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ABSTRACT 

ISCHEMIC PRECONDITIONING IMPROVES MAXIMAL ACCUMULATED 

OXYGEN DEFICIT IN NCAA DIVISION I MIDDLE-DISTANCE RUNNERS 

EMILY PAULL 

2018 

Purpose: There is an ongoing debate concerning whether ischemic preconditioning elicits 

consistent and meaningful exercise performance benefits. We have previously 

demonstrated no performance benefits of ischemic preconditioning at submaximal 

aerobic exercise intensities. It is likely that the beneficial effects of ischemic 

preconditioning on performance only involve supramaximal anaerobic exercise bouts, 

which elicit greater metabolic and neuromuscular stress. The aim of the study was to test 

the hypothesis that ischemic preconditioning improves maximal accumulated oxygen 

deficit (aO2D), an indicator of anaerobic capacity, in NCAA Division I middle-distance 

runners. Methods: A randomized sham-controlled crossover study was employed in 

which 10 NCAA Division I middle-distance (800 to 1600 meter) track athletes (age: 

21±1 yr; VO2 max: 65±7 mlO2·kg·-1·min-1) completed three supramaximal treadmill 

running trials (110% VO2max; ~12.6 mph @ 5% grade) to volitional exhaustion coupled 

with indirect calorimetry to assess maximal aO2D at baseline, after a sham control trial 

(mock preconditioning), and with limb-based ischemic preconditioning (4×5 min cycles 

of brachial artery ischemia/reperfusion). Maximal aO2D (mlO2·kg-1) for each trial was 

determined by first calculating the theoretical oxygen demand required for the 

supramaximal running bout (linear regression extrapolated from 9×5 min submaximal 

running stages). The actual oxygen demand measured during the supramaximal bout was 
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then subtracted from the theoretical value to obtain the aO2D. Statistical Analysis: A 

three-way repeated-measures ANOVA with adjustment for multiple comparisons was 

used for within-group differences (i.e., baseline vs sham vs ischemic preconditioning) in 

aO2D. Results: Ischemic preconditioning (122±38 sec) increased (P=0.0001) 

supramaximal time to exhaustion by 22% compared with both baseline (99±23 sec, 95% 

CI: 4.8-40.6, P=0.014) and sham (101±30 sec 95% CI: 6.7-34.2, P=0.001). Effect size for 

these trial differences as estimated by the Partial Eta2 (0.58) were large. Furthermore, the 

aO2D was considerably greater (P=0.009) with ischemic preconditioning. During their 

supramaximal run in the presence of ischemic preconditioning, aO2D was 46±35 

mlO2·kg-1, a substantial (Partial Eta2 = 0.43) increase compared with baseline (35±27 

mlO2·kg-1, P=0.025, 95% CI:1.3-19.2) and sham (38±32 mlO2·kg-1, P=0.046, 95% CI: 

0.13-14.0). There were no statistical differences in time to exhaustion and maximal aO2D 

between baseline and sham. Conclusions: Limb-based ischemic preconditioning 

considerably improves time to exhaustion and anaerobic capacity as measured by the 

maximal aO2D in NCAA Division I middle-distance track athletes. Additional work is 

needed to confirm whether these laboratory-based performance benefits can be translated 

to better outcomes in real track meets in elite athletes seeking a competitive advantage. 

 

Keywords 

Ischemia, reperfusion, anaerobic performance, oxygen uptake, accumulated oxygen 

deficit 
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Introduction 

 Ischemic preconditioning (IPC) was originally established as a protective 

mechanism in cardiac cells against a subsequent ischemic event. This process includes 

brief cycles of non-lethal reactive hyperemia, or periods of circulatory occlusion and 

reperfusion, causing a decreased formation of muscle damage [1]. The clinical 

applications protect the cardiac cells by triggering an up-regulation of energetics of the 

tissues to prevent cellular damage through a reduced formation of proinflammatory 

responses [2] and metabolic stress [3]. Some of these responses include an increase of 

blood flow [4,5] that initiates a release of vasoactive triggers [6]. As a result of the 

vascular responses caused by preconditioning, this method was applied to explore 

changes in exercise performance. The first study by de Groot et al. found that IPC 

improved exercise performance and maximal oxygen uptake in cyclists [7]. 

Additionally, other studies have shown that ischemic preconditioning elicits 

improvements in aerobic exercise in running [8], cycling [9], and swimming [10]. While 

research has shown an improved ability in aerobic exercise bouts, Jean-St-Michel et al. 

suggests that the aerobic energy transaction contributes to the anaerobic events, where 

the oxidative system is fully taxed [11]. Patterson et al. reported enhanced peak 

anaerobic power during twelve all-out 6 sec cycling sprints but no influence on fatigue 

or EMG activity of the vastus lateralis [12]. A recent study by Cruz and colleagues [13] 

showed that ischemic preconditioning resulted in greater oxygen consumption and 

quadriceps muscle activation during 45 min of active recovery following a 60 sec 

maximal cycling sprint, while showing improvements in performance by 2.1%. These 

findings imply that the rate of fatigue during subsequent short bouts of anaerobic cycling 
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could be reduced with preconditioning. Additionally, the aforementioned studies 

indicate potential improvement in anaerobic performance. One approach that has not 

been directly applied to determine the effects of preconditioning on anaerobic 

performance is the accumulated oxygen deficit (aO2D) method.  

 Accumulated oxygen deficit is a method to indirectly quantify anaerobic capacity 

of skeletal muscle during exercise [14].  It is a method based on the oxygen deficit 

concept, as the larger the oxygen deficit for a given bout of exercise, the greater must be 

the ATP contribution from non-mitochondrial sources (anaerobic).  If an exercise bout 

can be performed that maximally taxes the muscles’ abilities to regenerate ATP from 

non-mitochondrial sources, it would provide a means to determine the aO2D. The 

measurement of aO2D is done by calculating the difference between the estimated 

oxygen demand and the actual value that is obtained for oxygen uptake during an all-out 

supramaximal test. This is done by working out maximum oxygen consumption first, 

followed by a series of submaximal performance values for oxygen uptake. The 

submaximal performance values are used to draw a line of regression so that estimated 

oxygen uptake can be computed. Once this is done and the athlete performs an aO2D test 

at a supramaximal effort to exhaust the anaerobic system, the actual oxygen uptake is 

measured and taken away from the estimated value to get the oxygen deficit. 

 The direct investigation on the effects of preconditioning on maximal anaerobic 

performance determined by aO2D is very limited. Accumulated oxygen deficit data elicits 

the determination of the maximum oxidative response to measure maximum anaerobic 

capacity. The aim of this study is to determine the effect of remote ischemic 

preconditioning as it improves anaerobic capacity as assessed by the accumulated oxygen 
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deficit in NCAA Division I middle-distance track athletes. We hypothesize that the 

effects of preconditioning will improve the aO2D and performance in the runners.  

 

Methods 

Subjects 

Ten healthy, NCAA Division I Track middle-distance runners (age 21±1 yr) were 

studied: 6 men and 4 women. Track athlete event groups included those who competed in 

mid-distance events ranging from 800 meters to the mile (1609m). The subjects training 

distance was chosen due to the energy system in which they trained to grant accurate data 

collection for the type of supramaximal exercise induced by the aO2D tests. Subjects 

train all 12- months of the year and are in competition 9- months of the year. Subjects 

typically take one day off every 2-3 weeks. Each subject trained at a minimum of 30 

miles per week and as high as 90 miles per week. Male and female runners trained at an 

average speed of 14.8 km/hr and 13.4 km/hr, respectively. This study was conducted 

during the competition season, therefore, subjects continued training and competing 

throughout the study. The subjects completed the tests for this study on non-workout or 

high intensity days, i.e. rest days.  

 Upon enrollment, participants underwent a complete medical history and basic 

health assessment. Information concerning the use of medications, lifestyle and physical 

activity habits, and history of cardiovascular, pulmonary, or metabolic disease were 

documented. None of the subjects smoked, consumed tobacco-containing products, or 

were taking medications, including vitamins and performance-enhancing supplements. 

Participants were excluded from the study if they presented with a history of disease or 
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injury that precluded exercise participation. Before participation, informed consent was 

obtained from all individual participants included in the study. However, to lessen 

expectation bias, subjects were not informed of any potential exercise performance 

application of ischemic preconditioning. Subjects were instructed to continue normal 

training during the study. This study was conducted according to the Declaration of 

Helsinki and approved by the Institutional Review Board for the Protection of Human 

Subjects at South Dakota State University.  

 

Experimental design 

A simplified overview of the experimental protocol is shown in Figure 1. A randomized, 

double-blind, sham-controlled crossover design was used to investigate the influence of 

the acute remote ischemic preconditioning on the primary outcome in the difference of 

accumulated oxygen deficit (i.e., ischemic preconditioning or sham) separated by ~1 

week between trials. All subjects completed a series of pre-screening measurements 

including each subject’s VO2max for the first session. The following week the subject 

completed a 45-minute sub maximal treadmill running test. Following the submaximal 

test, subjects completed the first assessment of baseline aO2D test, followed by a 

randomized aO2D test with control or remote preconditioning for the proceeding week. 

Randomization was computer generated by a list and was kept blind to the primary 

researcher. After at least 7 days of washout, subjects crossed over to repeat the third 

aO2D test (remote preconditioning or control). 
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Figure 1. Experimental study design 

 

Hemodynamic measurements 

Non-dominant arm auscultatory resting systolic and diastolic blood pressure were 

measured using a stethoscope and sphygmomanometer (Diagnostic 700 Series; American 

Diagnostic Corporation, Hauppauge, NY, USA) following 5 min of seated quiet rest 

using standard procedures. Resting blood pressure measurements were performed twice 

separated by 3 min, and averaged. Resting heart rate was measured using a 60 sec radial 

pulse count. 

 

Anthropometric measurements 

Standing height was measured using a Detecto medical beam balance (Cardinal Scale 

Manufacturing Co, Webb City, MO, USA). Body mass was measured with a digital scale 

(Seca 876 digital scale, Seca Corporation, Hamburg, Germany). Body mass index was 

calculated as weight (kilograms) divided by height (meters) squared. Percent body fat 

was estimated by air displacement plethysmography (BODPOD, COSMED USA Inc., 

Illinois). 
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Maximal Oxygen Uptake 

Maximal oxygen uptake (VO2max) was determined using open-circuit spirometry 

combined with indirect calorimetry (Parvo Medics TrueOne® 2400, Salt Lake City, UT) 

in response to incremental treadmill running (Woodway Pro, Woodway USA, Waukesha, 

WI). Flow and gas calibration was performed prior to each test using standard operating 

procedures provide by the manufacturer. Subjects were equipped with a mouthpiece and 

nose clip, and a heart rate monitor affixed to the chest with receiver integrated with the 

metabolic cart (Polar Electro Inc., Lake Success, NY, USA). Resting expired gases were 

collected for 2 min. Thereafter, a 15 min warm-up was performed at 12.8 km/h and 13.7 

km/h for female and males, respectively. Velocity was increased or consistent (preferred 

pace) during the warm-up phase until a self-selected running pace was identified between 

12.8-14.3 km/h. The pace of the test was determined using each subject’s running tempo 

pace, based off of the individual’s 5k race pace. After a brief rest period, the first stage of 

the VO2max protocol was initiated and subjects ran at the predetermined velocity, based 

off of the subject’s race pace, at 0% incline for 2 min. Thereafter, the workload was 

increased by raising the velocity of the treadmill every 2 minutes until the third stage, or 

6 minutes. During the following stages, the incline of the treadmill increased by 2% as 

velocity increased every 2 min until volitional fatigue. The treadmill did not surpass a 

grade of 6% or below 4% at the subjects VO2max. Rating of perceived exertion was 

obtained at the end of each 2 min stage. Subjects were provided verbal encouragement 

throughout the test until exhaustion. Oxygen uptake (VO2), minute ventilation, heart rate, 

and kcals/min were recorded. VO2 data were smoothed with a 10-second moving average 

with VO2max denoted as the highest 10-second moving average obtained during the last 
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minute of exercise [15] with no further increase in VO2 (<150 mlO2/min) despite 

increased workload. All tests were terminated by volitional exhaustion. 

 

Submaximal Oxygen Uptake (45-minute running test) 

Submaximal oxygen uptake was determined using open-circuit spirometry combined 

with indirect calorimetry (Parvo Medics TrueOne® 2400, Salt Lake City, UT) in 

response to incremental treadmill running (Woodway Pro, Woodway USA, Waukesha, 

WI) at a 0% grade for 45 minutes. The protocol consisted of nine, 5-minute running 

stages of increasing intensity. The test initiated as ~50% of the VO2max of each subject 

and reached 80% but did not surpass. This test is designed for the subjects to reach 

steady-state exercise. Buck and McNaughton [16] studied the submaximal exercise bout 

which elicits a steady-state response to be achieved in running at 30-90% of the subjects 

VO2max. At fixed submaximal workloads below ventilatory threshold, steady-state 

conditions are usually reached within minutes after the onset of exercise. This protocol 

was used to determine the theoretical cost of oxygen at the intensity of the aO2D test, 

otherwise known as aO2D theoretical (see equations in aO2D section below). Subjects 

were equipped with a mouthpiece and nose clip, with a heart rate monitor affixed to the 

chest with the receiver integrated with the metabolic cart (Polar Electro Inc., Lake 

Success, NY, USA). Flow and gas calibration was performed prior to each test using 

standard operating procedures provided by the manufacturer. Resting expired gas was 

collected for 2 minutes prior to the test. Oxygen uptake, minute ventilation, and heart rate 

was recorded during the test. At the end of the 45 minute test, a 5 minute cool down was 

initiated immediately.  
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VO2 data was smoothed out with a 15 second moving average. The 15 second moving 

average was selected because it induces minimal data loss with little data and trend 

distortion as recommended by Robergs et al. [15]. Steady-state exercise data during the 

last two minutes of each 5-minute submaximal running stage was calculated from the 15 

second moving averages. This was obtained by averaging the final four data points for 

oxygen uptake, heart rate, minute ventilation, respiratory exchange ratio, and kcals/min. 

Due to the workload at a 0% grade, the work performed on the treadmill for the aO2D 

calculation was determined using the horizontal work (kg m/min), calculated by the 

speed (mph), multiplied by the subjects mass, adding that to the vertical work (kg m/s2) 

done by multiplying mass by gravity by subject’s height, as percent grade. The work 

performed on the treadmill during the submaximal test was used to calculate aO2D 

theoretical by plotting the steady-state oxygen uptake values against the workload 

performed. A linear relationship was determined for each subject by calculating the 

regression of the steady-state oxygen uptake on exercise intensity, or work, thus 

identifying the oxygen demand for all intensities. Table 3 shows the heart rate, oxygen 

uptake, and work performed at each stage. Heart rate, VO2, and RER were recorded to 

determine that each subject reached steady-state without exceeding for the purpose of 

keeping the test below maximum efforts, see Table 3 for values. This technique confirms 

the submaximal nature of the test, allowing accurate extrapolation of the linear data to 

represent the actual oxygen consumed.  
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Supramaximal (aO2D) Test 

 The Accumulated Oxygen Deficit (aO2D) test was used to determine the difference in 

oxygen demand and actual oxygen uptake. The test was designed as a supramaximal test 

at each of the subjects calculated 110% VO2max workload. The subjects performed the 

series of three aO2D tests separated each by one week; baseline, followed by either a state 

of remote preconditioning or sham, randomly. Prior to administering the aO2D trials, 

subjects were instructed to refrain from any exercise for 24 hours and to abstain from 

ingesting caffeine and any supplement or ergogenic aid that may enhance exercise 

performance. Subject began with a 15-minute warm-up at 12.8 km/h and 13.7 km/h for 

female and males, respectively. Subjects were allowed a 3-min break before an extended 

3-min warm-up performed at ~80% of their calculated treadmill running velocity of the 

test. This was followed by three-15 sec running sprints at their individual grade of 4%-

6% with up to 90% of the velocity of the respective test. The warm-up for each of the 

three tests was identical for each subject. Subjects were equipped with a mouthpiece and 

nose clip, with a heart rate monitor affixed to the chest with the receiver integrated with 

the metabolic cart (Polar Electro Inc., Lake Success, NY, USA). Flow and gas calibration 

was performed prior to each test using standard operating procedures provided by the 

manufacturer. Resting expired gas was collected for 2 minutes prior to the test. The 

subjects were instructed to run each test the same, by running until absolute volitional 

exhaustion. Subjects began the test at rest and advanced onto the moving belt at the 

selected speed and grade then exercised at the respective supramaximal intensity until 

exhaustion. Subjects were provided verbal encouragement throughout the test until 

exhaustion. The individual relationship between the time to exhaustion and oxygen 
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uptake (VO2) determined the corresponding oxygen demand in each test. The 

accumulated oxygen deficit was calculated as the difference between the accumulated 

oxygen demand and the actual accumulated oxygen uptake between tests:  

a. aO2D theoretical (ml/kg) = Oxygen demand theoretical (ml/kg/min) x duration (min) of 

aO2D test 

b. aO2D uptake actual (ml/kg) = Actual oxygen uptake (ml/kg/min) x duration (min) 

aO2D test 

 

VO2 data was smoothed out to breath-by-breath averaging using a 4-breath average to 

produce an accurate representation of the VO2 response for the short duration, high 

intensity test. Using the individual’s calculated 110% VO2max, the test was designed to 

cause volitional exhaustion within 3 minutes from initiation of the test. Due to the length 

of the test, the 4-breath averaging best suites the data for accurate interpretation of the 

VO2 data. VO2 data, heart rate, and respiratory exchange ratio was recorded for analysis 

and confirmation for true achievement of maximal oxygen uptake. Time to exhaustion for 

each test was collected and used to calculate aO2D for remote preconditioning and sham 

tests in comparison to baseline aO2D.  

 

Ischemic Preconditioning 

At least one week after completing the baseline aO2D measurement, subjects were 

randomized to complete either the ischemic preconditioning or the sham control trial 

first, each immediately followed by a aO2D test. All measurements were performed in a 

temperature-controlled room after a 4 hr fast. To induce ischemic preconditioning, 
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subjects rested in the supine position with high-pressure cuffs placed unilaterally on the 

upper right arm muscle and inflated to 220 mmHg (EC20 rapid cuff inflator, DE 

Hokanson, Inc., Bellevue, WA) for 5 min to occlude the brachial artery, followed by 5 

min of deflation (reperfusion). This procedure was repeated four additional times and was 

similar to the ischemic conditioning protocols employed by other exercise performance 

studies [7, 17]. Heart rate and blood pressure were monitored during the last 2 minutes of 

each 5 minute ischemic episode. The sham control trial consisted of the same procedure 

described above for the ischemic preconditioning trial except the pressure cuff were 

inflated to 20 mmHg to avoid ischemia and reperfusion. The total time to perform these 

trials was 40 min (i.e., 20 min of intermittent ischemia/sham and 20 min of intermittent 

reperfusion). Within 15 min following the ischemic preconditioning and sham trials, 

subjects were prepared to complete a supramaximal aO2D test. The rationale for electing 

to begin the aO2D trials within 15 minutes of preconditioning is based on the notion that 

the early window of cytoprotection is invoked within minutes after the preconditioning 

ischemia, disappearing 1-2 hours later [18]. However, it is important to note that the 

cytoprotective mechanisms have not been linked directly to improvements in exercise 

performance. To avoid experimenter bias, aO2D were completed by the same 

investigators blinded to the conditioning trial of each subject. All subjects wore the same 

athletic shoes for the three trials.  

 

Blood Lactate 

A small sample (0.7 µl) of capillary whole blood was obtained via finger prick from the 

index finger at the baseline and last two minutes of each 5-minute reperfusion stage 
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during preconditioning and sham control trials while lying in a supine position (Lactate 

Plus, Nova Biomedical, UK). A total of five samples were collected during each of the 

two trials. The Lactate Plus analyzer has been shown to provide valid and reliable 

(r=0.99) measurements of blood lactate concentration compared with bench top grade 

analyzers [19]. The analyzer was calibrated with low (1.0–1.6 mmol/l) and high (4.0–5.4 

mmol/l) quality control solutions prior to measurements. Lactate was obtained within one 

minute while the subject laid in a supine position during the trials. The same investigator 

measured blood lactate during each trial.  

 

Statistical Analysis 

Measures of central tendency were used to calculate baseline demographic data. 

Data were checked for normality and spread and were normally distributed with the 

exception of blood lactate concentrations. A three-way repeated-measures ANOVA with 

adjustment for multiple comparisons was used for within-group differences (i.e., baseline 

vs sham vs ischemic preconditioning) in aO2D. Linear regression was used to determine 

differences in the slope of the linear increase in oxygen uptake (mlO2/kg/min) relative to 

treadmill work (kgm) among aO2D trials. A 2×5 (trial × time) repeated measures 

ANOVA was used to determine differences in resting heart rate and blood pressure at the 

end of each 5 min ischemic/sham episode for the IPC and sham trials. Area under the 

lactate curve across IPC and sham trials was determined using a trapezoidal model. 

Differences in lactate between sham and IPC were determined using the non-parametric 

Wilcoxon sign rank test for within subjects’ designs. Statistical significance was set at 

P<0.05. Data are presented as means±SD and analyzed with SPSS version 20 (IBM, Inc., 
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Armonk, NY). 

Results 

 Subject characteristics are shown in Table 1. Subjects were considered normal 

weight based on BMI, normotensive, and presented with VO2max values at or above the 

90th percentile for age and sex [20]. Thirteen middle-distance athletes volunteered to 

participate in this study, three subjects dropped out each due to injury during training. 

Thereby, data was collected and analyzed for 10 subjects (6 men, 4 women). Each subject 

participated in five data collection sessions. On average, each session was at least one 

week apart. The maximum time between IPC and sham trials during the study was 2 

weeks; the average was 1 week apart for the subjects. Each subject continued normal 

track training during the study; the average weekly mileage was 50 miles per week in 

which the athlete trained. The subjects are all considered elite athletes in their field, 

where the mean VO2max was 65.0±7.3 ml/kg/min. Mean systolic blood pressure was 

128±13 mmHg and mean diastolic blood pressure was 72±7 mmHg.  

Table 1. Subject characteristics 

Variable Total Group (N=10) 

Sex, men/women 6 / 4 

Age, year         20 ± 1 

Body mass, kg         63.8 ± 8.4 

BMI, kg/m2         21.0 ± 1.4 

Percent Fat, % 10.1 ± 4.7 

Height, m 1.74 ± 0.1 

Systolic BP, mmHg      128 ± 13 

Diastolic BP, mmHg         72 ± 7 

RHR, bpm 52 ± 7 

VO2max, ml/kg/min 65.0 ± 7.3 

Values are mean ± SD. BMI: body mass index; BP: blood pressure; RHR, resting heart rate; VO2max, maximal 
oxygen consumption. 

 
 



14 

 

Table 2 shows the mean heart rate and blood pressure changes before and during the 5-

min bouts of sham and preconditioning.  

 

 

 

 

 

 

 

 

 

 

Table 2. Heart rate and blood pressure changes before and during four, 5 min bouts of unilateral sham and 
ischemic preconditioning of the arm.  

 Heart rate, bpm 

 Baseline 5 min 10 min 15 min 20 min 

Sham 55±9 56±10 55±8 55±8 56±8 

Ischemic preconditioning 53±12 53±15 52±7 51±8 52±6 

 Systolic/Diastolic Blood pressure, mmHg 

 Baseline 5 min 10 min 15 min 20 min 

Sham 118/62±10/5 118/60±9/5 115/60±11/5 116/61±12/6 116/61±12/6 

Ischemic preconditioning 120/64±8/6 118/65±9/6 117/63±9/5 116/63±8/7 118/61±9/7 

Values are means±SD.  
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Table 3 shows steady-state heart rate, oxygen uptake and RER during the 9 stage 

submaximal running trial. There were progressive increases (all P<0.01) in heart rate, 

oxygen uptake and RER, as expected across stages. 

Table 3. Steady-state heart rate, oxygen uptake, and RER during 45-minute submaximal test 
to determine oxygen demand.  

Stage 1 

Heart rate 
(bpm) 135±12 

VO2 37±5 

RER 0.825±0.045 

Stage 2  

Heart rate 
(bpm) 142±9 

VO2 39±4 

RER 0.863±0.052 

Stage 3  

Heart rate 
(bpm) 150±10 

VO2 41±4 

RER 0.859±0.052 

Stage 4  

Heart rate 
(bpm) 155±12 

VO2 43±4 

RER 0.865±0.054 

Stage 5  

Heart rate 
(bpm) 159±11 

VO2 45±5 

RER 0.860±0.057 

Stage 6  
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Heart rate 
(bpm) 162±11 

VO2 47±8 

RER 0.862±0.048 

Stage 7  

Heart rate 
(bpm) 167±11 

VO2 48±6 

RER 0.879±0.048 

Stage 8  

Heart rate 
(bpm) 172±11 

VO2 50±16 

RER 0.885±0.057 

Stage 9  

Heart rate 
(bpm) 176±12 

VO2 51±8 

RER 0.898±0.060 

Data represent mean±SD. IPC, ischemic preconditioning; VO2, oxygen uptake; RER, 
respiratory exchange ratio.   

 

Effects of Ischemic Preconditioning on Supramaximal Time to Exhaustion  

Figure 2(a) below, illustrates the time to exhaustion during the supramaximal exercise 

tests between groups (A) baseline, (B) sham, (C) IPC, reporting time and standard 

deviation. Ischemic preconditioning (122±38 sec) significantly increased (P=0.0001) time 

to exhaustion compared to baseline (99±23 sec, 95% CI: 4.8-40.6, P=0.014) and sham 

(101±30 sec, 95% CI: 6.7-34.2, P=0.001). Time to exhaustion increased by 22% in the 

ischemic preconditioning trial compared to baseline and sham trials. Effect size for the 

differences in trial as estimated by the Partial Eta2 (0.58) were large. There were no 
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statistical differences in time to exhaustion between baseline and sham (P=1.0). There 

were also no significant differences in maximum heart rate between trials. 

 

Effects of Ischemic Preconditioning on Accumulated Oxygen Deficit 

The values reported in Table 3 were used to calculate the linear regression of work and 

oxygen demand to determine the oxygen uptake. Figure 2(b) below, illustrates the results 

showing that aO2D increased significantly with ischemic preconditioning (P=0.009) 

compared to baseline and SHAM trials in the supramaximal exercise tests. The ischemic 

preconditioning aO2D measured 46±35 mlO2·kg-1 (Partial Eta2 = 0.43), significantly 

increased from baseline (35±27 mlO2·kg-1, P=0.025, 95% CI:1.3-19.2) and sham (38±32 

mlO2·kg-1, P=0.046, 95% CI: 0.13-14.0). There were no statistical differences in aO2D 

between baseline and SHAM trials. 

  

Figure 2. (a) Time to Exhaustion (sec) (b) aO2D between baseline, sham, and 

preconditioning (ml/kg) 

 

* denotes significance 

a.    b.  
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Lactate  

Figure 3 below, shows box and whisker plots of resting blood lactates for the sham and 

ischemic preconditioning trials. The data was analyzed using a Wilcoxon Signed Rank 

Test. There was a significant decrease in resting blood lactate during the ischemic 

preconditioning trial (median=3.5 mmol/l, Z=2.0, P=0.047) compared to sham trial. For 

example, median lactate decreased from 4.6 and with an IQR of 3.7 mmol/l to 5.5 mmol/l 

in the sham trial to 3.5 mmol/l, with the IQR of 2.8 mmol/l to 4.5 mmol/l with ischemic 

preconditioning. 

 

Figure 3. Total lactate area under the curve showing the significant decrease in resting 

lactate (mmol/L) taken during the sham and IPC trials. There is a significant decrease 

(p=0.047) in resting blood lactate from sham to preconditioning trials. 

 

* denotes significance 
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Discussion 

 In the present study, remote preconditioning in the upper arm did significantly 

affect maximal accumulated oxygen deficit and anaerobic performance in elite, middle-

distance runners. Relative to the baseline control, preconditioning improved time to 

exhaustion by 22%. This result is in agreement with previous studies of Jean-St-Michel et 

al. [11] and Cruz et al. [13], where they observed similar benefits of preconditioning on 

anaerobic performance in swimmers and cyclists, respectively. In the latter study, by 

Cruz et al., performance differences were identified by a greater anaerobic contribution, 

rather than aerobic sources. These findings are consistent with the present study, 

determining the improvement upon the anaerobic energy system, causing a greater 

capacity for anaerobic exercise and maximal intensities.  

 The studies investigating the effect of preconditioning on anaerobic performance 

have been inconsistent. Gibson et al. [21] and Clevidence et al. [17] reported inconclusive 

findings for anaerobic performance in a 5 by 6-sec sprint on a cycle ergometer and time 

to exhaustion in amateur cyclists. Additionally, Akgul et al. [22] and Lalonde et al. [23] 

both recently studied anaerobic power using a 30-sec Wingate Test on trained athletes, 

but did not find significance in mean power or power output after preconditioning. These 

findings suggest that preconditioning does not have an effect on peak power or maximal 

power output, where ATP is being recruited by the ATP-PC system and therefore, we can 

expect to see no significant improvements on bouts of intense, short exercise (< 30-sec). 

Alternatively, research by Jean-St-Michel et al. [11] suggests that energy recruited from 

additional pathways such as the anaerobic glycolytic as well as the aerobic oxidative 

system, may have more of an effect on performance in athletes. While the study shows 
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complementary findings to our previous analysis showing no effect on submaximal 

exercise, Jean-St-Michel et al. found a significant association between maximal 

performance following preconditioning. The methods analyzed swim-time performance 

in 100-m and 200-m swimming test in a competitive setting suggesting additional energy 

recruitment. These findings may be interpreted by in vivo studies performed by Fryer et 

al. [24], showing that IPC causes mitochondrial ATP-sensitive K channels to open and 

the uncoupling of oxidative phosphorylation. As a result, it is hypothesized that this 

allows the mitochondria uptake acetyl-CoA as a by-product of glycolysis more quickly. 

This allows for the maintenance of lactic acid accumulation and use during exercise. 

Bailey et al. [8] suggests that IPC can elicit a greater contribution from aerobic pathways 

allowing for the sparing of ATP generated by glycolysis via the ability to produce and 

efficiently use lactate. Our study is consistent with this concept, as resting blood lactate 

significantly decreased with preconditioning, compared to sham (p= 0.047). We speculate 

that the decrease in resting lactate during preconditioning caused an up-regulation of 

lactic acid as an energy source pre-exercise causing a potential augmentation of blood 

lactate clearance and enhanced oxidation rates. Along with lactate, other improvements 

caused by IPC include vasodilation inducing increased blood flow and ATP sparing 

derived from anaerobic pathways [25]. Additionally, we speculate that more muscle 

fibers are recruited following IPC, which allow for higher muscle activation potentials 

[13] and the possibility of the subject to exercise beyond the threshold of fatigue. One 

explanation of this phenomenon is explained by Barbosa et al. [26], that suggests 

preconditioning delays the development of fatigue possibly due to the blocking of fatigue 

receptors within the central nervous system. This may allow athletes to perform at 
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supramaximal workloads with the delay in development of fatigue with the greater 

increase of sympathetic activity. As a result in our present study, this mechanism needs 

further investigation to determine the cellular activity after preconditioning. 

 Unique in this study is the method of using accumulated oxygen deficit as a 

measure of anaerobic capacity and performance. To date, this is the first study that uses 

this method as a measurement for performance in this setting.  Additionally, we are the 

first study to use a baseline bout of exercise to determine the changes from baseline and 

sham trials. This strengthens the results of our study as the improvements from IPC were 

significant from baseline (p=0.0001) and sham (p=0.001) trials. Accumulated oxygen 

deficit is an accurate method of determining ATP production from anaerobic metabolism. 

As this method determines the anaerobic capacity by determining the energy source 

through oxygen demand during a supramaximal effort; it is potentially the most precise 

method for our population. As the running intensity of the 800m and mile run both 

exceed 100% VO2max, the aerobic and anaerobic energy metabolisms contribute to these 

races; theoretically 60% aerobic and 40% anaerobic reported by di Prampero et al. [27]. 

The anaerobic energy system increases oxygen uptake before and after an 800m run, 

which is significant for the requirement to resynthesize lactic acid during the run [28]. 

Therefore, it is necessary for these athletes to have a high anaerobic capacity. By using 

the aO2D method, we could measure the effect of preconditioning on anaerobic capacity 

and potentially further warrant an increase in performance in middle-distance runners.  

 Another distinguishing element of this study is the elite population researched. 

This population of elite athletes is exclusive, as other studies have only included at 

recreational, amateur, and sedentary individuals. Additionally, there is limited research 
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assessing the effects of preconditioning on anaerobic capacity in runners using land-

based sprinting methods. The significance in the results can be verified due to the 

runner’s ability to perceive true physical exhaustion, while other indicators confirmed 

fatigue such as an RER > 1.10 and a VO2 exceeding the subject’s maximum, indicating 

supramaximal efforts. The significance of this study potentially gives middle-distance 

runners a competitive edge. Within this group of athletes, milliseconds might separate 

competitors in the respective events. This study may contribute to the development of a 

natural aid for this population, as we concluded this study with a 22% improvement in 

time to exhaustion from baseline at a workload similar to a racing performance. The 23-

sec average increase in time was not only significant but also potentially competitively 

significant for runners, where a 0.4% improvement in competition performance is 

reported as significant [29]. With the observed improvements of our study, more research 

should be done to support preconditioning as a natural performance enhancer in 

competitive runners.  

 

Conclusions 

 The results of the study suggest that upper arm ischemic preconditioning 

improves accumulated oxygen deficit and time to exhaustion in elite, middle-distance 

track athletes.  Further studies should be conducted to determine the effects on 

performance to the track and field setting to evoke possible improvements in competition 

for elite athletes seeking a competitive advantage.  
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Figure Captions 

 

Fig 1. Simplified overview of the main experimental protocol. Subjects will first undergo 

an assessment of maximal cardiorespiratory fitness (Day 1). At a maximum of 1 week 

later (Day 7), subjects will complete the first assessment of accumulated oxygen deficit. 

At approximately Day 14, subjects will complete a 45 min running test. Subjects will be 

randomized to undergo a second accumulated oxygen deficit test with control or with 

remote preconditioning. After about 7 days of washout, subjects will crossover to repeat a 

third accumulated oxygen deficit test (i.e., with remote preconditioning or control). 

 

Fig 2. (a) This figure illustrates a significant increase in time to exhaustion (sec) in the 

aO2D test following preconditioning compared to baseline (p=0.0001) and sham 

(p=0.001) trials. (b) This figure illustrates a significant increase in accumulated oxygen 

deficit (ml/kg) in the preconditioning trial (0.009) compared to baseline and sham. 

 

Fig 3. Total lactate area under the curve illustrates the significant decrease in resting 

lactate (mmol/L) measurements taken during the sham and preconditioning trials. There 

is a significant decrease (p=0.047) in resting blood lactate from sham to preconditioning 

trials.  
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