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ABSTRACT 

REPLICATION, VIRULENCE, AND PATHOGENESIS OF INFLUENZA VIRUSES 

CHITHRA C. SREENIVASAN 

2018 

Influenza D virus (IDV) is a novel influenza virus that infects cattle and swine, with 

cattle as its primary host species. The goal of our first study was to investigate the 

replication and transmission of bovine IDV in guinea pigs. Following direct intranasal 

inoculation of animals, the virus was detected in nasal washes of infected animals during 

the first 7 days post-infection. High viral titers were obtained from nasal turbinates and 

lung tissues of directly inoculated animals. Further, bovine IDV was able to transmit from 

the infected guinea pigs to sentinel animals by means of contact and not by aerosol 

dissemination under the experimental conditions tested in this study. Despite exhibiting no 

clinical signs, infected guinea pigs developed seroconversion and the viral antigen was 

detected in lungs of animals by immunohistochemistry. The observation that bovine IDV 

replicated in the respiratory tract of guinea pigs was similar to observations described 

previously in studies of gnotobiotic calves and pigs experimentally infected with bovine 

IDV but different from those described previously in experimental infections in ferrets and 

swine with a swine IDV, which supported virus replication only in the upper respiratory 

tract and not in the lower respiratory tract, including lung. Our study established that guinea 

pigs could be used as an animal model for studying this newly emerging influenza virus. 

Influenza D virus isolated from the cattle and swine populations from North America and 

Eurasia shares 50% homology to the human influenza C virus. The goal of our second 

study was to investigate the replication kinetics and virulence of bovine and swine 
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influenza D isolates (96-98% homology), in comparison to human influenza C in guinea 

pigs. Despite the similarity, both bovine and swine IDVs differ antigenically and 

genetically and belong to two different lineages. Guinea pigs upon intranasal inoculation 

of D/bovine/660/Oklahoma/2013 (bovine IDV), D/swine/1334/Oklahoma/2011 (swine 

IDV) and C/ Victoria/2012 (human ICV) did not exhibit any clinical signs. However, all 

the infected animals seroconverted at 7 days post-infection (dpi). Guinea pigs infected with 

ICV did not shed the virus in nasal washes at 1 dpi and only 2/8 shed virus at 3 dpi. In 

contrast, in bovine IDV infected group, 9/10 animals shed the virus in nasal washes at 1 

dpi, while the swine IDV group (8/8) began to shed the virus only at 3 dpi. Hence, the 

disparity in the virus-shedding pattern of swine IDV could be an adaptation lag due to the 

subtle difference in receptor binding specificity and virus tropism. Deep RNA sequencing 

of viral genomes in the nasal washes, receptor binding preference, and structural modeling 

of receptor binding domain of hemagglutinin-esterase fusion protein are currently 

underway to identify the key factors and mechanisms involved in the differential 

replication kinetics, viral tropism, pathogenesis of the bovine and swine influenza D 

viruses. Further, our third project was aimed at developing a good primary culture system 

from swine for studying the virulence and pathogenesis. Influenza viruses are a group of 

respiratory pathogens that have evolved into four different types: A, B, C, and D. One 

common feature is that all four types are capable of replication and transmission among 

pigs. Human respiratory primary epithelial cell culture has been recently utilized to 

examine the replication and pathogenesis of influenza A viruses. However, little has been 

made in the development of the autologous cell culture system from swine to study 

influenza viruses. Here we describe the development of primary epithelial cells from swine 
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nasal turbinates, trachea and lungs and determine their utility in the replication of four types 

of influenza viruses. Phenotypic characterization using immunocytochemistry coupled 

with flow cytometry analysis showed that cytokeratin was expressed at high levels in swine 

nasal turbinates, trachea, and lung cells, while the relatively low abundance of other 

epithelial cell markers (desmin, α-SMA, and vimentin) was detected. In addition, all three 

swine cells were found able to undergo the polarization as measured by trans-epithelial 

electrical resistance (TEER) and expression of tight junction proteins including claudin-1, 

-3, Zona occludens protein -1 (ZO-1) and occludin-1. These results strongly suggest that 

the developed swine primary cells possess common characteristics of epithelial cells. 

Furthermore, sialic acid receptor profile analysis through lectin binding assay with 

Sambucus Nigra Lectin (SNA) and Maackia Amurensis Lectin II (MAL-II) demonstrated 

that three swine primary epithelial cells expressed higher levels of alpha 2,6 linkage sialic 

acid (SNA) than alpha 2,3 linkage sialic acid receptors (MAL-II). Finally, all three primary 

cells supported the replication of Influenza A, B, C and D viruses to an appreciable level, 

but virus type-dependent replication kinetics were observed. Overall, these swine 

respiratory primary cells showed epithelial phenotype and are suitable for studying the 

comparative biology and pathobiology of four types of influenza viruses. 
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Chapter 1. Introduction and objectives 

Influenza viruses are negative-sense, single-stranded RNA viruses classified in the 

Orthomyxoviridae family. There are four recognized genera of influenza viruses, 

designated influenza A (IAV), influenza B (IBV), influenza C (ICV) and influenza D (IDV) 

(https://www.cdc.gov/flu/about/viruses/types.htm, Accessed April 24, 2018). IAV and 

IBV have 8 negative-sense, single-stranded RNA segments, whereas ICV and IDV have 

only 7 segments. Influenza D virus (IDV) originally isolated from an ailing swine from 

Oklahoma showing respiratory illness has been provisionally described as influenza C like 

virus, as the virus was more homologous to influenza C virus than influenza A and B 

viruses. This newly emerged virus has been officially approved by the international 

committee of Taxonomy of Viruses (ICTV) and categorized as the fourth genus in the 

Orthomyxoviridae family in 2016 [2]. After IDV was isolated from swine, serological 

screening in pigs showed 9.5 % seroprevalence in the mid-west swine populations [2]. 

Further, serological screening in bovines showed a much higher prevalence in bovine herds 

and reverse transcription RT-PCR on bovine respiratory disease submission samples, led 

to the isolation of several similar strains of IDV [2]. Genetic and antigenic analyses 

demonstrated that the IDVs cannot undergo reassortment with ICV and have peculiar 

splicing pattern of NS and M protein [2]. More detailed studies have revealed that there are 

two lineages of IDV, represented by D/OK (D/swine/Oklahoma/1334/2011) and D/660 

(D/bovine/Oklahoma/660/2013), of which D/660 is predominant lineage in the USA. A 

third lineage D/bovine/Ibaraki/7768/2016 was discovered later, in Japan [3].  

A little is known about the virulence, pathogenicity, and transmission of IDV. 

Previous research demonstrated that swine IDV was found to infect ferrets and pigs and 

https://www.cdc.gov/flu/about/viruses/types.htm
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can also be transmitted to naïve animals by contact. Swine IDV was able to replicate in 

nasal turbinates and shed detectable levels of virus in nasal washes. However, swine IDV 

was not detected in trachea and lungs in either ferrets or pigs indicating its inability to 

replicate in the lower respiratory tract. The animals seroconverted but neither ferrets nor 

pigs developed clinical symptoms and lesions typical of Influenza [4]. Ferrets have been 

used as surrogates for human influenza infection and pathogenesis. The ability of swine 

IDV to replicate in the upper respiratory tract of ferrets may indicate the zoonotic potential 

of these viruses. 

The objective of our first study is to examine viral replication, transmission, and 

virulence properties of the novel bovine IDV in guinea pigs. Our study is based on the 

following considerations. First, guinea pig has been used extensively as an alternate 

mammalian animal model for studying the pathogenesis of many influenza viruses 

including IBV [5-7]. Second, this animal model was susceptible to infections by Influenza 

A virus subtypes and demonstrated virus replication in lungs. Third, guinea pigs were able 

to transmit human influenza viruses from one animal to another [7]. Fourth, they are easier 

to handle and house, and less expensive compared to ferrets. Importantly, guinea pigs share 

similar airway hyperresponsiveness and have bronchus-associated lymphoid tissue as 

humans [8, 9]. Finally, despite being highly similar to a swine IDV strain used previously 

for ferret and pig studies, the bovine IDV selected for this study is a representative strain 

of another antigenic lineage different from swine IDV, possessing some distinct variations 

in the HEF protein, a major mediator of host range and viral tropism [10]. Further, the 

bovine lineage has been found as the predominant lineage in US herds. In this study, guinea 
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pigs will be intranasally inoculated with bovine IDV to study the virulence and also the 

transmissibility of the virus by contact and aerosol. 

The virus ecology of influenza D has been expanding since it was discovered in 

2011-2013 and several strains of IDV have been isolated from different parts of the North 

America, and Eurasia. Serological evidence of IDV was found in small ruminants (goats 

and sheep), buffaloes, equines, and camelids [11-13]. Influenza D antibodies have also 

been detected from occupational workers which implicates the public health importance of 

this newly emerged virus [14]. Even though the majority of IDVs isolated from North 

America belong to the D660 lineage, it is interesting to note that recent isolates of IDVs of 

Eurasian origin were mostly of D/OK lineage [3, 13, 15, 16]. As stated earlier, humans are 

the primary host for ICV, but ICV has also been isolated from pigs and the directionality 

of transmission still needs to be addressed. Like ICV, IDV also uses the HEF protein, for 

the virus entry and exit, and these proteins share a conserved enzymatic site and divergent 

receptor binding sites. IDV exhibits broad host tropism, and IDV HEF has exceptional acid 

and thermal stability compared to ICV [17]. Based on these phenotypic characteristics, we 

wanted to identify the molecular factors/ determinants responsible for the broad host 

tropism of IDV compared to ICV. The second thing is, HEF of the IDVs belonging to two 

lineages may have genetic and antigenic differences. So the goal of our second study is to 

investigate the differences in the virulence, and pathogenicity of these two lineages in the 

guinea pig model.  

Apart from the in-vivo studies to characterize the IDV and ICV, we also wanted to 

develop a good in-vitro primary cell culture system to study the influenza viruses as most 

of the current research and commercial vaccine production depends on continuous cell 
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culture. Several cell lines such as Madin Darby canine kidney cells (MDCK), Vero, MRC-

5 and baby hamster kidney (BHK) cells, have been used extensively for the influenza virus 

growth [18-20]. Primary cells mimic the physiological properties in-vivo and hence is the 

best in-vitro model to study the mechanistic details of the normal or diseased conditions of 

the body. Primary cell cultures had been an excellent in-vitro system to study the virulence 

and pathogenetic characteristics of the influenza viruses. Influenza studies using primary 

cell culture from humans and swine has been utilized for studying the virulence, and 

receptor binding specificities of the viruses from different host origin [21-25]. Several 

studies have been conducted on swine tracheal/bronchial/lung epithelial cells to study the 

pathogenesis and anti-viral responses at the transcriptional and translational level as the 

swine species share the most anatomical and physiological characteristics to humans [26-

28] Pigs are the mixing vessels of influenza viruses and harbor receptors for both the avian 

and human influenza viruses. Recently, it was found that domestic pigs are susceptible to 

influenza B and C viruses [29-31]. Further influenza D has been initially isolated from 

swine [4]. Taken together, pigs can be infected with all four types of influenza viruses. The 

goal of our third study is to develop, characterize and study the utility of the primary swine 

respiratory epithelial cells derived from the from upper and lower respiratory tract (nasal 

turbinates, trachea and lungs) of a gnotobiotic piglet on the differential replication of four 

types of the influenza compared to MDCK cells at two different temperatures, 33oC and 

37oC. 

Objectives: 

I. To evaluate guinea pigs as model mammalian host for the novel bovine IDV 

a. Checking the viral growth kinetics 
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b. Direct contact transmission of IDV 

c. Aerosol/droplet transmission of IDV 

II. To compare the virulence and pathogenesis of bovine and swine IDVs to human ICV 

in guinea pig model 

a. Swine and bovine HEF belong to two lineages based on their genetic and antigenic 

differences: Whether they have any difference in pathogenesis and tissue tropism? 

b. To determine the sialic acid population and distribution in guinea pigs 

c. To identify the molecular determinants/factors responsible for the differential 

replication and tissue tropism of IDV compared to ICV 

III. Development and characterization of porcine primary airway epithelial cells: differential 

replication of four influenza virus types. 
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Chapter 2. Influenza epidemiology, clinical features, and host spectrum 

2.1 Epidemiology and clinical features of influenza 

Influenza disease recognized as early as the 16th century causes two forms of 

infections globally 1) epidemic (seasonal or interpandemic) caused by the influenza A and 

B type viruses and sporadic pandemics caused by the influenza A viruses. Influenza viruses 

evolved to form four different types and several subtypes, infecting multiple mammalian 

species worldwide, including humans. Over time, we have seen some new mammalian 

hosts such as bats, seals, and whales added to the host spectra of influenza [32-36].  

Influenza is an acute respiratory infection affecting humans of all age groups, birds 

and animal populations all over the world. Each year, influenza causes a high rate of 

hospitalization and death in humans, particularly among high-risk people such as elderly 

patients, pregnant women, immune-compromised individuals, and young children. 

According to WHO factual sheet, 3 to 5 million cases of seasonal epidemics occur 

worldwide and 290,000 to 650,000 deaths are attributed to influenza infection annually 

(http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) accessed April 29, 

2018). Apart from the seasonal epidemics, several pandemics emerged during the last 

century. The first pandemic ‘Spanish flu’ occurred in 1918, caused by Influenza A subtype 

H1N1, followed by ‘Asian flu’ in 1957-58 and ‘Hong Kong flu’ in 1968-69. More recently, 

a pandemic caused by the swine-origin H1N1 virus was reported in 2009 [37]. Individuals 

with pre-existing conditions such as diabetes, heart diseases and chronic pulmonary 

diseases and physiological conditions such as pregnancy are prone to influenza-related 

complications. Most common clinical symptoms include sore-throat, high temperature, 

cough, and body pain. Influenza complications include pneumonia, myocarditis, 

http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
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pericarditis, and death. In the 2009 pandemic, gastrointestinal signs such as abdominal 

pain, and dysentery were also present along with respiratory symptoms [38]. 

Influenza A infections were reported in humans, pigs and birds globally, caused by 

different subtypes. In humans, influenza B causes seasonal epidemics. Since Pdm2009, 

few other strains emerged that can cause infections in humans. These include a new variant 

of H3N2 (H3N2v), which derived its matrix gene segment from H1N1pdm2009 virus 

causing infections in both children and adults during 2011-13 [39]. More recently, the avian 

H7N9 strain has emerged as a major threat in China [40]. Surveillance reports from 2017-

18 revealed that influenza A H3N2 predominated among infections, along with influenza 

B viruses since last March 2018 (https://www.cdc.gov/flu/weekly/index.htm). 

Influenza viruses belong to Orthomyxoviridae family and are negative sense single-

stranded viruses affecting several different types of hosts. So far there are four different 

types of influenza: A, B, C, and D (https://www.cdc.gov/flu/about/viruses/types.htm; 

http://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) accessed, April 

29,2018). Influenza A is the most common subtype affecting the diverse population of 

animals and poultry such as waterfowls, domesticated birds, swine, seals, human, equines, 

canines. The factors that govern the virulence, pathogenicity and interspecies transmission 

of influenza viruses could be multifactorial, which includes viral as well as host factors. 

Among the viral factors, HA glycoprotein is the most important one determining the host 

range and interspecies transmission. Other viral proteins such as PB2 and NS1 have also 

been involved in host range restriction and host innate immune response [41]. In the case 

of humans, zoonotic infections are seen in two ways. One could be isolated, dead-end 

infections which fail to establish and adapt as in the case of Ebola and hantaviruses. The 

https://www.cdc.gov/flu/weekly/index.htm
https://www.cdc.gov/flu/about/viruses/types.htm
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second one happens when the virus adapts and establishes as intermediate or secondary 

hosts, and also sustain horizontal transmission and also reverse zoonosis. [42] Such stable 

host switch events lead to strong adaptations which can resist the evolutionary pressures or 

the antagonistic environment posed by the novel hosts. The novel human-adapted IAVs 

such as H5N1 and H9N2 are examples for this type of establishment of seasonal viruses 

[43-45]. 

Influenza viruses undergo antigenic drift, acquiring mutations in HA and NA 

frequently which enables the virions to sustain the existing immunity and thereby causing 

seasonal epizootics. Influenza virus can undergo gene reassortments via antigenic shift and 

cause pandemics. Antigenic shifts in the hemagglutinin and neuraminidase glycoproteins 

of influenza A have led to several new influenza subtypes giving rise to high pathogenic 

and low pathogenic strains affecting several hosts mainly waterfowls.  

IAV and IBV have 8 negative-sense, single-stranded RNA segments, whereas ICV 

and IDV have only 7 segments. IAV proteins include 5 structural proteins, HA 

(hemagglutinin), NA, M1, M2, and NP (ribonucleoprotein); 3 subunits of the RNA 

polymerase complex, polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), 

and polymerase acidic protein (PA); and 3 nonstructural proteins, NS1, NS2 (nuclear 

export protein [46]), and PB1-F2 [47]. Recent studies have suggested that NS2 and 

(probably) NS1 of IAV are structural proteins that can be detected in virions [48]. IBV has 

6 structural proteins, HA, NA, NB, M2, M1, and NP; 3 subunits of RNA polymerase 

complex, PA, PB1, and PB2; and 2 non-structural proteins, NS1 and NS2. ICV has 4 

structural proteins, M2, M1, NP, and the hemagglutinin-esterase fusion (HEF) protein that 

replaces the HA and NA of IAV or IBV; 3 subunits of RNA polymerase complex, P3, PB1, 
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and PB2; and 2 nonstructural proteins, NS1 and NS2 (Figure. 2.1). ICV has hemagglutinin 

esterase fusion protein that combines the function of HA and NA, to perform the receptor 

binding, receptor destroying and membrane fusion. ICV has two IAV has several subtypes 

depending on the HA and NA proteins and causes severe epidemics and pandemics 

affecting humans. So far there is 18 HA and 11 NA types, of which H1 to H16 and N1 to 

N9 have been isolated from birds. H17, H18, N10, N11 have been identified in bats. Out 

of these, only 3 subtypes (H1, H2, H3) and two NA (N1, N2) subtypes have been reported 

to have caused human epidemics and capable of transmission. IAV exists in multiple 

mammalian species, whereas IBV and ICV primarily infect humans. IBV has no subtypes 

but possesses two lineages causing localized epidemics and affecting mainly humans and, 

to some extent, seals [49]. The IBV genome was also recently detected in domestic pigs, 

indicating that the virus may infect this agricultural animal [47]. Compared to the IAV and 

IBV, ICV infections cause mild disease and were found to have coexisted with IAV and 

IBV infections in humans [50]. A striking feature of IDV is that it has multiple mammalian 

hosts similar to IAV, although we consider bovines as the natural reservoir [51]. 
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Figure. 2.1 Influenza types and structure. Structure of influenza type A (A), type B (B), 

and type C and D (C). Adapted from 

https://viralzone.expasy.org/6?outline=all_by_species, accessed May 16, 2018. 

 

Swine respiratory system harbors various forms of sialic acids with different linkages 

or modifications that make this agricultural animal species susceptible to infections by all 

four types of influenza viruses. In addition to influenza A virus (IAV), influenza C (ICV) 

and D (IDV) have been isolated from swine (1). Our recent investigation also revealed the 

presence of influenza B virus in U. S. pig farms that were previously infected with porcine 

reproductive and respiratory syndrome virus (PRRSV) (3). There has been no 

documentation of any incidence of influenza in bovines until 2011-2013, during which the 

serological evidence against newly isolated influenza C like virus (later designated as 

influenza D virus) of swine origin, was detected in bovine herds of the USA. A schematic 

diagram showing different types of influenza and their potential host spectra are given in  

https://viralzone.expasy.org/6?outline=all_by_species
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Figure 2.2. Host spectra of the four types of influenza 

 

2.1.1 Influenza A virus (IAV) 

Swine influenza in North American pig populations, particularly in Midwest U.S. 

dates back to 1930 when H1N1 was initially isolated in pigs [52]. This classic lineage 

derived from 1918 Spanish pandemic flu, is still a robust virus and is floating in the swine 

and human population for more than 80 years. Besides, other reassortant viruses like H3N2 

which shares the gene segments NP, M, NS from classical swine virus; PB1, HA, NA from 

H3N2 human seasonal IAV; PB2, PA from avian IAV [53, 54] and H1N2 viruses have 

been evolved and well-established in swine populations. Numerous variants of second 

generation reassortants between human pandemic H1N1 2009 and pig endemic H1N1 

viruses have been reported worldwide [55]. The mixed sialic acid receptor distribution in 

the swine respiratory tract, consisting of both α-2,3 and α-2,6 linkages will make them 

extremely susceptible to both swine and human influenza types and thus are excellent 

mixing vessels for the different subtypes of IAV.  
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2.1.2 Influenza B (IBV) 

Though humans are the primary reservoir of influenza B, reports on the susceptibility 

of domestic piglets to influenza B virus have been reported early back in 1966 [56]. 

Serosurveillance studies conducted by our group on the midwest US swine herds from 

2010 -2012 found that 38.5% (20/52) of sampled farms and 7.3% (41/560) of 

tested swine sera were positive. It is not clear whether animals, especially swine could act 

as a primary reservoir, or is it the reverse zoonotic potential of the IBV that is causing the 

disease. Further studies in 2014, demonstrated high seroprevalence rate against IBV in 

porcine reproductive and respiratory syndrome virus (PRRSV) positive swine herds, which 

indicates a strong association between these respiratory viruses. Experimental infection of 

pigs with two antigenic and genetic lineages of IBV: B/Brisbane/60/2008 (Victoria lineage) 

and B/Yamagata/16/1988 (Yamagata lineage) showed influenza-like symptoms and 

successful transmission with seroconversion among pigs [29]. Further studies are needed 

to know whether swine can also act as a potential reservoir for human IBV. 

2.1.3 Influenza C (ICV) 

ICV is a ubiquitous pathogen affecting humans and antibodies to ICV are prevalent 

in all humans. Natural infection of ICV has also been reported in swine [57]. ICV has been 

isolated from pigs in China in 1981[31]. Genetic analysis showed that Chinese swine ICV 

share high similarities to human ICV, suggestive of interspecies transmission. Serological 

screening in Japan and Great Britain has shown incidences of ICV in pigs in the 1990s [58, 

59]. While the interspecies transmission of ICV is from human to pigs or pigs to human is 

still under debate, further investigation is warranted to determine the host spectrum. 
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2.1.4 Influenza D (IDV) 

A new influenza virus type has recently emerged in U.S. cattle and pig population, 

lately officially designated as influenza D (IDV), as this particular virus is different from 

the previously established IAV, IBV and ICV viruses [2]. IDV was originally isolated from 

a piglet showing influenza-like symptoms in Oklahoma in 2011[4, 60]. Further serological 

screening among cattle and small ruminants showed antibodies against IDV. There are two 

distinct antigenic and genetic lineages for IDV and these two lineages co-circulate in the 

U.S swine and bovine populations[47]. IDV has been isolated from other parts of the world 

such as France, China, Italy which shows its intercontinental transmission[13, 15, 61, 62]. 

Although cattle are considered to be a principal reservoir for IDV, the role of other animals 

cannot be dismissed. 

2.2 Bovine Influenza: connecting the past and present  

The notable respiratory tract infections of cattle of the past included bovine 

parainfluenza 3 (the Late 1950s), bovine rhinotracheitis virus (1966), bovine viral diarrhea 

virus (1964), bovine respiratory syncytial virus (1950s). The first report on bovine 

influenza dates back to 1949 from Japan [63]. There are several reports of influenza 

infections and diseases reported from the cattle in Russia, Germany, and Poland, but the 

reports are not accessible currently as the publications were in their native languages and 

not in English. For some, there are English abstracts, which we have made use of in this 

review [64-66]. 

2.2.1 Host restriction factors in bovines 

It is interesting to note that the host repertoire of Influenza A viruses expanded over 

time to include swine, equines, canines, seals, whales, ferrets and poultry since its initial 
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emergence in human, and avian population, but there was only very few evidence for 

influenza A occurrences in bovines in the past. Despite, the growing host range of influenza 

over the last century, the remote incidence of influenza in the bovine species could be due 

to some host restriction factors present in the bovine respiratory tract that is hindering the 

influenza virus adaptation. Humans have a close association with swine and both zoonoses 

and reverse zoonoses phenomenon have been documented. Pigs are considered as the 

mixing vessels for influenza viruses. Interestingly, human association with bovines is 

equally old and closer, however, there was no influenza occurrence in bovine species. As 

such, the influenza A and B viruses can replicate in the in-vitro bovine systems [67-74].So 

there must be an in-vivo host factor causing the interference, which could be receptors or 

host innate immune response. Bovine lactoferrin (bLf) is one such protein that was shown 

to have anti-influenza activity [75-87]. Lactoferrin is a 76kDa glycoprotein with a single 

polypeptide chain of 689 amino acid residues, present in the biological fluids and the 

specific granules of polymorphonuclear leukocytes and is involved in immunomodulation, 

iron absorption, and pathogen inhibition. Bovine lactoferrin was also found to have 

inhibiting property against other enveloped viruses [88]. At the molecular level, bovine 

lactoferrin binds to the influenza virus hemagglutinin and is found to have inhibition 

against H1N1 and H3N2 influenza viruses. Pietrantoni et al. demonstrated that bLf 

interferes with caspase 3 function and inhibit the nuclear export of the viral 

ribonucleoproteins to the cytoplasm and maintains this function in its desialylated, 

deglycosylated, apo and ion-saturated forms [79, 82]. BLf is a protein with two 

symmetrical and globular lobes: C and N lobe each with two sub-domains, I and II with an 

interdomain cleft that binds to an iron atom. C lobe binds with the HA stem region which 
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includes HA2 and some important aa residues of the HA1 region spanning the universal 

conserved epitope, which explains the.broad spectrum anti-influenza activity of the bLf C-

lobe[88]. Bovine lactoferrins have also been known for anti-infective, anti-cancer and anti-

inflammatory effects. Oral administration of the bovine lactoferrins reduced the lung 

consolidation score and the leucocyte infiltration in the bronchoalveolar lavage fluid in 

mice [89]. 

2.2 Natural cases of Bovine influenza  

First recorded evidence of influenza connected to cattle dates back to 1949 in Japan, 

where 160,000 cattle were infected in the western and middle part of Japan [63]. This 

particular incidence of cattle influenza had a short course with recovery in 2-3 days and the 

documented symptoms include high temperature (40-42 OC), blepharitis, nasal discharge, 

anorexia, tympanitis, pneumonia, joint problems, a decrease in lactation etc. Saito also 

mentioned some previous major cattle influenza outbreaks in Japan that occurred in the 

Fall of 1889 and 1893 and some minor outbreaks in 1914-16 in this report [63]. 

 The first report on the isolation of influenza virus from animals was documented 

from Hungary in 1962 [90]. Further, there were reports on cattle influenza from several 

countries especially from the old USSR, with publications written in their native language, 

occasionally with English abstract and keywords. Among which, the earliest report was on 

the seroprevalence of influenza in domestic species of animals in 1969 [65]. During the 

period 1970-1980, isolates of influenza A have been reported in cattle from Russia, 

concurrent to the time of the Hong Kong H3N2 outbreak in humans. In 1973, there were 

reports on the isolation and identification of the A-Hong Kong (H3N2) virus from cattle 

suffering from respiratory diseases from Russia [91]. A/calf/Duschambe/55/71 was 
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isolated, from a terminally ailing calf with respiratory illness using embryonated chicken 

eggs [91]. In 1973, there were other outbreaks reported from Russia (old USSR) among 

cattle and another study on the antigenic characteristics of the influenza viruses isolated 

from the birds and animals of the USSR, both of which are not available in English [92, 

93]. A preliminary report on the isolation of influenza A virus strains has been reported 

from the cattle in 1974 [94]. Further, in 1976 and 1977, there were studies from Russia, 

describing cattle influenza and the examination of the cattle [95, 96]. In 1977, a study was 

conducted where the calves were experimentally inoculated with 3 strains of Hong Kong 

H3N2 viruses from humans, such as strains A/Michigan/l/72 and A/England/42/72 and 

A/Aichi/2/68 along with the calf influenza A strain, A/calf/Duschambe/55/71. None of the 

human strains caused respiratory disease in calves, except for the A/calf/Duschambe/55/71.  

Clinical symptoms include nasal discharge, cough, and mild rhinitis. There was virus 

shedding for A/Aichi/2/68 and A/calf/Duschambe/55/71 for five and seven days 

respectively. A/calf/Duschambe/55/71 was considered as a host range variant of Hong 

Kong/68 strains isolated from humans [97]. In 1978, Wagner et al. described influenza and 

enzootic bronchopneumonia in cattle from Germany [98]. 

In the late 20th century, an idiopathic condition manifested with a sporadic drop in 

milk production occurred in dairy cows [99]. Brown et al. reported seroconversion against 

influenza A virus in cattle associated with reduced milk yield and respiratory disease from 

Great Britain. The virus isolation from these seroconverted animals was negative. The 

animals seroconverted to influenza A virus did not have antibodies against the bovine viral 

diarrhea (BVD), infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI3), and bovine 

respiratory syncytial virus (BRSV) [100, 101]. Further, in 1999, Gunning et al. reported 
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that the cases of influenza in milking cows kept increasing with an annual incidence rate 

of 10-20% in some herds. The clinical symptoms include a sudden drop in the milk yield, 

mild pyrexia, anorexia, occasionally respiratory signs such as nasal discharge and increased 

respiratory rate. High levels of neutrophils and haptoglobin in the blood can be seen in 

most cases. Paired sera from five herds were tested against IBR, PI3, BRSV, Adenovirus, 

M.bovis, H. somnus, C. psittaci, C. brunetti, P. hemolytica, P. trehalosi, Treponemes by 

the appropriate serological test to check the antibody responses. BRSV and PI3 were 

present in all the herds; BVD and IBR were detected in some herds. The cattle sera tested 

showed significantly high antibody titer to the two human influenza A viruses: 60% for 

A/England/333/80 (H1N1) and 65% for A/England/427/88 (H3N2) and only 5% of the 

cows were seronegative against both these viruses [102].  

A report on finding the influenza genes in the cattle, citing the work done at 

Veterinary Laboratories Agency near Weybridge, the UK by Dr. Ian Brown and his 

colleagues was published online in Nature International weekly journal of science on  

January 9, 2002 (https://www.nature.com/news/1998/020107/full/news020107-4.html. 

Accessed 3/31/2018). However, we could not find out any further published information 

later. In 2002, another study from Northern Ireland, involving 84 pairs of paired acute and 

convalescent cattle sera collected in 1998 and 1999 from 17 outbreaks of the respiratory 

disease combined with diarrhea and milk drop syndrome were tested against A/Eng/333/80 

(HIN1) and A/Eng/427/88 (H3N2).  About 56.5 and 58.8 % of the convalescent sera 

showed seroconversion against H1N1 and H3N2 respectively, with H3N2 antibody titer 

remained high compared to H1N1. The study also described the antibody response of the 

cattle sera against the human and porcine strains, with the highest number of positive sera 

https://www.nature.com/news/1998/020107/full/news020107-4.html
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against human H3N2 strains, but the virus isolation in specific pathogen-free chicken 

embryos was unsuccessful from the 142 cattle with similar clinical history [103].  In 2007, 

an experimental inoculation of calves with highly pathogenic avian influenza virus 

(HPAIV) A/cat/Germany/R606/2006 (H5N1) demonstrated 100 % seroconversion with 

neutralizing antibodies against the homologous strain. This study also reported very low 

shedding of the virus as determined by the nasal swab fluid inoculation into embryonated 

chicken eggs and MDCK cells from the inoculated animals. Virus neutralization and the 

ELISA test conducted at 3 months post inoculation demonstrated seroconversion in all 

inoculated calves and one contact animal, providing evidence for contact transmission 

between calves [104].  

Another study by Crawshaw et al. in 2008, also demonstrated rising antibody titers 

against the A/England/333/80 (H1N1) and human influenza A/Eng/427/88 (H3N2) from a 

Holstein Friesian herd suffering from acute fall in the milk production and found no 

association with other infectious diseases such as BRSV, BVD, IBR and PI3. The loss of 

milk production was measured as 159.9 L, which is the difference in the mean of the milk 

production by the controls and affected animals, which comes to about 2% of the lactation 

yield per cow in a herd [105]. A study to find the infectious etiology of the fatal cases of 

calf pneumonia in 48 calves from 27 herds did not detect influenza A virus. The study also 

demonstrated that the severe lung pathology is due to Mannheimia-Pasteurella in 36/40 

(90%) cases; Arcanobacterium pyogenes in 16/40 (40%) cases; Mycoplasma bovis in 12/40 

(30%) cases; bovine respiratory syncytial virus in 4/40 (10%) cases; Histophilus somni was 

detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and 

parainfluenza virus-3 were 1/40 (2.5%) [106].  
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2.2.3 Seroprevalence studies in bovine species 

Naturally occurring antibodies against the H3N2 viruses have been detected in the 

crossbred yak, cattle, and water buffaloes in Kathmandu, Nepal and goats and cattle in 

West Bengal, India as demonstrated by the single radial immunodiffusion tests [46]. An 

experimental inoculation of seronegative yak with A/Hong Kong/1/68 (H3N2), 

A/England/42/72 (H3N2) and A/Prague/1/56 (Heq1 Neq1) resulted in a serological 

response against all these strains [46]. This study has been the second documented 

reference that was reported from South West Asia, after the natural infection that happened 

in Japan in 1949. Precipitation and complement fixation tests to study the incidence A/Port 

Chalmers/73 (H3N2) of the A2/Hong Kong/1/68 and /PR8 in 14 animal species from 

Ottawa area in Canada revealed that only six species such as dog, cat, rabbit, goat, 

chipmunk, and sheep showed seropositivity [107]. In Great Britain, a serosurveillance 

study was conducted on swine and bovine sera from a period between September 1973 and 

July 1977, against A/Swine/Wisconsin/66 (HSwlN1), A/Swine/1976/30 (HSwlN1), 

A/Hong Kong/1/68 (human H3N2), A/Port Chalmers/73 (human H3N2). This study 

showed seropositivity in swine samples towards human influenza H3N2 viruses with 4.5% 

in 1974, 1.7% in 1975 and 2.3% in 1976 against A/Port Chalmers/73 showing the evidence 

for reverse zoonosis. None of the bovine sera was positive against the tested swine (H1N1) 

and human (H3N2) influenza viruses [108]. Another study to determine the seroprevalence 

of influenza B and C viruses in animals has been described from Japan in 1978 [109]. 

Seroprevalence study conducted in animal sera from different species of animals involving 

cattle, horses, pigs, dogs, cats, minks and rats over the period 1975-1977 in Japan, 

demonstrated antibodies against 15 subtypes, out of the 16 subtypes of influenza A viruses 
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tested [110]. In the case of cattle, out of 728 serum samples, only 1.5% and 1% were 

seropositive against H0 and H3Aichi respectively and were seronegative against other 

subtypes [110]. 

In Northern Ireland, around 200 sera from crossbred and indigenous sheep breeds 

were collected to test the seroprevalence against influenza A and other viruses such as 

parainfluenza types 1,2,3, respiratory syncytial virus, bovine adenovirus Maedi-visna virus 

and bovine virus diarrhea virus and demonstrated no antibodies against influenza A, 

Maedi-visna and parainfluenza virus 1 and 2 [111].  

A review by Lopez and Woods, based on the published pathological and serological 

studies described the seroprevalence of influenza A and B viruses in ruminants, detected 

by the complement fixation and hemagglutination inhibition tests from different parts of 

the world such as USA, Italy, Rumania, USSR, Nepal, India, and Hungary. 

A/calf/Duschambe/55/71 (H3N2) is a cattle influenza A strain from Russia. Both strains of 

H1N1 and H3N2 have been isolated from cattle such as Sw/Shope (H1N1) from Hungary, 

several H3N2 strains from USSR, and two viruses with an unidentified hemagglutinin and 

a type 2 neuraminidase in Hungary and the USSR [112]. A serological study conducted in 

sera from 5 calves inoculated with swine influenza virus showed a significant association 

between the mean diameter of the hemolysis zone obtained by the single radial hemolysis 

(SRH) test and the geometric mean of the hemagglutination inhibition (HI) titer after 

periodate treatment and receptor-destroying enzyme [113]. Another serological survey 

involving 177 paired calf sera from the years 1978-1981 showed that 3.4% of the calves 

seropositive to swine influenza virus [114]. Intranasal inoculation of live swine influenza 

virus (SIV) A/sw/IL/75 (H1N1) in calves caused respiratory tract disease, with virus 



21 

shedding and also caused contact transmission to sentinel animals. Seroconversion was 

observed at 9 days post-infection and virus neutralization antibodies were demonstrated at 

14 and 21 days post-infection (dpi) [115]. 

Even though there has been a serosurveillance study of Influenza A (H1N1) 

antibodies in calves, which showed twenty-seven percent of positive and 31% low positive, 

there was no evidence of clinical infection in cattle [116]. In Egypt, seroprevalence in 

different species has been demonstrated in serum samples collected from different 

mammalian species such as human, goat, cattle, buffaloes, sheep, horses, swine, donkey, 

sewage rats and stray dogs and cats [117]. Calf and human fetal kidney cells were utilized 

to demonstrate the plaque formation by influenza B viruses [118]. Madin-darby bovine 

kidney cells have been utilized in characterization studies to grow many influenza viruses 

including WSN strain of influenza A [70, 119, 120]. 

2.2.4 Experimental infection in cattle 

In 1956, an experimental infection demonstrating direct inoculation of the influenza 

PR8 strain compared to the new castle disease virus into the lactiferous sinus of the goat 

mammary glands resulted in the production of neutralizing antibodies in the milk and 

blood. The authors also found that even after surgical removal of the mammary gland, the 

neutralizing antibody level in the blood phased out slowly compared to the new castle 

disease virus [121]. 

Several studies have been previously reported from cattle in the 20th century, and 

some of the reports are in non-English languages [64-66]. Experimental infection in 

different mammalian species including calves and lambs to characterize the antibody 

responses showed appreciable HI titers in calves after primary infection, leading to an 
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anamnestic response after challenge with homologous antigen [122]. Another study by 

Campbell et al. described an experimental infection of A/calf/Duschanbe/55, a Hong Kong 

type A strain isolated from calves along with human strains A/Michigan/l/72 and 

A/England/42/72 in calves and found shedding of A/Michigan/l/72 and 

A/calf/Duschanbe/55, without any clinical symptoms [97]. A study on recombinant 

vaccinia virus expressing HA of swine influenza A virus A/NJ/11/76 developed antibodies 

when inoculated in cattle, sheep, and poultry, while the wild-type virus did not cause any 

antibody response. There was no contact transmission reported by the wild-type or 

recombinant virus in these species [123]. To find out the role of the cattle egrets in H5N1 

outbreaks in Vietnam, these birds were intranasally challenged with highly pathogenic 

avian influenza (AI) A/duck/Vietnam/40D/04 (H5N1). The egrets contracted the infection 

and some were dead in a week, however, there was no contact transmission happened to 

the co-housed chickens [124]. 

2.2.5 Influenza Virus structure and use of bovine cell cultures 

Earlier studies about the genome structure and segmented genome have been 

demonstrated in 1962 [125]. Several studies on the nucleic acid structure of the influenza 

virus have been demonstrated by sucrose gradient centrifugation in the late 1940s to 1970s, 

where the virus has been derived from the infectious allantoic fluid, chorioallantoic 

membranes, and fibroblasts of the chicken embryos [126-142].  

The first and foremost demonstration of propagating high yield of infectious 

influenza virus was done in a continuous cell line from bovine kidney (MDBK cells) by 

Choppin, P. W. in 1969 [143]. Since then MDBK cells have been utilized extensively to 

grow the virus stocks of influenza especially WSN to study the ribonucleic acid genome 



23 

and time course of polypeptide chain synthesis and its assembly into virions at different 

stages of the virus life cycle [73, 144-149]. The WSN strain of Influenza A virus was grown 

on MDBK cells and purified virions have been separated by gradient centrifugation and 

electrophoretically analyzed to determine seven polypeptides [144, 150]. Simultaneously, 

pig and canine kidney continuous cell lines were also used to investigate the persistent 

infection of influenza and also to study the nuclear protein and two non-structural proteins 

NS1 and NS2 [146, 147, 151]. The existence and characterization of RNA -dependent RNA 

nucleotidyl transferase (RNA -polymerase) have been initially reported in 1966 [152]. 

RNA polymerase enzyme has also been demonstrated in chicken fibroblasts upon fowl 

plague infection compared to uninfected cells and the susceptibility of the enzyme to 

actinomycin D and Dextran sulfate in contrast to the new castle disease virus-induced RNA 

polymerase [153, 154]. The complementary strand synthesis of the parental viral RNA by 

the RNA polymerase has also been studied in-vitro [155, 156]. The isolation of 

Ribonuclease protein (RNP) with RNA polymerase activity by discontinuous sucrose 

gradient fractionation of influenza-infected cells also used the BHK-21F cells and MDBK 

cells have been described [157].  

The concept of Von Magnus particles and defective interfering (DI) influenza 

viruses has been studied using MDBK cells, and HeLa cells and found that DI viruses 

produced during persistent infection were in good correlation with the ability of the host 

cell species to produce the infectious virions [69, 158, 159]. Host-dependent variation in 

the relative amount of the cleaved and uncleaved hemagglutinin polypeptide during 

influenza infection has been reported by comparing the amount of HA produced by the 

WSN strain of influenza Ao and the RI/5-strain of influenza A2 in primary monkey kidney 
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cells, MDBK, BHK21-F  and chicken embryos and also found that uncleaved HA is more 

in the early growth cycle of influenza virus than the later stage when the cytopathic effects 

are more pronounced [160]. Studies on the HA polypeptide cleavage by the action of 

plasmin produced by the host cell plasminogen activators have also been done in MDBK 

cells [161]. Plaque formation by influenza type A and B viruses has been extensively 

studied in calf kidney and specific pathogen-free chicken kidney cells and found the linear 

relationship between plaque number and virus concentration [162].  

MDBK cells have been widely used to study the biological properties of the mutant 

influenza virus, produced by the host cell-mediated selection pressure. Influenza A, WSN 

strain grown on the chicken embryo fibroblasts caused fuzzy and clear plaque morphology 

when grown in MDBK cells. The parental fuzzy virus and mutant clear viruses 

demonstrated different binding affinities. The clear viruses produced a high yield with large 

amounts of mRNA, hemagglutination in the presence of calf serum components and 

remained cell associated when transferred from 0 oC to 37 oC, unlike the fuzzy viruses 

[163]. Another interesting feature about the influenza viruses grown on different host cell 

systems is about the amount of the carbohydrate added to the viral hemagglutinin protein 

which in turn determines the host binding property. A study conducted using the WSN-F 

strain of influenza A in chicken embryo fibroblasts and MDBK cells in the presence of 

tunicamycin showed that HA generated by the MDBK cells, contained 4000 daltons of 

carbohydrate in excess than the virus grown in the chicken embryo fibroblasts, which 

reduces the receptor binding affinity of the virus. This study also demonstrated that MDBK 

derived influenza viruses have more highly branched and complex asparagine-linked 

oligosaccharides and galactose-containing bisected oligosaccharides compared to HA 
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subunits from chicken embryo fibroblasts which is different to the carbohydrate profile of 

the host cells of origin [164]. Another study was conducted to determine the role of the 

host cell-specific glycosylation of the HA1 subunits particularly at residue 129, at the tip 

of the HA and residue at 184, close to the receptor binding pocket in receptor binding 

properties of three influenza variants in MDBK cells. The study demonstrated that 

glycosylation is site-specific in all the variants that are grown in MDBK cells and the 

reduction in the receptor binding properties of influenza viruses associated with MDBK 

cells is due to the cumulative effect of having large complex glycans at 129 and His to Asn 

substitution at residue 184 [165]. 

The first study to use temperature-sensitive mutants in man was developed by co-

infection of wild-type influenza A/ Hong Kong/1968 (H3N2) virus and influenza A/Great 

Lakes/1965 (H2N2) on primary bovine kidney cells [166]. This study shed some light in 

the direction of live attenuated vaccine by demonstrating the development of serum and 

nasal neutralizing antibodies and resistance to a subsequent challenge by a wild-type virus. 

Several other studies using temperature-sensitive mutants of influenza have also utilized 

MDBK cells for virus propagation [167, 168].  

Bovine cell cultures have been widely used for the antigenicity and pathogenicity 

studies of influenza A and B types during 1960-70s [73, 169-172]. A virus propagation 

system based on the roller cultures along with the use of the maintenance medium of 

improved composition has been demonstrated using bovine embryo kidney cells and 

MDBK cells [173, 174]. WSN-infected MDBK cells have been used for the quantitative 

measurement of the plus- strand and minus-strand RNAs synthesized during the early and 

late replication cycle and their differential regulation of the transport [175]. MDBK cells 
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can produce M and NS gene segments in full length, without virus production, when 

infected by a mutant A/WSN virus for several passages [67]. 

Tracheal and lung organ cultures of the cow embryo has been used for influenza 

A2 virus propagation along with new-born guinea pigs, rabbits, chickens and pig embryos 

and demonstrated that tracheal organ cultures were more sensitive and supported viruses 

[176]. Bovine and porcine tracheas have been used as explant cultures to see the interaction 

between Mycoplasma and influenza, where the tracheas of both animal origin were infected 

with Mycoplasma hyorhinis and superinfected with influenza and vice-versa.  The swine 

trachea showed a synergistic pathologic effect with a complete loss of the tracheal ciliated 

epithelium, when infected with Mycoplasma hyorhinis on day 0 and Swine influenza at 

day 2 of the experiment while the bovine trachea did not show such effect under similar 

conditions. On the other hand, swine trachea infected with influenza and superinfected with 

Mycoplasma clearly demonstrated enhancement of the growth of the Mycoplasma by 

influenza compared to the controls [177]. Cow embryo tracheal organ cultures and kidney 

tissue cultures were used to study the reactogenic and immunogenic changes of influenza 

A/Hong Kong/1/68 (H3N2) virus over serial passages of 24 and 48 h intervals and found 

that 24 h passages reached attenuation rapidly and retained immunogenic potency better 

than 48 h passages [178]. Virus propagation of WSN in bovine, human and chicken embryo 

cell culture showed that airborne stability of the WSN virus varied between the virus 

propagated in cell culture versus embryonic eggs and the maximum stability was obtained 

at low relative humidity [179]. Infectivity of equine H3N8 influenza A virus has been 

studied in calves and bovine cells [180]  

2.2.6 Sensitivity of influenza virus to bovine serum factors 
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Influenza virus hemagglutination has been inactivated by cow’s milk [181]. 

Further, there have been some publications showing the ability of the different factors in 

the biological fluids of the ruminants such as bovine amniotic fluid, mucoprotein from 

bovine submaxillary glands [182, 183]. The sensitivity of influenza viruses to periodate 

resistant inhibitors in the normal bovine serum has been studied earlier [184].  Bovine sera, 

especially from fetal calf or normal calf, induce the formation of hemagglutination 

inhibitors upon treatment with potassium periodate, similar to the phenomenon observed 

with treated sera from human, rabbits, rats, guinea pig, horses, goat, chicken, and monkey. 

Only the mouse and hamster sera did not show any increase in the hemagglutination 

inhibition titer after periodate treatment [185]. Further, a quantitative estimation of the non-

specific hemagglutinin inhibitors of influenza virus present in the sera of 27 species 

involving laboratory, domestic, wild animals and birds, showed that sera of sheep, goats, 

and cattle belong to a separate group based on the physicochemical properties of antiviral 

inhibitors such as its sensitivity to heating, potassium periodate, trypsin, 2-

Mercaptoethanol, and rivanol. This study also demonstrated that non-specific inhibitors 

present in bovine sera are heterogenous ie. both thermolabile and thermostable types [186]. 

The non-Ig inhibitors, also called as beta inhibitors in the normal bovine and mouse sera, 

are mannose-binding lectins which bind to the carbohydrate on the hemagglutinin, 

blocking the receptor binding sites and thus inhibits the infectivity and hemagglutinating 

activity of the H1 and H3 influenza A viruses. The serum inhibitor in bovine serum 

resembled conglutinin, which is a Ca(2+) dependent N-acetylglucosamine and mannose-

binding lectin and the hemagglutination inhibition property was abrogated by the 

polyclonal and monoclonal anticonglutinin antibodies [187-189]. These conglutinins also 
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act as opsonins for the phagocytosis of influenza A viruses [190]. A recombinant bovine 

conglutinin demonstrated sugar binding, hemagglutination inhibition, conglutination and 

neutralization activity against influenza A virus, like the native conglutinin [191]. Bovine 

serum proteins such as conglutinin, collectin-43 (CL-43) and collectin-46 (CL-46) are C-

type lectins, of which conglutinin and CL-43 exhibit antiviral properties against influenza 

A and rotaviruses. Conglutinin in the serum of the dairy cows is dependent on the season, 

breeding, stage of the reproductive cycle and infection [192, 193]. Aprotinin is a natural 

58 amino acid protease inhibitor from bovine lungs, already intended to use in humans for 

pancreatitis and bleeding has the potential to suppress the cleavage of the pandemic H1N1 

influenza virus in different host systems such as human tracheobronchial epithelium, 

human intestinal Caco-2 cells and chicken embryonated eggs [194]. 

Influenza virus infection in calf kidney cells demonstrated the production of cell-

free, but tissue and virus-specific RNA synthetase compared to non-infected cells which 

can be inhibited by the species-specific interferon. This study used the calf kidney cells, 

chicken embryo fibroblasts upon infection with influenza and New castle disease virus 

respectively demonstrated a direct correlation of antiviral protective effect of the 

interferons on the infected cells [195]. A consumable low-molecular-weight fraction 

(CLMWF) of immunoglobulin-depleted bovine colostrum whey, can help in the 

antibacterial (Streptococcus) and antiviral (influenza) immune defense in vivo, by the 

maturation of the antigen presenting cells [196]. Anti-influenza activity of the two 

human/bovine chimeric Mx proteins was studied by substituting the GTPase effector 

domain (GED) of the human with bovine and vice-versa and showed that bovine Mx1 

proteins have a higher activity against the influenza virus particularly the motifs located in 
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its N-terminal portion which is responsible for the interaction with the cellular and viral 

factors [77]. Bovine pulmonary Surfactant (R), is an efficacious antigen vehicle for 

intranasal vaccination and is widely used in newborns for the acute respiratory distress 

syndrome. A synthetic analog for this compound, SF-10 has been prepared to avoid the 

risk of BSE. HA combined with SF-10 stimulated higher levels of anti-HA-specific s-IgA 

in nasal-wash and serum IgG than induced by HA-poly (I:C), a mucosal vaccine used for 

protection [197]. 

2.2.7 Vaccination studies 

In the late 20th century, a vaccination study on two important viral diseases affecting 

livestock, such as foot and mouth disease and influenza, was conducted in sheep and cattle. 

Interestingly, both these viruses exist in multiple serotypes. In case of influenza, 100 % of 

animals seroconverted against the homologous serotype influenza (A/PR/8/34) and 18.7 % 

of animals seroconverted to each of the heterologous serotypes (A/Shanghai and 

A/Leningrad) in calves. Similarly, 100 % seroconverted against homologous serotype 

influenza (A/PR/8/34) and 10% and 17.5% showed a response to the heterologous 

serotypes A/Leningrad and A/Shanghai respectively in lambs. Only 1/32 and 1/40 

responded to both heterologous serotypes in calves and sheep respectively [198]. Bovine 

adenovector based booster for H5 HA for Human adeno vector immunization of naïve or 

adenovirus primed mice ensured full protection from a potentially lethal challenge with 

A/Hong Kong/483/97 in mice [199]. Oral administration of the bovine late colostrum has 

been found to have augmented the local and systemic cellular immunity and also the 

activation of cellular immunity in mice by increasing the NK cell activity, together with 

high levels of IL-12 and IFN-γ [80].  
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2.2.8 Antibody reactions with influenza 

Antigen-antibody reactions to influenza viruses have been studied as early as in the 

1970s [200]. A modified technique for HI test has been demonstrated by incorporating a 

species-specific IgG fraction into the virus-test sera mixture suggested its utility in 

detecting low concentrations of viral antibodies and also in determining the common 

antigenic relationships between virus strains, along with appropriate controls with different 

reagents used in the assay [201].  

2.3 Epidemiology of influenza D 

Global current epidemiology of the influenza D virus showed seroprevalence in 

ruminants that include dairy cattle, buffaloes, sheep, and goats (Figure 2 3). Two influenza 

D lineages have been characterized based on their distinct genetic and antigenic properties, 

represented by the D/OK (D/swine/Oklahoma/1334/2011 and D/660 

(D/bovine/Oklahoma/660/2013). A third lineage has also been reported from Japan [3]. 

D/660 lineage is the most common lineage in North America. Lately, there are more swine 

IDV viruses that have been isolated from different parts of Eurasia [13, 15, 202]. Table 2.1 

shows the year-wise seroprevalence observed for different species from North America 

and Eurasia [11, 13, 15, 61, 202]. Recently a very high seroprevalence rate of 99-100% 

have been found in camelids for the bovine IDV [12]. Nationwide distribution of bovine 

and swine influenza D occurrence/seroprevalence were shown in Figure 2.3. Global 

scenario of IDV is shown in Figure 2.4. Amino acid alignment analyses performed on 

currently available twenty-six full sequences (26/50 sequences in NCBI) of HEF protein 

by MUSCLE and visualized by Jalview 2.10.4 was shown in Figure 2.5 [203, 204]  
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Figure.2.3 National distribution of influenza D virus isolation and the seroprevalence 

shown with an antibody icon.  

 

Figure.2.4 Global scenario of influenza D. Adapted from [12]. 
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Table 2.1. Incidence and Seroprevalence of influenza D (in percentages) in different 

mammalian species. 
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Figure 2.5 Amino acid sequence alignment of twenty-six full sequences of Hemagglutinin 

esterase fusion protein of the swine and bovine isolates available in the database. HEF 

amino acid sequences were aligned using MUSCLE and then visualized using JalView. 

Non-conserved amino acids were shown in white boxes. 
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2.4 Animal models of Influenza 

Various animal models such as mice, ferrets, guinea pigs, pigs and non-human 

primates were used to study the pathogenicity and transmissibility of influenza viruses and 

also to evaluate the immunogenicity of vaccines [205-208]. Transmission experiments of 

influenza A and B types in various animal models also showed higher efficiency in contact 

route compared to aerosol [6]. Swine IDV was also reported to transmit by contact in pigs 

and ferrets [4]. The airborne transmission experiments largely depend on environmental 

factors such as temperature, humidity, airflow of the experiment room and infectious dose 

used. Among these factors, the rate of change and direction of air currents in the facility is 

an important variable, especially in aerosol transmission experiments. Previous 

experiments using influenza A and B type viruses, in guinea pigs conducted in 

environmental test chambers demonstrated efficient transmission lasting for a longer 

period at 5oC, 20% relative humidity (RH) than at 20oC, 20% RH and also stated that high 

temperatures and high humidity significantly reduced the transmission efficiency [209]. 

Large droplets of size >5-10 um facilitates only short-range transmission, while small 

droplets <5 um are responsible for long-range transmission [210]. 

2.5 In-vitro models: Use of Primary cell culture 

Primary cells have been widely used to study the physiological, biological and 

pathological mechanisms of the mammalian body. The earliest literature available in the 

primary cell culture was about the development and cultivation of the primary human 

amnion cells in 1957 [211]. The morphological evaluation of the human amnion cells in 

primary culture and its transformed variant (Strain FL) in continuous cell culture showed 

that transformed cell line showed multivesicular bodies and membrane limited particles. 



36 

These morphological structures observed in the younger passages of the FL cells is 

assumed to be related to the transformation process [212] The morphological and genetic 

studies showed that the transformed amnion cells exhibited malignant properties, while the 

primary cells showed non-malignant characteristics [213, 214] Primary cells mimic the 

physiological properties in-vivo and hence is the best in-vitro model to study the 

mechanistic details of the normal  or diseased conditions of the body. Primary cells have a 

limited growth in-vitro and show considerable mitotic activity in the first 2-4 weeks with 

the mitotic index as high as 1.8%. [214]. A comparative study of the primary and 

transformed human cells in-vitro have shown that the nature of the growth, nutritional 

characteristics and metabolic profile of the primary and transformed cells vary [215]  

Epithelial surfaces of our body are equipped with a highly sophisticated machinery 

with several different types of proteins molecules that play a crucial role in maintaining the 

homeostasis and cell polarity with each tissue. Among these, tight junction proteins are 

macromolecular complexes consisting of several membrane proteins, that are important for 

the cell-cell interactions and cell-extracellular matrix interactions and also for transcellular 

and paracellular transport and permeability. There are several types of proteins in the cell 

membrane that helps in the integrity of the epithelium of which three types of proteins form 

the junctional complex in cell junctions which includes tight junction, adherens junction, 

and desmosomes. Tight junction proteins are transmembrane proteins and are located in 

the apical-most of the junctional complex [216] Tight junctions formed by the cell act as a 

semi-permeable barrier to the paracellular movement of cargo and act as a fence that 

connects the apical and basolateral domains of the plasma membrane. Tight junction 

proteins act as a multifunctional complex, critical for the epithelial and endothelial layers 
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to form its distinct compartments in the body, of which most important is the regulation of 

several signaling and trafficking molecules required for the cell differentiation, polarity, 

and proliferation. 

 

Figure 2.6. Apical junctional complex and tight junctions. (A) Schematic diagram of the 

junctional complex. (B) Schematic structure of tight junction strands. (C) Functions of tight 

junctions. (D) Molecular components of tight junctions. Three families of tight junction 

transmembrane proteins, such as occludin, claudins, and JAMs, as well as some scaffold 

proteins and polarity proteins are shown, adapted from [216]. 
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Primary cell cultures were widely used for studying various animal and human 

viruses since the 1960s [217-221]. Species-specific primary cell cultures have been 

developed and used over the years [222-226] Primary cell cultures of swine-origin have 

been used for normal physiological and pathological studies of several infectious diseases 

[217, 227-231]. Primary swine respiratory epithelial cells have been used to study the 

immunological and pathophysiological aspects of several respiratory diseases including 

influenza [231]  

Primary cell cultures have been an excellent in-vitro system to study the virulence 

and pathogenetic characteristics of the influenza viruses. Influenza studies using primary 

cell culture from humans and swine has been utilized for studying the virulence, and 

receptor binding specificities of the viruses from different host origin [21-25]. Several 

studies have been conducted on swine tracheal/bronchial/lung epithelial cells to study the 

pathogenesis and anti-viral responses at the transcriptional and translational level as the 

swine species share the most anatomical and physiological characteristics to humans [26-

28] Pigs are the mixing vessels of influenza viruses and harbor receptors for both the avian 

and human influenza viruses. Recently, it was found that domestic pigs are susceptible to 

influenza B, and C viruses [29-31]. Further, influenza D has been initially isolated from 

the swine in different parts of North America and Eurasia [4, 13, 16]. 

2.6 Virus- Receptor interactions 

Influenza A viruses of avian and equine origin bind to Sia α 2-3 Gal receptor (MAL-

II), while the human viruses bind to Sia α 2-6 Gal receptor (SNA) [25]. A study on selected 

8 influenza B viruses isolated from 1940-1990 showed that these viruses have binding 

preferences towards ganglioside, carrying lacto-series type I and II sugar chains with the 
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Neu5Acα2–6Gal linkage, however, B/Gifu/2/73 strain bound to lacto-series gangliosides 

containing Neu5Acα2–6Gal and Neu5Acα2–3Gal linkages [232]. Glycan array to 

characterize the receptor binding specificities of influenza B viruses have shown that the 

Yamagata-like strains predominantly bound to α-2,6-linkage glycans while Victoria-like 

strains preferentially bound to both α-2,3- and α-2,6-linkage glycans and also explained a 

third group of viruses that bound to sulfated glycans, which are Victoria-like strains [233, 

234]. All equine and avian viruses, which are known to recognize N-acetyl and N-glycolyl 

sialic acid linked to galactose by the alpha2,3 linkage (NeuAc alpha2,3Gal and NeuGc 

alpha2,3Gal), agglutinated erythrocytes from chickens, ducks, guinea pigs, humans, sheep, 

horses, and cows. However, the human viruses, that preferentially bind to NeuAc 

alpha2,6Gal, agglutinated all but the horse and cow erythrocytes. It was also observed that 

cow and horse erythrocytes contain a large amount of SA alpha2,3Gal-, and no SA2,6Gal-

specific lectin-reactive oligosaccharides on the cell surface, while human and chicken 

erythrocytes contained both types of oligosaccharides [235]. So, agglutination patterns 

exhibited by different erythrocytes can be used to characterize the receptor specificity of 

different influenza viruses. Bovine coronaviruses and influenza C viruses share same 

receptor, 9-O-acetyl N-acetyl neuraminic acid. [236, 237]. IDV also uses 9-O-acetylated 

sialic acids for the receptor-mediated endocytosis but has an open receptor cavity that can 

hold diverse glycan moieties thus facilitating a broad host tropism of IDV compared to 

ICV [238]. 
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Figure 2.7. Sialic acid classification and 9-O acetyl sialic acids. The structure of proposed 

receptors of IDV, Neu5,9 Ac2 and Neu5Gc9Ac is also shown.  
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Chapter 3. Replication and Transmission of the Novel Bovine Influenza D Virus in a 

Guinea Pig Model 

Abstract 

Influenza D virus (IDV) is a novel influenza virus that infects cattle and swine. The 

goal of this study was to investigate the replication and transmission of bovine IDV in 

guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in 

nasal washes of infected animals during the first 7 days postinfection. High viral titers were 

obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, 

bovine IDV was able to transmit from the infected guinea pigs to sentinel animals by means 

of contact and not by aerosol dissemination under the experimental conditions tested in this 

study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion 

and the viral antigen was detected in lungs of animals by immunohistochemistry. The 

observation that bovine IDV replicated in the respiratory tract of guinea pigs was similar 

to observations described previously in studies of gnotobiotic calves and pigs 

experimentally infected with bovine IDV but different from those described previously in 

experimental infections in ferrets and swine with a swine IDV, which supported virus 

replication only in the upper respiratory tract and not in the lower respiratory tract, 

including lung. Our study established that guinea pigs could be used as an animal model 

for studying this newly emerging influenza virus. 
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3.1 Introduction 

Influenza viruses are negative-sense, single-stranded RNA viruses classified in the 

Orthomyxoviridae family. There are three recognized genera of influenza viruses, 

designated influenza A virus (IAV), influenza B virus (IBV), and influenza C virus (ICV). 

IAV and IBV have 8 negative-sense, single-stranded genome RNA segments, whereas C 

type has only 7 segments. IAV viral proteins include 5 structural proteins- HA, NA, M1, 

M2 and NP (ribonucleoprotein); 3 subunits of RNA polymerase complex- polymerase 

basic protein 1 (PB1), polymerase basic protein 2 (PB2) and polymerase acidic protein 

(PA); and 3 non-structural proteins- NS1, NS2 (nuclear export protein, NEP) and PB1-F2 

[239]. Recent studies have suggested that NS2 and probably NS1 of IAV are a structural 

protein that can be detected in virions [48].  IBV has 6 structural proteins- HA, NA, NB, 

M2, M1, and NP; 3 subunits of RNA polymerase complex- PA, PB1, and PB2; and 2 non-

structural proteins- NS1 and NS2. ICV has 4 structural proteins- M2, M1, NP and 

Hemagglutinin esterase fusion (HEF) protein that replaces the HA and NA of IAV or IBV; 

3 subunits of RNA polymerase complex- P3, PB1, and PB2; and 2 nonstructural proteins- 

NS1 and NS2. Depending on the HA and NA proteins, IAV has several subtypes and causes 

severe epidemics and pandemics affecting humans. It also infects various other species of 

mammals and birds across the world, which can result in more widespread of IAV infection 

and more lethal outcomes especially in poultry than those seen in humans. IBV has no 

subtypes but possesses two lineages, causing localized epidemics and affecting mainly 

humans, and to some extent seals [240]. IBV genome was also recently detected in 

domestic pigs indicating that the virus may infect this agricultural animal [29]. Compared 
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to A and B types, ICV causes mild disease and was found to have co-existed with IAV and 

IBV infections in humans [50, 241].  

In 2011, a new Influenza virus was isolated from Oklahoma in a 15-week old swine 

showing influenza-like symptoms.  Electron microscopic studies have shown features 

similar to orthomyxoviruses. Further studies revealed that this virus was negative for 

neuraminidase and positive for O-acetyl esterase activity, which is a characteristic of ICV. 

Genera-specific real-time RT-PCR failed to detect the virus. However, the new virus 

showed 50 % homology to human ICV [4]. Deep RNA sequencing showed that the HEF 

protein of the new virus has a conserved enzymatic site, but a divergent receptor binding 

site compared to ICV. The virus also exhibited broader cellular tropism than ICV. A 

serological survey showed that the virus is widespread in swine and bovine herds of the 

United States [2]. In addition to a swine isolate, several bovine strains were also isolated 

from diseased bovines located in different farms of the USA Midwest region. Bovines with 

respiratory disease complex on the west coast were also found to harbor IDV [47, 242]. 

The new group of viruses did not cross-react with ICV antibodies by HI and AGID assays 

and also failed to undergo reassortment with ICV in vitro. Phylogenetic analysis also failed 

to identify reassortment between ICV and IDV in field isolates.  Because these newly 

discovered viruses shared unique biologic, genetic, and antigenic properties different from 

ICV, a proposal was made to classify these viruses in a new genus- influenza virus D or 

IDV [2].  

The bovine and swine IDVs shared more than 96% homology in all the segments. 

Most divergent segments were HEF and P42/M with 96.7-99.0% and 96.9-99.2% identity 

respectively.  The segments with the highest homology were PB1 and NS with 98.9-99.1% 
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and 98.8-99.2% respectively [2]. Apart from the strains isolated from different parts of 

U.S., bovine IDV was also identified in Shandong Province in China and France [61, 243]. 

The strains from China shared 94-99% homology to the strains in the U.S. [243]. The 

geographical distribution of Bovine IDV shows that virus is prevalent in the bovine 

population and is at least circulating in North America, Europe, and Asia. 

Swine IDV was found to infect ferrets and pigs and can also be transmitted to naïve 

animals by contact. Swine IDV was able to replicate in nasal turbinates and shed detectable 

levels of virus in nasal washes. However, swine IDV was not detected in trachea and lungs 

in either ferrets or pigs indicating its inability to replicate in the lower respiratory tract. The 

animals seroconverted but neither ferrets nor pigs developed clinical symptoms and lesions 

typical of Influenza [4]. Ferrets have been used as surrogates for human influenza infection 

and pathogenesis. The ability of swine IDV to replicate in the upper respiratory tract of 

ferrets may indicate the zoonotic potential of these viruses. 

The objective of this study was to examine viral replication, transmission, and 

virulence properties of the novel bovine IDV in guinea pigs. Our study was based on the 

following considerations. First, guinea pig has been used extensively as an alternate 

mammalian animal model for studying the pathogenesis of many influenza viruses 

including IBV [5-7]. Second, this animal model was susceptible to infections by Influenza 

A virus subtypes and demonstrated virus replication in lungs. Third, guinea pigs were able 

to transmit human influenza viruses from one animal to another [7]. Fourth, they are easier 

to handle and house, and less expensive compared to ferrets. Importantly, guinea pigs share 

similar airway hyperresponsiveness and have bronchus-associated lymphoid tissue as 

humans [8, 9]. Finally, despite being highly similar to a swine IDV strain used previously 
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for ferret and pig studies, the bovine IDV selected for this study is a representative strain 

of another antigenic lineage different from swine IDV, possessing some distinct variations 

in the HEF protein, a major mediator of host range and viral tropism [10].  

In this study, guinea pigs were divided into three groups – a) direct inoculated 

group, b) contact transmission group and c) aerosol transmission group. Our results showed 

that bovine IDV efficiently replicated in the lower and upper respiratory tracts of guinea 

pigs. Detection of IDV in lungs of infected animals is novel because our previous studies 

in ferrets and pigs revealed a lack of virus replication in lungs. We also found that naïve 

guinea pigs acquired infection from the co-caged infected guinea pigs indicating that 

bovine IDV can be transmitted by direct contact. Taken together, results of our experiments 

demonstrated that guinea pigs, being a good mammalian host, and widely used in Influenza 

research, could be further explored for mechanistic studies of IDV infection and 

pathogenesis.  

3.2 Materials and methods 

3.2.1 Cells and virus 

Human rectal tumor (HRT-18G) cells and Madin-Darby canine kidney (MDCK) 

cells maintained in Dulbecco's minimum essential medium supplemented with 10% fetal 

bovine serum (FBS) (PAA Laboratories Inc., Dartmouth, MA, USA) and penicillin-

streptomycin (Life Technologies, Carlsbad, CA, USA) (100 U/ml) were used in this study 

for cell culture. Influenza D/bovine/Oklahoma/660/2013 virus was originally isolated from 

the bovine herds of Oklahoma and has been designated a representative strain of a genetic 

and antigenic lineage different from the swine FLUDV strain that was used for previous 

ferret and pig studies (8). The virus was grown on human rectal tumor (HRT-18G) cells at 
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a multiplicity of infection (MOI) of 0.1. The cells were allowed to reach only 60% to 70% 

confluence at the time of infection. The virus was suspended in 2 ml Dulbecco's modified 

Eagle's medium (DMEM) and incubated at 37°C in 5% CO2 for 1 h. Following infection, 

fresh DMEM with 0.5 μg/ml tolylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-

treated trypsin (Sigma, Saint Louis, MO, USA) was added for further incubation at 37°C 

in 5% CO2 for 5 days. After 5 days, the infected cell cultures were frozen and thawed. The 

supernatant was spun at 500 × g for 10 min at 4°C to remove the cellular debris. 

Determination of virus titers in MDCK cells was done according to the method of Reed 

and Muench (19). Virus loads in nasal washes and tissue homogenates were titrated using 

MDCK cells by indirect immunofluorescence assay (IFA). DMEM supplemented with 

penicillin-streptomycin (Life Technologies, Carlsbad, CA, USA) (200 U/ml) and TPCK-

treated trypsin (Sigma, Saint Louis, MO, USA) (0.5 μg/ml) was used as the virus growth 

and maintenance medium. 

3.2.2 Animals  

Specific-pathogen-free (SPF), viral-antibody-free (SPF/VAF), 30-day-old guinea 

pigs of the Dunkin-Hartley strain (Elm Hill Labs, MA, USA) weighing 300 to 350 g were 

used for the study. The animals were ear-tagged for identification purposes. The duration 

of the experiment was 3 weeks, which included a 1-week acclimatization period. Animals 

were provided with food and water ad libitum and kept on a 12-h light/dark cycle. The 

temperature and relative humidity (RH) of the animal housing ranged from 72 to 75°F and 

25% to 33%, respectively. Control animals were housed in a separate room away from the 

room housing the infected animals and were processed before the inoculated animals. Strict 

precautionary measures were followed to prevent cross-contamination between animals in 
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different cages. Sentinel animals were sampled from inoculated animals in transmission 

experiments. Gloves were changed between cages during cleaning and handling, and masks 

and surfaces were disinfected to prevent any possible cross-contamination. 

3.2.3 Experimental design 

Guinea pigs were divided into three experimental groups for testing growth kinetics 

of the virus, direct contact transmission, and aerosol transmission. The group for studying 

virus kinetics consisted of 10 infected animals and 3 mock-infected animals. The animals 

were infected intranasally with 3 × 105 50% tissue culture infective doses (TCID50)/300 μl 

of influenza D/bovine/Oklahoma/660/2013 virus (bovine IDV). Half (150 μl) of the virus 

inoculum was delivered in each nostril. The 3 control animals were mock infected with 

equal volumes of phosphate-buffered saline (PBS). The body weights of all of the animals 

were recorded before the challenge. Guinea pigs were briefly anesthetized using isoflurane 

prior to infection. 

For the contact and aerosol transmission experiments, 6 animals were inoculated 

intranasally with 3 × 105 TCID50/300 μl of influenza D/bovine/Oklahoma/660/2013 virus 

(C/660) under conditions of isoflurane anesthesia and the remaining 6 animals were left 

uninfected. To test contact transmission, 3 infected animals were kept in a cage. At 24 h 

postinfection (hpi), three sentinel animals were added to the same cage. For studying 

aerosol transmission, 3 infected animals were housed in a cage with a double-walled wire 

partition that permitted airflow but prevented direct contact. Three sentinel animals were 

added at 24 h postinfection. The cages were kept away from the vents to minimize the 

dilution of aerosols by room ventilation and to provide a conductive environment for virus 

transmission. The animal experiments were approved by the Institutional Animal Care and 
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Use Committee of South Dakota State University (IACUC no. 14-011A) and were 

conducted under biosafety level 2 conditions. 

3.2.4 Monitoring and sample collection.  

Body weight and temperature were monitored daily starting from 2 days before 

challenge. Prior to challenge, blood was collected from all of the animals from the jugular 

vein/cranial vena cava under conditions of isoflurane anesthesia. Animals were monitored 

on a daily basis after the virus challenge for clinical signs, and body temperature and body 

weight were recorded. Nasal washes were collected from all the infected animals in the 

directly inoculated group and from three control animals at 1, 3, 5, 7, and 9 days 

postinfection (dpi). Additionally, two infected animals were euthanized using CO2 at 1, 3, 

5, 7, and 9 dpi. Blood, nasal wash, nasal turbinate, trachea, and lung samples were 

collected. The numbers of infected animals assessed each day from group I were as follows: 

day 1, n = 10; days 2 and 3, n = 8; days 4 and 5, n = 6; days 6 and 7, n = 4; days 8 and 9, n 

= 2. 

For contact and aerosol transmission experiments, the animals were monitored for 

weight loss, temperature changes, and other clinical signs on a daily basis. The nasal wash 

samples were collected from all the animals at 48-h intervals (2, 4, 6, 8, 10, 12, and 14 dpi) 

from the time of challenge under conditions of isoflurane anesthesia. These animals were 

euthanized at 14 dpi, and blood, nasal wash, nasal turbinate, trachea, and lung samples 

were collected. 

3.2.5 Collection of nasal washes 

The nasal washes were collected by instilling 1 ml of PBS using a sterile 25-to-28-

gauge cannula into the nostrils and collecting the washes by draining to sterile containers 
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or Petri dishes. Animals were anesthetized using isoflurane, and alternate nostrils were 

used for sample collection on alternate days. Nasal washes collected in the Petri dishes 

were transferred to 1.5-ml tubes and then centrifuged at 500 × g for 6 min at 4°C to remove 

any debris. The supernatants were stored at −80°C until analysis. 

3.2.6 Estimation of virus load in nasal washes and tissues 

Lung, trachea, and nasal turbinates from guinea pigs were collected and stored at 

−80°C. One gram of tissue was homogenized using DMEM supplemented with penicillin-

streptomycin (Life Technologies, Carlsbad, CA, USA) (200 U/ml) and a Stomacher 

circulator at high speed for 2 min. The homogenized tissue fluid was clarified by spinning 

at 500 × g for 8 min at 4°C and stored at −80°C. For trachea and nasal turbinate analyses, 

DMEM with penicillin-streptomycin (Life Technologies, Carlsbad, CA, USA) (200 U/ml) 

was added and homogenized tissue fluid was collected and stored at −80°C until titration. 

For virus isolation, MDCK cells were used for determining the virus titer present 

in nasal washes and tissue homogenates. 7 X 103 cells were seeded on 96 well tissue culture 

plates and allowed to grow overnight. When the cells reached 60-70 % confluent, serial 

tenfold dilutions of the sample were inoculated on cell culture plates after the plates were 

washed with sterile PBS. The inoculated cell culture plates were incubated for 5 days at 

37oC. After 5 days, the infected cell culture plates were washed with PBS, fixed in 80% 

acetone and allowed to dry. The plates were stained for the determination of virus titer in 

nasal washes and tissue homogenates by indirect immunofluorescence assay. Virus 

titration was determined using Reed and Meunch formula to find the fifty percent endpoints 

[244]. 
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3.2.7 Indirect Immunofluorescent assay 

Determinations of virus titers in nasal washes and tissue homogenates were 

performed by indirect immunofluorescence assay (IFA). The fixed infected cell culture 

plates were moistened with PBS for 10 min at room temperature before staining. A 100-μl 

volume of rabbit polyclonal primary antibody (IgG) against bovine IDV was added at a 

1:200 dilution to each of the wells. The plates were incubated at 37°C for 45 min. 

Following three washes with PBS, 50 μl of affinity-purified fluorescein-labeled goat anti-

rabbit IgG secondary antibody (KPL, Gaithersburg, MD, USA) was added at a 1:1,000 

dilution. After the secondary antibody was added, the plates were incubated at 37°C for 45 

min. 

3.2.8 Hemagglutination Inhibition Assay 

The pre and post infection sera were treated with receptor-destroying enzyme 

(Denka Seiken, Chuo-ku, Tokyo, Japan) before doing HI assay. RDE treatment was done 

according to manufacturer’s protocol and HI assay was done according to WHO manual 

[245]. HI assay was performed using 1% turkey RBCs (Lampire Biological Laboratories, 

Pipersville, PA, USA). 

3.2.9 Virus genome sequencing and analysis 

To determine the HEF sequence of viruses isolated from infected animals, we 

employed HRT- 18 G cells for the cultivation of the infected lung homogenates, which was 

followed by deep RNA sequencing. Briefly, cells were allowed to reach 60-70% 

confluency and then infected with bovine IDV at 0.1 MOI in 1 ml of DMEM. After 1 h 

infection, fresh virus infection medium, i.e. DMEM supplemented with 200 U/ml 

penicillin-streptomycin (Life Technologies, Carlsbad, CA, USA), and 0.5 µg/ml TPCK 
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Trypsin (Sigma, Saint Louis, MO, USA), was added for further incubation at 37oC for 5 

days. The virus grown from the infected lung homogenates was sequenced using an 

Illumina MiSeq as described previously [4].  

The nucleotide sequences of HEF obtained from the inoculum, and the lung 

homogenates of guinea pigs were analyzed against all the homologous sequences in the 

NCBI database using standard nucleotide BLAST[246]. The nucleotide sequences were 

translated to amino acid sequences using ExPASy tool [247]. Pairwise protein alignments 

were performed using multiple sequence alignment tool from Clustal omega [248] 

3.2.10 Gross pathology, histology, and immunohistochemistry (IHC) 

Following experimental bovine IDV infection of guinea pigs, euthanasia was 

performed at prescribed time points. A complete necropsy was performed to look for any 

macroscopic lesion in all the organs. Lung, trachea, and nasal turbinate samples were 

collected in 10% neutral buffered formalin and embedded in paraffin wax. Sections (5 μm 

thick) were then cut and stained with hematoxylin and eosin for histopathological 

examination. 

Immunohistochemistry was performed on lung tissue sections stained with a 

primary rabbit polyclonal antibody developed against purified bovine IDV. Sections were 

deparaffinized, rehydrated, and immersed in 3% H2O2–distilled water for 30 min to block 

endogenous peroxidase. After washing with Tris-buffered saline (TBS) buffer was 

performed, the sections were treated with 5% goat serum (Life Technologies, Carlsbad, 

CA, USA)–TBS buffer for 1 h. The lung sections were then stained in a 1:1,500 dilution 

of polyclonal rabbit antibody against purified bovine IDV for 1 h at room temperature. 

After rinsing with TBS was performed, the sections were stained with 100 μl of horseradish 
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peroxidase (HRP)-conjugated goat anti-rabbit secondary antibody (Dako EnVision+ 

System-HRP [DAB], Carpinteria, CA, USA) for 30 min, followed by counterstaining with 

hematoxylin. Lung sections stained with PBS and isotype antibody instead of specific 

primary antibody served as negative controls. 

3.3 Results 

3.3.1 Growth kinetics of bovine IDV in the upper and lower respiratory tracts of 

guinea pigs. 

To determine the growth kinetics of bovine IDV, ten animals were intranasally 

inoculated with 3x105 TCID50/300 µl of bovine IDV and three animals were mock-infected 

with PBS. Clinical significance of bovine IDV in guinea pigs was assessed by regular 

monitoring of the change in body weight and temperature post infection over a period of 9 

days, while viral replication in the lower and upper respiratory tract of the guinea pigs was 

evaluated by determining the amount of virus shed in nasal washes and tissue homogenates 

such as lungs, nasal turbinates over 9 days period. Overall, there were no obvious clinical 

signs of influenza infection (body weight and temperature) and the directly infected 

animals behaved similarly to mock-infected animals. For each animal, the change in body 

weight post infection was calculated by comparing the post-infection body weight to the 

average of body weight recorded two days prior to the infection. The differences were 

calculated as percentage body weight change for each animal plotted for each day. The 

directly inoculated animals did not show any significant change in body weight compared 

to the mock-infected animals. An increase in body weight in mock-infected animals 

compared to directly inoculated animals from 5dpi to 9 dpi was noted, but this change was 

insignificant (Figure.1A). Similarly, the difference of post-infection body temperature was 
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compared to the average pre-infection temperature for each animal and the average of the 

differences was plotted for each day (Figure. 1B). Despite the observation of an increased 

trend in the temperature of infected animals on days 0, 1, and 2 post-infection compared to 

mock-infected  animals, the changes in temperature were not significantly different from 

the mock-infected animals. In the remaining days of the experiment, infected animals 

showed little or no change in the temperature. These results indicated that bovine IDV 

infection had no effect on the body weight and temperature changes during the 9 days 

period in guinea pigs. 

Next, we determined whether virus replicated in the upper and lower respiratory 

tract of infected animals by focusing on the quantitative analysis of virus loads in nasal 

washes, nasal turbinates, and lungs by titrating the samples on MDCK cells. Nasal washes 

were collected from the directly inoculated and mock-infected animals at 48 h intervals 

starting from 1 dpi through 9 dpi. To determine the tissue tropism of the virus, two random 

animals were selected and euthanized on 1,3,5,7,9 dpi and lungs, and nasal turbinates were 

collected. Results of our experiments showed that IDV shedding in the nasal washes started 

at low levels and then reached the highest titer of 5.75 log10TCID50/ml on 3dpi (Figure.1C). 

The virus shedding in nasal washes reduced to undetectable levels on 9 dpi. This clearly 

showed that bovine IDV can replicate in the upper respiratory tract.  Virus growth from 

nasal turbinates ranging from 4.10- 6.0 log10TCID50/g on 1, 3, 5, and 7 dpi, and further 

confirmed that bovine IDV could successfully replicate in the upper respiratory tract of 

guinea pigs (Figure. 1D). Robust bovine IDV replication was also demonstrated in the lung 

homogenates of guinea pigs. We noticed that there was a substantial increase in virus titers 

in lung homogenates of directly inoculated animals starting from 1 dpi through 7 dpi, with 
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a peak of 8 log10TCID50/g on 5 dpi. By day 9, the virus was cleared from the lungs 

(Figure.1E). The presence of virus in the lungs as well as in nasal washes and nasal 

turbinates until 7 dpi indicated that virus was actively replicating in the respiratory tract of 

the guinea pigs. Previous studies in pigs and ferrets have shown that IDV isolated from 

swine (swine IDV) was detected only in the upper respiratory tract, not in the lungs of 

infected animals. 

 

Figure 3.1. Body weight and temperature changes and virus titers in nasal washes, lungs, 

and nasal turbinates in guinea pigs after intranasal inoculation of bovine IDV in the directly 

inoculated group. A total of 10 guinea pigs were intranasally inoculated with 3 × 105 

TCID50/300 μl of bovine IDV (shown as “Infected”) and 3 guinea pigs were mock 

inoculated with PBS (shown as “Uninfected”). Body weight and temperature were 

measured daily from 2 days before infection until 14 dpi. (A and B) Percentage changes in 
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body weight (A) and changes in body temperature (B) expressed as means ± standard errors 

(SE). (C to E) Nasal washes were collected at 1, 3, 5, 7, and 9 dpi. Two inoculated animals 

were randomly euthanized on each of those days to assess virus load in lungs and nasal 

turbinates. All mock-inoculated animals were euthanized at 9 dpi. Virus titers in nasal 

washes are expressed as log10 TCID50 per milliliter (C); virus titers in nasal turbinates (D) 

and lung (E) are expressed as log10 TCID50 per gram. For panels C, D, and E, each shape 

represents an individual animal. Horizontal bars show the mean viral titers for each time 

point. 

3.3.2 Seroconversion in directly inoculated guinea pigs 

Pre- and post-infection serum samples were tested for the presence of virus-specific 

antibodies against bovine IDV by the hemagglutination inhibition (HI) assay. All the 

guinea pigs were seronegative for bovine IDV prior to infection as demonstrated by the 

absence of virus-specific antibodies. The antibody response to bovine IDV infection was 

measured on days 1, 3, 5, 7, and 9 dpi in the directly inoculated group. In the directly 

inoculated group, virus-specific antibodies were detected by HI at 7 and 9 dpi. One of the 

2 infected animals seroconverted on 7 dpi (HI titer, 40), and 2 of the 2 infected animals 

seroconverted with titers of 20 and 80 on 9 dpi (Table 1). The presence of detectable levels 

of antibody showed that guinea pigs could be a good model to study the replication and 

kinetics of bovine IDV. 
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Table 3.1. Seroconversion of guinea pigs after bovine IDV infection 

Groups Control  Infected animals Sentinels 

 9 dpi 7 dpi 9 dpi 14 dpi 14 dpi 

Direct inoculated 0/3 1/2 (40) 2/2 (20,80)  

Contact transmission  3/3 (80,40,80) 1/3 (40) 

Aerosol transmission  3/3 (80,80,20) 0/3 

Virus-specific antibody titers determined by HI are given in parentheses. 

3.3.3 Transmission of bovine IDV in co-caged guinea pigs 

To test whether bovine IDV can transmit through contact, 3 directly inoculated 

guinea pigs at 1 dpi were allowed to co-cage with three sentinel animals. The experimental 

setup for contact transmission facilitated not only direct but also indirect contact (droplets 

and aerosols). The potential transmission of bovine IDV in guinea pigs through contact 

was investigated by analysis of the changes in the body weight and temperature and also 

in the virus load in the nasal washes, nasal turbinates, and lungs from the infected and 

sentinel animals over a period of 14 days. Nasal washes were collected at 48-h intervals 

from 2 dpi to 14 dpi, and all of the animals were euthanized at 14 dpi. There were no 

significant differences in body weight and temperature between infected and sentinel 

animals (Figure. 2A and B). The infected and sentinel animals did not show any observable 

clinical signs during the 14-day experiment. All 3 infected animals shed the virus in the 

nasal washes and cleared the virus by 8 dpi (Figure. 3A). Two of three sentinel animals 

acquired infection from cage mates, and bovine IDV was detected in their nasal washes. 

One sentinel animal shed virus in the nasal washes at 4.6 log10 TCID50/ml starting on 6 

dpi and cleared the virus by 10 dpi, while the other sentinel animal started viral shedding 

on 8 dpi and continued to shed virus at low levels until 14 dpi. Intriguingly, one of the 
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directly inoculated guinea pigs that shed virus once (2 dpi) in the nasal washes and then 

tested negative until 12 dpi shed virus at 14 dpi with a low titer of 2.25 log10 TCID50/ml. 

This animal could have acquired infection from the co-caged sentinel guinea pig by 

contact. 

Further, to confirm the presence of transmission, guinea pig sera from the contact 

transmission group were tested for the presence of virus-specific HI antibodies. All three 

directly infected animals in the contact group seroconverted with HI titers of 40 to 80, and 

one sentinel animal seroconverted with an HI titer of 40 at 14 dpi, thus confirming the 

occurrence of short-range transmission by contact (Table 1). The absence of serum HI 

antibody titer in the other contact-infected sentinel animal can be explained by the late 

commencement of infection (8 dpi), indicating that the animal did not have enough time to 

develop antibodies by 14 dpi. At 14 dpi, the lungs and nasal turbinates of all 3 infected 

animals revealed no detectable levels of virus, indicating that the guinea pigs had cleared 

the virus (Figure. 3B and D). Among the sentinel animals, the animal which acquired late 

infection without seroconversion showed very high titers of 8 log10 TCID50/g in the lungs 

and 5.0 log10 TCID50/g in the nasal turbinates at 14 dpi (Figure. 3B and D). Taking the 

data together, the presence of virus in the nasal washes, lungs, and nasal turbinates and the 

antibody seroconversion demonstrated that bovine IDV can be transmitted from infected 

guinea pigs to naive guinea pigs by contact. 
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Figure 3.2 Changes in body weight and temperature of guinea pigs in the contact 

transmission group (A and B) and in the aerosol transmission group (C and D). Three 

guinea pigs were intranasally inoculated with 3 × 105 TCID50/300 μl of bovine IDV, and 

3 uninfected guinea pigs were added to the cage as sentinels after 24 h. Body weights and 

temperatures were measured daily from 2 days prior to infection to 14 dpi. (A and B) 

Changes in percentages of body weights compared to pre-infection body weights (A) and 

changes in temperatures of infected animals compared to temperatures of sentinels (B) in 

contact transmission group. The data are expressed as means ± SE. (C and D) A similar 

experiment with the same parameters (body weight and temperature) measured was 

conducted for the aerosol transmission study.  
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Figure 3.3 Virus titer in nasal washes, lungs, and nasal turbinates of guinea pigs exposed 

to bovine IDV by the aerosol or contact route. In both the contact transmission group and 

aerosol transmission group, 3 guinea pigs were intranasally inoculated with 3 × 105 

TCID50/300 μl of bovine IDV. After 24 h of infection, 3 uninfected guinea pigs were added 

to each cage as sentinels. Nasal washes were collected at days 2, 4, 6, 8, 10, 12, and 14 dpi 

from all animals. All the guinea pigs were euthanized at 14 dpi. (A and C) Virus titers in 

nasal washes from the contact transmission group (A) and the aerosol transmission group 

(C) are expressed as log10 TCID50 per milliliter. (B and D) Virus titers in lungs (B) and 

nasal turbinates (D) of the infected and sentinel animals in the contact and aerosol 
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transmission groups at 14 dpi are expressed as log10 TCID50 per gram. For panels B and 

D, each shape represents an individual animal. 

3.3.4 Aerosol transmission of bovine IDV  

In order to test the transmissibility of bovine IDV via aerosol or droplets, three 

guinea pigs were inoculated intranasally with 3 × 105 TCID50/300 μl and three noncontact 

sentinel animals were placed in the same cages after 24 h. The infected and sentinel animals 

were separated with double-walled wire mesh, thus facilitating only airborne transmission 

and preventing all types of direct contact. The duration of the experiment and the collection 

of nasal washes were similar to the conditions used for the contact transmission 

experiment. Similarly, to the contact transmission group, the body weight and temperature 

changes between the infected and sentinel animals were not significant (Figure. 2C and D). 

In the aerosol transmission group, 3/3 directly infected animals showed detectable virus 

replication and shed the virus in their nasal washes until 6 dpi, with a peak of 5.0 log10 

TCID50/ml on 2 and 4 dpi (Figure. 3C). None of the three sentinel animals shed any 

detectable level of virus in nasal washes or had virus present in lungs and nasal turbinates 

during the study. This suggested that bovine IDV cannot be transmitted by the aerosol 

route. At 14 dpi, none of three infected animals had detectable virus in the lungs or nasal 

turbinates, indicating that the virus had cleared by day 14 (Figure. 3B and D). In the HI 

assay, all three infected animals in the aerosol transmission group had seroconverted with 

HI titers of 20 to 80 at 14 dpi (Table 1). In marked contrast, neither virus replication nor 

virus-specific HI antibodies were found in three sentinel animals. Our data suggested that 

bovine IDV was incapable of transmitting infection in guinea pigs by the aerosol route 
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under the experimental conditions used in this study. A future study is needed to draw a 

conclusion regarding whether it can be transmitted by the aerosol route in guinea pigs. 

3.3.5 Pathology of bovine IDV in the respiratory tract of guinea pigs. 

Neither experimentally infected guinea pigs nor contact-infected guinea pigs 

showed any clinical signs of disease after bovine IDV infection. However, mild to 

moderate macroscopic changes were observed in the lungs of the directly inoculated 

animals and contact-infected animals during necropsy. No other lesions were observed in 

any other organs. On necropsy, primary gross lung lesions showed areas of congestion and 

hemorrhage on 1 dpi that progressed to areas of pulmonary consolidation at 3, 5, and 7 dpi. 

Lungs from an uninfected animal did not show any macroscopic lesions; however, lungs 

from the sentinel animal infected by contact showed similar areas of pulmonary 

consolidation comparable to the macroscopic lung lesions of directly inoculated animals 

on 5 and 7 dpi (Figure. 4A1, B1, and C1). Histopathological examination of lungs showed 

minimal to mild inflammation in the trachea with infiltration of lymphocytes and plasma 

cells, mild hyperplasia of tracheobronchial lymph nodes (not shown), mild to moderate 

atelectasis in lungs, vascular congestion, bronchitis with desquamation of bronchial 

epithelium with exudate, and peribronchial and perivascular cuffing by lymphocytes and 

plasma cells in all of the directly inoculated animals at 3, 5, and 7 dpi. In the directly 

inoculated animals, alveolar septa were thickened by neutrophils and RBCs, and 

bronchopneumonia with an accumulation of luminal exudate was also observed 

(Figure.4A1 to A3). The sentinel animal that acquired the infection from a co-caged 

infected animal by contact developed similar inflammatory changes with thickened 

alveolar septa, bronchitis, peribronchial and perivascular lymphocyte and plasma cell 
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infiltration, and mild neutrophilic bronchopneumonia at 14 dpi (Figure. 4B1 to B3). One 

of the three uninfected control animals showed the presence of foreign material possibly 

derived from the bedding material and demonstrated mild sloughing of pulmonary 

epithelium and suppurative inflammation within the examined lung. 

 

Figure 3.4 Pathological changes of the lungs in infected, positive-testing sentinel guinea 

pigs and uninfected guinea pigs after bovine IDV infection. Macroscopic lung lesions as 

indicated as follows: A1, a directly inoculated animal at 7 dpi; B1, a positive sentinel 

infected by contact at 14 dpi; C1, an uninfected animal at 9 dpi. Panels A1 and B1 showed 

multifocal areas of pulmonary consolidation in directly inoculated and contact-infected 

sentinel animals. Microscopic lung lesions are indicated as follows: detailed histology 
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results are shown at magnifications of ×100 for the second row (A2, B2, and C2) and ×200 

for the third row (A3, B3, and C3). Hematoxylin and eosin (H&E) staining of lung sections 

from a directly inoculated animal at 7 dpi (A2 and A3) and from a positive-testing sentinel 

infected by contact at 14 dpi (B2 and B3) showed multifocal areas of alveolar inflammation 

with infiltration of lymphocytes, plasma cells (black arrows), and RBCs in the lung 

parenchyma. Bronchiolar inflammation with desquamation of the epithelial cells (yellow 

arrows) and peribronchial infiltration of lymphocytes were also seen. (C2 and C3) 

Uninfected lung sections showed clear alveolar spaces without any inflammatory cell 

infiltration. Bars, 100 μm. 

Immunohistochemistry of the lung sections demonstrated the presence of bovine 

IDV-specific antigen in the lungs of directly inoculated and infected sentinel animals 

(Figure. 5 and 6). The presence of the viral antigen in lungs correlated with the severity of 

lung macroscopic pathology. Bovine IDV antigens were present in larger amounts within 

alveolar septum and within bronchi and the bronchiolar epithelium in the lungs of directly 

inoculated animals at 3, 5, and 7 dpi compared to 1 dpi (Figure. 5). At 14 dpi, the amount 

of viral antigen in the lungs of a sentinel animal which acquired the infection by contact 

was comparable to the amount of viral antigen present in those of the directly inoculated 

animals (Figure. 6A1 to A3), which further confirmed that bovine IDV transmission had 

occurred by contact. No viral antigen was detected from the lungs of the uninfected control 

animals (Figure. 6B1 to B3). Further, an isotype antibody from a directly inoculated bovine 
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IDV-positive lung showed no staining, confirming the specificity of the primary antibody 

used for IHC staining (Figure. 6C1 to C3). 

Figure 3.5 Bovine IDV antigen in the lungs of directly inoculated animals. Brown staining 

indicates cells positive for bovine IDV antigen in the infected lung tissue. Magnifications 

are ×100 for the first row (panels A1, B1, C1, and D1), ×200 for the second row (panels 

A2, B2, C2, and D2), and ×400 for the third row (panels A3, B3, C3, and D3). Viral 

antigens were present in the alveolar and bronchial epithelial cells. Viral antigens present 

in the infected lung tissue at 1 dpi (A1, A2, and A3), 3 dpi (B1, B2, and B3), 5 dpi (C1, 

C2, and C3), and 7 dpi (D1, D2, and D3) are shown. Bars, 100 μm and 10 μm. 
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Figure 3.6 Bovine IDV antigen in the lung tissue of the sentinel animal infected through 

contact. Panels A1, A2, and A3 represent lungs from the sentinel animal infected by 

contact. Brown staining shows cells positive for bovine IDV antigen. (B1 to B3) 

Uninfected animals did not show any brown stained infected cells for bovine IDV. (C1 to 

C3) Isotype antibody staining did not show any brown staining, confirming the specificity 

of the primary antibody used for immunohistochemistry. Magnifications are ×100 for the 

first row (panels A1, B1, and C1), ×200 for the second row (panels A2, B2, and C2), and 

×400 for the third row (panels A3, B3, and C3). Bars, 100 μm and 10 μm. 
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3.3.6 Full-length-genome analysis of viruses isolated from the lungs of directly 

inoculated and co-caged sentinel guinea pigs  

To determine whether bovine IDV had evolved some interesting mutations that 

promoted viral adaption to guinea pigs, we determined the full-length genome of viruses 

isolated from the lungs of directly inoculated and co-caged sentinel animals. The sequence 

analysis was conducted to examine and determine the similarities and differences of the 

full genome of the parent inoculum and the full genomes of the viruses propagated from 

lung homogenates of directly inoculated or sentinel animals. For deep RNA sequencing, 

viral RNA was extracted from the parent inoculum and also from the viruses recovered 

from lung homogenates of directly inoculated and co-caged sentinel guinea pigs. HRT-

18G cells were used for the virus propagation. 

Full-genome-sequence analysis showed that both of the recovered virus isolates 

from guinea pig lungs exhibited mutations in HEF, P42, and NP proteins compared to the 

parent inoculum. HEF protein sequence analysis of the parent inoculum and of virus from 

the lung of sentinel animal which acquired the infection by contact revealed 1 mutation, 

A746G, with an amino acid change of N249S. Compared to the inoculum, HEF protein 

sequence analysis of the bovine IDV that originated from the directly inoculated guinea 

pig revealed one mutation, C755T, with an amino acid change of A252V. While protein 

PB1 mutated only in a contact-infected sentinel-derived virus with D232N, PB2 mutated 

only in a directly inoculated animal with E44D and N668K mutations (Table 2). In contrast 

to proteins HEF, PB1, and PB2 lacking uniform mutations, the other proteins exhibited 

mutations common to the two virus samples (derived from directly infected and sentinel 

animals). These mutations consisted of E41R and L316F in P42 and E247D in NP. No 
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mutations were observed in NS protein (Table 2). Interestingly, we found that most of the 

observed amino acid changes had occurred at frequencies of approximately 93% to 99% in 

our RNA-seq reads. There were two changes (HEF A252V and PB1 D232N) occurring at 

around 50% frequency, indicating strong polymorphism at these two positions.  

Table 3.2. Viral genome and protein sequence changes in directly inoculated and sentinel 

contact-infected animal lung isolates compared to parent inoculum of IDV. 

 

3.4 Discussion 

Bovine and swine FLUD viruses are prevalent in cattle and swine populations as 

demonstrated by the serological studies conducted earlier [4, 10, 243]. Since this is a novel 

virus, different from the existing influenza genera, a laboratory animal model would help 

to understand the viral and host factors responsible for the virulence, pathogenesis, and 

transmissibility of this virus. In this study, we evaluated the virulence of the unadapted 

bovine IDV in guinea pigs by testing its ability to replicate and transmit by means of aerosol 

spread and contact. Generally, Influenza viruses need to be adapted to the host species 
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before they can replicate to high titer and induce disease in a model host [205]. Adaptation 

of the virus in vivo results in mutations that can facilitate better receptor binding and 

promote viral fitness, thereby increasing replication efficiency and virulence of the virus. 

These adapted viruses could be different from the parent strains. Previous studies in guinea 

pig and ferret models have shown exceptions and demonstrated high titers of influenza A 

virus in the upper respiratory tract and high transmissibility to co-caged animals without 

any adaptation [5, 7]. 

Selection of an infectious dose 3x105 TCID50/300 µl for guinea pig infection 

experiment was based on the earlier study of swine IDV in pigs and ferrets [4]. Guinea pigs 

after intra-nasal inoculation of bovine IDV showed no clinical signs and behaved normally. 

However, detection of virus replication in the nasal washes from 1-7 dpi indicated that 

guinea pigs were susceptible to bovine IDV infection. Intra-nasal inoculation of 106 

TCID50/ml swine IDV infection in pigs and ferrets also demonstrated no clinical symptoms 

and shed virus in nasal washes from 3 dpi [4]. Following intranasal inoculation of bovine 

IDV, all the infected guinea pigs seroconverted with HI antibody titers ranging from 20-80 

within a period of 14 days. Taken together, these findings are similar to the previously 

reported studies of influenza A viruses in guinea pigs, indicating guinea pigs can act as a 

natural susceptible animal model for studying the antigenicity and pathogenicity of bovine 

IDV. 

Earlier studies of influenza A viruses in guinea pig models also showed that virus 

replication largely occurred in the upper respiratory tract in high viral titers and showed no 

or low detectable levels of virus in lungs [5, 7, 249]. Surprisingly, bovine IDV replicated 

to high titers of 7.75 and 8 log10TCID50/g virus in the lungs of directly inoculated guinea 
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pigs at 3 and 5 dpi respectively and hence showed that guinea pig can support IDV 

replication in the lower respiratory tract in a very efficient manner. The sentinel animal 

that acquired the infection from the infected cage mate by contact transmission also showed 

8 log10TCID50/g virus in the lungs. Similar pathogenicity study of bovine IDV using an 

isolate designated D/Zoetis in gnotobiotic calves also showed 7 log10TCID50/ml virus in 

the lungs with no observable clinical signs [250]. Another study to evaluate the 

pathogenicity and virulence of bovine IDV in eight-week-old pigs, demonstrated viral 

replication in both upper and lower respiratory tract including lung, the presence of 

seroconversion in all inoculated pigs and also transmitted the infection by contact [250]. 

Our findings in guinea pigs are in a good agreement with these findings obtained in pigs 

and gnotobiotic calves with bovine IDV, further strengthening its position as an animal 

model to study this newly emerging influenza virus. 

Intriguingly, bovine IDV, as shown here and reported elsewhere, replicated in both 

lower and upper respiratory tract of animals (guinea pigs or pigs or calves), while swine 

IDV replicated only in the upper respiratory tract, not in lower respiratory tract and lung, 

of ferrets and pigs. These contrasting results indicate that bovine and swine viruses appear 

to differ in lung tropism of animals. This observation is also consistent with our clinical 

data that bovine IDV is often isolated from lungs of diseased calves, while swine virus is 

only isolated from the upper respiratory tract of diseased pigs (data not shown).  We 

reasoned the difference in lung tropism between swine D/OK and two bovine viruses 

(D/660 and D/Zoetis) might be a result of differences in the receptor recognition of the 

HEF protein. Further experimental verification is required to test this prediction. 
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The distribution of the receptors in the mammalian host tissue is an important factor 

determining the host susceptibility and tissue tropism of Influenza virus. Earlier studies in 

guinea pigs to determine the distribution of α2,6 and α2,3 sialylated glycoproteins, which 

are the main receptors of Influenza A viruses have been reported. While α2,6 and α2,3 

sialylated glycoproteins were both present in nasal epithelia and trachea, only α2,3 

sialylated glycoproteins were present in the lung [251, 252]. Similar to human influenza C 

virus, swine and bovine IDV utilizes 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) as 

the cellular receptor to trigger an infection and encodes sialate-O-acetylesterase to cleave 

the 9-O-acetyl group to release the virions [4]. However, it is not clear whether IDV can 

bind to Neu5,9Ac2 with both linkages as a similar efficiency. It can be argued that bovine 

viruses such as D/660 and D/Zoetis bind to Neu5,9Ac2 receptor well regardless of the 

specific linkage, while swine D/OK only preferably binds to Neu5,9Ac2 with α2,6 linkage, 

not that with α2,3 linkage present in the lungs of various animals. This hypothesis should 

be tested in future investigation. 

The transmissibility of influenza viruses was studied using various animal models 

such as mice, ferrets, guinea pigs, pigs and non-human primates [205]. The presence of 

bovine IDV in the bovine population of U.S, France, and China could be a potential threat 

to public health. To determine the transmissibility of bovine IDV, we tested two different 

models: contact and aerosol/respiratory droplet. A high level (2/3 animals) of bovine IDV 

transmission occurred from infected guinea pigs to sentinel animals by contact as 

demonstrated by the seroconversion (1/3 animals) and high titer of virus in the lungs in 

sentinels (1/3 animals), while the aerosol route failed to cause infection. The airborne 

transmission experiments largely depend on environmental factors such as temperature, 
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humidity, airflow of the experiment room and infectious dose used. Among these factors, 

the rate of change and direction of air currents in the facility is an important variable, 

especially in aerosol transmission experiments. Previous experiments using influenza A 

and B type viruses, in guinea pigs conducted in environmental test chambers demonstrated 

efficient transmission lasting for a longer period at 5oC, 20% relative humidity (RH) than 

at 20oC, 20% RH and also stated that high temperatures and high humidity significantly 

reduced the transmission efficiency [209]. Large droplets of size >5-10 um facilitates only 

short-range transmission, while small droplets <5 um are responsible for long-range 

transmission [210]. The temperature and humidity levels of our facility varied from 22-

24oC and 21-30% respectively during the study. Further, we kept the cage away from the 

direction of airflow of the room and did not use any controlled air chambers for aerosol 

transmission study. The absence of infection in the sentinels in the aerosol transmission 

group can be attributed to the above factors. Similar aerosol transmission study done in 

guinea pigs using a pandemic H1N1 2009 influenza A virus demonstrated the incidence of 

virus shedding between days 2 and 4 dpi and also reported no transmission upon reversal 

of the cage positions relative to airflow, showing that efficiency of infection increased 

when the orientation of infected to uninfected cages was in the direction of air flow [7]. 

The absence of persistent infection and productive replication in the sentinel animals in the 

aerosol group can thus be justified under the given experimental conditions. Low aerosol 

transmission ability of IDV, in general, has puzzled us when we initially studied IDV in 

pigs. RT-PCR screening approximately 3000 nasal swabs of pigs with influenza-like 

symptoms only resulted in 4 positive samples (data not shown). The low aerosol 

transmission issue has been observed also in our ferret study where IDV was not detected 
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in the aerosol group; despite 1/3 sentinel ferrets exhibited seroconversion [4]. It should be 

noted that the inefficient transmission observed in pigs, ferrets, and guinea pigs is in a 

marked contrast with that observed in cattle in that approximately 15% nasal swabs of 

cattle manifested influenza-like symptoms were tested positive for IDV [2]. So, our current 

hypothesis is that IDV is unique among influenza viruses in that it transmits through 

aerosol efficiently only in its primary host cattle, not in other tested animal species 

including guinea pigs.  This working model will be tested in our future experiment.  

Transmission experiments of influenza A and B types in various animal models 

also showed higher efficiency in contact route compared to aerosol [6]. Swine IDV was 

also reported to transmit by contact in pigs and ferrets [4]. In our study, two sentinel 

animals acquired the infection by contact as demonstrated by the serum hemagglutination 

inhibition (HAI) titer of one of the sentinel animal (HAI titer: 80) and high titer of virus 

present in the lung and nasal washes in the other. Interestingly, the sentinel guinea pig 

infected by contact acquired a strong infection enough to spread to the co-caged 

seropositive direct inoculated animal causing to start a second round of virus shedding in 

nasal washes on 14 dpi (nasal wash titer 2.25log10TCID50/ml on 14 dpi), however there 

was no detectable amount of virus in the lungs at 14 dpi. A serum HAI titer of 40 or above 

is considered to be the gold standard for protection by reducing the pathogenesis of 

influenza viruses in humans. Our data showed that a serum HAI titer of 80 in that co-caged 

seropositive animal definitely has alleviated the pathogenesis caused by virus reactivation 

by reducing the amount of virus shedding in nasal washes (2 .25 log10TCID50/ml) and also 

prevented the virus replication in lungs at 14 dpi. Earlier studies in guinea pigs and ferrets 

using potent monoclonal IgG antibody administered intramuscularly against 
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A/California/04/2009 (H1N1) virus hemagglutinin failed to protect the animals from the 

airborne transmission. However, the same monoclonal IgG antibody when administered 

intranasally and also as recombinant IgA administered intramuscularly in a dose-dependent 

manner significantly reduced the virus shedding in nasal washes and prevented virus 

replication in lungs [249]. This explains the incidence of the low level of virus shedding in 

the seropositive animal and also underlines the role of mucosal immune responses over 

systemic immune responses in the pathogenesis and prevention of the influenza virus 

infection.  

Since we described this new influenza virus in cattle, designated influenza D virus 

(IDV) in 2013, there have been published reports on the detection of this virus in diseased 

calves in China and France. Also, a recent study observed that IDV was frequently detected 

in calves with acute respiratory disease and was not identified in clinically healthy animals. 

In addition, recognized viral etiological pathogens commonly associated with bovine 

respiratory disease, bovine viral diarrhea virus, bovine coronavirus, bovine herpesvirus 1 

and bovine respiratory syncytial virus, were not detected.  These findings suggest an 

important role of IDV in the bovine respiratory disease (BRD) complex and challenge our 

understanding of BRD. Despite the progress, it is not yet clear whether IDV can spread 

from bovines to humans. The zoonotic potential of bovine IDV has not yet been reported 

and is an area worth study. A serum survey conducted in humans earlier to swine IDV 

showed seroprevalence only in 1.3% of the human samples tested [4]. Considering the 

pathogenicity of the bovine IDV and host tropism in ferrets, guinea pigs, pigs and calves, 

the zoonotic potential of these viruses cannot be dismissed. Further serological studies have 

to be done to study the prevalence of these viruses in personnel and occupational workers, 
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closely associated with animals and animal facilities such as farmers, veterinarians, animal 

technicians, laboratory staff, and animal keepers. 

Overall, guinea pigs can act as a good feasible model for studying the pathogenesis 

of influenza D viruses for the following reasons: 1) virus was able to replicate in the nasal 

turbinates and virus shed through nasal washes; 2) unlike other influenza types, bovine 

IDV replicated to a high titer in lungs and therefore can productively replicate in the lower 

respiratory tract; 3) bovine IDV transmitted from the infected guinea pigs to naïve animals 

by contact; 4) No adaptation required in vivo for pathogenicity experiments; and 5) All the 

direct inoculated and contact infected guinea pigs seroconverted. The data we presented 

here show that guinea pigs are naturally susceptible to IDV and therefore can be an 

excellent animal model to study the host-virus interactions and would help in devising 

future strategies for the in-depth study of pathogenicity, antigenicity, and immunogenicity 

of this novel influenza virus. 
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Chapter 4. Comparative study of virulence, pathogenesis and tropism of swine and 

bovine influenza D viruses to human influenza C virus in guinea pig model 

 Abstract 

Influenza D virus (IDV) is an emerging pathogen with cattle as its primary host 

species. Influenza D virus isolated from the cattle and swine populations from North 

America and Eurasia shares 50% homology to the human influenza C virus. Previous 

research by our group has successfully established guinea pig as a suitable animal model 

to study the virulence and transmission of IDV and also demonstrated productive 

replication of this virus in upper and lower respiratory tract. The goal of this study was to 

investigate the replication kinetics and virulence of bovine and swine influenza D isolates 

(96-98% homology), in comparison to human influenza C in guinea pigs. Despite the 

similarity, both bovine and swine IDVs differ antigenically and genetically and belong to 

two different lineages. Guinea pigs upon intranasal inoculation of 

D/bovine/660/Oklahoma/2013 (bovine IDV), D/swine/1334/Oklahoma/2011 (swine IDV) 

and C/Victoria/2/2012 (human ICV) did not exhibit any clinical signs. However, all the 

infected animals seroconverted at 7 days post-infection (dpi). Guinea pigs infected with 

ICV did not shed the virus in nasal washes at 1 dpi and only 2/8 shed virus at 3 dpi. In 

contrast, in bovine IDV infected group, 9/10 animals shed the virus in nasal washes at 1 

dpi, while the swine IDV group (8/8) began to shed the virus only at 3 dpi. Hence, the 

disparity in the virus-shedding pattern of swine IDV could be an adaptation lag due to the 

subtle difference in receptor binding specificity and virus tropism. Deep RNA sequencing 

of viral genomes in the nasal washes, receptor binding preference, and structural modeling 

of receptor binding domain of hemagglutinin-esterase fusion protein are currently 
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underway to identify the key factors and mechanisms involved in the differential 

replication kinetics, viral tropism, pathogenesis of the bovine and swine influenza D 

viruses. 

4.1 Introduction 

Influenza viruses are negative-sense, single-stranded RNA viruses classified in the 

Orthomyxoviridae family. There are four recognized genera of influenza viruses, 

designated influenza A (IAV), influenza B (IBV), influenza C (ICV) and influenza D (IDV) 

(https://www.cdc.gov/flu/about/viruses/types.htm). IAV and IBV have 8 negative-sense, 

single-stranded RNA segments, whereas ICV and IDV have only 7 segments. IAV has 

several subtypes depending on the HA and NA proteins and causes severe epidemics and 

pandemics affecting humans. So far there is 18 HA and 11 NA types, of which H1 to H16 

and N1 to N9 have been isolated from birds. H17, H18, N10, N11 have been identified in 

the bats. IAV exists in multiple mammalian species, whereas IBV and ICV primarily infect 

humans. IBV has no subtypes but possesses two lineages causing localized epidemics and 

affecting mainly humans and, to some extent, seals [49]. The IBV genome was also 

recently detected in domestic pigs, indicating that the virus may infect this agricultural 

animal [29]. Compared to the IAV and IBV, ICV infections cause mild disease and were 

found to have coexisted with IAV and IBV infections in humans [50]. A striking feature 

of IDV is that it has multiple mammalian hosts similar to IAV, although we consider 

bovines as the natural reservoir [51]  

Influenza D virus which is recently emerged and initially isolated from the USA 

has been found to have a transboundary existence and has been reported from North 

America, Eurasia and Africa [3, 12, 15, 16, 61]. Influenza D virus originally isolated from 
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the swine and bovines share 50 % amino acid identity to influenza C virus, which is 

primarily a human pathogen [2, 4].  Influenza C has been isolated from natural infections 

of the pigs and dogs in the past and also have been used for experimental infections [31, 

253, 254]. Previous studies have shown that several human ICV strains were antigenically 

closely related to the swine ICV strains, which implicates the interspecies transmission of 

ICV, but the directionality of the transmission is inconclusive [30, 255]. Despite, similar 

genetic organizational makeup, influenza D virus cannot undergo gene reassortment with 

ICV and hence genetically and antigenically distinct from ICV which led to the 

classification of a new genus in the Orthomyxoviridae family [2, 60]. Genetic analyses 

have shown that there were only two lineages of IDV represented by 

D/swine/Oklahoma/1334/2011 (D/OK) and D/bovine/Oklahoma/660/2013 (D660), but 

recently a third lineage (D/bovine/Ibaraki/7768/2016) was reported from Japan [3, 47, 60]. 

The virus ecology of influenza D has been expanding since it was discovered in 

2011-2013. Serological evidence of IDV has been found in small ruminants (goats and 

sheep), buffaloes, equines, and camelids [11-13]. Influenza D antibodies have also been 

detected from the occupational workers which implicate the public health importance of 

this newly emerged virus [14]. Even though the majority of IDVs isolated from North 

America belong to D660 lineage, it is interesting to note that recent isolates of IDVs of 

Eurasian origin are mostly of D/OK lineage [3, 13, 15, 16]. As stated earlier, humans are 

the primary host for ICV, but ICV has also been isolated from pigs and the directionality 

of transmission still needs to be addressed. Like ICV, IDV also uses the HEF protein, for 

the virus entry and exit, and these proteins share a conserved enzymatic site and divergent 

receptor binding sites. IDV exhibits broad host tropism, and IDV HEF has exceptional acid 
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and thermal stability compared to ICV [17]. Based on these phenotypic characteristics, we 

wanted to identify the molecular factors/ determinants responsible for the broad host 

tropism of IDV compared to ICV. The second thing is, HEF of the IDVs belonging to two 

lineages may have genetic and antigenic differences. Here we wanted to investigate the 

differences in the virulence, and pathogenicity of these two lineages in the guinea pig 

model, which can support IDV as evidenced from our past study [256]. The results of our 

study demonstrated that swine IDV (sIDV) has a differential replication kinetics in the 

tissues and nasal washes of the guinea pigs, compared to bovine IDV (bIDV), but both 

IDVs replicated in upper and lower respiratory tract. On the contrary, ICVs replicated in 

the upper respiratory tract and not in the lower respiratory tract.   

4.2 Materials and methods 

4.2.1 Cells, viruses, and Animals  

Specific-pathogen-free (SPF), viral-antibody-free (SPF/VAF), 30-day-old guinea 

pigs of the Dunkin-Hartley strain (Elm Hill Labs, MA, USA) weighing 300 to 350 g were 

used for the study. The animals were ear-tagged for identification purposes. The duration 

of the experiment was 3 weeks, which included a 1-week acclimatization period. Animals 

were provided with food and water ad libitum and kept on a 12-h light/dark cycle. The 

temperature and relative humidity (RH) of the animal housing ranged from 72 to 75°F and 

25% to 33%, respectively. Control animals were housed in a separate room away from the 

room housing the infected animals and were processed before the inoculated animals. Strict 

precautionary measures were followed to prevent cross-contamination between animals in 

different cages Gloves were changed between cages during cleaning and handling, and 

masks and surfaces were disinfected to prevent any possible cross-contamination. 
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4.2.2 Experimental design 

Guinea pigs were divided into experimental groups for testing growth kinetics of 

the virus. Three virus-infected groups included 1) influenza D/bovine/Oklahoma/660/2013 

2) influenza D/swine/Oklahoma/1334/2011 3) C/Victoria/2/2012 The group for studying 

virus kinetics consisted of 10 infected animals and 5 mock-infected animals. The animals 

were infected intranasally with 3 × 105 50% tissue culture infective doses Half (150 μl) of 

the virus inoculum was delivered in each nostril. The 5 control animals were mock infected 

with equal volumes of phosphate-buffered saline (PBS). The body weights of all the 

animals were recorded before the challenge. Guinea pigs were briefly anesthetized using 

isoflurane prior to infection. The animal experiments were approved by the Institutional 

Animal Care and Use Committee of South Dakota State University (IACUC no. 15-017A) 

and were conducted under biosafety level 2 conditions. 

4.2.3 Monitoring and sample collection. 

Body weight and temperature were monitored daily starting from 2 days before 

challenge. Prior to challenge, blood was collected from all of the animals from the jugular 

vein/cranial vena cava under conditions of isoflurane anesthesia. Animals were monitored 

on a daily basis after the virus challenge for clinical signs, and body temperature and body 

weight were recorded. Nasal washes were collected from all the infected animals in the 

directly inoculated group and from three control animals at 1, 3, 5, and 7, days post-

infection (dpi). Additionally, two infected animals were euthanized using CO2 at 1, 3, 5, 

and 7 dpi. Blood, nasal wash, nasal turbinate, soft palate, trachea, and lung samples were 

collected. The numbers of infected animals assessed each day from group I were as follows: 

day 1, n = 10; days 2 and 3, n = 8; days 4 and 5, n = 6; days 6 and 7, n = 4; days 8 -14, n = 
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2.Two animals from each group was kept for antibody development .These animals were 

euthanized at 14 dpi, and blood, nasal wash, nasal turbinate, soft palate, trachea, and lung 

samples were collected. 

4.2.4 Collection of nasal washes 

The nasal washes were collected by instilling 1 ml of PBS using a sterile 25-to-28-

gauge cannula into the nostrils and collecting the washes by draining to sterile containers 

or Petri dishes. Animals were anesthetized using isoflurane, and alternate nostrils were 

used for sample collection on alternate days. Nasal washes collected in the Petri dishes 

were transferred to 1.5-ml tubes and then centrifuged at 500 × g for 6 min at 4°C to remove 

any debris. The supernatants were stored at −80°C until analysis. 

4.2.5 Estimation of virus load in nasal washes and tissues 

Nasal turbinates, soft palate, trachea, and Lung, from guinea pigs were collected 

and stored at −80°C. One gram of tissue was homogenized using DMEM supplemented 

with penicillin-streptomycin (Life Technologies, Carlsbad, CA, USA) (200 U/ml) and a 

Stomacher circulator at high speed for 2 min. The homogenized tissue fluid was clarified 

by spinning at 500 × g for 8 min at 4°C and stored at −80°C. For trachea and nasal turbinate 

analyses, DMEM with penicillin-streptomycin (Life Technologies, Carlsbad, CA, USA) 

(200 U/ml) was added and homogenized tissue fluid was collected and stored at -80°C until 

titration. 

For virus isolation, MDCK cells were used for determining the virus titer present 

in nasal washes and tissue homogenates. 7 X 103 cells were seeded on 96 well tissue culture 

plates and allowed to grow overnight. When the cells reached 60-70 % confluent, serial 

tenfold dilutions of the sample were inoculated on cell culture plates after the plates were 
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washed with sterile PBS. The inoculated cell culture plates were incubated for 5 days at 

37oC. After 5 days, hemagglutination was carried out on the infected cell culture plates 

using 1% turkey RBCs, for the determination of virus titer in nasal washes and tissues. 

Virus titration was determined using Reed and Muench formula to find the fifty percent 

endpoints [244] 

4.2.6 Hemagglutination Inhibition Assay 

The pre and post infection sera were treated with receptor-destroying enzyme 

(Denka Seiken, Chuo-ku, Tokyo, Japan) before doing HI assay. RDE treatment was done 

according to manufacturer’s protocol and HI assay was done according to WHO manual 

[245]. HI, assay was performed using 1% turkey RBCs (Lampire Biological Laboratories, 

Pipersville, PA, USA). 

4.2.7 Virus genome sequencing and analysis 

The infected lung homogenates of selected animals from each time point were 

sequenced using an Illumina MiSeq as described previously [4]. The nucleotide sequences 

of the seven viral genome segments obtained from the inoculum and the nasal washes of 

guinea pigs were analyzed in the NCBI database using standard nucleotide BLAST[246]. 

The nucleotide sequences were translated into amino acid sequences using ExPASy tool 

[247]. Pairwise protein alignments were performed using multiple sequence alignment tool 

from Clustal omega [248] 

4.2.8 Gross Pathology and Fluorescent in-situ hybridization test 

Following experimental infection of guinea pigs, euthanasia was performed at 

prescribed time points. A complete necropsy was performed to look for any macroscopic 

lesion in all the organs. Nasal turbinate, soft palate, trachea, and lung samples were 
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collected in 10% neutral buffered formalin and embedded in paraffin wax. Sections (5 μm 

thick) were then cut and stained with hematoxylin and eosin for histopathological 

examination. IDV in respiratory tract tissues was detected using in situ hybridization (ISH) 

with radioactive isotopes of sulfur (35 181 S) labeled negative-sense RNA probes of HEF 

and nucleoprotein (NP) as described [Wan, 2018 #2206]. 

4.2.9 High-performance liquid chromatography 

Nasal turbinates, soft palate, and lungs were collected, washed with PBS and snap 

frozen before it is processed for High-performance liquid chromatography. The tissues 

were homogenized in homogenization buffer (0.5 M sucrose, 50 mM sodium maleate, pH 

6.5. The homogenate was spun at 650 g for 10 min. The supernatant was collected and 

resuspended in homogenization buffer and spun again for 650 g for 5 min, Collected the 

supernatant and pooled the fractions. Diisopropylfluorophosphate (1mM) was added as a 

protease inhibitor and incubated on ice for 30 min. Samples were diluted 1:20 with ice-

cold water, adjusted to 1mM EDTA and spun at 100,000xg for 30 min. After 

centrifugation, the pellet was resuspended in 1 M NaCl and spun again at 100,000xg for 

30 min. Resuspended the pellet in 50 mM Tris-HCl, pH 6.5 and re-pelleted the membranes. 

Peptide-N-Glycosidase F The pellet is dried and the lipids were removed by 

Chloroform/Methanol/water and then treated with Neuraminidase (NEB) to release the 

sialic acids. Exchange chromatography is carried out by BioRad AG50 1x8 (hydrogen 

form) and then BioRad AG3 x4a (formate form) and then DMB derivatization 7.8mM 

DMB (4,5-Methylenedioxy-1,2-phenylenediamine dihydrochloride) 

in a solution containing: β-mercaptoethanol, sodium hydrosulfite, and acetic acid followed 

by separation with reverse phase HPLC, by doing isocratic Elution at a flow rate of 
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0.5mL/min using Ascentis® C18 HPLC Column 5 μm particle size, L × I.D. 15 cm × 4.6 

mm (Sigma-Aldrich, cat. No. 581324-U SUPELCO), and 9:7:84 ACN: MeOH : H2O as 

eluent. 

4.3. Results 

4.3.1 Clinical signs, changes in body weight and temperature 

To determine the differences in the virulence and pathogenesis of influenza D 

viruses compared to C viruses, we inoculated guinea pigs intranasally with 3 X 10 5 

TCID50/300 ul of the respective viruses. The body weight and temperature were monitored 

from two days before the inoculation till the end of the experiment. The guinea pigs after 

challenge with three different viruses did not develop any clinical signs and the directly 

inoculated animals behaved in a similar way as the mock-infected animals. For each 

animal, the change in body weight post-infection was calculated by comparing the post-

infection body weight to the average of the body weights recorded two days prior to the 

infection. The differences were calculated as the percentage of body weight change for 

each animal plotted for each day. The directly inoculated animals did not show any 

significant change in body weight compared to the mock-infected animals (Figure. 4.1A). 

Similarly, the difference between the post-infection body temperature and the average pre-

infection temperature was determined for each animal, and the averages of the differences 

were plotted for each day (Figure. 4.1B). In the remaining days of the experiment, infected 

animals showed little or no change in body temperature. These results indicated that bovine 
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IDV infection had no effect on the body weight and temperature changes during the 14-

days period in guinea pigs. 

Figure 4.1. Body weight and temperature changes in guinea pigs after intranasal 

inoculation with bovine IDV, swine IDV, and human ICV. A total of 10 guinea pigs were 

intranasally inoculated with 3 × 105 TCID50/300 μl for each virus group and 5 guinea pigs 

were mock inoculated with PBS. Body weight and temperature were measured daily for 2 

days before infection until 14 dpi. (A and B) Percentage changes in body weight (A) and 

changes in body temperature (B) expressed as means ± standard errors (SE). 
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4.3.2 Replication kinetics and tissue tropism 

  To determine the viral replication kinetics of the three viruses, in the respiratory 

tract of the infected animals, a quantitative analysis of the virus loads in the nasal washes 

were conducted by titrating the samples on MDCK cells. Nasal washes were collected from 

the direct inoculated and mock-infected animals at 48-h intervals from 1 dpi to 7 dpi. The 

results of our experiment showed that nasal shedding was present in the bIDV infected 

animals from 1 dpi to 7 dpi. In the bIDV group, the number of animals which demonstrated 

the nasal shedding was 9/10, 8/8, 6/6 and 2/4 on 1, 3, 5, 7 dpi respectively. In the case of 

swine IDV, none of the animals had the virus in the nasal washes on 1 dpi, but 8/8, 6/6 and 

4/4 animals shed s-IDV on 3, -5, and 7 dpi. This lag in the virus shedding shown by the 

sIDV group is the striking feature. Only two animals in the human ICV infected group 

demonstrated virus shedding. In the human ICV group, 0/10, 2/8, 2/6 and 1/4 animals shed 

the virus on 1, 3,5, 7 dpi respectively. 
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Figure 4.2. Replication kinetics of the different viruses in nasal washes, and upper 

respiratory tract (nasal turbinates and soft palate). Nasal washes were collected from the 

three virus groups on 1, 3, 5, and 7 dpi. Two inoculated animals per group were randomly 

euthanized on each of those days to assess virus load in nasal turbinates, soft palate. Three 

mock-inoculated animals were euthanized at 7 dpi. Virus titers in nasal washes are 

expressed as log10 TCID50 per mL and in nasal turbinates, and soft palate was expressed as 

log10 TCID50 per gram. For all the panels, each shape represents an individual animal and 

horizontal bars show the mean viral titers for each time point. 

Figure. 4.3. Replication kinetics of the different viruses in the lower respiratory tract. Two 

inoculated animals per group were randomly euthanized on each of those days to assess 

virus load in trachea, and lungs. Three mock-inoculated animals were euthanized at 7 dpi. 

Virus titers in nasal turbinates, soft palate, trachea, and lungs are expressed as log10 TCID50 

per gram. For all the panels, each shape represents an individual animal and horizontal bars 

show the mean viral titers for each time point. 
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To determine the tissue tropism of the virus, two random animals were selected and 

euthanized on 1, 3, 5, and 7 dpi from each group and nasal turbinates, soft palate, trachea, 

and lung, were collected. Three animals from the mock-infected group were also 

euthanized at 7 dpi. In all the groups, the tissue homogenates from nasal turbinates, soft 

palate, trachea, and lungs showed appreciable viral titer from 1 dpi through 7 dpi, except 

for lungs in ICV, where there was no virus isolated at any time points (Figure 4.2 and 

Figure 4.3). In the bIDV group, the virus load in tissue homogenates for the different time 

points (given in bold letters): nasal turbinates-1-2/2, 3-2/2, 5-2/2,7-2/2; Soft palate-1-1/2, 

3-2/2, 5-2/2,7-1/2 (Figure 4.2); trachea-1-1/2, 3-2/2, 5-2/2,7-2/2; lungs-1-2/2, 3-2/2, 5-

2/2,7-2/2 were noted. Mean viral titer of bIDV was lowest in the soft palate compared to 

the other three tissues at 1 dpi. The peak viral titer for bIDV in nasal turbinates, soft palate, 

trachea, and lungs were noticed at 5 dpi. In the case of sIDV, , the virus load in tissue 

homogenates for the different time points: nasal turbinates-1-2/2, 3-2/2, 5-2/2,7-1/2; Soft 

palate-1-0/2, 3-2/2, 5-2/2,7-0/2; trachea-1-0/2, 3-2/2, 5-2/2,7-1/2; lungs-1-0/2, 3-2/2, 5-

2/2,7-1/2 were noted. In the ICV group, the virus load in tissue homogenates for the 

different time points: nasal turbinates-1-1/2, 3-0/2, 5-2/2,7-1/2; Soft palate-1-0/2, 3-0/2, 5-

2/2,7-2/2; trachea-1-1/2, 3-1/2, 5-2/2,7-1/2; lungs-1-0/2, 3-0/2, 5-0/2,7-0/2 were noted  

4.3.3 Tissue tropism- the presence of vRNA in tissues 

To confirm the tissue tropism, we also conducted Fluorescent in-situ hybridization 

(FISH) to stain the viral RNA in the different tissues. The results obtained from FISH 

correlated with the virus isolation. FISH staining revealed IDV RNAs of both bovine and 

swine origin distributed in the lining epithelial cells of the mid nasal septum, soft palate, 

trachea and the bronchioles of the lung. Similar to the virus isolation from the tissues, 
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tissues from 5 dpi showed the highest localization of the vRNAs in both IDV groups 

(Figure. 4.4, 4.5). On the contrary, only a few samples from the ICV group showed vRNAs, 

but only in the nasal septum and soft palate (Figure. 4.6). We could not find any ICV RNAs 

in the trachea, which is contrary to what we observed in virus isolation. No ICV RNA was 

detected in the lungs of the ICV infected group by VI and FISH. 

4.3.4 Gross Lesions and Histopathology 

Despite any clinical symptoms, the guinea pigs showed mild to moderate 

macroscopic changes in the lungs, characterized by areas of congestion and hemorrhage 

which eventually progressed to areas of pulmonary consolidation on 3, 5, and 7 dpi (data 

not shown). Lungs from mock-infected animals did not show any macroscopic lesions. 

Histopathological examination of the lungs showed minimal to mild inflammation in the 

trachea, mild to moderate atelectasis, bronchitis, and bronchiolitis with denudation of the 

epithelium, severe infiltration of inflammatory cells such as neutrophils, lymphocytes, and 

RBCs in the lung parenchyma with a thickened alveolar septum. Peribronchial and 

perivascular cuffing by lymphocytes and plasma cells and bronchopneumonia with luminal 

exudate were also observed in the lungs of animals infected by all the three viruses on 1, 

3, 5, and 7 dpi (Figure. 4.7).  
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Figure. 4.4. Bovine IDV RNA positive cells in the guinea pig tissues detected by FISH. 

Representative images of mid nasal septum (A), soft palate (B), trachea (C), and lungs  (D) 

from 5 dpi demonstrated bIDV RNA positive cells as black silver grains in radio 

autographs (green deposits under the epipolarized light in the inset).  

 



90 

 

Figure. 4.5. Swine IDV RNA positive cells in the tissues detected by ISH. Representative 

images of mid nasal septum (A), soft palate (B) trachea (C), and lungs (D) from 5 dpi 

showed bIDV RNA positive cells as black silver grains in radioautographs (green deposits 

under the epipolarized light in the inset).  
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Figure.4.6. ICV RNA positive cells in the tissues detected by ISH. Representative images 

of mid nasal septum and soft palate 5 dpi (A, B) showed bIDV RNA positive cells as black 

silver grains in radioautographs (green deposits under the epipolarized light in the inset). 

Mock lung tissue without any vRNA staining is shown in C. 
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Figure. 4.7 Pathological changes in the lungs of guinea pigs infected with bIDV, sIDV and 

ICV. Representative images of histopathological lesions in the lungs from animals on 1,3,5, 

and 7 dpi for bIDV (A1-A4); sIDV (B1-B4); ICV(C1-C4). Histologically, the lung tissue 

showed multifocal areas of alveolar inflammation with infiltration of lymphocytes, plasma 

cells (yellow arrows), and RBCs in the lung parenchyma. Bronchiolar inflammation with 

desquamation of the epithelial cells (blue arrows) and peribronchial infiltration of 

lymphocytes were also seen. Lungs from the mock animal on 7dpi showed no such lesions. 
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4.3.5 Seroconversion 

Two intranasally inoculated animals from each group were maintained till 14 dpi 

for the seroconversion. All the guinea pigs were seronegative for all the three viruses we 

used. Pre- and post-infection sera from all the animals in the bIDV, sIDV and ICV groups 

(days 1, 3, 5, 7, 14 post-infection) and mock animals were tested for the presence of 

heterologous and homologous antibody titer against bIDV, sIDV, and hICV. Antibody 

responses were detected in animals from 7 dpi (10-20) and reached higher titer by 14 dpi. 

bIDV sera showed a homologous high titer of 320 and 80 and heterologous titer of 80 by 

14 dpi. sIDV sera demonstrated a homologous high titer of 1280 and 640 with a very low 

heterologous titer of 10 by 14 dpi. ICV sera showed no cross-reactivity with both the IDV 

viruses. It is also noted that only 1/2 animals showed a homologous titer of 80 in the ICV 

group. 

Figure. 4.8. Seroconversion and cross-reactivity of the guinea pigs after infection with 

bIDV, sIDV, and ICV by HI assay. Homologous and heterologous antibody titers of the 

respective antisera against different viruses used in the study were given in A-C. Each 

shape represents an individual animal. Mean of the HI titers is represented by a line. 
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4.3.6 Sialic acid estimation in guinea pig tissues by HPLC 

Based on the tissue tropism demonstrated by the IDV and ICV, cryopreserved 

tissues of nasal turbinates, soft palate, and the lunges were analyzed to quantify the amount 

and type of the 9-O acetyl sialic acids by the HPLC. HPLC analyses have shown that nasal 

turbinates, soft palate, and the lungs demonstrated a high amount of Neu5Ac, along with 

the reasonably good amount of Neu5Gc. Different concentrations of the sialic acid 

expressed in pmol to that of the total sialic acid in each tissue is given in Figure 4.9. Further, 

9-O acetyl sialic acids were present in all the three tissues, further confirming the 

association of IDV with 9-O acetyl sialic acids demonstrated by the glycan binding 

experiments were done earlier. Besides Neu5Ac and Neu5Gc, guinea pig respiratory tract 

also possesses Neu5,9Ac2 (Sialic acid which has acetyl group at C5 and C9), Neu5Gc9Ac 

(Acetyl position at C9 and glycolyl group at C5), which are the two predominant receptors 

that play a role in the virus entry. 
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Figure 4.9. Estimation of sialic acids in guinea pig respiratory tissues by HPLC. 

Concentrations of different types of sialic acids to total sialic acid present in nasal 

turbinates, trachea, and lungs expressed in pmol concentration were shown in B and C. 

 

4.3.7 Deep RNA sequencing analyses of nasal washes 

From our data, it was evident that the swine and bovine isolates of IDV 

demonstrated differential pattern of replication and virus shedding in guinea pigs. The 

bovine isolate of IDV productively replicated in the upper and lower respiratory tract and 

caused nasal shedding from 1dpi, while the swine isolate demonstrated a lag in adaptation 

for 1-2 days but ended up showing a high titer on 3 dpi. This peculiar replication pattern 

was observed in the nasal washes and tissue homogenates, which prompted us to determine 

whether there is the presence of any possible mutations in sIDV that facilitated to evolve 
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like bIDV and mediate its viral adaptation and virulence to promote high viral titer, as that 

of bIDV on 3 dpi. We conducted deep RNA sequencing of the inoculum we used for the 

challenge and the nasal wash samples from the 3 dpi and 5 dpi of all the three virus groups.  

Between the inoculum sequences of sIDV and bIDV, there were 5,4,3,23,7,14, and 4 amino 

acid changes in PB2, PB1, P3, HEF, NP, P42 and M segments respectively. Further, we 

did deep RNA sequencing of the nasal washes from the animals euthanized on 3 dpi and 5 

dpi and compared to the viral genome of the respective inoculum sequences. Deep RNA 

sequencing analyses of the nasal washes from swine and bovine IDVs demonstrated no 

mutations in the HEF gene compared to the respective inoculum sequence in bIDV group, 

while sIDV infected animals showed some non-significant point nucleotide mutations in 

the HEF protein. In the case of sIDV, only PB2 (6ST) and P3 showed amino acid changes 

in the viral genome derived from the nasal washes on 3 and 5 dpi, while PB1, HEF, NP, 

and NS showed some random nucleotide changes without any amino acid mutations 

compared to parent inoculum. In the bIDV group, PB2 gene showed amino acid mutations 

(E44D and N668K) in all the animals from 3 dpi and 5 dpi compared to the bIDV inoculum. 

The polymerase proteins such as PB2, PB1, and NP showed some non-significant point 

mutations, which were not observed in all the animals. P42 is the only segment in the sIDV 

group, while HEF, P42, NS, P3 were the segments in the bIDV group that did not show 

any mutations.  

N-glycosylation sites of HEF protein, the main receptor binding protein play any 

role in the host adaptation and transmission. The predicted N-glycosylation sites of HEF, 

for all the three inoculum sequences determined using NetNGlyc 1.0 server [257] were 

given in Figure 4.10 and Table 4.6. The parent inoculum of sIDV used in the study revealed 
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6 glycosylation sites, compared to 7 in the bIDV. It is interesting to note that Italian swine 

and bovine IDV isolates, both belonging to D/OK lineage possess seven N-glycosylation 

sites, the same number as bovine IDV (D660) (Table 4.6). 

 

Table 4.1 Aminoacid sequence analyses of the sIDV and bIDV inoculum. Changes in 

aminoacid residues between the inoculum sequences were given as swine amino acid: site 

no: bovine aminoacid for each viral segment. 

 

  

Protein 

Variable 

sites Swine aminoacid:site:bovine aminoacid 

PB2 5 S6T K119R A293S M352I V521I       

PB1 4 K374R A384V D388N R663K         

P3 3 K69R L266M T322I           

HEF 

  

  

23 

  

I68V D80A S164G T181K A188T K212R V215A A251T 

K252A F256L I273V N288G A289S G290R K308R R312K 

V469I N486S G524E K627N V649M S654F I658S   

NP 7 P74L S132T E247D K381E A462T M569V I574V   

P42/M 

  

14 

  

V14I M26L K27R K37R E38D K41R C91S N93S 

I256M P257S G290S L316F D359E P366L     

NS 4 N90S G119E F122L D278A         
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Table 4. 2 Viral genome and protein sequence changes in the PB1 and NP of the nasal wash 

samples of two animals from 3 dpi and 5 dpi compared to parent inoculum of bIDV, N 

represents gap. 

bIDV PB1 NP 

  nt 

a

a nt aa nt 

a

a nt aa nt 

a

a nt 

a

a 

Inoculu

m G649   G652 E217 A709   T931 W311 G1243   A1251   

D3-S1 

G649

C   

G652

T 

E217

Q N   T931 W311 G1243   

A1251

G   

D5-S1 G649   G652 E217 A709   T931 W311 G1243   A1251   

D3-S2 G649   G652 E217 A709   T931 W311 G1243   A1251   

D5-S2 G649   G652 E217 

A709

G   

T931

A 

W311

R 

G1243

C   

A1251

G   

 

Table 4.3 Viral genome and protein sequence changes in the PB2 and PB1 segments of the 

nasal wash samples of two animals from 3 dpi and 5 dpi compared to parent inoculum of 

sIDV. Consistent nucleotide and aminoacid sequence changes compared to sIDV inoculum 

are highlighted ‘N’ represents gap. 

sIDV PB2 PB1 

  nt aa nt 

a

a nt 

a

a nt 

a

a nt 

a

a nt 

a

a nt 

a

a 

Inoculu

m T16 6S C660   A776   A832   T835   N   A553   

D3-S1 

T16

A 

6S

T C660   A776   A832   T835   N   A553   

D5-S1 

T16

A 

6S

T C660   A776   

A832

G   

T835

C   

A55

2   

A553

G   

D3-S2 

T16

A 

6S

T C660   

A776

G   A832   T835   N   A553   

D5-S2 

T16

A 

6S

T 

C660

T   N   A832   T835   

A55

2   A553   
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Table 4.4 Viral genome and protein sequence changes in the P3 segment of the nasal wash 

samples of two animals from 3 dpi and 5 dpi compared to parent inoculum of sIDV. 

Consistent nucleotide and aminoacid sequence changes compared to sIDV inoculum are 

highlighted ‘N’ represents gap. 

DOK P3  

  nt 

a

a nt 

a

a nt aa nt aa nt 

a

a nt 

a

a nt 

a

a 

Inocul

um A471   C615   A618 I206 G877 E293 

G93

9   

G132

7   C1528   

D3-S1 A471   

C615

T   

A618

G 

I206

M G877 E293 

G93

9   

G132

7   C1528   

D5-S1 

A471

G   C615   A618 I206 G877 E293 

G93

9   

G132

7   C1528   

D3-S2 A471   

C615

T   

A618

G 

I206

M 

G877

C 

E293

Q 

G93

9   

G132

7   C1528   

D5-S2 A471   

C615

T   

A618

G 

I206

M G877 E293 N   

G132

7C * 

C1528 

T * 

 

Table 4.5 Viral genome and protein sequence changes in the HEF, NP, and NS segments 

of the nasal wash samples of two animals from 3 dpi and 5 dpi compared to parent inoculum 

of sIDV. Consistent nucleotide and aminoacid sequence changes compared to sIDV 

inoculum are highlighted ‘N’ represents gap. 

DOK HEF  NP NS 

  nt aa nt aa nt aa nt aa nt aa nt aa 

Inoculum T885   C905 P302 C1024   N   A1250   A833   

D3-S1 T885   N   C1024   C1242   A1250G   A833   

D5-S1 T885   C905 P302 C1024T   C1242   A1250G   A833C   

D3-S2 T885G   C905G P302R N   C1242   A1250G   A833C   

D5-S2 N   N   C1024   C1242   A1250G   A833C   
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Figure 4.10 Glycosylation sites and the positions of the inoculum sequences of bIDV, 

sIDV, and ICV.as determined by NetNGlyc 1.0 Server 

(http://www.cbs.dtu.dk/services/NetNGlyc/) Asn-Xaa-Ser/Thr sequons in the sequence 

output below are highlighted in blue. Asparagines predicted to be N-glycosylated 

(Threshold= 0.5) are highlighted in red. 

http://www.cbs.dtu.dk/services/NetNGlyc/
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Table 4.6 Predicted N-glycosylation sites of HEF protein of the parent inoculum of IDV 

and ICV used in the study, along with the sIDV and bIDV isolates from Italy.  

Virus  No. 

of 

sites 

Glycosylation sites 

D/bovine/

Oklahoma/

660/2013 

7 28  

NESF 

54 

NVTK 

146 

NWTQ    

249 

NKTA    

346 

NATE 

513 

NDTN 

613 

NGSA    

D/swine/O

klahoma/1

334/2011 

6 28  

NESF    

54 

NVTK    

146 

NWTQ    

346 

NATE    

513 

NDTN    

613 

NGSA    

 

D/swine/Ita

ly/199724-

3/2015 

7 28 

NESF    

54 

NVTK    

146 

NWTQ 

249 

NKTA 

346 

NATE 

513 

NDTN 

613 

NGSA    

D/bovine/It

aly/1/2014 

7 28  

NESF    

54 

NVTK    

146 

NWTQ    

249 

NKTA    

346 

NATE    

513 

NDTN    

613 

NGSA    

C/Victoria/

2/2012 

5 26  

NSSF    

61  

NQST    

144 

NWTD 

395 

NDTS    

552  

NISI    

  

 

4.4. Discussion 

Previous studies have shown that IDV is common in bovines with respiratory 

disease and demonstrated that at least two genetic and antigenically distinct clades 

cocirculate [47]. Further, the metagenomic study of the virome revealed the etiological role 

of influenza D in the bovine respiratory disease complex of cattle [258]. Our previous study 

using the bovine IDV demonstrated that guinea pigs can be a good model to study the 

virulence, pathogenesis, and transmission of IDV [256]. The growing serological evidence 

of IDV of both lineages in other mammalian species such as goats, sheep, camel, horses 

warrants further investigation to differentiate any molecular and structural differences and 

to study the host-pathogen interactions exhibited by these two lineages. Moreover, 

serologic evidence of influenza D has been reported from the occupational workers [14]. 

We used human ICV as comparative strain because of its genetic similarity to IDV and its 
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ability to infect pigs. Previous studies using swine IDV in ferrets failed to isolate virus 

from the lower respiratory tract from pigs and ferrets, while our study with bovine IDV 

replicated productively in the upper and lower respiratory tract. Hence, it was important to 

understand the structural and molecular differences of these two different lineages in terms 

of virulence and pathogenicity. We used D/swine/OK/1334/2011 and 

D/bovine/OK/660/2013 as the representative IDV strains for our study. 

Similar to our previous study, the guinea pigs did not show any clinical symptoms 

upon infection with any of the three viruses under study. No significant changes were 

observed in the body weight and temperature of the guinea pigs infected with bIDV, sIDV 

and ICV. However, there was virus shedding in the nasal washes exhibited by the animals 

in both IDV and ICV groups. The nasal shedding pattern demonstrated by the bIDV group 

was different from sIDV group. It is interesting to note that animals infected with sIDV 

neither shed any virus nor found in the tissue homogenates at 1 dpi. The results we obtained 

with FISH was consistent with our virus isolation data. The reason for the lag in virus 

shedding noticed for the animals infected with swine IDV in the nasal washes and the tissue 

homogenates from upper and lower respiratory tract warrants further investigation. We 

speculate that the key differences in the viral replication pattern demonstrated by the bovine 

IDV and swine IDV could be attributed to the differences in the receptor binding domains 

or due to any other viral genetic factors. To our knowledge, this is the first study to compare 

the sIDV with bIDV. An earlier study of sIDV using ferrets have shown nasal shedding at 

3 dpi, but there was no nasal wash collection at 1 dpi. It is noteworthy that the swine and 

bovine IDV genomes share 96-99% homology in all the segments [2], yet the differential 

replication kinetics of sIDV demands further investigation. To understand the genetic and 
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molecular basis of these virus-related constraints, deep RNA sequencing of the nasal 

washes was carried out to find out any key differences in the viral genome that facilitated 

a faster adaptation and replication in the bIDV infected group compared to the sIDV group. 

Deep RNA sequencing data of the respective inoculum versus the nasal washes collected 

on 3 and 5 dpi from 2 animals in bIDV and sIDV groups were subjected to next-generation 

sequencing analyses. In the case of bIDV, there were no nucleotide changes in HEF, NS, 

P42, and P3 gene segments, while PB1, PB2, and NP showed some nucleotide changes 

occasionally without any amino acid changes. On the other hand, sIDV viruses in the nasal 

washes were mostly homologous to the inoculum sequence with some nucleotide point 

mutations in the HEF, PB1, NS, NP, P3, and PB2 gene segments, of which 6ST mutation 

in the PB2 (b-IDV like) needs to be addressed, whether this has any role in the host 

adaptation. It is noteworthy that no mutations were found in P42/M of both IDV groups. 

In the case of ICV, only a few animals showed viral shedding. It is also a valid 

question whether guinea pigs can support ICV replication, as there were no previous 

studies of ICV done in guinea pigs. Guinea pigs have been used as animal models for 

studying several influenza A and B viruses but not for influenza C viruses [7, 209, 210]. 

Out of the 10 inoculated animals, only 3 demonstrated a productive replication-with 2 

animals started shedding on 3 dpi (2.375, 3.775 logs) continued to 5 dpi (4.5, 4.75) and 

stopped, the third animal started virus shedding with 3.375 logs on 7dpi but could not track 

further shedding due to termination of that animal. ICV, being an upper respiratory 

pathogen, the replication kinetics of ICV was expected as it replicated in the nasal 

turbinate, soft palate and trachea of the guinea pigs. However, ICV did not replicate in the 

lower respiratory tract organ, lung possibly due to the intrinsic temperature sensitivity of 
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the ICV, HEF, and polymerase. At 37oC, it was demonstrated that HEF mediated 

membrane fusion decreases owing to the low efficiency of membrane pore formation, 

impaired oligomerization occurs which affects the trimerization of the influenza viral 

proteins from endoplasmic reticulum to plasma membrane via golgi and subsequently low 

HEF expression at the plasma membrane, which could be the reason why we could not find 

ICV replication in the lungs [259]. Another factor that is worth noting is that experimental 

infections of ICV in dogs where the animals were exposed to virus three times, also showed 

variations in the severity of infection among dogs and time course of antibody development 

also varied considerably from animal to animal [254]. The virus isolation was reported only 

in 4 out of 6 dogs after the second inoculation [254]. A recurring trend of virus excretion 

was observed in experimental infection of ICV in pigs where the directly inoculated pigs 

showed an intermittent virus excretion and contact transmission also occurred at 2 dpi [31]. 

Out of the two animals kept for seroconversion, only one animal showed an HI titer of 80, 

and the other animal with no titer never shed virus on any days, which shows that 

productive infection never happened in that animal.  

FISH staining demonstrated the vRNA localized in the lining epithelia of mid nasal 

septum, soft palate, trachea, and lungs. Virus isolation (VI) data and FISH data almost 

matched, but there were a few differences which could be due to the difference in the 

location/parts of the tissue used for both assays. For example, the lung lobes used for the 

VI and FISH are different, nasal turbinates for VI versus mid nasal septum for the FISH 

because of the sample limitation. The pathology associated with both IDV s and ICV were 

similar and no significant differences were noted between the groups. Only very minimal 

microscopic lesions found in the upper respiratory tract compared to the lower respiratory 
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tract. Guinea pig lung showed typical lesions of influenza characterized by the pneumonic 

changes and the vast amount of alveolar infiltration with inflammatory cells. 

Histopathological lesions found in the lung on 3 and 5 dpi were more pronounced in bovine 

and swine IDV infected animals than that at 1 dpi for ICV, which shows the slow 

progression of ICV compared to IDV. 

Seroconversion was noticed at 7 dpi in sIDV and bIDV groups and not in the ICV 

infected animals. This can be explained by the broad cell tropism exhibited by the IDV 

owing to the open receptor binding cavity of the hemagglutinin-esterase fusion 

glycoprotein which accommodates diverse glycan moieties and hence is responsible for the 

diverse host spectra [238]. The homologous titer of sIDV antisera was higher compared to 

bIDV antisera, however, the heterologous titer was vice-versa. It is often seen that bovine 

IDV antisera have a broad cross-protection, compared to swine IDV antisera. The 

explanation for this could be attributed to the difference in the amino-acid residues 

involved in the receptor binding domain that can affect the binding affinity and avidity 

with the glycan moieties, which renders bIDV with a broad receptor specificity and strong 

binding efficiency. Our glycan array experiments have shown that bovine IDV binds to 

more glycans than sIDV (unpublished data). Further, characterization of HEF mutants 

generated by the D/OK-RGS has demonstrated some key amino acid residues around the 

receptor binding pocket that play an important role in the antibody titer and cross-

protection (unpublished data). In the case of ICV, the strain we used C/Victoria/2/2012 has 

not been studied in-vivo previously. An experimental study conducted in pigs infected with 

C/pig/Beijing/32/81 showed antibody responses in all the 6 animals which includes direct 

inoculated and contacted animals, whereas pigs infected with C/NJ/1/76 showed 
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seroconversion in only 2/6 animals which indicate the variability in antibody response 

between animals and between viruses [31]. C/Victoria/2/2012 is a human influenza C virus 

and so may exhibit a different viral ecology. 

We analyzed the sialic acid distribution in the upper and lower respiratory tract of 

the guinea pig by HPLC, as IDV productively replicated in the upper and lower respiratory 

tract of the guinea pigs and also facilitated contact transmission with seroconversion in 

direct inoculated as well as contact sentinel animals [256]. Previous studies done by our 

lab (unpublished data) and others have shown that IDV, like ICV, uses the 9-O acetylated 

sialic acids as the receptor for the virus entry [238]. Our glycan array and in-vitro receptor 

binding specificity experiments have shown that IDV can bind to Neu5,9Ac2 as well as 

Neu5Gc9Ac in the same efficiency irrespective of α 2-3, or α 2-6 linkages, while ICV binds 

more efficiently to Neu5,9Ac2 (unpublished data). The results we obtained by HPLC of 

the guinea pig tissues, revealed that Neu5,9Ac2, as well as Neu5Gc9Ac, were present in 

the upper and lower respiratory tract. Taken together, the HPLC estimation of sialic acids, 

particularly the 9-O acetylated fraction of the sialic acids broadened our insights on IDV 

receptor biology.  

Deep RNA sequencing of the nasal washes of sIDV revealed some amino acid 

mutations in the PB2 and NP segments, of which 6ST in PB2 is a bIDV like mutation. 

Whether these mutations are relevant to the adaptation of sIDV is yet to addressed. One 

important question, we need to explore is the disparity in the tissue tropism, particularly 

the lag in adaptation shown by the swine IDV group, as evidenced by the late shedding of 

the virus in the nasal washes and also in the tissue homogenates. It is interesting to note 

that HEF protein, mainly involved in the receptor binding, receptor destroying and 
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membrane fusion did not show any sequence changes in the guinea pigs compared to the 

respective inoculum. It is also said that NP and polymerase proteins also play an important 

role in the host adaptation. Structural modeling and comparison studies of these viral 

proteins from IDVs of two lineages is important as to what molecular determinants are 

really responsible for the differential phenotypic characteristics of these two lineages of 

influenza D viruses.  

Overall, the comparative study of the IDVs with ICVs using the guinea pig model 

helped us to understand the differences in the replication kinetics of IDV compared to ICV. 

The lag adaptation exhibited by the sIDV is an interesting observation, whether this 

phenomenon is just found in guinea pigs or also in its natural host as in swine warrants 

further investigation. The unanswered questions need to be unraveled by planning new 

strategies to study the structural and molecular differences of HEF protein responsible for 

the receptor-mediated virus entry and other polymerase proteins responsible for the broader 

cell and host tropism. Several experiments are currently underway to fill the gaps and to 

would provide us new insights on the ecology and virus biology of these newly emerged 

influenza D viruses. 
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Chapter 5. Differential Replication of Four Influenza Virus Types in Porcine 

Respiratory Primary Epithelial Cells  

Abstract 

Influenza viruses are a group of respiratory pathogens that have evolved into four different 

types: A, B, C, and D. One common feature is that all four types are capable of replicating 

and transmitting among pigs. Human respiratory primary epithelial cell culture has been 

recently utilized to examine the replication and pathogenesis of influenza A viruses. 

However, little progress has been made in the development of the autologous cell culture 

system from swine to study influenza viruses. Here we describe the development of 

primary epithelial cells from swine nasal turbinates, trachea and lungs and determine their 

utility in the replication of four types of influenza viruses. Phenotypic characterization 

using immunocytochemistry coupled with flow cytometry analysis showed that cytokeratin 

was expressed at high levels in swine nasal turbinates, trachea, and lung cells, while the 

relatively low abundance of other epithelial cell markers (desmin, α-SMA, and vimentin) 

was detected. In addition, all three swine cells were found able to undergo polarization as 

measured by trans-epithelial electrical resistance (TEER) and expression of tight junction 

proteins including claudin-1, -3, Zona occludens protein -1 (ZO-1) and occludin-1. These 

results strongly suggest that the developed swine primary cells possess common 

characteristics of epithelial cells. Furthermore, sialic acid receptor profile analysis through 

lectin binding assay with Sambucus Nigra Lectin (SNA) and Maackia Amurensis Lectin II 

(MAL-II) demonstrated that three swine primary epithelial cells expressed higher levels of 

alpha 2,6 linkage sialic acid (SNA) than alpha 2,3 linkage sialic acid receptors (MAL-II). 

Finally, all three primary cells supported the replication of Influenza A, B, C and D viruses 
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to an appreciable level, but virus type-dependent replication kinetics were observed. 

Overall, these swine respiratory primary cells showed epithelial phenotype and are suitable 

for studying the comparative biology and pathobiology of four types of influenza viruses. 

5.1 Introduction  

The recurring changes in the evolution of influenza viruses demand close 

surveillance and more importantly, isolation and propagation of the virus from clinical 

samples to facilitate the host-pathogen interaction studies and to devise anti-viral 

therapeutics and prophylactic strategies. However, influenza virus propagation has been 

extensively supported by continuous cell lines for research as well as for commercial 

vaccine production. Several cell lines such as Madin Darby canine kidney cells (MDCK), 

Vero, MRC-5 and baby hamster kidney (BHK) cells, have been used extensively for 

influenza virus growth[18-20]. Primary cells have been utilized to study the influenza 

pathogenesis and virulence in the past [28, 260-263]. 

Primary cells have been widely used to study the physiological, biological and 

pathological mechanisms of the mammalian body. The earliest literature available in the 

primary cell culture was about the development and cultivation of the primary human 

amnion cells in 1957 [211]. The morphological evaluation of the human amnion cells in 

primary culture and its transformed variant (Strain FL) in continuous cell culture showed 

that transformed cell line showed multivesicular bodies and membrane limited particles. 

These morphological structures observed in the younger passages of the FL cells is 

assumed to be related to the transformation process [212] The morphological and genetic 

studies showed that the transformed amnion cells exhibited malignant properties, while the 

primary cells showed non-malignant characteristics [213, 214] Primary cells mimic the 
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physiological properties in-vivo and hence is the best in-vitro model to study the 

mechanistic details of the normal  or diseased conditions of the body. Primary cells have a 

limited growth in-vitro and show considerable mitotic activity in the first 2-4 weeks with 

the mitotic index as high as 1.8%. [214]. A comparative study of the primary and 

transformed human cells in-vitro have shown that the nature of the growth, nutritional 

characteristics and metabolic profile of the primary and transformed cells vary [215]  

Epithelial surfaces of our body are equipped with a highly sophisticated machinery 

with several different types of proteins molecules that play a crucial role in maintaining the 

homeostasis and cell polarity with each tissue. Among these, tight junction proteins are 

macromolecular complexes consisting of several membrane proteins, that are important for 

the cell-cell interactions and cell-extracellular matrix interactions and also for transcellular 

and paracellular transport and permeability.  

Primary cell cultures were widely used for studying various animal and human 

viruses since the 1960s [217-221]. Species-specific primary cell cultures have been 

developed and used over the years [222-226] Primary cell cultures of swine-origin have 

been used for normal physiological and pathological studies of several infectious diseases 

[217, 227-231]. Primary swine respiratory epithelial cells have been used to study the 

immunological and pathophysiological aspects of several respiratory diseases including 

influenza [231]  

Primary cell cultures had been an excellent in-vitro system to study the virulence 

and pathogenetic characteristics of the influenza viruses. Influenza studies using primary 

cell culture from humans and swine has been utilized for studying the virulence, and 

receptor binding specificities of the viruses from different host origin [21-25].Several 
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studies have been conducted on swine tracheal/bronchial/lung epithelial cells to study the 

pathogenesis and anti-viral responses at the transcriptional and translational level as the 

swine species share the most anatomical and physiological characteristics to humans [26-

28] Pigs are the mixing vessels of influenza viruses and harbor receptors for both the avian 

and human influenza viruses. Recently, it was found that domestic pigs are susceptible to 

influenza B and C viruses [29-31]. Further influenza D has been initially isolated from the 

swine [4]. Here, we study the utility of the primary swine respiratory epithelial cells and 

the differential replication of four types of influenza compared to MDCK cells at 33oC and 

37oC. We found that A, B, C, and D type influenza viruses demonstrated a differential 

pattern of replication compared to the MDCK cells. 

5.2 Materials & Methods 

5.2.1 Isolation of primary respiratory epithelial cells 

Swine nasal turbinates, trachea and lungs were collected from a day old gnotobiotic 

piglet. The tissues were washed with 1X PBS and cut into small pieces of 1mm3 and 

incubated with 800U of collagenase enzyme at 37oC for 1.5 h. After incubation, the cells 

were strained through 70 um cell strainers and centrifuged at 500 g for 5 min. The cell 

pellet was washed two times with 1X PBS and then seeded on the collagenase coated flask. 

Cells were incubated at 37oC, 5% CO2 and maintained using Dulbecco’s Modified Eagle 

Medium (DMEM/F-12) (1:1) medium (Invitrogen, Grand Island, NY) supplemented with 

5% FBS, 1% insulin-transferring selenium (ITS) supplement (Invitrogen, Grand Island, 

NY), 5 ng/ml mouse epidermal growth factor (EGF) (Invitrogen, Grand Island, NY), 100 

U/ml Penicillin and 100 μg/ml Streptomycin.  
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5.2.2 Phenotyping of primary respiratory epithelial cells by Immunohistochemistry 

(IHC) 

The primary respiratory epithelial cells were stained with antibodies against various 

epithelial, fibroblast and smooth muscle markers using the protocol as described previously 

[264]. Briefly, the cells were harvested from tissue culture flasks and washed with PBS. A 

cell suspension of approximately 106/ml was prepared and 100 µL of cell suspension was 

used for preparing cytospins (Cytospin 3; Thermo Shandon Inc.). Cytospins were air-dried, 

fixed in acetone for 7 min and stored at 4o C until staining. For staining, slides were 

equilibrated at room temperature and then rehydrated in PBS. The slides were blocked for 

non-specific protein binding with PBS containing 1 % goat serum. After PBS wash, cells 

were incubated in PBS containing 0.3 % hydrogen peroxide and 0.01% Sodium azide to 

block endogenous peroxidase activity. The presence of cytokeratin, vimentin, α-smooth 

muscle actin (ASMA) and desmin proteins was detected by immunohistochemical (IHC) 

staining using anti-cytokeratin mAb C6909 (IgG2a isotype), anti-vimentin mAb V5255 

(IgM isotype), anti-ASMA mAb A2547 (IgG2a isotype) and anti-desmin mAb D1033 

(IgG1). Monoclonal antibodies M9144 (IgG2a isotype), M9269 (IgG1 isotype) and M5170 

(IgM isotype) were used as isotype-matched controls. Also, a negative control without 

primary antibody staining was also used. Cytospins were incubated with primary 

antibodies (Sigma-Aldrich, St. Louis, MO) for 1 h at 1 μg/ml concentration. After PBS 

wash, the slides were then incubated with 100 µl/slide of isotype-specific, biotinylated goat 

anti-mouse IgG2a, IgG1 or IgM antisera (1:2000 dilution; Caltag Laboratories) for 30 min 

and then by incubating with HRP–streptavidin solution for 30 min followed by the addition 

of Ready-to-use (RTU) diaminobenzene (DAB) substrate (Vector Laboratories). Cytospins 
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were counterstained with hematoxylin and examined under the light microscope. Images 

were taken at 20X magnification using an Olympus AX70 microscope. 

5.2.3 Transepithelial electric resistance (TEER) and Indirect immunofluorescence 

assay (IFA) 

Primary respiratory epithelial cells were differentiated and polarized on collagen-

coated permeable supports in the cell culture media. About 1 million cells were seeded on 

a 24mm diameter (growth area 4.7 cm2) collagen-coated transwell permeable filter (24 mm 

x 3 µm pore size). About 2 ml of the medium was added to the upper and lower chamber 

of the inserts in a six-well plate. The media was changed every other day and the 

polarization was measured by detecting the trans-epithelial electric resistance (TEER) by 

voltmeter in Ωs every 24 h. When the TEER stabilized between 2000-3000 Ω cm 2, tight 

junction proteins were stained by IFA. For staining, washed and fixed the transwell filters 

with 4% paraformaldehyde, and permeabilized in 0.2% Triton X-100 in PBS. The filters 

were blocked using 5% normal goat serum, 0.2% Triton X-100, and the cells were 

incubated with rabbit polyclonal antibodies against claudin-1, -3, ZO-1, and occludin (5 

μg/ml; Zymed), followed by secondary detection with goat anti-rabbit IgG-Alexa 488 (10 

μg/ml) and counterstaining with propidium iodide. Normal rabbit IgG (5 μg/ml) was used 

as a negative control. Images were visualized using a confocal microscope.  

5.2.4 Fluorescence-activated cell sorting (FACS) 

Approximately, 5x105 cells of swine primary respiratory epithelial cells were 

incubated with Biotinylated MAL-II specific for Sia2-3Gal and SNA (Vector laboratories) 

specific for Sia2-6Gal (final concentration 10 μg/ml) and the inhibitors n-acetyl neuraminic 

acid (NANA) and lactose for 1hr. After wash, cells were stained with Streptavidin-FITC 
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(1:200 dilution) for 30 min. Cells stained with only Streptavidin-FITC. served as negative 

control cells. Samples were analyzed using flow cytometry. 

5.2.5 Viral replication kinetics 

Approximately 2 X 105 cells/well were seeded on collagen coated 24 well plates 

and  infected with 1) A/swine/Minnesota/2073/2008 (MN08) 2) A/swine/Iowa/0855/2007 

(IA07) 3) A/California/04/2009 (CA04Pdm09) at 0.01 MOI; 4) B/Brisbane/60/2008 

(BR08), 5) B/Florida/04/06 (FL06) at 0.1 MOI 6) D/Swine/Oklahoma/1334/2011, 7) 

D/bovine/Oklahoma/660/2013 (D660) 8) C/Johannesburg/1/1966 (C/JHB) at 1 MOI. 

Samples were collected at 24 h intervals until 120 h and were titrated on MDCK cells. 

Titers were calculated using Reed and Muench formula [265]. 

5.3 Results 

5.3.1 Morphology and growth of swine primary respiratory epithelial cell  

Swine primary respiratory epithelial cells derived from nasal turbinates, trachea, 

lungs formed small epithelial-like clusters by 18-24 h post-infection on tissue culture 

coated with type I collagen. The adhered cells appeared heterogeneous, however, 80 % of 

the cells attached were polygonal in shape with uniform dimensions with a cobblestone 

appearance. By 84h, the T-25 flasks reached 80-90% confluence. Swine primary 

respiratory cells can also grow on the normal tissue culture coated flasks but exhibit a lag 

time in reaching the confluence compared to the collagen I coated flask. The morphology 

of the cell monolayer was observed under the phase contrast microscope under 20 X 

(Figure 1). Ciliated cells can be seen in the primary cultures from nasal turbinates and 

trachea, which gradually disappears during subculture. There were around 5-10% 

fibroblast cells that appeared as spindle-shaped cells. The fibroblasts were removed by 
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treating the cell monolayer with 0.03% Trypsin for 3 min, every 48 h followed by PBS 

wash, and the addition of fresh media. 

Primary respiratory epithelial cells were monitored daily till it reached confluence, 

with trypsin treatment, if needed to remove the fibroblasts. These respiratory primary cells 

are highly metabolic cells and hence the media gets exhausted and changes to acidic pH 

quickly. So, the media needs to be replenished daily at the stage of rapid cell growth. The 

cells can be sub-cultured in normal or collagen-coated tissue culture flasks. The sub-

cultured cells attached to the to the plastic surface in 24 -48 h. The subcultures reached 

confluence in 5-7 days in a T-75 flask. At the later passages, some cells appeared 

irregularly sized, indicative of cell differentiation. 
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  Figure 5.1. Morphology of the swine primary respiratory epithelial cells. Small clusters 

of epithelial-like cells appeared by 18-24h for nasal turbinates, trachea, and lungs (20X) 

(A-C). Confluent cell monolayer at 84h looked epithelial-like with cobblestone appearance 

with very less number of fibroblasts (D-F) 

 

5.3.2 Primary swine respiratory epithelial cells are predominantly of the epithelial 

phenotype 

To determine the phenotype, nasal turbinates, trachea and lung cells from passage 

2, were stained with monoclonal antibodies targeting marker proteins such as cytokeratin 

(epithelial), vimentin (fibroblasts), desmin smooth and striated muscles), and α-smooth 

muscle actin (ASMA, smooth muscle), along with their isotype controls. About 95% of the 

nasal turbinate cells expressed cytokeratin indicative of their epithelial phenotype (Desmin, 

vimentin ASMA not shown). Less than 5% of the nasal turbinate cells expressed vimentin 

indicative of fibroblasts. (Figure 5.2). Similarly, 90 % of the tracheal and lung cells 

expressed cytokeratin, while 10% expressed vimentin in both the cells. Desmin and α-

smooth muscle actin were not expressed in the earlier passages of these three types of cells. 
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Figure 5.2. Immunocytochemical staining of the primary swine respiratory epithelial cells 

for cytokeratin. Nasal turbinates (A), trachea (B) and lungs (C) from cell passage no: 2 

expressed brown stained cells positive for cytokeratin, indicative of their epithelial 

phenotype. Scale bars 100 µm. 
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Figure 5.3 Immunocytochemical staining of primary swine respiratory epithelial cells at 

passage 7. Cytospins were prepared and stained with marker-specific monoclonal 

antibodies. Expression of cytokeratin (A-C), vimentin (D-F), desmin (G-I), and ASMA (J-

L) for the nasal turbinate, trachea and lung cells. Brown colored cells indicate positive cells 

 

All the three types of cells were serially passaged to determine the subculturing 

capacity, and immunocytochemical staining was done on alternate passages to know the 

phenotypic stability (Figure. 5.3).  Nasal turbinate cells were able to grow to 18 passages, 
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while trachea and lung cells could grow until 20 passages. Nasal turbinate cells expressed 

cytokeratin and desmin at passage 17, and the intensity of staining for cytokeratin became 

faint in the late passages, showing that cell differentiation has occurred over time. Trachea 

cells expressed mainly cytokeratin, but there was some faint expression for ASMA. The 

major protein expressed by the lung cells was cytokeratin, however, there was a faint 

expression for vimentin, desmin and ASMA in cells from P17 (data not shown). 

5.3.3 Swine primary respiratory epithelial cells can polarize, express tight junction 

proteins and produce TEER 

Nasal turbinate, trachea and lung primary epithelial cells when grown on transwell 

inserts, expressed the tight junction proteins and polarized to form the apical and 

basolateral surfaces (Figure. 4B). The morphology of the cells at day 15 is shown in Figure. 

4B. Tracheal primary epithelial cells polarized quickly to produce the maximum trans-

epithelial electric resistance (TEER). Tracheal primary epithelial cells reached maximum 

TEER of 2600 Ω cm2 by 12 days, and then decreased to 2500 Ω on day13. Lung cells 

showed a TEER with a maximum of 2240 Ω in 16 days and then decreased to 2040 Ω. 

Nasal turbinate cells polarized to reach the maximum TEER of 2030 Ωs by day 18 

(Figure.4A). Swine intestinal epithelial cells (IPEC-1), another established cell line derived 

from the small intestine of a neonatal piglet was used as a positive control, along with a 

negative control (no cells on the transwell insert). Swine respiratory primary cells 

maintained a higher TEER than IPEC-1 cells after 5 days (Figure.5.4).  
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Figure. 5.4. Swine respiratory epithelial cells polarized to develop transepithelial electric 

resistance (TEER) which is measured in ohms and plotted against the function of time 

(4A); the morphology of the cells on the transwell filter inserts on day 15 shown in Figure 

(B-D).Scale bars 50 µm. 

 

We tested the presence of the tight junction proteins by staining the polarized 

transwell filters by IFA. All the three types of cells were stained for tight junction proteins 

such as claudin-1, -3, occludin and zona occludens-1, along with the isotype antibody 

controls. Primary swine tracheal epithelial cells expressed claudin-1, -3, occludin, and zona 

occludens-1, with claudin-3 and ZO-1, showed some localization in the nucleus along with 

the cell-cell junctions. Primary nasal turbinate epithelial cells expressed tight junction 

proteins such as claudin 1, claudin-3, and occludin distributed mainly on the cell 

membrane/cell-cell junctions except for claudin-3 which showed some nuclear 

localization. Primary lung epithelial cells expressed only claudin 1 and claudin 3. 

Interestingly, claudin 3 was localized in the nuclei and cell membrane/junctions in the nasal 
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turbinate and tracheal cells and only seen in the cell membrane/junctions in the case of lung 

cells (Figure.5.5)  
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Figure. 5.5. Tight junction proteins expressed by the primary swine respiratory epithelial 

cells visualized by confocal microscopy. Polarized primary swine nasal turbinate, trachea 

and lung cells stained for tight junction proteins with Alexa Flour-488 tagged antibodies 

and nucleus counterstained by Propidium iodide (PI) were shown in the panels: claudin-1 

(A-C), claudin-3 (D-F), occludin (G-I), ZO-1 (J-L) and isotype controls (M-O). 

Representative images were merged Z stack images.  

 

5.3.4 Swine primary respiratory epithelial cells showed an increased expression of 

Sia2-6 galactose receptors 

Biotinylated Sambucus nigra agglutinin (SNA) and Maackia amurensis lectin-2 

(MAL-II) specific for Sia2-6Gal and Sia2-3Gal were used for staining the cells and the 

receptor specificity was measured by Fluorescent activated cell sorting. Swine primary 

respiratory epithelial cells derived from nasal turbinates, trachea, and lungs expressed Sia2-

6Gal receptors than Sia2-3Gal receptors. Sia2-6Gal expression by nasal turbinates, trachea, 

and lungs was about 97.24, 83.73, and 78.14 % respectively. Sia2-3Gal receptors were 

comparatively very low showing 51.3, 9.1 and 4.3 % in nasal turbinates, trachea, and lungs 

respectively. The expression of the Sia2-6Gal and Sia2-3Gal decreased when the cells were 

treated with lactose (inhibitor for SNA) and n-acetylneuraminic acid (NANA-inhibitor for 
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MAL-II). The percentage of cells expressing Sia2-6Gal and Sia2-3Gal was given in 

Figure.5.6.  

Figure.5.6. Expression of Sia2-6Gal and Sia2-3Gal in swine primary respiratory epithelial 

cells. Primary swine nasal turbinates, trachea and lungs were stained with SNA (Sia2-6Gal) 

and MAL-II (Sia2-3Gal). The percentage of cells showing expression of SNA and MAL II 

and their inhibition with lactose and NANA respectively were shown. Data shown here are 

representative of 2 independent experiments.  

 

5.3.5 Primary swine respiratory epithelial cells support four types of influenza  

Primary swine respiratory epithelial cells derived from nasal turbinates, trachea, 

and lungs were infected by all four types of influenza viruses affecting animal and human 

populations at 33oC and 37oC. We used IAV/MN08 (H1N1), IAV/IA07 (H3N2), 

IAV/CA04 Pdm09 (H1N1), IBV/FL06 and IBV/BR08, ICV/JHB1966, IDV/OK/2011 

(swine-IDV) and IDV/660/2013 (bovine-IDV). MDCK cells were used as a positive 

control for each experiment.  
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Virus replication kinetics studies using these swine primary respiratory epithelial 

cells demonstrated that all the three influenza A viruses productively replicated in these 

primary cells at both 33oC and 37oC (Figure. 5.7). Swine IAV/MN08 (H1N1) replicated 

productively to give a better titer in tracheal and lung primary cells than the nasal turbinate 

cells. However, there is no significant difference in the titer for MN08 grown on these three 

different cells. Our data also showed that MN08 replicated more efficiently at 37oC 

compared to 33oC, again the difference is not significant. MDCK cells supported MN08 

almost the same, with a slightly better virus titer at 33oC (Figure. 5.7). 

 On the contrary, swine IAV/IA07 H3N2 replicated in the nasal turbinates and lung 

cells better than tracheal cells and the temperature did not affect the virus kinetics, while 

the MDCK cells supported IA07 at both temperatures (Figure. 5.7) IAV/CA04 Pdm09 

(H1N1) virus replicated to give a higher titer at 33oC than 37oC, in all the three types of 

the primary cells and in MDCK cells. Lung primary cells supported IAV/CA04 Pdm09 

(H1N1) virus more than the nasal turbinates and tracheal cells (Figure. 5.7).  

 Influenza B virus kinetics on the three types of primary cells were also compared 

to MDCK cells (Figure. 5.7E-H). We used BR08 virus, which belonged to the Victoria 

lineage and FL06 which belonged to Yamagata lineage viruses. BR08 virus at 0.1 MOI 

infection on MDCK cells demonstrated the highest titer of 4.33 and 4.4 logs at 48 h at 33oC 

and 37oC respectively. Lung cells showed the highest titer of 4.96 logs at 72h at 33oC, 

while nasal turbinates and tracheal cells at both temperatures were lower (Figure. 7). The 

FL06 virus was supported in all the three primary cells. However, tracheal cells at 33oC at 

48 h, showed the highest titer which is greater than the highest titer in MDCK cells. 

 The viral kinetics of ICV demonstrated similar kinetics shown by MDCK cells.  



126 

Among the influenza D viruses, both temperatures supported the virus replication in all the 

three different types of primary cells compared to MDCK cells, except D660 at 37oC in 

nasal turbinate cells showed very low virus titer (Figure 5.7).   
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Figure. 5.7 Comparison of virus growth kinetics of primary swine respiratory epithelial 

cells to MDCK cells upon infection with IAV, IBV, ICV and IDV at 33oC and 37oC. 

IAV/CA04Pdm09/H1N1, IAV/MN08/H1N1, IAV/IA07/H3N2 were infected at 0.01 MOI; 

IBV/BR08 and IBV/FL06 were infected at 0.1 MOI; ICV/JHB1966, IDV/OK2011; 

IDV/OK2013 were infected at 1 MOI. Samples were taken at 24 h intervals and titrated on 

MDCK cells. Virus titers were expressed in log10TCID50/ml. 

 

5.4 Discussion 

Epithelial surfaces of the body act as the first layer of defense, by providing 

anatomic, physiologic and immunologic barriers against potentially harmful pathogens and 

toxic substances. Digestive and respiratory tract epithelia are tuned to face a constant 

encounter with several bacteria/viral agents via ingestion/inhalation and can mount a 

comprehensive innate immune response. Several pathogens bind to the receptors of the 

epithelial cells for the cell entry. Hence, in-vitro epithelial cell culture models are key in 

studying the host-pathogen interactions. However, most of the continuous and transformed 

cell lines vary greatly in their genetical, phenotypical and physiological characteristics 

from their tissue origin and therefore the responses shown by these cells often comes with 

a limitation of reliability. Primary cell cultures closely mimic the physiologic and genetic 

conditions in-vivo and so are used to study host-pathogen interactions before in-vivo 

studies are attempted  

Primary respiratory epithelial cell cultures from the pigs have been used widely to 

understand the interactions of epithelium with infectious agents. In this study, we 

developed primary cell cultures from the upper and lower respiratory tract such as nasal 
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turbinates, trachea, and lungs and characterized these cells to study its phenotype and to 

analyze its ability to polarize and express tight junction proteins. We also analyzed the 

sialic acid receptor expression of these cells to check its suitability to use in influenza 

studies. 

Primary swine respiratory epithelial cells were heterogeneous cell populations 

when isolated from the respective tissues after collagenase digestion. Cells were derived 

from day-old gnotobiotic piglet, and hence assures a germ-free and healthy biological 

system, which can be used for studying a wide range of diagnostic and research 

applications. Primary swine respiratory epithelial cell population consisted of adherent 

polygonal-shaped cells with less than 5-10% of fibroblasts. Fibroblast cells were removed 

by treating the cells with 0.03% trypsin for 3-4 min. Immunocytochemical staining of these 

primary swine respiratory epithelial cells showed that these cells were predominantly of 

the epithelial phenotype. Immunocytochemistry was carried out on alternate passages to 

keep track of the phenotypic changes that could happen by cell differentiation during 

subculture. These primary swine respiratory epithelial cells derived from nasal turbinates, 

trachea, and lungs can be sub-cultured without much difference in their phenotype up to 

18-22 passages before the cells become granular and detach from the surfaces.  

Primary swine respiratory epithelial cells can undergo polarization and form 

functionally specialized apical, basolateral domains due to the specific distribution of the 

tight junction proteins. Polarization property has been displayed by epithelial cells, 

endothelial cells, leucocytes, neurons etc and therefore plays an important role in cell 

division, differentiation and growth, directional transport of molecules/cells and immune 

activation [266]. Primary swine respiratory cells grown on transwell inserts developed 
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multiple layers and contributed to the increase in TEER. All the three types of cells 

polarized and produced transepithelial electric resistance measured as high as 2000-3000 

ohms (ꭥs), more than the TEER measured for IPEC-1 cells.  

We also investigated the tight junction protein expression of these primary 

epithelial cells. There are several types of proteins in the cell membrane that help in the 

integrity of the epithelium of which three types of proteins form the junctional complex in 

cell junctions which includes tight junction, adherens junction, and desmosomes. Tight 

junction proteins are transmembrane proteins and are located in the apical-most of the 

junctional complex [216] Tight junctions formed by the cell act as a semi-permeable barrier 

to the paracellular movement of cargo and act as a fence that connects the apical and 

basolateral domains of the plasma membrane. Tight junction proteins act as a 

multifunctional complex, critical for the epithelial and endothelial layers to form its distinct 

compartments in the body, of which most important is the regulation of several signaling 

and trafficking molecules required for the cell differentiation, polarity, and proliferation. 

We checked the expression of claudin-1, -3, occludin, zona occludens-1, E-cadherin, along 

with isotype antibody control to confirm the specificity. Our results showed that E-cadherin 

was not expressed in all the three-primary swine epithelial cells derived from nasal 

turbinates, trachea, and lungs. E-cadherin is a type of calcium-dependent adhesion 

molecule normally located on the basolateral side of the epithelial cells and forms adherens 

junctions [267]. The transmembrane tight junction proteins fall in 3 families: 1) single 

junctional adhesion molecule, (JAM); Crumbs protein homolog 3 (Crb3); coxsackievirus 

and adenovirus receptor (CAR) 2) triple {blood vessel epicardial substance (Bves),  and 3) 

tetraspanning transmembrane proteins {Claudin, tight junction-associated MARVEL 
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proteins families, which include occludin, tricellulin, and MarvelD3. Of these, claudins are 

responsible for paracellular permeability [268].  Occludin is the first identified tight 

membrane protein with its C terminal region binding to ZO-1 which is associated with the 

actin cytoskeleton. There is site-specific variation in the expression of the tight junction 

proteins. Nasal turbinate and lung primary epithelial cells did not express ZO-1 while 

trachea expressed ZO-1 in abundance. Translocation of claudin 3 in the nucleus of the 

primary swine nasal turbinate cells was observed, while the tracheal cells expressed both 

in the nucleus and cell junctions and the lung cells showed claudin-3 only along the 

periphery/cell junctions. Claudin-1,-3 have been shown to have expressed in bronchioles 

and bronchi of mammals. Claudins have been detected in the distal lungs and claudin-3 

was expressed predominantly by the alveolar epithelial cells, which completely agrees with 

our observation [268]. Claudin-3 was found to be expressed by the ciliated upper airway 

and type II alveolar epithelial cells [269, 270]. Claudin-3 is more expressed in type II 

alveolar epithelial cells than type I cells [271]. Although translocation of claudin from 

cytoplasm and nucleus has been demonstrated in several physiological conditions or cell 

lines, the exact mechanism has not been yet elucidated. Claudin-1,-2 has been expressed 

in the nucleus, without putative nuclear localization sequences. We speculate that the 

translocation of claudin-3 must have happened due to some interactions utilizing the PDZ 

domain [272]. The PDZ domain is formed by combining the first letters of three proteins 

postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and 

zonula occludens-1 protein (zo-1). 

Zona occludens-1 and occludin were usually found to have localized in the 

boundary of the apical and basolateral plasma membrane domains. Zona occludens-1 was 
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expressed in type II alveolar epithelial cells, when grown on transwell membranes after 4 

days [273] Swine tissues were similar to humans anatomically and physiologically. 

Characterization studies in the human respiratory epithelium have been studied previously 

[274]. Human nasal epithelial cells in-vitro demonstrated mRNA expression for occludin, 

and, claudin 1 along with several other claudin proteins, while ZO-1 was expressed only 

in the human nasal mucosa in-vivo [274]. In our results, the primary swine nasal turbinate 

and lung cells did not express ZO-1. Just like human, ZO-1 was expressed in all non-human 

laryngeal epithelium such as mouse, rat, guinea pig, rabbit and pigs [275]. Larynx being 

the upper part of the trachea, may have the same tight junction/membrane protein 

composition Based on our results, primary swine tracheal epithelial cells showed ZO-1 

expression, unlike respiratory epithelial cells derived from the upper and lower respiratory 

tract. 

Influenza A viruses of avian and equine origin bind to Sia α 2-3 Gal receptor (MAL-

II), while the human viruses bind to Sia α 2-6 Gal receptor (SNA) [25]. A study on eight 

selected influenza B viruses isolated from 1940-1990 showed that these viruses have 

binding preferences towards ganglioside, carrying lacto-series type I and II sugar chains 

with the Neu5Acα2–6Gal linkage, however, B/Gifu/2/73 strain bound to lacto-series 

gangliosides containing Neu5Acα2–6Gal and Neu5Acα2–3Gal linkages [232]. Glycan 

array to characterize the receptor binding specificities of influenza B viruses have shown 

that the Yamagata-like strains predominantly bound to α-2,6-linkage glycans while 

Victoria-like strains preferentially bound to both α-2,3- and α-2,6-linkage glycans and also 

explained a third group of viruses that bound to sulfated glycans, which are Victoria-like 

strains [233, 234]. Our results showed that all the three types of cells have more expression 
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for the Sia α 2-6 Gal receptor than Sia α 2-3 Gal receptor and hence supported both the 

FL06 (Yamagata) and BR08 (Victoria) lineage with slightly higher titer for the FL06 at 

both temperatures. Influenza C and D viruses bind to the 9-O-Ac-Neu5Ac-carrying 

oligosaccharide chains [276]. The lectin binding assay demonstrated that all the three types 

of the cells expressed more α 2-6 Gal receptors than α 2-3 Gal receptors. The expression 

of α 2-3 linkage was above 50% in nasal turbinates, while trachea and lung cells showed 

very low expression. It is already known that pig tracheal tissue expresses both Sia α 2-6 

Gal and Sia α 2-3  Gal receptors [277]. Madin-Darby canine kidney cells have been widely 

used for influenza studies. Considering the SNA and MAL II expression of these primary 

cells derived from the swine respiratory tract, these cells can be an excellent platform to 

study the genetic and pathological aspects of influenza viruses, especially the swine-origin 

influenza viruses. Further, our viral replication kinetics data reflected the receptor 

distribution of these primary cells and demonstrated appreciable virus titers for all the four 

different types of influenza viruses at 33 and 37 oC.  

We compared the replication kinetics of IAV, IBV, ICV, and IDV in MDCK cells 

to that obtained in primary swine nasal turbinate, trachea and lung cells at both 33 and 37 

oC. Swine nasal epithelial cultures have been used for cystic fibrosis studies, but there was 

no literature available on influenza studies [231]  Swine respiratory epithelial cells, 

especially of trachea and lung origin, have been used in influenza virus pathogenesis 

studies before [22-24, 26, 28] Another study that utilized a swine intestinal epithelial cell 

line, SD-PJEC for influenza production also described the peak titers obtained for different 

influenza A and B strains compared to MDCK [278]. This is the first study to our 

knowledge that describes the development of an autologous respiratory primary cell 
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cultures from both upper and lower respiratory tract and to test the utility to study the 

different types of influenza viruses. We used different MOIs for the different types of 

influenza viruses because 0.01 MOI failed to yield appreciable titers in these three types of 

primary respiratory epithelial cells used in the study. Previous studies have shown that pig 

respiratory tract possessed both Sia 2,6 and 2,3 linkage receptors, which is why they can 

support both avian and human influenza viruses.  

The virus kinetics of IAV/CA04 Pdm09/H1N1 in the primary lung cells at 33oC is 

comparable to in MDCK at 33oC and the peak obtained is almost same for both the cells, 

however, it showed a lower titer in the nasal turbinate and trachea cells at 33oC. Overall, 

IAV/CA04 Pdm09/H1N1 grown at 37oC showed a lower peak and titer compared to that 

grown at 33oC except for the tracheal cells, where there is no significant difference noticed 

in the viral kinetics t 33oC and 37oC. IAV/CA04 Pdm09/H1N1 replicated to only 4 logs in 

SD-PJEC cells, which is a swine intestinal epithelial cell line [278] Similar to MDCK cells, 

IAV/MN08/H1N1 replicated to good titers in all the primary cells, except primary nasal 

turbinate cells at 33oC, with a peak observed between 48-72 h postinfection in all the 

primary cells. IAV/IA07/H3N2, the virus replicated to comparatively low titer in primary 

tracheal cells, while nasal turbinate and lung cells supported IA07/H3N2, to almost the 

same titers as MDCK cells at both temperatures. Influenza B viruses- FL06 replicated to 

an appreciable titer at all the time points, in all the primary cells at 33oC, while the virus 

titer was lost at 72 hpi in primary tracheal cells and at 120 hpi in nasal turbinates and lungs 

at 37oC.In the case of BR08, no replicable viruses were observed at 72 hpi in primary 

tracheal cells, while the nasal turbinates and lungs showed no titer at 96 hpi. Both BR08 
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and FL06 replicated to peak titer of above 4 logs, at 33 and at 37oC and showed an 

appreciable titer at all time points.  

In the case of ICV, the replication was facilitated more at 33 oC, while a restricted 

growth was noticed, in all the three primary cells and MDCK cells at 37oC. ICV replication 

in primary nasal turbinate at 33oC, with a peak titer comparable to MDCK cells at 33oC, is 

justified considering ICV being a ubiquitous pathogen of the upper respiratory tract. At 

33oC, ICV peak in tracheal cells is less than nasal turbinate and MDCK, but certainly better 

than lung cells. Among the two lineages used for the study, DOK, the swine lineage 

replicated well in all the three primary cells at both 33 and 37oC, with titers comparable to 

MDCK cells. However, the bovine lineage, D660 showed a restricted replication in the all 

the three primary cells with a low peak and lower titers at all the time points at 37oC, 

compared to the kinetics shown at 33oC. MDCK cells supported both the lineages at both 

temperatures in a similar fashion. In conclusion, we have characterized the primary swine 

respiratory epithelial cells, which are permissive to swine and human influenza viruses, in 

the same way as MDCK cells. These primary cells can be a suitable model to study all the 

four different types of influenza viruses which can help us in understanding more about the 

characterization and pathobiology of influenza viruses.  
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Chapter 6. Conclusions and future directives 

Influenza D virus (IDV) is an emerging pathogen, initially isolated in 2011 from a 

swine with influenza-like illness, recently classified as a separate genus in the 

Orthomyxoviridae family. A little was known about the virulence, tropism, and 

pathogenesis of the IDV. So an animal model was required to study the genotypic and 

phenotypic characteristics of the virus. We chose to use guinea pig model as it was widely 

used mammalian model in the influenza studies, ease of handling, the susceptibility of the 

animals by contact transmission, and the physiological hyper-responsiveness of the guinea 

pig respiratory tract and anatomic similarity of bronchus-associated lymphoid tissue to 

humans [6, 209]  

Our first study was proposed to meet the three objectives, which included the 

determination of the virus replication kinetics and also to check the transmission of IDV 

by contact and aerosol route. In the first study, we only used the bovine isolate of IDV 

(bIDV) for studying the viral replication kinetics, pathogenesis, and transmission. We 

found that bIDV replicated in the upper and lower respiratory tract of the guinea pig very 

productively shed the virus in nasal washes and were able to transmit the disease by contact. 

Further, the directly inoculated guinea pigs demonstrated seroconversion, confirming that 

guinea pigs can be a suitable model for studying the virulence and pathogenesis. We also 

conducted next-generation sequencing analyses on the viral populations derived from the 

lung homogenates and found some non-significant nucleotide mutations and some amino 

acid mutations.  

Even though the first reports on IDV isolation came from swine, IDVs from bovine 

origin were the major strains isolated from the US and other parts of the world until 2017. 
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Further studies have shown that these two strains co-circulate and they differ in their 

genetic and antigenic characteristics, leading to the existence of two lineages of IDV. 

Preliminary characterization studies have shown that the IDV cannot cross-react with IAV, 

IBV or ICV antisera and can grow at 33oC, the temperature in the upper respiratory tract 

and at 37oC, which is the temperature of the lower respiratory tract. Hemagglutinin esterase 

fusion (HEF) protein of IDV shares 50% homology to ICV-HEF, which raises the question 

whether IDV can infect humans? Further IDV viruses can withstand exceptionally high 

temperature and low pH unlike other types of influenza viruses, which could be due to the 

peculiar characteristics of hemagglutinin esterase fusion protein compared to the 

hemagglutinin protein present in IAV and IBV. IDV HEF protein has a high-temperature 

tolerance as evidenced by the infectivity titer of 2 logs after treating the virus at 53oC for 2 

h and resilience shown by IDV after exposure to pH as low as 3.0. Apart from this 

phenotypic characteristic, swine isolates of IDV have been increasingly isolated from 

Eurasia, particularly the recent isolates originated from the caprine and swine in China 

which set the stage for our second study.  

The objective of the second study was aimed at determining any changes in the 

virulence and pathogenesis between the lineages as there is 97-99 % homology between 

the two lineages. Also, the structural and functional similarity of the ICV HEF with IDV 

HEF prompted us to include the ICV also in the comparative study. In the comparative 

study, we found that IDV of two lineages can replicate in the upper and lower respiratory 

tract also showed tropism towards the organs of the upper and lower respiratory tract 

including the soft palate which is located in between. On the contrary, ICV did not show 

any productive replication in the lower respiratory tract. However, ICV replicated in the 



138 

nasal turbinates, soft palate, and trachea, but not in the lungs. The inability of ICV to 

replicate in the lungs could be due to the intrinsic temperature sensitivity of the ICV HEF 

and polymerase. The second study provided us some insights about the pathogenesis and 

virulence of the IDV versus ICV and also the differential replication and shedding 

exhibited by the swine IDV compared to bovine IDV. Further, HPLC analysis of the guinea 

pig tissues and also the glycan array have shown that the 9-O acetylated sialic acids 

responsible for the IDV and ICV binding were present in the guinea pig upper and lower 

respiratory tract and soft palate, which agrees with our in-vitro studies. 

Between the inoculum sequences of sIDV and bIDV, there were 5,4,3,23,7,14, and 

4 amino acid changes in PB2, PB1, P3, HEF, NP, P42 and M segments respectively. To 

determine any possible adaptive mutations in sIDV vs bIDV , we did deep RNA sequencing 

of the nasal washes from the animals euthanized on 3 dpi and 5 dpi and compared to the 

viral genome of the respective inoculum sequences. Deep RNA sequencing analyses of the 

nasal washes from swine and bovine IDVs demonstrated no mutations in the HEF gene 

compared to the respective inoculum sequence in bIDV group, while sIDV infected 

animals showed some non-significant point nucleotide mutations in the HEF protein. In 

the case of sIDV, only PB2 (6ST) and P3 showed amino acid changes in the viral genome 

derived from the nasal washes on 3 and 5 dpi, while PB1, HEF, NP, and NS showed some 

random nucleotide changes without any amino acid mutations. In the bIDV group, PB2 

gene showed amino acid mutations (E44D and N668K) in all the animals from 3 dpi and 5 

dpi compared to the bIDV inoculum. The polymerase proteins such as PB2, PB1, and NP 

showed some non-significant point mutations, which were not observed in all the animals. 

P42 in the sIDV and HEF, P42, NS, P3 in the bIDV group, were the segments that did not 
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show any mutations. The second project gave us some valuable insights, but there are 

several gaps to be filled and so those areas will be pursued for future investigation. One 

such important question we have to study is the disparity in the tissue tropism, particularly 

the lag in adaptation shown by the swine IDV group, as evidenced by the late shedding of 

the virus in the nasal washes and also in the tissue homogenates. Structural modeling of 

the viral proteins belonging to two lineages is important as to what molecular determinants 

are responsible for the differential phenotypic characteristics of these two lineages of 

influenza D viruses.  

In the third project, our objective was to establish an autologous primary cell culture 

system from the swine respiratory tract to test the different types of influenza, as pigs have 

been infected with all the four types of influenza either by natural or experimental infection. 

We successfully met the objective of establishing the cell culture system from nasal 

turbinate, trachea, lung and soft palate and have characterized the cells for the presence of 

cell markers such as cytokeratin, vimentin, desmin and α-smooth muscle actin. Influenza 

viruses bud through the apical domains of the epithelial cells, so we tested the ability of 

these cells to polarize and express tight junction proteins. All the three types of the cells 

originated from the nasal turbinate, trachea and lungs polarized to form the high TEER. 

The next objective was to determine the sialic acid receptors for its utility to study the 

influenza pathogenesis. Majority of the primary swine nasal turbinate, trachea and lung 

cells stained for SNA indicative of α2-6 sialic acids, while there was only a smaller 

population of the cells expressing MAL II (α 2-3 sialic acids). Our experiments have shown 

the utility of the cells to support all the four types of influenza with appreciable titers, so 

now we can take the study to next level by using these primary cells for some other 
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applications such as CRISPR-Cas 9 or transfection. Being non-transformed cell system, 

these cells hold a lot of potential to be used as a perfect in-vitro system to study the 

influenza pathogenesis as well as other respiratory tract infections. In future, we can use 

this system to develop air-liquid interface studies for studying various respiratory diseases 

affecting swine and humans. Another promising field is using these heterogeneous cell 

populations for developing three-dimensional organ culture. The phenotypic 

characteristics of these cells offer a great platform to study the host-pathogen interactions 

and also would help us to devise strategies for prophylactic and therapeutic measures.
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