vital role in health and disease control. 

Individuals vary from one another in many ways such as the food they it, environmental 

factors, DNA and other physical conditions. Thus, the nature of diseases or disease 

control also varies from person to person as these factors affect the drug dosage needed 

or treatment decisions conducive to treat the disease. Therefore, it is only through 

personalized care that the medical institution can provide the right drug to the right 

patient for the right disease at the right time with the right dosage. So, it would not be 

an overstatement to state that personalized medicine is the future of medicine. Also, for 

employing the idea of personalized medicine for prescribing personalized treatment 

rules, a mathematical model using statistical inference and machine learning techniques 

can serve as a building base for drugs and treatment of the future. Following key things 

were considered for building the mathematical model: 

• Acquiring of the training data. 

• Selecting the method of inference based upon clinical covariates and data 

dimension. 

• Identification of individualized treatment rules. 

• Linear model fitting to the training data. 

• Evaluation of model performance. 

• Application of model for prescribing treatment rules to future patients. 
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 Above listed steps were followed for model building, validation and 

implementation process. So, first some part of training data was acquired from Sanford 

profile weight management profile dataset. This initial dataset required some critical 

restructuring so that it can be used for analysis in two stage SMART design. So, the 

covariates were randomized from a comparative trial and BMI of each individual 

patients were calculated before, after 4 months and after 12 months of treatment. The 

two treatments were coded as either 1 or -1, hence two stages with two treatments at 

each stage groups out to four treatment decision rules. Thus, the training data consisted 

of 210 rows of patients or observations and 9 columns of covariates. 

 After acquiring the training dataset, Q-function approximation with 

regression analysis was chosen as method of inference to identify the individualized 

treatment rule. The model fitting was obtained using multiple regression model and the 

model parameters were estimated. Q-learning algorithm, a reinforcement learning 

technique that is based upon approximation of Q-functions using regression analysis 

was applied for performance evaluation of treatment decisions. Important covariates 

that could really impact the patient’s condition were selected as input to the regression 

model. The summary tables giving the values of each regression coefficients and value 

of error were obtained for regression analysis in two stages of SMART design. Multiple 

R-squared values of 88% and 90% were obtained for second stage and first stage 

regression analysis respectively.  

 Further, the model goodness-of-fit was evaluated using residual diagnostic 

plots to check if the assumption of linear model is met. From the residual diagnostic 

plots the assumptions of Linearity, Homoscedasticity, Independence and Normality 

were established for the multiple regression model, fulfilling the conditions and 

adequacy of regression fit. Finally, the model was analyzed for prescribing the 
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treatment rule to future patients where, first the prognostic and predictive covariates for 

new patient was considered and was provided as input to the model. The model output 

was Q-values for both treatment stages and the treatment that resulted in maximum Q-

values for both stages was selected as optimal treatment. Hence, the value of each 

treatment decision rule was also calculated using Horvitz-Thompson estimator and the 

one with maximum estimated regime value was selected as optimal treatment decision 

rule. 

5.2 Conclusion 

 In conclusion, a mathematical model was developed and implemented to 

prescribe optimal treatment decisions to a patient depending upon his individual 

medical covariates. The developed model was used to administer treatments for obese 

patients enrolled in Sanford health weight management profile. Application of 

reinforcement learning algorithm in Sanford Profile weight management dataset is 

unprecedented and through model performance evaluation it can be inferenced that the 

model can be applied for prescribing treatment rule for future patients. A minimal 

residual standard error of 0.63 and 1.847 was obtained for second stage and first stage 

regression analysis respectively. The Q-values for each stage were determined using 

the estimated coefficients values from regression equation and the treatment decision 

that resulted in maximum Q-value was selected as optimal treatment.  For example, a 

patient with prognostic covariates of c (1,0,34,30) in first stage of SMART design had 

Q-values of 1.023668 and 1.23254 when treatment 1 and -1 was administered 

respectively. So, in this case as treatment which is coded as -1 results in maximum Q-

value, it is selected as optimal treatment in that stage. Similarly, same patient with c 

(1,30,24) as covariates in second stage had Q-values of 0.3803014 and -0.01900676, 

again for treatment 1 and -1 respectively. However, in this case treatment coded as 1 
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was chosen to be the optimal one as it resulted in maximum Q-value for that stage. 

Lastly, the value estimator was used to estimate the weighted average of each regime 

and the bar plots enables to assign the decision rule that results in maximum estimated 

regime values as optimal decision rule. Two cases were analyzed for two patients with 

different input covariates and it was found that A2A2 and A2A1 were the optimal decision 

rule for these patients. Therefore, it can be interpreted that the developed model using 

reinforcement learning and function approximation algorithm can be employed in 

estimating dynamic treatment regimens for an individual to provide a personalized 

healthcare.  

5.3 Future Works     

 Many more modifications and enhancement can be included in above 

mathematical model for estimating optimal DTR. First, the training data structure can 

be well maintained by constructing a database that stores the values of all essential 

covariates such as gender, race, height and weights at fixed intervals. So, Sanford 

Health can be suggested to construct a well-maintained database for future use such as 

training a mathematical model. Secondly, the problem can be generalized by extending 

two stage SMART design to n stage randomization, however, for this scenario there 

should be knowledge of covariates value until n stages also, focusing the importance of 

data acquisition and database maintenance. Next, the binary nature of treatment 

decision can be extended and analyzed where treatment decisions can be coded with 

more values than only as 1 and -1, for example a treatment decision can be coded as 0 

and applied as an input to the model. Lastly, other regression analysis method such as 

non-linear regression can be used and also more robust function approximation 

methods can be implemented, for example Q-learning with Mixed Residuals (QL-MR). 
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Thus, these future works can further improve the model performance and accuracy for 

selecting the optimal treatment decision rules.  
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