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ABSTRACT 

MAPPING AND RISK ASSESSMENT OF JUNIPER ENCROACHMENT INTO A 

PRAIRIE LANDSCAPE 

KYLE D. KASKIE 

2018 

Juniper encroachment is a considerable threat to the prairie ecosystems of the 

Great Plains because it has the potential to alter native grasslands by changing soil 

characteristics, limiting herbaceous biomass, and hindering native community 

regeneration.  Accurate maps of juniper cover and predictions of areas at risk for future 

expansion are needed to support proactive management measures. Therefore, our 

objectives are to: (1) Develop a practical workflow for large-scale juniper mapping using 

Landsat 8 Operational Land Imager (OLI) imagery and partial unmixing techniques, (2) 

Compare the classification accuracies from the resulting map based on different juniper 

density thresholds and different types of imagery, (3) Develop a predictive spatial model 

for the distribution of low-density juniper based on distance to seed source and 

environmental covariates and determine the prediction accuracy, and (4) Use the resulting 

maps to evaluate the extent of current juniper establishment and the risk of future 

encroachment. The study area encompasses counties bordering the Missouri River in 

southeastern South Dakota and northeastern Nebraska and covering approximately 

23,000 km2. We applied a matched filtering technique to classify juniper with snow-

covered and snow-free winter imagery (December-March) and snow-free spring imagery 

(April-June). We found that using the snow-covered winter images suppressed 
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background spectral signatures and resulted in a higher overall classification accuracy of 

93.7% for juniper densities above 15 percent, compared to snow-free winter imagery and 

spring imagery. When characterizing juniper densities below 10 percent our 30-meter 

pixel level classification map was unreliable, with an 11% probability of correctly 

classifying juniper. Therefore, we used Random Forests, a machine-learning algorithm, to 

develop a model of low-density (≤ 15%) juniper based on classified juniper cover and 

other ecological factors. We used the receiver operating characteristics (ROC) curve to 

evaluate model predictions; accuracy was high with an area under the curve (AUC) of 

0.884. Our susceptibility map indicated that an additional 7.7% of the study area 

currently contained low densities of juniper and had high to very high risk of future 

encroachment. This study will provide agencies and land managers with information and 

techniques needed to address juniper encroachment in the Northern Great Plains. 
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CHAPTER 1 

INTRODUCTION 

The Great Plains has been recognized as North America’s most endangered 

ecosystem (Samson and Knopf, 1996). A major concern has been the threat of converting 

grasslands to agriculture through cultivation practices (Sampson et al., 2004). However, 

woody plant encroachment should not be overlooked as it has already overwhelmed 

much of the southern Great Plains (Norris et al., 2001; Starks et al., 2014) and is 

spreading rapidly in the north (Meneguzzo and Liknes, 2015; Pierce and Reich, 2010). 

Encroaching and invasive species in the United States are an economic burden with 

environmental damages and losses totaling $120 billion per year (Pimentel et al., 2005). 

This cost will increase as eastern redcedar (Juniperus virginiana), a single encroaching 

woody plant, was projected to cost the state of Oklahoma $447 million in economic 

losses for 2013 (Oklahoma Conservation Commission, 2008). Woody plant 

encroachment not only contributes to economic losses, but is threatening natural 

ecosystem functions as well. Hydrological processes are being altered through increases 

in soil infiltration and reduced streamflow (Zou et al., 2014; Zou et al., 2016), while 

carbon storage is shifted from belowground to aboveground (McKinley and Blair, 2008), 

and altered microclimates result in a change in plant communities to predominantly non-

natives (Pierce and Reich 2010). Because of these impacts, grassland loss resulting from 

juniper encroachment can substantially affect the grassland industry by reducing 

livestock production up to 75 percent (Fuhlendorf et al. 2008). This is why it is important 

to monitor woody plant encroachment, yet there is a general lack of data sources 
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providing distribution estimates and site-specific information that is necessary for 

implementing the appropriate management measures. 

 

Juniper Encroachment 

 Various species of woody plants such as Prosopis (mesquite), Larrea (chaparral), 

and Juniperus (juniper) are encroaching into the Great Plains at a high rate with little 

constraint giving the process the name, the Green Glacier (Engle et al., 2008; Van 

Auken, 2009). These native species were once restricted by fire but are now expanding 

into new u territories (Bragg and Hulbert 1976; Briggs et al., 2002a). A long history of 

fire suppression, land use changes, and a high rate of active planting are contributing to 

the expansion of juniper. Since the early 1930’s, conservation programs have promoted 

the enhancement of shelterbelts and the preservation of wildlife habitat. In doing so, 

millions of eastern redcedar were planted (Knezevic, et al. 2005). Ganguli et al. (2008) 

reported that in 2001, nurseries within 20 states produced approximately 2.3 million 

eastern redcedar seedlings of which 80 percent were distributed within the Great Plains. 

Even today, many cost-share programs such as the Environmental Quality Incentives 

Program (EQIP) and Conservation Stewardship Program (CSP) provide financial 

assistance to private landowners who plant trees for wind protection, habitat 

improvement, and soil and water conservation (USDA-NRCS, 2017). Often, this includes 

the planting of juniper species such as Eastern redcedar as they are drought hardy and 

readily available (Ganguli et al., 2008). Activities such as the promotion of planting 

junipers only expedites the spread of juniper, as these programs do not take into account 

the invasive habits of the species (Roberts et al., 2018). 
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 The eastern redcedar is a well-adapted species that persists under a variety of 

environmental and topographical conditions (Van Haverbeke & Read 1976). The fast 

spreading nature of juniper can be attributed to a high seed dispersal rate, its ability to 

quickly establish on poor soils, and its extreme tolerance for drought (Briggs et al. 2002a, 

Caterina et al. 2014). These factors allow eastern redcedars to outcompete dominant 

native species such as big bluestem (Andropogon gerardii; Axmann and Knapp 1993). 

These effective adaptations have allowed the juniper to succeed in the prairie ecosystem 

of the Great Plains.  

Once the juniper is established the canopy density increases, ultimately affecting 

surrounding soil moisture, temperature, and light penetration (Pierce and Reich, 2010). 

This change in the microclimate surrounding the trees promotes the shift in species 

composition from dominant C4 grasses to non-native C3 grasses, such as Poa pratensis, 

and eventually results in low understory plant cover and species richness (Gehring, and 

Bragg, 1992). The entire process leads to an increase in juniper density and an overall 

loss in herbaceous biomass and reduction in rangeland productivity (Briggs et al., 2002a).  

 The rate at which juniper encroachment is affecting the Great Plains has been 

assessed through multiple studies. In the Flint Hills of Kansas, Briggs et al. (2002a) 

found that juniper expansion was occurring at a rate of 5.7 percent per year and 

eventually resulted in a closed-canopy forest within a 40-year timespan. In Oklahoma, 

Wang et al. (2017) calculated an annual encroachment rate of 8 percent between 1984 

and 2010. Walker and Hoback (2007) observed a 2 percent annual expansion rate in 

central Nebraska. Similarly, Meneguzzo and Liknes (2015) observed Nebraska was 

losing 20,000 acres of non-forestland annually to juniper, giving Nebraska the highest 
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juniper conversion rate within the central United States. Regardless of the exact 

expansion rate, juniper is establishing within the Great Plains at an alarming pace. With 

this change, follows the damaging effects associated with an increasing area of 

established junipers.  

 

Juniper Management 

 Management of encroaching juniper is vital when attempting to prevent any 

present or future ecological damages caused by the species. The implementation of 

juniper management occurs at two stages: proactive management and reactive 

management (Simonsen et al., 2015). Proactive management provides a lower human risk 

factor (i.e. less potential for human bodily and property harm) with less invasive 

management teqniques, while also being the most cost effective measure for controlling 

juniper (Wilson and Schmidt, 1990). This process consists of planning and implementing 

procedures before the establishment of juniper has occurred or when juniper is in a 

vulnerable seedling state. Some successful measures include high intensity goat grazing, 

haying, and low-intensity prescribed burning (Simonsen et al., 2015; Smith, 2011).  

When juniper is already established on the landscape and is in a dense to mature state, 

proactive management becomes less effective (Wilson and Schmidt, 1990). In response 

to already-established juniper, the implementation of reactive management measures is 

necessary. This type of management contains a higher human risk factor (i.e. greater 

potential for human bodily and property harm) as it entails intense management teqniques 

such as mechanical removal by timber cutting, herbicides, and intense prescribed burning 

(Simonsen et al., 2015; Smith, 2011; Wilson and Schmidt, 1990).  
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As juniper increases in size and stand density, the overall cost of managing and 

removing the juniper increases (Bidwell et al 2002; Ortmann el al., 1998). In 2002, the 

cost of executing a prescribed burn on non-to low cedar infested area of 160 to 640 acres 

was seven dollars per acre. For more mature, dense stands, the cost increased to roughly 

$25 per acre (Bidwell et al 2002). However as tree height increases, prescribed burning 

becomes an insufficient control method, as there is only a 35 percent mortality rate for 

junipers above two meters and 10 percent mortality rate for junipers above three meters 

(Buehring et al., 1971; Ortmann el al., 1998). Mechanical removal becomes the preferred 

method of control when trees become too tall for burning to be effective. Mechanical 

removal costs exceed those for prescribed burning. For the same 160 to 640 acres, 

implementing mechanical removal on juniper above two meters in height ranges from 

$40 to $90 per acre. Reactive management of juniper can be costly and time consuming. 

Therefore, proper planning for management is imperative in order to save on overall, 

financial and labor investments. 

 

Juniper Inventory 

The United States Department of Agriculture (USDA) Forest Service Forest 

Inventory and Analysis (FIA) program allows land managers and state agencies to obtain 

forest estimates for each state (USDA Forest Service, 2018). On a yearly basis, the FIA 

program measures 20 percent of their designated woodland plots within each state. This 

sampling method allows for a calculation of yearly tree attribute estimates and provides a 

statewide inventory every five years (Burkman, 2009). These tree inventory assessments 
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allow managers to retrieve repeated field measurements for evaluating forest resources 

and identify any changes to the overall forest condition (Meneguzzo and Liknes, 2015). 

In 2012, Meneguzzo and Liknes (2015) used FIA data to show an eight state 

regional estimate of 894 thousand acres of juniper forestland. In 2016, Nebraska had an 

estimated 235 thousand acres of Juniperus virginiana whereas South Dakota had a 

combined juniper estimation (Juniperus virginiana and Juniperus scopulorum) of 124 

thousand acres (Meneguzzo, 2017; Walters, 2017). This combined state total makes up 

40 percent of the 2012 juniper acreage for the eight states located in the Midwestern 

United States. Meneguzzo and Liknes (2015) were also able to show that over a seven 

year time span (2005-2012) juniper forests increased by 287,000 acres in eight states. 

This resulted in an annual loss of 41,000 acres of non-forestland to juniper encroachment 

between 2007 and 2012.  

The FIA provides quality statewide attribute estimates, though there are no 

mapping components provided through this platform. The combination of interpolation 

techniques, remotely sensed data, and FIA plots can provide visual representations of 

juniper on the landscape. This approach has been adopted by using MODIS (or Moderate 

Resolution Imaging Spectroradiometer; 250-meter pixel size) to produce low resolution 

live volume and density maps of juniper (Meneguzzo et al., 2008; Ruefenacht et al., 

2008; Simonsen et al., 2015). Although these maps can identify general patterns over 

large areas at a low resolution, the attribute estimates and maps do not necessarily depict 

actual tree locations. The use of higher resolution data sources (e.g. Landsat; 30-meter 

pixel size) would allow for better visual assessments.  
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Juniper Mapping 

 Through the act of obtaining information about an object or phenomenon without 

having contact with that object or phenomenon, remote sensing becomes a useful tool for 

land cover classification and is commonly used in forest management (Franklin, 2001; 

Giri, 2012). Using remotely sensed images, managers can assess forest cover and stand 

health (Heilman et al., 2002; Wulder et al., 2006), and the resulting information can be 

used for implementing management decisions. Remote sensing of juniper encroachment 

provides land managers with useful distribution maps, quality estimates, and allows for 

the monitoring of site-specific areas. Based on the results of previous research, there are 

multiple data sources and methods that can be used for classification and mapping of 

juniper.  

With very high spatial resolution (VHSR) aerial imagery (0.5 to 1-meter pixel 

size), studies have shown the ability of automated classification methods to classify 

individual junipers with high accuracy, but have also found that limitations as shadow 

effects can influence the detection of clustered trees (Anderson and Cobb, 2004; 

Poznanovic et al., 2014). Sources such as the National Agriculture Imagery Program 

(NAIP) can provide VHSR imagery at a 60 cm resolution for the agricultural growing 

season and are available on two to three year cycles (USDA Farm Service Agency, 

2018). Another image source has included the use of VHSR hyperspectral data. 

Hyperspectral sources contain many spectral bands, which record information in narrow 

wavelength ranges for a more precise spectral separation between materials; allowing for 

the classification of species-specific vegetation. Wylie et al. (2000) was able to map 

woody and herbaceous vegetation, including eastern redcedar, using Airborne Visible 
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Infrared Imaging Spectrometer (AVIRIS), but was limited to a single flight and 

designated two by five kilometer flight path.  

The opening of the Landsat archive, combined with easy-to-access products such 

as Landsat Analysis Ready Data (ARD), have made it possible to continuously monitor 

juniper. Since 1984, the Landsat program has provided 30-meter pixel size images at a 

16-day temporal resolution (Wulder et al., 2016, Wulder et al., 2012). At a 30-meter 

medium resolution, classification of juniper is more successful when a pixel does not 

contain multiple cover types (Sankey and Germino, 2008). When multiple materials (e.g. 

different vegetation types) are within a single pixel, it can be difficult to correctly classify 

the intended material of interest (e.g. juniper), resulting in misclassifications of juniper 

sites as non-juniper and non-juniper sites as containing juniper.  

The approach of fusing multiple data sources has allowed for a better 

representation of land cover characteristics when working within a diverse landscape. 

Sankey et al. (2010) were able to use the fusion of Landsat Thematic Mapper (TM) and 

Light Detection and Ranging (lidar) data to increase their juniper classification accuracy 

while retaining juniper cover information, though they were restricted to a 239 km2 study 

area. A more recent study was able to show the capabilities of using multiple data sources 

to map juniper encroachment at a large extent, approximately 28,303 km2. Wang et al. 

(2017) used a pixel and phenology-based mapping algorithm to analyze Landsat 

(TM/ETM +) and Advanced Land Observing Satellite (ALOS) Phased Array type L-band 

Synthetic Aperture Radar (PALSAR) in order to assess the dynamics of juniper 

encroachment over five historical time periods within a 30 year timeframe. The use of 

PALSAR allowed them to extract boundaries of forests that contained both coniferous 
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and deciduous trees while winter spectral values obtained from Landsat data during the 

winter allowed for the separation of tree types. Although they produced useful results, 

ALOS PALSAR stopped operation in 2011, preventing any future utilization of this data 

source. For management applications, there is a need for the ability to produce accurate 

juniper classification maps with replicable detailed classification methods that allow for 

the assessment of current and future juniper encroachment. 

 

Objectives 

To address these needs, we investigated the classification of two juniper species 

(Juniperus virginiana and Juniperus scopulorum; referred to as “juniper” hereafter) using 

a linear spectral unmixing method on Landsat 8 medium resolution satellite imagery and 

a predictive spatial model. We implemented a workflow for large-scale juniper mapping 

to 14 contiguous counties bordering the Missouri River in southeastern South Dakota and 

northeastern Nebraska for an approximate area of 23,000 km2. Our objectives for this 

study were to: 

1. Develop a practical workflow for large-scale juniper mapping using Landsat 8 

Operational Land Imager (OLI) imagery and partial unmixing techniques. 

2. Compare the classification accuracies from the resulting map based on different 

juniper density thresholds and different types of imagery. 

3. Develop a predictive spatial model for the distribution of low-density juniper 

based on distance to seed source and environmental covariates and determine the 

prediction accuracy. 
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4. Use the resulting maps to evaluate the extent of current juniper establishment and 

the risk of future encroachment. 

 

Research Questions 

We asked the following major research question:  

1. How does the use of winter versus non-winter imagery, and of snow-covered 

versus non snow-covered imagery, affect accuracy when classifying juniper?  

2. What are the primary ecological predictors associated with the distribution of 

low-density juniper across the study area?  

3. Which areas across the landscape are at high risk for future juniper 

encroachment? 
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CHAPTER 2 

 

MAPPING JUNIPER ENCROACHMENT INTO A PRAIRIE LANDSCAPE 

 

Abstract: Eastern redcedars (Juniperus virginiana) have been receiving considerable 

attention recently as their footprint significantly increases within the prairie ecosystems 

of the Great Plains. The encroachment of this species poses a threat to native habitats 

where it alters soil characteristics, limits undergrowth and herbaceous biomass, hinders 

native community regeneration, and negatively affects rangeland production. 

Management is vital to controlling juniper, yet there is a general lack of resources 

providing distribution estimates and site-specific information that is necessary for 

implementing the appropriate management measures at the appropriate scale. In this 

study, we evaluated the classification accuracy for juniper detection using a matched 

filtering technique with Landsat 8 OLI (Operational Land Imager) snow and non-snow 

covered winter imagery (January-March), and snow-free spring imagery (April – June) 

for 2015-2016. We developed a practical workflow for large-scale juniper mapping 

which we applied to two Landsat 8 path/rows (29/30 and 30/30) covering the counties 

bordering the Missouri River in southeastern South Dakota and northeastern Nebraska for 

an approximate area of 23,000 km2. In both path/rows, we found that using snow-covered 

winter images suppressed background spectral signatures and resulted in higher overall 

classification accuracies of 94.5% and 88.9% for juniper densities above 15 percent, 

compared to 91.4% and 85.7% for non-snow covered winter imagery and 57.8% and 
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74.1% for spring imagery. For winter imagery, we successfully captured pixels 

containing juniper density above 50 percent with ≥ 90% detection probability. In images 

containing snow coverage, the juniper true positive rate significantly decreased once 

juniper densities fell below 20 percent, dropping to 48% and 37% respectively for 

path/rows 29/30 and 30/30. This study will allow for the continuous monitoring of 

juniper encroachment in the Upper Great Plains over a large scale while also assisting 

land managers in establishing and implementing the appropriate management measures. 

 

Introduction 

Juniper encroachment, particularly eastern redcedar (Juniperus virginiana,), has 

been receiving considerable attention recently as the distribution of this species 

significantly increases and threatens portions of the prairie ecosystems of the Great 

Plains. The spatial extent of juniper was once greatly restricted by fire, but is now 

expanding into new habitats (Briggs et al., 2002a; Twidwell et al., 2013). A long history 

of fire suppression, land use changes, and fluctuating environmental conditions have all 

contributed to the expansion of the eastern redcedar (Briggs et al., 2002a). The 

encroachment of this juniper species has the potential to alter native grasslands by 

changing soil characteristics, limiting undergrowth and herbaceous biomass, hindering 

native community regeneration, and affecting rangeland forage production (Briggs et al., 

2002b; Gehring and Bragg, 1992; McKinley and Blair, 2008). In order to prevent the 

effects of juniper encroachment on grasslands, management practices such as mechanical 

removal, chemical application, and prescribed burning are utilized for control, serving as 

critical methods for prevention of population expansion (Wilson and Schmidt, 1990). 
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However, mechanical management of juniper by timber cutting or prescribed burning can 

be time consuming, costly, and ineffective; especially as tree size and stand density 

increases (Bidwell et al 2002; Buehring et al., 1971; Ortmann el al., 1998). Accurate 

distribution estimates and updated encroachment maps of juniper may aid in targeting 

susceptible areas for implementing proactive measures and defining appropriate 

management methods for established juniper woodlands, thus saving overall financial 

and labor investments.  

Currently, land managers and state agencies access juniper estimates through the 

Forest Inventory and Analysis (FIA) program of the United States Department of 

Agriculture Forest Service (accessed at www.fia.fs.fed.us). The FIA program collects 

field data on a fraction of one-acre forestland plots within a state, allowing computation 

of yearly tree attribute estimates while providing a complete statewide inventory at five 

year intervals (Burkman, 2009). Meneguzzo and Liknes (2015) used this data to show 

that over a seven year time span (2005-2012) juniper forest increased by 287,000 acres in 

the central United States; this resulted in an annual loss of 41,000 acres of non-forestland 

to juniper encroachment between 2007 and 2012. The FIA data can provide estimates of 

juniper extent and can also be used to develop maps of juniper density. For example, the 

information collected through the FIA process has been combined with MODIS (or 

Moderate Resolution Imaging Spectroradiometer; 250-meter pixel size) imagery to 

interpolate and produce low-resolution live volume and density maps of juniper 

(Meneguzzo et al., 2008; Ruefenacht et al., 2008; Simonsen et al., 2015). Although these 

maps and area estimates are suitable for general assessments of juniper distribution over 

large areas, they do not necessarily depict actual tree locations. Additionally, as the area 
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of interest becomes smaller, the sampling error increases and the reliability of the data 

decreases (O’Connell et al. 2017). 

 As juniper continues to encroach into the grasslands of the Great Plains, higher 

resolution maps are needed to make accurate landscape-level assessments and site-

specific management decisions. Remote sensing has been applied to generate maps and 

support these assessments, but mostly at relatively small spatial extents. Previous studies 

have incorporated very high spatial resolution (VHSR) aerial imagery (Anderson and 

Cobb, 2004; Poznanovic et al., 2014), hyperspectral data (Wylie et al., 2000), and multi-

source fusion of Landsat Thematic Mapper (TM) and Light Detection and Ranging (lidar) 

data (Sankey et al., 2010). A more recent study has shown the potential for mapping 

eastern redcedar at a large scale with the combination of a long wavelength L-band 

Synthetic Aperture Radar (SAR) and Landsat Thematic Mapper/Enhanced Thematic 

Mapper Plus (TM/ETM +) (Wang et al., 2017). Although these studies have provided 

useful results, many of the data sources are temporally or spatially limited, making these 

approaches difficult to apply to other study areas.  

  Landsat provides a readily available data source that allows for the continuous 

monitoring of juniper. Since 1984, the Landsat program has provided 30-meter pixel size 

images at a 16-day temporal resolution (Wulder et al., 2012). Sankey and Germino 

(2008) used Landsat 5 (TM) imagery as single data source and a spectral mixture analysis 

to classify juniper in a 200 km2 area. Though their methods are easily replicable, multiple 

materials within a single pixel can cause misclassification and lead to inconsistent results 

between spatially and temporally different scenes (Sankey et al., 2011). In order for 

juniper encroachment assessment to be applicable for management purposes, there is a 
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need for replicable classification methods that use readily available open source data to 

support continuous, high-accuracy mapping. 

We investigated the classification of two juniper species (Juniperus virginiana 

and Juniperus scopulorum; referred to as “juniper” hereafter) in a prairie landscape using 

a linear spectral unmixing method on Landsat 8 medium resolution satellite imagery. Our 

objectives were to: 1) evaluate the classification accuracy for juniper detection using 

partial unmixing techniques with Landsat 8 OLI (Operational Land Imager) imagery; and 

2) develop a practical workflow for large-scale juniper mapping. We assessed juniper 

detection at multiple densities and image conditions including: consistent snow coverage 

during the non-growing season, no snow coverage during the non-growing season, and 

imagery in the growing season. We then evaluated the replicability of the processes by 

applying the developed workflow to an additional path/row over temporally distinct 

timeframes and reporting the detailed pixel-level classification accuracy results. 

 

Methods 

Study Area 

Our study area covers 14 contiguous counties bordering the Missouri River (nine 

counties in southeastern South Dakota and five counties in northeastern Nebraska; Figure 

2-1). This area has a Köppen climate classification of humid continental (Dfa) (Kottek et. 

al., 2006), which is designated by an annual temperature range of 6-11 °C and an annual 

average precipitation of 498-796 mm (NOAA, 1981-2010). Common vegetation consists 

of mixed grass prairie species such as little bluestem (Schizachyrium scoparium), big 

bluestem (Andropogon gerardii), western wheatgrass (Pascopyrum smithii), sideoats 
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grama (Bouteloua curtipendula), and green needlegrass (Nassella viridula). Woodlands 

are primarily found near drainages and riparian lowlands, with the exception of small 

groves scattered across the prairie uplands. The most common deciduous species includes 

the plains cottonwood (Populus deltoids) with the occasional green ash (Fraxinus 

pennsylvanica) and American elm (Ulmus americana). Juniper species such as Rocky 

mountain juniper (Juniperus scopulorum) and eastern redcedar (Juniperus virginianai) 

are also common (Barker and Whitman, 1988). Steeply sloped drainages disrupt a flat to 

rolling topography comprised largely of agriculture (48%) and herbaceous grasslands 

(39%) producing a fragmented landscape. The primary land uses within our study area 

include the agricultural production of corn, soybeans, and wheat as well as cattle 

ranching.  

 

Data Sources 

We obtained a collection of Landsat 8 Operational Land Imager (OLI) Surface 

Reflectance level-2 imagery (path/rows 29/30 and 30/30; Figure 2-1) containing minimal 

cloud cover (< 10 percent) through the U.S. Geological Survey (USGS) EarthExplorer 

online tool (USGS Earth Explorer, 2017). Images obtained are generated from the 

Landsat Surface Reflectance Code (LaSRC). We investigated each image for anomalies 

(i.e. patches of greenness, cloud shadows) with the provided Level-2 Pixel Quality Band 

and selected three uniform images that covered the study area for each path/row. We 

selected images from two seasonal time periods, including two images from the non-

growing season (January through March) as well as one image within the active growing 

season (April through July). For the non-growing season: we selected one image showing 
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consistent snow coverage and one containing no snow coverage for the study area. Once 

we selected appropriate dates, we then extracted the six bands: band 2 (0.435-0.451 µm, 

blue), band 3 (0.533-0.590 µm, green), band 4 (0.636-0.673 µm, red), band 5 (0.851-

.0879 µm, near infrared), band 6 (1.566-1.651 µm, shortwave infrared), and band 7 

(2.107-2.294 µm, shortwave infrared). Table 2-1 shows the final six images obtained for 

our analyses. 

To reduce any spectral misclassification we constructed a mask for each image 

that subset the study area and excluded any water body features (i.e. streams, rivers, 

ponds and lakes). We identified water bodies using the USGS National Hydrography 

Dataset (NHD), obtained through Geospatial Data Gateway (NRCS, 2017). The mask 

was then used during the classification analyses. 

 

Juniper Classification 

We performed juniper classification using a matched filtering approach with 

ENVI version 5.4 (Exelis Visual Information Solutions, Boulder, Colorado). Matched 

filtering is a partial unmixing process that incorporates user-defined endmembers to 

maximize the response of known spectral indices while suppressing the unknown 

background indices. We performed this classification on each dataset by selecting a pure 

endmember, the selected bands within our image, and an image mask that corresponded 

with the chosen dataset.  

Matched filtering requires only the input of the desired endmember or cover type 

that the user wishes to identify. This differs from conventional linear spectral unmixing 

(LSU) which requires an input of all known endmembers. Previous partial unmixing 
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research has indicated that the mean of manually selected endmembers containing a high 

percentage of target cover outperformed extreme or variant n-dimensional visualizer 

(ND-V) endmember pixels and the mean of all ND-V endmember pixels (Sankey and 

Glenn, 2011). Therefore, we selected ten pixels that were predominantly juniper within 

each path/row (29/30 and 30/30). This process allowed the average spectral signature to 

be obtained, which we used as the endmember input for our matched filtering analyses. 

After selecting the endmember, we began assessing the stacked images for the 

optimal band combinations. Previous studies and preliminary observations suggested that 

a combination of bands 2-5 and band 7 allowed for the best spectral separation between 

juniper and background materials (Vikhamer and Solberg, 2002). We then generated a 

matched filtering image that contained values that represented the relative degree of 

match for each pixel. A value of one signified a perfect match while values closer to zero 

reflected background or non-target materials. 

 Once we completed the matched filtering analysis, we developed a binary juniper 

classification map by designating a threshold for the matched filtering values contained 

within the image. We determined a threshold for each image by sampling a group of user-

defined pixels that contained a high percentage (>50 percent) of juniper cover. We then 

computed the mean Matched Filtering value and standard deviation for the sampled 

pixels and assigned two negative standard deviations from the mean as our threshold. We 

produced a final classification map that contained pixels representing juniper and non-

juniper, with new values of one and zero. 
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Accuracy Assessment 

To assess accuracy we used a random stratified sampling design for our study 

area that allowed us to determine the classification accuracy over a range of juniper 

densities. In doing so, we allocated four strata, which included closed canopy woodlands, 

buffered closed canopy woodlands, planted shelterbelts, and non-woodland areas. We 

digitized the closed canopy woodlands and planted shelterbelts in ArcGIS following the 

guidelines presented in (Bauman et al., 2016) using very high spatial resolution (VHSR) 

60cm National Agricultural Imagery Program (NAIP), 2014 and 2016 aerial imagery. In 

addition to obtaining samples of dense woodland cover, we sought to capture less dense 

samples of open canopied and sporadic trees. To do so, we placed a 90-meter buffer 

around our digitized closed canopy stratum in ArcGIS 10.5; from visual observations, we 

determined this to be an appropriate distance to capture additional low-density juniper.  

Once we defined all the strata within the study area, we generated random points 

within ArcGIS 10.5. We then referenced each random point to a Landsat pixel by 

converting each point to a 30x30 meter polygon and snapping them to the Landsat 8 pixel 

grid. Thereafter, we characterized each polygon using a combination of VHSR imagery, 

which included NAIP 2016 and other sources of winter imagery accessed through Google 

Earth from 2013-2017 (Figure 2-5). Each sample delineation included the recording of 

the land cover type, juniper presence/absence, and the percent of juniper cover within the 

30x30 meter polygon. We delineated 1,643 juniper presence and 2,273 juniper absence 

points for the assessment of classification accuracy at different juniper densities (Figure 

2-2).  
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Field Investigation 

We conducted field investigations during October 2017 to obtain ground 

reference data and gain a better understanding of juniper distribution over our study area. 

Preceding the field investigations, we subset the study area by road accessibility and 

generated 205 random points in ArcGIS 10.5 (ESRI, Inc., Redlands CA). We designated 

the random points as investigation sites where we conducted a 0.5 kilometer driven 

transect. Each transect was divided into three stops, and again each stop was divided into 

a left and right side (six stops per transect). At each stop, we captured a photo with a GPS 

enabled digital camera and recorded vegetation and land cover characteristics (e.g. land 

use, species composition). We also took additional photos at opportunistic stops. Similar 

field census methods were used in (Hutcheson and Rothe, 1977). We collected data for 

252 sites and obtained 1271 photos distributed throughout our study area (Figure 2-2).  

 

Results 

We produced a total of six Landsat 8 juniper classification maps under three 

image conditions (consistent snow coverage during the non-growing season, no snow 

coverage during the non-growing season, and growing season) for two path/rows: 29/30 

and 30/30. Classification maps identified both non-juniper and junipers sites. A visual 

assessment using VHSR imagery and field investigation images found a reasonably 

accurate representation of juniper for all images in the non-growing season (Figure 2-3a, 

b). However, misclassification of non-juniper (i.e. cultivated fields and wetlands) as 

juniper was observed more frequently in images containing no snow coverage (Figure 2-

3a) than it was in images containing consistent snow coverage (Figure 2-3b). 
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Classification maps for the growing season appeared to have a high misrepresentation of 

both juniper and non-juniper sites (Figure 2-3c), which was confirmed during the 

accuracy assessments.  

The matched filtering classification of images containing consistent snow 

coverage during the non-growing season allowed for the best separation of juniper and 

non-juniper and produced the most accurate maps in both path/rows (29/30 and 30/30) 

when juniper density was greater than 15 percent. Accuracy assessments for all six 

juniper classification maps is shown in Table 2-2. We obtained overall accuracy (OA) of 

94.5% and 88.9% for path/rows: 29/30 and 30/30 compared to non-snow coverage during 

the non-growing season (91.4% and 85.7%) and growing season (57.8% and 74.1%). Our 

accuracy assessment for the juniper class indicated that higher producer accuracies (PA; 

the probability that a reference pixel of juniper is correctly classified) were achieved 

during the growing season of 92.1% and 84.7% compared to consistent snow coverage 

during the non-growing season (83.2% and 76.3%) and no snow coverage during the 

non-growing season (70.9% and 70.0%). However, both growing season images had 

significantly lower user accuracies (UA; the probability that a pixel classified as juniper 

actually represents juniper in the reference dataset) of 38.7% and 67.4% compared to 

consistent snow coverage during the non-growing season (96.3% and 99.2%) and no 

snow coverage during the non-growing season (96.8% and 98.3%).  

 The effectiveness of pixel-level matched filtering classification of juniper for non-

growing season imagery was assessed at ten different juniper density groups (Figure 2-4). 

Quantitative pixel-level classifications for images in the active growing season were not 

assessed due to their low user accuracies and the visual unreliability of the output maps 
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(Figure 2-3c). True positive rate of juniper for both image conditions (Figure 2-4a, b) in 

the non-growing season was approximately 90% or higher for pixels containing juniper 

density above 50 percent (Figure 2-5f-j). Once juniper density dropped below 50 percent, 

the true positive rate varied more between each path/row and scene condition than that of 

pixels containing higher densities of juniper. The true positive rate for juniper dropped 

below 50% for images containing no snow coverage before that of imagery containing 

consistent snow coverage during the non-growing season (Figure 2-4a, b). This occurred 

for non-snow covered images when juniper densities were at 20-30 percent (Figure 2-5c; 

path/row: 29/30 and 30/30; 47% and 40%) and at 10-20 percent (Figure 2-5b; 48% and 

37%) when images contained constant snow coverage during the non-growing season. 

Once juniper in pixels became more sporadic or dispersed at a 1-10 percent density 

(Figure 2-5a), the true positive rate was minimal, having a < 13% probability of detection 

for all images. 

 A final Landsat juniper classification map was created by overlaying the juniper 

classification maps produced from snow-covered imagery in path/row: 29/30 and 30/30. 

Our classification map, shown in Figure 2-6a, captures planted juniper while also 

detecting areas of spreading juniper (Figure 2-6b, c). The final classification map also 

shows the capability of the matched filtering technique in separating juniper from 

surrounding deciduous woodlands (Figure 2-6d, e). Pixels with intermixed woodlands 

(deciduous and juniper) were also classified as containing juniper.    
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Discussion 

Our visual and quantitative accuracy assessments support the use of partial 

unmixing techniques with Landsat 8 OLI imagery that contains consistent snow coverage 

during the non-growing season for mapping juniper. Our classified maps attained higher 

overall classification accuracies when imagery in the non-growing season was used. Our 

use of a single data source and partial unmixing methods allowed us to obtain comparable 

juniper classification results to that of methods using multi-source data (Sankey et al., 

2010; Wang et al., 2017) and hyperspectral data (Wylie et al., 2000). When images of the 

non-growing season were used, we successfully captured pixels containing juniper 

density above 50 percent with a 90% and greater detection probability, and we also 

obtained a true positive rate of 50% or greater for pixels containing juniper density above 

15 percent. These quantitative pixel-level classification results are comparable to Wang et 

al. (2017) who saw a 90% detection probability for pixels containing eastern redcedar 

(Juniperus virginiana) density above 60 percent and a 30% detection probability when 

pixel densities where between 10 to 20 percent. This study ultimately allowed us to 

efficiently map juniper over a large spatial scale with the use of single source data that is 

readily available and analysis-ready (e.g. Landsat Level-1 and Level-2 data) when other 

data sources and methods were inapplicable.  

 Our pixel-level accuracy assessments depicted a distinctly occurring trend. As the 

overall juniper density decreased within a pixel so did the probability of correctly 

classifying that pixel as containing juniper. Yet, the probability of correctly classifying a 

pixel as containing juniper remained high for pixels containing an increased level of 

juniper density. This observation can also be noted in the recent study of Wang et al. 
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(2017), where they suspected the unrecognition of pixels was influenced by juniper 

height and the omission of woodlands that did not meet their definition of a forest. 

However, in this study the loss of accuracy for low-density juniper (i.e. < 20 percent) can 

be attributed to the threshold we set after our match filtering classification. If the 

threshold is decreased the probability of positively identifying lower density pixels would 

increase, but at the expense of increasing the classification of non-juniper sites as juniper 

(i.e. false positives). Low-density juniper can be positively associated with an increase in 

vegetation and background heterogeneity where as an increase in juniper density results 

in lower background vegetation (Briggs et al., 2002b; Gehring and Bragg, 1992). This 

may influence the partial spectral unmixing classification as more non-juniper spectral 

signatures mask the spectral signatures of junipers within the pixel.  

Our Landsat juniper classification maps produced higher overall classification 

accuracies for images during the non-growing season compared to images obtained 

during the growing season. This can be attributed to smaller differences in spectral 

signatures between juniper and other types of vegetation and woodlands during the 

growing season in comparison to the winter months, when juniper was the only green 

vegetation (Wang et al., 2017). We were also able to obtain a better spectral separation of 

juniper and non-juniper when images containing consistent snow coverage were used 

compared to images containing no snow coverage during the non- growing season. The 

snow covered pixels contained higher reflectance values in the visible wavelengths and 

near-infrared wavelengths (Dozier and Painter, 2004; Vikhamar and Solberg, 2003). This 

was almost contrary to the reflectance values of juniper, which were lower in the visible 

wavelengths and near-infrared wavelengths in comparison to that of the snow covered 
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pixels. This circumstance allowed us to obtain better spectral separation of juniper and 

non-juniper. We also suspected the snow cover aided in the classification of juniper by 

reducing variation in the background non-juniper matrix, permitting our material of 

interest (i.e. juniper) to be the primary driver of the scene covariance (Boardman et al., 

1995). 

 The workflow developed in this study will allow for the assessment of juniper 

encroachment at a landscape level while facilitating regional reassessment of 

management polices (Roberts et al., 2018). Juniper encroachment maps aid in the 

monitoring of site-specific areas, allowing for the allocation of appropriate management 

decisions for protection of future grassland loss (Bauman et al., 2016; Wimberly et al., 

2018). Our juniper classification data and maps will establish a baseline for future 

studies. Although this study focused on only two Landsat path/rows and a single date, our 

partial unmixing techniques of moderate resolution imagery can be applied at a larger 

extent and/or over extended durations. The use of remote sensing to address the dynamic 

encroachment of juniper at a large scale has only recently been investigated in the 

southern Great Plains (Wang et al., 2017; Wang et al., 2018), but is yet to be explored in 

the northern Great Plains. With a better understanding of the drivers associated with 

juniper encroachment, current ecological knowledge (Briggs et al., 2002b; Pierce and 

Reich, 2010), and the use of accurate juniper maps, we can manage encroaching juniper 

species more efficiently by promoting proactive management procedures while focusing 

on future encroachment susceptibility (Greene and Knox, 2014).  

While our study focuses primarily on mapping juniper encroachment in a portion 

of the northern Great Plains, woody plant encroachment is threatening other North 
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American grassland communities (Knapp et al., 2008; Ratajczak et al., 2012; Van Auken, 

2009). Accurate and timely data on the distribution of woody plant encroachment is 

essential for assessing the economic and ecological impacts of woody encroachment 

(Anadón et al., 2014; Zavaleta, 2000) and will assist in establishing and implementing the 

appropriate management measures (Bidwell et al., 2002; Ortmann et al., 2007; Smith, 

2011). Juniper species were notably the fundamental woody plant threatening grassland 

habitats in our region (Engle et al., 2008). We were able to develop maps that accurately 

depict the distribution of juniper by using partial unmixing techniques of Landsat 8 OLI 

imagery. Our practical workflow will allow for the continuous monitoring of juniper 

encroachment over a large scale while allowing managers to focus on sensitive or site-

specific areas. 
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Figures 

 

Figure 2-1. Study area composed of nine counties in southeastern South Dakota and five 

counties in northeastern Nebraska. Landsat 8 OLI path/rows: 30/30 (a) and 29/30 (b) 

cover the 14 contiguous counties. 
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Figure 2-2. Visually interpreted juniper presence and juniper absence pixels for 

classification accuracy assessment along with field investigation sites.  
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Figure 2-3. Qualitative assessment of juniper classification maps produced by Landsat 8 imagery during the non-growing season 

containing no snow coverage (a) and consistent snow coverage (b), and during growing season. Pixels classified as juniper maps 

are displayed over 2016 NAIP imagery. 
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Figure 2-4. Pixel-level quality assessment for the classification of juniper by density with 

non-growing season imagery. Path/row: (a) 29/30 and (b) 30/30. 
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Figure 2-5. Examples of juniper density at 1-10 (a), 10-20 (b), 20-30(c), 30-40 (d), 40-50 (e), 50-60 (f), 60-70 (g), 70-80 (h), 80-90 (i), 

and 90-100 percent (j). 30 x 30 meter polygons are layered over NAIP and Google Earth imagery.  
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Figure 2-6. Final juniper classification map (a) showing close-up views (b-e) of regions 1, 2 in (a). (b, c) show   

juniper spreading from planted shelterbelts. (d, e) show juniper separation from deciduous woodlands. A 

Google Earth image dated 4/11/2016 shows junipers as green while leaf off deciduous trees remain brown.  
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 Tables 

Table 2-1. Landsat 8 OLI Surface Reflectance Level-2 imagery used for the classification of juniper. Cloud cover 

and snow cover represent the percent of the scene covered by either cloud or snow/ice.  

Product Identifier  Date Path/row Cloud cover  Snow cover 

LC08_L1TP_029030_20150107_20170302_01_T2 2015/01/07 29/30 1.55 94.75 

LC08_L1TP_029030_20150328_20170227_01_T1 2015/03/28 29/30 1.11 0.00 

LC08_L1TP_029030_20160602_20170223_01_T1 2016/06/02 29/30 7.41 0.00 

LC08_L1TP_030030_20160101_20180131_01_T1 2016/01/01 30/30 0.05 97.91 

LC08_L1TP_030030_20160305_20170224_01_T1 2016/03/05 30/30 0.45 0.00 

LC08_L1TP_030030_20160524_20180131_01_T1 2016/05/24 30/30 0.00 0.00 
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Table 2-2. Accuracy assessment of six juniper classification maps based on classified juniper presence and 

juniper absence pixels. Assessments are evaluated using all juniper densities greater than 15 percent. Shown 

underlined, overall accuracy (OA) represents the total classification accuracy for both juniper presence and 

juniper absence pixels. 

Path/Row Condition Classified pixel data Reference pixel data   User Accuracy (UA) 

      Juniper      

absence 

Juniper        

presence 

Row       

totals 

  

        

29/30 Snow Juniper absence 887 57 944 0.9396 

    Juniper presence 11 283 294 0.9626 

    Column totals 898 340 1238   

    Producer accuracy (PA) 0.9878 0.8324   0.9101 

            
 

29/30 Non-

snow 

 

Juniper absence 890 99 989 0.8999 

  Juniper presence 8 241 249 0.9679 

  Column totals 898 340 1238   

    Producer accuracy (PA) 0.9911 0.7088   0.8500 

            
 

29/30 Growing Juniper absence 403 27 430 0.9372 

    Juniper presence 495 313 808 0.3874 

    Column totals 898 340 1238   

    Producer accuracy (PA) 0.4488 0.9206   0.6847 

            
 

30/30 Snow Juniper absence 978 198 1176 0.8316 

    Juniper presence 5 639 644 0.9922 

    Column totals 983 837 1820   

    Producer accuracy (PA) 0.9949 0.7634   0.8792 

            
 

30/30 Non-

snow 

  

Juniper absence 973 251 1224 0.7949 

  Juniper presence 10 586 596 0.9832 

    Column totals 983 837 1820   

    Producer accuracy (PA) 0.9898 0.7001   0.8450 

            
 

30/30 Growing Juniper absence 640 128 768 0.8333 

    Juniper presence 343 709 1052 0.6740 

    Column totals 983 837 1820   

    Producer accuracy (PA) 0.6511 0.8471   0.7491 
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CHAPTER 3 

 

RISK ASSESSMENT OF JUNIPER WITH THE USE OF SUSCEPTIBILITY 

AND CLASSIFICATION MAPS 

 

Abstract: The eastern redcedar (Juniperus virginiana), a widespread native juniper 

species, has become an ecological and economic burden on the prairie ecosystems of the 

Great Plains. The encroachment of this woody plant reduces rangeland production by 

decreasing herbaceous biomass and affecting natural ecosystem functions as it alters 

native plant communities, microclimates, and soil characteristics. Accurate distribution 

maps of juniper and predictions of areas at risk for future expansion are needed to support 

proactive management measures. Therefore, our objectives were to: 1) evaluate the pixel-

level classification accuracy of remotely sensed juniper maps, 2) model the distribution 

of low-density juniper and determine the prediction accuracy, and 3) assign juniper 

susceptibility indices over a large-scale assessment site. The study area included counties 

bordering the Missouri River across southeastern South Dakota and northeastern 

Nebraska covering an approximate area of 23,000 km2. We used a matched filtering 

technique with Landsat 8 Operational Land Imager snow-covered winter imagery 

(January-March) to classify juniper. Snow-covered winter images suppressed background 

spectral signatures and resulted in an overall classification accuracy of 94% when juniper 

densities were above 15 percent. We observed a decrease in the probability of 

characterizing juniper when densities within the pixel were below 20 percent. When 
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juniper densities were below 10 percent characterizing juniper at the 30-meter pixel level 

was minimal as there was only an 11% probability of correctly classifying juniper. To 

better identify areas with low-density juniper cover, we developed a model of low-

density juniper with Random Forests based on environmental variables and distance to 

seed sources for mapping areas where future encroachment is likely. Model accuracy was 

high with an area under the curve (AUC) of 0.884. Results indicated that distance to 

nearest seed source and an abundance of surrounding juniper were the most important 

predictors. This study will provide agencies and land managers with information needed 

to address juniper encroachment in the northern Great Plains and with methods to expand 

the mapping project to new areas. 

 

Introduction 

 Expansion of woody plants has threatened the natural ecosystem functions of 

North American grasslands (Knapp et al., 2008; Ratajczak et al., 2012; Van Auken, 

2009). Notably the eastern redcedar (Juniperus virginiana), a prevalent juniper species, 

has affected carbon storage, soil characteristics, and plant communities within the prairie 

ecosystem of the Great Plains (McKinley and Blair, 2008; Norris et al., 2001; Pierce and 

Reich, 2010). In the central United States, juniper encroachment has resulted in a loss of 

205,000 acres of non-forestland between 2007 and 2012 (Meneguzzo and Liknes, 2015). 

These changes have not only had an ecological impact but also has been damaging 

economically (Anadón et al., 2014; Yokomizo et al., 2009; Zavaleta, 2000). Increasing 

encroachment limits vegetation undergrowth and herbaceous biomass; hindering 

rangeland forage production (Briggs et al., 2002b; Gehring and Bragg, 1992). Simonsen 
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et al. (2015) reported that ranchers could see up to a 75% decline in forage resulting in an 

80% decline in their returns due to eastern redcedar encroachment (Fuhlendorf et al., 

2008; Ortman et al., 1998). Oklahoma State University (OSU) had projected a total 

economic loss of $447 million for the state in 2013 (Oklahoma Conservation 

Commission, 2008). The economic and ecological consequences of juniper encroachment 

will continue to increase unless preventative measures are implemented. 

Management of encroaching woody plants is crucial especially when attempting 

to control a quickly expanding juniper footprint. Proactive and reactive management are 

two approaches for controlling juniper (Simonsen et al., 2015). Proactive management 

measures are implemented before the junipers have established or are in a vulnerable 

seedling state and consist of high intensity goat grazing, haying, or low-intensity 

prescribed burning (Simonsen et al., 2015; Smith, 2011; Wilson and Schmidt, 1990). On 

the other hand, reactive management practices are implemented in response to an already 

encroached landscape. Mechanical removal by timber cutting, herbicides, and intense 

prescribed burning are methods commonly utilized for controlling established juniper 

sites (Simonsen et al., 2015; Smith, 2011; Wilson and Schmidt, 1990). Reactive 

management of juniper is costly, time consuming, and may become ineffective as stand 

density and tree size increase (Bidwell et al 2002; Buehring et al., 1971; Ortmann el al., 

1998). Therefore, proper planning is essential for using the most efficient management 

methods in a timely manner to save financial and labor investments.  

Present-day juniper maps can aid in targeting areas for proactive management 

procedures, and accurate distributions allow for quality assessments of established 

juniper sites. Remote sensing is a common way of obtaining useful information 
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pertaining to forest stand condition that can be applied for management purposes 

(Franklin, 2001; Giri, 2012). Recently, juniper encroachment has been investigated with 

multiple data sources including very high spatial resolution (VHSR), aerial imagery 

(Anderson and Cobb, 2004; Poznanovic et al., 2014), hyperspectral data (Wylie et al., 

2000), multispectral data (Sankey and Germino, 2008), and multi-source fusion of active 

sensors and multispectral data (Sankey et al., 2010; Wang et al., 2017). Although the 

results from these studies are useful, the data sources and methods are often spatially 

limited. In addition, there is a general lack of understanding as to the minimum juniper 

sizes and densities that can be identified by the classification methods. Wang et al. (2017) 

has explored this question over a large extent and observed within their designated 

assessment sites, a loss in juniper recognition when tree densities decreased below 20 

percent. For management implications, it is necessary to consistently produce accurate 

juniper classification maps and to know the characteristics of the trees that can be 

consistently mapped.  

As with most invasive species, the management of juniper for either economic or 

ecological objectives is best carried out during the early stages or even before 

encroachment has begun (Simberloff, 2003; Yokomizo et al., 2009). However, remotely 

detecting low-density juniper stands may become more difficult once the spatial 

resolution of the data source becomes coarser (i.e. 60cm VHSR to 30m Landsat). 

Alternatively, maps of juniper susceptibility can supplement juniper encroachment maps 

by representing areas at risk of low-density juniper encroachment. Greene and Knox 

(2014), predicted areas susceptible to juniper encroachment within a riparian setting and 

observed eastern redcedar was more likely to encroach higher energy depositional 
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surfaces containing sandy soils and a lower density of deciduous trees. However, this 

study was conducted in only one of the many habitats for redcedar (Lawson, 1990; 

Noble, 1990), and larger scale predictive models are needed for more broader application.  

We investigated the classification of two juniper species (Juniperus virginiana 

and Juniperus scopulorum; referred to as “juniper” hereafter) with the intent of mapping 

low-density juniper susceptibility indices in a mixed landscape. Our objectives were to: 

1) evaluate the pixel-level classification accuracy for juniper detection using partial 

unmixing techniques with Landsat 8 OLI (Operational Land Imager) imagery, 2) model 

the distribution of low-density juniper and determine the prediction accuracy based on 

distance to seed source and environmental covariates, and 3) assign juniper susceptibility 

indices over a large-scale assessment site. 

 

Methods 

Study Area 

Our study area covered 14 contiguous counties (nine counties in southeastern 

South Dakota and five counties in northeastern Nebraska; Figure 3-1) all bordering the 

Missouri River. This area has a Köppen climate classification of humid continental (Dfa) 

(Kottek et. al., 2006), which is designated by an annual temperature range of 6-11 °C and 

an annual average precipitation of 498-796 mm (NOAA, 1981-2010). Common 

vegetation consists of mixed grass prairie species such as little bluestem (Schizachyrium 

scoparium), big bluestem (Andropogon gerardii), western wheatgrass (Pascopyrum 

smithii), sideoats grama (Bouteloua curtipendula), and green needlegrass (Nassella 

viridula). Woodlands are primarily found near drainages and riparian lowlands with the 
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exception of small groves scattered across the prairie uplands. The most common 

deciduous species includes the plains cottonwood (Populus deltoids) with the occasional 

green ash (Fraxinus pennsylvanica) and American elm (Ulmus americana). Juniper 

species such as Rocky mountain juniper (Juniperus scopulorum) and eastern redcedar 

(Juniperus virginianai) are also common (Barker and Whitman, 1988). Steeply sloped 

drainages disrupt a flat to rolling topography comprised largely of agriculture (48%) and 

herbaceous grasslands (39%) producing a fragmented landscape. Primary land uses 

within our study area include the agricultural production of corn, soybeans, and wheat as 

well as cattle ranching.  

 

Data Sources 

We used multiple data sources to extract predictor variables for our low-density 

juniper susceptibility analysis. We used the National Elevation Dataset (NED) with 30-

meter spatial resolution to derive topographical factors. The NED is created by United 

States Geological Survey (USGS) and was accessed through the US Department of 

Agriculture (USDA) Geospatial Data Gateway (NRCS, 2017).  

We used the gridded Soil Survey Geographic (gSSURGO) database obtained 

through the Geospatial Data Gateway to extract multiple soil characteristics. Gridded 

SSURGO contains the same data provided in the standard United States Department of 

Agriculture Natural Resources Conservation Service (USDA-NRCS) Soil Survey 

Geographic (SSURGO) database but is formatted as a Environmental Systems Research 

Institute, Inc. (ESRI) file geodatabase and is represented in a 10 meter spatial resolution 

raster format.  
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We obtained 30-year normals (1981-2010) of climatic factors including average 

annual minimum temperature (C°), average annual maximum temperature (C°), and 

average annual precipitation (cm) from the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) data. PRISM is based on an interpolation model that 

produces approximately four kilometer spatial resolution interpolations of annual climatic 

parameters using data from meteorological stations and a digital elevation model (DEM). 

The PRISM model is originated by the PRISM Climate Group of Oregon State 

University and can be accessed through the PRISM website (PRISM Climate Group, 

2017).  

We retrieved land cover data at a 30-meter spatial resolution from the 2016 

Cropland Data Layer (CDL). CDL is generated by the Department of Agriculture, 

National Agricultural Statistics Service (NASS) and can be accessed through the 

CropScape portal (USDA-NASS Cropland Data Layer, 2016). We identified surface 

water features using the USGS National Hydrography Dataset (NHD). NHD is provided 

at a scale of 1:24,000 by the United States Geologic Survey (USGS) and can be accessed 

through the National Map Download viewer (USGS NHD, 2017). We obtained Landsat 8 

Operational Land Imager (OLI) Surface Reflectance level-2 imagery (path/rows 29/30 

and 30/30) from January 2015 to July 2016. Images are provided at a 30-meter spatial 

resolution with minimal cloud cover (< 10 percent) through the Earth Explorer portal 

(USGS Earth Explorer, 2017).  

 

Juniper Classification 
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 We produced a juniper classification map following the workflow described in 

Chapter 2 of this thesis.  We began with obtaining a Landsat 8 image for each path/row: 

29/30 and 30/30 (Figure 3-1), that contained consistent snow cover for the study area 

(Table 3-1). We performed the juniper classification using a matched filtering approach 

in ENVI version 5.4 software (Exelis Visual Information Solutions, Boulder, Colorado). 

Two matched filtering images were produced, which we then converted to binary juniper 

classification maps by designating a threshold for the matched filtering values contained 

within each image. We determined a threshold by sampling a group of user-defined 

pixels that contained juniper and computed the mean matched filtering value and standard 

deviation. Our threshold was then defined as being two standard deviations below the 

mean, which generated two binary outputs. The two binary outputs were merged in 

ArcGIS 10.5 (ESRI, Inc., Redlands CA) to create a final Landsat juniper classification 

map that contained pixels representing juniper and non-juniper. 

 

Ecological Predictor Variables 

Previous research has suggested multiple environmental conditions that are 

associated with juniper habitats. We examined 15 predictor variables shown in Table 3-2 

that were hypothesized to be associated with juniper encroachment. These factors 

included percent slope, aspect, mean annual temperature, total annual precipitation, 

percent sand, percent silt, percent clay, soil available water storage, depth to restricted 

layer, root zone depth, soil drainage class, percent agriculture, distance to juniper, percent 

juniper, and distance to surface water. We processed these variables in ArcGIS 10.5 by 

converting or resampling to a 30-meter spatial resolution raster.  



43 

 

 We used the NED to derive topographical variables. Percent slope represented the 

gradient of the physical landscape (Anderson, 2003). We also used aspect to indicate the 

direction the slope faced (Lawson, 1990; Schmidt and Stubbendieck, 1993). We 

reclassified aspect into nine categories including flat (zero percent slope), cardinal 

directions (N, E, S, W), and ordinal directions (NE, SE, SW, NW). 

 We used the PRISM dataset to extract climatic variables. We used the mean 

minimum temperature and mean maximum temperature of each pixel to derive the mean 

annual temperature (Anderson, 2003). We than created a precipitation map for the study 

area with values representing total annual precipitation (Owensby et al., 1973). 

 We used the gSSURGO database to derive soil characteristics. Soil texture is 

represented as three separate factors including percent sand, percent silt, and percent clay 

(Wang et al., 2018). A combination of these three factors can be used to define the soil 

classification within the soil profile (Anderson, 2003). We used the available water 

storage estimate (AWS) which represented the volume (mm) of plant available water the 

soil can store within a 0-150 cm soil profile (Wang et al., 2018). We used depth to 

restricted layer as a measure in the distance (cm) within the soil profile showing any 

restricting features that may constrain root growth or the movement of water and air. We 

used the root zone depth as a measure to the depth at which plants root systems can 

effectively obtain nutrients and water. We also extracted soil drainage class, which is 

characterized into seven classes (excessively drained to very poorly drained) and reflects 

the natural frequency and duration of wet periods for the soil (Soil Science Division 

Staff, 2017).  
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 We used the 2016 CDL dataset to extract the percent agriculture within a five by 

five-pixel window surrounding an individual 30-meter pixel. The CDL is an annually 

produced raster, which has been georeferenced and contains crop-specific land cover 

data. We denoted agriculture as any human use of the landscape for cultivated crops, 

haying, and/or alfalfa fields.  

 We used our Landsat juniper classification map to generate two juniper 

conditioning factors. We used the Euclidean distance tool in ArcGIS 10.5 to create a 

conditioning raster where each pixel was the Euclidean distance to the closest juniper 

source (Bragg and Hulbert, 1976). We also used our Landsat juniper classification map to 

determine the percent juniper within a five by five pixel window.  

 We used the National Hydrography Dataset (NHD) to map the distance to the 

nearest surface water (Holthuijzen and Sharik, 1985). We used the Euclidean distance 

tool to create a raster where each pixel value was the Euclidean distance to the closest 

surface water feature. 

 

Juniper Training and Validation Data 

To assess the accuracy of our Landsat juniper classification map for the entire 

study area, we created a random stratified sampling design for our study area that would 

allow us to determine the classification accuracy of all juniper densities. We allocated 

four strata, which included closed canopy woodlands, buffered closed canopy woodlands, 

planted shelterbelts, and non-woodland areas. We digitized the closed canopy woodlands 

and planted shelterbelts in ArcGIS 10.5 following the guidelines demonstrated in 

(Bauman et al., 2016) using very high spatial resolution (VHSR) 60cm National 
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Agricultural Imagery Program (NAIP), 2014 and 2016 aerial imagery. In addition to 

obtaining samples of dense woodland cover, we sought to capture less dense samples of 

open canopied and sporadic trees. We placed a 90-meter buffer around our digitized 

closed canopy stratum in ArcGIS 10.5; from visual observations, we determined this to 

be an appropriate distance for additional captures.  

Once we defined all the strata within the study area, we generated random points 

within ArcGIS 10.5. We then referenced each random point to a Landsat pixel by 

converting each point to a 30x30 meter polygon and snapping them to the Landsat 8 pixel 

grid. We characterized each polygon using a combination of VHSR imagery, which 

included NAIP 2016 and other sources of winter imagery accessed through Google Earth 

from 2013-2017. Our delineation of samples included the recording of the land cover 

type, juniper presence/absence, and the relative percent of juniper cover. We obtained 

1,643 juniper presence and 2,275 juniper absence points for the assessment of pixel-level 

classification accuracy at different juniper densities. 

We created an additional dataset for model training consisting of juniper and non-

juniper metrics. We began by supplementing our previous accuracy assessment dataset 

with an additional 1,000 points. We created new random sampling points in ArcGIS 10.5 

that we evenly distributed to our closed canopy woodland and buffered closed canopy 

woodlands strata. We then delineated the new supplemental points by following the 

previously mentioned delineation steps. Our new dataset included a combination of our 

accuracy assessment points and supplemental points. We then removed points from the 

new dataset that had juniper density greater than 15 percent to represent 865 low-density 

juniper present and 2,468 juniper absent points (Figure 3-2). Finally, we executed a 
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sampling process in ArcGIS 10.5, which extracted values from our predictor variables for 

a final model training dataset.  

 

Juniper Encroachment Model 

A random forests classifier is an ensemble-learning algorithm (Breiman, 2001). 

This approach has been used in developing susceptibility models (Chen et al., 2017; 

Ismail et al., 2010; Wang et al., 2015; Youssef et al., 2016) has also been applied to 

numerous predictive applications and across multiple disciplines (Belgiu and Drăguţ, 

2016; Biau and Scornet, 2016; Prasad et al., 2006).  

The random forests algorithm begins by separating input data into two groups. 

The first group consists of two thirds of the dataset and is used as internal training 

samples (in-bag samples), while the remaining one third of the dataset (out-of-the bag 

sample) is used for cross-validation and estimating the out-of-bag (OOB) error. The in-

bag samples individually trains a decision tree without pruning and splitting each node by 

using a user-defined number of predictor variables (Mtry). This process is repeated 

multiple times until a user-defined number of decision trees (Ntree) is reached. Each 

decision tree rule is used to cast a vote on a test feature with the maximum number of 

voters for the target becoming the final classification. (Breiman, 2001).  

We built our random forests model using R statistical software version 3.4.1 (R 

Core Team, 2017) and the randomForest package (Liaw and Wiener, 2002). We set our 

Ntree value to 500, as a preliminary analysis showed a good stabilization in the errors 

before our maximum tree number was attained. Our Mtry value was set as the default, 

which is the square root of the total number of the predictor variables used in the model.  
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Model Assessment 

We used the Hosmer-Lemeshow goodness-of-fit test to evaluate our model 

calibration. This test has been commonly used in risk and susceptibility modeling (Bai et 

al., 2010; Catry et al., 2010; Fang et al., 2013). Hosmer-Lemeshow test categorizes 

subgroups (referred to as deciles of risk) and performs a Pearson chi-square statistic on 

the estimated expected and observed frequencies. A close relation of the expected and 

observed frequencies reflects a model with good fit (Hosmer and Lemeshow, 2000).  

We also evaluated model predictions for our low-density juniper model using 

receiver operating characteristics (ROC). ROC examines multiple classifying cutpoints 

by plotting the probability of detecting a true positive (sensitivity) against a false positive 

(1-specificity) (Hosmer and Lemeshow, 2000). A curve is then generated, allowing us to 

assess the area under the curve (AUC), which is a measure of discrimination or the 

likelihood the model will predict target and non-target sites. Hosmer and Lemeshow 

(2000) suggest AUC values represent discrimination as being none (0.5), acceptable (0.7-

0.8), excellent (0.8-0.9), or outstanding (0.9-1.0). 

We investigated the model performance of a full model and compared it to the 

performance of models with manually removed variables (Plant, 2012). We implemented 

this task in an effort to eliminate unnecessary variables while improving our final model 

computation time. We first began by removing strongly correlated predictor variables 

followed by a trial and error process in which we independently excluded the remaining 

variables. We found the final model to have as much predictive power as our full model 

with a minimal effect on the modeling error.  
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Results 

Juniper Classification  

Our final Landsat juniper classification map (Figure 3-3) represented juniper and 

non-juniper for the entire study area. We identified the true positive detection rate (i.e. 

the proportion of referenced positives that are correctly classified as positives) of juniper 

by using our accuracy assessment dataset and grouping the points by juniper density. The 

true positive and false negative rate in Figure 3-4 indicated a decrease in classification 

accuracy as juniper density within the pixel decreased. True positive rate for juniper was 

90% and greater when pixels contained a juniper density above 50 percent. Once juniper 

density dropped below 50 percent, the true positive rate decreased to 87% for juniper 

between 40-50 percent, 77% for juniper between 30-40 percent, 63% for juniper between 

20-30 percent, and 43% for juniper between 10-20 percent. As the juniper decreased to 1-

10 percent density, the true positive rate was minimal at 11%. The summary 

classification assessment for our Landsat 8 juniper classification map shown in Table 3-3 

indicates overall accuracy (OA) was respectively 94% when evaluated using all juniper 

densities greater than 15 percent.  

 

Juniper Encroachment Model  

Our full model obtained an out-of-bag (OOB) error rate of 15.33%. After 

removing correlated and redundant variables our final model contained eight predictor 

variables: distance to juniper, percent juniper, total annual precipitation, percent slope, 

percent agriculture, soil available water storage, mean annual temperature, and aspect. 
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The OOB estimate of error rate for our final model was 15.2% and showed as much 

predictive accuracy as our full model. Our overall random forest error rate shown in 

Figure 3-5 indicates when the model is applied to a new data source; the model is 

estimated to have an overall prediction accuracy of 84.4%. In addition, our model 

obtained an OOB class error rate of 7.2% for non-juniper (juniper absence) and 36.9% for 

low-density juniper (juniper presence).  

The variable importance of the final eight predictor factors are listed in Table 3-3 

by descending order of mean decrease in accuracy. Distance to juniper was observed to 

have the highest conditional importance in our model (51.71) with a strong negative 

relationship between low-density juniper and the distance to a seed source (Figure 3-7a). 

We observed low-density junipers with larger distances (> 1000 meters) from a seed 

source were typically immature planted sources and were not associated with mature 

trees. Juniper percentage (36.81) had the second to highest importance with a strong 

positive relationship (Figure 3-7b), which suggested there was an increase in low-density 

juniper when multiple mature seed sources were in near proximity. Total annual 

precipitation (28.99) was observed to have a negative relationship (Figure 3-7c) and was 

followed by percent slope (26.40) with a positive relationship (Figure3-7d) and percent 

agriculture (25.11) with a negative relationship (Figure 3-7e). Our three variables with 

lowest importance included soil available water storage (15.67) with a negative 

relationship (Figure 3-7f), mean annual temperature (13.14) with a positive relationship 

(Figure 3-7g), and aspect with the lowest importance (6.86) and no evident relationship 

(Figure 3-7h).  
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  We used the Hosmer-Lemeshow goodness-of-fit test to evaluate the calibration 

of our final model. The P-value for the Hosmer-Lemeshow test was greater than 0.05 (χ² 

= 5.8565, df = 8, P-value = 0.6633) signifying the final model was well calibrated. We 

also used the ROC to evaluate model predictions, and accuracy was high with an AUC of 

0.884 (Figure 3-8). The Hosmer-Lemeshow test and AUC results indicated that the final 

low-density juniper model was a good predictor of low-density juniper distributions.  

  We used the final low-density juniper model to produce our juniper susceptibility 

map shown in Figure 3-9. We reclassified the map into five groups: very low (0.000-

0.075), low (0.075-0.176), moderate (0.176-0.380), high (0.380-0.694), and very high 

(0.694-1.000) using the Jenks natural breaks system. Our juniper susceptibility map was 

able to represent areas of encroaching juniper (Figure 3-10b, d) that were not classified as 

juniper by our Landsat juniper classification map (Figure 3-10a, c). Our juniper 

susceptibility map characterized the unclassified areas as being of moderate to very high 

susceptibility. In conjunction with our Landsat juniper map, Table 3-4 shows an 

additional 62.6% of the study area was characterized as being at very low susceptibility, 

20.3% was at low susceptibility, 9.4% at moderate susceptibility, 4.6% at high 

susceptibility, and 3.1% at very high susceptibility. These results indicate a total of 

177,003 ha were at high to very high susceptibility of juniper encroachment in addition to 

that of what has already been classified. 

 

Discussion 

 Our final Landsat juniper classification map exhibited a high overall classification 

accuracy (OA) of 94%, which is comparable with previous juniper mapping studies 
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(Sankey et al., 2010; Wang et al., 2017; Wylie et al., 2000). However, we found that the 

probability of detecting juniper decreases as juniper density decreases within a pixel, 

which Wang et al. (2017) also observed. When juniper density was between 10-20 

percent, the detection probability (i.e. true positive rate) was marginal at 43% while 

juniper densities below ten percent remained relatively undetected with an 11% detection 

probability. Even though detection probability was low for low-density juniper, our 

Landsat juniper classification map played a key role in the mapping of low-density 

juniper susceptibility by generating the top two predictor variables: distance to juniper 

and juniper density. These variables, in combination with climate, land use, soil 

characteristics, and topographical factors allowed us to obtain a high prediction accuracy 

for our low-density juniper model with an area under the curve (AUC) of 0.884. With the 

accurate prediction of juniper distributions, we have the ability to map present juniper 

distribution and highlight areas that are at risk of future encroachment.  

 The likelihood of correctly classifying a pixel as containing juniper decreased as 

the juniper density within a pixel decreased. This effect was more prevalent once juniper 

density within pixels decreased below 50 percent. Wang et al. (2017) had similar results 

as they observed a 90% detection probability for eastern redcedar density above 60 

percent and a gradual decrease in detection probability once eastern redcedar density 

decreased below 60 percent. Failure to identify juniper pixels was suspected to be an 

influence of juniper height and the omission of woodlands that did not meet their 

definition of a forest (Wang et al., 2017). However, in this study the inability to 

consistently capture low-density juniper (< 20 percent) was influenced by the threshold 

designated during our classification process. Lowering the threshold can result in an 
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increase in the misclassification of pixels (i.e. false positives), as lower matched filtering 

values can be associated with pixels that contain multiple spectral signatures. As the 

number of spectral signatures within the pixel increase, there is a higher potential for the 

partial spectral unmixing classification to confuse the spectral signatures of the target 

signature (i.e. juniper) for similar or more dominate signatures within that pixel (i.e. non-

juniper). Nonetheless, this level of assessment is still beneficial to juniper management as 

it allows for the targeting of established juniper sites with the notion that as juniper 

density increases so does the ecological impact (Chapman et al., 2004; Pierce and Reich, 

2010; Frost and Powell, 2011). 

  Our Landsat juniper classification map allowed us to extract predictor variables 

that greatly influenced the low-density juniper model. This was not totally unexpected as 

low-density juniper stands are usually associated with seed dispersal from established 

juniper sites (Holthuijzen et al., 1987; Yao et al., 1999). Holthuijzen and Sharik (1985) 

were able to show that within abandoned fields, eastern redcedar density decreased as the 

distance from a seed source increased. This finding would support our susceptibility map 

as having very high susceptibility indices for sites close to dense juniper pixels and 

decreasing indices with increasing distance from established juniper. Additionally, 

Owensby et al. (1973) saw a significant increase in the establishment of eastern redcedars 

within fields that were already heavily invaded due to an increase in reproducing 

individuals. This would suggest areas with a higher percent juniper would contain a 

higher number of seed producing individuals and in turn would increase the likelihood 

for new juniper establishment.  
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Although predictor variables related to juniper cover received the highest 

conditional importance within our model, climatic and topographical factors had effects 

as well. The 30 year normal of total annual precipitation had the third highest importance 

within our model, while mean annual temperature was second to last. We observed a 

slight negative affect for precipitation of which Owensby et al. (1973) found precipitation 

to have a statistically significant effect on eastern redcedar encroachment, indicating for 

every additional inch of precipitation the invasion rate was decreased by 0.2 trees per 

acre. Mean annual temperature was not a large influencing factor as we only observed a 

four-degree difference between our 30 year norms (46-50 °F) across the study area. 

Within our model, we also observed differences in the effects of topographical factors as 

percent slope was fourth in conditional importance and aspect was found to have the least 

importance. Eastern redcedar can be associated with moderate to steep slopes (Anderson, 

2003), which can contain shallow soils and provide less competition and protection from 

fire (Bryant, 1989; Pierce and Reich, 2010). Some studies have shown aspect to influence 

juniper establishment (Lawson, 1990; Schmidt and Stubbendieck, 1993), whereas others 

have shown aspect to have no influence on juniper establishment (Tunnell et al., 2004). 

In our study, aspect was the least important conditioning factor and no evident 

relationship. Variable importance ranking for our remaining variables fell considerably 

below that of our highest ranked variables, yet removal from the model resulted in a 

slight reduction in model performance. 

 Our random forest model achieved high overall prediction accuracy, an indication 

of a well performing model. Our model contained the lowest error for non-juniper, which 

accounts for the majority of the study area. Model error for low-density juniper was 
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higher than that of non-juniper sites, but still showed considerable improvement for 

depicting low-density juniper when compared to using our Landsat juniper classification 

map alone. A higher model error for low-density juniper reflected our inability to account 

for specific factors that also influence juniper establishment. Such factors that have been 

shown to be influential to juniper establishment include livestock grazing practices (Van 

Auken, 2009; Owensby et al. 1973; Schmidt and Stubbendieck 1993), which can 

influence the rate of eastern redcedar establishment. With the inclusion of more detailed 

data on land use practices and additional types of disturbances (e.g., cultivation, haying, 

and pasture abandonment), it may be possible to increase low-density susceptibility 

accuracy by accounting for the colonization patterns associated with such disturbances 

(Yao et al., 1999). 

Our Landsat juniper classification maps allowed us to characterize current 

distributions of established juniper within our study area while also giving us information 

to support the prediction of low-density juniper. The association between an increase in 

juniper density and the time and cost of efficiently managing juniper encroachment 

emphasizes the need to focus on low-density sites (Bidwell et al 2002; Ortmann el al., 

1998). By implementing proactive measures, as well as defining appropriate management 

methods on established juniper, managers can efficiently and effectively address juniper 

encroachment. Predictive maps such as the ones generated this study can support these 

efforts by highlighting areas in the landscape that currently have the greatest risk of 

juniper encroachment to prioritize them for proactive management. 
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Figures 

 

Figure 3-1. Study area composed of nine counties in southeastern South Dakota and five 

counties in northeastern Nebraska. Landsat 8 OLI path/rows: 30/30 (a) and 29/30 (b) 

cover the 14 contiguous counties. 
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Figure 3-2. Model training samples for random forests low-density juniper model.  
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Figure 3-3. Landsat 8 juniper classification map derived from consistent snow covered 

winter imagery. 
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Figure 3-4. Pixel-level quality assessment for juniper classification by density. 
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Figure 3-5. The error rate for low-density juniper model (out-of-bag (OOB; black line); 

juniper absence (red line); and juniper presence (green line)).  
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Figure 3-6. Mean decrease accuracy of final eight low-density conditioning factors (listed 

in descending order) assigned by our random forests model. The eight predictor variables 

listed are in correspondence of distance to juniper, percent juniper, total annual 

precipitation, percent slope, percent agriculture, soil available water storage, mean annual 

temperature, and aspect.  
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Figure 3-7. Partial dependence plots for eight predictor variables used in the final 

random forests model for predicting low-density juniper. 
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Table 3-8. ROC curve to validate low-density juniper model.  
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Figure 3-9. Juniper susceptibility map covering the study area. Level of juniper susceptibility is represented 

by five indices, while including the positive juniper classifications. 
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Figure 3-10. A close up view of the juniper susceptibility map. (a, c) show low-density juniper missed by the 

Landsat images, while (b, d) show the low-density being represented by the juniper susceptibility map. 
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Tables 

Table 3-1. Landsat 8 OLI Surface Reflectance Level-2 imagery used for the classification of juniper. Cloud 

cover and snow cover represent the percent of the scene covered by either cloud or snow/ice. 

Product Identifier  Date Path/row Cloud cover  Snow cover 

LC08_L1TP_029030_20150107_20170302_01_T2 2015/01/07 29/30 1.55 94.75 

LC08_L1TP_030030_20160101_20180131_01_T1 2016/01/01 30/30 0.05 97.91 
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Table 3-2. Summary of variables included in random forests low-density juniper model. Type of data and measurement scales for variables 

includes: Nominal (N), Ordinal (O), Interval (I), and Ratio (R). 

Variable Scale  Data Source Description 

Response variable       

JUNIP N VHSR Imagery Presence/absence of juniper 

Predictor variables       

Aspect O DEM Compass direction for which a slope faces (from 1: Level/flat; 2: North to 9: Northwest) 

percSlope R DEM Percent slope (rise divided by the run, multiplied by 100) 

Precipann R PRISM total annual precipitation (cm) 

MAT I PRISM Mean annual temperature (°F) 

AWS0_150 R gSSURGO Available water storage estimate in standard zone 5 (0-150 cm depth; cm) 

rootznemc R gSSURGO Depth within the soil profile roots can effectively extract water and nutrients for growth 

DRAINCLASS O gSSURGO Natural drainage conditions of the soil by the frequency and duration of wet periods. 

SAND R gSSURGO Percent sand 

SILT R gSSURGO Percent silt 

CLAY R gSSURGO Percent clay 

DEP2RESALYR R gSSURGO Depth to restricted layer in soil profile 

CDL_1_5x5 R CDL Percent agriculture pixels within a 5x5 window; includes: cultivated, hayed, and alfalfa  

DistJUNIP R Juniper Map Euclidean distance to juniper pixel (m) 

JUNIP_5x5 R Juniper Map Percent of juniper pixels within a 5x5 window 

DistWATER R NHD Euclidean distance to a water body (m) 
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Table 3-3. Accuracy assessment of Landsat juniper classification map based on characterized 

juniper presence and juniper absence pixels. Assessments are evaluated using all juniper 

densities greater than 15 percent. Shown underlined, overall accuracy (OA) represents the 

total classification accuracy for both juniper presence and juniper absence pixels. 

Classified pixel data Reference pixel data   User Accuracy (UA) 

  
Juniper      

absence 

Juniper        

presence 

Row       

totals 

  

    

Juniper absence 2256 183 2439 0.9250 

Juniper presence 18 770 788 0.9772 

Column totals 2274 953 3227   

Producer accuracy (PA) 0.9921 0.8080   0.9377 
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Table 3-4. Summary of juniper susceptibility indices covering the study area.  

Susceptibility Indices  Pixels Hectares Percent cover (%) 

Very Low 15920793 1432871.3 62.6 

Low 5152010 463680.9 20.3 

Moderate 2384631 214916.8 9.4 

High 1172905 105561.5 4.6 

Very High 793794 71441.46 3.1 
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CHAPTER 4  

THESIS CONCLUSIONS 

Overview 

The rapid encroachment of woody plants is a threat to the remaining prairies of the Great 

Plains (Engle et al., 2008). An ecosystem that was once heavily converted to croplands 

(Samson and Knopf, 1994) is now being converted to woodlands (Briggs et al., 2002b; 

Norris et al., 2001). The monitoring of woody plant encroachment is essential in order to 

assess current and future risks while allowing for effective management planning. We 

evaluated the accuracy of juniper classification maps for southeastern South Dakota and 

northeastern Nebraska and developed a workflow that allows for continuous and large-

scale juniper monitoring. We also modeled the distribution of low-density juniper and 

determined the prediction accuracy based on juniper metrics and additional ecological 

factors with which juniper is associated. Finally, we used our low-density juniper model 

to map the locations at highest risk of future juniper encroachment across the study area. 

These methods are can be extended to different areas and the information obtained 

through these maps gives agencies and land managers the ability to more proactively 

address juniper encroachment in the northern Great Plains. 

 

Objectives 1 & 2 

Our first two objectives were to develop a practical workflow for large-scale 

juniper mapping using Landsat 8 Operational Land Imager (OLI) imagery and partial 

unmixing techniques and compare the classification accuracies from the resulting map 

based on different juniper density thresholds and different types of imagery. Our overall 
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assessments support the use of partial unmixing techniques with snow covered Landsat 8 

imagery for mapping juniper. Our use of a single source of multispectral, optical-infrared 

remote sensing data and partial unmixing methods allowed us to obtain a high overall 

classification accuracy of 94%, when using winter imagery. Our accuracy was 

comparable to studies that used multi-source data (Sankey et al., 2010; Wang et al., 2017) 

and hyperspectral data (Wylie et al., 2000). We successfully captured pixels containing 

juniper density above 50 percent with a high detection probability and retained an 

adequate detection rate for pixels containing juniper density above 15 percent. These 

quantitative pixel level classification results are comparable to Wang et al. (2017) who 

also saw a loss in the detection probability once pixel level juniper density decreased 

below 20 percent. We applied our methods to two Landsat scenes (path/rows: 29/30 and 

30/30) and obtained comparable results. This study ultimately allowed us to accurately 

map juniper over a large assessment area with the use of a single source data when other 

data sources and methods were inapplicable.  

Through visual and quantitative assessment, overall classification accuracies were 

highest for non-growing season Landsat images. This finding was visually apparent as 

our matched filtering classification of growing season images exhibited a 

misrepresentation of both juniper and non-juniper sites. We attributed this to a less 

significant variation in the observed spectral signatures between juniper and other 

actively growing vegetation within these months (i.e. April-June). Wang et al. (2017) was 

able to show these spectral differences between junipers and other actively growing 

vegetation with the use of vegetation indices such as normalized difference vegetation 

index (NDVI) and enhanced vegetation index (EVI). We also observed that pixels 
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surrounding juniper that contained snow in the months of January-March had higher 

reflectance values than those that contained the juniper, allowing us to obtain better 

separation of juniper and non-juniper. Dozier and Painter (2004) and Vikhamar and 

Solberg (2003) stated that snow covered pixels contain higher reflectance values in the 

visible wavelengths and near-infrared wavelengths. If we compare that to the reflectance 

values of the juniper stands, it is the contrary as we see lower reflectance values in the 

visible wavelengths and near-infrared wavelengths. Overall, classification results for 

images containing either snow or no snow during the winter months (January-March) 

were similar, however when snow cover was constant the pixel level juniper true positive 

rate increased.  

 

Objective 3 

 Our third objective was to develop a predictive spatial model for the distribution 

of low-density juniper based on distance to seed source and environmental covariates and 

determine the prediction accuracy. We used random forests to construct our low-density 

juniper model. Our initial full model obtained an out-of-bag (OOB) estimate of error rate 

of 15.33%. By removing correlated and redundant variables, we were able to improve our 

final model computation time with no influence on our final model predictive accuracy as 

we obtained an OOB of 15.2%. Our final model contained eight ecological predictors, 

which included distance to juniper, percent juniper, total annual precipitation, percent 

slope, percent agriculture, soil available water storage, mean annual temperature, and 

aspect. When we compared the prediction of low-density juniper of our model to the 

Landsat juniper classification map, we found a considerable improvement in accuracy. 
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Though model predictions of low-density juniper were still below that of our high-density 

classifications, the model accurately predicated areas that did not have low-density 

juniper, which accounted for the majority of the study area. Overall model fit was good 

and prediction accuracy was high as we obtained an area under the curve (AUC) of 

0.884, which indicated a strong capability to discriminate between sites with and without 

low-density juniper. With an accurate map of high-density juniper distributions and the 

additional ability to account for low-density juniper, we were able to assess present 

juniper status and future juniper susceptibility to encroachment. 

Even though Landsat juniper classification map did not reliably identify areas 

with low juniper densities, it allowed us to extract our top two predictor variables for 

low-density juniper: distance to juniper and juniper density. These two factors greatly 

influenced our low-density juniper model, as low-density juniper is commonly found in 

close proximity to established juniper stands (Holthuijzen and Sharik, 1985; Holthuijzen 

et al., 1987; Yao et al., 1999). In addition to these juniper variables, total annual 

precipitation was found to have the third highest importance within our model. This 

environmental factor has previously been shown to have a slight influence on the rate of 

juniper encroachment (Owensby et al., 1973). Other ecological factors such as slope have 

been influential to juniper establishment, as steeper slopes tend to have shallower soils 

provide areas of less competition, allowing juniper to establish more easily (Anderson, 

2003; Bryant, 1989; Pierce and Reich, 2010). Percent slope was fourth in variable 

importance and was followed by percent agriculture, soil available water storage, mean 

annual temperature, and aspect. Even though the remaining variables were not ranked as 
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high in variable importance, removal of the variable resulted in an increase in the model 

error and a decrease in the low-density juniper predictive accuracy. 

 

Objective 4 

 Our fourth objective was to use the resulting maps to evaluate the extent of 

current juniper establishment and the risk of future encroachment. We were able to 

incorporate our low-density juniper model and our conditional rasters to develop juniper 

susceptibility indices that applied to our study area. Our indices represented juniper 

susceptibility; values closer to zero reflected very low susceptibility and values closer to 

one reflected very high susceptibility. We reclassified our final susceptibility map into 

five groups: very low, low, moderate, high, and very high using the Jenks natural break 

system. The study area was then assessed with a majority of the area at a very low 

susceptibility. 

 Through visual assessments of the five susceptibility indices, we obtained a better 

understanding of what our low-density juniper susceptibility map represented (Appendix 

A). Sites within our study area that were assessed with a susceptibility of very high were 

observed to contain established juniper ranging in densities from 1 to 100 percent. These 

sites represented pixels that contained high density of juniper that were captured with our 

Landsat juniper classification map in addition to low-density juniper sites (< 20 percent) 

which were not captured through our juniper classification methods. High susceptibility 

indices indicated areas that were prone to low-density juniper establishment as they 

contained low-density juniper or were in close vicinity of established juniper trees. 

Moderate susceptibility indices contained a low proportion of low-density juniper pixels 
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primarily between 1 to 10 percent densities. Though a majority of these moderate 

susceptibility sites did not contain juniper, they were near an encroaching edge and do 

deserve the attention of managers when preventative juniper encroachment procedures 

are warranted (i.e. prescribed burns, mowing, and haying). Low susceptibility indices 

contained a low number of low-density juniper and were more associated with sites of an 

increased distance from established juniper or near edges of sites that were observed to 

undergo regular disturbances (i.e. crop cultivation or hayed fields). Very-low 

susceptibility was indicated for areas located long distances from established juniper or 

were primarily sites that were observed to undergo regular disturbances.  

Our moderate to very-high juniper susceptibility indices reflect both areas that 

contain juniper and are of at some risk of juniper encroachment within a relatively short 

time frame. The start of this time frame is designated by the dated imagery of which is 

used during the juniper classification procedures. Our juniper susceptibility map allows 

for managers to target and monitor areas of juniper susceptibility while giving them the 

ability to better designate the appropriate management procedures by investigating the 

extent and degree of juniper susceptibility within a specific area. In addition, with the 

ability to capture established juniper and the ability to assign risk to an areas 

susceptibility to juniper encroachment, managers can make an educated assessment to the 

total area affected by juniper.                              

 With our Landsat juniper classification map, we found the study area to be 

occupied by approximately 3.5% juniper. When we investigated our juniper susceptibility 

map, we perceived areas of high to very high risk of future juniper encroachment (low-

density juniper) as being twice the size of that which is already classified as juniper by 
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our Landsat juniper classification map. The total area at risk of juniper encroachment 

equates to the potential loss of acres doubling to that of what is already lost to the 

previously classified juniper. The total loss of acres in our study area to juniper would be 

nearly half the number of acres already occupied by juniper within eight states for 2012 

(Meneguzzo and Liknes, 2015). As juniper density and encroachment increases, the time 

and cost associated with managing juniper increases (Bidwell et al 2002; Ortmann el al., 

1998). As we continue to observe an increase in the areas susceptible to low-density 

juniper and the rising costs associated with an increasing juniper density, we express the 

need for the management of these areas susceptible to juniper encroachment.  

 

Management Implications 

 The results of our research support the use of matched filtering of Landsat 8 

Landsat 8 OLI (Operational Land Imager) Level-2 imagery for classifying juniper in the 

northern Great Plains. We recommend the use of images containing consistent snow 

coverage during the non-growing months (January-March) as that is when overall 

classification accuracies were highest. We note there may be challenges with acquiring 

adequate images during these months that follow those conditions, as consistent snow 

cover is limited and cloud cover may be high. Therefore, images obtained during the non-

growing season containing no snow cover are adequate as long as they maintain a 

homogenous appearance (no anomalies or growing vegetation). If this approach is taken, 

we would emphasize the potential for an increase in the misclassification of non-juniper 

sites unless non-juniper sites (i.e. cultivated fields, waterbodies, etc.) are masked from the 

image.  
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 Identification of low-density juniper is essential for implementing proactive 

management practices. By implementing prescribed burns and haying in response to 

areas at the most risk, managers can prevent additional acres lost to juniper 

encroachment. However, the probability of detecting low-density juniper with medium 

resolution imagery (i.e. Landsat) decreases as the juniper density decreases. Once juniper 

density is below ten percent the probability of detection becomes minimal. Therefore, we 

recommend the combined use of a Landsat juniper classification combined with 

prediction of low-density juniper from ecological models. A low-density juniper map 

allows for the representation of juniper encroachment risk at the landscape scale and 

allows managers to obtain the information needed to target high-risk areas for carryout 

the necessary proactive measures. By targeting the appropriate management methods on 

juniper susceptible and established sites, managers can efficiently and effectively 

maintain juniper encroachment in the northern Great Plains.  

 Our practical workflow and juniper classification data will allow for the 

continuous monitoring of juniper encroachment while establishing a baseline for further 

studies. Increasing the monitoring zone to additional areas experiencing an expanding 

juniper include but are not limited to: the Nebraska Sand Hills and into western portions 

of Nebraska, counties of Pennington, Meade, Haakon, and Ziebach bordering the 

Cheyenne River of South Dakota. As areas containing higher densities of juniper were 

mentioned, multiple areas across both states contain small and scattered pockets of 

juniper, which pose a potential risk of future expansion. With an appropriate monitoring 

program set in place for regions with high concentrations of juniper and defining 
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secluded areas, land managers can work with local and state policy makers in establishing 

an appropriate framework focused around the management of juniper. 

 The dynamics of juniper encroachment at a state level has only recently been 

studied in the southern Great Plains (Wang et. al., 2018) and is yet to be evaluated in the 

northern Great Plains. With the use of recent juniper distributions maps and replicable 

mapping methods, the assessment of juniper distributions over multiple historical time 

periods will allow for the indication of juniper encroachment patterns as well as illustrate 

the direction juniper encroachment is headed. With the knowledge of the dynamics for 

juniper encroachment in the northern Great Plains, land managers will be able to build 

upon the predictive model presented in this study, allowing for stronger predictive power 

in defining areas susceptible to juniper encroachment. 
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Appendix A. Juniper susceptibility indices and definition of indices represented in juniper 

susceptibility map. 

Indices Range Definition 

Very Low 0.000-0.075 Areas of increased distances from established juniper and/or are 

sites that were observed to undergo regular disturbances. 

              

Low 0.075-0.176 Areas of increased distances from established juniper or are near 

edges of sites that were observed to undergo regular disturbances. 

              

Moderate 0.176-0.380 Areas contain a low number of low-density juniper (1-10%) with 

a majority of sites not containing juniper but are near an 

encroaching juniper edge 

              
High  0.380-0.694 Areas that are prone to low-density juniper establishment as they 

contain low-density juniper (< 20%) or are in close vicinity of 

established juniper. 

              
Very High 0.694-1.000 Areas contain established juniper ranging in densities from 1 to 

100 percent. 
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