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ABSTRACT 

TRANSCRIPTOME ANALYSIS OF ROOT DEVELOPMENT IN WHEAT 

(TRITICUM AESTIVUM) USING HIGH-THROUGHPUT SEQUENCING 

TECHNOLOGIES

GHANA S CHALLA 

2018 

Root provides plant water, nutrients and anchorage from soil. Most our knowledge of 

molecular mechanisms of root development is from the dicot model plant Arabidopsis, but 

very few studies have done in monocot crop systems like rice, maize, and wheat. We are 

studying very short root (VSR) phenotype in wheat, and lack of a sequenced reference 

genome in wheat prompted us to sequence and assemble the root transcriptome of the 

reference cultivar Chinese Spring (CS). A root transcriptome was assembled from the 

sequenced reads generated from root tip and the mature root tissues of CS. Approximately 

169 million reads were successfully assembled into ~91K transcripts coding for functional 

proteins. Of these ~91K transcripts, 1,728 were differentially expressed in root tip as 

compared to the rest of the mature tissues. Generation of the root reference transcriptome 

and the availability of a reasonable reference genome sequence for wheat enabled us to 

analyze the gene expression in the long root (LR) and VSR. A total of 4,412 genes were 

differentially expressed in the VSR compared to the LR root tips. A significant portion of 

the differentially expressed genes functioning in the hormonal responses, regulation of 
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transcription, defense response, reactive oxygen species (ROS), abiotic stress response, 

lignin biosynthesis, calcium signaling, and autophagy pathways were induced. In addition, 

several negative regulators of cell proliferation, including homologs of the BIGBROTHER 

E3 ubiquitin ligase, and negative regulators of root cell elongation, such as genes encoding 

the FERONIA kinases and a RALF peptide hormone, were also up-regulated in VSR. 

Consistent with this, a large number of genes for chromatin replication and protein 

syntheses, including those coding for histones and ribosomal proteins, and cell wall 

remodeling enzymes, were down-regulated in VSR. The ROS and lignin accumulation in 

the VSR were further validated by histochemical staining. This research revealed several 

molecular mechanisms of root development, based on which a working model was 

proposed to explain the VSR development. Although the related pathways identified in 

Arabidopsis may play a similar role in wheat, the VSR phenotype is probably governed by 

a unique mechanism that may be cereal- or wheat-specific. 
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CHAPTER 1 

Literature Review 
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INTRODUCTION 

 

By the year 2050, the world population is projected to reach 9 billion. The increase of 3 

billion of the global population will put the food security at risk. In the wake of this, cereals 

are becoming more important than ever. Wheat is the major cereal food crop consumed 

worldwide. It is the third major crop in terms of production after Corn and Rice. In United 

States (US), wheat is produced in almost every state, and the US is the world’s fourth 

largest producer of wheat after China, India and Russian Federation (FAOSTAT, 2016; 

http://www.fao.org/faostat/). It provides about one-fifth of the calories consumed by the 

humans worldwide (http://faostat.fao.org). Wheat is cultivated in different environments 

around the world. It is grown across temperate, Mediterranean and tropical and subtropical 

parts globally. 

Roots are the important part of the plants and form interface between the plants and 

the soil environment. The most important function of the roots is to uptake water from the 

surrounding soil and to provide nutrients for the plants to grow. They also act as the first 

line of sensors that detect the minute changes in the surrounding environment like water 

deficit, nutrient deficiency, ion toxicity, soil salinity, pH changes, etc. Many genes 

involved in the regulation root growth and development were identified in the dicot model 

plant Arabidopsis (de Dorlodot et al. 2007). By contrast, much fewer root regulatory genes 

have been identified rice, the grass model (Coudert et al. 2010; de Dorlodot et al. 2007; 

Hochholdinger et al. 2004). Several studies in Arabidopsis and rice revealed the key role 

plant hormones play in the initiation, regulation, and establishment of the root system. 

Hormones like auxin, gibberellins, brassinosteroids, jasmonate, and cytokinin regulate the 



	 3	

cell division and elongation in the root meristem and define the root system architecture 

(Aloni et al. 2006; Benkova and Hejatko 2009; Bishopp et al. 2009; Drisch and Stahl 2015). 

Reactive oxygen species (ROS) is known to control development by regulating cell 

elongation and also by interacting with different hormones (Causin et al. 2012; De Tullio 

et al. 2010; Lv et al. 2018). Unregulated accumulation of ROS is detrimental to the plant 

cells, and in Arabidopsis it was shown to affect the cell wall integrity and induce lignin 

deposition in the cell walls (Denness et al. 2011).  

This chapter as an introduction will review wheat evolution and genomics, RNA 

sequencing (RNA-Seq)-based transcriptomics, transcriptome assembly and polyploidy 

challenges, and root development in cereal crops. 

 

LITERATURE REVIVIEW 

 

Wheat Genomes and Genomics 

The wheat genus (Triticum L.) contains two diploid (T. monococcum and T. urartu), two 

tetraploid (T. turgidum and T. timopheevii) and two hexaploid species (T. aestivum and T. 

zhukovskyi) (van Slageren 1994). One diploid (T. monococcum) and both tetraploid species 

were domesticated, and the two hexaploid species arose under cultivation in Eurasia during 

the last 10,000 years (Salamini et al. 2002). Hexaploid common wheat, or bread wheat (T. 

aestivum, AABBDD genomes), originated in the Caspian Iran region (Wang et al. 2013) 

by hybridization between a cultivated form of tetraploid T. turgidum (AABB genomes) and 

diploid goatgrass Aegilops tauschii (DD genome) (Kihara 1944; McFadden and Sears 

1946). The second hexaploid wheat, T. zhukovskyi arose by hybridization between 
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tetraploid Timopheevi wheat (T. timopheevii, AAGG genomes) and diploid einkorn (T. 

monococcum subsp. monococcum,). T. turgidum and T. aestivum constitute the Emmer 

lineage, and T. timopheevii and T. zhukovskyi the Timopheevi lineage (Gill et al. 2002). 

The diploid wheat T. urartu (genome AA) contributed the A genome to the Emmer and 

Timopheevi lineages (Dvorak et al., 1988; Kerby & Kuspira, 1988) and A. speltoides (SS 

genome), as the female parent, contributed cytoplasm (Wang et al. 1997) and the G genome 

(Dvorak and Zhang 1992; Kimber 1974) to T. timopheevii 0.4 million years ago and to the 

B genome and the cytoplasm of T. turgidum 0.7 Million years ago (Gornicki et al. 2014). 

Recent years saw rapid progress in deciphering the wheat genomes. In addition to 

the reference genome sequences from common wheat cultivar Chinese Spring (CS) 

(Brenchley et al. 2012; The International Wheat Genome Sequencing Consortium 2014; 

Zimin et al. 2017a), twenty genomes of common wheat have been sequenced (Chapman et 

al. 2015; Montenegro et al. 2017). At the diploid level, the A genome (Ling et al. 2013) 

and the D genome donor species were also sequenced (Jia et al. 2013; Luo et al. 2017; Luo 

et al. 2013; Zhao et al. 2017; Zimin et al. 2017b) . Last year, IWGSC’s efforts to generate 

a reference genome for wheat resulted in the first ever version of the wheat reference 

genome (https://www.wheatgenome.org/News/Latest-news/RefSeq-v1.0-URGI). Though 

the genome sequence and the annotation data are not available for large scale projects, they 

made it available for the studies involving single or few genes under the Toronto 

Agreement. To set a gold standard for the wheat genome sequencing efforts, the ~1 Gbp 

of the 3B chromosome was sequenced, and a pseudomolecule was constructed (Choulet et 

al. 2014). These sequences resources have greatly broken the bottleneck for map-based 

cloning of agriculturally important genes from the large, polyploid genome of wheat. 
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However, the draft, as well as the reference genome, only constitutes ~14 Gbp (~85%) of 

the hexaploid wheat estimated genome size of 17 Gbp. At the same time, transcriptomes 

of various wheat tissues and organs have been profiled using the RNA-Seq technology 

(Choulet et al. 2014; Fox et al. 2015; Liu et al. 2015; Pearce et al. 2015; Pearce et al. 2014; 

Pfeifer et al. 2014).  

 

RNA sequencing and transcriptomics 

The transcriptome is the complete set of transcripts in a cell at a specific developmental 

stage, cell type or physiological condition. For several decades, analyzing the 

transcriptome has been an essential tool in exploring the biological function and phenotype 

variation. Understanding the transcriptome is indispensable for interpreting the functional 

features of the genome and identifying the molecular make-up of the cells and tissues. The 

knowledge gained form transcriptome studies often help in understanding development, 

disease and responses to external stimuli. After the discovery of DNA as the genetic 

material and RNA as the intermediate in the central dogma of the molecular biology, the 

methods evolved from analyzing a single gene by Northern blotting to analyzing thousands 

of genes in a single experiment using microarrays. Though microarrays are high throughput 

assays, they are limited by the prior information of all the genes (transcriptome) expressed 

in the sample under consideration and the indirect method of measuring transcript 

abundance and eventually resulting in noisy data and low reproducibility (Morozova et al. 

2009). They do not address the important biological questions like the possibility of novel 

transcripts. However, they were extensively used in several model systems and non-model 

systems like crop plants because of their affordability and ease in handling. Alternatively, 
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DNA sequencing methods, like Sanger’s sequencing method, were used to analyze the 

transcriptome using strategies such as sequencing of the complimentary DNA (cDNA 

clones) (Kikuchi et al. 2003), expressed sequence tag (EST) sequencing (Manickavelu et 

al. 2012), which often involves cloning into a sequencing vector, but provided the 

advantage of novel transcript discovery and the full-length sequence to infer the gene 

structure and function (Seki et al. 2002). However, these strategies were less accurate, 

expensive and labor intensive to routinely use in the transcriptome quantification studies. 

Other methods like Serial Analysis of Gene Expression (SAGE) (Adams 1996; Velculescu 

et al. 1995), Cap Analysis of Gene Expression (CAGE) (Shiraki et al. 2003) and Massively 

Parallel Signature Sequencing (MPSS) (Brenner et al. 2000; Reinartz et al. 2002), which 

are tag-based sequencing approaches, were developed to overcome some of the above-

mentioned shortcomings of microarray and low throughput sequencing, but with their own 

limitations (Harbers and Carninci 2005). After the successful completion of the human 

genome sequencing project and sequencing of the genomes of other major model system 

including the Arabidopsis, the model for the plant biology, several new sequencing 

technologies were developed, and these are collectively referred to as “next-generation 

sequencing” (NGS) or second-generation sequencing (SGS) methods (Bau et al. 2009; Holt 

and Jones 2008; Mardis 2008; Shendure and Ji 2008). These platforms include Roche/454 

FLX, Illumina Genome Analyzer, ABI SOLiD, and the Heliscope (Mardis 2008).  RNA 

sequencing or simply “RNA-Seq” is the transcriptome analysis approach utilizing high 

throughput DNA sequencing methods to quantify transcriptomes and also discover novel 

transcripts, non-coding RNA, detect isoforms, etc. This method has several advantages 

over the traditional methods of transcriptomics like analysis of several thousand transcripts 
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in one run, relatively inexpensive and not labor intensive. Many model and non-model 

organisms were analyzed using the RNA-Seq methods from understanding the 

transcriptome composition and transcript abundance to discovery of novel coding and non-

coding transcripts previously not known to the scientific community (Chao et al. 2017; De 

Quattro et al. 2018; Hetzel et al. 2016; Marguerat and Bahler 2010; Quattro et al. 2017; 

Wang et al. 2009; Wilhelm and Landry 2009; Zou et al. 2016). Though these sequencing 

platforms differ in technology that they use for sequencing of the nucleic acids, they are 

based on a similar workflow. Although the sequencing technology is developed originally 

for the genomic DNA sequencing, adaptations were made to use for RNA sequencing. 

Here, instead of sequencing the RNA directly, double stranded cDNA is generated from 

RNA and is used as the sequencing template. Typically, the process involves shearing of 

the nucleic acids into sequencer compatible size and attach the DNA fragments called 

adapters, which contain unique sequences, at either end of the DNA fragment. These 

adapters allow the DNA fragment to attach to beads or the slide (called flow cell), 

depending on the platform, and create a unique locus which allows capturing the sequence 

data after the completion of the run. This process is called library preparation, and it is the 

key step in RNA-Seq as it determines the accuracy of the cDNA sequence data (Ansorge 

2009). This method is a most straight-forward adaptation of the DNA sequencing for RNA-

Seq, and one limitation it has is the loss of strand specificity in the output data. To 

overcome this hurdle for studies that require strand information several strand-specific 

library preparation techniques were developed (Lister et al. 2008; Marguerat and Bahler 

2010; Parkhomchuk et al. 2009). The RNA-Seq methodology was quickly adapted and 

extensively utilized for understanding the role of small RNAs in regulation of the gene 
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expression in the eukaryotic systems. Eventually, it made to the messenger RNA (mRNA) 

expression studies. RNA-Seq was used in thousands of gene expression studies since its 

invention. The organisms and systems that were benefited by this technique were from 

model systems like human, mouse, worm, fission yeast, fruit fly, Arabidopsis, Medicago, 

etc. to non-model systems like fish, shrimp, dog, soybean, Brachypodium, wheat, barley, 

bamboo, sunflower, etc. 

In addition to the quantification of transcripts in the sample under consideration, 

RNA-Seq is also being used for other studies. Transcriptome analysis of single-cell or 

Single-Cell RNA-Seq is one of the most recent applications of the RNA-Seq to understand 

the gene expression t the single-cell level (Efroni et al. 2015). Targeted RNA-Seq, where 

a specific set of transcripts were selected for sequencing (Levin et al. 2009; Mercer et al. 

2014; Winz et al. 2017). Another application of RNA-Seq in transcriptome studies is for 

identifying the alternative splice forms and gene fusions (Filichkin et al. 2010). Sequencing 

of other RNA species like small RNA (Ahmed et al. 2014; Capece et al. 2015; Vidal et al. 

2013), long non-coding RNA (Kang and Liu 2015; Lu et al. 2017), circular RNA (Liu et 

al. 2017; Pan et al. 2018), etc. has been carried out on several organisms, tissues, and 

physiological conditions. Since its inception a decade ago, RNA-Seq has been widely used 

and has become an indispensable tool for studying gene expression, understanding 

transcription, and its regulation and also RNA biogenesis. The third generation sequencing 

(TGS) methods already made their way into the genomic DNA sequencing studies and 

technologies like Pacific Bio (PacBio) and Nanopore (Oxford Nanopore Technologies) are 

already helping the large complex genome sequencing projects like Arabidopsis (Michael 

et al. 2018) tomato (Schmidt et al. 2017) and wheat (Clavijo et al. 2017; Zimin et al. 2017a; 
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Zimin et al. 2017b). Recently, full length RNA transcripts were sequenced using PacBio 

technology in wheat (Giolai et al. 2017; Huo et al. 2018; Zhang et al. 2014b) for 

transcriptome and gene family studies. The advantage with the TGS methods is the ability 

to sequence long fragments, several kilo bases, compared to the second-generation 

sequencers. With these new technologies in place, the transcriptome analysis studies will 

hugely benefit and can help unravel the complex biological problems in the plant biology 

and other organismal biology studies. 

 

Transcriptome assembly and challenges with polyploidy 

With the advent of the high-throughput sequencing platforms that generate several giga 

bases (Gbs) of the DNA sequencing DNA in a single run, shot gun genome sequencing and 

de novo assembly of the genome was made possible with reasonable expense and 

manpower. However, the cyber infrastructure played a major role in analyzing this kind of 

data, and several genome assembler tools and software were developed to achieve a draft 

genome assembly with reasonable quality. In the last decade since the invention of these 

platforms, several model and non-model genomes were sequenced and annotated to help 

the ongoing genetic and molecular studies. Wheat, one of the largest (genome size of 

~17Gb) genome in plants and a with complex genome  composition due to polyploidy was 

also sequenced by shotgun sequencing of the entire genome and also the shotgun 

sequencing of the flow sorted individual chromosomes (Brenchley et al. 2012; 

International Wheat Genome Sequencing 2014; Montenegro et al. 2017). 

Our knowledge of the all the genes that are expressed in a cell was resultant of the 

gene prediction pipelines, EST and cDNA sequencing. This data is very limited and often 
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incomplete and inaccurate due to limitations in sequencing technologies, and mis-

assemblies due to high homology between members of the same gene family, etc. Inspired 

by the whole genome sequencing, whole transcriptome sequencing or the RNA-Seq 

approach proved to be useful in understanding the complex landscape and dynamics of the 

transcriptome. The sensitivity and accuracy of these platforms were unmatched to that of 

the low-throughput technologies (Martin and Wang 2011). With the deep sequencing of 

the transcriptome at several hundreds of coverage depth, there is a possibility to capture 

the snapshot of the entire transcriptome including low and rarely expressly transcripts. 

Assembly programs to match the size and quantity of the transcriptome data have been 

developed, such as oases (Schulz et al. 2012), MIRA (http:// 

chevreux.org/thesis/index.html), Edena (Hernandez et al. 2014; Xie et al. 2014), Soaptrans 

(Xie et al. 2014), IDBA-tran (Peng et al. 2013), Trinity (Grabherr et al. 2011; Haas et al. 

2013) etc. 

Plant genomes tend to be large and often contain highly repetitive DNA. They also 

have large gene families with members having high similarity at the nucleotide level. In 

wheat, addition to polyploidy, it is estimated that 90% of the genome is repetitive (Dvořák 

2009). For transcriptome assembly of the polyploid plants is often challenging not only 

because the repetitiveness requires a large amount of computing resources and but also 

because there always is a problem of merging the closely related (homoeologous or 

paralogous) sequences and resulting in mis-assemblies (Krasileva et al. 2013; Schreiber et 

al. 2012). This limitation is data dependent and also depend on the downstream analysis 

(Duan et al. 2012; Hornett and Wheat 2012; Mundry et al. 2012; Vijay et al. 2013; Zhao et 

al. 2011). There were a few studies done in wheat, where the de novo assembled 
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transcriptome was used in identifying differential gene expression (Akhunova et al. 2010; 

Bouyioukos et al. 2013; Oono et al. 2013).  

 

Root Development 

Being underground and often ignored, root is referred to “hidden half” of the plant. A 

strong and well-established root system plays an important role in plant performance and 

yield in case of crop plants (Lynch 2011; Paez-Garcia et al. 2015). Molecular mechanisms 

involved in root development and growth has been extensively studied in Arabidopsis 

because of the small genome size, easy to grow and handle, short life cycle, ease in genetic 

transformation and specially, the availability of the genome sequence and as well as tagged 

mutant lines. Impressive progress has been made in understanding the root development in 

Arabidopsis. The root system in Arabidopsis consists of one primary root, which produces 

numerous lateral roots which in turn gives rise to higher-order lateral roots (Hodge et al. 

2009). The Arabidopsis primary root has four distinct zones longitudinally. Meristem, 

where the active cell division occurs, followed by transition zone where the cell grows 

slowly in length and width, elongation zone with fast cell elongation but no growth in the 

cell width, and finally the growth terminating zone where the cells slow down the 

elongation and mature (Takatsuka and Umeda 2014; Ubeda-Tomas et al. 2012; Verbelen 

et al. 2006) (Figure 1.1). In Arabidopsis, a small number of stem cells give rise to all the 

different tissues of the root. The continuous growth and development of root is maintained 

by a pool of undifferentiated cells called the root apical meristem (RAM). The tip of the 

root meristem has the multipotent stem cells surrounded by a bunch of organizing cells 

called the quiescent center (QC) (van den Berg et al. 1997) (Figure 1.2). Cereal root system 
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is a complex structure and consists of several embryonic and post embryonic roots. The 

postembryonic roots are called nodal or crown roots. In wheat, the primary roots are three 

to five in number, and later crown roots develop from the node of the coleoptile. The radial 

and the crown roots branch out up to five degrees of branching. The cereal root system is 

different from Arabidopsis in many aspects. In additional to the presence of seminal roots, 

there is no shoot-borne root system, and the root hair pattern in Arabidopsis is regular 

compared to the cereals. A major difference in RAM anatomy between cereals and 

Arabidopsis is that there are 800 - 1200 quiescent center (QC) cells in cereal RAM, but 

Arabidopsis RAM has only four QC cells. At cell type level, there are multiple cortical cell 

layers in cereal roots, whereas there is only one layer in Arabidopsis. In Arabidopsis, there 

are eight cortical cells, but number of cortical cells is variable in cereal roots (Coudert et 

al. 2010; Hochholdinger et al. 2004). Very few studies were carried out to identify the 

genetic mechanisms involved in cereal root development. Most of the studies were carried 

out in rice, maize and wheat (Table 1.2).  The variation in RSA is very prominent between 

dicots and monocots. Thus, it is not always possible to extrapolate the knowledge from 

Arabidopsis studies to the cereal plants (Lynch 1995; Osmont et al. 2007). 

 

Hormonal regulation of root development and growth 

Phytohormones play an important role in the regulation of root development and growth. 

During the globular stage of embryo development, auxin-induced degradation of IAA 

inducible protein IAA12 releases AUXIN RESPONSE FACTOR 5 (AFR5) from the co-

transcriptional repression in provascular cells adjacent to hypophysis (Szemenyei et al. 

2008; Weijers et al. 2006), which up-regulates auxin transporter PINFORMED1 (PIN1). 
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In turn, PIN1-mediated auxin flows into hypophysis and accumulation in the hypophysis 

regulates the interaction between other ARF/IAA pairs that specify hypophysis (Weijers et 

al. 2006). At the same developmental stage, cytokinin response is specifically detected in 

the hypophysis and its apical daughter cell. In the basal hypophysis cell, auxin induces 

ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARR15, repressors of cytokinin 

response (Muller and Sheen 2008), suggesting that antagonistic interaction between these 

two phytohormones regulates the establishment of root meristem including the stem cell 

niche. 

During postembryonic root development, two parallel pathways specify the identity 

of root stem cell niche: PLETHORA (PLT) pathway and SHORT ROOT 

(SHR)/SCARECROW (SCR) pathway. The SHR/SCR pathway controls the radial 

patterning by specifying and regulating stem cell function. Both SCR and SHR encode 

transcription factors (TFs) of GRAS family regulating asymmetric cell division (Di 

Laurenzio et al. 1996; Helariutta et al. 2000; Sabatini et al. 2003). SHR and SCR form a 

heterodimer, which up-regulates SCR transcription in a feed-forward loop (Cui et al. 2007; 

Nakajima et al. 2001) The SHR also regulates vascular patterning through cytokinin 

homeostasis (Hao and Cui 2012). PLTs are the double AP2 type TFs acting downstream 

of the auxin signal pathway. PLT expression levels mirror the auxin gradient in the distal 

root tip and are maximized in the stem cell niche region (Aida et al. 2004). The PLT 

function is dose-based: high levels promote stem cell identity and maintenance, low levels 

promote division of stem cell daughters, and very low levels allow cells to differentiate 

(Galinha et al. 2007; Grieneisen et al. 2007). Therefore, the auxin/PLT pathway regulates 

the root meristem activity along the longitudinal axis. Transcription factors ARR1- and 
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SHY2/IAA3-mediated pathways maintain the balance between auxin and cytokinin. ARR1 

is cytokinin-responsive, and SHY2/IAA3 is a repressor of auxin signaling. Activation of 

SHY2/IAA3 by ARR1 causes auxin redistribution and promotes cell differentiation (Dello 

Ioio et al. 2008). 

Auxin is also involved in lateral root development through the IAA/ARF modules 

(De Rybel et al. 2010; De Smet et al. 2010; Fukaki and Tasaka 2009; Okushima et al. 

2005), PLT11 and SHR (Lucas et al. 2011). In rice, auxin is a driving force for crown root 

initiation and development through two pathways. In one pathway, CROWN ROOTLESS4 

(CRL4)-mediated auxin transport activates WUSCHEL-related homeobox protein 

WOX11, which suppresses cytokinin response via an ARR cascade. In another pathway, 

auxin induced degradation of IAA proteins and release ARFs, which activate CRL1 

expression and crown root initiation (reviewed in (Coudert et al. 2010). 

Gibberellins (GAs) are also required for root development and growth (Inada and 

Shimmen 2000). In Arabidopsis, GAs specifically accumulate in the elongating 

endodermal cells (Shani et al. 2013), where DELLA protein mediates the GA signal 

(Ubeda-Tomas et al. 2008). Interacting with auxin and other phytohormones, GAs regulate 

lateral root formation in poplar (Gou et al. 2010). Opposite to auxin, cytokinin, and GAs, 

the stress hormone abscisic acid (ABA) and gaseous hormone ethylene inhibit root growth. 

The ABA effect on root inhibition is achieved through promotion of ethylene biosynthesis 

(Luo et al. 2014; Ma et al. 2014; Thole et al. 2014) and ethylene signaling pathways 

(Beaudoin et al. 2000; Ghassemian et al. 2000). Jasmonic acid (JA) or methyl jasmonate 

(MeJA) also inhibit root growth (Staswick et al. 1992), which block both the G1/S and 

G2/M transitions in the cell cycle (Swiatek et al. 2002). JAs also mediate root growth 
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inhibition caused by down-regulation of cellulose biosynthesis (Ellis et al. 2002), which 

invokes ectopic lignin deposition and defense responses (Cano-Delgado et al. 2003). 

In addition, many peptide hormones, mainly belonging to CLV3/ESR-RELATED 

(CLE), ROOT  GROWTH FACTOR (RGF) (Yue et al. 2016) and RAPID 

ALKALINIZATION FACTOR (RALF) families, are involved in root development and 

growth (Haruta et al. 2014; Leasure and He 2012; Yamada and Sawa 2013). Peptide RGF1 

defines the stem cell niches by functioning upstream of PLTs (Matsuzaki et al. 2010). 

CLE40, expressed in differentiating root cells, restricts and positions the WUSCHEL-

related homeobox TF WOX5 for suppressing stem cell fate through RLK and CRINKLY4 

(Stahl et al. 2009). CRINKLY4, in turn, interacts with PP2A-3, a catalytic subunit of PP2A 

phosphatase enzyme and controls formative cell divisions (Yue et al. 2016). A more recent 

study showed that activation of FER by RALF causes phosphorylation of PM-anchored 

H+-ATPase, which mediates inhibition of proton transport and suppression of cell 

elongation in the primary root (Haruta et al. 2014). 

 

ROS regulation of root development and growth 

A growing body of evidence indicates that ROS join the phytohormones in the regulation 

of root development and growth. In the normal Arabidopsis roots, •O2
– is predominantly 

located in the apoplast of cell elongation zone and promote root elongation, whereas H2O2 

accumulates in the differentiation zone and promotes root hair formation (Dunand et al. 

2007). Genetic analyses showed that alteration of ROS homeostasis affects root cell 

proliferation, stem cell niche, meristem maintenance and lateral root formation. ROOT 

MERISTEMLESS 1 (RML1) encodes γ–glutamylcysteine synthase, which maintains cell 
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proliferation via regulating redox status by synthesis of glutathione (GSH). 

Characterization of rml1 mutant indicated that the redox status regulates the G1-to-S 

transition (Vernoux et al. 2000). The rml1 mutant is normal in embryonic root 

development, but its failure to initiate cell division caused extremely short root (Cheng et 

al. 1995).  UPBEAT1, a TF of bHLH family, directly regulates expression of a set of 

peroxidase genes that modulate the balance of these ROS in the transition zone between 

meristematic zone and elongation zone (Tsukagoshi et al. 2010). Cell type-specific 

transcriptome analysis showed that ROS also plays an important role in lateral root 

development (Manzano et al. 2014). 

            Two major sources of ROS have been recognized in root development: PM-

localized NADPH oxidases, encoded by RESPIRATORY BURST OXIDASE HOMOLOGS 

(RBOHs), and the mitochondrial complex1 or complex3. In Arabidopsis, RbohC is 

required for root hair tip growth (Foreman et al. 2003; Takeda et al. 2008), and RbohA 

required for Casparian strip formation (Lee et al. 2013). In common bean, RbohB promotes 

lateral root elongation (Montiel et al. 2013). In rice, a point mutation in rice SHORT 

POSTEMBRONIC ROOT1 (SPR1) gene, coding for a mitochondrial protein with an 

Armadillo-like repeat domain, cause accumulation of ROS in root tips, reduced cell 

elongation in the postembryonic roots, and lowered iron homeostasis (Jia et al. 2011). 

More recently, ROS are found interacting with the phytohormones in regulating 

root development. In Arabidopsis, ABA overly sensitive mutants abo6 and abo8-1, 

defective in pentatricopeptide proteins responsible for splicing transcripts of the 

mitochondrial complex1 genes, showed over accumulation of H2O2 in root tips and 

reduction of meristem size. The mutant effect on ROS and meristem can be further 
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enhanced by exogenous ABA treatment but rescued by exogenous GSH (He et al. 2012; 

Yang et al. 2014). The abo8-1 mutation also blocks auxin signal and down-regulates PLT1 

and PLT2 (Yang et al. 2014). In Medicago truncatula, a mutation in the LATERAL ROOT 

ORGAN DEFECTIVE (LATD) gene, encoding a nitrate transporter, perturbed the balance 

of ROS homeostasis by increasing •O2
– and reducing the H2O2 level in both meristem and 

maturation zones by upregulating the RBOH genes (Zhang et al. 2014a). Opposite to the 

above mutants, exogenous ABA recovered the ROS homeostasis and rescued root 

elongation in the latd mutant (Zhang et al. 2014a). All these indicated ROS function 

downstream of ABA in regulating root development and growth. In the RALF signaling 

pathway, FER either promotes or inhibits ROS depending upon cell types and signal 

contexts (Li and Zhang 2014). In root hair, FER interacts with guanine nucleotide exchange 

factors ROPGEF1, which activates the NADPH oxidases for ROS production through 

RAC/ROP GTPases (Duan et al. 2010). The RAC/ROP GTPases, at the same time, 

function as mediators for auxin-regulated gene expression (Wu et al. 2011), implicating 

another cross-talk between ROS and auxin signaling pathways. Under stress conditions, 

ROS are the universal signals. ROS-auxin cross-talks mediate the stress induced 

morphogenic responses, which comprises a mixture of growth inhibition and activation 

(Pasternak et al. 2005; Potters et al. 2007). 

 

Small RNAs in root development 

MicroRNAs (miRNAs) are a class of endogenous, small non-coding RNAs (sRNAs), that 

are ~21 nucleotides in length, and are trans-acting regulatory sequences that regulate gene 

expression by targeting mRNAs (Bartel 2009). These are present in animals and plants and 
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also in other eukaryotic organisms (Tarver et al. 2012). They are expressed in a variety of 

tissues, developmental stages and in different environmental conditions and regulate the 

developmental and physiological processes (reviewed in (Rubio-Somoza and Weigel 2011; 

Sunkar et al. 2012; Willmann and Poethig 2007). They are generated from the 3’- or 5’- 

arm of the single stranded hairpin RNAs. The biogenesis of miRNA in plants starts from 

the transcription of the primary miRNAs (pri-miRNAs) by RNA Polymerase II. These pri-

miRNAs are recognized by the nuclear RNase enzyme called DICER-LIKE 1 (DCL1) and 

its accessory proteins called SERRATE (SE) and HYPONASTIC LEAVES1 (HYL1) and 

cleaved into precursor-miRNA (pre-miRNA) (Achkar et al. 2016; Axtell et al. 2011; 

Rogers and Chen 2013). DCL1 also cleaves the pre-miRNA to generate miRNA/miRNA* 

duplex. The miRNA/miRNA* is methylated at the 3′ terminus Hua Enhancer 1 (HEN1) 

and is then exported to the cytoplasm, possibly through HASTY (Achkar et al. 2016; Axtell 

et al. 2011; Bollman et al. 2003; Park et al. 2005; Rogers and Chen 2013). In cytoplasm, 

the miRNA/miRNA* duplex gets separated and the guide strand is loaded in to the RNA-

induced silencing complex (RISC) by binding to the Argonaute (AGO) proteins (Rogers 

and Chen 2013). The miRNA production itself is a tightly regulated process and associated 

with transcription and splicing. The plant miRNA biogenesis and the mode of action in 

plants is entirely different from the animals and other eukaryotes (Achkar et al. 2016).  

The transcriptional regulation by miRNA is considered an ancient evolutionary 

event, though, there is no concrete evidence to support this claim. A recent study analyzed 

the deposited miRNAs in miRBase, a miRNA database, concluded lack of evidence to 

confirm the authenticity of several conserved miRNA from different species (Taylor et al. 

2014). However, in the plant kingdom several conserved miRNAs such as miR156 and 
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miR166 were conserved and they regulate flower development (Luo et al. 2013b). Another 

example is a dicot-specific miRNA family, miR403, which targets AGO2 and AGO3 

(Cuperus et al. 2011) and acts as a feedback loop in its biogenesis. With the advent of high 

throughput sequencing methods, small RNA (sRNA) was sequenced from several plant 

species including wheat, and several novel miRNAs were identified (Jin et al. 2008; Kenan-

Eichler et al. 2011; Li et al. 2013; Yao and Sun 2012). Comparative genome analysis 

combined with the sRNA data also revealed several miRNAs that are conserved in the 

monocots (Dryanova et al. 2008; Wei et al. 2009). In wheat, several studies were done for 

the discovery of small RNAs that play role in biotic and abiotic stress conditions (Bai et al. 

2017; Chen et al. 2017; Gupta et al. 2012; Ragupathy et al. 2016; Song et al. 2017; Tang 

et al. 2012; Xin et al. 2010). 

In Plants, miRNAs are implicated in several aspects of growth and development as 

regulatory machinery. Many miRNAs identified to be involved in the regulation of plant 

development are conserved in plant kingdom (Cuperus et al. 2011; Rubio-Somoza et al. 

2009). In Arabidopsis, miR165/166 was found to regulate the shoot apical meristem (SAM) 

by targeting CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) family genes 

(Barton 2010; Zhou et al. 2015; Zhu et al. 2011). miR394 was shown to target LEAF 

CURLING RESPONSIVENESS (LCR) a F-box gene involved in shoot meristem 

maintenance (Knauer et al. 2013; Litholdo et al. 2016). Another miRNA, named miR156 

has been identified as major regulator in controlling phase transition. miR156 accumulates 

in juvenile plants and the level declines as the plant ages (Luo et al. 2013b; Teotia and 

Tang 2015). In transgenic Arabidopsis plants constitutively expressing miR156 were in 

juvenile phase for an extended period and the flowering is delayed. It targets SQUAMOSA 
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PROMOTER BINDING PROTEIN LIKE (SPL) family members (Huijser and Schmid 

2011).  

Several miRNAs were reported to be involved in the regulation of the root 

development in plants. Stem cell identity in root meristem is maintained by PLTs and were 

negatively regulated by GROWTH REGULATORY FACTOR (GRF) TFs. GRFs were 

regulated by miR396 which is known to control cell proliferation. In root meristem, PLT 

activates miR396 to repress the GRF expression thereby removing the suppression of PLTs 

thus forming a regulatory loop (Galinha et al. 2007; Rodriguez et al. 2015; Rodriguez et 

al. 2010; Rodriguez et al. 2016). It was shown that many of the auxin-related miRNAs 

control root development by modulating the auxin induced expression of root development 

genes in the root meristem. For example, miR160 family was reported to be regulating the 

root cap formation, gravity sensing, and root tip growth. miR160 regulates auxin 

responsive TFs, ARF10, 16, and 17 (Mallory et al. 2005; Nizampatnam et al. 2015; Wang 

et al. 2005). Another miRNA also targeting ARFs, miR167 was reported to control 

adventitious rooting in Arabidopsis and a crosslink between auxin and JA signaling 

pathways (Gutierrez et al. 2009; Gutierrez et al. 2012). In rice, miR167 also regulates ARF8 

and ARF12, which act on GH3 to control auxin signaling and Root architecture (Meng et 

al. 2010). In Arabidopsis, miRNA165/166 were mobile and directs the gradient of cell 

differentiation along the xylem axis. This phenomenon works in a dose-dependent manner 

and were activated by SHR (Carlsbecker et al. 2010; Miyashima et al. 2011).   
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FIGURE LEGENDS 

 

Figure 1.1 A schematic representation of the root of Arabidopsis thaliana. The apex 

of the Arabidopsis root consists of four distinct zones of growth activities: the division 

zone or meristem, the transition zone, the elongation zone, the differentiation or mature 

zone. The figure has been reproduced from Ubeda-Tomás et al. (2012). 

Figure 1.2 Schematic of Cell Types in the Arabidopsis Root Tip. (A) Transverse 

section. (B) Median longitudinal section. The figure has been reproduced from Van 

Norman et al. (2011). 
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FIGURES 

Figure 1.1 A schematic representation of the root of Arabidopsis thaliana. The apex 

of the Arabidopsis root consists of four distinct zones of growth activities: the division 

zone or meristem, the transition zone, the elongation zone, the differentiation or mature 

zone. The figure has been reproduced from Ubeda-Tomás et al. (2012). 
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Figure 1.2 Schematic of Cell Types in the Arabidopsis Root Tip. (A) Transverse 

section. (B) Median longitudinal section. The figure has been reproduced from Van 

Norman et al. (2011). 
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CHAPTER 2 

De Novo Assembly of Wheat Root Transcriptomes and 

Transcriptional Signature of Longitudinal Differentiation 
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ABSTRACT 

  

Hidden underground, root systems constitute an important part of the plant for its 

development, nourishment and sensing the soil environment around it, but we know very 

little about its genetic regulation in crop plants like wheat. In the present study, we de novo 

assembled the root transcriptomes in reference cultivar Chinese Spring from RNA-Seq 

reads generated by the 454-GS-FLX and HiSeq platforms. The FLX reads were assembled 

into 24,986 transcripts with the completeness of 54.84%, and the HiSeq reads were 

assembled into 91,543 high-confidence protein-coding transcripts, 2,404 low-confidence 

protein-coding transcripts� and 13,181 non-coding transcripts with the completeness of 

>90%. Approximately 7% of the coding transcripts and ~2% non-coding transcripts are not 

present in the current wheat genome assembly. Functional annotation of both assemblies 

showed similar gene ontology patterns and that ~7% coding and >5% non-coding 

transcripts are root-specific. Transcription quantification identified 1,728 differentially 

expressed transcripts between root tips and maturation zone, and functional annotation of 

these transcripts captured a transcriptional signature of longitudinal development of wheat 

root.  With the transcriptomic resources developed, this study provided the first view of 

wheat root transcriptome under different developmental zones and laid a foundation for 

molecular studies of wheat root development and growth using a reverse genetic approach.  

 

Keywords: Differential expression, RNA-Seq, Root, Transcriptome assembly, Wheat 
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INTRODUCTION 

 

As the “hidden half” of a plant, root systems provide plant water, nutrients, and an 

anchorage from the soil, produce growth regulators and sense soil environmental changes 

such as pH, moisture, and mineral content. A well-developed root system is critical for 

sustainable crop production. Despite the important roles in plant development and growth, 

our understanding of root development and growth is still very limited as compared to the 

aboveground half. Nevertheless, most knowledge of root biology comes from the model 

plant Arabidopsis. Rich genomic resources, non-soil cultivation and anatomical simplicity 

make the Arabidopsis root state of the art in plant biology at both molecular and cellular 

levels, including identification of many genes involving various aspects of root 

development, characterization of hormone interaction, cell type definition, and 

environmental responses (Petricka et al. 2012). Dicots and monocots differ significantly in 

root system architecture and cellular organization.  Compared to the tap root system in 

dicots, monocot roots are fibrous with large quiescent centers, the separate origin of 

endodermis and cortex in ground tissue, multiple layers of cortical cells with variable cell 

numbers, and multiple-tissue occurrence of lateral roots (Hochholdinger and Zimmermann 

2008). With a finished genome and relative ease of genetic transformation, rice has 

emerged a model for grass root biology study and provided a good amount of information 

(Coudert et al. 2010; Rebouillat et al. 2008). In contrast, very little information is available 

in the small-grain crops, including barley, oats, rye, and wheat, which grow in relatively 

dry conditions and have large genomes. 
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 Common wheat or bread wheat (Triticum aestivum L., genomes AABBDD) is a 

hexaploid species of relatively recent origin and one of the most important food sources, 

providing ~20% daily caloric consumption. As the most widely adapted crop, wheat plays 

an important role in the global food security. Mainly due to climate change, however, wheat 

production is facing numerous challenges from biotic stress and abiotic stress. 

Understanding the molecular mechanisms underlying root development, growth and the 

environmental response is a prerequisite for improving tolerance to the soil-borne stress, 

such as drought and waterlogging, using biotech approaches. Functional genomics has long 

been expected to play an important role in wheat root studies. Of the ~1.3 million wheat 

expressed sequence tags (ESTs) from 147 complementary DNA (cDNA) libraries, 26,849 

ESTs of 25 cDNA libraries were made from the root tissues of reference genotype Chinese 

Spring (CS; http://ncbi.nlm.nih.gov). But they are far apart from covering the root 

transcriptome, particularly for those transcripts that are low in abundance but important in 

function, such as transcription factors (TFs). Compared to the traditional EST development 

and microarray hybridization, RNA-Seq offers unprecedented capacity and resolution in 

revealing the landscape and dynamics of complex transcriptomes. As the sequencing cost 

continues to drop, RNA-Seq has been the favorite choice for transcriptome analysis of the 

non-model plant species (Strickler et al. 2012). Without finished genome sequences, the 

transcriptomes of the non-model species are assembled de novo. Although draft genome 

sequences of common wheat cultivar Chinese Spring (CS) (Brenchley et al. 2012; The 

International Wheat Genome Sequencing Consortium 2014) and the A-genome (Ling et al. 

2013) and D-genome progenitors of wheat (Jia et al. 2013) were reported recently, their 
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utility in transcriptome analysis remains to be tested. In another aspect, a de novo 

transcriptome assembly will also benefit annotation of the wheat genome. 

 To gain a global view of the allelic interaction and its effect on the root 

transcriptome at large and to lay a foundation for root functional genomics, we initiated a 

wheat transcriptome project. As the first stage, we sequenced the three root RNA samples 

of CS using 454 GS-FLX (Roche, Branford, CT, USA) and HiSeq (Illumina, San Diego, 

CA, USA) platforms. Assembly and quantification of the wheat root transcriptomes 

provide the first view of the transcriptional landscape of wheat root development. Here we 

report the de novo assembly of the root transcriptomes, characterization of the assembled 

transcripts, expression profiling of the genes in the root tip and the mature part of the roots, 

and their implication to wheat root development and growth.  

 

MATERIAL AND METHODS 

 

Plant material and RNA extraction  

RNA was extracted from the roots of CS seedlings in two germination experiments. In 

experiment 1, CS seeds were germinated in germination box on the tap water-wetted paper 

towels, and 3-mm root tips were harvested from the 3 days-old seedlings and frozen in 

liquid nitrogen. In experiment 2, the CS seeds were germinated in deep pots containing 

sands, and root tips of ~3mm (meristematic zone) and rest of the roots, mainly the 

maturation zone, were collected from seven-day-old seedlings separately, snap frozen in 

liquid nitrogen. Three biological replicates were included for each developmental zone. 

RNA was extracted using Trizol (Thermo Fisher Scientific, Waltham, MA) according to 
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the manufacturer’s instruction. The RNA samples were purified using the RNeasy mini kit 

(Qiagen, Valencia, CA). Concentration and integrity of the purified RNA samples were 

quantified was confirmed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 

Alto, CA), and samples with an RNA integrity number (RIN) greater than eight were used 

in the subsequent analyses. 

 

454 GS Titanium FLX sequencing 

Messenger RNA (mRNA) was extracted from total RNA derived from the experiment 1 

using a mRNA-only kit (Epicentre, Madison, WI, USA). The purified RNA was submitted 

to the Integrated Genomics Facility at Kansas State University, Manhattan, KS, for cDNA 

synthesis using random primers, for construction of a DNA sequencing library using a 

standard cDNA rapid library construction kit from 454/Roche and a sequencing run on a 

454/Roche Titanium platform.  

 

Illumina Sequencing 

RNA samples extracted from root tips and rest of the root tissue (mainly maturation zone) 

from plants grown in experiment 2 were submitted the DNA Core Facility at University of 

Missouri, Columbia, MO, for cDNA synthesis, sequencing library construction and 

sequencing. Six barcoded sequencing libraries for three biological replicates for the 

meristematic zone and three biological replicates for maturation zone were prepared using 

the TruSeq RNA Library Prep Kit (Illumina). These six libraries were pooled and 

sequenced in one lane on the HiSeq 2000 platform (Illumina) to generate 100 bp single-

end reads.  
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Quality control and preprocessing 

Adapter sequences used during the library preparation were trimmed from the 454-GS-

FLX reads using a Perl script from NGSQC toolkit (Patel and Jain 2012). Trimming of the 

HiSeq reads were performed using a Java-based program Trimmomatic (Lohse et al. 2012). 

The adapter-free reads were further filtered based on the quality using the prinseq 

(Schmieder and Edwards 2011). The parameters for quality trimming were set for a 

minimum mean quality of Q20 across the read and to trim low-quality bases at 3’ end. The 

minimum read length of 100 bp for the FLX reads, and 50 bp for HiSeq reads was used as 

cutoffs for length filtering. For the FLX reads with homopolymer sequences were trimmed 

using a Perl script from the NGSQC toolkit (Patel and Jain 2012). The reads corresponding 

to rRNA sequences were filtered using Ribopicker Perl script (Schmieder et al. 2012) using 

a plant rRNA sequence dataset generated from the rDNA sequences retrieved from NCBI 

(http://www.ncbi.nlm.nih.gov), TAIR (https://www.arabidopsis.org) and the rice genome 

annotation database  (http://rice.plantbiology.msu.edu).  

 

De novo assembly of the transcriptome 

All the assembling work was done on a server with 24 cores and 128GB RAM or 64 cores 

and 512GB RAM. The clean reads obtained from the 454 sequencing were assembled using 

Newbler program v2.6 from Roche, TGICL v2.1 (http://sourceforge.net/projects/tgicl/) 

(Pertea et al. 2003) and MIRA v3.9.17 (http://mira-assembler.sourceforge.net) (Chevreux 

et al. 2004). The assembly with Newbler was carried out with six different overlap 

percentages of identity, i.e., 95 -100% keeping the number of bases in overlap constant as 
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80bp, and a read was only assigned to one contig. TGICL and MIRA assemblies were done 

using the 98 % identity over a stretch of 80 bp and keeping the rest of the parameters 

default. 

The contigs and singletons from the Newbler 98% identity assembly were used to 

assemble with the 35,042 ESTs from 26 CS root-only libraries deposited in DFCI gene 

index, NCBI EST database (http://www.ncbi.nlm.nih.gov/genbank/dbest/dbest_access/) 

and Komugi wheat EST database 

(http://www.shigen.nig.ac.jp/wheat/komugi/ests/tissueBrowse.jsp). The hybrid assembly 

was carried out using CAP3 assembly program (Huang and Madan 1999) with a 98% 

identity across a minimum of 80-bp overlap.  

The purged HiSeq reads were assembled using Velvet/Oases program version 

1.0.14 (http://www.ebi.ac.uk/~zerbino/velvet/) (Schulz et al. 2012) with k-mer values 31, 

41, 51, 61, 71, 81 to get a better assembly. The contigs from all the k-mer assemblies were 

clustered using CD-HIT-EST (Li and Godzik 2006) at 99% identity (–c 0.95 –n 8 –T 0 –

M 0 –gap -2) to remove redundant contigs generated by different k-mers. To further extend 

the contigs, the non-redundant contigs from these multiple k-mer assemblies were 

assembled using TGICL program (Pertea et al. 2003) with 99% identity and 100-bp 

overlap.  

  

Evaluation of assemblies 

Both the FLX and the HiSeq reads used for the assemblies were mapped onto the 

corresponding assembled sequences using mapping tool in CLC Bio Genomic Workbench 

v6.0.1 (Qiagen, Carlsbad, CA) with parameters global alignment at 95% identity. The 
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quality of the assembly was evaluated by aligning the assembled contigs to the full-length 

(FL) cDNA sequences of wheat from TriFLDB database (Riken, Japan). The FL-cDNA 

sequences were downloaded from TriFLDB, and redundant sequences with an identity of 

99% were removed using CD-HIT program (Li and Godzik 2006). Eventually, 17,094 non-

redundant cDNA sequences were used for evaluating the completeness of our assembly.  

For evaluating the completeness of both the Newbler and Velvet assemblies, the program 

CEGMA was run on both the assemblies to determine the percent of the conserved core 

eukaryotic genes were assembled (Parra et al. 2007).  

 

Prediction of open reading frames and coding potential 

The root assemblies were aligned with eight proteomes from finished genomes, wheat 

protein sequences from TriFLDB, and barley protein sequences from TriFLDB and MIPS 

(http://pgsb.helmholtz-muenchen.de/plant/barley) databases using BLASTX algorithm. 

The sequences of the finished plant genomes, including those of Arabidopsis, rice, 

Brachypodium, sorghum, foxtail millet, maize, and switchgrass were retrieved from the 

Phytozome database (v11.0; https://phytozome.jgi.doe.gov/pz/portal.html). The BLASTX 

results were used to predict open reading frames (ORFs) by the findorf program (Krasileva 

et al. 2013). A second prediction was performed on the already predicted sequences by 

masking the first ORF to identify the misassembled transcripts that may arise during the 

de novo assembly. TransDecoder (https://github.com/TransDecoder/TransDecoder) was 

used to predict ORF from the leftover transcripts. The coding potential of the transcripts 

without predicted ORFs were analyzed using a potential coding calculator (CPC) with 

default setting using a webserver (http://cpc.cbi.pku.edu.cn/). 
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Functional annotation and GO assignment 

The assembled transcripts were annotated by performing a BLASTX search against the 

NCBI non-redundant (nr) protein database with an E-value of 10E-6 and minimum 

coverage of 100bp or 33aa. Gene Ontology (GO) assignment was performed using 

Blast2go software (www.blast2go.com). The assembled transcripts were further aligned 

against the Wheat Unigene dataset build 60 

(ftp://ftp.ncbi.nih.gov/repository/UniGene/Triticum_aestivum/) and against Arabidopsis, 

Rice and Brachypodium proteomes using command line BLASTX from NCBI v2.2.26 

with an e-value of 10E-6. The transcripts were also searched against the Triticeae Repeat 

sequence database (TREP) to identify the transposable elements (TEs) in the wheat root 

transcriptome. 

 

Separating homoeologous transcripts from the de novo assembled transcriptome 

To separate the homoeologous transcripts, we used the pipeline reported by (Krasileva et 

al. 2013) using Freebayes (https://github.com/ekg/freebayes) and Hapcut programs (Bansal 

and Bafna 2008) to phase the reads based on the SNPs found in the homoeologous genes 

of wheat. The phased reads were assembled into contigs using a Perl script, which employs 

the MIRA assembler v3.4.1.1 (Chevreux et al. 2004) and CAP3 (Huang and Madan 1999). 

 

Differential expression analysis in root tip and the mature root tissues 

The HiSeq reads from both the root tip and maturation zone samples were mapped to the 

de novo assembled transcriptome using the read mapping tool in CLC Bio Genomic 
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Workbench v6.5.1 (Qiagen, Carlsbad, CA, USA) with parameters set as 95% identity along 

the length of the read. Multiple mapping of the reads is limited to ten. The transcript 

abundance was calculated in terms of reads per kilobase of the transcript per million 

(RPKM) and transformed by adding a constant “1” to avoid zero values. The transformed 

expression values were normalized by median scaling method across all the biological 

replicates of both the samples. The transcripts differentially expressed in both the tissues 

were identified with a fold change of at least two and a false discovery rate (FDR) p-value 

of 0.05. The normalization, statistical tests, and the p-value correction were done using the 

inbuilt tools in the CLC Bio Genomics Workbench. The differentially expressed genes 

were mapped to the MapMan bins using the Mercator tool 

(http://mapman.gabipd.org/web/guest/app/mercator) (Lohse et al. 2014) and were 

represented on the metabolic pathways (http://mapman.gabipd.org/web/guest/mapman; 

v3.6.0RC1) (Usadel et al. 2009). 

 

  



	 65	

RESULTS 

 

Wheat root transcriptome datasets 

We sequenced the transcriptome of the CS root tip using the 454 GS-FLX platform 

(Roche), which generated 1,086,240 raw reads from a single pyrosequencing run. As the 

evolution of sequencing technologies, we subsequently sequenced six libraries, three for 

the root tips and three from the rest of root tissues using HiSeq 2000 platform (Illumina), 

which generated 192,767,620 single-end sequence reads of 100 bp length. All these 

sequence-reads went through the processing pipeline for trimming adapters/primer 

sequences at the ends of the reads and low-quality bases at the 3’ end of the reads and 

filtering all the reads with low quality (average Phred quality score of <20) and rRNA 

contamination. The quality filtering and removing rRNA contamination resulted in 

808,117 (74.4%) FLX reads and 169,286,239 (87.82%) HiSeq reads of high quality (Figure 

2.1 and Table 2.1). 

 

De novo assembly of FLX reads and annotation of wheat root transcriptome  

High quality reads from 454 sequencing were de novo assembled using Newbler software 

with different identity thresholds, from 95% through 100% of identity across 80 bp overlap 

to place two reads into a contig. The assemblies were analyzed for various parameters, 

including the number of reads used, the total number of contigs generated, number of 

contigs longer than 200bp, N50 length, longest contig length and average contig length, 

and mapped the reads back onto the assembled contigs to estimate the number of unmapped 

reads. A total of six assemblies were generated (Table 2.2). As expected, an increase of 
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sequence identity reduces N50, longest contig and average contig size, number of reads 

used and size of the assemblies, but increases the number of contigs and singletons. One 

exception to this is the largest contig length for the assembly with 97% identity, which is 

smaller than that of the assembly with the identity of 98%. The FLX reads were also 

assembled with other programs including MIRA and TGICL separately, and the quality of 

these assemblies was analyzed using the same output parameters used for the Newbler 

assemblies. The TGICL assembly generated more contigs (78,413) than any of the 

assemblies from Newbler or the MIRA. But the largest contig assembled and N50 was the 

smallest compared to the other assemblies. The assemblies generated by TGICL and MIRA 

are larger (50.3 and 52.43 Mbp) than the six assemblies generated by the Newbler. 

Although the Newbler assembly with 95 % identity has the largest contig size and N50, 

use of a lower identity would increase the probability of merging the homoeologous 

transcripts. With all the parameters considered, the Newbler assembly with the 98% 

identity is overall desirable (Table 2.2) and used for further analysis. The distribution of 

the size of transcripts assembled in this assembly was shown in figure 2.2. 

To improve our assembly of the root transcriptome generated from the FLX reads, 

we performed a hybrid assembly using the 24,986 contigs from the Newbler assembly with 

98% identity (Table 2.2) and 35,042 ESTs from the CS root. This merged 5,863 Newbler 

contigs with 11,940 ESTs into 4,812 CAP3 contigs. As a result, hybrid assembly reduced 

contig number from 24,986 to 23,935 and increased N50 from 815 to 887 and the longest 

contig size improved from 6699 bp to 6,747 bp. At the same time, 19,123 Newbler contigs 

and also 23,102 ESTs found no match, indicating that 454 sequencing expanded CS root 

transcriptome significantly, but its coverage is still low. This low coverage is confirmed by 
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the CEGMA assay, which showed the root transcriptome assembled from the FLX reads 

has a completeness of 54.84 % for full length conserved eukaryotic genes (CEGs) and 

85.08 % for the partial CEGs.   

 Approximately, 87% of the transcripts had BLASTX hits in NCBI nr protein 

database, of which 78% of the total transcripts were assigned with GO terms and 18% were 

assigned with enzyme commission (EC) annotation. For biological processes, >70% of GO 

items fall in top five categories, i.e., organic substance metabolic process (7,227), primary 

metabolic process (7,224), cellular metabolic process (5,388); biosynthetic process (3,458) 

and nitrogen compound metabolic process (2,852). For molecular functions, the top five 

categories account for >80% of the total GO items, i.e., heterocyclic compound binding 

(5,726), organic cyclic compound binding (5,726), small molecule binding (3,727), 

transferase activity (3,269) and hydrolase activity (3177). For cellular localization, >90% 

of the GO items were from the top three groups: intracellular (11,533), membrane-bounded 

organelle (6,923) and membrane (3,686) localization (Figure S1.1; Table S1.1). 

 

De novo assembly of HiSeq sequence reads 

We de novo assembled the clean reads that were obtained from the Illumina sequencing 

using the velvet program, which assembles short reads using the De Bruijn graph, with six 

different k-mers. Multiple k-mer assemblies generated a total of 1,372,996 sequence 

contigs. Contig files from all the assemblies with k-mer lengths of 31, 41, 51, 61, 71 and 

81 were concatenated, and the redundant contigs generated by different k-mer assemblies 

were clustered into the corresponding longest contigs using CD-HIT-EST. The 

concatenation resulted in 504,839 non-redundant sequences. These sequences were further 
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assembled again using TGICL program with an identity of 99% across a minimum overlap 

of 100 bp to extend the contigs and generated a final assembly of 148,984 transcripts, 

including 68,589 extended and merged contigs and 80,395 unextended sequences. After 

filtering the transcripts with a length of less than 200 bp, a total of 146,165 transcripts were 

assembled from the 169,282,312 quality HiSeq reads. We evaluated this assembly for 

various features. It has an N50 of 1,865 bp with the largest transcript of 21,400 bp and an 

assembly size of 210,848,484 bp. A run of the CEGMA program indicated that the root 

transcriptome assembled from the HiSeq reads had a completeness of 90.32% for full-

length CEGs and 92.4 % for the partial CEGs. 

 

Anatomy of wheat root transcriptome  

Alignment against the Triticeae Repeat database found that 6,692 assembled transcripts 

originated from or containing repetitive DNA sequences were expressed in the root. These 

repeated sequences include 3,421 miniature inverted transposable elements (MITEs), 2,401 

retrotransposons, 659 DNA transposons, 35 Helitron and 176 transposable elements of 

unknown classes (Figure 1.3). Also, 495 transcripts were found to contain repetitive 

sequences with transcript coverage of 90% or more, including LTRs, LINES, CACTA, 

Helitron and unknown classes of transposable elements. Compared to other TE species, 

MITEs are much smaller in size and mainly located in 3’ untranslated regions (UTRs). 

To predict the ORFs in the 142,894 non-TE transcripts, we performed a BLASTX 

run against various protein databases, and the BLASTX outputs were used with the findorf 

program to predict the coding sequences (cds) and protein sequences encoded by the 

transcripts. The program predicted ORFs in 116,833 transcript sequences, and the 
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remaining 26,061 sequences had no coding capacity. Of the 116,833 ORF-containing 

transcripts, 4,727 sequences had premature stop codons, and 18,000 sequences had frame-

shifts in their ORFs, suggesting that these 22,727 sequences were transcribed from 

pseudogenes. For the 94,106 transcripts that contain normal ORFs, running an iterative 

step of findorf with the first ORF masked found that 6,158 sequences contained a second 

ORF, suggesting that they were derived from misassemblies during the de novo assembly 

process. Therefore, a total of 87,948 transcripts contain unique ORFs. Further annotation 

of the 26,061 transcripts, from which no ORFs were predicted by findorf, using outputs of 

BLASTX against NCBI nr database predicted ORFs in 9,987 transcripts.  Of these 9,987 

transcripts, 4,244 transcripts were found to be pseudogenes with a frameshift or a 

premature stop codon in the ORF. And an iterative run with the masked ORF sequence 

found 2,148 transcripts were containing a second ORF. Thus, 3,595 transcripts were 

identified with a functional ORF, increasing the total transcripts with a predicted functional 

ORF to 91,543. These transcripts were considered high-confidence (HC) protein-coding 

transcripts.  

 The findorf program didn’t predict any ORF in the remaining 16,074 transcripts.  

Using TransDecoder (https://github.com/TransDecoder/TransDecoder), we identified only 

a single putatively functional ORFs in 2,404 of these 16,074 transcript sequences based on 

the pfam domain and the BLASTP hit against SWISSPROT database. These 2,404 

transcripts are therefore considered low-confidence (LC) protein-coding transcripts.  

The remaining 13,181 transcripts were left over without any predicted ORF present 

and further analyzed using the potential coding calculator (CPC).  Of the 13,181 transcripts, 

189 showed coding potential with the score ranging from 3.999 to 0.008, 12,705 showed 
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no coding potential with a potential coding score ranging from -0.008 to -1.572, and 287 

transcripts had no results returned by CPC. Considering that LC proteins are not confirmed 

in other plant genomes and due to the very low CPC for the noncoding transcripts, they 

were pooled and referred as non-ORF transcripts hereafter. 

We aligned the 91,543 ORF-containing transcripts and 16,074 non-ORF transcripts 

with the current version of the wheat genome assembly. The results showed that 58,341 

(63.7%) ORF-transcripts found matches in whole genome sequence with >97% identity 

and >50% length coverage. A majority (51,610) of these ORF-transcripts had hits in the 

predicted gene models (Figure S1.2), 6,252 ORF-transcripts did not show any sequence 

similarity to the predicted cDNA sequences, and 536 showed no homology to the wheat 

genome assembly. Of the 16,074 non-ORF transcripts, 10,931 hit the whole genome 

sequences with the above criteria, and 360 did not show any match in the wheat genome 

assembly.  Of the 10,931 matched non-ORF transcripts, 2,343 hit the predicted cDNA 

sequences with same parameters and remaining 8,588 only found matches in the wheat 

genome assembly but not in the predicted cDNA, suggesting that they are located either in 

the intergenic regions or introns. To further validate the 536 ORF-transcripts and 360 non 

ORF-transcripts that are not found in the IWGSC draft genome and gene build, we did a 

BLASTn search of these sequences against the 5x wheat genome sequences assembled 

using 454 sequencing platform (Brenchley et al. 2012). Only 20 HC protein-coding 

transcripts and 43 non-ORF transcripts were not found. All these indicate that the all the 

transcripts are present in the wheat genome, but the current wheat genome assembly and 

annotation is incomplete.  
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To gain insights into the organ specificity of the transcripts, we aligned the wheat 

root transcriptome assembly with the RNA-Seq reads from the aboveground tissues, i.e., 

leaf, stem, spike, and grain, of wheat plants, which are deposited in NCBI SRA database. 

Results showed that 6,222 (6.8%) of the 91,543 protein-coding transcripts and 834 (5.2%) 

of the 16,074 non-coding transcripts did not show significant similarity, indicating that 

they are root specific. 

Common wheat is a hexaploid species containing the A, B, and D genomes. During 

the de novo assembly of the reads into transcripts, the reads corresponding to the 

homoeologous genes can be merged into a single transcript rather than into separate 

transcripts due to high sequence similarity between the homoeologous genes (Brenchley et 

al. 2012; The International Wheat Genome Sequencing Consortium 2014). In our assembly 

pipeline, we merged multiple k-mer assemblies, which reduced the redundancy in the 

assembled contigs. This strategy also merged homoeologs with high sequence similarity 

into one contig. With available assembly algorithms and de novo assembly programs, 

however, it is difficult to assemble highly similar sequences into separate contigs. Using 

the homoeolog separation pipeline (Krasileva et al. 2013), we identified a total of 

13,664,029 polymorphic reads corresponding to the 34,506 of the 91,543 assembled 

transcripts with a predicted functional ORF. These reads were assembled into 115,692 

homoeologous blocks using the phasing information provided by the hapcut program.  

To gain an understanding of the sub-genome specific expression of the assembled 

root transcriptome, we pooled the chromosomes and the gene models in the draft genome 

into subsets of the A, B, and D genomes and aligned the ORF-transcripts and the non-ORF 

transcrits with them using the same parameters as above (Figure 2.4 and 2.5). The results 
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showed that 52,486 ORF-transcripts and 8,737 non-ORF transcripts had a hit in the genome 

and that 55,704 ORF-transcripts and 2,415 non-ORF transcripts had a hit and the cDNA. 

All these corroborate that the current assembly and annotation is incomplete for each sub-

genome. 

 

Functional annotation, classification, and comparative genomics 

The assembled transcripts were annotated by aligning against the NCBI nr protein 

database. Out of the 91,543 de novo assembled transcripts predicted with a functional ORF, 

86,477 (94.47%) transcripts have at least one hit in the nr database, and 5,066 (5.53%) 

transcripts with a predicted ORF don’t have a hit in the database. GO terms were assigned 

based on the annotation of the nr database, and 71,031 (77.59%) transcripts were assigned 

to at least one GO term. For 15,446 (16.87%) transcripts, there is a hit in the nr database, 

but no GO term is assigned. For biological processes, the top five GO groups account for 

>75% of the GO-assigned transcripts. These include macromolecule metabolic (13,687), 

organic cyclic compound metabolic (10,005), cellular aromatic compound metabolic 

(9,995), heterocycle metabolic (9,979) and cellular nitrogen compound metabolic process 

(9,970) (Figure S2.3A and Table S2.2). For molecular functions, top three GO groups, 

nucleoside phosphate binding (14213), nucleic acid binding (9898) and transferase activity, 

transferring phosphorus-containing groups (6356) account >42% of total GO-assigned 

transcripts (Figure S2.3B and Table S2.2). The assembled root transcriptome has 6,594 

transcripts coding for transcription factors (TFs) of 55 families. The C2H2 TF family is the 

largest with 1,409 members followed by Myb-HB-like (600), bHLH (517), HAP3/NF-YB 

(410) and AP2/EREBP (378) in the top five families (Figure 2.6 and Table S2.3). 
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 To further investigate the similarity of the wheat root transcriptome with the 

finished and draft genomes of model plants and other crops, we aligned the root transcripts 

with proteins sequences from Arabidopsis, Brachypodium, rice, sorghum, maize, Ae. 

tauschii, and T. urartu from NCBI and protein sequences for wheat and barley from 

RIKEN and MIPS using BLASTX. The hits from each database are compared. In the 

finished genomes, 74,302 (81.16%) transcripts had a match in all the genomes while 30, 

96, 156, 286, 1,182 transcripts were unique to Arabidopsis, sorghum, maize, rice, and 

Brachypodium, respectively. Whereas in the draft genomes and ESTs, only 50,210 

(54.84%) had a match owing to the incompleteness of the genomes (Figure 2.7). 

 

Differential expression analysis of root tip and the mature root tissues 

The reads from the libraries corresponding to the root tip and the mature part of the root 

were mapped to assembled transcripts, and their abundance was quantified in these two 

tissues. Of the 107,617 transcripts assembled, a total of 1,728 transcripts were found 

differentially expressed between the root tip and mature root tissues according to a 

comparison of expression levels with fold change (FC) ≥ 2 and a false discovery rate (FDR) 

of ≤ 0.05. Out of these 1,728, 1083 transcripts were more abundant in root tips, and 645 

transcripts were more abundant in the matured part of the root. A search of the NCBI nr 

database and the Arabidopsis TAIR database annotated 1,647 of the 1,728 differentially 

expressed transcripts (DETs). Remaining 81 transcripts had no annotation in both the 

databases, of which 27 transcripts have functional ORFs but do not have a match in the 

two databases used, whereas 54 were non-ORF transcripts, representing putative 

noncoding transcripts. Of the 27 transcripts containing ORFs but no annotation, 18 were 
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enriched in root tips and 9 in the mature root; and out of the 54 non-ORF transcripts, 25 

were enriched in root tips and 29 in mature root tissue.  

Of the 1,728 DETs in the root tips, 82 transcripts were without any predicted ORF 

and considered noncoding. Interestingly, 41 transcripts were up-regulated and 41 down-

regulated. For 15 transcripts upregulated in root tips transdecoder predicted single putative 

functional ORF and for another six transcripts were predicted with more than one ORF. In 

the down-regulated transcripts, 11 transcripts were predicted with a single ORF, and three 

transcripts were predicted with more than one ORF. 

We annotated the DETs by BLASTX against the protein databases and mapped 

them onto the metabolic pathways using MapMan. Full annotation of the DETs is listed in 

Table S2.4 and an overview of the metabolic pathways in which the differentially 

expressed genes in root tip and mature root were illustrated in Figure 2.8. Genes in several 

metabolic pathways showed consistent differential expression, including fatty acid (FA) 

metabolism, secondary metabolism, glycolysis and tricarboxylic acid (TCA) cycle, cell 

wall biosynthesis and degradation (Figure 2.8). A total of 248 DETs were represented on 

the overview pathway map (Figure 2.8). Of the 248 mapped transcripts, 51 were involved 

in the secondary metabolism, 43 in lipid metabolism, 38 in cell wall metabolism, 23 in 

amino acid metabolism, 20 in starch and sucrose metabolism, 20 in minor carbohydrate 

metabolism, 13 in glycolysis and TCA cycle and 15 in the mitochondrial electron transport 

pathway.  

Root tips include apical meristem, which maintains the high activity of cell 

division. In agreement with this, a significant number of up-regulated transcripts in the root 

tips were involved in the protein synthesis. These transcripts encode the ribosomal subunit 
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proteins (93 transcripts), translation (52 transcripts), chromatin structural proteins like 

histone proteins (39 transcripts), RNA binding and splicing components (27 transcripts), 

transcription factors (25 transcripts), and transport (21 transcripts) (Table S2.4).  Several 

metabolic pathways were up-regulated in root tips: TCA cycle and mitochondrial electron 

transport pathways, FA synthesis, terpene synthesis, and biosynthesis of aromatic amino 

acids Phe, Tyr and Trp. In contrast, mature root mainly functions in cell elongation, 

differentiation, the formation of root hairs and lateral roots and transportation of water and 

minerals. Accordingly, nine genes in the phenylpropanoid pathway for lignin biosynthesis 

were enriched in the mature root tissue in agreement with its function in water conduction. 

These include those encoding a phenyl ammonia lyase (PAL), a 4-hydroxycinnamoyl CoA 

ligase (4CL), a hydroxycinnamoyl-Coenzyme A shikimate/quinate 

hydroxycinnamoyltransferase (HCT), a cinnamoyl-CoA reductase (CCR), a Caffeate O-

methyltransferase (COMT) and four 4CL-like proteins. Except for the COMT, expression 

of these genes was induced in mature root tissues. Closely related to phenylpropanoid 

pathway, expression of the flavonoid pathway genes was also increased in the mature root. 

Pathways for FA degradation and biosynthesis of polar uncharged amino acids, Ser, Gly, 

and Cys, were also up-regulated in root tips (Table S2.4).  

Of the metabolites, carbohydrate metabolism regulates root development in 

numerous ways apart from providing energy and structural components, including 

gravitropism, osmotic adjustment, and sugars that often act as regulatory signals and are 

required for lateral root initiation. We found that 22 transcripts corresponding to the 

different enzymes in the starch and sucrose metabolism were differentially expressed in 

root tips and mature root tissues (Figure 2.8). Transcripts (TC039764, TC088166, and 
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TC088167) encoding for the AGPases, starch synthases and starch branching enzymes in 

the starch biosynthesis pathway were induced or up-regulated in the root tips. At the same 

time, transcripts encoding enzymes of starch degradation, such as starch D enzyme, starch 

phosphorylase, and heteroglycan glucosidase were induced in the root tips, indicating 

active starch metabolism in the root tip tissue. In another aspect, three transcripts 

(TC001776, TC071737, and TC110592) encoding sucrose synthase were induced in the 

mature root. 

Phytohormones, particularly auxin, brassinosteroids (BRs), jasmonic acid (JA) and 

abscisic acid (ABA), regulate almost every aspect of root development and growth.  

Numerous transcripts encoding hormone biosynthetic enzymes and transporters were also 

differentially transcribed between root tips and the mature root portion. Five auxin-

promoting transcripts, one encoding the auxin efflux carrier PINFORMED 2 (PIN2), 

similar to OsPIN2 of rice and AtPIN7 of Arabidopsis, and four coding for an auxin-

inducible 5NG4/Nodulin21-like protein (TC144456) and O-fucosyltransferases, were up-

regulated in the root tip compared to the mature root. In contrast, six auxin-suppressing 

transcripts, three encoding Aux/IAA proteins homologous to OsIAA2, OsIAA6, and 

OsIAA21 of rice, and three coding for indole-3-acetic acid (IAA)-amido synthase-like 

proteins, which prevent free IAA accumulation, were up-regulated in the mature root. 

Downstream in the auxin pathway, two transcripts, TC056398 and TC018213, encoding 

SMALL AUXIN UPREGULATED (SAUR) proteins were differentially expressed with 

the former induced in the root tip and the latter induced in the mature root. Three transcripts 

encoding ATP binding cassette subfamily B/multi-drug-resistance/P-glycoprotein 

(ABCB/MDR/PGP) were up-regulated in the root tips. These proteins were identified to 
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create auxin gradient together with other auxin influx carriers (Benkova and Hejatko 2009). 

In the BR biosynthesis pathway, four transcripts, one coding for a secologanin synthase, 

two for cycloartenol synthases, and one for the DWF1 protein, which is involved in the 

conversion of early brassinosteroid precursor 24-methylenecholesterol to campesterol 

(Choe et al. 1999), were up-regulated in the root tips. These results suggest that a higher 

auxin and BR level is maintained in root tips compared to the matured zone.  In the JA 

signaling pathway, three transcripts encoding the sulfotransferases similar to AtST2A, a 

protein involved in the reduction of the endogenous levels of 12-OH-JA (a by-product of 

switching off JA signaling) (Wasternack 2007), were up-regulated in the mature root, 

suggesting an opposite pattern for JA as compared to auxin and BRs. A complicated 

scenario was observed for ABA biosynthetic pathway. Three transcripts homologous to 

Arabidopsis ABA DEFICIENT 2 (ABA2)/SHORT-CHAIN 

DEHYDROGENASE/REDUCTASE 1 (SDR1) and one homologous to aldehyde oxidase 

2 (AAO2), a putative ABA aldehyde oxidase that may be functional in the last step of ABA 

biosynthesis (Kataoka et al. 2004), were induced in the mature root. Two transcripts coding 

for TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 1 (TTL1) were up-

regulated in root tips. TTL1 in Arabidopsis is required for elongation and organization of 

the root meristem and is involved in ABA signaling (Rosado et al. 2006).  Two transcripts 

encoding for cytokinin receptor HISTIDINE KINASE 3 were induced in the mature root. 

Transcription factors (TFs) are important regulators of gene expression. Expression 

of 112 transcripts encoding TFs of 21 families was altered in wheat root along the 

longitudinal axis. The major classes include AP2, bHLH, bZIP, MYB and MYB-related, 

homeodomain (HD), NAC families, and numbers and expression patterns of these TF 
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transcripts are shown in Figure 2.9. Notably, all 38 members of nine TF families, including 

three members of the GRAS family and 28 members of the NF-YB family, were induced 

in the root tips. By contrast, all 21 members of five TF families, including 12 members of 

the NAC family, four members of the HD family, were only induced in the mature root 

tissue. For the remaining seven TF families, such as the MYB family, 28 members were 

up-regulated, and 25 members were down-regulated in root tips (Figure 2.10).  Several 

differentially expressed TFs are homologous to the known genes functioning in root 

development in the model plants, including two members of the STY-LRP1 family 

upregulated in the mature root tissue, suggesting their involvement in lateral root 

development. Of the four members of the AP2 family that up-regulated in root tips, three 

are homologous to AINTEGUMENTA-like 5 of Ae. taushcii (AIL5; EMT02119) and 

another homologous to BABY BOOM 2 (BBM2; EMS64473) of T. urartu. Two transcripts 

encoding for the ARFs homologous to AUXIN RESPONSE FACTOR 6 Arabidopsis 

thaliana (AtARF6) were up-regulated in root tip, and another transcript encoding for ARF 

homologous to AtARF11 was induced in mature root part. One transcript (TC084552) 

encoding the Argonaute family member homologous to AtAGO4 that is associated with 

24-nt small RNA and involved in RNA dependent DNA methylation (Zilberman et al. 

2003) was induced in root tips. 

 

DISCUSSION 

 

Growing and functioning underground complicates root studies by using traditional 

approaches, leaving a gap in our understanding of wheat development and growth. 
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Transcriptome analysis by RNA-Seq technology promises new opportunities for studying 

root development. RNA-Seq technology has been used to characterize the response of 

wheat root transcriptome to phosphate starvation (Oono et al. 2013) and infection of 

Gaeumannomyces graminis var. tritici, a pathogen of take-all root rot disease (Yang et al. 

2015), but a reference transcriptome of wheat root and developmental expression pattern 

are not available. The present study developed and characterized a de novo assembly of 

wheat root transcriptome containing 94,106 transcripts that contain unique ORFs and 

identified 1,728 differentially expressed transcripts between the root tip and mature root 

tissues. All this will provide a global view of wheat root transcriptome and start point for 

a molecular understanding of root development and improving soil-related stress tolerance 

in a reverse genetics approach. 

 

Root transcriptome assemblies 

We assembled the FLX reads into a transcriptome of 19,123 Newbler contigs with >50% 

completeness and the HiSeq reads into a transcriptome of 146,165 transcripts with >90% 

completeness. For the FLX reads, the Newbler assemblies performed better overall on the 

statistics metrics than TGICL and Mira. Compared to the recently reported transcriptome 

assemblies of wheat (Cantu et al. 2011), barley (Bedada et al. 2014), Persea Americana 

(Reeksting et al. 2014) and smooth cordgrass (Bedre et al. 2016), our Newbler assembly 

showed comparable or even better statistic metrics including N50 value and percentage of 

assembled reads. Compared to the Newbler assembly of the pyrosequencing reads, the 

assembly of the HiSeq reads had a much greater N50 value, assembly size, and 

completeness mainly due to the large read number. A total of 1,749 transcripts from the 
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HiSeq assembly found matches in the wheat genome sequences but did not get hits in the 

publicly available RNA-Seq reads from the wheat roots. This discrepancy is mainly due to 

the enrichment of them in root tips by separation of root tips from the rest of root in the 

present study.   All these corroborate sound quality and high content of information of the 

HiSeq assembly of the wheat root transcriptome.  

 Common wheat is a hexaploid species with A, B, and D genomes and a total of 

94,000 to 120,000 protein-coding genes (Brenchley et al. 2012; The International Wheat 

Genome Sequencing Consortium 2014). Of the 91,543 transcripts, 34,506 were separated 

into 115,692 homoeologous blocks. If each of these 34,506 transcripts was derived from 

merging of at least two homoeologous transcripts, the total number of transcripts in the 

root assembly would be >126,049, excessing the total gene number, implying the existence 

of isoforms of transcripts due to alternative splicing, which is enhanced in polyploid wheat 

(Akhunov et al. 2013). In another aspect, 6.8% protein-coding transcripts did not find a 

match in the current assembly of the wheat genome, indicating the incompleteness of wheat 

genome assembly. In these respects, the wheat root transcriptome assemblies from this 

research can be used for improving wheat genome assembly and annotation. 

 Of the 146,165 transcripts in the final assembly of the HiSeq reads, 91,543 

transcripts contain predicted functional ORFs, and 13,181 transcripts have no coding 

capacity and do not show homology to degenerated TEs, suggesting that they were 

transcribed as polyadenylated long non-coding RNAs (lncRNAs). LncRNAs condition 

gene expression in plants by regulating histone modification, transcription machinery, 

RNA processing machinery and posttranscriptional (Liu et al. 2015a). The 13,181 lncRNA 

transcripts, particularly the 55 lncRNA transcripts differentially expressed between root tip 
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and mature root, are an important resource for studying lncRNA regulation of root 

development.  

Gene expression and root development 

Although root has a much simpler anatomical structure as compared to the shoot and 

flower, it grows in a very different environment, underground, implying the existence of 

root-specific expression patterns including a set of root-specific genes. We found that 6.8% 

of the protein-coding genes are specifically expressed in root, not in the aboveground 

portion of wheat plants. Further characterization of these root-specific genes using reverse 

genetics approaches will shed new light on root development. 

Current assembly of wheat root transcriptome contains 91,543 HC protein-coding 

transcripts and 16,074 non-ORF transcripts, but only a small fraction of the transcriptome, 

1.17%, was differentially expressed in the root tip and mature root tissues, similar to the 

result obtained in rice (Kyndt et al. 2012).  In rice, 1,761 of the 2,067 DETs showed higher 

transcription level in the mature root tissue (Kyndt et al. 2012). Opposite to the finding in 

rice, 1,083 of 1,728 wheat DETs were up-regulated or induced in the root tips. 

 Root tip and mature root tissues differ in several functional aspects, and these 

differences are reflected at the transcriptome level. First of all, root tips contain apical 

meristem for maintaining cell division capacity. Consistent with this, several TFs for 

maintaining meristem indeterminacy, such as GRAS TFs homologous to AtHAM2 and 

AtHAM3 of Arabidopsis (Engstrom et al. 2011) and AP2 TFs homologous to AIL5 (Nole-

Wilson et al. 2005) and BABY BOOM (Galinha et al. 2007), were up-regulated in root 

tips. Besides, numerous genes related auxin transport and response are up-regulated in root 

tips and auxin catabolic, and auxin signal suppressor genes were down-regulated in root 
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tips. BR is critical in the regulation of cell expansion (Jaillais and Vert 2016), and increased 

expression of three BR biosynthetic genes in root tips was probably due to the partial 

inclusion of elongation zone in the root tip samples. Another important function of root 

tips is to percept gravitropism, which is achieved through starch statoliths (Fitzelle and 

Kiss 2001). In agreement with this function, transcription of 19 starch metabolic genes was 

up-regulated in root tips (Figure 2.8). In another aspect, the matured root part mainly 

functions in transporting water and minerals, which is achieved by development of lateral 

roots, root hairs, and vascular system. For lateral root development, four lateral root-

promoting TF genes including two LRP1 (Smith and Fedoroff 1995), a KUODA1 (Lu et 

al. 2014), and an AtNAC1 homolog, were up-regulated in the mature zone, and an 

AtMBY93 of Arabidopsis, a negative regulator of lateral root (Gibbs and Coates 2014), 

was down-regulated in the mature zone. Increased expression of sucrose synthase in the 

mature zone may also be related to lateral root development as seen in soybean (Liu et al. 

2015b). Another difference of mature zone from root tips lies in the differentiation of 

vascular bundles. In this respect, nine lignin biosynthetic genes and a homolog of 

SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 2, encoding a NAC TF 

activating the lignin biosynthetic genes (Hussey et al. 2011), were up-regulated in the 

mature root portion.  

Development of the root transcriptome assembly and identification of the DETs lay 

a foundation for molecular studies of wheat root biology and for improving soil-borne 

stress tolerance. In this respect, the recent development of sequence-cataloged TILLING 

libraries (Krasileva et al. 2017) will be very helpful in validating the function of DETs and 

homologs of root regulators identified in the model plant Arabidopsis and rice. Genome 
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editing technologies also can be used for targeting the candidate genes in wheat for 

functional validation (Wang et al. 2014). 

In summary, we assembled a wheat root transcriptome containing 91,543 protein-

coding and 16,074 non-ORF transcripts, 6.8% and 5.2% of which, respectively, are root 

specific. Approximate 6.8% of coding transcripts and ~2.2% of non-ORF transcripts were 

not found in the current wheat genome assembly. We also identified 1,728 transcripts 

differentially transcribed in root tip and mature root tissues. Annotation of these DETs 

provides a blueprint of molecular regulation of wheat root development. Thus, they are 

important candidates for in-depth analysis of wheat root development by TILLING, 

genome editing or other reverse genetics approaches. 

 

Data availability. The raw FLX reads, and HiSeq reads are deposited in the sequence read 

archive at the National Center for Biotechnology Information under the bioproject id 

PRJNA419079. The Newbler assembly of the FLX reads, and the final assembly of the 

HiSeq reads are deposited in GrainGenes database. 
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Table 2.1 Quality control and filtering of reads from 454 and Hiseq sequencing 
Sequencing runs Total Raw Reads Quality Filter Contaminants High-quality reads 
454 Reads (root tips) 1,086,240 196,306 81,817 808,117 (74.4%) 
Root tip Replicate 1 31,803,479 4,040,700 382,197 27,380,582 (86.09%) 
Root tip Replicate 2 34,133,444 3,794,965 419,609 29,918,870 (87.65%) 
Root tip Replicate 3 34,873,477 3,632,386 454,067 30,787,024 (88.28%) 
Mature root replicate 1 25,348,308 2,801,923 233,118 22,313,267 (88.03%) 
Mature root replicate 2 37,575,294 3,886,507 379,931 33,308,856 (88.65%) 
Mature root replicate 3 29,033,618 3,166,220 293,685 25,573,713 (88.08%) 
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Table 2.2 De novo assemblies of the FLX reads using Newbler, TGICL and Mira 

Assembly parameters 95% 

identity 

96% identity 97% identity 98% identity 99% identity 100% identity TGICL Mira 

Total contigs (>200bp) 23,418 23,497 24,140 24,986 25,548 22,544 78,413 73,084 

Avg contig size 749.87 742.22 722.04 696.92 675.54 660.86 641.53 717.46 

N50 (bp) 905 893 857 815 787 737 672 762 

Large Contigs >500bp 14,720 14,640 14,866 15,122 15,400 14,314 52,763 53,271 

% Large Contigs 62.86 62.31 61.58 60.52 60.28 63.49 67.29 72.89 

Large contigs N50 1,046 1,033 994 951 912 835 747 828 

Largest Contig size (bp) 7,528 6,892 5,977 6,699 5,598 3,787 3,451 5,199 

Assembly size (bp) 17,560,564 17,439,938 17,429,939 17,413,219 17,258,803 14,898,493 50,304,196 52,434,582 

Reads used in assembly 697,311 691,259 681,502 662,618 624,961 518,627 686,622 506,290 

% Assembled reads 86.31 85.56 84.35 82.02 77.35 64.19 84.99 62.67 

Singletons 95,262 100,789 109,525 125,932 159,474 234,805 121,295 110,157 

% Singletons 11.79 12.48 13.56 15.59 19.74 29.06 15.01 13.63 
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Table 2.3 Assembly statistics for the Newbler, TGICL and Mira assemblies with 98% 

identity  

Parameters Newbler TGICL Mira 

Total Sequences (contigs+singletons) 

(>200bp) 122,086 181,533 155,628 

Avg contig size 443.45 487.93 530.41 

N50 (bp) 450 493 546 

Largest Contig size (bp) 6,699 3,451 5,199 

Large Contigs >500bp 22,047 58,467 57,927 

% Large Contigs 18.06 32.21 37.22 

Large contigs N50 810 725 808 

Assembly size (Mbp) 54.14 88.58 82.55 
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Table 2.4 Hybrid assembly details 

Input:    

Newbler contigs  30,047 

454 singletons  125,932 

Sanger ESTs  35,042 

 

Output: 

 

 

Assembly size (>200bp)  49.45 Mbp 

Total CAP3 contigs  43,109 

Extended Newbler or new contigs  24,149 

Newbler only contigs  18,960 

454 singletons  58,020 

N50  489 bp 

Average contig size  490 bp 

Largest contig size  6,747 bp 
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Figure legends 

 

Figure 2.1 A flowchart of the assembly and annotation strategy for root transcriptome. 

Parameters for assemblies by Velvet/Oases, CD-HIT and TGICL-CAP3 are indicated in 

the parentheses. 

 

Figure 2.2 Distribution of transcript length of the Newbler assembly of the root 

transcriptome. Numbers in the X-axis indicate the length of the transcript in bp, and 

numbers in the Y-axis indicate the quantity of the transcripts. 

 

Figure 2.3 Transposable elements expressed in root transcriptome. The pie chart presents 

the different classes of the transposable elements expressed in the root tissues. The numbers 

after the transposon class are the number of transcripts in each class expressed in the root 

transcriptome. DNA_unknown, unknown DNA transposons; MITE, miniature inverted-

repeat transposable elements; LINE, long interspersed elements; and SINE, short 

interspersed elements. 

 

Figure 2.4 Venn diagram showing the distribution of protein-coding and non-ORF 

transcript nucleotide sequence alignment with the IWGSC draft genome sequences 

separated into sub-genomes. A) Distribution of the alignment of protein-coding transcripts 

with the sub-genome separated chromosome sequences. B) Distribution of the alignment 

of non-ORF transcripts with the sub-genome separated chromosome sequences. The sub-
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genomes A, B, and D are represented by color, and the numbers within the circles indicate 

the number of transcripts aligned in each of the sub-genomes. 

 

Figure 2.5 Venn diagram showing the distribution of protein-coding and non-ORF 

transcript nucleotide sequence alignment with the IWGSC cDNA sequences separated into 

sub-genomes. A) Distribution of the alignment of protein-coding transcripts with the sub-

genome separated cDNA sequences. B) Distribution of the alignment of non-ORF 

transcripts with the sub-genome separated cDNA sequences. The sub-genomes A, B, and 

D are represented by color, and the numbers within the circles indicate the number of 

transcripts aligned in each of the sub-genomes. 

 

Figure 2.6 Transcription factor (TF) families expressed in both the root tissues used in the 

study. Numbers of transcripts in each TF family are indicated on the X-axis, and names of 

the TF families are indicated on the Y-axis. 

 

Figure 2.7 Venn diagrams showing the similarity of wheat root transcriptome with finished 

and draf genomes of model and crop plants. A) Comparision of the root transcripts against 

the protein sequences of finished genomes. B) Comparision of root transcripts against the 

protein sequences of draft genomes and assembled ESTs. Arabidopsis (TAIR   v10); Rice 

(RGAP v 7); Brachypodium (Pyhtozome, Bd192); Sorghum (Phytozome, Sb79); Maize 

(Phytozome, Zm181); Ae. Taushii (Jia et al., 2012); Urartu (Triticum urartu) (Ling et al., 

2013); Wheat_RIKEN_ESTs  and Barley_RIKEN – translated protein sequences from 

assembled ESTs at RIKEN (http://trifldb.psc.riken.jp/v3/index.pl); Barley_MIPS – protein 
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sequences from barley genome from MIPS (ftp://ftpmips.helmholtz-

muenchen.de/plants/barley/public_data/). 

 

Figure 2.8 An overview of the differentially expressed transcripts mapped onto the 

metabolic pathways. The differentially expressed genes were mapped onto the metabolic 

pathways using MAPMAN software. Each box represents a transcript, and the red colored 

ones are the up-regulated in the mature root tissues, and the blue colored ones are induced 

in the root tips. A fold change scale is indicated in the lower right corner. 

 

Figure 2.9 Differentially expressed genes in root tips and mature root involved in the starch 

biosynthesis. The transcripts encoding for the enzymes involved in the starch and sucrose 

metabolism were represented each by a box. The blue colored are induced in the root tips 

and the mature root tissue. A fold change scale is indicated in the upper right corner. 

 

Figure 2.10 Transcription factor (TF) families differentially expressed in root tip and the 

mature root tissues. Numbers of transcripts in each TF family are indicated on the X-axis, 

and names of the TF families are indicated on the Y-axis. The striped bars are the 

transcripts induced in mature root and the solid black bars in the root tips. 
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Supplementary figure legends 

 

Figure S2.1 Gene Ontology (GO) classification of the de novo assembled 454 contigs. (A) 

Biological processes, (B) Molecular functions, and (C) Subcellular localization. The GO 

categories are indicated on the X axis, and the number of transcripts in each category is 

indicated on the Y axis. 

 

Figure S2.2 Alignment statistics of the de novo assembled root transcriptome against the 

genomic and the predicted cDNA sequences from the hexaploid wheat draft genome. (A) 

A clustered and stacked bar chart showing the coverage percent and the identity percent 

of the root transcripts with predicted ORFs against the genomic and the DNA sequences 

of the draft genome. (B) A clustered and stacked bar chart showing the coverage percent 

and the identity percent of the root transcripts with without predicted ORFs against the 

genomic and the DNA sequences of the draft genome. The bars are stacked by the 

percent identity (represented by color) of the alignment and are clustered by the percent 

of the query covered in the alignment (shown by the labels on the top of each cluster). 

The databases against which the transcripts were compared are indicated on the X-axis. 

The number of transcripts in each bin are indicated on Y-axis. 

 

Figure S2.3 Gene Ontology (GO) classification of the Root transcripts with predicted 

ORFs. (A) Biological processes (B) Molecular functions (C) Subcellular localization. The 

GO categories are indicated on the X-axis, and the number of transcripts in each category 

is indicated on Y-axis. 
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FIGURES 

 

 

Figure 2.1 A flowchart of the assembly and annotation strategy for root transcriptome. 

Parameters for assemblies by Velvet/Oases, CD-HIT, and TGICL-CAP3 are indicated in 

the parentheses. 
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Figure 2.2 Distribution of transcript length of the Newbler assembly of the root 

transcriptome. Numbers in the X-axis indicate the length of the transcript in bp, and 

numbers in the Y-axis indicate the quantity of the transcripts. 
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Figure 2.3 Transposable elements expressed in root transcriptome. The pie chart presents 

the different classes of the transposable elements expressed in the root tissues. The numbers 

after the transposon class are the number of transcripts in each class expressed in the root 

transcriptome. DNA_unknown, unknown DNA transposons; MITE, miniature inverted-

repeat transposable elements; LINE, long interspersed elements; and SINE, short 

interspersed elements. 
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Figure 2.4 Venn diagram showing the distribution of ORF and non-ORF transcript 

nucleotide sequence alignment with the IWGSC draft genome sequences separated into 

sub-genomes. A) Distribution of the alignment of protein-coding transcripts with the sub-

genome separated chromosome sequences. B) Distribution of the alignment of non-ORF 

transcripts with the sub-genome separated chromosome sequences. The sub-genomes A, 

B, and D are represented by color, and the numbers within the circles indicate the number 

of transcripts aligned in each of the sub-genomes. 
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Figure 2.5 Venn diagram showing the distribution of ORF and non-ORF transcript 

nucleotide sequence alignment with the IWGSC cDNA sequences separated into sub-

genomes. A) Distribution of the alignment of protein-coding transcripts with the sub-

genome separated cDNA sequences. B) Distribution of the alignment of non-ORF 

transcripts with the sub-genome separated cDNA sequences. The sub-genomes A, B, and 

D are represented by color, and the numbers within the circles indicate the number of 

transcripts aligned in each of the sub-genomes. 
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Figure 2.6 Transcription factor (TF) families expressed in both the root tissues used in the 

study. Numbers of transcripts in each TF family are indicated on the X-axis, and names of 

the TF families are indicated on the Y-axis. 
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Figure 2.7 Venn diagrams showing the similarity of wheat root transcriptome with finished 

and draft genomes of model and crop plants. A) Comparision of the root transcripts against 

the protein sequences of finished genomes. B) Comparision of root transcripts against the 

protein sequences of draft genomes and assembled ESTs. Arabidopsis (TAIR   v10); Rice 

(RGAP v 7); Brachypodium (Pyhtozome, Bd192); Sorghum (Phytozome, Sb79); Maize 

(Phytozome, Zm181); Ae. Taushii (Jia et al., 2012); Urartu (Triticum urartu) (Ling et al., 

2013); Wheat_RIKEN_ESTs  and Barley_RIKEN – translated protein sequences from 

assembled ESTs at RIKEN (http://trifldb.psc.riken.jp/v3/index.pl); Barley_MIPS – protein 

sequences from barley genome from MIPS (ftp://ftpmips.helmholtz-

muenchen.de/plants/barley/public_data/). 
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Figure 2.8 An overview of the differentially expressed transcripts mapped onto the 

metabolic pathways. The differentially expressed genes were mapped onto the metabolic 

pathways using MAPMAN software. Each box represents a transcript, and the red colored 

are the up-regulated in the mature root tissues and the blue colored are induced in the root 

tips. A fold change scale is indicated in the lower right corner. 
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Figure 2.9 Differentially expressed genes in root tips and mature root involved in the starch 

biosynthesis. The transcripts encoding for the enzymes involved in the starch and sucrose 

metabolism were represented each by a box. The blue colored ones are induced in the root 

tips and the mature root tissue. A fold change scale is indicated in the upper right corner. 
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Figure 2.10 Transcription factor (TF) families differentially expressed in root tip and the 

mature root tissues. Numbers of transcripts in each TF family are indicated on the X-axis, 

and names of the TF families are indicated on the Y-axis. The striped bars are the 

transcripts induced in mature root and the solid black bars in the root tips. 
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SUPPLEMENTARY FIGURES 

Figure S2.1 Gene Ontology (GO) classification of the de novo assembled 454 contigs. 

(A) Biological processes (B) Molecular functions (C) Subcellular localization. The GO 

categories are indicated on the X-axis, and the number of transcripts in each category is 

indicated on Y-axis. 
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Figure S2.2 Alignment statistics of the de novo assembled root transcriptome against the 

genomic and the predicted cDNA sequences from the hexaploid wheat draft genome. (A) 

Aclustered and stacked bar chart showing the coverage percent and the identity percent of 

the root transcripts with predicted ORFs against the genomic and the DNA sequences of 

the draft genome. (B) A clustered and a stacked bar chart showing the coverage percent 

and the identity percent of the root transcripts with without predicted ORFs against the 

genomic and the DNA sequences of the draft genome. The bars are stacked by the 

percent identity (represented by color) of the alignment and are clustered by the percent 

of the query covered in the alignment (shown by the labels on the top of each cluster). 

The database against which the transcripts were compared is indicated on the X-axis. The 

number of transcripts in each bin is indicated on Y-axis. 
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Figure S2.3 Gene Ontology (GO) classification of the Root transcripts with predicted 

ORFs. (A) Biological processes (B) Molecular functions (C) Subcellular localization. The 

GO categories are indicated on the X-axis, and the number of transcripts in each category 

is indicated on Y-axis. 
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SUPPLEMENTARY TABLES 

 

Table S2.1: GO classification of the 454 de novo assembled root transcripts 

A) Biological processes 

GO Term GO Name No. of 

Transcripts 

GO:0071704 organic substance metabolic process 7227 

GO:0044238 primary metabolic process 7224 

GO:0044237 cellular metabolic process 5388 

GO:0009058 biosynthetic process 3458 

GO:0006807 nitrogen compound metabolic process 2852 

GO:0051234 establishment of localization 1867 

GO:0009056 catabolic process 1526 

GO:0044710 single-organism metabolic process 1350 

GO:0016043 cellular component organization 1034 

GO:0044763 single-organism cellular process 963 

GO:0006950 response to stress 928 

GO:0050789 regulation of biological process 580 

GO:0044700 single organism signaling 547 

GO:0044707 single-multicellular organism process 266 

GO:0009719 response to endogenous stimulus 265 

GO:0009628 response to abiotic stimulus 236 

GO:0048856 anatomical structure development 171 
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GO:0065008 regulation of biological quality 162 

GO:0016265 death 107 

GO:0009607 response to biotic stimulus 106 

GO:0044767 single-organism developmental process 105 

GO:0009605 response to external stimulus 77 

GO:0022414 reproductive process 56 

GO:0044706 multi-multicellular organism process 16 

GO:0048610 cellular process involved in reproduction 10 

   

B) Molecular function 

GO Term GO Name No. of 

Transcripts 

GO:1901363 heterocyclic compound binding 5726 

GO:0097159 organic cyclic compound binding 5726 

GO:0036094 small molecule binding 3727 

GO:0016740 transferase activity 3269 

GO:0016787 hydrolase activity 3177 

GO:0005215 transporter activity 1130 

GO:0005515 protein binding 1038 

GO:0005198 structural molecule activity 767 

GO:0003700 sequence-specific DNA binding transcription 

factor activity 

295 

GO:0030234 enzyme regulator activity 243 
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GO:0004872 receptor activity 208 

GO:0004871 signal transducer activity 136 

GO:0030246 carbohydrate binding 135 

GO:0008289 lipid binding 101 

GO:0003682 chromatin binding 38 

GO:0019825 oxygen binding 6 

GO:0045182 translation regulator activity 1 

   

C) Subcellular localization 

GO Term GO Name No. of 

Transcripts 

GO:0005622 intracellular 11533 

GO:0043227 membrane-bounded organelle 6923 

GO:0016020 membrane 3686 

GO:0043228 non-membrane-bounded organelle 964 

GO:0032991 macromolecular complex 689 

GO:0071944 cell periphery 506 

GO:0043233 organelle lumen 107 

GO:0012505 endomembrane system 47 

GO:0031975 envelope 47 

GO:0005578 proteinaceous extracellular matrix 4 

GO:0005615 extracellular space 1 
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Table S2.2: GO classification of the root transcripts with predicted ORFs. 

A) Biological processes 

GO Term GO Name No. of 

Transcripts 

GO:0043170 macromolecule metabolic process 13687 

GO:1901360 organic cyclic compound metabolic process 10005 

GO:0006725 cellular aromatic compound metabolic process 9995 

GO:0046483 heterocycle metabolic process 9979 

GO:0034641 cellular nitrogen compound metabolic process 9970 

GO:0006810 transport 6533 

GO:0007275 multicellular organismal development 4335 

GO:0007154 cell communication 3574 

GO:0005975 carbohydrate metabolic process 3446 

GO:0050794 regulation of cellular process 3180 

GO:0051716 cellular response to stimulus 2992 

GO:0006629 lipid metabolic process 2656 

GO:0044249 cellular biosynthetic process 2369 

GO:1901576 organic substance biosynthetic process 2362 

GO:0009653 anatomical structure morphogenesis 1586 

GO:0006091 generation of precursor metabolites and energy 1156 

GO:0003006 developmental process involved in reproduction 971 

GO:0048869 cellular developmental process 915 

GO:0007049 cell cycle 894 
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GO:0016049 cell growth 820 

GO:0019748 secondary metabolic process 803 

GO:0042592 homeostatic process 602 

GO:0008219 cell death 572 

GO:0044703 multi-organism reproductive process 516 

GO:0006793 phosphorus metabolic process 478 

GO:0019222 regulation of metabolic process 471 

GO:0009991 response to extracellular stimulus 459 

GO:0044281 small molecule metabolic process 308 

GO:0055114 oxidation-reduction process 305 

GO:0015979 photosynthesis 258 

GO:1901564 organonitrogen compound metabolic process 257 

GO:0010033 response to organic substance 225 

GO:1901700 response to oxygen-containing compound 206 

GO:0010035 response to inorganic substance 186 

GO:0009606 tropism 179 

GO:0051707 response to other organism 174 

GO:1901575 organic substance catabolic process 171 

GO:0044248 cellular catabolic process 167 

GO:0006970 response to osmotic stress 161 

GO:0006952 defense response 153 

GO:1901135 carbohydrate derivative metabolic process 147 

GO:0009266 response to temperature stimulus 125 
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GO:0044711 single-organism biosynthetic process 110 

GO:0009314 response to radiation 109 

GO:0006979 response to oxidative stress 108 

GO:1901657 glycosyl compound metabolic process 105 

GO:0006996 organelle organization 104 

GO:0071554 cell wall organization or biogenesis 82 

GO:0045229 external encapsulating structure organization 73 

GO:0051641 cellular localization 72 

GO:0008104 protein localization 68 

GO:0071495 cellular response to endogenous stimulus 67 

GO:0048519 negative regulation of biological process 54 

GO:0022607 cellular component assembly 52 

GO:0010817 regulation of hormone levels 50 

GO:1901615 organic hydroxy compound metabolic process 49 

GO:0009611 response to wounding 47 

GO:0048583 regulation of response to stimulus 46 

GO:0051301 cell division 45 

GO:0048589 developmental growth 44 

GO:0007568 aging 43 

GO:0021700 developmental maturation 43 

GO:0080167 response to karrikin 42 

GO:0051186 cofactor metabolic process 41 

GO:0043933 macromolecular complex subunit organization 40 
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GO:0009888 tissue development 39 

GO:0048518 positive regulation of biological process 38 

GO:0050793 regulation of developmental process 36 

GO:1901698 response to nitrogen compound 32 

GO:0070271 protein complex biogenesis 31 

GO:0051239 regulation of multicellular organismal process 30 

GO:0006790 sulfur compound metabolic process 28 

GO:0071496 cellular response to external stimulus 28 

GO:0044712 single-organism catabolic process 27 

GO:0009593 detection of chemical stimulus 26 

GO:0044702 single organism reproductive process 25 

GO:0023051 regulation of signaling 25 

GO:0009726 detection of endogenous stimulus 23 

GO:0072593 reactive oxygen species metabolic process 21 

GO:0040008 regulation of growth 19 

GO:0042493 response to drug 17 

GO:0010118 stomatal movement 16 

GO:2000241 regulation of reproductive process 16 

GO:1900673 olefin metabolic process 15 

GO:0042440 pigment metabolic process 14 

GO:0061024 membrane organization 14 

GO:0022613 ribonucleoprotein complex biogenesis 13 

GO:0002682 regulation of immune system process 12 
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GO:0044093 positive regulation of molecular function 12 

GO:0051128 regulation of cellular component organization 10 

GO:0042330 taxis 10 

GO:0048609 multicellular organismal reproductive process 9 

GO:0009636 response to toxic substance 8 

GO:0009629 response to gravity 8 

GO:0009410 response to xenobiotic stimulus 7 

GO:0009812 flavonoid metabolic process 7 

GO:0044403 symbiosis, encompassing mutualism through 

parasitism 

7 

GO:0033037 polysaccharide localization 7 

GO:0043062 extracellular structure organization 6 

GO:0090066 regulation of anatomical structure size 6 

GO:0007017 microtubule-based process 6 

GO:0006081 cellular aldehyde metabolic process 5 

GO:0046685 response to arsenic-containing substance 5 

GO:0043476 pigment accumulation 5 

GO:0007585 respiratory gaseous exchange 4 

GO:0043900 regulation of multi-organism process 4 

GO:0032196 transposition 4 

GO:0032879 regulation of localization 4 

GO:0030029 actin filament-based process 4 

GO:0010876 lipid localization 3 
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GO:0009292 genetic transfer 3 

GO:0044092 negative regulation of molecular function 2 

GO:0071941 nitrogen cycle metabolic process 2 

GO:2001057 reactive nitrogen species metabolic process 2 

GO:0035821 modification of morphology or physiology of other 

organism 

2 

GO:0006403 RNA localization 2 

GO:0006928 cellular component movement 1 

GO:0046209 nitric oxide metabolic process 1 

GO:0097438 exit from dormancy 1 

GO:0007155 cell adhesion 1 

GO:0009581 detection of external stimulus 1 

GO:0009582 detection of abiotic stimulus 1 

   

B) Molecular function 

GO Term GO Name No. of 

Transcripts 

GO:1901265 nucleoside phosphate binding 14213 

GO:0003676 nucleic acid binding 9898 

GO:0016772 transferase activity, transferring phosphorus-

containing groups 

6356 

GO:0043169 cation binding 641 

GO:0043168 anion binding 597 
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GO:0016788 hydrolase activity, acting on ester bonds 572 

GO:0001882 nucleoside binding 461 

GO:0016817 hydrolase activity, acting on acid anhydrides 390 

GO:0046983 protein dimerization activity 146 

GO:0016757 transferase activity, transferring glycosyl groups 129 

GO:0022804 active transmembrane transporter activity 123 

GO:0046906 tetrapyrrole binding 114 

GO:0016705 oxidoreductase activity, acting on paired donors, 

with incorporation or reduction of molecular 

oxygen 

113 

GO:0008233 peptidase activity 107 

GO:0022891 substrate-specific transmembrane transporter 

activity 

100 

GO:0016798 hydrolase activity, acting on glycosyl bonds 89 

GO:0050662 coenzyme binding 75 

GO:0004497 monooxygenase activity 69 

GO:0016879 ligase activity, forming carbon-nitrogen bonds 69 

GO:0016684 oxidoreductase activity, acting on peroxide as 

acceptor 

67 

GO:0016746 transferase activity, transferring acyl groups 58 

GO:0051213 dioxygenase activity 52 

GO:0005102 receptor binding 46 

GO:0016741 transferase activity, transferring one-carbon groups 39 
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GO:0042802 identical protein binding 35 

GO:0051082 unfolded protein binding 34 

GO:0016614 oxidoreductase activity, acting on CH-OH group of 

donors 

33 

GO:0031072 heat shock protein binding 32 

GO:0019899 enzyme binding 27 

GO:0016830 carbon-carbon lyase activity 27 

GO:0016667 oxidoreductase activity, acting on a sulfur group of 

donors 

25 

GO:0043177 organic acid binding 25 

GO:0015238 drug transmembrane transporter activity 21 

GO:0016627 oxidoreductase activity, acting on the CH-CH 

group of donors 

21 

GO:0016810 hydrolase activity, acting on carbon-nitrogen (but 

not peptide) bonds 

19 

GO:0017171 serine hydrolase activity 18 

GO:0016903 oxidoreductase activity, acting on the aldehyde or 

oxo group of donors 

18 

GO:0016860 intramolecular oxidoreductase activity 18 

GO:0003712 transcription cofactor activity 17 

GO:0030695 GTPase regulator activity 17 

GO:0030247 polysaccharide binding 16 
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GO:0016701 oxidoreductase activity, acting on single donors 

with incorporation of molecular oxygen 

16 

GO:0016835 carbon-oxygen lyase activity 16 

GO:0005516 calmodulin binding 15 

GO:0022803 passive transmembrane transporter activity 15 

GO:0016769 transferase activity, transferring nitrogenous groups 14 

GO:1901618 organic hydroxy compound transmembrane 

transporter activity 

14 

GO:1901677 phosphate transmembrane transporter activity 14 

GO:0016875 ligase activity, forming carbon-oxygen bonds 14 

GO:0051536 iron-sulfur cluster binding 13 

GO:0016651 oxidoreductase activity, acting on NAD(P)H 13 

GO:0019842 vitamin binding 12 

GO:0048029 monosaccharide binding 12 

GO:0016866 intramolecular transferase activity 12 

GO:0016638 oxidoreductase activity, acting on the CH-NH2 

group of donors 

11 

GO:0032403 protein complex binding 10 

GO:0038023 signaling receptor activity 9 

GO:0008092 cytoskeletal protein binding 9 

GO:0000156 phosphorelay response regulator activity 8 

GO:0016859 cis-trans isomerase activity 8 

GO:0016846 carbon-sulfur lyase activity 8 
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GO:0005057 receptor signaling protein activity 8 

GO:0030276 clathrin binding 7 

GO:0008565 protein transporter activity 7 

GO:0015604 organic phosphonate transmembrane transporter 

activity 

6 

GO:0005527 macrolide binding 6 

GO:0032182 small conjugating protein binding 6 

GO:0051740 ethylene binding 5 

GO:0015562 efflux transmembrane transporter activity 5 

GO:0016765 transferase activity, transferring alkyl or aryl (other 

than methyl) groups 

5 

GO:0016854 racemase and epimerase activity 5 

GO:0042277 peptide binding 5 

GO:0016679 oxidoreductase activity, acting on diphenols and 

related substances as donors 

4 

GO:0016645 oxidoreductase activity, acting on the CH-NH 

group of donors 

3 

GO:0016725 oxidoreductase activity, acting on CH or CH2 

groups 

3 

GO:0016877 ligase activity, forming carbon-sulfur bonds 3 

GO:0061135 endopeptidase regulator activity 3 

GO:0030414 peptidase inhibitor activity 3 

GO:0016885 ligase activity, forming carbon-carbon bonds 3 
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GO:0005484 SNAP receptor activity 2 

GO:0019779 APG8 activating enzyme activity 2 

GO:0016872 intramolecular lyase activity 2 

GO:0015232 heme transporter activity 2 

GO:0016782 transferase activity, transferring sulfur-containing 

groups 

2 

GO:0016661 oxidoreductase activity, acting on other nitrogenous 

compounds as donors 

2 

GO:0030742 GTP-dependent protein binding 1 

GO:0080132 fatty acid alpha-hydroxylase activity 1 

GO:0015197 peptide transporter activity 1 

GO:0019887 protein kinase regulator activity 1 

GO:0016840 carbon-nitrogen lyase activity 1 

GO:0016722 oxidoreductase activity, oxidizing metal ions 1 

GO:0016824 hydrolase activity, acting on acid halide bonds 1 

   

C) Subcellular localization 

GO Term GO Name No. of 

Transcripts 

GO:0005622 intracellular 42785 

GO:0071944 cell periphery 10434 

GO:0043233 organelle lumen 1811 

GO:0031988 membrane-bounded vesicle 483 
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GO:0031224 intrinsic to membrane 371 

GO:0012505 endomembrane system 223 

GO:0031975 envelope 215 

GO:0031090 organelle membrane 140 

GO:0005615 extracellular space 24 

GO:0043190 ATP-binding cassette (ABC) transporter complex 12 

GO:1990104 DNA bending complex 20 

GO:0044815 DNA packaging complex 20 

GO:0070469 respiratory chain 6 

GO:0009986 cell surface 7 

GO:0008287 protein serine/threonine phosphatase complex 4 

GO:0032153 cell division site 4 

GO:0019898 extrinsic to membrane 5 

GO:0009506 plasmodesma 3 

GO:0005578 proteinaceous extracellular matrix 2 

GO:0030964 NADH dehydrogenase complex 2 

GO:0042597 periplasmic space 1 

GO:0016469 proton-transporting two-sector ATPase complex 1 
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Tabe S2.3 Transcription factor (TF) families expressed in both the root tissues used 

in this study. 

TF Family Number of Transcripts 

Alfin-like 26 

AP2/EREBP 378 

ARF 88 

ARR 32 

AS2-LOB 61 

B3-Domain 113 

BBR/BPC 1 

BES/BZR 7 

bHLH 517 

BSD 11 

bZIP 308 

C2C2-CO-like 74 

C2C2-Dof 105 

C2C2-GATA 131 

C2H2 1409 

C3H 257 

CCAAT 11 

CG1-CAMTA 23 

CPP 8 

E2F-DP 10 
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EIL 22 

FAR1 89 

FHA 26 

G2-Like  4 

GAGA-Binding-like 6 

GeBP 65 

GRAS 146 

GRF 23 

Hap2/NF-YA 40 

Hap3/NF-YB 410 

HB 126 

Homobox-WOX 94 

HSF-type-DNA-

binding 
92 

MADS 54 

MYB 100 

MYB-HB-like 600 

MYB-related 23 

NAC 273 

OFP 23 

Orphan 20 

PLATZ 39 

Putative TF AFPI 1 
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RAV 24 

RWP-RK/NIN-like 37 

SBP 31 

ssDNA-binding-TF 18 

STY-LRP1 8 

TCP 36 

TIFY 60 

Trihelix 61 

TUBBY 88 

WRKY 286 

zf-HD 8 

Znf-B 73 

Znf-LSD 18 
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Table S1.4: Annotation and the expression profiles of the DETs  

The table was uploaded to the proquest as supplementary material. 
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CHAPTER 3 

Transcriptome Analysis of a Very Short Root Phenotype 
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ABSTRACT 

 

Roots play a major role in the plant growth and development. The knowledge of root 

biology is limited in cereals like wheat because the invasive methods are usually required 

for these studies. To gain insights into molecular regulation of a very short root (VSR) 

phenotype in wheat, we sequenced the six mRNA libraries from three long root segregant 

pools and three VSR segregant pools, by the HiSeq2000 platform. Mapping of the cleaned 

reads to the reference genome of Chinese Spring wheat and transcript quantification 

identified 4,412 differentially expressed transcripts between the VSR and LR, of which 

3,635 were up-regulated and 777 down-regulated in VSR. Of the up-regulated genes, a 

significant portion belongs to the hormonal responses, regulation of transcription, defense 

response, reactive oxygen species (ROS), abiotic stress response, lignin biosynthesis, 

calcium signaling, and autophagy pathways. In addition, several negative regulators of cell 

proliferation, including homologs of the BIGBROTHER E3 ubiquitin ligase, were also up-

regulated. Consistent with this, a large number of genes for chromatin replication and 

protein syntheses, such as those coding for histones and ribosomal proteins, were down-

regulated in VSR. Transcription of genes encoding the FERONIA kinases and a RALF 

peptide hormone, negative regulators of root cell elongation, was elevated in VSR. In 

accordance, several cell wall remodeling genes, including those encoding xyloglucan 

endotransglucosylase/hydrolase, pectin lyase, expansin and cellulose synthase, were down-

regulated in VSR. Regarding root development and hormone signaling, expression of 

several genes involved in auxin efflux, ethylene biosynthesis, JA signaling, and lateral root 

initiation was upregulated, but transcription of a bHLH transcription factor involved in GA 
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signaling was down-regulated in VSR. Although several homologs of PLETHORA, a 

major regulator of root growth in Arabidopsis, exist in the wheat genome, their 

transcription was not affected by the Vsr1 state, suggesting that VSR is controlled by a 

different mechanism from what have found in the model plant Arabidopsis. We also 

validate the ROS and lignin by histochemical staining. Based on our results, we proposed 

a working model to explain the mechanisms underlying the VSR development.  
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INTRODUCTION 

 

Roots are the underground part of a plant and play a significant role in plant growth and 

development. They are the major organ in the acquisition of water and nutrients, sensing 

the changes in the surrounding environment, even the micro level modulations, interacting 

with microbial populations in the rhizosphere, and providing anchoring. Plant roots “keep 

an eye” on the continuously fluctuating surrounding environment in soil throughout their 

growth and development and relay that information to the rest part of the plant to respond 

and adapt accordingly. Compared to the above-ground parts of the plant, the knowledge 

about how roots perform all their functions is much less known. The most available 

knowledge of root development and growth is derived from the model plant Arabidopsis, 

a dicot. The research on the root growth, development, and functions in crop plants like 

soybean, rice, wheat, etc. is nowhere near to the work done in Arabidopsis, and most of the 

available information mainly is translated from the Arabidopsis research.  

The root growth in higher plants is mainly achieved by tangible elongation of the 

cells that descend from the root apical meristem (RAM). RAM is a specialized tissue 

present in the tip of the growing root and has a reservoir of undifferentiated cells at the tip. 

These stem cells are surrounded by a group of organizing cells that maintain the 

undifferentiated state and are called quiescent center (QC) (van den Berg et al. 1995; van 

den Berg et al. 1997). RAM produces all the cell types essential for the postembryonic root 

development along both longitudinal and radial axes (Dolan et al. 1993; van den Berg et 

al. 1998). The meristematic cells in RAM can stay pluripotent forever and produce different 

root cell types and simultaneously self-renewing. Thus, these cells together with the QC 
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are regarded as the stem-cell niche, which is formed during embryogenesis (Dinneny and 

Benfey 2008; Luo et al. 2017; Perilli et al. 2012; van den Berg et al. 1997). In Arabidopsis, 

there are 15 cell types that make the root, and all of them are differentiated from the 

asymmetric cell division of the post-embryonic stem cells (Jiang and Feldman 2005).  

Common wheat or bread wheat (Triticum aestivum L., genomes BBAADD) is one 

of the most important cereal crops in the world. It provides about one-fifth of the calories 

consumed by the humans worldwide (http://faostat.fao.org). Bread wheat is a hexaploid 

originated from the spontaneous hybridization between a domesticated form of tetraploid 

wheat (T.turgidum L., genomes AABB) and diploid goatgrass (Aegilops tauschii Coss., 

genomes DD) (Kihara 1944; McFadden and Sears 1946), which took place in the Caspian 

Iran region (Wang et al. 2013) approximately 8,000 years ago (Nesbitt and Samuel, 1996). 

From the Caspian Iran region, wheat spread throughout the world. Wheat is known to be 

grown in diverse environments though the majority of its production comes from temperate 

regions with multiple seasons. Wheat is expected to play an important role in global food 

security. The ongoing population growth is projected to increase the demand for wheat by 

40% in the year 2030 (Dixon et al. 2009). This increased demand has to be met with the 

production achieved with less acreage and less water than today. The traditional plant 

breeding methods have been proven slow and are only based on the selection for yield 

improvement (Richards et al. 2002). For plants to perform better under water-deficit 

conditions, a deep root system is required for increased water uptake. A faster and more 

extensive root growth will be more important for the plants to achieve better growth and 

yield under the most adverse soil conditions. A deeper and more extensive root system will 
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help uptake available water more efficiently from the soil in dry conditions, increase 

nutrient uptake, compete with weeds, and result in improved yield (Richards 2008). 

The root system architecture is determined by the internal genetic component of the 

plant and shaped by the external environmental stimuli as well. The root development is of 

very adaptive plasticity, making it more complicated to understand the genetic pathways 

involved in root growth and development. Availability of thorough knowledge of the genes 

involved in the root development can enable breeding programs to focus more on the 

varieties with the improved root system. Cereal root system also vastly differs from that of 

the model plant Arabidopsis. It is a dense fibrous root system comprised of primarily of 

postembryonic adventitious roots. Several genes were identified to be involved in the cereal 

root development in rice. These include OsGNOM1/CROWN-ROOTLESS4 encoding 

ADP-ribosylated factor G protein (ARF-GEF) involved in polar auxin transport and affects 

adventitious root formation (Kitomi et al. 2008; Liu et al. 2009) and ADVENTITIOUS 

ROOTLESS1 (ARL1)/ CROWN ROOTLESS1 (CRL1), which codes for a Lateral Organ 

Boundary (LOB) domain protein and induced by auxin in the stem base where crown roots 

are formed and is involved in the lateral root formation and gravitropism (Inukai et al. 

2005; Liu et al. 2005). A few quantitative trait loci (QTL) were identified in rice, maize, 

and wheat that control root traits (Coudert et al. 2010; Sanguineti et al. 2007). More insights 

are needed to understand the molecular mechanisms underlying cereal root development 

and growth, and a genome-wide transcriptome approach is expected to play an important 

role in this respect. 

We discovered a very short root (VSR) phenotype in F1 hybrid derived from a cross 

between common wheat landrace Chinese Spring (CS) and synthetic wheat accession 
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TA4152-71 (TA) (Figure 3.1). This root phenotype in the hybrid has blunt, swollen and 

yellow or brown colored root tips compared to white and sharp root tips of the parental 

lines. The root growth rate was significantly reduced, and lateral roots started to appear 

very early compared to either of the parental lines. In our previous paper that reports the 

discovery of the VSR, we showed that a non-additive interaction of the parental genomes 

in the F1 hybrid resulted in VSR phenotype. Genetic analysis of the VSR placed the gene 

controlling this trait, i.e., Vsr1, in the distal region of the long arm of 5D chromosome of 

wheat (Li et al. 2013). Transcriptome study of the VSR would provide an opportunity for 

us to understand wheat root development and growth by identifying the genes and 

pathways underlying. In the present research, we focused on identifying the genes that are 

differentially expressed in the VSR compared to the long root (LR) by RNA-Seq analysis 

of their root tips and genetic pathways contributing to the VSR development. Thus, this 

research slated the process to reveal the molecular mechanisms underlying the VSR 

phenotype.  

 

MATERIALS AND METHODS 

 

Plant material and RNA extraction 

The seeds from the BC2F2 generation were germinated in germination boxes with paper 

towels wetted with tap water. One root tip (~3mm, meristematic zone) from the primary 

root of each of the germinated seeds was collected individually after 2 d of germination, 

frozen in liquid nitrogen, and stored at -80oC until further use. The seedlings and the vials 

with root tips were numbered correspondingly. The seedlings with remaining two intact 
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roots were allowed to grow for a few more days, and the phenotype was scored from the 

remaining roots. The root tips were pooled for the VSR seedlings and the long root (LR) 

seedlings. Each of the VSR and the LR samples included three biological replicates, and 

each biological replicate contained ~40 root tips. Due to a large number of root tips were 

included in each segregant pool (SP), the LR and VSR SPs had similar genetic background 

except for the Vsr1 region, mimicking near isogenic lines. Total RNA was extracted from 

the root tips of all the six SPs using Trizol (Thermo Fisher Scientific, Waltham, MA) 

following the manufacturer’s instruction. The RNA samples were purified using the 

RNeasy mini kit (Qiagen, Valencia, CA). Concentration and integrity of the purified RNA 

samples were quantified was confirmed using an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Palo Alto, CA), and samples with an RNA integrity number (RIN) greater 

than eight were used in the subsequent analyses. 

 

Illumina Sequencing 

RNA samples extracted from root tips from both the LR and the VSR SPs were submitted 

for sequencing library construction and sequencing to the DNA Sequencing & Genotyping 

Center, Delaware Biotechnology Institute, Newark, DE. Six barcoded sequencing libraries 

for three biological replicates for the LR sample and three biological replicates for the VSR 

sample were prepared using the TruSeq RNA Library Prep Kit (Illumina, San Diego, CA). 

These six libraries were pooled and sequenced in one lane on the HiSeq 2000 platform 

(Illumina, San Diego, CA) to generate 100 bp single-end reads. The same libraries were 

also sequenced to generate 100 bp paired-end reads at a lower depth. 
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Quality control and preprocessing 

The remnants of the adapters used during the library preparation were trimmed from both 

the single- and paired-end reads using Trimmomatic (Bolger et al. 2014) with default 

settings. The adapter-free reads were filtered for low quality and shorter reads and trimmed 

at the 3’ end for low quality bases using the Prinseq script (Schmieder and Edwards 2011b). 

The parameters used for quality filtering and trimming were set for a minimum mean 

quality of Q20 across the read and to trim low-quality bases at 3’ end. The minimum read 

length 50 bp was used as cutoffs for length filtering. The reads generated from rRNA 

sequences were filtered using Ribopicker Perl script (Schmieder et al. 2012) with a plant 

rRNA sequence dataset generated from the rDNA sequences retrieved from NCBI 

(http://www.ncbi.nlm.nih.gov), TAIR (https://www.arabidopsis.org) and the rice genome 

annotation database  (http://rice.plantbiology.msu.edu) as a reference. The reads were also 

filtered for any contaminations like reads generated from bacterial DNA were filtered using 

Deconseq with E. coli strain K12 genome as a reference (Schmieder and Edwards 2011a). 

 

Differential gene expression analysis of the VSR and LR  

The high quality reads from both the LR and VSR libraries were aligned to Wheat RefSeq 

v1.0 (https://www.wheatgenome.org/News/Latest-news/RefSeq-v1.0-URGI) using 

HISAT2 v2.0.5 (Kim et al. 2015; Pertea et al. 2016) (with parameters --dta -k 20 --no-

mixed and rest of the options as default). The aligned RNA-Seq reads were assembled into 

transcripts using Stringtie v1.3.3b (Pertea et al. 2015) with default parameters. The read 

count for the transcripts annotated in the reference genome and those assembled by the 

Stringtie were retrieved using the HTseq v0.9.1 (Anders et al. 2015). The gene expression 



	 142	

comparison of the transcripts in the two samples and the statistical analysis was done using 

the edgeR (v3.20.9) package in Bioconductor 

(https://bioconductor.org/packages/release/bioc/html/edgeR.html) (Robinson et al. 2010). 

The differentially expressed genes (DEGs) with an adjusted p-value of less than or equal 

to 0.05 and fold change of at least 2-fold were considered to be significant.  

 

Functional annotation and GO assignment of differentially expressed genes in VSR 

The DEGs between the LR and VSR were functionally annotated by performing a BLASTp 

search against the NCBI non-redundant (nr) protein database 

(http://www.ncbi.nlm.nih.gov), Rice proteome from Rice Genome Annotation Project 

(RGAP v7) (http://rice.plantbiology.msu.edu) and Arabidopsis proteome from The 

Arabidopsis Information Resource (TAIR v10) (https://www.arabidopsis.org). Gene 

Ontology (GO) terms were assigned using Blast2GO software (www.blast2go.com). The 

transcript sequences were further annotated using the Mercator 4 (v0.3) 

(http://www.plabipd.de/portal/web/guest/mercator-ii-alpha-version-) and assigned the 

MapMan bins (https://mapman.gabipd.org/). The metabolic pathways were visualized in 

the MapMan (v3.5). 

 

Small RNA Sequencing 

RNA samples extracted from root tips from both the LR and the VSR root tips were 

submitted to the DNA Sequencing & Genotyping Center, Delaware Biotechnology 

Institute, Newark, DE, for sequencing library construction and sequencing of the small 

RNA (sRNA) transcriptomes. Six barcoded sequencing libraries for three biological 
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replicates for the LR and three biological replicates for very short root (VSR) were 

prepared using the TruSeq Small RNA Library Preparation Kit (Illumina). These six 

libraries were pooled and sequenced in one lane on the HiSeq 2000 platform (Illumina) to 

generate 50 bp single-end reads. 

 

Preprocessing of the small RNA libraries 

The sequences from the six libraries were passed through our preprocessing pipeline to 

clean and filter the low quality and the contaminant bases and/or reads. First, the adapters 

were trimmed from the 3’ end of the reads using Skewer (Jiang et al. 2014). The low-

quality reads with an average Q score less than 20 were removed using the Prinseq tool 

(Schmieder and Edwards 2011b) and the reads shorter that 15 bp or longer than 25 bp 

were removed. The reads generated from the RNA groups such as rRNA, tRNA, snRNA, 

snoRNA and scRNA were removed from the analysis using the Deconseq tool 

(Schmieder and Edwards 2011a).  

 

Differential expression analysis of the sRNA from VSR and LR  

The remaining 15-25 nt reads were counted and merged using the small RNA analysis 

pipeline in CLC Genomics Workbench v11 (www.clcbio.com). The merged counts were 

annotated using the miRBase v22 (Kozomara and Griffiths-Jones 2011) and the 

microRNAs annotated in the Wheat Refseq v1.0. The counts were normalized and the 

differential expression of the sRNAs was determined by the empirical analysis of DGE 

tool available in the CLC genomics Workbench. The differentially expressed sRNA were 

filtered by at least two-fold change in expression with adjusted p-value of less than 0.05. 
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The targets for the differentially expressed sRNA were determined by searching against 

the wheat gene models using psRNATarget webserver 

(http://plantgrn.noble.org/psRNATarget/) (Dai et al. 2018). 

 

Staining for hydrogen peroxide and lignin 

The root tips of the 3-day old LR and VSR seedlings were stained with 3,3’-

Diaminobenzidine (DAB) to detect hydrogen peroxide. DAB staining solution was freshly 

prepared by dissolving 1mg/ml DAB in distilled water adjusted to pH 3.6 using 0.1N HCl. 

The root tip samples were incubated in DAB stain for 30 min at room temperature and 

observed under a microscope.  

The root tip samples of 1-, 2-, and 3-day old LR and VSR seedlings were stained 

for lignin using phloroglucinol stain. The stain solution is prepared by dissolving about 

2g of phloroglucinol in 80 ml of 20% ethanol solution and then add 20 ml of concentrated 

HCl (12 N) to it. The root tips were incubated in the stain for 2-5 min and observed under 

light microscope and photographed. 

 

RESULTS 

 

Sequencing of RNA from the VSR and LR root tips  

We sequenced the transcriptomes of the root tips from the LR and VSR SPs using illumine 

Hiseq 2000 platform. Sequencing six libraries, three for the long root (LR) and three for 

the very short root (VSR), generated 151,069,941 raw single-end reads, and 39,202,663 

raw paired-end reads. The sequencing depth for the single-end reads range from ~23 to ~27 
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million reads per sample whereas for paired-end reads was ~6 million to ~7 million. Both 

the single- and the paired-end reads were preprocessed using our preprocessing pipeline 

for trimming adapters or the primer sequences, low-quality bases at the 3’ end of the reads, 

filtering of the low-quality reads with an average PHRED score of <20 and contaminants 

like rRNA or bacterial DNA. The quality filtering resulted in 140,700,938 (93.14%) single-

end reads and 34,624,093 (88.32%) paired-end reads and accounts for 92.14% of the total 

raw reads (Table 3.1). 

 

Differential gene expression analysis of the LR and VSR root tips 

The reads from the LR and VSR libraries were mapped to the wheat reference genome that 

was made available recently and the root transcriptome assembly developed in the previous 

chapter. The mapping details were listed in Table 3.2.  The RefSeq 1.0 has 110,790 loci of 

high confidence gene models, and 158,793 loci of low confidence gene models coding for 

proteins were predicted in the sequenced reference genome (only ~14 Gb of the ~17 Gb of 

the wheat genome was captured in the current reference genome). For this analysis, we 

merged the high and low confidence gene models into a single annotation with 269,583 

loci and used as the reference annotation for gene expression analysis. A total of 4,415 (3 

loci are non-coding according to the Refseq1.0 annotation and not included in the further 

functional annotation analysis) loci were found differentially expressed between the VSR 

and LR with a cutoff of fold change (FC) ≥ 2 (also expressed as |log2FC| ≥ 1) and the 

adjusted p-value of ≤ 0.05. Of these 4,412 loci, 3,635 loci were up-regulated and 777 down-

regulated in the VSR root tips as compared to the LR. Our pipeline for differential gene 

expression analysis uses the read mapping to the reference genome and assembly of the 
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root transcriptome, which allows the discovery of the new transcript loci that are not 

annotated or predicted in the reference gene models. As a result, a total of 245 DEGs were 

identified as novel transcripts, of which 72 and 173 transcripts up-regulated and down-

regulated in VSR, respectively. These 245 transcripts were assembled based on the reads 

mapped to the reference genome sequence rather than the annotated gene models (Table 

3.2). 

 

Functional and Gene Ontology Annotation of the DEGs 

Of the 3,563 up-regulated transcripts, the BLASTp search against NCBI-nr, Rice (RGAP 

v7) and Arabidopsis (TAIR10) databases provided the functional annotation for the 3561, 

3,560 and 3,560 transcripts, respectively. For the 604 down-regulated genes, 602, 601 and 

602 transcripts had a match in nr, rice, and Arabidopsis databases, respectively (Table 3.2). 

Three loci in up-regulated genes were annotated as noncoding RNA in the RefSeq 1.0 

annotation. Gene ontology terms were assigned to each of the DEGs. For the up-regulated 

genes, 2,566 were assigned with at least one GO term, and for down-regulated genes, 399 

were assigned with GO terms. In biological process categories, cellular metabolic 

processes, biosynthetic processes, localization, biological regulation and response to stress 

were the top five categories in the up-regulated genes. Ion binding, transferase activity, 

heterocyclic compound binding, transporter activity, and antacid antioxidant activity were 

the top five categories in the molecular function section. Membrane and part of the 

membrane were the top two categories in the cellular component section. In down-

regulated genes, metabolic processes, cellular processes, cellular component biogenesis, 

response to stimulus and localization were top five categories in biological processes; 
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catalytic processes, binding processes, antioxidant activity, transporter activity, and 

molecular function regulator were top five categories in molecular function. The DEGs 

were mapped to MapMan classification bin using the Mercator tool. Of the 4,412 DEGs in 

VSR, 1,953 were assigned with at least one annotation or pathway bin. The overview of 

metabolic processes was visualized with MapMan (Figure 3. 2). The majority of the up-

regulated genes in VSR root tips belong to transporters (271 ), transcription factors (262), 

reactive oxygen species (ROS) generation and scavenging (200), defense related (194), E3 

ligases and other components of 26S proteasome pathway (124), signaling pathway related 

receptor kinases (113), protein kinases (95), and calcium signaling (83), cell wall 

modifying and degrading enzymes (67), lignin biosynthesis pathway (70), autophagy and 

cell death (43)  (Table S3.1 and Figure 3.3).  

 

Hormone-related gene expression 

Plant growth and development has been inextricably linked to phytohormone signaling and 

regulation. In root development hormones such as auxin, ethylene, cytokinin, abscisic acid, 

gibberellin, brassinosteroids, jasmonic acid are shown to regulate root development either 

acting individually or interacting with other hormones synergistically and/or 

antagonistically depending on the zone/tissue and cell type context (Benkova and Hejatko 

2009; Iyer-Pascuzzi and Benfey 2009). Phytohormone auxin plays an important role in 

many of the plant’s development processes including root development. Auxin and its 

gradient across the root longitudinal axis and the radical axis is implicated in many aspects 

of root growth and development like embryonic root formation, maintenance of RAM, cell 

division and expansion, tropisms, vascular differentiation, lateral root initiation, etc. 
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(reviewed in (Overvoorde et al. 2010; Petricka et al. 2012b; Woodward and Bartel 2005). 

In VSR, a total of 29 genes involved in auxin biosynthesis and signaling were induced or 

up-regulated. Seven genes that belong to the auxin-responsive SAUR gene family and 

another seven genes coding for the AUX/IAA proteins IAA8, IAA17, IAA18, and IAA26 

were induced in VSR. An auxin receptor, auxin binding protein 1 (ABP1), which controls 

cell elongation and cell division, and an F-Box protein, auxin signaling F-BOX 3 (AFB3), 

which is a component of SCF (ASK-cullin-F-box) E3 ubiquitin ligase complexes and 

mediate the proteasomal degradation of Aux/IAA proteins, were up-regulated in the VSR. 

Two Auxin Responsive Factor (ARF) genes homologous to AtARF19 were also up-

regulated in the VSR. An auxin efflux carrier protein (TraesCS5D01G361600) involved in 

polar auxin transport was induced in the VSR. Apart from these, a flavin-binding 

monooxygenase/ indole-3-pyruvate monooxygenase similar to AtYUCCA11 that catalyzes 

the indole-3-pyruvic acid (IPyA) to indole-3-acetaldehyde step in auxin biosynthesis 

pathway, two genes encoding for enzyme that catalyzes the synthesis of indole-3-acetic 

acid (IAA)-amino acid conjugates, GH3.2/YDK1 and two genes coding for IAA beta-

glucosyl transferase (IAGLU) were up-regulated in VSR root tips. Two genes that encode 

IAA-amido hydrolase homologs of Arabidopsis IAA-leucine-resistant (ILR1) and IAA-

leucine-resistant (ILR1)-like 3 (ILL3), which hydrolyzes amino acid conjugates of IAA 

were induced in the VSR root tips. In addition to this, two genes belonging to a 

detoxification enzyme that protects the cells against auxin-induced oxidative stress, 

flavodoxin-like quinone reductase 1 (FQR1) was also induced in the VSR root. All this 

indicated that the auxin pathway is overall up-regulated in the VSR. 
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Ethylene (ET) is produced in the plant cells from the amino acid methionine and an 

intermediate S-adenosylmethionine (SAM) which is part of the Yang cycle. The first 

committed and the rate-limiting step of the ethylene biosynthesis is the conversion of SAM 

to 1-aminocyclopropane-1-carboxylic acid (ACC) by the enzyme ACC synthase. ACC is 

then converted to ethylene by the enzyme ACC oxidase. We found two genes encoding for 

the enzyme ACC synthase and seven genes encoding for the enzyme ACC oxidase, 

including two homologs of AtACO1 and one homologous to OsACO2, were up-regulated 

in the VSR. Both ACC synthase genes were orthologous to the Arabidopsis ACC synthase 

6 (ACS6). Two of the seven ACC oxidases up-regulated in VSR are orthologous to rice 

and Arabidopsis ACC oxidase 1, (ACO1) and the other five are the rice ACC oxidase like 

homolog genes. Three genes that encode for ethylene receptor or sensor, Ethylene 

Insensitive 1 (EIN1), EIN2 and EIN4 in Arabidopsis, are induced in VSR root tips. Also, 

13 genes that encode ethylene response factors (ERFs), which are members of the AP2 

family of transcription factors, were induced in the VSR root tips. However, two of the 

genes homologus to rice ACO homolog 4 were down-regulated in VSR. These results 

indicated that the gaseous phytohormone ET biosynthesis and its overall signaling 

pathways were induced in the VSR root tips suggesting a major role of ethylene in VSR 

development. 

Gibberellin or gibberellic acid (GA) is an essential phytohormone and involved in 

the regulation of plant growth and development. It is also known to regulate root growth 

and development. Gibberellin Insensitive Dwarf 1-like 2 (GID1L2) which are alpha/beta 

hydrolases and function as GA receptors. Five genes that encode homologs of rice GID1L2 

were induced in the VSR.  In VSR root tips, we also observed drastic up-regulation (8-
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fold) of the GA catabolism enzyme gibberellin 2-oxidase similar to ATGA2OX1 and 

GA20OX1. A gene coding for the enzyme Ent-kaurenoic acid oxidase 1 (KAO1), which 

catalyzes three successive oxidations of ent-kaurenoic acid producing gibberellin 12 

(GA12), a key step in GAs biosynthesis, was induced in the VSR. These results indicate a 

finely tuned role of GA in the manifestation of VSR. 

Cytokinins (CK) act negatively on the root growth (Werner et al. 2003; Yang et al. 

2003). In this study, we observed that 11 genes coding for the enzyme cytokinin-N-

glucosyltransferase, which catalyze the formation of CK-N-glucoconjugates and inactivate 

the CK, were induced in VSR, of which TraesCS6A01G018000 and 

TraesCS5B01G500700 were up-regulated by 15- and 16-fold, respectively. Interestingly, 

three genes coding for proteins that are homologous to Arabidopsis Histidine Kinase 

(AHK3) and one gene for AHK5, the CK receptors, and a gene for the negative regulator 

of CK signaling called the A-type response regulator (RR) and similar to Arabidopsis 

ARR12, were induced in the VSR root tips.  

Brassinosteroids (BRs) are the plant hormones derived from campesterol and are 

involved in various plant growth and development processes. The BR signals are perceived 

by membrane-anchored leucine-rich repeat receptor-like kinases (LRR-RLKs) 

BRASSINOSTEROID-INSENSITIVE 1 (BRI1) (He et al. 2000) and SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE 1 (SERK1) (Karlova et al. 2006). BRs are 

involved many aspects of root development (Wei and Li 2016).  In the VSR, 12 BR 

signaling genes were induced. These include two genes coding for the homologs of BRI1-

LIKE 1(BRL1), and six genes homologous to SERK1, two genes homologous to the BR-
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SIGNALING KINASE 1 (BSK1), a member of membrane-bound receptor-like cytoplasmic 

kinases (RLCKs), and a BR-responsive RING-H2 or BRH1.  

Jasmonic acid (JA) belongs to the family of oxylipins and are involved in defense 

responses and the restriction of plant organ growth. Lipoxygenases (LOX) are the enzymes 

that facilitate the conversion of the fatty acid a-linolenic acid to the hydroperoxides and 

are part of the JA biosynthetic pathway. Root growth is inhibited when exogenous JA is 

applied. In the VSR root tips, five genes coding for LOX1, three genes for LOX3 and three 

genes for LOX4 were induced. Another enzyme in JA biosynthesis pathway, 4-coumarate-

CoA ligase-like 9, converts 12-oxo-phytodienoic acid (OPDA) into OPDA-CoA was also 

induced in the VSR. The enzyme allene oxide synthase (AOS) is a cytochrome P450 

belonging to the class CYP74A that catalyzes the conversion of 13-hydroperoxides to 

allene oxides, a key step in JA biosynthesis pathway. We found that three of the Jasmonic 

acid-amido synthetase (JAR1) genes were induced in the root tips of the VSR The JAR1 

genes belong to the GH3 family and code for a protein which catalyzes the synthesis of 

jasmonate-amino acid conjugates by adenylation and is induced by auxin. In VSR root tips, 

six genes coding for the cytochrome P450 proteins were induced. Apart from this, two 

protein kinases, which are induced in response to JA, salicylic acid (SA), pathogen 

infection and wounding, were also up-regulated in VSR root tips. The Jasmonate ZIM-

domain (JAZ) proteins are the TIFY transcriptions factors and negative regulators of the 

JA signaling and act by repressing the JA responsive genes in the absence of the JA. In 

VSR root tips, three genes that are homologs of JAZ1, one gene for JAZ10 and three of 

JAZ12 were induced. Along with these, a gene in each of the family transcriptional 

repressors and negative regulators of JA responses, i.e., NINJA and TOPLESS-related 2, 
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were also induced in the VSR. Two genes that encode for UDP-glucosyltransferases that 

catalyze the formation of both SA 2-O-beta-D-glucoside (SAG) and SA glucose ester 

(SGE) were induced in VSR root tips. Three genes that encode for the 2-oxoglutarate 

(2OG) and Fe(II)-dependent oxygenase/AtDMR6 which converts SA to 2,3-

dihydroxybenzoic acid (2,3-DHBA) were induced in the VSR. And also, there were five 

genes homologous to AtNPR3, a homolog of AtPAD4, three homologs of DMR6 and two 

AP4.3A protein kinases with elevated expression in the VSR root tips. These results 

indicated the elevated JA synthesis and responsive genes along with SA responses in the 

VSR. 

Abscisic acid (ABA) is an important phytohormone for abiotic stress response and 

negatively regulate the root growth (Yang et al. 2014). In the VSR root tips, several ABA-

related genes were found to be induced. Among the ABA-responsive genes were five genes 

belonging to the Abscisic acid-responsive (TB2/DP1, HVA22) protein family, several of 

the GRAM domain-containing proteins, two genes for ABA responsive element-binding 

factor 1 (ABF1). Apart from these responsive genes, two genes that encode regulatory 

components of ABA receptor 3 (RCAR3/PYL8), the receptors for ABA along with a 

protein phosphatase 2C (PP2C) gene a homolog of highly ABA-induced PP2C gene 2 

(HAI2) were also induced in the VSR root tips.  

We observed the elevated expression of the receptors for several plant hormones 

and their responsive genes. Also, several enzymes that take part in their biosynthetic 

pathways in the VSR root tips. These results suggest that the VSR phenotype is a result of 

concerted interaction between the seven phytohormones in these root tips and their effect 

on the root meristem and the transition zone. 
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Reactive Oxygen Species-related genes 

ROS plays an indispensable role in the regulation of plant development. In plants, ROS are 

generated from molecular oxygen by reduction. Singlet oxygen (1O2), hydroxyl radical 

(HO.), hydrogen peroxide (H2O2), and superoxide (O2
–) are the ROS found in plants and 

are generated by reduction reactions in peroxisomes, chloroplast, and mitochondria. Many 

plant metabolic processes like photosynthesis, respiration, etc. were known to generate 

ROS as a part of their process. In VSR root tips, 184 genes encoding for several enzymes 

involved in either ROS generation like respiratory burst oxidase homolog B (RBOHB), 

RBOHD, and RBOHF or the antioxidant systems like peroxidase (POD), catalase (CAT), 

glutathione S-transferase (GST), ascorbate peroxidase (APX), etc. Of these, 75 genes 

belonging to the GST gene family were up-regulated in the VSR root tips. The GST genes 

belonging to Tau (46), Phi (16), Zeta (6), lambda (3) and microsomal (3) were found to be 

induced in the VSR root tips. Interestingly, one GST gene belonging to the Tau class was 

the only GST gene downregulated in the VSR. Another ROS scavenging gene family that 

was induced in the VSR is the POD gene family. We found 64 POD genes were induced 

in the VSR. Of these 64 POD genes up-regulated, 20 genes code for the homolog of 

Arabidopsis RARE COLD INDUCIBLE 3 (RCI3) gene. We also found 20 POD genes 

were down-regulated in the VSR. Apart from these, two genes that code for glutathione 

synthetase, an enzyme that catalyzes the ligation of glycine to the g-glutamylcysteine in the 

biosynthesis of glutathione were also induced in the VSR. One gene coding for the catalase 

(CAT) and three monodehydroascorbate reductases (MDAR) genes were induced. Three 

genes that encode a peptide met sulfoxide reductase 4 (PMSR4) were also induced in the 
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VSR. Of the genes that are involved in the ROS generation, four genes belonging to the 

respiratory burst oxidase homolog D (RBOHD) and two RBOHF genes were induced in 

the VSR root tips. Together we found both genes for ROS generation and genes for ROS 

scavenging are induced or upregulated in VSR, indicating ROS played an important role 

in the development of the VSR phenotype.  

 

Lignin biosynthesis gene families 

Lignin is one of the major components of the plant secondary cell wall, and its biosynthesis 

in plants is a multi-step pathway involving multiple enzymes. In VSR root tip 

transcriptome, we surprisingly found 56 genes that encode several enzymes involved in the 

biosynthesis of lignin were up-regulated (Figure 3.4). Of these, 14 genes code for the 

enzyme phenylalanine ammonia lyase 1 (PAL1) that catalyzes the first step of the 

phenylpropanoid pathway. Thirty-one genes coding for the other enzymes involved in the 

lignin biosynthesis pathway that were up-regulated in the VSR. They are cinnamic acid 4-

hydroxylase or C4H (4), 4-coumarate-coenzyme A ligase or 4CL (1), caffeoyl coenzyme 

A 3-O-methyltransferase 1 or CCoAoMT (3), cinnamoyl-CoA reductase or CCR (8), 

cinnamyl alcohol dehydrase or CAD (3), hydroxycinnamoyl-CoA shikimate/quinate 

hydroxycinnamoyl transferase or HCT (10). In addition to these biosynthetic enzymes, 12 

laccase (LAC) genes were also up-regulated. The LAC genes are involved in the 

polymerization of the lignin, and the 12 LAC genes belong to LAC5, 7, 12, and 17 classes.  
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Transcription factors 

Transcription factors (TFs) play an important role in the plant growth and development by 

regulating several processes. In line with this role, we found 260 genes encoding for several 

TF families were differentially expressed in the VSR root tip compared to the root tips of 

the long root. Of these 260 TFs differentially expressed, 245 genes were induced, and 17 

were down-regulated in the VSR suggesting there is a major transcriptomic reprogramming 

occurred to manifest this phenotype. Of all the TF families differentially expressed in VSR, 

the WRKY TF family was highly enriched. There were 40 genes that code for WRKY TFs 

were induced in the VSR root tips and followed by NAC (29), bZIP (21), AP2 (21), MYB 

(18), bHLH (20), Zinc Finger (ZF) (17), GRAS (17), Homeobox (17) and TIFY (10). The 

genes belonging to TF families bHLH (4), MYB (3), B3 (2), ARF (1), bZIP (1), E2F/DP 

(1) and ZF (1) were the only genes down-regulated in the VSR (Table 3.2 and Figure 3.5). 

Interestingly, all the members of the TF familes belonging to ASL/LOB (6), CAMTA (5), 

GATA (4), GRAS (17), Homeobox (17), NF-YA (2), Ovate (2), PLATZ (3), RWP-RK (1), 

SBP (3), TIFY (10), TUBBY (3), VOZ (2), and WRKY (40) were only up-regulated in the 

VSR root tips.  

 

Cell proliferation and cell death related genes 

Cell death is part of the growth and development of plants. In the VSR root tips, genes that 

encode for proteins belonging to the cell death and autophagy, as well as regulators of cell 

division, cell elongation, and cell proliferation, were also up regulated. We found several 

genes belonging autophagy like Autophagy-related proteins (ATG) including ATG2, 

ATG6, ATG9, ATG13, ATH18H, vacuolar processing enzymes (VPE), cysteine rich 
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receptor like kinases (CRKs), etc. were induced in the VSR root tips. In addition to these, 

several genes involved in proteasome degradation pathway, disease resistance, and defense 

response were also up-regulated in VSR. Surprisingly, three genes encoding each of the 

BAX Inhibitor 1 and BAX Inhibitor like 4 (BIL4) which are inhibitors of the programmed 

cell death in plants were induced in the VSR root tips.  

In the VSR root tips, we found genes that are involved in cell proliferation and 

elongation up-regulated. Cysteine rich small peptides called RAPID ALKALINIZATION 

FACTORS (RALFs), specifically RALF33, and their receptor FERONIA, a receptor 

kinase were induced in the VSR. We also found two genes coding for the E3 ligase BIG 

BROTHER induced in the VSR root tips. 

 

Histochemical straining of root tips for ROS and lignin 

Expression of 184 ROS-related genes was increased in VSR root tips (Table S3.1), 

suggesting that ROS are involved in the development of the VSR phenotype. We tested 

this hypothesis by staining root tips with DAB, which detects H2O2, and found that VSR 

of the F1 hybrid accumulated much more H2O2 in the tips of primary and lateral roots 

compared to the long roots of its parents CS and CS-Vsr1b (Figure 3.6). This result 

indicated that Vsr1 enhanced ROS production, and accumulated ROS pose an oxidative 

stress to root growth.  

Our transcriptome quantification showed that transcription of 56 lignin biosynthetic 

genes was increased in VSR (Table S3.1). Thus, we conducted a lignin assay of the root 

tips by pholoroglucinol staining. The result showed that no lignin is detected in LR tips at 

all the time points (Figure 3.7a and b). No lignin was detected in VSR tips 1 d after 
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germination (Figure 3.7c), but lignin deposition was found in VSR tips 2 d after 

germination (Figure 3.7d). Root tips bended and “hooked up” 3 d after germination (Figure 

3.7e). The root “hook” was most probably due to asymmetrical deposition of lignin within 

root tip, more lignin was found on the inner side of the “hook” (Figure 3.7e and f).  The 

cells in the outer side of the “hook” are significantly longer than those in the inner side, 

and cells above the bent are much longer than those below the curve in the same profiles 

(Figure 3.7f). This indicates that root tips bended in the elongation zone due to the ectopic 

lignification of the cell wall, which limited root elongation more severely in the inner side 

than in the outer side.  

 

Small RNA sequencing and differential expression analysis 

We sequenced the six libraries on the Hiseq 2000. We generated ~28 to ~38 million reads 

per replicate of LR and VSR small RNA libraries. After cleaning the raw reads using our 

pipeline and removing the reads corresponding to rRNA, tRNA, snRNA, snoRNA and 

scRNA were removed. Additionally, reads of length smaller than 15 bp and longer than 

25bp were filtered. This resulted in ~7 to ~12 million reads per replicate. The reads were 

counted and merged by sequence similarity and were annotated using the miRBase v 22 

and the miRNAs predicted in the wheat reference sequence. We identified 153 miRNAs 

were differentially expressed in the VSR root tips. Of these, 67 were up-regulated and 86 

were down-regulated. The top five up-regulated miRNAs were miR1135-3p-271 (~535-

fold), miR159b-1 (~230-fold), miR1439-3p-6 (~149-fold), miR5721 (~141-fold), and 

mir1121-3p-53 (~123-fold) and 33 miRNAs were induced at least 10-fold in VSR root tips 

(Fig. 3.8). The top five down-regulated (~2-fold) miRNAs were miR159b isoform, 
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miR319b, miR5048a/miR5048b, 319b, miR159b-2/miR159g. We found members of the 

miR159 family both induced and repressed in the VSR root tips. The miR159 targets MYB 

TFs and is known to repress these TFs during vegetative and reproductive development in 

Arabidopsis. The miR159 regulates the GAMYBs and inhibit the growth and promotes 

programmed cell death in Arabidopsis. Members of the miR159 family were functionally 

redundant (Allen et al. 2007; Alonso-Peral et al. 2010; Alonso-Peral et al. 2012). The up-

regulated members of the miR159 family in the VSR root tips were induced at least 8-fold 

to 230-fold whereas the down-regulated were at 2-fold level (Table S3.2). In addition to 

miR159, another miRNA known to regulate root meristem size and thus root development 

is miR396 (Rodriguez et al. 2015), which also showed different expression patterns among 

its members. There were four members of the miR396 family were differentially expressed 

and two were induced and two were repressed in VSR. The miRNA family miR167, which 

regulates the ARFs and control lateral root formation (Gutierrez et al. 2012), was induced 

in the VSR root tips. One member each of miR394, miR827, miR5062a, miR5083, 

miR9652, miR9778, and miR9654b families and all the members of miR1436, miR1128, 

miR1122, miR166, miR319b, miR5048, miR9658, miR9664, miR9674, and miR9772 

families were down regulated in the VSR root tips. Whereas, all members of miRNA1121, 

miR1125, miR1127b, miR1432, miR1439, miR393, miR408d, miR531, and miR9776 and 

one member each of miR528, miR5721, miR397, miR1137-3p-153, and miR1127b were 

induced in the VSR root tips. 
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DISCUSSION 

 

Roots are a plant organ that grows underground and is indispensable in plant’s growth and 

development. They play a crucial role in the acquisition of water and nutrients and support 

the growth of aerial parts and provide mechanical support by forming an anchor. They form 

a determinant of the plant’s potential to grow and successfully establish in the highly 

variable soil environment. A well established and healthy root system is identified as one 

of the key contributors to the maximizing yield in many plant models (Gechev et al. 2006; 

Glover et al. 2007).  The exploration of root biology is far behind as compared to above-

ground structures. Despite the growing knowledge of genetic and molecular mechanisms 

of root development in dicot model Arabidopsis, very little information is known in cereal 

crops. Owing to lack of a complete and fully annotated genome sequence and the 

complexity of the polyploid nature, the knowledge of genes and gene networks involved 

in root development in common wheat is limited. In recent years, studies at transcriptome 

level using the latest high throughput sequencing methods were carried out to understand 

molecular mechanisms involved in wheat root response to environment stress (Camilios-

Neto et al. 2014; Oono et al. 2013). But, no research has been performed to investigate the 

transcriptome effect of a gene locus on root development. In this study, we showed the 

transcriptome level changes in VSR and showed that VSR development is different from 

other short root phenotypes in the model plants, providing new insight into wheat root 

development and growth.  

The VSR phenotype is thought to be a result of non-additive interaction between 

the parental genomes, and the phenotype is only observed when there is a heterozygous 
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composition at this locus (Li et al. 2013). We selected the pooled segregants for the analysis 

of the transcriptome using the high throughput sequencing of RNA. The pooled segregants 

were derived from the F2 population of the backcross (BC2) generation. The samples used 

in this study represent closely to the near-isogenic lines as the background genome is 

normalized by pooling ~40 root tips per replicate. Thus, the samples for the LR and VSR 

share a nearly identical background genome composition except for variation in the Vsr1 

locus. We observed 3,566 genes induced and 604 genes down regulated in the VSR root 

tips (encompassing the meristem and the elongation zone). We were able to annotate 3,561 

up-regulated and 602 down-regulated genes with at least one hit from Arabidopsis or rice 

or NCBI-nr protein databases. The remaining 300 the up- and 68 down-regulated genes 

were annotated as uncharacterized or domain of unknown function suggesting that there is 

a need for functional characterization of such genes in model plant systems.  

In understanding the transcriptome level reprogramming that occurred in the root 

tips of the hybrid plants and manifestation of the VSR phenotype, we identified only a 

minute portion (1.55%) of the transcriptome expressed differentially. The DEGs in VSR 

root tips can be categorized into response to hormones, response to pathogen and defense, 

ROS generation and scavenging, regulation of transcription, transport, signaling, lignin 

biosynthesis, flavonoid metabolism, cell wall modification, cell wall degradation, primary 

and secondary metabolism, regulation of cell cycle and cell division, cell death and 

autophagy, protein trafficking, protein degradation etc. 

Many transcription factors were induced in the VSR root tips (Figure 3.5) 

suggesting a major reprogramming in the gene expression profiles. However, TFs like 

PLETHORA1 (PLT1), PLT2, PLT3, BABY BOOM (BBM) SHORT ROOT (SHR), 
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SCARECROW (SCR), MAGPIE (MGP), JACKDAW (JKD), PHABULOSA (PHB) 

which play major role in the stem cell regulation and proper formation of the formation of 

root (Aida et al. 2004; Cruz-Ramirez et al. 2012; Di Laurenzio et al. 1996; Galinha et al. 

2007; Helariutta et al. 2000; Moreno-Risueno et al. 2015; Prigge et al. 2005; Sabatini et al. 

2003; Welch et al. 2007; Zhong et al. 1999), were unperturbed in the VSR. TFs of the 

families NAC and MYB were identified as the regulators of the lignification and the 

secondary cell wall formation in Arabidopsis (Wang and Dixon 2012; Zhong et al. 2010). 

In VSR, 31 members of the NAC TF family were differentially expressed along with 21 

members of the MYB TF family. Along with these TFs, several enzymes in the lignin 

biosynthetic pathway were induced in the VSR root tips (Figure 3.4; Table S3.1). And in 

our study of the transcriptome analysis of the root tips verses mature root transcriptome in 

the previous chapter, we noticed that activation of the lignin biosynthetic enzymes was 

found in the mature root rather than the root tips. Typically, the lignification of the cell 

walls and the secondary cell wall formation is not observed in the root tips and on the 

contrary, cell division and the cell elongation related genetic pathways are expected to play 

a major role in this zone (Somssich et al. 2016). In together with the transcriptome profiles 

of TFs and lignin biosynthesis pathway genes and the ectopic lignin deposition observed 

in the VSR root tips suggests the VSR phenotype is due to the premature stabilization of 

the cell walls in the meristematic zone. 

In the VSR root tips, a number of genes belonging to the all the plant hormones, 

including ABA, auxin, BR, CK, ET, GA, and JA, were differentially expressed and mostly 

up-regulated (Table S3.1). This situation suggests the Vsr1 influences the transcription of 

the regulators that induce or repress hormone responsive gene expression. Auxin is one of 
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the crucial plant hormone implicated in the root development. Though we didn’t find any 

auxin biosynthesis genes differentially expressed in the VSR root tips, several genes that 

belong to gene families involved in the auxin sensing, signaling and homeostasis were 

differentially expressed (Table S3.1). Along with auxin, several hormones related gene 

expression and their interactions with other hormone responses orchestrate the regular 

maintenance of the root meristem and the stem cell niche and proper transition into the 

elongation and differentiation (Benkova and Hejatko 2009; Luijten and Heidstra 2009; 

Moreno-Risueno et al. 2015; Petricka et al. 2012a; Petricka et al. 2012b). 

ROS such as super-oxide anion (•O2-), hydrogen peroxide (H2O2), etc., are the by-

products continuously generated during normal metabolic processes in plants, such as 

photosynthesis, photorespiration, and cellular respiration. ROS at an optimal level is 

required for the plant development and acts a secondary signaling molecule and help the 

plants in their response to external stimuli. At levels higher than the optimal, ROS is very 

detrimental to the plants (Foreman et al. 2003). In VSR root tips, we observed high 

accumulation of the ROS evident from DAB staining and also correlated with the induction 

of a large number of genes that code for the ROS scavenging mechanisms (Foyer and 

Noctor 2013). ROS also acts as a signal for the programmed cell death in plant cells 

(Gechev et al. 2006). Related to this, we also detected DEGs in the autophagy pathway. 

Recent studies in Arabidopsis found crosstalk between hormones, such as ABA and BRs, 

and ROS signaling (Yang et al. 2014; Lv et al. 2018). Our results on VSR found 

signification perturbation both in phytohormones and ROS, suggesting a potential 

interaction between them in VSR development  



	 163	

In addition to dynamics of over 200 TF genes, the hormonal signaling, lignin, ROS 

and autophagy pathways, (Fig 3.5), expression in genes coding protein kinases such as 

FERONIA (FER), ubiquitin E3 ligases such as BIGBROTHER (BB), and transporter 

proteins was up-regulated in VSR (Table S3.1). Perturbation of these pathways eventually 

down regulate cell proliferation and cell elongation as evidenced by down regulation of 

cell division machinery protein genes such as histones, In the model plant Arabidopsis, BB 

represses cell proliferation (Li and Baven 2004), FER interact with peptide hormone RALF 

to inhibit cell elongation (Haruta et al. 2014). We also observed up-regulation of RALF 

homolog of wheat in VSR root tips. In Arabidopsis, ROS also can activate lignin deposition 

(Denness et al. 2011). We also observed over accumulation of ROS in VSR root tips 

(Figure 3.6.) and deposition of lignin in the elongation zone (Figure 3.7). Based on our 

results and publications from the model plant Arabidopsis, we propose a model to explain 

the VSR development (Figure 3.9). In this model, we hypothesize that the Vsr1 gene is 

expressed only in Vsr1aVsr1b heterozygote, the Vsr1 gene product interacts with other 

proteins, i.e., the Vsr1-interacting proteins (VIP s), and the VIPs participate in over-

activation of the hormonal signaling, ROS accumulation, lignification, and protein kinase 

Feronia (FER) and BigBrother (BB) E3 ligase. The coordinated expression of these genetic 

pathways eventually suppresses cell proliferation and elongation, leading to the VSR 

phenotype (Figure 3.9). 

Recently, several studies provided the evidence for miRNA’s role in root 

development. In VSR root tips, several isomiRs of miR167 were upregulated. miR167 

targets TFs ARF6 and ARF8 along with IAA-ALA-RESISTANT 3 (IAR3) in Arabidopsis 

(Gutierrez et al. 2012; Kinoshita et al. 2012). Interestingly, miR167 represses the IAR3 
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which represses the primary root (Kinoshita et al. 2012). miR319 was reported to repress 

cell proliferation in leaf development by targeting TCP4 (Schommer et al. 2014). In VSR 

four members of miR319 were down-regulated. miR159, one of the most abundant miRNA 

in plants, that targets GA related MYB TFs and inhibits growth and promotes cell death 

was recently identified as the repressor of root growth (Alonso-Peral et al. 2010; Alonso-

Peral et al. 2012; Xue et al. 2017).  The meristem size in the miR159ab mutants in 

Arabidopsis was increased and was thought to be acting on the targets related to the cell 

cycle progression (Xue et al. 2017). Though several isomiRs of miR159 were repressed, 

the induced isomiRs in the VSR root tips were up-regulated at much higher level (~230-

fold induction). Also, miR159 was shown to act independent of the abundance levels in 

Arabidopsis seeds (Alonso-Peral et al. 2012). miR396 was reported to regulate the root 

development by reducing the cell cycle time in the root tissue by interacting with the GRFs 

which in turn repress PLTs (Bazin et al. 2013; Rodriguez et al. 2015). Interestingly, two 

isoforms of miR396 were induced and two were repressed in the VSR. The bidirectional 

expression patterns among the miR396 members may suggest fine tuning function of these 

members in different cell types during the development of VSR phenotype. Lack of 

knowledge on the direct role of other differentially expressed miRNAs in the regulation of 

the root development makes it more complicated to understand VSR phenotype. 

We have shown that VSR expression is not beneficial to root growth and plant 

development. But why the Vsr1 gene is still present in the wheat population? We 

hypothesize that the Vsr1 gene is important for some developmental processes by 

triggering cell death, but it is mis-activated in root tips of the F1 hybrid between CS and 

TA. The Vsr1-dependenr expression profiles could be due to a combination of the 
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regulatory elements from the two parental genomes or modification of epigenetic status in 

the regulatory regions.  

VSR represents an important and interesting mechanism of gene expression 

regulation. Although we can imagine many fascinating and possible scenarios but still have 

no idea how the regulation of Vsr1 expression and Vsr1 activation of those genetic 

pathways that suppress cell proliferation and elongation. To reveal the complete VSR 

mechanism, we will need to clone the Vsr1 gene. Despite the availability of the wheat 

reference genome from CS, we still need the sequence from the corresponding region of 

the TA genome. To this end, the 5D chromosome may be sorted from TA and sequenced 

using the long-read technology, such as Nanopore (Oxford Nanopore Technologies, 

Oxford Science Park, UK) and aligned with the CS reference genome to identify the 

variation. At the same time, the root tip transcriptome from the VSR also needs to be 

sequenced using the long-read technologies to a much deeper level or using sequence 

capture strategy to increase the sequence depth as the expression of the Vsr1 locus may be 

very low or coding for non-coding RNA.  The Vsr1 candidate gene identified in this way 

can be validated by traditional genetic complementation or genome editing such 

CRSIPR/Cas9, which can cause DNA deletions from 1-bp to several hundred kb (Weeks 

et al. 2015). 
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TABLES 

 

Table 3.1 Details of the sequenced reads for the Long Root and VSR datasets. 

 Raw reads Cleaned high quality reads 

Sample Single-end Paired-end Single-end (%) Paired-end (%) 

LR Replicate 1 25,352,326 6,657,382 22,638,023 (89.29) 5,621,234 (84.44) 

LR Replicate 2 27,085,540 7,042,388 26,335,159 (97.23) 6,526,716 (92.68) 

LR Replicate 3 27,114,351 6,928,016 25,904,592 (95.54) 6,324,452 (91.29) 

VSR replicate 1 24,387,317 6,381,164 22,452,573 (92.07) 5,556,556 (87.08) 

VSR replicate 2 23,032,193 6,039,935 21,323,360 (92.58) 5,274,329 (87.32) 

VSR replicate 3 24,098,214 6,153,778 22,047,231 (91.49) 5,320,806 (86.46) 

Total 151,069,941 39,202,663 140,700,938 (93.14) 34,624,093 (88.32) 
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Table 3.2 Details of the Functional annotation of the DEGs 

 # gene models 

Refseq 1.0 High confidence (HC) models 110,790 

Refseq 1.0 Low confidence (LC) models 269,583 

Total gene models 380,373 

 Up Down 

DEGs 3,635 777 

• HC 3,418 567 

• LC 145 37 

• Stringtie Transcripts 72 173 
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FIGURE LEGENDS 

 

Figure 3.1 VSR phenotypes in seedlings and adult plants. (a) CS BC2F1 seedlings 20 

days after planting carrying genotypes Vsr1aVsr1a (left) and Vsr1aVsr1b (right). (b) A 10 

days-old Bobwhite (BW)-BC5F1 seedling (Vsr1aVsr1b) showing very short primary roots, 

very short crown roots and very short lateral roots. (c) A root tip of a 10 days-old BW 

seedling (Vsr1aVsr1a). No lateral roots were observed. (d) BW BC5F1 plants carrying 

genotypes Vsr1aVsr1a (left) and Vsr1aVsr1b (right). The scale bars indicate 1 cm.   

 

Figure 3.2 Overview of metabolic processes to which differentially expressed genes in 

VSR root tips belong.  Each box represents a gene. The up-regulated genes were 

represented in blue color and down-regulated genes in red color. 

 

Figure 3.3 Overview of various cellular responses to which differentially expressed 

genes in VSR root tips belong.  Each box represents a gene. The up-regulated genes were 

represented in blue color and down-regulated genes in red color. 

 

Figure 3.4 Overview secondary metabolism pathways to which differentially 

expressed genes in VSR root tips belong.  Each box represents a gene. The up-regulated 

genes were represented in blue color and down-regulated genes in red color. 

 

Figure 3.5 Transcription factors differentially expressed in the VSR root tips.  The X-

axis represents the transcription factor families, and the Y-axis represents the number of 
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transcripts belonging to each family. The blue colored bars are up-regulated genes, and the 

orange color bars are down-regulated genes in the VSR root tips. 

 

Figure 3.6. DAB staining of root tips. (a) Primary roots of CS-Vsr1a, (b) primary root of 

CS-Vsr1b, (c) primary root of F1 hybrid between CS-Vsr1a and CS-Vsr1b, and (d) lateral 

roots of the F1 hybrid. 

 

Figure 3.7. Lignin deposition in VSR. Root tips of CS (a), TA (b) and their F1 hybrids of 

1 d (c), 2 d (d) and 3 d after germination (e and f). Lignin was stained in red (arrows) by 

1% phloroglucinol (d, e and f). The scale bars in a through e indicates 1 mm; the scale bar 

indicates 100 µm. 

 

Figure 3.8 miRNAs upregulated by at least 10-fold in VSR root tips. The X-axis 

represents the miRNA and the Y-axis represents the fold change. 

 

Figure 3.9. A working model for Vsr1-mediated root inhibition. The arrows indicate 

promotion and the inverted ‘T’s indicate suppression. VIPs: Vsr1-interacting proteins. 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 VSR phenotypes in seedlings and adult plants. (a) CS BC2F1 seedlings 20 

days after planting carrying genotypes Vsr1aVsr1a (left) and Vsr1aVsr1b (right). (b) A 10 

days-old Bobwhite (BW)-BC5F1 seedling (Vsr1aVsr1b) showing very short primary roots, 

very short crown roots and very short lateral roots. (c) A root tip of a 10 days-old BW 

seedling (Vsr1aVsr1a). No lateral roots were observed. (d) BW BC5F1 plants carrying 

genotypes Vsr1aVsr1a (left) and Vsr1aVsr1b (right). The scale bars indicate 1 cm.   

 

 

a d c 

b 
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Figure 3.2 Overview of metabolic processes to which differentially expressed genes 

in VSR root tips belong.  Each box represents a gene. The up-regulated genes were 

represented in blue color and down-regulated genes in red color. 
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Figure 3.3 Overview of various cellular responses to which differentially expressed 

genes in VSR root tips belong.  Each box represents a gene. The up-regulated genes were 

represented in blue color and down-regulated genes in red color. 
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Figure 3.4 Overview secondary metabolism pathways to which differentially 

expressed genes in VSR root tips belong.  Each box represents a gene. The up-regulated 

genes were represented in blue color and down-regulated genes in red color. 
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Figure 3.5 Transcription factors differentially expressed in the VSR root tips.  The X-

axis represents the transcription factor families, and the Y-axis represents the number of 

transcripts belonging to each family. The blue colored bars are up-regulated genes, and the 

orange color bars are down-regulated genes in the VSR root tips. 
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Figure 3.6. DAB staining of root tips. (a) Primary roots of CS-Vsr1a, (b) primary root of 

CS-Vsr1b, (c) primary root of F1 hybrid between CS-Vsr1a and CS-Vsr1b, and (d) lateral 

roots of the F1 hybrid. 
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Figure 3.7. Lignin deposition in VSR. Root tips of CS (a), TA (b) and their F1 hybrids of 

1 d (c), 2 d (d) and 3 d after germination (e and f). Lignin was stained in red (arrows) by 

1% phloroglucinol (d, e and f). The scale bars in a through e indicates 1 mm; the scale bar 

indicates 100 µm. 
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Figure 3.8 miRNAs upregulated by at least 10-fold in VSR root tips. The X-axis 

represents the miRNA and the Y-axis represents the fold change. 
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Figure 3.9. A working model for Vsr1-mediated root inhibition. The arrows indicate 

promotion and the inverted ‘T’s indicate suppression. VIPs: Vsr1-interacting proteins. 
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SUPPLEMENTARY TABLES 

Table S3.1. Annotation and the expression profiles of the DEGs 

Table S3.2 Annotation and the expression profiles of the differentially expressed 

miRNA 

Both the tables were uploaded to proquest as supplementary material. 
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CHAPTER 4 

 

Conclusions and Future Directions 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

This study was initiated due to the lack of information on root, development of cereals, 

more specifically of wheat. It was aimed at throwing light on the anatomy of the root tip 

transcriptome and helping further studies to elucidate the molecular mechanism involved 

in the manifestation of the VSR phenotype. The transcriptome of the wheat root was 

generated using the high-throughput sequence data and de novo assembly strategy. De novo 

assembly of the root transcriptome was compared to the draft genome sequences that were 

made available by IWGSC and it not only showed that the de novo transcriptome is of 

reasonable good quality, but also proved that the gene models predicted in the draft genome 

were incomplete. In addition, we were able to identify several transcripts that were not 

coding for a functional protein and that could be putative non-coding transcripts and were 

differentially expressed in the root tip. Our study identified differentially expressed 

transcripts in the root tips compared to the mature root and also several homologs known 

to participate in root development in the model systems were also identified in the wheat 

root transcriptome. We also identified several proteins that were previously not known to 

regulate root development or that were not previously assigned any function were 

identified. We strongly believe de novo assembled root transcriptome paved a path for 

improving the genome annotation of wheat where it can identify novel transcripts that 

otherwise not predicted by the ab initio gene prediction tools and provides a new evidence 

for the low confidence gene models predicted by the genome annotation pipelines. In 

addition, it also provides the transcripts that were not present in the genome assembly and 

thus providing information of the chromosome fragments that were missed in the genome 
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sequence. For further understanding the molecular mechanism of the cereal root 

development and improving the wheat genome annotation, I suggest following research be 

considered: 

a. Identifying the homologs of the putative non-coding transcripts expressed in 

the root, in other sequenced plant genomes 

b. Heterologous expression of the differentially expressed non-coding transcripts 

in Arabidopsis to identify their role in root development 

c. Several differentially expressed transcripts in root tip has no function assigned 

to them or coding for proteins of unknown function. Functional characterization 

of these genes will provide more information to resolve the complexity of the 

pathways involved in the root development and also can identify the missing 

links in the present knowledge 

d. Further computational studies to identify the transcription start sites can be 

initiated with the current data to improve the genome annotation 

 

The root transcriptome assembly initiated the study of root biology and is an initial 

milestone for understanding the molecular mechanisms involved in the cereal root 

development. This paved a path to understand the very interesting root phenotype identified 

in our lab, i.e., VSR. A transcriptome topology of the VSR root tips was elucidated using 

the recently available reference genome for wheat and high throughput sequencing 

technology. This study identified the interplay between hormones, ROS and developmental 

pathways in the occurrence of the VSR phenotype. VSR represents an important and 

interesting mechanism of gene expression regulation. Although we can imagine but still 
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have no idea how the Vsr1 expression is regulated in the root tip and how Vsr1 can mis-

activate those genetic pathways that suppress cell proliferation and elongation. The 

interesting entanglement of several hormones with ROS and other stresses makes the 

delineation of Vsr1 mediated pathway an important next step. To achieve this, I suggest 

following research to be considered. 

a. We will need to clone the Vsr1 gene.  

b. Despite the availability of the wheat reference genome from CS, we still need the 

sequence from the corresponding region of the TA genome. To this end, the 5D 

chromosome may be sorted from TA and sequenced using the long-read 

technology, such as the Nanopore sequencing and aligned with the CS reference 

genome to identify the variation.  

c. At the same time, the root tip transcriptome from the VSR also needs to be 

sequenced using the long-read technologies to a much deeper level or using 

sequence capture strategy to increase the sequence depth as the expression of Vsr1 

may be very low or coding for non-coding RNA.   

d. The Vsr1 candidate gene identified in this way can be validated by traditional 

genetic complementation or genome editing such CRSIPR/Cas9, which can cause 

DNA deletions from 1-bp to several hundred kb. 
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