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detections, for visualization purpose, were overlaid on the false-color composite 

image of Landsat 8 band 7 (red), band 5 (green), and band 3 (blue). ................. 184 
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ABSTRACT 

BIOMASS BURNING IN THE CONTERMINOUS UNITED STATES: A 

COMPARISON AND FUSION OF ACTIVE FIRE OBSERVATIONS FROM POLAR-

ORBITING AND GEOSTATIONARY SATELLITES FOR EMISSIONS 

ESTIMATION 

FANGJUN LI 

2018 

Biomass burning is an important source of atmospheric greenhouse gases and aerosol 

emissions that significantly influence climate and air quality. Estimation of biomass-

burning emissions (BBE) has been limited to the conventional method in which 

parameters (i.e., burned area and fuel load) can be challenging to quantify accurately. 

Recent studies have demonstrated that the rate of biomass combustion is a linear function 

of fire radiative power (FRP), the instantaneous radiative energy released from actively 

burning fires, which provides a novel pathway to estimate BBE. To obtain accurate and 

timely BBE estimates for near real-time applications (i.e., air quality forecast), the 

satellite FRP-based method first requires a reliable biomass combustion coefficient that 

converts fire radiative energy (FRE), the temporal integration of FRP, to biomass 

consumption. The combustion coefficient is often derived in controlled small-scale fire 

experiments and is assumed a constant, whereas the coefficient based on satellite 

retrievals of FRP and atmospheric optical depth is suggested varying in a wide range. 

Undoubtedly, highly variable combustion coefficient results in large uncertainty of BBE 

estimates. Further, the FRP-based method also depends on high-spatiotemporal-

resolution FRP retrievals that, however, are not available in any active fire products from 
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current polar-orbiting and geostationary satellites due to their sampling limitations. To 

address these challenges, this study first investigates the combustion coefficient for 

landscape-scale wildfires in the Conterminous United States (CONUS) by comparing 

FRE from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) 

and the Geostationary Operational Environmental Satellite system (GOES) with the 

Landsat-based biomass consumption. The results confirms that biomass consumption is a 

linear function of FRE for wildfires. The derived combustion coefficient is 0.374 kg · MJ-

1 for GOES FRE, 0.266 kg · MJ-1 for MODIS FRE, and 0.320 kg · MJ-1 considering both 

GOES and MODIS FRE in the CONUS. Limited sensitivity analyses indicate that the 

combustion coefficient varies from 0.301 to 0.458 kg · MJ-1, which is similar to the 

reported values in small fire experiments. Then, this study reconstructs diurnal FRP cycle 

to derive high-spatiotemporal-resolution FRP by fusing MODIS and GOES FRP 

retrievals and estimates hourly BBE at a 0.25°×0.3125° grid across the CONUS. The 

results indicate that the reconstructed diurnal FRP cycle varies significantly in magnitude 

and shape among 45 CONUS ecosystems. In the CONUS, the biomass burning annually 

releases approximately 690 Gg particulate matter (smaller than 2.5 µm in diameter, 

PM2.5). The diurnal-FRP-cycle-based BBE estimates compare well with BBE derived 

from Landsat burned areas in the western CONUS and with the hourly carbon monoxide 

emissions simulated using a biogeochemical model over the Rim Fire in California. 

Moreover, the BBE estimates show a similar seasonal variation to six existing BBE 

inventories but with variable magnitude. Finally, this study examines potential 

improvements in fires characterization capability of the Visible Infrared Imaging 

Radiometer Suite (VIIRS), which is the follow-on sensor of the MODIS sensor, for 
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integrating VIIRS FRP retrievals into the FRP-based method for BBE estimation in 

future work. The results indicate that the VIIRS fire characterization capability is similar 

across swath, whereas MODIS is strongly dependent on satellite view zenith angle. 

VIIRS FRP is generally comparable with contemporaneous MODIS FRP at continental 

scales and in most fire clusters. At 1-degree grid cells, the FRP difference between the 

two sensors is, on average, approximately 20% in fire-prone regions but varies 

significantly in fire-limited regions. In summary, this study attempts to enhance the 

capability of the FRP-based method by addressing challenges in its two parameters 

(combustion coefficient and FRP), which should help to improve estimation of BBE and 

advance our understanding of the effects of BBE on climate and air quality. This research 

has resulted in two published papers and one paper to be submitted to a peer-reviewed 

journal so far. 
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1.1. Overview of Biomass Burning in the Conterminous United States 

Biomass burning is the combustion of organic matters, releasing energy stored by 

photosynthesis and generating smokes and water vapor (Pyne et al., 1996). It profoundly 

influences society, economy, the biosphere, the atmosphere, the Earth radiation budget, 

and climate. Wildfires directly cause fatalities and destroy properties, resulting in great 

economic losses (Thomas et al., 2015), increase soil erosion rates, triggering potential 

disastrous post-fire mudslide (Cannon & Gartner, 2005), and produce toxic pollutants 

that potentially contaminate water supplies, after rainfalls (Smith et al., 2011). In the 

biosphere, fire plays a critical role in shaping vegetation distributions and in determining 

vegetation species composition at broad scales (Bond & Keeley, 2005; Bond et al., 2005; 

Thonicke et al., 2001).  

Furthermore, biomass burning is a significant source of atmospheric greenhouse 

gases and aerosols, which greatly affect climate and air quality. Global biomass burning 

annually releases, on average, approximately 2.2 Pg carbon emissions (approximately 

23% of fossil-fuel carbon emissions in 2014 (Boden et al., 2017)), which are mainly 

contributed by fires in the tropics (84%) and boreal regions (9%) (van der Werf et al., 

2017). As with greenhouse gases from burning fossil fuels, biomass-burning greenhouse 

gases (i.e., carbon dioxide, methane, etc.) warm the Earth by increasing absorption of 

solar radiation and the infrared radiation emitted from Earth surface (Jacobson, 2014). 

The smoke aerosols (i.e., particulates) reflect solar radiation (Kaufman et al., 2002), 

significantly influence cloud-formation processes and precipitation (Kaufman et al., 

2002), reduce visibility in local ground and air transportations, and degrade regional air 

quality and threaten public health (Johnston et al., 2016; Lelieveld et al., 2015). 
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Biomass burning is a global phenomenon. Lit naturally by lightning strikes or set 

accidentally and/or intentionally by humans, fire burns in most vegetated terrestrial areas 

with available fuels and conductive weather (Bowman et al., 2009). Analyses of long-

term fire proxies (i.e. charcoal and tree rings) suggest that historical fire activity was 

mainly driven and constrained by climate and the climate-induced changes in vegetation 

during the past 21,000 years (Daniau et al., 2012; Marlon et al., 2013., Power et al., 

2008), and was greatly influenced by human land use during the past 2000 years (Marlon 

et al., 2008). During the past three decades, the length of fire weather season has 

significantly increased in one-quarter of global vegetated lands (Jolly et al., 2015). 

However, satellite-based fire observations indicate that global fire activity has shown a 

general decreasing trend during the past decade (Andela et al., 2017; Earl & Simmonds, 

2018), with an annual mean burned area of approximately 350 million hectares (Giglio et 

al., 2013). Nevertheless, global fire activity is projected to significantly increase at mid-

to-high latitudes in North Hemisphere and decrease at low latitudes by the end of 21st 

century (Flannigan et al., 2013; Krawchuk et al., 2009; Moritz et al., 2012).  

This research mainly focuses on biomass burning in the Conterminous United 

States (CONUS). In the CONUS, fire mainly burns in the Southeast, the central-to-south 

parts of the great plain, and the West (Figure 1-1); whereas fire is very limited in the 

Northeast where burnings were widespread and frequent historically (Pyne, 1982). 

During a year, burning starts in the Southeastern CONUS in January and February, then 

moves northward, especially in Kansas and Oklahoma States, from March to May, and 

continues to migrate to most regions of the Western CONUS during summer months, and 
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finally returns to the Southeastern CONUS during late autumn and winter months (Figure 

1-1a, b).  

 

Figure 1-1. Spatiotemporal patterns of biomass burning in the CONUS. (A) 

Spatiotemporal pattern of the lightning-caused fires. (B) Spatiotemporal pattern of the 

human-caused fires. (C) Spatial distribution of the percentage of fires ignited by humans. 

(D) Seasonality of the lightning-caused and human-caused fires. (Note that (a-d) are 

copied from Balch et al. (2017) that is based on 20-year fire records from state and 

federal agencies from 1992-2012 (Short, 2014)). (E) The mean annual density (units: 

count · year-1 · km-2) of 1-km MODIS (Terra and Aqua satellites) active fire detections at 
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a 0.25°×0.25° grid cell from 2002-2016. (F) The 30-m Landsat-based mean annual total 

burned area from 1984 to 2013 (copied from Hawbaker et al. (2017)). 

 

Humans purposefully and/or accidentally cause most fires, and lightning strikes 

naturally ignite the rest in the CONUS (Figure 1-1c, d). In the past two decades, humans 

are responsible for approximately 84% of all fires, whereas the lightning strikes only 

account for a small portion (Balch et al., 2017). The lightning-caused fires mainly occur 

during summer months in the Western CONUS, especially in the forest-dominated 

mountainous regions. In contrast, human-caused fires occur throughout the entire year 

across most regions of the CONUS, especially in the Eastern CONUS because humans 

manage fire for a variety of purposes. Farmers set fires to clear agriculture residuals (i.e., 

rice in California and South Mississippi Valley, sugarcane in Lousiana and Florida, etc.) 

after harvest and before planting new crops (Baucum et al., 2002; Kross et al., 2008; 

Miller et al., 2010). Ranchers burn dead biomass in pastures (i.e., tall grass in the Flint 

Hills in Kansas and Oklahoma) to promote growth of new grasses for grazing 

(Fuhlendorf & Engle, 2004). The U.S. Forest Service employs prescribed fires to reduce 

fuel loads and fuel continuity to decrease wildfire risk (Pollet & Omi, 2002), to enhance 

wildlife habitats (Beck et al., 2009), to restore the fire-adapted ecosystems (Allen et al., 

2002; Baker, 2006), and to control invasive plant species (Keeley, 2006) in the public 

lands.  

Fire regimes in the CONUS have varied greatly in the past century due to human 

activity and climate change. Since the start of U.S. Forest Service in 1905 for the purpose 

of controlling and combating wildfires, the annual total number of fires and total burned 
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area had decreased, reaching the lowest in the late 1960s (Littell et al., 2009; 

Schoennagel et al., 2004). Meanwhile, extensive exclusion and suppression of wildfires 

promoted unnatural fuel accumulation (Dodge, 1972; Schoennagel et al., 2004). In the 

past several decades, enhanced fuel aridity (Abatzoglou & Williams, 2016) and 

lengthened fire weather seasons (Jolly et al., 2015) due to increase in temperature and 

water vapor deficit have resulted in significantly increasing larger and severer wildfires 

(Dennison et al., 2014; Donovan et al., 2017) and longer fire seasons (Westerling 2006, 

2016) in the Western CONUS, especially in forests. The fire suppression cost has 

increased by approximately 10 times (not considering the inflation rate of US dollar) in 

the past three decades and reached the historically highest cost of approximately three 

billion US dollars in 2017 (National Interagency Fire Center; 

https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf). During the same 

period, fires annually burn, on average, approximately 3.1 million hectares across the 

CONUS, and the annual total burned area increased by 50% every decade (Hwabaker et 

al., 2017) regardless of no significant change in the annual total number of fires (National 

Interagency Fire Center; https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html). As 

the increase in annual burned area, the annually consumed biomass across the CONUS 

has increased approximately 2.87 Tg per year since 1995 (Zhang et al., 2014). In the 

CONUS, biomass burning annually releases, on average, approximately 18 Tg carbon 

emissions that account for only 1% of the annual global carbon emissions (van der Werf 

et al., 2017).  

Although biomass burning in the CONUS is not a significant source of global 

biomass-burning emissions (BBE) compared to the tropical regions (i.e., Africa, South 
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America, and Equatorial Asia), it has been well recorded and observed for several 

decades, and extensively studied based on ground, airborne, and satellite datasets. These 

long-term fire datasets and study findings provide an essential basis for improving the 

existing methods and/or developing new methods for estimating biomass-burning 

emissions. This is the main reason why this study chooses the CONUS as the main region 

of interesting. 

 

1.2. Challenges for Estimating Biomass-Burning Emissions 

BBE estimation depends on availability and quality of fire-related datasets. Since 

the 1980s, BBE has been conventionally estimated as the product of burned area, the fuel 

loading, the fraction of biomass consumed, and emissions factors (Seiler and Crutzen, 

1980), which is mathematically described in equation (1). 

BBE A B C EF                                                    (1) 

where BBE is the total mass of an emission species (units: g), A is the total burned area 

(units: m2), B is fuel load per unit area (g · m-2), C is combustion completeness (unitless, 

the percentage change in fuel before and after burning), and EF is the emission factor of 

an emission species(units: g · kg-1, the mass of the emission species released from 

burning per unit biomass). Prior to the satellite era, BBE estimation had been limited to 

local small scales while the estimation at broad scales were of high uncertainty due to the 

scarcity of measurements and observations of the four parameters in equation (1). In 

general, BBE at regional-global scales was roughly estimated by extrapolating results 

from local experiments based on certain statistical information (i.e., population, food 

supplies, agriculture land requirements, etc.) (Seiler & Crutzen, 1980; Crutzen & 
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Andreae, 1990; Hao et al., 1990). In the satellite era, satellite observations of fires and 

vegetation properties have enabled the capability of mapping hotspots (Prins & Menzel, 

1992; Justice et al., 2002) and burned area (Roy et al., 2002; Tansey et al., 2004) and 

estimating live fuel loads at broad scales (van der Werf et al., 2006; Zhang et al., 2008), 

which greatly improve the accuracy of BBE estimation. In particular, the availability of 

global fire products, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) 

fire products, has promoted a variety of regional and global BBE products, like the 

widely used Global Fire Emissions Database (GFED) (van der Werf et al., 2017), for 

instance. 

Although large improvements have been made to estimate the four parameters in 

the equation (1), particularly burned area (Mouillot et al., 2014), it is still challenging to 

accurately estimate BBE using the conventional method. The satellite-based burned area 

products are often affected by obscuration of cloud and tree canopy (Boschetti et al., 

2004; Roy et al., 2008), and fuel loads based on vegetation indices miss dead fuels, as 

well as fuels under tree canopy. Moreover, it is very difficult to estimate spatially explicit 

combustion completeness in landscape wildfires (Veraverbeke & Hook, 2013). In 

addition, the widely used emissions factors measured in labs could significantly differ 

from those retrieved from the airborne-based observations of wildfires (Liu et al., 2017).  

The satellite-retrieved fire radiative power (FRP), the instantaneous radiative 

energy released from fire, provides alternative ways to estimate BBE. Controlled fire 

experiments in lab and field demonstrated that FRP is linearly related to the rate of 

biomass combustion, and the mass of emissions is a function of the temporally integrated 
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FRP, termed fire radiative energy (FRE) (Freeborn et al., 2008; Kremens et al., 2012; 

Wooster et al., 2003). This relationship is described as following: 

 
2

1

t

t

BBE FBCC FRE EF FBCC FRPdt EF
 

      
 
 

                          (2) 

where BBE is the same as in equation (1), FRE is fire radiative energy (units: MJ) 

released from the fire during the time period from t1 to t2, FBCC is FRE biomass 

combustion coefficient (unitless) that converts FRE to the total biomass consumption, EF 

is the same as in equation (1), and FRP is fire radiative power (units: MW) that is 

calculated using the radiances of fire pixel and its non-fire ambient background at the 4-

m band (Kaufman et al., 1998; Wooster et al., 2003). FRP retrievals from polar-orbiting 

and geostationary satellites are widely used to estimate regional and global BBE using 

equation (2) (Ellicott et al., 2009; Kumar et al., 2011; Kaiser et al., 2012; Vermote et al., 

2009; Zhang et al., 2012).  

The FRP-based method (equation (2)) has two advantages over the conventional 

method. First, the FRP-based method has fewer parameters, with the FRE estimate as a 

function of burned area, fuel load, and combustion completeness in equation (1). The 

reduction of the parameters potentially improves accuracy of BBE estimation. Second, 

satellites are able to detect small-sized fires that could be omitted by burned area 

products.   

Accurate and timely estimation of BBE for near real-time applications (i.e., air 

quality forecast) requires reliable FBCC and high-spatiotemporal-resolution FRP 

estimates. The FBCC value is assumed to be fixed and has been derived by comparing 
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FRE estimates with measurements of biomass consumption in the controlled small-scale 

fire experiments, indicating a FBCC value ranging from 0.368 to 0.453 kg · MJ-1 

(Freeborn et al., 2008; Kremens et al., 2012; Wooster et al., 2005). However, the FBCC 

value was suggested varying from 0.13 to 12.0 kg · MJ-1 based on satellite retrievals of 

FRP, atmospheric optical depth (AOD), and carbon monoxide (CO) (Kaiser et al., 2012; 

Konovalov et al., 2014; Zhang et al., 2012). Obviously, highly variable FBCC 

undoubtedly results in large discrepancies among different FRP-based BBE estimates 

(Zhang et al., 2012).  

Further, estimation of high-spatiotemporal-resolution FRP is also challenging. 

None of the current polar-orbiting and geostationary satellites is able to provide high-

spatiotemporal-resolution FRP due to sampling limitations. Sensors on board polar-

orbiting satellites, e.g., Aqua and Terra MODIS, have relatively higher spatial resolution 

and thus they are able to detect relatively smaller and cooler fires compared to 

geostationary sensors. However, the polar-orbiting satellites are not able to capture 

diurnal variations of fire activity because they only observe the same location twice a day 

under cloud-free conditions. In contrast, sensors on board the geostationary satellites, 

e.g., the Imager on the Geostationary Operational Environmental Satellite system 

(GOES) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the 

Meteosat satellites, observe fires every 5-15 min but their coarse spatial resolutions limit 

the capability of detecting small and cool fires, resulting in the underestimation of FRP 

estimates. Two possible solutions have been attempted to simulate high-spatiotemporal-

resolution FRP. For a given fire pixel or a group of clustering fire pixels, the first solution 

fits linear or Gaussian functions to daily FRP retrievals from the polar-orbiting satellites 
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to predict FRP of temporal gaps without observations (Boschetti & Roy, 2009; Ellicott et 

al., 2009; Vermote et al., 2009). This solution oversimplifies the diurnal fire variations 

and could result in large uncertainties in FRE and BBE estimates because fire is dynamic 

and varies largely with environmental conditions (i.e., weather, topography, and fuel 

characteristics) (Andela et al., 2015). On the other hand, to mitigate the underestimation 

of the geostationary satellite FRP, the second solution tries to adjust the geostationary 

satellite FRP retrievals using the contemporaneous FRP retrievals from the polar-orbiting 

satellite (Freeborn et al., 2009, 2011). However, this solution requires a large number of 

samples that need to be cumulated in large spatiotemporal windows (i.e., 5°grid and 15 

min, or 1°grid and one month) (Freeborn et al., 2009), which hardly meets the 

requirements of operational and near real-time emissions inventories. Therefore, a new 

solution, which makes use of available FRP retrievals from both the polar-orbiting and 

geostationary satellites, is needed to produce high-temporal-resolution FRP that has 

equivalent accuracy to the polar-orbiting satellite FRP.  

In addition, advancements of satellite sensors enhance the capability of detecting 

small and cool fires and thus potentially improve the accuracy of BBE estimates. The 

Visible Infrared Imaging Radiometer Suite (VIIRS), the successor of the 1-km MODIS 

sensor on board the NASA’s Earth Observing Systems (EOS) Aqua and Terra satellites, 

has a mission to continue the long-term MODIS Earth science data records that include 

MODIS active fire data. The Aqua and Terra MODIS sensors have provided the most 

scientifically reliable global active fire products since the beginning of the 2000s (Giglio 

et al., 2016). However, the MODIS active fire detection capability decreases sharply as 

the pixel size decreases from ~1 km2 at nadir to ~9.6 km2 at the scan edge, resulting in 
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increasing omission error at large satellite view angles (Freeborn et al., 2011; Kumar et 

al., 2011). Thus, significant underestimates of FRE and BBE estimates are expected even 

if the high-temporal-resolution FRP with an equivalent accuracy to MODIS FRP were 

available. The first VIIRS sensor on board the Suomi National Polar-orbiting Partnership 

(Suomi NPP) satellite launched in October 2011 detects daily global fires using the 4-μm 

bands with a resolution of 375m and 750m separately (Csiszar et al., 2014; Schroeder et 

al., 2014). Because the VIIRS sensor applies an onboard aggregation scheme, the growth 

rate of the VIIRS pixel size with view angle is largely reduced relative to MODIS 

observations (Wolfe et al., 2013). Specifically, the pixel size of the VIIRS moderate-

resolution bands (M-bands) generally increases along the scan direction from nominal 

0.75 km at nadir to ~1.6 km at the scan edge but decreases abruptly at the ends of 

aggregation zones due to the application of different aggregation schemes in three 

aggregation zone (see Section 4.2.2 for details) (Wolfe et al., 2013). Therefore, the VIIRS 

sensor is theoretically able to detect many smaller and cooler fires than MODIS, and thus 

potentially improves the accuracy of FRE and BBE estimates. However, the 

discrepancies between the two sensors’ capabilities of characterizing fire have not been 

systematically investigated at different spatial scales, except for a simple comparison at 

pixel level in a few sites (Oliva & Schroeder, 2015). 

 

1.3. Research Aim, Objectives, and Hypotheses 

The overall aim of this research is to improve the capability of the FRP-based 

method (equation (2)) for estimation of BBE by integrating FRP retrievals from polar-
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orbiting and geostationary satellites. This aim is pursued through the following three 

objectives:  

1. Investigate the factor of FBCC for landscape fires by linking the Landsat-

burned-area-based biomass consumption to the MODIS and GOES FRE 

estimates for the CONUS wildfires. 

2. Reconstruct diurnal FRP cycles by fusing MODIS and GOES FRP retrievals 

to estimate BBE released from wildfires across the CONUS. 

3. Assess the similarities and discrepancies between FRP retrievals from the 

MODIS sensor and the advanced VIIRS sensor at a variety of spatial scales 

for the purpose of estimation of BBE. 

 

To meet the above objectives, this research addressed the following three 

hypotheses.   

Hypothesis #1: Satellite retrieved FRE estimates are linearly related to the 

biomass consumption at landscape scales with a factor of FRE biomass 

combustion coefficient (FBCC). 

Hypothesis #1 builds on the findings that, in controlled fire experiments, the 

ground-based FRP is related to the rate of biomass combustion, and the FRE estimate is a 

function of total biomass consumption (Kaufman et al., 1996; Wooster et al., 2003). The 

reported FBCC varies from 0.368 to 0.453 kg · MJ-1, and it is assumed to be fixed 

(Freeborn et al., 2008; Kremens et al., 2012; Wooster et al., 2005). Compared to the fuel 

complexity in landscape wildfires, the range of fuel types considered in these 
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experiments was very limited, primary savanna grass (Wooster et al., 2005), evergreen 

tree species (Freeborn et al., 2008), and mixed oak (Kremens et al., 2012). At more 

synoptic scales, however, the FBCC, which is derived by comparing satellite-based FRP, 

atmospheric optical depth (AOD), and emissions retrievals, is suggested as varying from 

0.13 to 12.0 kg · MJ-1 (Kaiser et al., 2012; Konovalov et al., 2014; Zhang et al., 2012).   

 

Hypothesis #2: Diurnal FRP cycles can be reconstructed from polar-orbiting and 

geostationary satellites FRP retrievals to improve emissions estimation. 

Hypothesis #2 builds on recent researches that applied MODIS FRP or 

geostationary satellite (SEVIRI and GOES) FRP to investigate diurnal FRP cycles in 

Africa (Andela et al., 2015; Roberts et al., 2009) and the globe (Vermote et al., 2009). 

However, the predefined diurnal cycles based on temporally sparse MODIS FRP could 

be oversimplified, which results in large uncertainties in FRE and BBE estimates. For 

instance, the assumed Gaussian diurnal cycle could lead to 200-400% underestimation of 

BBE over large fires in the Western CONUS (Saide et al., 2015) and the FRE estimates 

by superimposing Gaussian diurnal cycles on MODIS FRP are ~30% smaller than 

SEVIRI FRE in Africa (Vermote et al., 2009). Moreover, although geostationary 

satellites observe fires very frequently (i.e., every 15min), FRP retrievals from 

geostationary satellites are underestimated due to their coarse resolutions (Roberts et al., 

2005). Therefore, integration of polar-orbiting and geostationary satellites FRP retrievals 

may help to overcome their temporal and spatial sampling limitations and help to build 

accurate diurnal FRP cycles. For instance, Freeborn et al. (2011) found that the simulated 
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FRP estimates based on MODIS and SEVIRI FRP retrievals improves SEVIRI FRE 

estimates by 30%. 

 

Hypothesis #3: The 750-m VIIRS sensor has better capability of characterizing 

fires than the 1-km MODIS sensor.  

Hypothesis #3 builds on the improvements of the VIIRS sensor compared to the 

MODIS sensor. First, VIIRS has higher spatial resolution than MODIS, and its pixel size 

is less affected by satellite view angle. As view angle increases from nadir to the scan 

edge, the pixel size of VIIRS moderate-resolution bands (M-bands) increases from ~0.56 

to ~2.56 km2 (Wolfe et al., 2013), and MODIS pixel size increases from ~1 to ~9.6 km2 

(Wolfe et al., 1998). Second, VIIRS is less likely to saturate in observing intense fires 

than MODIS. The VIIRS 4-μm M-band nominally saturates at 634 K at low gain settings 

(Csiszar et al., 2014) that is more than 100 K higher than the MODIS 4-μm band (500K) 

(Justice et al., 2002). Therefore, the higher spatial resolution and saturation temperature 

of the VIIRS sensor theoretically enhance its capability of characterizing both small cool 

and large intense fires. 

 

1.4. Significance of the Research 

The satellite retrieved FRP has shown promising potential to accurately estimate 

BBE in a timely manner for near real-time applications (Roberts et al., 2015; Zhang et al., 

2012). The FRP-based method for estimation of BBE requires reliable FBCC (the factor 

that coverts FRE to biomass consumption) and high-spatiotemporal-resolution satellite 

FRP. However, the FBCC values derived in controlled fire experiments differ by a factor 
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of larger than 10 from those derived using satellite retrievals of FRP, AOD, and 

emissions (i.e., CO) (Zhang et al., 2012). Moreover, neither of the current polar-orbiting 

and geostationary satellites is able to provide the high-spatiotemporal-resolution FRP due 

to their sampling limitations (Freeborn et al., 2011). Although several solutions have 

been proposed to overcome these limitations, the FRP produced through these solutions 

hardly meet the requirements of near real-time applications (Reid et al., 2009). Thus, 

there is a great need to investigate the FBCC for landscape wildfires across large areas 

and to develop new methods that make use of available satellite FRP retrievals to 

simulate high-spatiotemporal-resolution FRP.  

 By addressing three hypotheses, this study potentially enhances the FRP-based 

method and thus improves the accuracy and application potential of BBE. First, 

investigation of the FBCC over a large number of wildfires shows statistical evidence to 

examine the existence of the fire-experiment-based empirical relationship between FRE 

and biomass consumption in wildfires and provides a FBCC value that converts satellite 

FRE to biomass consumption for wildfires in the CONUS, as well as other regions 

possibly. Second, development of a new method for the reconstruction of diurnal FRP 

cycle from MODIS and GOES FRP helps to simulate high-temporal-resolution FRP with 

an accuracy equivalent to MODIS FRP, which potentially produce the BBE that meet 

near real-time applications. Finally, understanding the advantage of the advanced VIIRS 

sensor over the MODIS sensor in characterizing fires provide key information on the 

degree to which the accuracy of the BBE estimates can be improved using data from the 

new sensor. In summary, the potentially accuracy-improved BBE estimates may 

significantly benefit models for near real-time applications (i.e., air quality forecast), 
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advance our understanding the role of BBE in climate, and assist governors to make 

sound smoke emissions-related policies. 

 

1.5. Organization of the Dissertation 

This dissertation has five chapters. Chapter 1 (this Chapter) provides an overview 

of biomass burning, especially in the CONUS, which reviews methods for estimation of 

BBE and frames the “aim, objectives, and hypotheses” that this research attempts to 

pursue and address. Then, Chapter 2 through Chapter 4 separately addresses the above 

three hypotheses. Finally, Chapter 5 concludes the whole research. 

 Chapter 2 addresses Hypothesis #1. It statistically compares the MODIS and 

GOES FRE estimates with the surface biomass consumption based on Landsat burned 

area over 445 wildfires across the CONUS, further reports the FBCC value for MODIS 

FRE, GOES FRE, and average FRE of the two sensors, and finally investigates the 

sensitivity of the FBCC to combustion completeness and fuel consumption.    

 Chapter 3 addresses Hypothesis #2. It proposes a method to reconstruct diurnal 

FRP cycles from the 15-min FRP estimates that are derived by fusing the 1-km MODIS 

and 4-km GOES FRP retrievals. Specifically, this chapter reports diurnal FRP 

climatology for 45 ecosystems, estimates hourly BBE at 0.25°×0.3125° grid cell across 

the CONUS, and evaluates the BBE estimates by comparing with existing BBE products.    

 Chapter 4 addresses Hypothesis #3. It statistically compares FRP retrievals from 

the advanced VIIRS sensor and the MODIS sensor from individual fire clusters to fire 

data on continental and global scales, and reports the similarities and discrepancies.  
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 Chapter 5 presents major conclusions. It summarizes the key findings in the tests 

of three hypotheses and relates them back to the aim and specific objectives. 

Recommendations on possible future research directions are also discussed. 
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CHAPTER 2: Investigation of the Fire Radiative Energy Biomass 

Combustion Coefficient: A Comparison of Polar and Geostationary 

Satellite Retrievals over the Conterminous United States 
 

Li, F., X. Zhang, S. Kondragunta, and D. P. Roy (2018), Investigation of the Fire 

Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and 

Geostationary Satellite Retrievals Over the Conterminous United States, Journal of 

Geophysical Research: Biogeosciences, 123(2), 722-739, doi:10.1002/2017JG004279. 

 

This chapter address Hypothesis #1: Satellite retrieved FRE estimates are linearly related 

to the biomass consumption at landscape scales with a factor of FRE biomass 

combustion coefficient (FBCC). 
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Abstract 

Biomass burning substantially contributes to atmospheric aerosol and greenhouse 

gas emissions that influence climate and air quality. Fire radiative energy (FRE) (units: 

MJ) has been demonstrated to be linearly related to biomass consumption (units: kg) with 

potential for improving biomass burning emission estimation. The scalar constant, termed 

herein as the FRE biomass combustion coefficient (FBCC) (units: kg · MJ-1), which 

converts FRE to biomass consumption, has been estimated using field and laboratory 

experiments, varying from 0.368 to 0.453 kg · MJ-1. However, quite different FBCC 

values, especially for satellite-based approaches, have been reported. This study 

investigated the FBCC with respect to 445 wildfires that occurred from 2011 to 2012 

across the Conterminous United States (CONUS) considering both polar-orbiting and 

geostationary satellite data. The FBCC was derived by comparing satellite FRE estimates 

with biomass consumption for the CONUS. FRE was estimated using observations from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary 

Operational Environmental Satellite (GOES); biomass consumption was estimated using 

Landsat-derived burned areas with fuel loadings from the Fuel Characteristic 

Classification System and using combustion completeness parameterized by Landsat 

burn severity and Fuel Characteristic Classification System fuelbed type. The reported 

results confirm the linearity of the empirical relationship between FRE and biomass 

consumption for wildfires. The CONUS FBCC was 0.374 kg · MJ-1 for GOES FRE, 

0.266 kg · MJ-1 for MODIS FRE, and 0.320 kg · MJ-1 considering both GOES and 

MODIS FRE. Limited sensitivity analyses, comparing MODIS and GOES FRE with 
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biomass consumption estimated in three different ways, indicated that the FBCC varied 

from 0.301 to 0.458 kg · MJ-1. 

 

2.1. Introduction 

Wildfires release globally significant amounts of aerosols, trace gases, and 

greenhouse gases that influence air quality, weather, and climate (Bowman et al., 2009; 

van der Werf et al., 2010). Researchers have devoted considerable efforts to modeling 

and estimating biomass-burning emissions over the last several decades. Pyrogenic 

emissions are modeled conventionally using information on the burned area, fuel load, 

combustion completeness (CC), and fuel emission factors (Seiler & Crutzen, 1980). 

These parameters can be challenging to quantify accurately. For example, burned area 

estimates can differ by several orders of magnitude (Boschetti et al., 2004; Kasischke et 

al., 2011; Randerson et al., 2012); fuel loadings may differ by more than 35% among 

different fuel data sets (Zhang et al., 2008); CC could vary by more than 40% with fuel 

moisture content in the same fuelbed (Hély et al., 2003); many emission factors also have 

an uncertainty of about 20–30% (Andreae & Merlet, 2001). 

 Top-down pyrogenic emission estimation methods have been developed that use 

satellite retrievals of the instantaneous radiative energy released from actively burning 

fires detected at the time of satellite overpass. The retrieved instantaneous radiative 

energy is termed the fire radiative power (FRP) (units: MW). The FRP is proportional to 

the rate of biomass consumption, and temporal integration of the FRP over the life of the 

fire provides an estimate of the fire radiative energy (FRE) (units: MJ), which has been 

shown to be linearly related to the total amount of fuel consumed by fire (Kaufman et al., 
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1996; Wooster et al., 2003). A scalar constant is used to convert the FRE to the total 

amount of biomass consumed, termed, for convenience in this paper, the FRE biomass 

combustion coefficient (FBCC) (units: kg · MJ-1). The FRE-based emission estimation 

approach has been used to estimate biomass combustion from FRP retrieved from the 

polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

geostationary Spinning Enhanced Visible and Infrared Imager for active fires detected at 

regional to continental scales (Ellicott et al., 2009; Kaiser et al., 2012; Roberts & 

Wooster, 2008; Vermote et al., 2009; Zhang et al., 2012) and from the Geostationary 

Operational Environmental Satellites (GOES) across the Conterminous United States 

(CONUS) (Zhang et al., 2012; Zhang, Kondragunta, & Roy, 2014). The FBCC value is 

usually assumed to be fixed and has been derived by statistical comparison of FRE 

retrievals with biomass consumed measurements for prescribed fires lit in the field and 

under more controlled conditions in plume towers. Studies indicate that the FBCC has a 

value ranging from 0.368 to 0.453 kg · MJ-1 (Freeborn et al., 2008; Kremens et al., 2012; 

Wooster et al., 2005). However, the range of fuel types considered in these experiments 

was limited, primary savanna grass (Wooster et al., 2005); evergreen tree species 

including ponderosa pine, white pine, and Douglas fir (Freeborn et al., 2008); and mixed 

oak (Kremens et al., 2012). In addition, the scale of prescribed fires in the field 

experiments (1.8–64 m2 plots; Kremens et al., 2012; Wooster et al., 2005) was much 

reduced compared with landscape wildland fires. At more synoptic scales, using satellite 

data and models, the FBCC is suggested as varying from 0.30 to 0.52 kg · MJ-1 in Siberia 

wildfires based on MODIS FRP and satellite-based carbon monoxide (CO) retrievals 

(Konovalov et al., 2014), as varying from 0.13 to 1.55 kg · MJ-1 based on comparison of 
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MODIS FRE with global biomass combustion estimates from the Global Fire Emissions 

Database (Kaiser et al., 2012), and as varying from 1.6 to 12.0 kg · MJ-1 (Zhang et al., 

2012) based on the comparison of MODIS-based emissions coefficients and aerosol 

optical thickness data (Ichoku & Kaufman, 2005; Sofiev et al., 2009). 

 This study quantifies the FBCC at a landscape scale, across the CONUS, by 

comparing polar-orbiting (MODIS) and geostationary (GOES) satellite-retrieved FRE 

estimates with biomass combustion estimates for 445 wildland fire events from 2011 to 

2012. The biomass consumption estimates were derived using Landsat 30 m burned area 

maps combined with fuel load information from the Fuel Characteristic Classification 

System (FCCS) and CC information parameterized with Landsat-derived burn severity 

estimates. The FBCC was estimated by linear regression of the biomass consumption 

estimates against the satellite FRE estimates. Sensitivity analyses were undertaken to 

examine the FBCC variation using the biomass consumptions calculated from a 

consistent CC in all burn severity classes and from a land-cover-driven approach 

endorsed for national emission estimation (Intergovernmental Panel on Climate Change 

(IPCC), 2006). The paper concludes with a discussion of the findings and an appropriate 

FBCC value for large area satellite FRE-based quantification of biomass combustion. 

 

2.2. Methods and Data 

2.2.1. Bottom-Up Estimation of Biomass Consumption 

Biomass consumption is conventionally estimated as the product of the burned 

area, fuel load, and CC (Seiler & Crutzen, 1980). In this study, we also incorporate the 

burn severity and assume that burn severity is related positively to biomass consumption 
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for the same fuel type. This is reasonable as fires that burn more biomass are generally 

expected to have more severe postfire effects (Heward et al., 2013; Keeley, 2009; Smith 

& Wooster, 2005; Veraverbeke & Hook, 2013). The burn severity is a qualitative metric 

that reflects the degree of organic matter consumption from fire and relates to changes in 

living and dead biomass, soil exposure, fire byproducts (char and ash), and fire effects 

(e.g., scorch height) (Eidenshink et al., 2007; Keeley, 2009). Several of these parameters 

are not amenable to optical wavelength remote sensing and/or may not be related in a 

linear way to reflectance (Disney et al., 2011; Roy et al., 2006); however, satellite 

estimates of burn severity have been widely adopted (Meigs et al., 2009; Moody et al., 

2008; Rocha & Shaver, 2011), although with variable results (French et al., 2008; Lentile 

et al., 2006). In this study, the biomass consumption in a burned area was estimated as 
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where BCAMC is biomass consumption (kg), for fuelbed category i and burn severity 

class k; A(i, k) is the area burned (km2); M(i, k) is the fuel loading (kg · km-2); C(i, k) is 

the CC (unitless: 0–1); and n is the number of fuelbed categories, and there are three burn 

severity classes. The derivation of these four variables is described below. 

 

2.2.1.1. Burned Area and Severity 

Landsat data have been used for decades to map the spatial extent of burning and 

to characterize post-fire effects (Boschetti et al., 2015; Hawbaker et al., 2017; Lentile et 

al., 2006). In this study, data from the U.S. Monitoring Trends in Burn Severity (MTBS) 

project are used. The MTBS project uses Landsat 30 m Thematic Mapper and Enhanced 



40 

 

Thematic Mapper Plus data to map the burn perimeter and the burn severity for all 

burned areas >404 and >202 ha in the western and eastern CONUS, respectively 

(Eidenshink et al., 2007). The MTBS project produces 30 m burn severity maps (e.g., 

Figure 2-1) by visual interpretation of the temporal difference in the normalized burn 

ratio (NBR), defined as the difference between the Landsat near-infrared band (0.76–0.90 

μm) and the shortwave-infrared band (2.08–2.35 μm) divided by their sum, and a 

relativized temporal NBR difference (Cocke et al., 2005; Epting et al., 2005; Key & 

Benson, 2005). The MTBS burn severity map is classified into low, moderate, or high 

severity classes, with an additional unburned or undetected low severity class and an 

increased greenness (increased post-fire vegetation response) class (Eidenshink et al., 

2007). A mask of unprocessed areas (due to cloud obscuration or land not sensed by 

Landsat) is also provided. 

 

Figure 2-1. MTBS burn severity example derived from two Landsat images of the 2011 

Last Chance fire, New Mexico, USA. (a) Prefire (23 April 2011) Landsat 5 Thematic 

Mapper false-color image (bands 7: 2.08–2.35 μm, 4: 0.76–0.90 μm, and 2: 0.52–0.60 

μm). (b) Postfire (9 May 2011) false color image. (c) Differenced normalized burn ratio 

between the prefire and postfire normalized burn ratio. (d) MTBS burn severity map. 

 

In this study, all the MTBS burned areas defined across the CONUS for 2011 and 

2012 were obtained from the MTBS project (http://www.mtbs.gov/). A total of 2616 
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MTBS burned areas were available, although the final number of burned areas used in the 

study was reduced to 445 due to the filtering applied (section 2.2.3). 

In equation (1) the area burned (km2) for an MTBS burned area was derived as 

the product of the 30 m pixel area (9 × 10-4 km2) and the sum of the number of 30 m 

pixels in each of the three (low, moderate, and high) burn severity classes and the fuelbed 

categories (see section 2.2.1.2). The unburned or undetected low severity and the 

increased greenness classes were excluded in the area burned calculation. The areas 

masked as unprocessed by MTBS were allocated to the three different severity classes 

(low, moderate, and high severity) weighted by the ratio of the area of a severity class to 

the total MTBS severity mapped area (as it is reasonable to assume that the burning 

conditions in the masked areas were similar to those in the processed areas). 

 

2.2.1.2. Fuel Load 

Development of fuel load maps is an area of active research, particularly at 

national to global scale (Pettinari & Chuvieco, 2016). The FCCS is commonly used 

because it includes a wide set of fuel physical characteristics that are not specific to a 

particular application or fire model. The United States FCCS 3.0 provides quantitative 

fuelbed information compiled from multiple sources including in situ fuel data sets, 

photographs, literature, and expert knowledge (Ottmar et al., 2007; Prichard et al., 2013). 

It defines a fuelbed as a set of fuel characteristics on the landscape that represent a 

distinct combustion environment. There are 250 fuelbeds, and each is divided into six 

strata with up to 18 categories: tree overstory, tree midstory, tree understory, total trees 

canopy, shrub, duff, nonwoody (dead and live) vegetation, sound woody debris (0-0.25, 
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0.25-1, 1-3, 3-9, 9-20, >20 inches), and rotten woody debris (3-9, 9-20, >20 inches) 

(Ottmar et al., 2007). Each stratum has one or more than one fuelbed category, and each 

category has common combustion characteristics. The FCCS data set has been used to 

model surface fire behavior, to predict fire potentials and effects (Cruz & Alexander, 

2010; Lutes et al., 2009), and to estimate fuel consumption (FC) and fire emissions 

(Anjozian, 2009; Ottmar et al., 2006). In this study, the 30 m FCCS fuelbed map for year 

2008 and the associated lookup table of fuel loadings per fuelbed category were obtained 

from the FCCS site (http://www.fs.fed.us/pnw/fera/fccs/maps.shtml). 

In equation (1) the mean fuel loading of each fuelbed category and burn severity 

class was derived as 
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where M(i, k) and A(i, k) are the mean fuel loading (kg · km-2) and the area burned (km2), 

respectively, in burn severity class k and fuelbed category i over the burned area; j is one 

of the fuelbeds (a total number of s, s ≤ 250) that include the fuelbed category i; and A(i, 

k, j) and FL(i, k, j) are the area burned (km2) and the fuel loading (kg · km-2), 

respectively. 

 Change in the fuelbeds and associated fuel loadings between the production year 

of the FCCS map and the year of the burn due to land use change, disturbance (previous 

fires, insects, and drought, etc.), and vegetation seasonal phenology may introduce 

uncertainty into the biomass consumption estimates. Consequently, the sensitivity of 

FBCC to the biomass consumption was tested (section 2.2.5). 
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2.2.1.3. Combustion Completeness 

The CC, that is, the proportion (0 to 1) of biomass consumed as a result of fire, is 

dependent on the fuel characteristics, including fuel moisture content, fuel arrangement, 

and fuel surface area to volume ratio, and environmental conditions (temperature, relative 

humidity, wind velocity, and slope) that affect the fire behavior and the fire duration 

(Hély et al., 2003; Ito & Penner, 2004; Ward et al., 1996). It is very challenging 

to obtain reliable spatially explicit CC maps at landscape scale (Veraverbeke & Hook, 

2013). In the absence of any definitive spatially explicit CC data, published lookup tables 

that define CC as a function of the fuelbed category and burn severity class were used in 

this study (Table 2-1). The published CC values were obtained by qualitative field-based 

assessments of burn severity in the United States (Campbell et al., 2007; De Santis & 

Chuvieco, 2009; Ghimire et al., 2012; Key & Benson, 2006), typically inferred by human 

assessments and codified via the composite burn index (CBI) (Key & Benson, 2006) or 

the modified CBI (GeoCBI) (De Santis & Chuvieco, 2009). The CBI and GeoCBI indices 

provide a score from 0 to 3, based on fire manager and ecologist qualitative observations 

of a variety of post-fire effects including FC, change in soil color, foliage alteration, 

change in plant cover, canopy mortality, and scorch height (De Santis & Chuvieco, 2009; 

Key & Benson, 2006). The CBI and GeoCBI have been shown to be proportional to 

satellite-derived NBR and differenced normalized burn ratio values but with variable 

levels of statistical similarity (De Santis & Chuvieco, 2009; French et al., 2008; Keeley, 

2009; Lentile et al., 2006; Veraverbeke & Hook, 2013) and as noted earlier some of the 
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post-fire effects may not be apparent in optical wavelength data and/or related in a linear 

way to reflectance (Disney et al., 2011; Roy et al., 2006). 

Table 2-1. Combustion Completeness Lookup Table Defined as a Function of the 

Fuelbed Category and Burn Severity Class. 

Fuelbed  Combustion Completeness 

References 
Stratum Category  

Low 

severity 

Moderate 

severity 

High 

severity 

Tree canopy 

Overstory  0.20 0.45 0.75 
Campbell et al., 2007 

Ghimire et al., 2012 
Midstory  0.20 0.50 0.80 

Understory  0.25 0.60 0.85 

Shrubs 

  

0.30 0.70 0.90 

Campbell et al., 2007 

De Santis and Chuvieco., 2009 

Key and Benson., 2006 

Non-woody 

vegetation 

Live  0.30 0.88 0.98 Campbell et al., 2007 

De Santis and Chuvieco., 2009 

Key and Benson., 2006 
Dead  0.70 0.90 1.00 

Duff < 4 inches  0.50 0.80 0.95 
Campbell et al., 2007 

Ghimire et al., 2012 

Sound woody 

debris 

< 0.25 inches  0.70 0.90 1.00 

Campbell et al., 2007 

Ghimire et al., 2012 

0.25 – 1 inch  0.65 0.88 1.00 

1 – 3 inches  0.60 0.80 0.85 

3 – 9 inches  0.56 0.63 0.80 

9 – 20 inches  0.56 0.63 0.80 

> 20 inches  0.20 0.60 0.75 

Rotten woody 

debris 

3 – 9 inches  0.56 0.63 0.80 

Campbell et al., 2007 

Ghimire et al., 2012 

9 – 20 inches  0.20 0.40 0.65 

> 20 inches  0.20 0.40 0.65 
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The CC values listed in Table 2-1 were applied for fuelbed category i and burn 

severity class k as equation (1) and assuming that the CC was the same for each fuelbed 

category and burn severity class across each MTBS burn and for all the burns considered 

across the CONUS. The sensitivity of FBCC to CC was also tested (section 2.2.5). 

 

2.2.2. Top-Down Estimation of Biomass Consumption 

Biomass consumption was derived from satellite (MODIS or GOES) estimates of 

FRE derived over each MTBS burned area (Wooster, 2002; Wooster et al., 2005) as 

FREBCFRE                                                       (3) 

where BCFRE is biomass consumption (kg), β is the FBCC (kg · MJ-1), and the FRE is the 

MODIS or GOES FRE (MJ) defined as below. 

 

2.2.2.1. MODIS FRE Estimation 

The global Collection 5 MODIS 1-km Level 2 active fire product detects the 1 km 

location and time of fires that are burning at the time of overpass of the NASA Terra 

(MOD14) and Aqua (MYD14) satellites under cloud-free conditions (Giglio, 2013; 

Giglio et al., 2003). In this study, MOD14 and MYD14 active fire products for 

2011–2012 were obtained from the NASA Reverb data portal 

(http://reverb.echo.nasa.gov/). The products contain for each 1-km pixel whether an 

active fire was detected, the detection confidence, the FRP (MW), the MODIS band 21 

(3.660–3.840 μm) and band 31 (10.780–11.280 μm) blackbody temperatures (K), and 

average blackbody temperature in these two bands of the surrounding pixels. The 

MODIS FRP is calculated from band 21 brightness temperature based on a modeled 
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relationship developed in the Smoke, Clouds, and Radiation (SCAR) field experiments 

(Kaufman et al., 1998). If no MODIS active fire was detected then the surface status 

(land, water, cloud, or unknown) is defined. Only the nominal- and high-confidence fire 

detections were considered in this study to remove uncertain active fire detections that 

are classified as low-confidence detections in the Collection 5 MODIS active fire product 

(Giglio, 2013). Low-confidence detections are likely to be associated with the false 

alarms, for example, associated with solar heated charred ground surrounded by cool 

unburned areas. The Level 2 products are defined in the MODIS orbit geometry, 

corresponding to approximately 5 min of sensing in the track direction, covering an area 

of approximately 2,340 by 2,030 km in the across- and along-track directions, 

respectively. The MODIS scans ten 1-km pixel scan lines per mirror rotation over ±55° 

and the dimensions of the sensed pixel increase from ~1 km at nadir to ~2.01 km along 

track and ~4.83 km along scan at the scan edge (Wolfe et al., 1998, 2002). This geometry 

and the MODIS point spread function can result in the same single fire event being 

detected two or three times in consecutive scans (Freeborn et al., 2014; Peterson et al., 

2013). Accordingly, detections in consecutive scans were considered as duplicated and 

were removed if they meet the following conditions: (1) detected at the same satellite 

view angles, (2) difference in observing time is less than 1 min, and (3) distance between 

two fire pixels is shorter than the along-track dimension of the fire pixels. After this 

filtering, there are, at CONUS latitudes, a maximum of four MODIS active fire detection 

opportunities (acquired approximately at 1:30, 10:30, 13:30, or 22:30 local time). 
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The MODIS FRP is underestimated at greater scan angle because the observed 

pixel size increases with scan angle (Freeborn et al., 2011; Kumar et al., 2011). To 

mitigate this effect, the FRP values were adjusted as 

 obsadj FRPFRP                                         (4) 

where FRPadj is the adjusted FRP (MW), FRPobs is the MODIS retrieved FRP (MW) 

stored in MOD14 or MYD14, and ε is a published adjustment factor (unitless) defined as 

a function of the scan angle (Freeborn et al., 2011).  

The FRE was estimated from the adjusted MODIS FRP according to the 

established trapezoid method (Boschetti & Roy, 2009). The method can be applied to 

estimate FRE at a pixel level or for a cluster of pixels within a burned area. In this study, 

a cluster is considered as all the MODIS active fire pixels (and associated FRP values) 

within an MTBS burn perimeter over the lifetime of the fire. First, the cluster-level FRP 

was derived as 
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where FRP(ts) is the cluster-level FRP (MW) at time ts when either MODIS sensor 

detected a fire, FRPadj(m, ts) is the adjusted FRP of the mth fire pixel (equation (4)), and u 

is the total number of active fire pixels detected by MODIS at time ts within an MTBS 

burned perimeter. Then, the MODIS FRE was derived as 
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where FRE is the MODIS FRE (MJ) released over the life of the fire in the MTBS burned 

area, q is total number (q = 4) of MODIS observing opportunities on the gth day, p is the 

total number of days that a fire event lasted, and FRP(g, ts) is the cluster-level FRP 

(equation (5)) at time ts (seconds from 12:00 a.m. local time) on the gth day. Note that 

FRP(g, ts) was set to zero if there was no active fire detection on the gth day at time ts. 

 

2.2.2.2. GOES FRE Estimation 

The GOES-West and GOES-East satellites each sense the CONUS every half an 

hour (or every 5–15 min in subregions) with a 4–7 km spatial resolution depending on the 

sensed CONUS location. The WildFire Automated Biomass Burning Algorithm 

(WF_ABBA Version 65) active fire product defines the location and timing of fires 

sensed by the GOES geostationary satellites (Prins et al., 1998; Schmidt & Prins, 2003). 

It provides the active fire detection date and time, geographic coordinate, pixel area, the 

FRP (MW), ecosystem type, and a quality flag. The FRP is calculated from the middle 

infrared band (3.9 μm) using the method developed in (Wooster et al., 2003). The 

WF_ABBA-based GOES fire products for 2011–2012 were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) 

(http://satepsanone.nesdis.noaa.gov/pub/ FIRE/forPo/). 

Successful GOES FRP retrievals are often temporally sparse due to cloud 

obscuration and sensor saturation (Prins et al., 1998). Therefore, the GOES FRP data 

were adjusted using the method described in (Zhang et al., 2012). The mean 15 min 

GOES FRP was defined independently for five ecosystems: forest, savanna, shrubland, 

grassland, and cropland, providing one mean CONUS FRP value every 15 min per 
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ecosystem. The five ecosystems cover all of the CONUS and were defined by the 

International Geosphere-Biosphere Programme ecosystem classification (Loveland et al., 

2000). The resulting FRP ecosystem-specific 15 min diurnal climatologies were used to 

adjust the 2010–2012 good quality FRP values over each MTBS burned area using a least 

squares approach (Zhang et al., 2012). For brevity, we refer to the adjusted FRP time 

series data as the pixel-level GOES FRP data. 

All the pixel-level GOES FRP data within an MTBS burn perimeter were 

considered as a cluster. The cluster-level GOES FRP over a burned area was calculated 

as  

1

( ) ( , )
v

e

FRP t FRP t e


                                                 (7) 

where FRP(t) is the cluster-level GOES FRP (units: MW), FRP(t, e) is the eth pixel-level 

FRP (MW) at GOES observation time t, and v is the total number of GOES active fire 

detections at that time within the MTBS burned perimeter.  

It is well established that MODIS is able to detect smaller and cooler fires than 

GOES due primarily to the higher spatial resolution and also dedicated active detection 

capabilities of MODIS (Roberts et al. 2005; Freeborn et al. 2009). Consequently, the 

following adjustment was applied: 

  )()()( tFRPtFRPtFRP offsetadj                                        (8)   

where FRPadj(t) is the adjusted GOES cluster-level FRP (MW); FRP(t) is the cluster-level 

GOES FRP calculated from equation (7), at GOES observation time t; and FRPoffset(t) is 

an FRP offset value at time t derived from the difference between the cluster-level 
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MODIS and GOES FRP values (equations (5) and (7)) for that day. FRPoffset(t) was 

determined based on the following steps. First the difference between the cluster-level 

MODIS FRP and the temporally closest cluster-level GOES FRP value was calculated for 

each MODIS observation during a 24 hr period, termed for brevity FRPoffset(tMODIS), 

where tMODIS is the MODIS observing local time (tMODIS is approximately one of 1:30, 

10:30, 13:30, or 22:30). If there were no MODIS FRP data over the burn in a 24 hr period 

then FRPoffset(t) was set to zero for the period. If there were one or two MODIS FRP 

values in the 24 hr period then FRPoffset(t) was set as the average of the FRPoffset(tMODIS) 

values. If there were more than two MODIS FRP values then the FRPoffset(t) was set to 

the first FRPoffset(tMODIS) value for all times before the first MODIS observation in the 

day, or was linearly interpolated in time from the two closest FRPoffset(tMODIS) values for 

times between the MODIS observations, or was set to the last FRPoffset(tMODIS) value in 

the day for all times after the last MODIS observation. The results of this process are 

illustrated in Figure 2-2 for four cases showing different numbers of MODIS active fire 

detections in a 24-hour period. 
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Figure 2-2. Illustration of the adjustment of cluster-level GOES FRP) over a 24 hr period 

for four examples where there are (a) one, (b) two, (c) three, and (d) four 

contemporaneous cluster-level MODIS FRP values. The gray and black filled cycles 

show the cluster-level GOES FRP before and after the adjustment, respectively, and the 

diamonds show the cluster-level MODIS FRP. The examples show satellite data for 23 

August, 27 August, 30 July, and 1 September 2012, respectively, acquired over the 

Halstead fire, Idaho, USA. 

 

The FRE was estimated from the adjusted GOES FRP for each MTBS burned 

area as  

 
 


n

d t

adj tFRPFRE
1

96

1

900)(                                            (9) 

where FRE is the GOES FRE (MJ) released over the life of the fire in the MTBS burned 

area, n is the total number of days that the fire event lasted, and FRPadj(t) is defined as 

equation (8) for every 15 min (corresponding to 900 s) and there are 96 15-min periods 
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each day (24 hr). This implicitly assumes that a fire event burned consistently in the same 

way in each 15 min period (Zhang et al., 2012). 

 

2.2.3. Processing of Data to Ensure Contemporaneous Observations 

The MTBS burned area perimeters were intersected spatially with the locations of 

the MODIS and GOES active fire detections so that the satellite FRE could be compared 

with the Landsat-derived biomass consumption (equation (1)) for each MTBS burned 

area. Specifically, the satellite active fire detections were projected into the Universal 

Transverse Mercator (UTM) projection defining the MTBS fire perimeter data. Each 

burned area perimeter was buffered outward by 5 km to accommodate for the coarser 

spatial resolution of the 4 km GOES active fire detections relative to the 1 km MODIS 

detections. All the active fire detections located within each buffered perimeter were 

considered within 80 days after the date of fire ignition defined in the MTBS burn 

metadata. An 80-day temporal threshold was used as several extensive CONUS fires 

lasted up to two months. This process is illustrated in Figure 2-3, which shows an 

example where active fire detections of GOES and MODIS were spatially and temporally 

intersected with an MTBS burned area. 
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Figure 2-3. Spatial and temporal match of MTBS Landsat burned area and severity 

classes (left) with MODIS and GOES active fire detections (right) for the Halstead fire in 

Idaho, 2012. 

 

All MTBS burned areas with insufficient active fire detections were removed 

from the analysis. To do this, the geographic spatial coverage of the active fire detections 

was derived as the spatial union of all the fire detection pixel areas within the 5 km 

buffered MTBS burned area over 80 days. The GOES fire pixel area was obtained from 

the WF_ABBA Version 65 GOES active fire product and the MODIS fire pixel area was 

calculated using the MODIS along-scan and along-track pixel dimensions (Giglio, 2013). 

For these two sensors, their pixel areas increase as scan angle increases from nadir to 

scan edge and the pixel shapes were approximated with rectangles in this study. For 

instance, for a MODIS fire pixel, its along-scan and along-track pixel dimensions were 

taken as the product of the length and width of the rectangle. The burned area was 

rejected from consideration if the geographic spatial coverage of the active fire detections 

was less than 85% of the area mapped by MTBS as low, moderate, and high burn 
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severity. The 85% threshold was set quite conservatively to prevent satellite FRE from 

being grossly underestimated due to insufficient FRP sampling, although, burned areas 

containing persistently burning active fires (i.e., forested systems) are less likely to be 

rejected. A total of 445 burned areas were selected in this way. 

 

2.2.4. Estimation of the FRE Biomass Combustion Coefficient (FBCC) 

The conventional (BCAMC, equation (1)) and FRE-based (BCFRE, equation (3)) 

biomass consumption estimates should equal the actual biomass consumption over the 

same fire event if the models, assumptions, and parameters, implicit in their derivations 

are correct. In this study, we assume that this is the case, i.e., that BCAMC equals BCFRE, 

and so rearranging equations (1) and (3) provides:  

FREFBCCBCAMC                                                (10) 

where BCAMC is the biomass consumption (kg) derived as equation (1), FRE is the 

satellite-derived FRE (MJ) defined by equation (6) (MODIS FRE) or equation (9) (GOES 

FRE), and FBCC is the FRE biomass combustion coefficient (kg · MJ-1).   

The FBCC was derived by linear ordinary least squares regression of the BCAMC 

(dependent variable) and satellite FRE estimates (independent variable) for the 455 

CONUS burned areas and forcing the regression to have a zero intercept value. This was 

undertaken three times: considering the MODIS FRE, the GOES FRE, and the average of 

the MODIS and GOES FRE derived for each burn. The regression coefficient of 

determination (r2) and p-value were used to test the statistical significance of the FBCC 

regression coefficients. 
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2.2.5. Sensitivity Analysis 

There are several possible error sources that are discussed in the discussion. As 

there are no independent satellite FRE, or ground truth fuel consumption data, for the 455 

MTBS burned areas, only a limited sensitivity analysis could be undertaken. Two 

sensitivity analyses of the biomass consumption estimation were conducted.  

First, the CC parameterization with respect to burn severity (Table 2-1) was 

replaced with a single CC of 0.5, that is, simply assuming that half of the fuel load burned 

regardless of the fuel type or the burn severity. This value was used because it is close to 

the median value in Table 2-1. The biomass consumption (BCAMC) was then calculated as 

equation (1) for the 445 selected MTBS burned areas using CC = 0.5 and the FCCS fuel 

loadings as before.  

Second, the biomass consumption was computed in a different way using a land-

cover driven approach endorsed for national emissions estimation (IPCC, 2006) defined 

as:  





h

l

AMC lFClABC
1

)()(                                            (11) 

where BCAMC is biomass consumption (kg) in the MTBS burned area; there are a total of 

h land cover types in the burned area and the lth land cover type has area burned A(l) 

(km2) and fuel consumption FC(l) (kg · km-2). The 30m National Land Cover Database 

(NLCD 2011), which defines 16 land cover classes over the CONUS (Homer et al., 2015) 

and has a reported overall accuracy of 78.7% (Wickham et al., 2013), was used to define 

the land cover classes that were intersected (as described above in Section 2.2.3) with 

each buffered MTBS burned area. The IPCC provides mean fuel consumption (units: 
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kg · m-2) for broadly defined land cover types that were derived from published literature 

estimates (IPCC 2006). The broadly defined land cover types were cross-walked to 

NLCD land cover types. Across the 455 burned areas in this study there were only five 

(nonwater) IPCC unique mean fuel consumption values of 0.36 kg · m-2 (woody wetland 

and herbaceous wetland NLCD classes), 0.376 kg · m-2 (grassland, pasture, and 

developed open NLCD classes), 0.55 kg · m-2 (crops NLCD classes), 1.43 kg · m-2 

(shrub, scrub NLCD classes), and 5.04 kg · m-2 (deciduous, mixed, and evergreen forest 

NLCD classes). The IPCC forest FC estimate used (5.04 kg · m-2) is similar (difference < 

8%) to recent field measured U.S. forest mean FC data (van Leeuwen et al., 2014). 

 

2.3. Results 

Figure 2-4 shows the 445 (229 in 2011 and 216 in 2012) MTBS burned areas, 

selected because they had contemporaneous MODIS and GOES active fire detections, 

and their biomass consumption estimated using the conventional approach (equation (1)). 

The 445 MTBS burned areas occurred mainly in the west and southeastern CONUS and 

ranged in area from 1.221 to 1,353.088 km2. The burned areas in the southeast were 

generally smaller and varied in size from 1.221 to 45.977 km2. The largest burn was the 

Wallow fire in Arizona that burned 1,353.088 km2 of predominantly mixed conifer forest 

including ponderosa pine, Douglas-fir, aspen, and Gambel oak (Waltz et al., 2014). The 

biomass consumption for the 455 burns varied from 2.47×10-4 to 4.08 Tg. Larger burned 

areas tended to have greater biomass consumption. All the burns with more than 1.0 Tg 

consumption occurred in the western CONUS, where the greatest biomass consumption 

(4.08 Tg) was for the Wallow fire. The MTBS burn severity for the 455 burned areas was 
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quite variable with no clear geographical pattern across the CONUS. The proportions of 

low, moderate, and high burn severity areas within a burned area on average were 62%, 

27%, and 11%, respectively, across the 445 burned areas. 

 

Figure 2-4. The selected 2011 and 2012 CONUS MTBS burned areas (total 445, orange 

and red colors) and the biomass consumption estimated by the conventional method 

(equation (1)) based on the burn severity parameterized combustion completeness. (top) 

The spatial distribution of the biomass consumption in the selected 445 burned areas 

(colored polygons); the gray polygons show the other 2011 and 2012 available MTBS 

burned areas that were not considered as they did not have sufficient contemporaneous 
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MODIS and GOES active fire detections (see section 2.2.3). (bottom) The histogram of 

the biomass consumption in the selected 445 burned areas. 

 

Figure 2-5 shows the biomass consumption per unit area, found by dividing the 

biomass consumption (Figure 2-4) by the area burned. The biomass consumption per unit 

area was generally smaller in the southeast (< 3.0 kg · m-2) and larger in the western 

states, particularly California, Oregon, and Washington, with values ranging from 1.5 to 

20.0 kg · m-2. For the largest Wallow fire, the biomass consumption per unit area was 

3.02 kg · m-2 (Figure 2-5), which differs by only 4% from the biomass consumption 

estimated using the Consume 3.0 fuel consumption model (Veraverbeke et al., 2013). The 

results illustrated in Figure 2-5 are comparable in magnitude with biomass consumption 

estimates across the CONUS for different fires and years (where fuel conditions and fire 

behavior differences mean that exact quantitative comparison is not meaningful) 

(Lydersen et al., 2014; Prichard et al., 2017; Yokelson et al., 2013).  

Figure 2-6 illustrates a comparison of the biomass consumption estimated by the 

conventional method based on the burn severity parameterized CC approach with the 

same approach but assuming CC=0.5 (Figure 2-6a) and with the IPCC FC method 

(Figure 2-6b). Linear regression of the results indicate that the different biomass 

consumption estimates were significantly correlated (r2≥0.89 and p<0.001). The 

regression slopes indicate that, over the 445 sites, the burn severity parameterized 

biomass consumption estimates were larger by 3% than the CC=0.5 estimates but 32% 

smaller than the IPCC-FC based biomass consumption estimates. 
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Figure 2-5. Biomass consumption (Figure 2-4) per area burned (units: kg · m-2) in the 

selected 2011 and 2012 CONUS MTBS burned areas (total 445). (top and bottom) The 

spatial distribution and histogram of the biomass consumption per area burned, 

respectively, across the CONUS. 
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Figure 2-6. Comparison of the biomass consumption derived using the burn severity 

parameterized combustion completeness (CC) approach (Figure 2-4) with (a) the biomass 

consumption derived using the same method but fixed CC = 0.5 and with (b) the IPCC 

land-cover-driven approach (equation (11)). Linear regressions of the plotted data (solid 

lines) and the 1:1 line for comparison (dashed lines) are shown. The regression slope 

terms are the estimated FBCC values. 

 

 

Figure 2-7. Comparisons between the adjusted cluster GOES FRE (equation (9)) and the 

cluster MODIS FRE (equation (6)) over the selected burned areas for (a) 2011 (229 

burned areas), (b) 2012 (216 burned areas), and (c) for both 2011 and 2012 (445 burned 

areas). Linear regressions of the plotted data (solid lines) and the 1:1 line for comparison 

(dashed lines) are shown. 
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Figure 2-7 shows, for the burned areas in 2011, 2012, and for both years 

combined, the relationship between the adjusted cluster GOES FRE and the cluster 

MODIS FRE. The sensor FRE data were significantly correlated (r2>0.8 and p<0.001) 

and the GOES FRE was about a third less than the MODIS FRE. In Figure 2-7, the 

GOES FRE varied from 0.99×105 to 9.41×109 MJ and the MODIS FRE varied from 

5.67×105 to 13.68×109 MJ. The greatest FRE values were for the 2011 Wallow fire that 

also had the greatest area burned.  

Figure 2-8 shows the relationships between the biomass consumption estimated 

by the burn severity parameterized CC approach and the GOES FRE, MODIS FRE, and 

the average of the GOES and MODIS FRE. The results for the burned areas in 2011, 

2012, and for both years combined are shown. In all cases, the data were significantly 

correlated (r2>0.75 and p<0.001). Recall that from equation (10) the slopes of the 

regressions plotted in Figure 2-8 provide an estimate of the FBCC. The FBCC estimates 

from the GOES FRE were larger than those from MODIS FRE by 34% and 46% in 2011 

and 2012, respectively. When considering both years, the FBCC estimates were 0.374 kg 

· MJ-1 for GOES FRE, 0.266 kg · MJ-1 for MODIS FRE, and intermediate (0.320 kg · 

MJ-1) for the average MODIS and GOES FRE.   
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Figure 2-8. Relationships between the biomass consumption estimated by the burn 

severity parameterized CC approach (equation (1)) and the adjusted cluster GOES FRE 

(equation (9)) and the cluster MODIS FRE (equation (6)) and the average of the MODIS 

and GOES FRE in each burned area, for 2011, 2012, and both years together. Linear 

regressions of the plotted data (solid lines) and the 1:1 line (i.e., slope of 1.0 kg · MJ-1) 

(dashed lines) are shown. The regression slope terms are the estimated FBCC values. 



63 

 

 

Figure 2-9. Relationships between the biomass consumption estimated with CC = 0.5 

and with the IPCC-FC method with the adjusted cluster GOES FRE (equation (9)) and 

the cluster MODIS FRE (equation (6)) and the average of GOES and MODIS FRE in 

each burned area, for 2011, 2012, and both years together. Linear regressions of the 

plotted data (solid lines) and the 1:1 line (i.e., slope of 1.0 kg · MJ-1) (dashed lines) are 

shown. The regression slope terms are the estimated FBCC values. 

 

Figure 2-9 shows the same results as Figure 2-8 for both years combined (2011 and 2012) 

but compares the biomass consumption estimated with CC=0.5 and with the IPCC-FC method 

against the satellite FRE. All the regressions were significant (r2≥0.79 and p<0.001). When both 

years were considered, the FBCC values from GOES FRE were larger than those from the MODIS 

FRE by 37% for both the CC=0.5 estimation and the IPCC-FC estimation. The FBCC values from 

the average of GOES and MODIS FRE estimates were 0.301 kg · MJ-1 and 0.458 kg · MJ-1 for the 

CC=0.5 estimation and the IPCC-FC estimation, respectively, considering both years. In 

comparison with the FBCC estimates based on burn severity parameterized CC (Figure 2-8) when 
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both years were considered, the FBCC values derived assuming CC=0.5 (Figure 2-9) were smaller 

by 7% for GOES FRE and 5% for MODIS FRE, respectively, and the FBCC values derived from 

the IPCC-FC estimation (Figure 2-9) were larger by 41% for GOES FRE and 45% for MODIS 

FRE, respectively. 

 

2.4. Discussion and Conclusions 

This study investigated the relationship between satellite-retrieved FRE and 

biomass consumption estimates for 445 wildland fire events in 2011 and 2012. This large 

sample helps to improve our understanding of the FBCC for the estimation of biomass 

consumption using satellite FRP retrievals. The FBCC bridges the biomass combustion 

rate to FRP that provides a direct way to quantify biomass consumption (Kaufman et al., 

1998; Wooster et al., 2003). The FRE-based approach may be advantageous compared to 

the conventional method because fuel load and CC information are not required (Wooster 

et al., 2003; Roberts et al., 2005). However, the FBCC value derived from different 

approaches is quite variable (0.13 to 12.0 kg · MJ-1) (Freeborn et al., 2008; Kremens et 

al., 2012; Konovalov et al., 2014; Kaiser et al., 2012; Wooster et al., 2005; Zhang et al. 

2012), which is a concern for the use of satellite FRE-based biomass consumption and 

biomass burning emission estimation.  

The biomass consumption derived for Landsat mapped burned areas using a 

conventional approach (equation (1)) may have considerable uncertainty, even though the 

best data available, that is, MTBS Landsat burned area and FCCS fuel bed and fuel 

loadings, were used. The area burned from MTBS is generally considered reliable but in 

certain mapped burns the interior unburned areas may not be delineated, although these 
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interior unburned areas typically have low severity (Sparks et al., 2015) that may reduce 

the impact of MTBS burned area commission errors. The MTBS definition of burn 

severity is not consistently quantified but rather is based on subjective thresholding of the 

Landsat NBR that reduces their reliability (Eidenshink et al., 2007). The FCCS fuel 

loading information are static and so do not reflect seasonal and inter-annual fuel load 

changes (Pellizzaro et al., 2007). Moreover, the FCCS information may not reflect the 

fire history reliably; for example, a fire in the years before 2011 may have reduced the 

fuel load but may not be reflected in the FCCS (Steel et al., 2015). In addition, although 

the CC values in Table 2-1 were compiled from a large number of available forest and 

nonforest sources (including 15 studies summarized in Ghimire et al. (2012)), they may 

not adequately represent the fire behavior and fuel beds for the 445 fire events, and could 

be augmented using more estimates such as, for example, Lentile et al. (2009). Further, 

the CC parametrization by burn severity was simple, although based on empirical 

evidence of a linear relationship between these measures, and is known to have quite 

variable results (French et al., 2008; Veraverbeke et al., 2013).  

In the absence of independent ground-truth biomass consumption data, sensitivity 

analyses were conducted to examine the sensitivity of the biomass consumption 

estimation. The biomass consumption estimated by the conventional method (equation 

(1)) based on the burn severity parameterized CC was close to that assuming a fixed 

CC=0.5 (Figure 2-6a). We note that CC = 0.5 is only 10% less than the mean of all the 

CC values parameterized by burn severity class (Table 2-1) and is about 18% smaller 

than the average of CC values measured at 15 sites across the CONUS (van Leeuwen et 

al., 2014). For the fixed CC results, potentially large biomass consumption biases may 
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occur if the CC values are very different to the fixed value. This may be the case as 

across the 445 CONUS burned areas the proportions of low, moderate, and high burn 

severity areas were 62%, 27%, and 11%, respectively. We also note that CC and burn 

severity may not always be directly related. For example, large trees that burn for long 

periods may result in white ash that are not detected and/or have low Landsat-derived 

burn severity (Smith and Hudak, 2005; Roy et al. 2010). Similarly, a fire may result in 

near complete combustion but the Landsat burn severity will not be mapped as high or 

moderate severity if only a fraction of the pixel is burned (Roy and Landmann, 2005).   

Despite these caveats, the utility of the CC parameterization is evident in Figure 

2-6a which shows the biomass consumption estimates based on the burn severity 

parameterized CC against the CC=0.5 based biomass consumption. In this figure, two 

burned areas had biomass consumption estimates that were 59% and 23% greater than 

when CC=0.5 was assumed, and these were for burned areas with moderate and high 

burn severity. Conversely, the one burned area with a biomass consumption estimate 

particularly below the 1:1 line was a low burn severity fire. Besides the parameterized 

CC, the need of spatially explicit fuel characteristics at burned area level was also 

suggested in the comparison of biomass consumption estimates based on the burn 

severity parameterized CC against those based on the IPCC approach (Figure 2-6). The 

biomass consumption estimated using the IPCC land cover based method was 32% 

greater than that based on burn severity and had much more scatter (Figure 2-6b) than the 

CC=0.5 based biomass consumption (Figure 2-6a). This could be due to the significantly 

simplified IPCC FC approach that is insufficient to characterize individual fire events. 

The use of only five unique IPCC FC values for the 445 burned areas will provide rather 
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generalized biomass consumption estimates that do not capture variations associated with 

fire behavior and site conditions.  

Researchers have suggested a number of factors that may impact the reliability of 

satellite FRE retrieval. These include sensitivity to active fire detection capabilities 

(Giglio et al., 2003), under sampling of active fire events due primarily to the satellite 

orbit and sensing geometry and also cloud, smoke and overstory vegetation obscuration 

(Boschetti and Roy, 2009; Freeborn et al., 2014; Kumar et al., 2011; Mathews et al., 

2016; Xu et al., 2010), reduction in FRP values due to the absorbing properties of smoke 

and atmospheric water vapor (Wooster et al., 2005) and fuel moisture (Smith et al. 2013), 

and issues with the geometric sensing characteristics relative to the spatial configuration 

and temperatures of actively burning fires (Calle et al., 2009; Freeborn et al., 2014). In 

this study, the polar-orbiting MODIS and geostationary GOES FRP data were used to 

derive the FRE. Compared to GOES, the MODIS is able to detect smaller and cooler fires 

but no more than four times per day. Conversely, the GOES has the capability to capture 

the fire diurnal variation due to its 5-15 min sampling but cannot detect small and cool 

fires (Freeborn et al., 2011; Roberts and Wooster., 2014; Xu et al., 2010; Zhang et al., 

2012). In this study, the pixel-level MODIS FRP was adjusted using the method by 

(Freeborn et al., 2011) to mitigate the underestimation of MODIS FRP at off-nadir 

(equation (4)) and aggregated to obtain adjusted cluster-level MODIS FRP (equation (5)). 

To account for the underestimation of GOES FRP due to missed small and cool fires, the 

cluster-level GOES FRP estimate at each GOES observing time was adjusted over each 

of the 455 burned areas by adding an FRP offset (equation (8)) that was calculated from 

the difference between the cluster-level GOES and adjusted MODIS FRP estimates. The 
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example in Figure 2-2 illustrates the adjustment of cluster-level GOES FRP in different 

situations. The cluster-level MODIS FRP and adjusted GOES FRP were applied to 

estimate adjusted MODIS FRE and adjusted GOES FRE using established temporal 

integration methods (Boschetti and Roy, 2009; Zhang et al., 2012). The adjusted MODIS 

and GOES FRE values were significantly correlated across the 445 burned areas and the 

GOES FRE was about a third less than the MODIS FRE. Other researchers have noted 

smaller MODIS FRE than geostationary FRE derived over Africa from the Meteosat 

Second Generation (MSG) SEVIRI FRE (Freeborn et al., 2011; Vermote et al., 2009) 

although this could be attributed to different FRE derivation methodologies, fire regimes, 

and sensor capabilities. The satellite-derived FRE in this study could not be validated 

because there are no independent and contemporaneous FRE measurements. The relative 

error characteristics of the adjusted GOES and MODIS FRE are unknown and so for each 

burned area, their average was taken. Further work to investigate a weighting scheme or 

some other way to optimally combine the FRE from these the MODIS and GOES sensors 

is recommended.  

Despite the above issues, this study demonstrated that the derived FBCC values 

were relatively stable. Comparing the satellite FRE with the biomass consumption 

estimated by the burn severity parameterized CC approach provided FBCC values of 

0.374 kg · MJ-1 (GOES), 0.266 kg · MJ-1 (MODIS), and 0.320 kg · MJ-1 (average of 

GOES and MODIS FRE) when both years (2011 and 2012) were considered for the 445 

CONUS fire events, and for either year, the derived FBCC value of one year varied by 

less than 6% of the other year’s value. The other biomass consumption estimation 

methods considered provided similar magnitude FBCC values, with a two-year average 
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GOES and MODIS FRE estimate of 0.301 kg · MJ-1 when the CC was fixed at 0.5 and 

0.458 kg · MJ-1 for the IPCC based method. All of these values are similar to the FBCC 

values derived from field and plume tower prescribed fire experiments (0.368 - 0.453 kg · 

MJ-1) (Freeborn et al., 2008; Kremens et al., 2012; Wooster et al., 2005) and also with 

certain synoptic scale satellite research (0.300 to 0.520 kg · MJ-1) (Konovalov et al., 

2014). They are smaller however than the FBCC values (0.13 to 1.55 kg · MJ-1) estimated 

using Global Fire Emissions Database and MODIS FRE (Kaiser et al., 2012) and much 

smaller than the values (1.6 to 12.0 kg · MJ-1) derived comparing MODIS-based 

emissions coefficients and aerosol optical thickness data (Sofiev et al., 2009; Zhang et al. 

2012). The large discrepancies among FBCC values derived by different approaches may 

explain some of the discrepancies among the existing FRP based emissions datasets 

(Zhang et al., 2012; Zhang et al., 2014b).  

In summary, this study confirms the empirical relationship between biomass 

consumption estimates and FRE for landscape wildland fires. Despite the uncertainties in 

the data used it is important to note that for all cases the experiments confirmed the linear 

relationship between FRE and biomass consumption observed in previous studies 

(Freeborn et al., 2008; Kremens et al., 2012; Wooster et al., 2005). For combined use of 

GOES and MODIS FRE, an FBCC value of 0.320 kg · MJ-1 is suggested. Landscape-

scale and detailed fire event specific experiments are needed. However, this is 

challenging due to the difficulty in measuring pre-fire and post-fire fuel loads and 

spatially explicit CC over large burned areas. These challenges might be mitigated by 

advances in technologies of remote sensing and field measurements, for example, 

application of LiDAR in estimation of fuel loads from airborne and ground-based 
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platforms (Cooper et al., 2017; Hudak et al., 2016; Price and Gordon, 2016) over 

prescribed fires, and also over wildfires if the pre-fire fuel conditions can be assessed. 

 

Acknowledgments 

This research was funded by NOAA contract NA14NES4320003 and BG-133E-

15-SE-1613. The manuscript contents are solely the opinions of the author(s) and do not 

constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. 

Government. The authors thank reviewers and Editors for their constructive comments. 

The authors comply with AGU’s data policy. The output data sets of this study are 

accessible at the institutional repository of South Dakota State University 

(https://openprairie.sdstate.edu/global_land_surface_season_data/3/). 

 

References 

Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass 

burning. Global Biogeochemical Cycles, 15(4), 955–966, doi: 

https://doi.org/10.1029/2000GB001382. 

Anjozian, L.-N. (2009). Consume 3.0—A software tool for computing fuel consumption. 

In Fire Science Brief (Vol. 55, pp. 1–6). Retrieved from 

https://www.firescience.gov/projects/briefs/98-1-9-06_FSBrief55.pdf, last accessed 

on 1/30/2018. 

Boschetti, L., & Roy, D. P. (2009). Strategies for the fusion of satellite fire radiative 

power with burned area data for fire radiative energy derivation. Journal of 

Geophysical Research, 114, D20302, doi: https://doi.org/10.1029/2008JD011645. 



71 

 

Boschetti, L., Eva, H. D., Brivio, P. A., & Grégoire, J. M. (2004). Lessons to be learned 

from the comparison of three satellite-derived biomass burning products. Geophysical 

Research Letters, 31, L21501, doi: https://doi.org/10.1029/2004GL021229. 

Boschetti, L., Roy, D. P., Justice, C. O., & Humber, M. L. (2015). MODIS–Landsat 

fusion for large area 30 m burned area mapping. Remote Sensing of Environment, 

161(0), 27–42, doi: https://doi.org/10.1016/j.rse.2015.01.022. 

Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. 

A., et al. (2009). Fire in the Earth system. Science, 324(5926), 481–484, doi: 

https://doi.org/10.1126/science.1163886. 

Calle, A., Casanova, J. L., & González-Alonso, F. (2009). Impact of point spread 

function of MSG-SEVIRI on active fire detection. International Journal of Remote 

Sensing, 30(17), 4567–4579, doi: https://doi.org/10.1080/01431160802609726. 

Campbell, J., Donato, D., Azuma, D., & Law, B. (2007). Pyrogenic carbon emission from 

a large wildfire in Oregon, United States. Journal of Geophysical Research: 

Biogeosciences, 112, G04014, doi: https://doi.org/10.1029/2007JG000451. 

Cocke, A. E., Fulé, P. Z., & Crouse, J. E. (2005). Comparison of burn severity 

assessments using differenced normalized burn ratio and ground data. International 

Journal of Wildland Fire, 14(2), 189–198, doi: https://doi.org/10.1071/WF04010. 

Cooper, S., Roy, D., Schaaf, C., & Paynter, I. (2017). Examination of the potential of 

terrestrial laser scanning and structure-from-motion photogrammetry for rapid 

nondestructive field measurement of grass biomass. Remote Sensing, 9(12), 531, doi: 

https://doi.org/10.3390/rs9060531. 



72 

 

Cruz, M. G., & Alexander, M. E. (2010). Assessing crown fire potential in coniferous 

forests of western North America: A critique of current approaches and recent 

simulation studies. International Journal of Wildland Fire, 19(4), 377–398, doi: 

https://doi.org/10.1071/WF08132. 

De Santis, A., & Chuvieco, E. (2009). GeoCBI: A modified version of the composite 

burn index for the initial assessment of the short-term burn severity from remotely 

sensed data. Remote Sensing of Environment, 113(3), 554–562, doi: 

https://doi.org/10.1016/j.rse.2008.10.011. 

Disney, M. I., Lewis, P., Gomez-Dans, J., Roy, D., Wooster, M. J., & Lajas, D. (2011). 

3D radiative transfer modelling of fire impacts on a two-layer savanna system. 

Remote Sensing of Environment, 115(8), 1866–1881, doi: 

https://doi.org/10.1016/j.rse.2011.03.010. 

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., & Howard, S. (2007). A 

project for monitoring trends in burn severity. Fire Ecology, 3(1), 3–21, doi: 

https://doi.org/10.4996/fireecology.0301003. 

Ellicott, E., Vermote, E., Giglio, L., & Roberts, G. (2009). Estimating biomass consumed 

from fire using MODIS FRE. Geophysical Research Letters, 36, L13401, doi: 

https://doi.org/10.1029/2009GL038581. 

Epting, J., Verbyla, D., & Sorbel, B. (2005). Evaluation of remotely sensed indices for 

assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote 

Sensing of Environment, 96(3-4), 328–339, doi: 

https://doi.org/10.1016/j.rse.2005.03.002. 



73 

 

Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P., 

& Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and trace 

gas and aerosol emissions during laboratory biomass fires. Journal of Geophysical 

Research, 113, DO1301, doi: https://doi.org/10.1029/2007JD008679. 

Freeborn, P. H., Wooster, M. J., & Roberts, G. (2011). Addressing the spatiotemporal 

sampling design of MODIS to provide estimates of the fire radiative energy emitted 

from Africa. Remote Sensing of Environment, 115(2), 475–489, doi: 

https://doi.org/10.1016/j.rse.2010.09.017. 

Freeborn, P. H., Wooster, M. J., Roberts, G., Malamud, B. D., & Xu, W. (2009). 

Development of a virtual active fire product for Africa through a synthesis of 

geostationary and polar orbiting satellite data. Remote Sensing of Environment, 

113(8), 1700–1711, doi: https://doi.org/10.1016/j.rse.2009.03.013.  

Freeborn, P. H., Wooster, M. J., Roy, D. P., & Cochrane, M. A. (2014). Quantification of 

MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based 

active fire characterization and biomass burning estimation. Geophysical Research 

Letters, 41, 1988–1994, doi: https://doi.org/10.1002/2013GL059086. 

French, N. H. F., Kasischke, E. S., Hall, R. J., Murphy, K. A., Verbyla, D. L., Hoy, E. E., 

& Allen, J. L. (2008). Using Landsat data to assess fire and burn severity in the north 

American boreal forest region: An overview and summary of results. International 

Journal of Wildland Fire, 17(4), 443–462, doi: https://doi.org/10.1071/WF08007. 

Ghimire, B., Williams, C. A., Collatz, G. J., & Vanderhoof, M. (2012). Fire-induced 

carbon emissions and regrowth uptake in western U.S. forests: Documenting variation 



74 

 

across forest types, fire severity, and climate regions. Journal of Geophysical 

Research, 117, G03036, doi: https://doi.org/10.1029/2011JG001935. 

Giglio, L. (2013). MODIS Collection 5 active fire product User’s guide, version 2.5, 

available at: http://modis-fire.umd.edu/files/MODIS_Fire Users_Guide_2.5.pdf, last 

accessed on 1/30/2018. 

Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced 

contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 

87(2-3), 273–282, doi: https://doi.org/10.1016/S0034-4257(03)00184-6. 

Hawbaker, T. J., Vanderhoof, M. K., Beal, Y.-J., Takacs, J. D., Schmidt, G. L., Falgout, 

J. T., et al. (2017). Mapping burned areas using dense time series of Landsat data. 

Remote Sensing of Environment, 198, 504–522, doi: 

https://doi.org/10.1016/j.rse.2017.06.027. 

Hély, C., Alleaume, S., Swap, R. J., Shugart, H. H., & Justice, C. O. (2003). SAFARI-

2000 characterization of fuels, fire behavior, combustion completeness, and emissions 

from experimental burns in infertile grass savannas in western Zambia. Journal of 

Arid Environments, 54(2), 381–394, doi: https://doi.org/10.1006/jare.2002.1097. 

Heward, H., Smith, A. M. S., Roy, D. P., Tinkham, W. T., Hoffman, C. M., Morgan, P., 

& Lannom, K. O. (2013). Is burn severity related to fire intensity? Observations from 

landscape scale remote sensing. International Journal of Wildland Fire, 22(7), 910–

918, doi: https://doi.org/10.1071/WF12087. 

Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., et al. (2015). 

Completion of the 2011 National Land Cover Database for the Conterminous United 



75 

 

States—Representing a decade of land cover change information. Photogrammetric 

Engineering and Remote Sensing, 81(5), 345–354. 

Hudak, A. T., Dickinson, M. B., Bright, B. C., Kremens, R. L., Loudermilk, E. L., 

O’Brien, J. J., et al. (2016). Measurements relating fire radiative energy density and 

surface fuel consumption – RxCADRE 2011 and 2012. International Journal of 

Wildland Fire, 25(1), 25–37, doi: https://doi.org/10.1071/WF14159. 

Ichoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from 

MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and 

Remote Sensing, 43(11), 2636–2649, doi: 

https://doi.org/10.1109/TGRS.2005.857328. 

IPCC (2006). 2006 IPCC guidelines for National Greenhouse Gas Inventories. In H. S. 

Eggleston, et al. (Eds.), Prepared by the National Greenhouse gas Inventories 

Programme (Chap. 2, pp. 1–59). IGES, Japan. 

Ito, A., & Penner, J. E. (2004). Global estimates of biomass burning emissions based on 

satellite imagery for the year 2000. Journal of Geophysical Research, 109, D14S05, 

doi: https://doi.org/10.1029/2003JD004423. 

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., et al. 

(2012). Biomass burning emissions estimated with a global fire assimilation system 

based on observed fire radiative power. Biogeosciences, 9(1), 527–554, doi: 

https://doi.org/10.5194/bg-9-527-2012. 

Kasischke, E. S., Loboda, T., Giglio, L., French, N. H. F., Hoy, E. E., de Jong, B., & 

Riano, D. (2011). Quantifying burned area for North American forests: Implications 



76 

 

for direct reduction of carbon stocks. Journal of Geophysical Research, 116, G04003, 

doi: https://doi.org/10.1029/2011JG001707. 

Kaufman, Y. J., Remer, L., Ottmar, R., Ward, D., Li, R.-R., Kleidman, R., et al. (1996). 

Relationship between remotely sensed fire intensity and rate of emission of smoke: 

SCAR-C experiment. In J. Levin (Ed.), Global Biomass Burning (pp. 685–696). 

Cambridge MA: The MIT Press. 

Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., et al. 

(1998). Potential global fire monitoring from EOS-MODIS. Journal of Geophysical 

Research, 103(D24), 32,215–32,238, doi: https://doi.org/10.1029/98JD01644. 

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and 

suggested usage. International Journal of Wildland Fire, 18(1), 116–126, doi: 

https://doi.org/10.1071/WF07049. 

Key, C. H., &Benson, N. C. (2005). Landscape assessment: Remote sensing of severity, 

the normalized burn ratio, Rep., LA1-LA51 pp, Ogden, UT. 

Key, C. H., & Benson, N. C. (2006). Landscape assessment (LA), FIREMON: Fire 

effects monitoring and inventory system. Gen. Tech. Rep. RMRSGTR-164-CD, Fort 

Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain 

Research Station. 

Konovalov, I. B., Berezin, E. V., Ciais, P., Broquet, G., Beekmann, M., Hadji-Lazaro, J., 

et al. (2014). Constraining CO2 emissions from open biomass burning by satellite 

observations of co-emitted species: A method and its application to wildfires in 



77 

 

Siberia. Atmospheric Chemistry and Physics, 14(19), 10383–10410, doi: 

https://doi.org/10.5194/acp-14-10383-2014. 

Kremens, R. L., Dickinson, M. B., & Bova, A. S. (2012). Radiant flux density, energy 

density and fuel consumption in mixed-oak forest surface fires. International Journal 

of Wildland Fire, 21(6), 722–730, doi: https://doi.org/10.1071/WF10143. 

Kumar, S. S., Roy, D. P., Boschetti, L., & Kremens, R. (2011). Exploiting the power law 

distribution properties of satellite fire radiative power retrievals: A method to 

estimate fire radiative energy and biomass burned from sparse satellite observations. 

Journal of Geophysical Research, 116, D19303, doi: 

https://doi.org/10.1029/2011JD015676. 

Lentile, L. B., Holden, Z. A., Smith, A. M. S., Falkowski, M. J., Hudak, A. T., Morgan, 

P., et al. (2006). Remote sensing techniques to assess active fire characteristics and 

post-fire effects. International Journal of Wildland Fire, 15(3), 319–345, doi: 

https://doi.org/10.1071/WF05097. 

Lentile, L. B., Smith, A. M. S., Hudak, A. T., Morgan, P., Bobbitt, M. J., Lewis, S. A., & 

Robichaud, P. R. (2009). Remote sensing for prediction of 1-year post-fire ecosystem 

condition. International Journal of Wildland Fire, 18(5), 594–608, doi: 

https://doi.org/10.1071/WF07091. 

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, 

J. W. (2000). Development of a global land cover characteristics database and IGBP 

DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6-

7), 1303–1330, doi: https://doi.org/10.1080/014311600210191. 



78 

 

Lutes, D. C., Keane, R. E., & Caratti, J. F. (2009). A surface fuel classification for 

estimating fire effects. International Journal of Wildland Fire, 18(7), 802–814, doi: 

https://doi.org/10.1071/WF08062. 

Lydersen, J. M., Collins, B. M., Ewell, C. M., Reiner, A. L., Fites, J. A., Dow, C. B., et 

al. (2014). Using field data to assess model predictions of surface and ground fuel 

consumption by wildfire in coniferous forests of California. Journal of Geophysical 

Research: Biogeosciences, 119, 223–235, doi: 

https://doi.org/10.1002/2013JG002475. 

Mathews, B. J., Strand, E. K., Smith, A.M. S., Hudak, A. T., Hudak, A. T., Dickinson, B., 

& Kremens, R. L. (2016). Laboratory experiments to estimate interception of infrared 

radiation by tree canopies. International Journal of Wildland Fire, 25(9), 1009–1014, 

doi: https://doi.org/10.1071/WF16007. 

Meigs, G. W., Donato, D. C., Campbell, J. L., Martin, J. G., & Law, B. E. (2009). Forest 

fire impacts on carbon uptake, storage, and emission: The role of burn severity in the 

eastern cascades, Oregon. Ecosystems, 12(8), 1246–1267, doi: 

https://doi.org/10.1007/s10021-009-9285-x. 

Moody, J. A., Martin, D. A., Haire, S. L., & Kinner, D. A. (2008). Linking runoff 

response to burn severity after a wildfire. Hydrological Processes, 22(13), 2063–

2074, doi: https://doi.org/10.1002/hyp.6806. 

Ottmar, R. D., Prichard, S. J., Vihnanek, R. E., & Sandberg, D. V. (2006). Modification 

and validation of fuel consumption models for shrub and forested lands in the 



79 

 

Southwest, Pacific Northwest, Rockies, Midwest, Southeast and Alaska, Joint Fire 

Science Program. Seattle Washington. 

Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., & Prichard, S. J. (2007). An overview of 

the Fuel Characteristic Classification System—Quantifying, classifying, and creating 

fuelbeds for resource planning, This article is one of a selection of papers published 

in the special forum on the fuel characteristic classification system. Canadian Journal 

of Forest Research, 37(12), 2383–2393, doi: https://doi.org/10.1139/X07-077. 

Pellizzaro, G., Cesaraccio, C., Duce, P., Ventura, A., & Zara, P. (2007). Relationships 

between seasonal patterns of live fuel moisture and meteorological drought indices 

for Mediterranean shrubland species. International Journal of Wildland Fire, 16(2), 

232–241, doi: https://doi.org/10.1071/WF06081. 

Peterson, D., Wang, J., Ichoku, C., Hyer, E., & Ambrosia, V. (2013). A sub-pixel-based 

calculation of fire radiative power from MODIS observations 1: Algorithm 

development and initial assessment. Remote Sensing of Environment, 129(0), 262–

279, doi: https://doi.org/10.1016/j.rse.2012.10.036. 

Pettinari, M. L., & Chuvieco, E. (2016). Generation of a global fuel data set using the 

Fuel Characteristic Classification System. Biogeosciences, 13(7), 2061–2076, doi: 

https://doi.org/10.5194/bg-13-2061-2016. 

Price, O. F., & Gordon, C. E. (2016). The potential for LiDAR technology to map fire 

fuel hazard over large areas of Australian forest. Journal of Environmental 

Management, 181, 663–673, doi: https://doi.org/10.1016/j.jenvman.2016.08.042. 



80 

 

Prichard, S. J., Sandberg, D. V., Ottmar, R. D., Eberhardt, E., Andreu, A., Eagle, P., & 

Swedin, K. (2013). Fuel characteristic classification system version 3.0: Technical 

documentation Rep., 79 pp, U.S. Department of Agriculture, Forest Service, Pacific 

Northwest Research Station. 

Prichard, S. J., Kennedy, M. C., Wright, C. S., Cronan, J. B., & Ottmar, R. D. (2017). 

Predicting forest floor and woody fuel consumption from prescribed burns in 

southern and western pine ecosystems of the United States. Forest Ecology and 

Management, 405, 328–338, doi: https://doi.org/10.1016/j.foreco.2017.09.025. 

Prins, E. M., Feltz, J. M., Menzel, W. P., & Ward, D. E. (1998). An overview of GOES-8 

diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. 

Journal of Geophysical Research, 103(D24), 31,821–31,835, doi: 

https://doi.org/10.1029/98JD01720. 

Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). 

Global burned area and biomass burning emissions from small fires. Journal of 

Geophysical Research, 117, G04012, doi: https://doi.org/10.1029/2012JG002128. 

Roberts, G. J., & Wooster, M. J. (2008). Fire detection and fire characterization over 

Africa using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote 

Sensing, 46(4), 1200–1218, doi: https://doi.org/10.1109/TGRS.2008.915751. 

Roberts, G., & Wooster, M. J. (2014). Development of a multi-temporal Kalman filter 

approach to geostationary active fire detection & fire radiative power (FRP) 

estimation. Remote Sensing of Environment, 152(0), 392–412, doi: 

https://doi.org/10.1016/j.rse.2014.06.020. 



81 

 

Roberts, G., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L. M., & Dipotso, F. 

(2005). Retrieval of biomass combustion rates and totals from fire radiative power 

observations: Application to southern Africa using geostationary SEVIRI imagery. 

Journal of Geophysical Research, 110, D21111, doi: 

https://doi.org/10.1029/2005JD006018. 

Rocha, A. V., & Shaver, G. R. (2011). Burn severity influences postfire CO2 exchange in 

arctic tundra. Ecological Applications, 21(2), 477–489, doi: 

https://doi.org/10.1890/10-0255.1. 

Roy, D. P., & Landmann, T. (2005). Characterizing the surface heterogeneity of fire 

effects using multi-temporal reflective wavelength data. International Journal of 

Remote Sensing, 26(19), 4197–4218, doi: 

https://doi.org/10.1080/01431160500112783. 

Roy, D. P., Boschetti, L., & Trigg, S. N. (2006). Remote sensing of fire severity: 

Assessing the performance of the normalized burn ratio. IEEE Geoscience and 

Remote Sensing Letters, 3(1), 112–116, doi: 

https://doi.org/10.1109/LGRS.2005.858485. 

Roy, D. P., Boschetti, L., Maier, S. W., & Smith, A. M. S. (2010). Field estimation of ash 

and char colour-lightness using a standard grey scale. International Journal of 

Wildland Fire, 19(6), 698–704, doi: https://doi.org/10.1071/WF09133. 

Schmidt, C. C., & Prins, E. M. (2003). GOES wildfire ABBA applications in the western 

hemisphere. Paper presented at 2nd International Wildland Fire Ecology and Fire 

Management Congress and 5th Symp. on Fire and Forest Meteorology, Citeseer. 



82 

 

Seiler, W., & Crutzen, P. (1980). Estimates of gross and net fluxes of carbon between the 

biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–

247, doi: https://doi.org/10.1007/BF00137988. 

Smith, A. M. S., & Hudak, A. T. (2005). Estimating combustion of large downed woody 

debris from residual white ash. International Journal of Wildland Fire, 14(3), 245–

248, doi: https://doi.org/10.1071/WF05011. 

Smith, A. M. S., & Wooster, M. J. (2005). Remote classification of head and backfire 

types from MODIS fire radiative power and smoke plume observations. International 

Journal of Wildland Fire, 14(3), 249–254, doi: https://doi.org/10.1071/WF05012. 

Smith, A. M. S., Tinkham, W. T., Roy, D. P., Boschetti, L., Kremens, R. L., Kumar, S. 

S., et al. (2013). Quantification of fuel moisture effects on biomass consumed derived 

from fire radiative energy retrievals. Geophysical Research Letters, 40, 6298–6302, 

doi: https://doi.org/10.1002/2013GL058232 

Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., et al. 

(2009). An operational system for the assimilation of the satellite information on 

wild-land fires for the needs of air quality modelling and forecasting. Atmospheric 

Chemistry and Physics, 9(18), 6833–6847, doi: https://doi.org/10.5194/acp-9-6833-

2009. 

Sparks, A. M., Boschetti, L., Smith, A. M. S., Tinkham, W. T., Lannom, K. O., & 

Newingham, B. A. (2015). An accuracy assessment of the MTBS burned area product 

for shrub–steppe fires in the northern Great Basin, United States. International 

Journal of Wildland Fire, 24(1), 70–78, doi: https://doi.org/10.1071/WF14131. 



83 

 

Steel, Z. L., Safford, H. D., & Viers, J. H. (2015). The fire frequency-severity 

relationship and the legacy of fire suppression in California forests. Ecosphere, 6(1), 

art8–ar23, doi: https://doi.org/10.1890/ES14-00224.1. 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. 

S., et al. (2010). Global fire emissions and the contribution of deforestation, savanna, 

forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 

10(23), 11,707–11,735, doi: https://doi.org/10.5194/acp-10-11707-2010. 

van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., 

French, N. H. F., et al. (2014). Biomass burning fuel consumption rates: A field 

measurement database. Biogeosciences, 11(24), 7305–7329, doi: 

https://doi.org/10.5194/bg-11-7305-2014. 

Veraverbeke, S., & Hook, S. J. (2013). Evaluating spectral indices and spectral mixture 

analysis for assessing fire severity, combustion completeness and carbon emissions. 

International Journal of Wildland Fire, 22(5), 707–720, doi: 

https://doi.org/10.1071/WF12168. 

Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., & Roberts, G. 

J. (2009). An approach to estimate global biomass burning emissions of organic and 

black carbon from MODIS fire radiative power. Journal of Geophysical Research, 

114, D18205, doi: https://doi.org/10.1029/2008JD011188. 

Waltz, A. E. M., Stoddard, M. T., Kalies, E. L., Springer, J. D., Huffman, D. W., & 

Meador, A. S. (2014). Effectiveness of fuel reduction treatments: Assessing metrics 



84 

 

of forest resiliency and wildfire severity after the Wallow Fire, AZ. Forest Ecology 

and Management, 334, 43–52, doi: https://doi.org/10.1016/j.foreco.2014.08.026. 

Ward, D. E., Hao, W. M., Susott, R. A., Babbitt, R. E., Shea, R. W., Kauffman, J. B., & 

Justice, C. O. (1996). Effect of fuel composition on combustion efficiency and 

emission factors for African savanna ecosystems. Journal of Geophysical Research, 

101(D19), 23,569–23,576, doi: https://doi.org/10.1029/95JD02595. 

Wickham, J. D., Stehman, S. V., Gass, L., Dewitz, J., Fry, J. A., & Wade, T. G. (2013). 

Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote 

Sensing of Environment, 130, 294–304, doi: https://doi.org/10.1016/j.rse.2012.12.001. 

Wolfe, R. E., Roy, D. P., & Vermote, E. (1998). MODIS land data storage, gridding, and 

compositing methodology: Level 2 grid. IEEE Transactions on Geoscience and 

Remote Sensing, 36(4), 1324–1338, doi: https://doi.org/10.1109/36.701082. 

Wolfe, R. E., Nishihama, M., Fleig, A. J., Kuyper, J. A., Roy, D. P., Storey, J. C., & Patt, 

F. S. (2002). Achieving sub-pixel geolocation accuracy in support of MODIS land 

science. Remote Sensing of Environment, 83(1-2), 31–49, doi: 

https://doi.org/10.1016/S0034-4257(02)00085-8. 

Wooster, M. J. (2002). Small-scale experimental testing of fire radiative energy for 

quantifying mass combusted in natural vegetation fires. Geophysical Research 

Letters, 29(21), 2027, doi: https://doi.org/10.1029/2002GL015487. 

Wooster, M. J., Zhukov, B., & Oertel, D. (2003). Fire radiative energy for quantitative 

study of biomass burning: Derivation from the BIRD experimental satellite and 



85 

 

comparison to MODIS fire products. Remote Sensing of Environment, 86(1), 83–107, 

doi: https://doi.org/10.1016/S0034-4257(03)00070-1. 

Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of 

biomass combustion rates and totals from fire radiative power observations: FRP 

derivation and calibration relationships between biomass consumption and fire 

radiative energy release. Journal of Geophysical Research, 110, D24311, doi: 

https://doi.org/10.1029/2005JD006318. 

Xu, W., Wooster, M. J., Roberts, G., & Freeborn, P. (2010). New GOES imager 

algorithms for cloud and active fire detection and fire radiative power assessment 

across North, South and Central America. Remote Sensing of Environment, 114(9), 

1876–1895, doi: https://doi.org/10.1016/j.rse.2010.03.012. 

Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., 

et al. (2013). Coupling field and laboratory measurements to estimate the emission 

factors of identified and unidentified trace gases for prescribed fires. Atmospheric 

Chemistry and Physics, 13(1), 89–116, doi: https://doi.org/10.5194/acp-13-89-2013. 

Zhang, X., Kondragunta, S., Schmidt, C., & Kogan, F. (2008). Near real time monitoring 

of biomass burning particulate emissions (PM2.5) across contiguous United States 

using multiple satellite instruments. Atmospheric Environment, 42(29), 6959–6972, 

doi: https://doi.org/10.1016/j.atmosenv.2008.04.060. 

Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., & Huang, H.-C. (2012). Near-real-

time global biomass burning emissions product from geostationary satellite 



86 

 

constellation. Journal of Geophysical Research, 117, D14201, doi: 

https://doi.org/10.1029/2012JD017459. 

Zhang, X., Kondragunta, S., & Roy, D. P. (2014). Interannual variation in biomass 

burning and fire seasonality derived from geostationary satellite data across the 

contiguous United States from 1995 to 2011. Journal of Geophysical Research: 

Biogeosciences, 119, 1147–1162, doi: https://doi.org/10.1002/2013JG002518. 

Zhang, F., Wang, J., Ichoku, C., Hyer, E. J., Yang, Z., Ge, C., et al. (2014). Sensitivity of 

mesoscale modeling of smoke direct radiative effect to the emission inventory: A case 

study in northern sub-Saharan African region. Environmental Research Letters, 9(7), 

075002, doi: https://doi.org/10.1088/1748-9326/9/7/075002. 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

CHAPTER 3: Estimation of Biomass-Burning Emissions by Fusing the 

Fire Radiative Power Retrievals from Polar-Orbiting and Geostationary 

Satellites across the Conterminous United States 
 

Li, F., X. Zhang, D. P. Roy, and S. Kondragunta, Estimation of biomass-burning 

emissions by fusing the fire radiative power retrievals from polar-orbiting and 

geostationary satellites across the conterminous United States, a paper is in preparation 

for a peer-reviewed journal. 

 

This chapter address Hypothesis #2: Diurnal FRP cycles can be reconstructed from 

polar-orbiting and geostationary satellites FRP retrievals to improve emissions 

estimation. 
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Abstract 

Biomass burning is an important source of atmospheric greenhouse gases and 

aerosols, and its emissions can be estimated using Fire Radiative Power (FRP) retrievals 

from polar-orbiting and/or geostationary satellites. Accurate and timely estimation of 

biomass-burning emissions (BBE) requires high-spatiotemporal-resolution FRP that is 

characterized by accurate diurnal FRP cycle. This study is to estimate hourly reliable 

BBE in a 0.25°×0.3125° grid across the conterminous United States (CONUS) to be used 

in chemical transport models for air quality forecast. To do this, this study for the first 

time fused FRP retrievals from the Geostationary Operational Environmental Satellite 

(GOES) with those from Moderate Resolution Imaging Spectroradiometer (MODIS) 

Collection 6 after GOES FRP was angularly adjusted and was further calibrated against 

MODIS FRP. The FRP data was obtained from Terra and Aqua MODIS 1-km active fire 

products with fire observations of four times a day and from 4km GOES WF_ABBA 

(WildFire Automated Biomass Burning Algorithm) fire products for GOES-W (GOES-

11 and 15) and GOES-E (GOES-13) with observations every 5-15 min across the 

CONUS from 2011-2015. The diurnal FRP cycles at an interval of 15 min for a grid were 

reconstructed using the ecosystem-specific diurnal FRP climatology and actually 

available fused FRP, which were applied to estimate hourly BBE across the CONUS. The 

results indicate that the reconstructed diurnal FRP cycle varied significantly in magnitude 

and shape among 45 CONUS ecosystems. The biomass burning released 690 Gg 

particulate matter (smaller than 2.5 µm in diameter, PM2.5) in the CONUS each year; 

however, it presented significant temporal (diurnal, seasonal, and interannual) and spatial 

variations. Finally, the BBE estimates were evaluated using available data sources and 
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compared well (difference < 30%) with emissions derived from Landsat burned areas in 

the western CONUS and with hourly carbon monoxide emissions simulated using a 

biogeochemical model over the Rim Fire in California (difference < 30%). The BBE 

estimates showed similar seasonal variation to six available BBE inventories but with 

variable magnitude.  

 

3.1. Introduction 

Biomass burning from wildfires emits a significant amount of trace gases and aerosols 

that profoundly impact climate, weather, carbon budget, and public health (Akimoto, 

2003; Bowman et al., 2009; Johnston et al., 2016; Kaufman et al., 2002). Global 

wildfires, on average, annually burn approximately 350 Mha of land (Giglio et al., 2013) 

and release 2.2 Pg carbon (approximately 23% of fossil-fuel carbon emissions in 2014 

(Boden et al., 2017)) into the atmosphere (van der Werf et al., 2017), which has been 

projected to cause a net global warming of 0.4 K over 20 years by 2026 (Jacobson, 2014). 

Smoke aerosols (i.e., black carbon and organic carbon) emitted from biomass burning is 

thought to have cooled the Earth by 0.06-1.30 W · m-2 in the industrial era (Bond et al., 

2013). Smoke aerosols threaten human health by degrading local to regional air quality. 

For example, fire-related fine particulate matter smaller than 2.5 µm in diameter (PM2.5) 

cause several hundreds of thousands of premature deaths worldwide annually (Johnston 

et al., 2016; Lelieveld et al., 2015). Biomass-burning emissions (BBE) significantly 

influence the accuracy of atmospheric models and numerical weather models for 

forecasting air quality and meteorological conditions (Reid et al., 2009). Accurate and 
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timely estimation of BBE is needed for climate, weather, environment, and air quality 

applications. 

BBE has been estimated since the 1980s as the product of burned area, biomass 

fuel load, the fraction of biomass burned, and emission factors (Seiler and Crutzen, 1980; 

van der Werf et al., 2017). The degree to which these four parameters are estimated 

determines the accuracy of BBE estimates. Prior to the satellite era, BBE was highly 

uncertain and was estimated by statistical extrapolation of results from local experiments 

to regions and worldwide (Seiler & Crutzen, 1980; Crutzen & Andreae, 1990; Hao et al., 

1990). In the satellite era, the burned area and hotspots retrieved from satellite 

observations have elevated the capability of quantifying BBE. Particularly, with the 

availability of the global systematically generated Moderate Resolution Imaging 

Spectroradiometer (MODIS) fire products (Justice et al., 2002), regional and global BBE 

products have been widely produced, including the Global Fire Emissions Database 

(GFED) (van der Werf et al., 2017), the Fire Locating and Modeling of Burning 

Emissions (FLAMBE) (Reid et al., 2009), the Fire INventory from NCAR (FINN) 

(Wiedinmyer et al., 2011), and the Wildland Fire Emissions Information System 

(WFEIS) (French et al., 2011). Although large improvements have been achieved in the 

estimation of burned area (Mouillot et al., 2014; Giglio et al. 2018), it is still challenging 

to accurately estimate BBE using the conventional model. This is due to the fact that 

burned areas are often underestimated by moderate-resolution satellite (Boschetti et al., 

2004; Kasischke et al., 2011), and fuel loadings are static and may differ by more than 

35% among different fuel datasets (Zhang et al., 2008). 
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Retrieval of the fire-released radiative energy from satellite radiance provides 

alternative ways to estimate BBE. Controlled fires experiments in laboratory and 

landscape demonstrated that the instantaneous radiative energy or Fire Radiative Power 

(FRP) is related to the rate of biomass combustion, and the total biomass combusted in a 

fire event is a function of the temporal integration of FRP, termed Fire Radiative Energy 

(FRE), and FRE biomass combustion coefficient (FBCC) (Freeborn et al., 2008; Hudak 

et al., 2016; Kremens et al., 2012; Wooster, 2002; Wooster et al., 2005). This empirical 

relationship was also confirmed in wildfires based on surface biomass consumption and 

satellite-derived FRP and emissions retrievals (Konovalov et al., 2014; Li et al., 2018), in 

which FRP is retrieved from radiances of fire pixel and non-fire ambient background at 

the 4-μm band (Wooster et al., 2003). The relationship has been frequently used to 

estimate regional to global BBE using FRP retrievals from polar-orbiting satellites and 

geostationary satellites (Ellicott et al., 2009; Kaiser et al., 2012; Roberts et al., 2009; 

Vermote et al., 2009; Zhang et al., 2012). For instance, daily global BBE is operationally 

produced using FRP retrievals from MODIS and global geostationary satellites in the 

Quick Fire Emissions Dataset (QFED) (Darmenov & Silva, 2015), the Global Fire 

Simulating System (GFAS)(Kaiser et al., 2012), and the Global Geostationary Satellite 

Biomass Burning Emissions Product (GBBEP-Geo)(Zhang et al., 2012). Another 

approach is to relate BBE rates directly to FRP using smoke emission coefficients 

(Freeborn et al., 2008; Ichoku & Kaufman, 2005). Smoke emission coefficients in a 0.1 

grid globally are available in the Fire Energetics and Emissions Research (FEER) 

product, which can be used to convert FRP to the rate of biomass-burning emissions 

(Ichoku & Ellison, 2014). These smoke emission coefficients have been further refined 
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based on MODIS Aerosol Optical Depth (AOD) and Meteosat SEVIRI FRP retrievals 

and applied to estimate BBE across Africa continent (Mota & Wooster, 2017).    

BBE will be estimated more reliably if satellite-based FRP is available at high 

spatiotemporal resolution. Sensors onboard the geostationary satellites (e.g., Meteosat 

SEVIRI and Geostationary Operational Environmental Satellite (GOES-11, 13, and 15) 

Imager) generally observe fires once from every 5-15 min. The high-temporal FRP 

retrievals enable to establish diurnal FRP variation (cycle), to estimate FRE and BBE at 

an hourly-to-daily resolution. However, their coarse spatial resolution (e.g., nominal 4 km 

at nadir for GOES) limits the capability of detecting small and cool fires (e.g., SEVIRI is 

unable to detect fires with FRP < 50 MW (Roberts & Wooster., 2008)), which could 

result in underestimation of FRE by 50% (Freeborn et al., 2009) and BBE by a factor of 

up to four (Roberts et al., 2009; Zhang et al., 2012). On the other hand, the polar-orbiting 

MODIS Aqua and Terra are able to sense relatively smaller and cooler fires (e.g., fire 

pixel with FRP > 10 MW (Roberts & Wooster., 2008)) due to higher spatial resolution of 

MODIS (nominal 1 km) than geostationary sensors, but each MODIS sensor only 

observes the same location twice a day. Thus, the polar-orbiting sensors (e.g., MODIS) 

are incapable of characterizing the diurnal FRP variation. Because fires have temporal 

fluctuations in fire radiant power, the FRE estimated by numerical integration of satellite 

FRP measurements is sensitive to satellite FRP undersampling during temporal gaps 

between two-successive fire observations (Boschetti & Roy, 2009; Kumar et al., 2011). 

Obviously, neither of present satellites is able to characterize the diurnal variations in 

FRP, or diurnal FRP cycle, accurately. Note that “diurnal FRP cycle” here is referred to 

as the diurnal variation of FRP per grid cell, which differs from the term of “diurnal fire 
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cycle” that represents the diurnal variation in the total number of active fire detections in 

a given region (Giglio, 2007).   

Two general strategies have been attempted to derive high-spatiotemporal-

resolution FRP. The first is to approximate diurnal FRP cycles with predefined Gaussian 

functions, and fit them to MODIS FRP retrievals (Andela et al., 2015; Ellicott et al., 

2009; Konovalov et al., 2014; Vermote et al., 2009). These predefined Gaussian 

functions may work well for some particular regions rather than the continental to global 

extents because diurnal FRP cycle varies with fuel types and seasons (Andela et al., 2015; 

Roberts et al., 2009). The second strategy is to predict the MODIS-equivalent FRP 

estimates from 15-min SEVIRI FRP retrievals using the optimized SEVIRI-to-MODIS 

FRP ratio (Freeborn et al., 2009). However, derivation of the optimized FRP ratio 

requires a large number of samples cumulated in large spatiotemporal windows (i.e., 

5°grid and 15 min, or 1°grid and one month ) (Freeborn et al., 2009) that hardly meet the 

requirements of operational and near-real-time emissions inventories (Andela et al., 

2015).   

This study is to develop a new algorithm to estimate hourly BBE at a 0.25° 

latitude by 0.3125° longitude grid across the conterminous United States (CONUS) by 

fusing FRP from Terra and Aqua MODIS and GOES-E and GOES-W observations. This 

dataset is to match the spatiotemporal resolution used as emissions input in chemical 

transport models (e.g. GEOS-CHEM) (Bey et al., 2001; Eastham and Jacob, 2017) and in 

NOAA (National Oceanic and Atmospheric Administration) Environmental Modeling 

System (NEMS) for Global Aerosol Forecasting (Lu et al., 2016). To estimate hourly 

BBE, the following activities were conducted. An empirical model was developed to 
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adjust GOES FRP retrievals at large view zenith angle (VZA) and the adjusted GOES 

FRP values were further calibrated against MODIS FRP retrievals. The calibrated GOES 

FRP was applied to establish the diurnal FRP climatology for 45 ecosystems at a grid 

level, which extended the simple diurnal cycle of FRP climatology (Zhang et al, 2012). 

Diurnal FRP cycles at a 15-min interval in a grid were then reconstructed by fitting the 

ecosystem-specific diurnal FRP climatology to the fused GOES and MODIS FRP 

estimates, which were applied to estimate hourly BBE of PM2.5 and carbon monoxide 

(CO) in a grid. Finally, the BBE estimates were evaluated and validated using fire 

emissions calculated from fuel loadings and burned areas over 60 Landsat burned areas, 

obtained from eight available inventories across the CONUS, and modeled by the WRF-

Chem model over the Rim Fire in California, respectively.  

 

3.2. Methods 

3.2.1. Fire Radiative Power from Polar-Orbiting and Geostationary Satellites 

3.2.2.1. MODIS FRP 

The MODIS active fire products provide fire detections at the satellite overpass 

times (Giglio et al., 2016). Terra and Aqua respectively cross the equator at 

approximately 10:30 AM and 1:30 PM local time during daytime and 10:30 PM and 1:30 

AM during nighttime. The MODIS Level 2 active fire products (abbreviated MOD14 for 

Terra and MYD14 for Aqua) contain for each fire pixel the detection time, geographical 

coordinate, confidence (low, nominal, and high), fire radiative power (units: MW per 

pixel), brightness temperature at the MODIS band 21 (3.660-3.840 µm) and band 31 
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(10.780-11.280 µm), and average brightness temperature of the surrounding non-fire 

pixels at bands 21 and 31 (Giglio, 2015). FRP estimates in MODIS Collection 6 (C6) 

active fire product are retrieved following the method developed by Wooster et al. (2003) 

using the radiances of a fire pixel and its ambient background non-fire pixels at the band 

21, and the fire pixel area (Giglio et al., 2016).  

This study obtained the MODIS C6 Level 2 active fire products (MOD14 and 

MYD14) for the period of 2011-2015 from NASA Level-1 and Atmosphere Archive & 

Distribution System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/). This product is 

defined in the MODIS sensing geometry (a 5-min granule) that covers an area of 

approximately 2340 by 2030 km along the scan and track directions, respectively. The 

MODIS scans 10 1-km lines per mirror rotation over ±55°. The pixel dimension increases 

from 1 km at nadir to 2.01 km and 4.83 km along the track and scan directions at the scan 

edge, respectively, which results in oversampling between adjacent scans by up to 50% 

from the scan angles of 24° to scan edge (Wolfe et al., 2002; Wolfe et al., 1998). As a 

result, fires can be repeatedly detected (Freeborn et al., 2014; Peterson et al., 2013). 

Further, the duplicate fire detections can also result from the triangle-shaped point spread 

function (PSF) of MODIS (Freeborn et al., 2014). Accordingly, this study corrected the 

inter-scan duplicate fire detections using the approach proposed by Li et al (2018a). 

Specifically, fire pixels were considered as duplicate detections in consecutive scans (one 

detection per scan) if they met the following conditions: (1) Fires were detected at the 

same satellite view angles. (2) Time difference between any two detections was less than 

8 seconds because the same point on the Earth surface could be sensed by up to three 

temporally MODIS adjacent scans at the scan edge during a time period of 4.431seconds 
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(1.477 seconds per scan × 3 scans) (Wolfe et al., 2002). (3) The distance between the 

centers of any pair of fire detections was shorter than the along-track dimension of the 

fire pixels because adjacent scans primarily overlapped each other along the track 

direction. For each pair of duplicate detections, one of them remained while the other was 

removed, in which the average FRP was used for the retained detection.  

 

3.2.2.2. GOES FRP 

The WildFire Automated Biomass Burning Algorithm (WF_ABBA Version 65) 

active fire product is produced from observations by the Imager sensor onboard the 

GOES satellites located at 135° W (GOES-W) and 75° W (GOES-E) above the equator, 

respectively (Schmidt and Prins, 2003). The pixel size in GOES-W (GOES-11 and 15) 

and GOES-E (GOES-13) increases from 4 to 8 km as the associated view zenith angle 

(VZA) varies from 30° to 70° across the CONUS. On routine-scanning schedule, the 

GOES-W senses the central and Western CONUS every 5-15 min (the 0th, 10th, 15th, 

30th, 40th, and 45th min of every hour approximately), and the GOES-E observes the 

whole CONUS every 15 min (the 0th, 15th, 30th, and 45th min of every hour 

approximately) (http://www.ospo.noaa.gov/Operations/GOES/schedules.html). The 

WF_ABBA detects active fires from all these observations. In WF_ABBA, false alarms 

due to cloud impacts, very large VZA, and sensor noise are reduced by applying a 

temporal filter that considers a new fire pixel as a false alarm if it has been detected less 

than twice during the past 12 hours (Schmidt and Prins, 2003). The GOES WF_ABBA 

product provides, for each fire pixel, fire location (longitude and latitude), time, FRP, 
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VZA, pixel size, brightness temperature at the 4 µm and 11 µm bands, fire temperature, 

fire size, ecosystem type, and quality flag. The quality flag is divided into six categories: 

flag 0 – a good quality fire detection, flag 1 – a fire detection with saturated brightness 

temperature of the 4-µm band, flag 2 – a fire detection contaminated by clouds or thick 

smoke plumes, flag 3 – a high possibility fire detection, flag 4 – a moderate possibility 

fire detection, and flag 5 – a low possibility fire detection. FRP is not retrieved for a 

detection classified as flags 1, 2, or 5. The ecosystem type for a fire pixel is determined 

based on the U.S. Geological Survey (USGS) Global Land Cover Characterization 

(GLCC) data set, which contains 100 ecosystem types globally and 45 primary 

ecosystems across the CONUS. The GLCC was generated using 1-km AVHRR 

(advanced very high resolution radiometer) data from April 1992 to March 1993 (Brown 

et al., 1999).  

This study obtained the filtered GOES WF_ABBA active fire product for the 

period of 2011-2015 from NOAA (http://satepsanone.nesdis. noaa.gov/pub/FIRE/forPo/). 

Note that the WF_ABBA fire data from July to August 2012 was missing due to the 

failure of collecting it from NOAA operational website so that the analyses for the year 

2012 were excluded. Hereafter, the period of 2011-2015 represents 2011, 2013, 2014, 

and 2015. This product contains fire detections from GOES-W (GOES-11, replaced by 

GOES-15 since December 2011) and GOES-E (GOES-13). Approximately 56% of 

GOES fire detections from 2011 to 2015 were classified as low possibility fire detections 

(flag 5) which were false alarms in most cases. Therefore, fire pixels with quality flags of 

0, 1, 2, or 3 were used and a fire pixel categorized as flag 4 or 5 was considered only if it 

was detected at least three times per day or at least once with a flag value < 3.  
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3.2.2. Adjustment of GOES FRP at Large View Zenith Angles  

The variation of GOES FRP with satellite view zenith angle (VZA) was 

investigated and adjusted because the FRP over large VZA might be influenced by the 

increased radiance contributed by non-fire background over a large pixel. To do this, 

GOES-W FRP and GOES-E FRP were compared by selecting the contemporaneous fire 

pixels that were detected by these two satellites within ±5 min in a 0.1° grid (~7 - 10 km 

across latitudes 10° - 50°). The comparison was conducted in two steps. First, all 

spatiotemporally coincident fire detections were obtained if the VZA was the same from 

GOES-W and GOES-E during 2013 - 2014 in order to verify the similarity of their FRP 

retrievals. These fire detections were located within 0.1° grids around the105° W 

longitude line. The selected samples demonstrated that FRP observations from the two 

GOES satellites were equivalent with a slope of 0.96 and a coefficient of determination 

of 0.94 (Figure 3-1).  
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Figure 3-1. Comparison of GOES-E FRP with GOES-W FRP for coincident detections 

(within ±5 min) collected within 0.1° grids around the 105° W longitude line from 2013 

to 2014. The solid line is the 1:1 line. 

 

Second, the contemporaneous fire detections were selected from GOES-W with 

VZA ranging from 40° to 50° (pixel size from 4.8 to 5.5 km) and GOES-E with VZA 

varying from 30° to 70° (pixel size from 4 to 8 km) in order to quantify the FRP variation 

with VZA. Considering GOES-W FRP as a reference and ignoring the small variation of 

VZA-related pixel size, the ratio of GOES-E to GOES-W FRP was compared to the VZA 

variation from 30° to 70° (Figure 3-2). Then the empirical model was established as: 
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where R(θ) is the ratio of GOES-E FRP (FRPE) to GOES-W FRP (FRPW), θ is GOES-E 

VZA (radian), and the parameters (a, b, c, and d) are coefficients obtained by fitting 

median FRP ratio (Figure 3-2).  

Giving that GOES-E FRP and GOES-W FRP are equivalent at the same VZA as 

demonstrated in Figure 3-1, the FRP influenced by VZA could be adjusted using the 

equation (4) that was deduced from equation (3): 

 
)(


R

FRP
FRPadj                                                          (4) 

where FRPadj is the adjusted FRP and FRPθ is the GOES fire FRP observed at VZA of θ. 

For convenient purpose, hereafter the adjusted GOES FRP is simply referred to as GOES 

FRP.  
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Figure 3-2. FRP ratio of GOES-E to GOES-W as a function of GOES-E VZA. The filled 

gray cycles are the median ratio at every 1-degree VZA from 30° to 70°, and one 

standard deviation was added as error bars. The black solid line is the fitted model and 

the dashed line is the FRP ratio with a value of 1.0. 

 

3.2.3. Calibration of GOES FRP against MODIS FRP 

GOES FRP was calibrated by comparing with MODIS FRP. It is due to the fact 

that MODIS FRP is of higher quality and capable of representing relatively small and 

cool fires (Schroeder et al., 2010; Xu et al., 2010). To establish calibration models (or 

coefficients), GOES FRP was compared to MODIS FRP, where both the GOES and 

MODIS FRP were contemporaneously detected over 628 fire events that occurred during 

three years from 2013 to 2015 across the CONUS. The burned area perimeters of these 

fire events, ranging from 2.3 km2 to 884.4 km2, were obtained from the Monitoring 

Trends in Burn Severity (MTBS) project (http://www.mtbs.gov/), which were determined 
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using 30 m Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM+) 

datasets (Eidenshink et al., 2007). The 628 MTBS burned areas were further stratified 

based on the dominant land cover type in a burned area: forests, shrublands, savannas, 

grasslands, and croplands. For each MTBS burned area, the contemporaneous GOES and 

MODIS FRP retrievals were obtained from the active fire pixels that were detected by 

GOES and MODIS with a time difference of less than 5 min within the MTBS burned 

area and its surrounding 5-km buffer zone. As a result, all the contemporaneous GOES 

and MODIS FRP retrievals around four MODIS observations (at 1:30 AM, 10:30 AM, 

1:30 PM, and 10:30 PM local time) were selected each day. The contemporaneous GOES 

and MODIS FRP retrievals were further aggregated, respectively, for each of the 628 

MTBS burned areas.  

The land-cover specific calibration coefficients for GOES FRP were derived 

using a simple ordinary least squares regression with the aggregated MODIS FRP 

estimate as a dependent variable and the aggregated GOES FRP as an independent 

variable in each group of the stratified MTBS burned areas (Table 3-1).  

Table 3-1. Calibration coefficients for five land cover types 

Land cover type Calibration coefficient r2 Number of fires  

Forest 2.06* 0.90 304 

Shrublands 1.45* 0.92 55 

Savannas 1.77* 0.95 46 

Grasslands 1.12* 0.81 176 

Croplands 1.13* 0.90 47 

* p-value < 0.001 
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Finally, the calibration coefficients were applied to calibrate GOES FRP at a 

0.25°×0.3125° grid. In a grid cell, GOES FRP with the same GLCC ecosystem observed 

at a given time was aggregated from detections. The aggregated FRP was then calibrated 

using calibration coefficients (Table 3-1) after each GLCC ecosystem was reclassified to 

one of the five land cover types by a cross-walking method. Hereafter the resultant GOES 

FRP at a 0.25°×0.3125° grid resolution was simply referred to as calibrated GOES FRP.   

 

3.2.4. Fusion of MODIS FRP with the Calibrated GOES FRP 

MODIS FRP was aggregated at a 0.25°×0.3125° grid and fused with the 

calibrated grid GOES FRP in the same GLCC ecosystem. Similar to the aggregation of 

GOES FRP at a given time, MODIS FRP was aggregated by summing FRP from all 

MODIS detections with the same GLCC ecosystem within each grid cell, which was 

referred to as grid MODIS FRP hereafter. Then, the grid FRP from MODIS and GOES 

was fused in each 15-min bin during a day using the following equation: 

n

FRPFRP
FRP GOESMODIS 

                                                  (4) 

where FRP  is the fused grid FRP within a 15-min bin, FRPMODIS and FRPGOES are 

respectively the grid MODIS FRP and the calibrated grid GOES FRP, n=2 if both 

FRPMODIS and FRPGOES are valid, and n=1 if only FRPMODIS or FRPGOES was available. 

 

3.2.5. Reconstruction of Diurnal FRP Cycles 

3.2.5.1. Establishment of diurnal FRP climatology 
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The climatology of diurnal GOES FRP was established to predict FRP for 

temporally missing observations caused by obscuration of clouds, very thick smoke 

plume, and detection capability of sensors. Because fire properties and behaviors could 

differ greatly among ecosystems, which are related to fuel characterizations (availability, 

amount, and spatial distribution, etc.) and thus are linked to fire activity (e.g., fire type 

and intensity) (Pausas and Ribeiro, 2013), the diurnal FRP climatology was investigated 

separately for different GLCC ecosystems. Since more than 95% of GOES active fires 

were observed in 18 of 45 primary GLCC ecosystems across the CONUS, the related 18 

ecosystems were selected separately, and the rest (37 types) was combined into one type. 

Thus, a total of 19 ecosystem types were divided. The diurnal FRP climatology for each 

ecosystem was generated based on the following steps. First, for each 15-min bin, the 

calibrated GOES FRP values in each grid cell across the CONUS from 2011 to 2015 

were grouped at an interval of every 20MW. Next, the probability density of FRP 

observations in each group was estimated using a kernel density estimation approach 

(Venables and Ripley, 2002). The groups with GOES FRP density less than 0.05% of the 

maximal group density within a specific 15-min bin were then removed because small 

samples could greatly bias FRP estimates. Finally, the mean FRP was calculated from the 

remaining GOES FRP values every 15 min, which was used to determine the diurnal FRP 

climatology for each ecosystem.  

The monthly maximum diurnal burning duration (MMDBD, hours) was further 

calculated, which was used to quantify the potential fire duration during a day. The 

MMDBD was defined as the longest period that active fires could be detected by 

satellites during a day, which represents the temporal boundaries of the satellite 
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detectable fires. The MMDBD could vary with fuel, fire weather, and fire types. The 

climatological MMDBD was calculated by extracting the mean timings of the earliest and 

latest ten GOES fire detections (including fire detections without FRP retrievals) during 

2011-2015. As a result, the MMDBD was also calculated for the 19 ecosystem types.  

In addition, the hourly and monthly possibility of GOES fire detection was also 

derived for the 19 ecosystem types. It is the percentage of fire detections sensed by 

GOES every hour during a day or every month in a year, which indicates the diurnal and 

seasonal possibilities of the occurrences of fires.  

Both the ecosystem-specific MMDBD and the hourly and monthly possibility of 

GOES fire detection provide statistical information to determine the potential burning 

duration of a fire in Section 2.5.2. 

 

3.2.5.2. Reconstructing diurnal FRP cycles 

Diurnal FRP cycles were reconstructed from the fused grid FRP and diurnal FRP 

climatology at a 0.25°×0.3125° grid for each ecosystem based on the following two steps: 

1. The fused grid FRP ( FRP , see section 2.4) was fitted to the FRP climatology in the 

same ecosystem by shifting an offset. By assuming that the shapes of diurnal FRP 

cycles were similar for a given ecosystem, the offset was calculated using a least 

square method from a set of FRP observations and the corresponding values on the 

diurnal FRP climatology curve. Thus, the shifted FRP climatology represents the 

potential diurnal FRP curve for the FRP observations.  
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2. Missing FRP values in temporal gaps were predicted using the shifted FRP 

climatology. A temporal FRP gap was the period of one or more consecutive 15-min 

bins in which FRP observations were not available. Because fires (except for large 

forest fires) could only burn continuously a few hours instead of an entire day in a 

grid, the length of a temporal gap was determined based on the ecosystem-specific 

MMDBD and the hourly and monthly possibility of GOES fire detection. The 

possibility of fire occurrence generally is stronger in the early afternoon and during 

fire seasons when fire weather is more favorable for combustion, and more fuels are 

available to burn (Giglio et al., 2006; Giglio 2007). Therefore, a fire most likely burns 

longer during the time periods with the stronger possibility of fire detections than the 

other time periods. For each FRP  observation, a fire was assumed to burn 

continuously for:  

(a) one hour before and after the fire observation (with and/or without FRP 

retrievals), respectively, if the observation was collected in the early afternoon 

(13:00-15:00 local solar time) during fire seasons;   

(b) 30 minutes if the observation was collected in other hours during fire and non-fire 

seasons, and it was located within MMDBD (section 2.5.1);  

(c) 15 minutes if the observation was located outside of MMDBD. This is because a 

fire seldom occurs (or too small/cool to be detected) in hours beyond the 

MMDBD. 

At these temporal gaps, the shifted FRP climatology was selected as predictions. 

Finally, a diurnal FRP cycle was obtained from a combination of actual FRP  

observations and FRP  predictions. 
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3.2.6. Estimation of FRE and Biomass-Burning Emissions 

FRE was estimated for each grid cell from diurnal FRP cycles. Fires in each 15-

min bin were assumed to burn consistently with a FRP  value so that the total hourly 

FRE in a grid was estimated as: 

,

1 1 1

( 900)
p p q

i ji

i i j

FRE FRE FRP
  

 
   

 
                                  (5) 

where FRE is the hourly fire radiative energy (FRE), FREi is hourly GOES-MODIS FRE 

in the ith ecosystem, p (p=19) is the number of ecosystems where active fires were 

detected in a grid by GOES and/or MODIS, jiFRP ,  is the reconstructed diurnal fire 

radiative power (MW) in the jth 15-min bin (900 s) and the ith ecosystem, and q (q=4) is 

total number of 15-min bin within one hour.  

The FRE estimated from diurnal FRP cycles is referred as to “GOES-MODIS 

FRE”. It was used to calculate grid-level biomass-burning emissions, which is referred as 

to “GOES-MODIS BBE”, using the following equation:   

   
1 1

p p

FRE i i i i

i i

BBE BC EF FRE EF
 

                                     (6) 

where BBEFRE is total hourly emissions (kg) for a grid cell, BCi and EFi are hourly 

biomass consumption (kg) and PM2.5 or CO emissions factor for the ith ecosystem (a 

total of p ecosystems that is the same as equation (5)) in a grid cell, respectively. The 

emission factor was adopted from the GFED4 (Table 3-2) (van der Werf et al., 2017) that 

were compiled based on (Akagi et al., 2011; Andreae and Merlet, 2001). Because 



107 

 

emission factor is only available for five land cover types (Table 3-2), the ecosystem 

specific emission factor in equation (6) was obtained by cross-walking GLCC classes to 

these land cover types. β is the FRE biomass combustion coefficients (FBCC, 0.368 

kg/MJ) (Wooster et al., 2005), and FREi is hourly GOES-MODIS FRE in the ith 

ecosystem. Note that both PM2.5 and CO estimates present very similar temporal and 

spatial pattern because their only difference is emission factors so that only PM2.5 

estimates are presented in detail in the result section. The CO is only discussed in order to 

improve the evaluation of GOES-MODIS BBE estimates (c.f. Sections 2.7.3 and 3.5).     

Table 3-2. Emission factors (units: g · kg-1) of PM2.5 and CO 

Emission species Forest Savanna, Shrubs, grasslands  Croplands 

PM2.5 12.9 7.17  6.26 

CO 88.0 63.0  102.0 

 

3.2.7. Evaluations of Biomass-Burning Emissions 

Because of the lack of ground truth emissions, GOES-MODIS BBE was 

evaluated by comparing with other datasets. These datasets were: (1) BBE modeled using 

Landsat burned area and fuel loadings, which was called Landsat BBE; (2) existing 

emissions inventories; (3) the hourly BBE simulated by a biogeochemical model.  

 

Comparison of GOES-MODIS BBE with Landsat BBE  

GOES-MODIS BBE was first evaluated by comparing with Landsat BBE using 

the simple ordinary least squares regression. Because estimations of GOES-MODIS BBE 

and Landsat BBE applied the same emission factors, the evaluation of GOES-MODIS 
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BBE was conducted by comparing GOES-MODIS FRE based biomass consumption 

(BC) with Landsat burned area based BC. Landsat BC was calculated in a set of burned 

areas. Specifically, a Landsat burned area (corresponding to a fire event) was selected if 

the MODIS and GOES active fire detections covered more than 95% of the burned area, 

which minimized the effect of missing detections from MODIS and GOES observations. 

As a result, a total of 60 qualified burned areas were extracted in 2013 and 2014, which 

were located in the Western CONUS.  

In a Landsat burned area, the BC was estimated using the conventional model 

(Seiler and Crutzen, 1980) as:  

 

3

, , ,

1 1

n

Landsat t k t k t k

t k

BC A M C
 

                                                  (7) 

where BCLandsat is the total biomass consumption (kg), A is the Landsat burned area (km2), 

M is FCCS (Fuel Characteristic Classification System) fuel loading (kg · m-2), C is the 

combustion completeness (unitless: 0-1), t is  FCCS fuelbed category, n is the number of 

fuelbed categories, and k is MTBS burn severity class.   

The three parameters in equation (7) were calculated in the same way as Li et al 

(2018b). Specifically, the burned area A was calculated from three Landsat MTBS 

severity classes (low, moderate, and high). Fuel loading M was obtained from the FCCS 

3.0 that provides a 30-m fuelbed map and an associated lookup table of fuel loadings 

(http://www.fs.fed.us/pnw/fera/fccs/maps.shtml) for the year 2008. The FCCS 3.0 has 

250 fuelbeds, and each fuelbed is separated into one or up to 18 categories (Ottmar et al., 

2006). The study used the burn-severity-specific combustion completeness values (Li et 

al., 2018b) that were obtained by summarizing the published values associated with burn 
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severity (Campbell et al., 2007; Ghimire et al., 2012) because burn severity reflects the 

degree of above-ground organic matter consumption from fire and relates to changes in 

living and dead biomass (Eidenshink et al., 2007; Keeley, 2009). 

 

3.2.7.1. Comparison of GOES-MODIS BBE with existing emissions inventories 

The monthly and annual PM2.5 in GOES-MODIS BBE from 2011 to 2015 were 

compared to existing six global emission inventories (GFED4, GFASv1.0 and v1.2, 

QFEDv2.4r6, and FINNv1.5, FEERv1.0g1.2, and FLAMBE) and two regional 

inventories (WFEIS0.5, and NEI 2011&2014) across the CONUS (Table 3-3). Note that 

the GFAS product contains two different versions for the period of 2011-2015: 

GFASv1.0 is available from January 2011 to September 2014 and the GFASv1.2 with 

better quality control covers from October 2014 to December 2015.  
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Table 3-3. Six global and two United States emissions inventories. 

Inventories 
Scale & 

Resolution 
Source data 

References & 

products sites 

GFED4  

Global 

0.25˚×0.25˚, 

monthly 

Burned area (MCD64A1), 

Fuel loadings 

(biogeochemical modeled)  

van der Werf et al., 2017 

Giglio et al., 2013 

http://www.falw.vu/~gwerf/ 

GFED/GFED4/ 

GFASv1.0&1.2 

Global 

0.5˚×0.5˚ & 

0.1˚×0.1˚, daily 

MODIS FRP 

(MOD14/MYD14) 

Kaiser et al., 2012 

http://join.iek.fz-juelich.de/ 

macc/access 

FINNv1.5 
Global 1 km, 

daily 

Burned area 

(MOD14/MYD14, 

MCD12Q1), Fuel loadings 

(literatures)  

Wiedinmyer et al., 2011 

http://bai.acom.ucar.edu/ 

Data/fire/ 

FLAMBE 
Global 1-4 km, 

hourly 

Burned area (WF_ABBA 

GOES, MOD14/MYD14),  

Fuel loadings (literatures) 

Reid et al., 2009 

(personal communication) 

QFED2.4r6 

Global 

0.25˚×0.3125˚, 

daily 

MODIS FRP 

(MOD14/MYD14) 

Darmenov and Silva., 2015 

ftp://ftp.nccs.nasa.gov/aerosol/e

missions/QFED/v2.4r6/ 

FEERv1.0g1.2 
Global 

0.1˚×0.1˚, daily 

GFAS1.2 FRP flux, 

emissions coefficients 

Ichoku and Ellison., 2014 

http://feer.gsfc.nasa.gov/ 

data/emissions/ 

WFEISv0.5 

United States 

(CONUS & 

Alaska) 

Burned area (MCD64A1)  

Fuel loadings (FCCS) 

French et al., 2014 

http://wfis.mtri.org 

NEI 

United States 

(county & 

States), annual 

Observations from ground 

facilities and satellites 

https://www.epa.gov/air-

emissions-inventories/ 
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3.2.7.2. Comparison of GOES-MODIS BBE with model-simulated BBE  

GOES-MODIS BBE was further evaluated using the model-simulated BBE in the 

Rim Fire. The Rim Fire is the third largest fire event in the California fire records. The 

model-simulated hourly BBE (CO emissions) was estimated using the Weather Research 

and Forecasting model coupled with Chemistry (WRF-Chem) (Saide et al., 2015), in 

which aerosol optical depth (AOD) was observed from ground-based Aerosol Robotic 

Network (AERONET), airborne sensors, and MODIS over the Rim Fire from 21 to 27 

August 2013. The airborne observations (AOD and CO) were collected by the NASA 

DC-8 flights during eight hours from 26 (18:00 UTC) to 27 (02:00 UTC) August 2013 

(Toon et al., 2016). This BBE dataset was obtained by personal communication. The 

model-simulated CO emissions were compared to GOES-MODIS BBE (CO) on an 

hourly basis.  

 

3.3. Results 

3.3.1. Fusion of GOES FRP with MODIS FRP 

Fused FRP greatly improves the FRP values in GOES observations. Figure 3-3, as 

an example, shows that GOES FRP is smaller than MODIS FRP by 62%, but the 

magnitude of fused FRP is similar to that of MODIS FRP with a difference of 13% in the 

Rim fire 2013. The fused FRP is temporally distributed every 15 min while the 

observations in MODIS FRP are only around four times a day.  
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Figure 3-3. Diurnal variations of GOES FRP, MODIS FRP, and fused FRP ( FRP ) over 

the Rim Fire from 20 to 23 August 2013. 

 

3.3.2. Diurnal FRP Cycles 

Diurnal FRP climatology varies among 18 ecosystems (Figure 3-4a-c) and the 

combination of other 37 ecosystems (Figure 3-4d). The climatology typically presents a 

peak during 13:00-16:00 (local solar time) and a trough during 6:00-8:00 (local solar 

time). Diurnal variations of FRP climatology are large in the cool conifer forest 

ecosystem and shrub-related ecosystems (Figure 3-4a-b) while they are small in the 

deciduous broadleaf forests, mixed forests, and crop-related ecosystems (Figure 3-4a, c). 
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Figure 3-4. Ecosystem-specific diurnal FRP climatology across the CONUS: (a) four 

GLCC forest ecosystems, (b) eight GLCC grass, shrub, and savanna ecosystems, (c) six 

GLCC crop ecosystems, and (d) the combination of other GLCC 37 ecosystems.    

 

Monthly maximum diurnal burning duration (MMDBD) varies temporally among 

ecosystems. The variation is illustrated using the example of MMDBD in three 

ecosystems (Figure 3-5). Generally, MMDBD is longer in peak fire season. The longest 

MMDBD is mainly from 6:00 to 21:00 (local time) in tall grasses and shrubs, and 0:00-

24:00 (local time) in both mixed forests and cool conifer forests. However, MMDBD in 

cool conifer forests on average is longer than that in mixed forest, and fires burn more 

frequently in evening and early morning in cool conifer forests than mixed forests. The 

seasonal variation in MMDBD is very large in tall grasses and shrubs and mixed forests. 
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For instance, MMDBD in mixed forests during winter months can be 6 hours shorter than 

that in summer months.  

 

Figure 3-5. Monthly maximum diurnal burning duration (MMDBD) and hourly and 

monthly density of GOES active fire detections in three ecosystems: (a) tall grasses and 

shrubs, (b) mixed forests, and (c) cool conifer forests. The black lines are MMDBD, and 

the horizontal and vertical densities are proportions (in percentage) of GOES active fire 

detections at an interval of an hour and a month, respectively.  

 

The reconstructed diurnal FRP cycle consists of the fused FRP and the predicted 

FRP in temporal gaps. Figure 3-6 shows a diurnal FRP cycle reconstructed from the 

fused FRP and the associated diurnal FRP climatology for a wildfire burned on 2 August 

2014 in a grid in Northern California. The climatological FRP is smaller than the fused 

FRP by 51 MW on average. FRP is predicted for a total of 52 15-min gaps that mainly 

resulted from many fire observations without FRP retrievals due to the obscuration of 

thick smoke plumes, especially during the period between 14:00 and 19:00.  
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Figure 3-6. An example of reconstructing diurnal FRP cycle for a wildfire burned on 2 

August 2014 in a grid centered at (41.375°N, 122.968°W) in Northern California. The 

grid is dominated by the cool conifer ecosystem. The reconstructed diurnal FRP cycle 

consists of the fused FRP (blue cycles) and the predicted FRP (red triangles) in 15-min 

gaps (yellow triangles). 

 

3.3.3. Spatial Distribution of the PM2.5 Emissions 

Biomass burnings annually release on average 690 Gg PM2.5 emissions across 

the CONUS in the four years of 2011, 2013, 2014, and 2015 (Figure 3-7). The PM2.5 

emissions are spatially contributed by a mixture of fires in forests, shrubs, and grasses in 

the Western CONUS (382 Gg or 55%), agriculture and forest fires in the southeastern 

CONUS (110 Gg or 16%), prairie grass fires in Kansas and Oklahoma states (37 Gg or 

5.4%) in the central CONUS, and agriculture burnings in the Mississippi River Valley (48 

Gg or 7%) in the central south CONUS. However, the PM2.5 emissions are very limited 

in the northeastern CONUS.  
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Figure 3-7. Annual PM2.5 emissions at a 0.25°×0.3125° grid across the CONUS in four 

years of 2011, 2013, 2014, and 2015. 

 

PM2.5 emissions vary greatly among CONUS states (Figure 3-8). The high mean 

annual PM2.5 emission appears in five Pacific Northwest states: California (105 Gg), 

Idaho (51 Gg), Washington (49 Gg), Oregon (39 Gg), and Montana (34 Gg). The total 

PM2.5 emissions in these states and California alone accounts for 40% and 13.6% of the 

annual PM2.5 in the CONUS, respectively. They are followed by the PM2.5 emissions in 

three southwest states (Texas: 43 Gg, Arizona: 34 Gg, and New Mexico: 21 Gg), and 

three southeast states (Florida: 34 Gg, Arkansas: 30 Gg, and Georgia: 26 Gg). During the 
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four years, the highest PM2.5 appears in 2015 and 2011, particularly in the Pacific 

Northwest states, and most southwest and southeast states. 

 

Figure 3-8. Annual mean PM2.5 emissions in 48 states in four years of 2011, 2013, 

2014, and 2015. The red dots represent annual mean PM2.5 emission and the vertical 

bars (in blue) show the maximum and minimum of annual PM2.5 emission in each state.  

 

Annual PM2.5 emissions differ among land cover types (Figure 3-9). The 

biomass burnings are on average 6.5% (45 Gg), 23% (158Gg), and 70.5% (487 Gg) in the 

croplands, grasslands-shrublands-savannas, and forests, respectively.  
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Figure 3-9. Annual PM2.5 emissions in land cover types: croplands, forests, and 

grasslands-shrublands-savannas in four years of 2011, 2013, 2014, and 2015. 

 

3.3.4. Temporal Variation in the PM2.5 Emissions 

PM2.5 emissions display a strong diurnal variation across the CONUS (Figure 3-

10). The PM2.5 emissions with all ecosystems as a whole show a unimodal diurnal 

variation, which increases sharply at local time 9:00, reach the peak between 13:00 and 

14:00, and then decrease until the midnight. The diurnal variations in forests, croplands, 

and savannas-shrublands-grasslands display a single peak approximately between 13:00 

and 14:00. The PM2.5 estimates in daytime (6:00-18:00) differ considerably from the 

nighttime (18:00-6:00). Overall, the daytime PM2.5 emissions are 274% of the nighttime 

emissions but this discrepancy varies with ecosystem. The daytime emissions account for 

83% in grasslands, savannas and shrublands, and 94% in croplands. In forests, 

approximately 90% and 10% of PM2.5 emissions are released during daytime and 

nighttime, respectively, in the eastern CONUS, whereas the nighttime burnings 
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(especially from 18:00 to 24:00) in the Western CONUS contribute 34% of PM2.5 

emissions. 

 

Figure 3-10. Diurnal variation of PM2.5 emissions across the CONUS. The solid line is 

the four-year mean PM2.5 emissions in every hour, and the shading area represents inter-

annual variation. (a) All ecosystems, (b) forests (forests were divided by 100°W 

longitude line into two groups: west and eastern CONUS because of the distinct 

difference in fire characteristics in two groups (Malamud et al., 2005)), (c) croplands, and 

(d) a combination of grasslands, shrublands, and savannas.  
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Figure 3-11. Four-year mean seasonal peak time (day of year (DOY)) of the PM2.5 

emissions at a 0.25°×0.3125° grid. 

 

The peak time of seasonal PM2.5 emissions shows strong variations across the 

CONUS (Figure 3-11). In the Western CONUS, the emissions mainly reach peaks during 

July-September although the peak appears through winter and early spring months in a 

very small portion of areas. In the central CONUS, there are two main peak time periods: 

March to April in the middle central states (Kansas, Oklahoma, Missouri, Iowa, and 

Nebraska states), and July to September in other states. The peak time periods in the 

eastern CONUS are complex. Emissions reach the peak during the period from January to 

early April in most areas in Florida, August and September in the Mississippi river 

valley, and winter months in the south Mississippi and south Alabama.  

 

3.3.5. Evaluation of Biomass-Burning Emissions Estimated from GOES-MODIS FRE 
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Total biomass consumption estimates calculated from the GOES-MODIS FRE 

(BCFRE) are comparable with those estimated from 30m Landsat burned areas and FCCS 

fuel loadings (BCLandsat) (Figure 3-12). BCFRE in the 60 selected fire events, which ranges 

from 0.05 - 3.5 Tg, is significantly correlated to BCLandsat (R
2=0.84, p<0.001) that ranges 

from 0.02 - 4.8 Tg. BCFRE is relatively underestimated over large fires but overestimated 

in some small fires compared to BCLandsat. Overall, BCFRE is 29% less than BCLandsat. 

 

Figure 3-12. Comparison between the GOES-MODIS-FRE based total biomass 

consumption (BCFRE) and the Landsat-burned-area-based total biomass consumption 

(BCLandsat) across the Western CONUS. (a) Distribution of the 60 selected fire events 

from 2013 to 2014. (b) Scatterplot of BCFRE against BCLandsat. 

 

The monthly GOES-MODIS PM2.5 reveals seasonal similarity and discrepancy 

with six global emission inventories (Figure 3-13). The overall similarity is found that the 

emissions generally increase from January, reach the first peak in March or April, 

decrease in May, but climb up again rapidly and reach the second peak in August, and 
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then decrease until the end of a year. However, differences are remarkable in an 

individual year among inventories. For instance, the highest peak in FEERv1.0g1.2 

PM2.5 occurred in April in 2011 and 2014, which contrasts sharply with the GOES-

MODIS PM2.5 and all other inventories. Moreover, FINNv1.5 PM2.5 does not show 

distinctive fire season as other inventories, especially in 2011, 2013, and 2014. Overall, 

the seasonal pattern in the GOES-MODIS PM2.5 estimates matches the best with 

FLAMBE. 

 

Figure 3-13. Comparison of the monthly total GOES-MODIS PM2.5 emissions with 

other six inventories across the CONUS in four years of 2011, 2013, 2014, and 2015. The 

right y-axis represents QFEDv2.4v6 and FLAMBE.  

 

The mean monthly PM2.5 emissions varied largely among various BBE datasets 

(Table 3-4). The GOES-MODIS PM2.5 is similar to GFAS1.x and FINNv1.5 with a 

difference less than 12%. The GFED4 are the smallest among all BBE data sets, but 

comparable with the GOES-MODIS PM2.5 from October to following February (Figure 

3-13). In contrast, the FEERv1.0g1.2, FLAMBE, and QFEDv2.4r6 are approximately 
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1.7, 3.2, and 8.4 times of the GOES-MODIS PM2.5, respectively. Moreover, compared 

to two annual inventories of WFEISv0.5 and NEI, the annual GOES-MODIS PM2.5 is 

approximately 11% larger than WFEISv0.5 in 2011 and 2013, but 54% smaller than NEI 

in 2011 and 2014.  

 

Table 3-4. The mean monthly PM2.5 emissions (Gg) of the GOES-MODIS and six 

inventories 

GOES-MODIS GFED4 FINNv1.5 GFASv1.x FEERv1.0g1.2 FLAMBE QFEDv2.4 

57.6 28.2 50.5 55.3 100.2 181.6 485.6 

 

The hourly CO estimates from the GOES-MODIS and the WRF-Chem model 

show overall similar temporal patterns although their magnitude values differ in two 

periods in the 2013 Rim Fire, California (Figure 3-14). During 21-27 August (excluding 

eight hours within two gray dash lines in Figure 3-14) when the WRF-Chem model was 

constrained only by ground-based observations, the GOES-MODIS CO on hourly 

average is 47% and 237% of the model-simulated CO during the daytime (14:00-24:00 

UTC) and nighttime (1:00-13:00 UTC), respectively. On a daily average, the GOES-

MODIS CO is 30% smaller than the model-simulated CO. However, during the eight 

hours from 18:00 UTC (26 August) to 02:00 UTC (27 August) when the WRF-Chem 

model was constrained by both the airborne-based and ground-based observations, the 

GOES-MODIS CO is almost the same as the model-simulated CO. Their difference is 

less than 13% on an hourly average.  
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Figure 3-14. Comparison of hourly CO emissions in the Rim Fire. The red line is the 

GOES-MODIS CO estimates, and the light blue area represents the estimates simulated 

by the WRF-Chem model. CO simulation from WRF-Chem model was performed using 

both ground- and airborne-based observations during the time period within two gray 

dash lines (18:00 UTC on 26 to 02:00 UTC on 27 August) while only the ground 

observations during the rest time period. 

 

3.4. Discussion 

Satellite-based FRP offers a potential tool for improving the accuracy of BBE 

estimates in near real time, which elevates the application capability of BBE in modeling 

air quality, and environmental and metrological conditions (Kaufman et al., 1998; 

Roberts and Wooster, 2008; Wooster, 2002; Wooster et al., 2005; Zhang et al., 2012). 

High-quality BBE could be calculated from diurnal FRP variations if FRP observations 

are available at a high spatiotemporal resolution. However, the existing solutions of FRP 

from either MODIS or geostationary satellites alone hardly produce BBE that satisfies 

models for forecasting air quality and environmental changes (Andela et al., 2015). By 

fusing the high temporal GOES FRP with high spatial MODIS FRP observations, this 
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study reconstructed diurnal FRP cycles every 15 min to estimate hourly BBE at a 

0.25°×0.3125° grid across the CONUS from 2011 to 2015.  

This study indicates the importance of diurnal FRP cycles in the estimation of 

BBE. MODIS FRP has been commonly used to calculate daily mean FRP flux and 

thereafter estimate daily FRE and BBE (Darmenov and Silva, 2015; Kaiser et al., 2012), 

or directly related to BBE estimates (Ichoku and Ellison, 2014; Ichoku and Kaufman, 

2005) by assuming that MODIS observations can capture the structure of diurnal fire 

activities. Comparisons of 4-time MODIS FRP during a day with 15-min GOES FRP 

show that MODIS observations frequently fail to capture both peaks and troughs in 

diurnal FRP cycles even in very large forest fires over the Western CONUS (Figure 3-3 

and Figure 3-4a,b). Similar situations were also identified in the shrubland fires in 

Portugal and savanna fires in Africa by comparing MODIS FRP and 15-min FRP from 

SEVIRI (Spinning Enhanced Visible and InfraRed Imager) (Andela et al., 2015). 

Although the MODIS diurnal FRP cycle could be established by assuming that FRP 

follows a Gaussian-shaped diurnal model (Andela et al., 2015; Ellicott et al., 2009; 

Konovalov et al., 2014; Vermote et al., 2009), this study demonstrates that the diurnal 

FRP cycle varies with ecosystems rather than presenting a simple uniform shape (Figure 

3-4). As a result, high uncertainties in characterizing diurnal variations in MODIS FRP 

result in the low quality in estimating FRE and BBE. 

This study also reveals the difference in spatiotemporal patterns of emissions 

from wildfires and agriculture burnings across the CONUS. The major sources of 

wildfires emissions vary spatially in the Western CONUS interannually (Figure 3-7). In 

California, for example, the annual PM2.5 has increased by approximately 300% from 
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2011 - 2011(Figure 3-8), which is most likely related to the exceptional drought 

underwent in the same periods (Asner et al., 2016; Griffin and Anchukaitis, 2014; 

Robeson, 2015). The big drought occurred in 2011 in the southWestern CONUS (Texas, 

Arizona, and New Mexico) elevated PM2.5 emissions by 487% that accounted for 30.8% 

(201Gg) of the annual PM2.5 in the CONUS (Figure 8) (Nielsen-Gammon, 2011). In 

contrast, the agriculture burnings (the Mississippi River Valley and the Florida 

Everglades) burn annually (Figure 3-7) with very small inter-annual variation in PM2.5 

emissions (Figure 3-8), which is similar to the small interannual variation in cropland 

burned areas across the CONUS (McCarty et al., 2009; Randerson et al., 2012; Zhang 

and Kondragunta, 2008). Moreover, the average diurnal variation of PM2.5 demonstrates 

that the major emissions from agriculture burning mainly released from 9:00 to 18:00 

local solar time (Figure 5a and Figure 10c), which is most likely related to timings of 

agriculture burning practices (Brenner and Wade, 2003; Kim Oanh et al., 2011; McRae et 

al., 1994). However, wildfires can burn during nighttime and contribute a significant 

portion of emissions compared to daytime emissions (Figure 3-5c and Figure 3-10b). 

The GOES-MODIS BBE estimates and the Landsat based BBE estimates are 

overall comparable, although the GOES-MODIS BBE is relatively larger than the 

Landsat based estimates in some small fires but smaller in large fires. These difference 

may be attributed to two possible reasons: (a) the assumed consistent burning period for 

temporal gaps (section 2.5.2) is longer than the real burning period for small fire events; 

and (b) long-time period obscuration of clouds or thick smokes in some large fires likely 

cause the underestimation of FRE (e.g., fire-storms in the Rim fire (Peterson et al., 

2015)). Nevertheless, for the largest fire event, Rim fire in California, both the GOES-
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MODIS based biomass consumption (3.5 Tg) and the Landsat based estimate (4.8 Tg) are 

similar to the Lidar-and-Landsat based estimates of biomass consumption (3.93 - 6.58 

Tg) in (Garcia et al., 2017). 

Although comparisons show similarities and discrepancies among BBE 

inventories, the novelty of algorithm developed in this study is to calculate the GOES-

MODIS emissions by improving diurnal FRP and FRE quantification while most other 

methods focus on tuning the coefficients or scaling factors to convert FRP to fire 

emissions. Generally, the emissions from QFEDv2.4r6 and FEERv1.0g1.2 are larger than 

the conventional-method-based emissions estimates by a factor of 2-8, which has also 

been found in regional (Zhang et al., 2014) to global emissions estimates (Ichoku and 

Ellison, 2014; Kaiser et al., 2012; Zhang et al., 2012). It is likely due to the fact that both 

the QFED and FEER use large coefficients (converting FRP to emissions) that are 

adjusted using AOD observations for atmospheric models (Darmenov and Silva, 2015; 

Ichoku and Ellison, 2014). Moreover, the seasonal FEER emissions produce 

unreasonable peaks during spring months in 2011 and 2014 (Figure 3-13), which is 

associated with relatively low-quality control and moderate confidence of the FEER 

emissions coefficients (Ichoku and Ellison, 2014). Though the GOES-MODIS PM2.5 

emissions quantitatively compare well with GFASv1.x (Table 3-4), the mean annual total 

FRE of GOES-MODIS is 141% of FRE estimated from GFASv1.x (this result did not 

show here). This discrepancy in FRE is most likely offset by the much larger biomass 

combustion factors used in GFASv1.x. The GOES-MODIS PM2.5 is also numerically 

similar to FINNv1.5 (Table 3-4) but FINNv1.5 emissions estimates are highly uncertain 

due to several uncertainty sources, especially the burned area that is simply estimated 
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from MODIS active fire counts (Wiedinmyer et al., 2011). Among all conventional-

method-based inventories, the FLAMBE is larger by a factor of 2-4 than the other 

inventories (Table 3-4), which is similar to the previous finding obtained by comparing 

FLAMBE with GFED across the CONUS (Reid et al., 2009). The FLAMBE emission 

estimates could be overestimated in large fires in the Western CONUS because large fires 

(or fire clusters) greatly boost up FLAMBE emissions in Northern Africa (Zhang et al., 

2014). Nevertheless, the seasonal variation of the GOES-MODIS matches the best with 

FLAMBE (Figure 3-13), which is likely attributed to the use of GOES WF_ABBA data 

in both approaches. In contrast, GFED4 is the smallest (less by a factor of 1-4 than the 

other inventories), which could be related to the underestimates of MODIS burned areas. 

The EPA NEI is larger than all other conventional-method-based inventories (except 

FLAMBE) by a factor of 2-3, which may suggest that the ground-based observations 

include many more fires than satellites detected fires (Short, 2015). However, the NEI 

only produces annual emissions calculated from fuel loadings and burned area reported 

from federal, state, and local agencies, which is lack of validations. To sum up, the 

differences in either models of emissions estimation or the methods of parameterization 

can result in significant discrepancy among inventories.  

The 15-min diurnal FRP cycles reconstructed from the fused GOES and MODIS 

FRP have several advantages. First, FRP in small fires (10-30 MW) that are missed by 

GOES (Roberts and Wooster, 2008; Xu et al., 2010) are compensated by calibrating 

GOES FRP against MODIS FRP. Second, the reconstructed diurnal FRP cycles partially 

mitigate the underestimation of FRE due to omission errors in FRP retrievals from GOES 

and MODIS because of dynamic transitions of combustion phases and obscurations of 
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clouds. During transitions of combustion phase, a fire is detectable from GOES or 

MODIS when it burns intensely in favorable conditions while it is omitted when it is 

cooling down and smoldering (Giglio et al., 2003; Wooster et al., 2003). Third, the 

reconstructed diurnal FRP cycles represent well diurnal variations of fires in most 

ecosystems. This was demonstrated by the good agreement of hourly CO emissions 

between the GOES-MODIS estimates and the WRF-Chem model simulation in the Rim 

Fire. It is particularly true compared to the WRF-Chem simulation that is constrained by 

both ground- and airborne-based measurements during 26 - 27 August 2013 (Figure 3-

14).  

The fused FRP from MODIS and GOES retrievals and the reconstructed diurnal 

FRP cycles evidently enhance the capability of BBE estimates in near real-time; 

however, some uncertainties could still remain as the data processing is mostly empirical. 

However, the algorithm developed in this study is expected to reconstruct more accurate 

diurnal FRP cycles and improve BEE estimates by fusing FRP from new polar-orbiting 

and geostationary satellites in future. The Visible Infrared Imaging Radiometer Suite 

(VIIRS) onboard the Suomi National Polar-Orbiting Partnership (NPP) satellite is 

producing FRP at a spatial resolution of 750 m (at nadir), which can capture much 

smaller fires than MODIS does (Csiszar et al., 2014). On the other hand, the Advanced 

Baseline Imager (ABI) onboard GOES-R is to retrieve FRP at a spatial resolution of 2 km 

(at nadir) every 5 min (Schmidt et al., 2012), which is significantly improved relative to 

FRP from current GOES Imager.  
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3.5. Conclusions  

We reconstructed ecosystem-specific diurnal FRP cycles by fusing high temporal 

resolution GOES FRP with high spatial resolution MODIS FRP to estimate BBE across 

the CONUS. The reliable diurnal FRP cycles are essential to accurately calculate FRE 

that plays a key role in BBE estimation. It is due to the fact that the estimation of BBE 

using limited daily observations of polar-orbiting satellites raises considerable 

uncertainties. The hourly GOES-MODIS BBE can be effectively estimated from diurnal 

FRP cycles in a 0.25°×0.3125° grid, which could provide reliable inputs for modeling 

and forecasting air quality in near real time. The GOES-MODIS BBE is comparable with 

the estimates using burned areas and fuel loadings in Landsat burned areas, and hourly 

emissions simulated using the WRF-Chem model with an overall uncertainty less than 

30%. The seasonal variation in GOES-MODIS BBE also shows good agreement with 

existing inventories, and the magnitude values are reasonable compared to existing 

inventories (difference <12% with two products).  

It is recommended to apply the algorithm developed in this study to fuse FRP 

retrievals from VIIRS and GOES-R ABI. In this way, the diurnal FRP cycle with much 

higher temporal and spatial resolutions could be reconstructed and the BBE estimates 

could be greatly improved. 
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CHAPTER 4: Comparison of Fire Radiative Power Estimates from 

VIIRS and MODIS Observations 
 

Li, F., X. Zhang, S. Kondragunta, and I. Csiszar (2018), Comparison of Fire Radiative 

Power Estimates From VIIRS and MODIS Observations, Journal of Geophysical 

Research: Atmospheres, 123(9), 4545-4563, doi:10.1029/2017JD027823.  

 

This chapter address Hypothesis #3: The 750-m VIIRS sensor has better capability of 

characterizing fires than the 1-km MODIS sensor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



149 

 

Abstract 

Satellite-based active fire data are a viable tool to understand the role of global 

fires in the biosphere and atmosphere. The Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors on Aqua and Terra satellites are nearing the end of 

their lives. The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi 

National Polar-orbiting Partnership (Suomi NPP) satellite and the subsequent Joint Polar 

Satellite System (JPSS) series is expected to extend the MODIS active fire record. Thus, 

understanding the similarities of and discrepancies between the two datasets during their 

overlap period is important for existing applications. This study investigated the 

dependence of the MODIS and VIIRS fire characterization capabilities on satellite view 

zenith angle (VZA) and the relationship between the two sensors’ fire radiative power 

(FRP) from individual fire clusters to fire data on continental and global scales. The 

results indicate that the VIIRS fire characterization capability is similar across swath, 

whereas MODIS is strongly dependent on VZA. Statistical analyses reveal that the VIIRS 

and MODIS FRP relationship varies between different spatial scales. In fire clusters, 

MODIS and VIIRS FRP estimates are very comparable, except for large boreal forest 

fires where VIIRS FRP is approximately 47% smaller. At the continental scale, the 

contemporaneous FRP retrievals from MODIS and VIIRS are generally comparable and 

strongly correlated, but VIIRS FRP is slightly larger and their differences vary across 

seasons. At global 1°×1° grids, the FRP difference between the two sensors is, on 

average, approximately 20% in fire-prone regions but varies significantly in fire-limited 

regions. 
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4.1. Introduction 

Satellite-detected active fire data have been widely used to study regional and 

global wildfire activity and its impacts on air quality and environmental changes during 

the last few decades (Flannigan and Haar, 1986; Giglio et al., 2006; Giglio et al., 2003; 

Prins and Menzel, 1992; Roberts and Wooster, 2008; Schroeder et al., 2014; Csiszar et 

al., 2014). One of the most important variables for characterizing wildfires is fire 

radiative power (FRP). This variable is retrieved from the radiance at the 4-μm band of 

satellite sensors and represents the instantaneous radiative energy that is released from 

actively burning fires. FRP has been extensively used as a proxy of fire intensity to 

characterize fire types (Roy and Kumar, 2017; Wooster and Zhang, 2004), fire behaviors 

(Smith and Wooster, 2005), and fire regimes (Archibald et al., 2013), to predict fire 

danger (Freeborn et al., 2016), and to investigate interactions among biomass burning, 

land cover dynamics and hydrological cycles (Ichoku et al., 2016). More importantly, 

FRP is related to the rate of biomass combustion (Kaufman et al., 1998; Wooster et al., 

2003) and the rate of emissions (Ichoku and Kaufman, 2005), which have been 

subsequently applied to estimate trace gas and aerosol emissions (Kaiser et al., 2012; 

Kumar et al., 2011; Vermote et al., 2009; Zhang et al., 2012).  

FRP retrievals are available from multiple polar-orbiting and geostationary 

satellites. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

onboard NASA’s Earth Observing System (EOS) Aqua and Terra satellites, for example, 

has operationally detected active fires globally since 2000. The latest MODIS Collection 

6 active fire product provides more scientifically reliable fire detections and FRP 

retrievals (Giglio et al., 2016a). However, Aqua and Terra MODIS sensors are aging and 
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nearing the end of their lives. Continuity with Aqua MODIS is provided by the new 

generation moderate-resolution instrument called the Visible Infrared Imaging 

Radiometer Suite (VIIRS). The first VIIRS sensor is onboard the Suomi National Polar-

orbiting Partnership (Suomi NPP) satellite that was launched in 2011, and subsequent 

operational VIIRS sensors are planned for the series of Joint Polar Satellite System 

(JPSS) (Goldberg et al., 2013). (Note that the first operational VIIRS is flown on the 

NOAA-20 satellite, launched in November 2017. Fire data from this sensor are not 

included in this study.) Both Suomi NPP and Aqua satellites cross the equator at 

approximately 1:30 AM (descending orbit) and 1:30 PM (ascending orbit) local times. 

Compared to the 1-km MODIS bands for fire detection, the VIIRS moderate resolution 

bands (M-bands) have a similar spectral configuration but higher spatial resolution (750 

m) (Cao et al., 2014). The higher spatial resolution in VIIRS relative to MODIS 

theoretically enables the detection of smaller and cooler fires (Csiszar et al., 2014). 

VIIRS also applies an onboard aggregation scheme to mitigate the increase in ground 

sampling distance with satellite scan angle, which strongly affects the detection capability 

of MODIS at off-nadir (Cao et al., 2014; Freeborn et al., 2014; Peterson et al., 2013; 

Wolfe et al., 2013; Wolfe et al., 2002). To transition global fire observations from the 

MODIS era to the VIIRS era, it is essential to understand the similarities of and 

discrepancies between fire characterizations of the 1-km Aqua MODIS and 750-m VIIRS 

active fire products for application purposes. These comparisons currently exist only for a 

few sites between MODIS FRP and the early version VIIRS FRP (Oliva and Schroeder, 

2015) that was derived based on the MODIS Collection 4 algorithm (Csiszar et al., 2014).  
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In this study, we compared one year of FRP retrievals from Aqua MODIS and 

Suomi NPP VIIRS observations globally. The newly operational 750-m VIIRS fire 

product is produced by NOAA (National Oceanic and Atmospheric Administration) 

using a modified algorithm of the MODIS Collection 6 (C6) active fire product (Giglio et 

al., 2016a); it has been available since April 2016 (Csiszar et al., 2016). This NOAA 

operational 750-m VIIRS active fire product is hereafter referred to simply as the VIIRS 

fire product. A comparison of the VIIRS product to the MODIS C6 active fire product 

should greatly improve our understanding of FRP characterizations for applications, such 

as estimating biomass-burning emissions. To this end, we conducted the following 

analyses. First, the active fire detection data from VIIRS and MODIS products were 

preprocessed to correct duplicate detections in adjacent scans due to the bow-tie effect 

and repeat detections that were observed from adjacent orbits. Then, the dependences of 

the two sensors’ capabilities of detecting and characterizing fires on satellite view zenith 

angle were investigated. Finally, comparisons between MODIS and VIIRS FRP estimates 

were conducted at the local fire-cluster level over different ecosystems, at 

continental/global scale, and across latitudinal variation. 

 

4.2. Data 

4.2.1. MODIS Active Fire Data 

 The MODIS active fire product detects actively burning fires at the overpass 

times of the Terra and Aqua satellites (Giglio et al., 2016a). The 1-km Level-2 active fire 

product (abbreviated MOD14 for Terra and MYD14 for Aqua) provides for each fire 
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pixel the detection time and coordinates (longitude and latitude) and confidence, fire 

radiative power, brightness temperatures at the 4-µm and 11-µm bands, and satellite view 

zenith angle (VZA) (Giglio et al., 2016a). The detection confidence is quantified to a 

range of 0-100% and is further classified into three categories (high, nominal and low) 

(Giglio et al., 2003). The fire radiative power in the latest MODIS C6 fire product is 

retrieved following the method developed by Wooster et al. (2003), which uses 

parameters including: the radiances of the fire pixel at the 4-µm band , the radiances of 

the ambient non-fire pixels at the 4-µm band, area of the fire pixel, and a sensor-specific 

coefficient (3.0×10-9 W · m-2 · sr · μm-1 · K-4) (Giglio et al., 2016a). The MODIS C6 

Level-2 active fire product records FRP retrievals in units of MW (per pixel).  

 The Level-2 MYD14 product is generated in an Aqua MODIS sensing geometry 

(Table 4-1) (Wolfe et al., 1998; Wolfe et al., 2002). MODIS scans ten lines of nominal 1-

km pixel per mirror rotation over ±55° approximately every 1.477 s, and each scan line is 

composed of 1354 pixels with a swath width of 2340 km (Wolfe et al., 2002). The 

nominal pixel dimension increases from ~1 km at nadir to ~2.01 km along the track 

direction and ~4.83 km along the scan direction at the scan edge (Wolfe et al., 1998). 

Adjacent scans overlap each other up to 50% from scan angles of 24° to the scan edge 

(Wolfe et al., 2002), which can result in duplicate fire detections. Furthermore, duplicate 

fire detections can also result from the triangle-shaped point spread function (PSF) of 

MODIS (Freeborn et al., 2014). Moreover, MODIS can observe the same fires repeatedly 

from adjacent orbits at mid-to-high latitudes as its adjacent orbits overlap each other. In 

addition, MODIS misses observations inside the daily coverage gaps between adjacent 

orbits along the entire equatorial region between 30°S and 30°N latitudes (Figure 4-1a).  
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 For the comparison with Suomi NPP VIIRS fire data, we obtained the Aqua 

MODIS C6 Level-2 active fire product (MYD14) and geolocation product (abbreviated 

MYD03 for Aqua) from NASA’s Level-1 and Atmosphere Archive & Distribution 

System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/) for the period from April 

2016 to March 2017. The geolocation product MYD03 was used to locate and extract the 

overlap areas between Aqua MODIS adjacent orbits.  

 

Figure 4-1. Global active fire detections from Aqua MODIS and Suomi NPP VIIRS on 

15 September 2016. (a) Daytime Aqua MODIS fire detections (red dots), which miss all 

fires burning inside the inter-orbital gaps (black narrow ellipses) in the low-latitude 

regions. (b) Daytime VIIRS fire detections (red dots), which provides daily full coverage 

of the globe. 
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4.2.2. VIIRS 750-m Active Fire Data 

The newly operational NOAA VIIRS active fire product, the 750m Suomi NPP 

Data Exploitation Level 2 active fire (NDEAF-L2), provides daily globally active fire 

data (Csiszar et al., 2016). The VIIRS NDEAF-L2 fire product is built on the modified 

active fire detection algorithm of the MODIS C6 active fire product (Giglio et al., 2016b) 

and will extend to the JPSS satellites (Csiszar et al., 2016). This product is also 

compatible with the 750m VIIRS active fire products generated within NASA’s Land 

Science Investigator-led Processing System (Land SIPS). As with the MODIS active fire 

product, the VIIRS fire product contains for each fire pixel the detection time and 

coordinates (longitude and latitude) and confidence, fire radiative power, brightness 

temperatures at 4-µm and 11-µm bands, and satellite VZA (Csiszar et al., 2016). The 

FRP (units: MW per pixel) recorded in the VIIRS NDEAF-L2 fire product is also 

retrieved based on the method proposed by Wooster et al. (2003). Although the 

algorithms for the VIIRS NDEAF-L2 fire product and the MODIS C6 active fire product 

are almost the same (Csiszar et al., 2016; Giglio et al., 2016a), MODIS and VIIRS 

sensors differ in the primary bands that are used for fire detection and FRP retrieval, their 

wavelengths, saturation temperatures, pixel sizes, and sensor-specific coefficient (Table 

4-1).  

The VIIRS NDEAF-L2 fire product is produced in the sensing geometry of the 

VIIRS M-bands (Table 4-1) (Cao et al., 2014; Wolfe et al., 2013). The VIIRS M-bands 

sense 16 nominal-750-m pixel scan lines per scan with a scan angle range of ±56.28° 

from nadir approximately every 1.786 s, and each scan line is composed of 3200 pixels 
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that cover 3000 km along the scan direction (Cao et al., 2014; Wolfe et al., 2013). Thus, 

the wider swath width, compared to MODIS, provides fully global coverage without gaps 

(Figure 4-1b). Coverage from adjacent orbits increasingly overlaps away from the 

Equator toward higher latitudes, which can cause repeat detections of the same fires. 

Moreover, the nominal VIIRS pixels are generated using an aggregation scheme that 

determines the radiance value of a pixel from three samples in nadir along the scan 

direction (scan angle < 31.72°), from two samples in the middle zone of a scan (scan 

angle: 31.72° - 44.86°), and from one sample at the scan edge (scan angle > 44.86°), 

respectively. As a result, the growth rate of the VIIRS pixel size with view angle is 

largely reduced relative to MODIS observations (Wolfe et al., 2013). The pixel size of 

M-bands generally increases along the scan direction from nominal 0.75 km at nadir to 

~1.6 km at the scan edge but decreases abruptly at the ends of aggregation zones (Wolfe 

et al., 2013). Moreover, the VIIRS onboard bow-tie deletion algorithm removes two and 

four over-sampling scan lines in the middle aggregation zone and at scan edge, 

respectively (Wolfe et al., 2013), thereby reducing duplicate fire detections between 

adjacent scans at off-nadir. This deletion theoretically results in significantly fewer 

duplicate fire detections than MODIS. 

This study collected the VIIRS NDEAF-L2 active fire product and the Moderate 

Bands Terrain Corrected Geolocation (GMTCO) product from the NOAA 

Comprehensive Large Array-Data Stewardship System (CLASS) 

(https://www.class.ncdc.noaa.gov/) for the period of April 2016 to March 2017. The 

GMTCO product was used to locate and extract the overlap areas between the Suomi 

NPP VIIRS adjacent orbits. 
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Table 4-1. Comparison between MODIS and VIIRS data in sensing geometry and the 

algorithms used for active fire characterization. 

Sensor Parameters MODIS (Aqua) VIIRS (Suomi NPP) 

Orbit altitude ~705 km ~840 km 

Equator crossing time 1:30 AM, and 1:30 PM local time 1:30 AM, and 1:30 PM local time 

Scan angle range ±55° ±56.28° 

Swath width 2340 km (1354 pixels) 3000 km (3200 pixels) 

Pixel dimensions 
1 km (nadir) - 2.01 km (along track),  

1 km (nadir) - 4.83 km (along scan)  

750 m (nadir) - 1.60 km (along 

track),  

750 m (nadir) - 1.60 km (along scan)  

Swath width 2340 km (1354 pixels) 3000 km (3200 pixels) 

Fire detection 

   Primary bands  

   Saturation 

temperature 

B21 (3.929 - 3.989 μm) 

B22 (3.940 - 4.001 μm) 

B31 (10.780 - 11.280 μm) 

 

B21, B22, and B31 saturate at nearly 

500 K, 331 K, and 340 K, 

respectively. 

M13 (3.987 - 4.145 μm) 

M15 (10.234 - 11.248 μm) 

 

M13 nominally saturates at 343K 

and 634 K at high and low gain 

settings, respectively; and M15 

saturates at 363 K. 

Active fire detection 

algorithm 

MODIS Collection 6 (C6) active fire 

detection algorithm (Giglio et al., 

2016a) 

  

The VIIRS NDE fire algorithm keeps 

the core and main body of MODIS 

C6 algorithm but it is slightly 

modified in separating fire pixel 

from background clear land pixels. 

To separate fire pixel from 

background land pixels, the VIIRS 

NDE uses the fixed thresholds test 

(see Giglio et al., 2003) while the 

MODIS C6 combines the same fixed 

thresholds test and a new dynamic 

threshold test (see Giglio et al., 

2016a).  

FRP calculation 

Based on Wooster et al (2003), 

MODIS sensor-specific coefficient 

(3.0×10-9 W m-2 sr μm-1 K-4) 

Based on Wooster et al (2003), 

VIIRS sensor-specific coefficient 

(2.88×10-9 W m-2 sr μm-1 K-4) 
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4.2.3. Land Cover Data 

The MODIS land cover type was collected to determine the ecosystem types of 

fire occurrences. The primary land cover classification scheme in the MODIS land cover 

product (MCD12Q1) is provided by an International Geosphere-Biosphere Program 

(IGBP) (Friedl et al., 2010). This study used the most recent version of the MODIS land 

cover type product at a spatial resolution of 500m in 2014 to examine the association 

between the fire detections from MODIS and VIIRS and the ecosystem types. 

 

4.3. Methods 

4.3.1. Correction of Inter-Scan Duplicate Fire Detections  

 The duplicate fire detections between adjacent scans in MODIS and VIIRS fire 

products were extracted separately and the associated FRP values were corrected. Fire 

pixels were considered as duplicate detections if they met the following three conditions: 

(1) Fires are detected at the same satellite view angles. (2) The time difference between 

any two fire observations is less than 8 s, which is because the same point on the Earth’s 

surface could be sensed by up to three temporally adjacent scans at the scan edge during a 

time period of 4.431seconds (the time of completing three scans is 3×1.477 s) for 

MODIS (Wolfe et al., 2002) and 5.358 seconds (3×1.786 s) for VIIRS M-bands, although 

ground-received VIIRS data are less likely to contain the same surface point from all 

three adjacent scans due to the onboard deletion algorithm (Wolfe et al., 2013). (3) The 



159 

 

distance between the centers of any two fire pixels is shorter than the along-track 

dimension of the fire pixels because adjacent scans primarily overlap each other along the 

track direction. For each pair of duplicate detections, one remained while the other was 

removed, and the average FRP was used as the corrected FRP value for the retained 

detection. Figure 4-2 shows an example of correcting MODIS inter-scan duplicate fire 

detections in nine temporally adjacent scans (117th – 225th) at a satellite view angle from 

55° to 58°, where a total of 40 pairs of duplicate fire detections were found and fully 

corrected. 

 

Figure 4-2. An example of correcting MODIS inter-scan duplicate fire detections for 

savanna fires in southern Africa on 18 September 2016. (a) Before inter-scan correction. 

Nine temporally adjacent scans (117th – 225th) sensed at 11:50 (UTC) are overlaid on a 

false-color composite image of 500m Aqua MODIS band 7 (2105-2155 μm), band 2 

(841-876 μm), and band 4 (545-565 μm), in which actively burning fires are denoted in 

red (or orange) color. Adjacent scans are in black and dark blue colors, respectively. Each 

scan has ten scan lines and only 28 pixels at a view angle from 55° to 58° in each scan 

line (1354 pixels) are shown here. Pixel boundaries are delineated by black or dark blue 

polygons and the detected fire pixels are highlighted in white color with centers 

represented by yellow dots. Obviously, four scan lines in every two of adjacent scans 
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overlap and the duplicate fire detections are those highlighted overlapping fire pixels with 

very close pixel centers. (b) After inter-scan correction. 

 

4.3.2. Correction of Inter-Orbital Duplicate Fire Detections 

 The duplicate detections of the same fires observed by Aqua MODIS and Suomi 

NPP VIIRS on adjacent orbits were extracted. Due to the overlap of among swaths from 

adjacent orbits at large VZA (VZA>40°), a fire could be repeatedly detected twice (by 

two adjacent orbits) across mid-latitudes (Aqua MODIS: 30°S-61°S and 30°N-61°N, 

VIIRS: 54°S-54°N) and up to four times (by four adjacent orbits) across high latitudes 

(Aqua MODIS: 61°N-80°N, VIIRS: 54°N-80°N) during either daytime or nighttime 

every day if the fire is intense and detectable at a large view angle with a large pixel size. 

Relative to MODIS, the VIIRS sensor has a much higher chance to detect the same fire 

from adjacent orbits because VIIRS M-bands have a generally consistent pixel size from 

nadir to the scan edge. To correct the inter-orbital duplicate detections, the daily overlap 

areas between adjacent orbits of each sensor were first built by spatially matching the 

associated swaths sensed from the adjacent orbits. Swath boundaries were constructed 

using the coordinates of the scan edges obtained from geolocation products (MYD03 for 

Aqua MODIS and GMTCO for VIIRS). Then, for every pair (or group) of the 

overlapping orbits, the fire pixels from one orbit inside the overlap area were extracted 

and buffered by a distance of the along-scan pixel dimensions at scan edge (4.83 km for 

MODIS and 1.6 km for VIIRS). For fire detections from the other orbit (or orbits), the 

detections located within the buffers were considered to be potential duplicate detections; 

otherwise, the detections outside the buffers were considered to be new fires. The 
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buffered detections and their potential duplicate detections from either MODIS or VIIRS 

were then processed in the following three ways to determine whether the potential 

duplicate detections could be new fires. (1) Both the buffered and the potential duplicate 

fires remained if they were detected by both MODIS and VIIRS. (2) Only the fires 

detected by both MODIS and VIIRS remained if one of the sensors only observed either 

the buffered or potential duplicate fires. (3) Only the detections with smaller VZA 

remained if both the buffered and the potential duplicate fires were only detected from 

either MODIS or VIIRS. The selection of smaller VZA fire detection was based on the 

fact that the fire-detection capability decreases as the view angle increases (see Section 

4.4.2). Additionally, all detections of new fires from the other orbits were also kept. 

 

4.3.3. Comparison between MODIS and VIIRS FRP Retrievals 

To provide sufficient understanding of the similarity and discrepancy between 

MODIS and VIIRS FRP retrievals, we explored the FRP variations in four different 

ways. First, the dependence of MODIS and VIIRS FRP on VZA was examined and 

compared because of the differences in sensing geometry between the two sensors (Table 

4-1). To ensure both sensors sensed the fires contemporaneously in the same area, the 

Aqua MODIS granules were matched with the VIIRS granules temporally and spatially. 

Specifically, for each 5-min Aqua MODIS granule (based on MYD03), VIIRS granules 

(based on GMTCO) that temporally (±5 min) and spatially (overlapping) matched the 

MODIS granule were first selected. Then, the fires detected inside the overlap areas 

between the MODIS granule and the matched VIIRS granules were considered as the 
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contemporaneous fire detections because the variations of fires and atmosphere within ±5 

min could be negligible. This process was repeated for all MODIS and VIIRS granules 

from April 2016 to March 2017 globally. Finally, the contemporaneous fire detections 

were grouped with an interval of every 1-degree VZA, and the associated FRP values 

were then summed in each group for MODIS and VIIRS, respectively. The mean, 

minimum and maximum FRP (per fire pixel) were further calculated for each sensor for 

comparisons.  

Second, to understand the FRP variation in individual fire clusters, MODIS and 

VIIRS FRP estimates were compared for individual fire events that occurred during fire 

seasons in five typical ecosystems (savannas, tropical rainforests, boreal forests, 

broadleaf forests, and croplands) (Table 4-2 and Figure 4-3). To minimize the effect of 

differences in observation time and VZA between MODIS and VIIRS, fire detections 

were extracted from those observed by both MODIS and VIIRS within a time difference 

of less than 20 min and a VZA difference of less than 15°. Using 20 min instead of 5 min 

was chosen to collect more contemporaneous fire detections with similar VZA and 

without cloud obscurations from both MODIS and VIIRS. A fire cluster was then 

manually enclosed using a polygon as shown in Figure 4-3 (d, g, j, m, and p). For 

visualization purposes, the extracted fire detections were overlaid with a false-color 

composite image of 500m MODIS. The fire detections from MODIS and VIIRS were 

clustered around one or several fire pixels (red or orange color) on the MODIS false-

color image. Figures 4-3b-p present examples illustrating the fire clustering of active fire 

detections from MODIS and VIIRS in five ecosystems, where a large fire event could 

consist of several fire clusters. To select clusters representing various fire characteristics, 
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a total number of 619 fire clusters were quantified from 13 regions globally (Table 4-2). 

For a fire cluster, VZAs were averaged and FRP retrievals were summed from all 

enclosed fire detections at each overpass for MODIS and VIIRS separately. Finally, the 

cluster-level FRP estimates from the two sensors were compared for each of the five 

ecosystems using the Reduced Major Axis (RMA) regression method that minimizes 

error in both dependent and independent variables (Smith 2009). RMA regression has 

been widely used to compare measurements or estimates of the same geophysical or 

biophysical variable by different instruments (Boersma et al., 2009; Cohen et al., 2003; 

White et al., 2009). In this comparison, the fitted line was forced through the origin 

because both sensors observed the same fire clusters (or events) contemporaneously. The 

Pearson’s correlation coefficient (r) was also calculated as an indicator of correlation 

between FRP estimates from the two sensors. 

Third, the discrepancy between MODIS FRP and VIIRS FRP was investigated at 

a continental scale. The extracted contemporaneous fire detections (an overpass 

difference of within ±5 min) from the two sensors, which were obtained from MODIS 

and VIIRS granules described in the first paragraph of this section, were separated into 

two groups by daily overpass times: (1) an early morning group at approximately 1:30 

AM local time (nighttime fires) and (2) an early afternoon group at approximately 1:30 

PM local time (daytime fires). For each of the daytime and nighttime groups, FRP 

retrievals of all contemporaneous fire detections from each sensor in the same day were 

summed separately for the six continents (North America, South America, Europe, 

Africa, Asia, and Australia). Then, the continental FRP estimates from the two sensors 
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were statistically compared using the RMA regression. The regression intercept was kept 

because MODIS and VIIRS were not always able to detect the same fires.  

 

Table 4-2. Selected fire clusters at five typical ecosystems in 13 regions across the globe. 

* Fire seasons were derived based on (Giglio et al., 2006). 

 

Ecosystem Region 
Fire 

season* 

Cluster 

number 
Observing date 

Observing difference 

Time  

(min) 

VZA 

(degree) 

Savannas  

Northern Africa Nov-Jan 45 02 Nov 2016 15 < 10 

Southern Africa Jul-Sep 75 22 Aug 2016 15 < 15 

Australia 
Apr-May, 

Oct-Dec 
38 15 Oct 2016 0 < 15 

Tropical  

Rainforest 

Amazon Aug-Sep 100 07, 15 Sep 2016 5-10 < 10 

Southeast Asia Jan-Apr 22 
27 Jan, 05 May 

2016 
5-10 < 10 

East Congo Aug-Oct 40 
11 Jul, 30 Aug 

2016 
10-15 < 10 

Boreal 

forest  

North America May-Sep 28 02 Jul 2016 15 < 5 

Siberia May-Sep 58 18 Sep 2016 10 < 5 

Broadleaf 

forest 
Chile Dec-Jan 98 

21, 26, 29 Jan 

2017 
5-20 < 10 

Croplands  

Southeast 

United States 
Sep-Oct 79 

28 Sep,  

 06, 09, 25 Oct 

2016 

5-20 < 15 

Ukraine Jul-Aug 20 13, 26 Jul 2016 5-10 < 15 

Northwest India 
May & 

Oct 
16 28 Oct 2016 0 < 10 
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Figure 4-3. Fire clusters in five typical ecosystems selected globally. The top panel (a): 

the distribution of 619 fire clusters over 13 regions of savannas, tropical rainforest, boreal 

forests, broadleaf forest, and croplands (Table 4-2). The five black squares highlight the 

example regions used for illustrating fire clustering in the bottom panel. The bottom 

panel (b-p): examples of active fire detections by MODIS (the first column: b, e, h, k, and 
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n) and VIIRS (the second column: c, f, i, l, and o) in one region of every ecosystem, and 

several manually selected fire clusters (the third column: d, g, j, m, and p) in the areas 

delineated by the white or black contours in the first column (b, e, h, k, and n). Fire 

clusters (highlighted by yellow or black polygons) were overlaid with the 500m MODIS 

false-color composite image of bands 7-2-4 in which actively burning fires are in red (or 

orange). 

 

 Fourth, the discrepancy between MODIS FRP and VIIRS FRP was also 

investigated spatially at 1° grid cells across the globe. This comparison used all fire 

detections with the correction of duplicate detections for the following two reasons. First, 

the samples for statistical analyses were too small in a grid cell and were unrepresentative 

if only using the contemporaneous fires detections (within ±5min) from MODIS and 

VIIRS overpasses. Indeed, because of the overpass-time shifts between MODIS and 

VIIRS orbits, the contemporaneous detections occurred approximately one day every 

eight days (or ~45 days during an entire year) in the same area. For an area with a fire 

season approximately 1-2 months, the contemporaneous fire detections only appeared in 

3-7 days. In that case, the extracted contemporaneous fires detections could be unable to 

represent the fire activities. Second, the operational biomass burning emission products, 

including the Quick Fire Emissions Dataset (QFED) (Darmenov and Silva, 2015), the 

Global Fire Simulating System (GFAS)(Kaiser et al., 2012) and the Blended Global 

Biomass Burning Emissions Product from MODIS, VIIRS and Geostationary Satellites 

(GBBEPx) (Zhang et al., 2014), estimate emissions at grid cells based on daily mean FRP 

flux (units: W · m-2 · s-1) that is calculated using daily MODIS FRP retrievals. Therefore, 

the use of all corrected fire detections helps to understand the uncertainties of estimating 

emissions from VIIRS and MODIS FRP retrievals. To explore the spatial pattern of the 
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FRP discrepancy, the VIIRS-to-MODIS FRP ratio was calculated at 1° grid cells by 

adopting a method that has been developed in previous studies (Ellicott et al., 2009; 

Freeborn et al., 2009; Roberts and Wooster, 2008; Roberts et al., 2015; Vermote et al., 

2009; Wooster et al., 2015), in which the FRP ratio was applied to compare the FRP 

retrievals between MODIS and the Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) across Africa and between Aqua MODIS and Terra MODIS across different 

regions globally in a temporal interval of one week, one month, or one year. In this study, 

the corrected fires detections from the two sensors were separately gridded into 1° grid 

cells. Then, the VIIRS-to-MODIS FRP ratio was calculated for every grid cell as,  










MODIS

MODIS

MODIS

VIIRS

VIIRS

VIIRS

n

i

i

n

i

i

FRP

FRP

FRP

1

1
                                                   (1) 

where ϕFRP is the VIIRS-to-MODIS FRP ratio, iVIIRS and iMODIS are the indices of fire 

pixel number, and nVIIRS and nMODIS are the total number of corrected fire pixels in a grid 

cell for VIIRS and MODIS observations, respectively, from April 2016 to March 2017. 

Note that ϕFRP was not calculated for grid cells that fewer than 10 fire pixels were 

observed by either MODIS or VIIRS during the period.  

Fire pixel density (units: count · km-2) from VIIRS fire detections was also 

estimated at 1° grid cells to locate frequent fire occurrences and to investigate its 

influence on the VIIRS-to-MODIS FRP ratio. The fire pixel density was obtained by 
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dividing the total fire pixel number by the area of the grid cell following the methods 

presented in Giglio et al (2006) and Ichoku et al (2008).  

Finally, the VIIRS-to-MODIS FRP ratio was calculated using equation (1) for all 

corrected fires detections that were binned by every 5° latitude to explore the MODIS and 

VIIRS FRP discrepancy along the latitudinal direction.  

 

4.4. Results 

4.4.1. Effect of Duplicate Detections on FRP Estimates  

 Duplicate fire detections from inter-scans (between adjacent pixels at off-nadir 

and adjacent scans) account for considerable FRP overestimates (Figure 4-4). These 

duplicate detections account for as much as 9.8% of total fire count, which account for 

18.3% of cumulative Aqua MODIS FRP at a global extent. This is similar to the finding 

from (Freeborn et al., 2014). In contrast, for VIIRS fire detections during the same 

period, duplicates account for up to 5.4% of the total fire count and 6.7% of the 

cumulative FRP. 

 The effect of the inter-orbital duplicate fire detections on FRP estimates is very 

limited (Figure 4-4). The repeat MODIS detections inside the overlap areas between the 

adjacent Aqua orbits only make up 0.18% of the total count of Aqua MODIS detections, 

which merely account for 0.54% of the cumulative FRP. For VIIRS detections, the inter-

orbital duplicate detections account for only 0.8% of the total detections and contribute to 

1.3% of the cumulative FRP. 
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Figure 4-4. Fire detection count and cumulative FRP estimates before and after 

corrections of inter-scan and inter-orbital duplicate detections during the period from 

April 2016 to March 2017. (a) Total count of fire detections. (b) Cumulative FRP. 

 

4.4.2. Dependence of FRP Retrievals on Satellite View Zenith Angle 

 A comparison of the fires that were contemporaneously detected by MODIS and 

VIIRS shows that the capability of detecting fire across swath is largely variable for 

MODIS but is relatively consistent for VIIRS (Figure 4-5). The MODIS fire count 

decreases by 67%, whereas the MODIS mean FRP per detection increases by 300% from 

22 MW to 90 MW as VZA increases from nadir to 60° (Figures 4-5a and 4-5b). This 

variation is attributed to the gradual increase in pixel dimensions as VZA increases 

(Table 4-1). In contrast, the VIIRS fire count and mean FRP increase minimally by 

approximately 100% and 110%, respectively, from nadir to scan edge. The peaks of 

VIIRS fire count (also mean FRP) occur at approximately VZAs of 38° and 54° due to 

the change in pixel size associated with the onboard aggregation scheme (Wolfe et al., 

2013). The discrepancy due to the sensing geometry difference between MODIS and 
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VIIRS can also be seen in the minimum FRP per detection (in 1° VZA bin) that increases 

from 1.8 MW to 3.6 MW for VIIRS and 2.5 MW to 17.0 MW for MODIS as VZA 

increases from nadir to 60° (Figure 4-5c). The maximum FRP per detection from both 

VIIRS and MODIS shows large variation but generally increases as VZA increases from 

nadir to 60° (Figure 4-5c). In general, the sum of FRP estimates from VIIRS fire 

detections is 11% larger than that from MODIS fire detections, except for VZAs between 

nadir and +20° (Figure 4-5d).  

 

Figure 4-5. Variations of fire pixel count, sum FRP, mean FRP, the minimum and 

maximum FRP with view zenith angle for the daytime fires contemporaneously detected 

from MODIS and VIIRS from April 2016 to March 2017 globally. (a) Fire detection 

count, (b) mean FRP per fire detection, (c) the maximum and minimum FRP per fire 

detection (the minimum FRP is on the right Y-axis), and (d) sum of fire FRP, in every 1° 

VZA bin. 
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4.4.3. Fire Cluster FRP 

 VIIRS and MODIS FRP estimates are mostly comparable in fire clusters, 

although there is a dependency on the host ecosystem (Figure 4-6). VIIRS FRP differs 

from MODIS FRP by approximately 1% in croplands and savannas. The regression 

coefficient (slope) suggests that the cluster FRP estimates from the two sensors are 

statistically similar in these two ecosystems with a Pearson’s r of 0.72 and 0.81 (Figure 4-

6a, b). The MODIS and VIIRS FRP estimates are also similar in broadleaf forests and 

tropical rainforests with a Pearson’s r that is larger than 0.9. The cluster VIIRS FRP is 

approximately 13% larger than MODIS FRP, although a few cluster samples show larger 

MODIS FRP estimates in broadleaf forests (Figure 4-6c). A small difference is observed 

in tropical rainforests where the cluster VIIRS FRP is approximately 8% smaller than 

MODIS FRP (Figure 4-6d). 
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Figure 4-6. Comparison of fire cluster FRP between VIIRS and MODIS estimates in five 

typical ecosystems. (a) croplands, (b) savannas, (c) broadleaf forests, (d) tropical 

rainforests, and (e) boreal forests. Each sample represents one fire cluster. All samples 

are separated into three groups by the associated VZA (0°-20°, 20°-40°, and 40°-60°), 

and are represented using different symbols. The solid line is the fitted line and the 

dashed line is the 1:1 line. 

 

 However, the cluster VIIRS FRP estimates differ greatly from MODIS FRP in 

boreal forests (Figure 4-6e). Samples with a cluster FRP estimate less than 1000MW are 

evenly distributed around the 1:1 line. Nevertheless, MODIS FRP is 47% larger than 

VIIRS FRP in large cluster FRP samples (cluster FRP > 1000MW).  
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 Although the samples have a VZA variation of 0° to 60°, the relationship of 

cluster FRP between MODIS and VIIRS retrievals does not show any dependence on 

VZA. This pattern appears in all five ecosystems.  

 

4.4.4. Continental-Scale FRP 

 The continental-scale daily daytime FRP retrieved from VIIRS and MODIS 

contemporaneous fire detections is highly correlated (Pearson’s r ≥ 0.98) in all six 

continents although slight differences exist (Figure 4-7). In South America, Asia, and 

Australia, most of the samples are distributed around the 1:1 line with a slope that is close 

to one and a relatively small intercept, which suggests that the continental FRP 

differences between MODIS and VIIRS are generally very small. However, an FRP 

difference is observed in some periods during the year in South America and Australia. 

For instance, the VIIRS FRP estimates are slightly lower than MODIS FRP during 

August and September in South America (a time period dominated by deforestation fires) 

but are slightly larger from October-November (a time period dominated by savanna 

fires) in Australia.  

Although the regression slope between MODIS and VIIRS FRP estimates is close 

to one in Africa, the fitted line shifts toward the VIIRS side with a moderate systematic 

bias (Figure 4-7d). This indicates that the VIIRS FRP estimates are overall larger than 

MODIS FRP. The seasonal variation shows that the VIIRS FRP estimates are larger than 

MODIS FRP in the periods from January-April and August-December (time periods 
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dominated by savanna fires in Northern and Southern Africa) but are smaller from May-

July (a time period dominated by forest fires in central Africa rainforest).  

The regression lines also show that VIIRS FRP is overall larger than MODIS FRP 

in North America and Europe (Figure 4-7a and 4-7c). In North America, the difference is 

mostly associated with agricultural burning and grassland fires that primarily occur 

during the period from March-June in Mexico, as well as the central and southeastern 

United States. In Europe, the overall larger FRP estimates of VIIRS than MODIS is 

related to agricultural burnings that begin in June and end in October. 

Compared to the daytime continental FRP, the nighttime continental FRP 

estimates are much smaller and less correlated (Figure 4-8). This difference is likely 

associated with the much smaller and cooler fires that occur at night compared to daytime 

fires. Among the six continents, VIIRS FRP is overall larger than MODIS FRP in Europe 

and Africa but smaller in North America, South America, and Australia. However, FRP 

estimates between the two sensors are very comparable in most samples in Asia. 
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Figure 4-7. Comparisons of daily continental FRP estimates from daytime fire detections 

contemporaneously sensed by VIIRS and MODIS during the period from April 2016 to 

March 2017 in six regions: (a) North America, (b) South America, (c) Europe, (d) Africa, 

(e) Asia, and (f) Australia. The solid line (red) is the fitted line and the dashed line is the 

1:1 line. The date (day of year or DOY) of each sample is represented by different colors 

(see legend on the right). 
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Figure 4-8. The same as in Figure 4-7 but for nighttime contemporaneous fire detections. 

 

4.4.5. Spatial Pattern of Global FRP  

 The difference between VIIRS FRP and MODIS FRP estimates at grid cells is 

small in fire-prone regions (Figure 4-9). The fire-prone regions are quantified using the 

VIIRS fire pixel density showing large values for frequent fire occurrences (Figure 4-9a). 

These regions are mainly distributed in tropical and subtropical climate zones (including 

Africa, most parts of South America and Central America, Southeast Asia, and northern 

Australia). In fire-prone tropical and subtropical regions with a VIIRS fire pixel density 

that is larger than 0.05 count per square kilometer in a year, the VIIRS-to-MODIS FRP 

ratio shows that the VIIRS FRP estimates are, on average, 20% larger than MODIS FRP 

at the grid level (Figure 4-9b, c). The VIIRS-to-MODIS FRP ratio is consistent in fire-

prone regions, whereas it varies dramatically in fire-limited regions where the VIIRS fire 
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pixel density is less than 0.02 count per square kilometer in a year (Figure 4-9c). The 

FRP ratio in fire-limited regions is not representative because the fire sample size is too 

small.  

 

Figure 4-9. The VIIRS fire pixel density and the VIIRS-to-MODIS FRP ratio at 1°×1° 

grid cells during the period from April 2016 to March 2017. (a) The VIIRS fire pixel 

density, (b) the VIIRS-to-MODIS FRP ratio, and (c) the VIIRS-to-MODIS FRP ratio in 

grid cells as a function of VIIRS fire pixel density that is colored for different ranges. The 
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solid line and the upper and lower dashed lines in (c) are ratio values of 1.0, 1.4, and 0.6, 

respectively. 

 

 The VIIRS-to-MODIS FRP ratio presents the spatial variation of the difference 

between VIIRS and MODIS FRP estimates in the grid cell across the globe (Figure 4-9b). 

At low latitudes, the VIIRS FRP estimates are larger than MODIS FRP in most regions 

that are dominated by agricultural and savanna fires, including croplands in Mexico, 

India, and Pakistan, and savannas in most of Africa and eastern South America. In 

contrast, VIIRS FRP is mostly smaller than MODIS FRP in tropical forest fire regions, 

including areas in transition zones from savannas to rainforests in South America and on 

some Indonesian islands. In mid-latitudes, the FRP ratio varies considerably within a 

local region, indicating that the relationship between VIIRS FRP and MODIS FRP is 

very complex. At high latitudes, VIIRS FRP is generally smaller than MODIS FRP. For 

instance, in the boreal forests where large and intense fires frequently occur during 

summer months (July-September) in North America and northern Asia, VIIRS FRP is as 

much as 40% smaller (much smaller in a few grids) than MODIS FRP although VIIRS 

FRP is slightly larger in a small portion of grids.  

 

4.4.6. Latitudinal FRP Distributions  

 VIIRS and MODIS fire counts vary substantially with latitude (Figure 4-10a). At 

low latitudes between 30°S and 30°N, the annual count of fire detections accounts for 

over 88% of the total global fire detections. The fire count peaks in the Equatorial 
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savannas where the fire season spans from August to October in the southern hemisphere 

and from December to the following March in the northern hemisphere. However, the 

fire count dips around the equator where tropical rainforests are dominant and fires are 

less frequent than in tropical savannas. Nevertheless, the fire count at mid-to-high 

latitudes decreases rapidly. This latitude-dependent pattern is the same for both the raw 

fire detections and the corrected fire detections. Relatively speaking, the count of the 

corrected VIIRS fire detections is much larger than that of the corrected MODIS fire 

detections, particularly in tropical regions (70% larger), which is mainly attributed to the 

difference in pixel size between the two sensors.  

 

Figure 4-10. Variations in fire detection count and the VIIRS-to-MODIS FRP ratio with 

latitude during the period from April 2016 to March 2017. (a) The annual total count of 

fire detection aggregated every 5° latitudes, where solid and dashed lines represent fire 

detection data before and after corrections of duplicate detections, respectively. (b) The 

VIIRS-to-MODIS FRP ratio at every 5° latitudes using the corrected fire detection data. 

The red dash line shows a ratio value of one, indicating VIIRS and MODIS FRP 

estimates are equal. 
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VIIRS FRP is generally larger than MODIS FRP at low latitudes but is smaller at 

mid-to-high latitudes (Figure 4-10b). For the corrected fire detections, the VIIRS-to-

MODIS FRP ratio indicates that VIIRS FRP is, on average, approximately 16% larger 

than MODIS FRP in the tropical zone (30°S - 30°N). In the northern hemisphere, VIIRS 

FRP is less than MODIS FRP up to 3% in mid-latitudes (30°N - 50°N) but up to 18% at 

high latitudes (55°N-70°N) where boreal forest fires frequently occur. In the southern 

hemisphere, the FRP ratio varies from 0.8 to 1.22 at mid-to-high latitudes where fire 

activity is relatively limited.  

 

4.5. Discussion 

 The inter-scan duplicate fire detections could result in considerable FRP 

overestimation while the inter-orbital duplicates have very limited effect on FRP 

estimates. The inter-scan duplicates in the MODIS fire data increase the cumulative FRP 

by approximately 2 times more than those in the VIIRS fire data. This suggests that 

VIIRS fire data are less affected by the inter-scan duplicate detections than MODIS fire 

data. The difference is mainly because (1) the combined VIIRS PSF in the 3- and 2-pixel 

aggregation zones is much less likely to produce duplicate detections than the triangle-

shaped MODIS PSF (Cao et al., 2014), and (2) the onboard deletion of over-sampled 

scans in VIIRS largely reduces the bow-tie effect and leads to very limited overlaps 

between VIIRS adjacent scans (Wolfe et al., 2013). For MODIS, however, the inter-scan 

duplicate detections result in higher overestimation of the cumulative FRP than total fire 

count (Figure 4-4). This is because the inter-scan duplicate detections mainly occur at 

large VZA where mean FRP per detection is several times that of the mean FRP at nadir 
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(Figure 4-5c). In contrast, the inter-orbital duplicates have very limited or negligible 

contributions to FRP estimates for both VIIRS and MODIS, although the impacts are 

stronger on the VIIRS than MODIS fire data because of the wider swath width and large 

overlap areas in VIIRS (Table 4-1) (Wolfe et al., 2013; Wolfe et al., 2002).  

Geometry differences between MODIS and VIIRS sensors could result in 

considerable discrepancies in fire detection and characterization across swath. The 

MODIS fire counts decrease quickly as VZA increases, whereas the FRP per count, 

especially the mean and minimum, increases greatly. This pattern coincides with the 

variation of MODIS pixel size. In contrast, VIIRS fire detections and FRP per count 

show limited variations, particularly in large VZAs at off-nadir. This difference in fire 

detections between the two sensors is because of their different onboard aggregation 

schemes (Wolfe et al., 2013). Indeed, the large increase in MODIS pixel size across 

swath greatly decreases the MODIS detection capability, but the slight variation in VIIRS 

pixel size across swath marginally reduces the VIIRS detection capability, which is 

clearly demonstrated by the variation of the minimum FRP across swath (Figure 4-5c). 

Moreover, the difference in the mean FRP per count is mainly because the large MODIS 

pixels at off-nadir could contain more fire events or areas, whereas VIIRS pixel size is 

smaller with fewer fire areas. However, VIIRS FRP is larger overall than MODIS FRP 

across swath, which is attributed to the fact that VIIRS with a smaller pixel size can 

detect more small fires than MODIS. 

The FRP differences between MODIS and VIIRS are also attributed to the 

differences in sensor spectral bands and satellite overpass time. The impact of the 

difference in their spectral bands is demonstrated in the cluster FRP comparison. The 
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carefully extracted fire clusters, after minimizing the differences in overpass time and 

VZA between MODIS and VIIRS data, provide FRP comparisons of individual fire 

events in different ecosystems globally. The relationship between the cluster MODIS and 

VIIRS FRP estimates is significant with a difference of 1% in croplands and savannas 

and less than 13% in broadleaf forests and rainforests. In boreal forests, however, the 

cluster MODIS FRP is as much as 47% higher than VIIRS FRP in intensive fire events 

(cluster FRP > 1000 MW) (Figure 4-6e) where FRP retrievals in nine MODIS fire 

detections range from 600-2000MW but VIIRS FRP in all fire detections is less than 

600MW (Figure 4-11). The underestimation of VIIRS FRP in large boreal forest fires is 

likely associated with the attenuation of VIIRS FRP by thick smoke plumes because the 

4-µm VIIRS M-band has a wider wavelength that contains an important carbon dioxide 

(CO2) absorption window than the 4-µm MODIS band (Giglio et al., 2016b). As a result, 

the increased atmospheric attenuation leads to underestimation of VIIRS FRP and the 

magnitude of FRP underestimation could be substantial when CO2-rich smoke plumes 

block the sensor’s instantaneous field of view (Giglio et al., 2016b). This impact has been 

reported in a previous study, indicating that the absorption of infrared radiation by CO2 in 

smoke plumes could result in a 10%-20% underestimation of VIIRS FRP (Oliva and 

Schroeder, 2015). Indeed, the larger the fire events (clusters), the heavier the smoke, 

which results in much stronger impacts on VIIRS FRP retrievals. However, the effect of 

smoke on VIIRS FRP could be very complex, which is likely associated with smoke 

thickness and plume height, etc. This result suggests that VIIRS FRP estimation could be 

improved with the atmospheric correction in the 4-μm band, particularly for large fires.   



183 

 

 

Figure 4-11. Distributions of the contemporaneous VIIRS and MODIS fire detections in 

fire clusters against FRP estimates in boreal forests (also see Figure 4-6e). The left panel 

shows VIIRS fire frequency varying with VIIRS FRP (per fire pixel) and the right panel 

is MODIS fire frequency in five FRP ranges: 0-50 MW, 51-100 MW, 101-300 MW, 301-

600 MW, 601-1000 MW, and 1001-2000MW. Numbers on bars are the detection count 

in each range bin. 

 

The temporal gap between the overpass time of VIIRS and MODIS, which spans 

from a few seconds to 50 min, has a twofold influence on their FRP difference. First, fire 

events, particularly small and fast spreading fires, could differ greatly during the period 

between the VIIRS and MODIS overpass times. This impact is demonstrated in 

agricultural fires in Punjab, India on 11 November 2016 (Figure 4-12), where the 

overpass time of Aqua MODIS was merely 15 min earlier than that of VIIRS. The large 

discrepancy between MODIS and VIIRS fire detections is likely because the burning 
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periods in individual agriculture fires are very short (Baucum et al., 2002). In other 

words, fires detected by one sensor could have gone out at the overpass of another sensor.  

 

Figure 4-12. Active fire detections from MODIS and VIIRS in croplands of Punjab, 

India on 11 November 2016. MODIS and VIIRS flew over this area at 08:10 UTC and 

08:25 UTC, respectively. (a) The false-color composite of Landsat 8 band 4 (red), band 3 

(green), and band 2 (blue). Landsat 8 collected this data at 05:31 UTC. Smoke plumes (in 

white delineated by the yellow rectangles) from agricultural burning were spreading 

towards the upper-left direction. (b) Fire detections, for visualization purpose, were 

overlaid on the false-color composite image of Landsat 8 band 7 (red), band 5 (green), 

and band 3 (blue). 

 

Second, during days when the temporal gaps are relatively long (e.g., > 20 min), 

the associated cloud variation is likely one of the sources that complicate the FRP 

relationship between MODIS and VIIRS fire detections, particular in some tropical 

regions. Such impacts of cloud cover have been demonstrated in previous research that 

shows approximately 11% of omission error in MODIS fire detections caused by cloud 
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obscuration in the Amazon basin compared to fire data from the Geostationary 

Operational Environmental Satellite (GOES) (Schroeder et al., 2008). 

The continental-scale FRP comparison based on the contemporaneous fire 

detections sensed by MODIS and VIIRS is less likely affected by the overpass temporal 

gap. As a result, MODIS and VIIRS FRP estimates are very similar, although some slight 

differences exist. This discrepancy could be explained by the higher capability of VIIRS 

in detecting smaller and cooler fires than the MODIS sensor. For instance, the 

continental-scale VIIRS FRP estimates are overall larger than MODIS FRP in savanna 

fire dominated Africa (Figure 4-7d) and agriculture fire dominated Europe (Figure 4-7c). 

However, this advantage could be offset by the attenuation of VIIRS FRP by CO2-rich 

smoke plumes in some large fire regions (e.g., Asia in Figure 4-7e). 

At the global grid cells and latitude average, discrepancies between MODIS and 

VIIRS FRP estimates could be attributed to most above-discussed factors because all fire 

detections from MODIS and VIIRS during the period from April 2016 to March 2017 

were used to calculate the VIIRS-to-MODIS FRP ratio. In addition to the factors 

mentioned above, the sensor’s swath width (Table 4-1) also matters in low latitudes. In 

tropical regions, the grid-cell VIIRS FRP estimate is larger than MODIS FRP in most 

areas (e.g., Africa) (Figure 4-9), which could be mostly explained by the omission error 

of MODIS fire data due to spatial coverage gaps between adjacent orbits at low latitudes 

(30°S and 30°N, see Figure 4-1) (Wolfe et al., 2013). The MODIS omission error in the 

inter-orbital gaps has been demonstrated in fire detection (Cheng et al., 2013; Giglio et 

al., 2009) and emissions estimation (Wiedinmyer et al., 2011). Nevertheless, the larger 

MODIS FRP than VIIRS FRP in grid cells over South American tropical rainforests, as 



186 

 

shown in Figure 4-9b, suggests that a combination of multiple factors could have very 

complex impacts on the discrepancies between MODIS and VIIRS FRP estimates.  

  

4.6. Conclusions 

 This study examined the capability of Aqua MODIS and Suomi NPP VIIRS 

sensors in fire detection and characterization along satellite view angles and investigated 

the relationship between MODIS FRP and VIIRS FRP estimates at different spatial 

scales. The results indicate that MODIS detection capability decreases as view angle 

increases from nadir to the scan edge, whereas VIIRS experiences a generally consistent 

detection capability from all view angles. As a result, FRP per detection across swath 

increases greatly in MODIS but only slightly in VIIRS retrievals. This is mainly due to 

the sensing geometry difference between the two sensors. FRP comparisons at fire 

clusters and continental to global scales revealed that the relationship between MODIS 

and VIIRS FRP retrievals varies across ecosystems and spatial scales. The FRP 

relationship in individual fire events shows that cluster FRP estimates are overall 

comparable in savannas, croplands, and tropical rainforests and broadleaf forests. 

However, VIIRS FRP is much smaller than MODIS FRP for large fires in boreal forests. 

The continental-scale FRP between contemporaneous MODIS and VIIRS fire detections 

is strongly correlated (Pearson’s r ≥ 0.98) in all six continents although VIIRS FRP is 

slightly larger. The grid-FRP difference between the two sensors is, on average, 

approximately 20% in most fire-prone regions, although it varies considerably in fire-

limited regions. Generally, VIIRS FRP at grid cells is larger than MODIS FRP in savanna 
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and agricultural fires but is smaller in tropical rainforests in South America and 

especially in boreal forests in North America and Eurasia. Along latitudes, VIIRS FRP is, 

on average, approximately 16% larger than MODIS FRP in the tropical zone (30°S - 

30°N) where over 88% of VIIRS and MODIS fires is mainly distributed. At mid-to-high 

latitudes, VIIRS FRP is mostly less than MODIS FRP, particularly in boreal forests 

(55°N-70°N). The larger VIIRS FRP estimates in small fires are generally attributed to 

the higher capability of detecting small and cool fires relative to MODIS estimates, 

whereas the lower VIIRS FRP in large and intensive fires, such as boreal forest fires, is 

likely associated with the attenuation of FRP by CO2-rich smoke plumes associated with 

wider wavelength for VIIRS fire detections. Therefore, future work on atmospheric 

correction is expected to mitigate the underestimation of VIIRS FRP in these regions. In 

addition, inter-orbit gaps in MODIS observations at low latitudes could result in the 

underestimates of MODIS FRP. 

 The similarities of and discrepancies between MODIS and VIIRS FRP are 

associated with several other factors. VIIRS data have fewer duplicate fire detections 

than MODIS data. The FRP estimates from the inter-scan duplicate fire detections 

account for 18.3% overall in MODIS FRP, but 6.7% in VIIRS FRP. The inter-orbital 

duplicate detections exert very limited effects on FRP estimates, which is less than 1.3% 

of FRP. Moreover, the variations of cloudiness and small fires during the period between 

MODIS and VIIRS overpass times can also result in the discrepancy of FRP estimates.  

In summary, the VIIRS sensor offers a good continuity to MODIS fire detections 

and FRP data record and provides a superior capability to detect smaller fires with no 

notable dependence on view zenith angle. Users integrating current VIIRS 750m active 



188 

 

fire product into current applications that use MODIS active fire products should pay 

attention to the advantages and shortcomings of VIIRS sensor (M-bands) and active fire 

product. In addition, applications could also consider the VIIRS 375m fire product 

(Schroeder et al., 2014), which is currently being evaluated for NOAA operational 

production. Finally, it should be noted that although the NOAA VIIRS NDEAF-L2 fire 

product provides timely or near real-time fire observations based on the operational 

VIIRS Sensor Data Records, the NASA VIIRS fire products are transitioning to use 

better calibrated (or reprocessed) upstream data (Schroeder and Giglio, 2017). 
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CHAPTER 5: Summary of the Research 
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As presented in Chapter 1, this research aimed to enhance to the capability of the 

FRP-based method for estimating BBE. To pursue this aim, this research set three 

objectives, which were addressed by testing three hypotheses, respectively. This Chapter 

summarizes the key findings and discusses the potential research directions in future. 

 

5.1.  Hypothesis #1 

Satellite retrieved FRE estimates are linearly related to the biomass consumption at 

landscape scales with a factor of FRE biomass combustion coefficient (FBCC). 

5.1.1. Summary of the Methods 

The factor FBCC was derived by statistically comparing biomass consumption 

based on Landsat burned area with GOES and MODIS FRE estimates over 445 wildfires 

across the CONUS. First, to ensure the well observation of fires by the GOES and 

MODIS sensors, a total of 445 wildfires were selected by spatially and temporally 

matching MTBS Landsat burned areas with GOES and MODIS active fire detections. 

Then, for each selected wildfire, the biomass consumption was estimated using the 

conventional method that integrates burned area based on MTBS Landsat burn severity, 

FCCS fuel loading, and combustion completeness (CC) parameterized by burn severity; 

and GOES and MODIS FRE were estimated using the methods proposed by Zhang et al. 

(2012) and Boschetti and Roy. (2009), respectively. Finally, by assuming that the 

Landsat-burned-area-based biomass consumption is approximately equal to the FRE-

based biomass consumption over each well-observed fire, the FBCC was derived using a 

simple linear regression with GOES FRE or MODIS FRE as the independent variable 

and the Landsat-burned-area-based biomass consumption as the dependent variable. In 
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addition, to examine the sensitivity of FBCC to the Landsat-burned-area-based biomass 

consumption, the biomass consumption was also estimated using the conventional 

method in two different ways: (1) using a constant of CC=0.5 by assuming that all fuels 

were consumed by 50%, and (2) using the Land-cover-based method endorsed by IPCC 

for estimating national emissions (IPCC, 2006).  

5.1.2. Results and Conclusions 

 Hypothesis #1 was confirmed. Over the 455 wildfires across the CONUS, the 

estimates of biomass consumption based on Landsat burned area are linearly related to 

both GOES and MODIS FRE estimates. The results show that FBCC is 0.374 kg · MJ-1 

for GOES FRE, 0.266 kg · MJ-1 for MODIS FRE, and 0.320 kg · MJ-1 considering both 

GOES and MODIS FRE. Over the same fires, sensitivity analyses of FBCC to 

combustion completeness and fuel consumption suggests that FBCC varies from 0.301 to 

0.458 kg · MJ-1. Overall, the FBCC values reported in this study were close to those 

FBCC values derived in controlled fire experiments (Wooster et al., 2005; Freeborn et al., 

2008). 

5.1.3. Implications and Future Work 

 The derived CONUS FBCC values in this study may be applicable to estimate 

BBE in other regions. Among the 455 wildfires that used to derive the CONUS FBCC, 

the majority of them occurred in forests, especially the forests in the Western CONUS, 

and the remaining small portion occurred in shrubland and grassland. Thus, the CONUS 

FBCC could be applied to estimate BBE using GOES and MODIS FRE in regions where 

fire activity is similar to that in the Western CONUS. To evaluate this, independent 

studies are needed. As the reported FBCC values are mainly limited to forests in the 



202 

 

CONUS, future work is needed to investigate the FBCC in other ecosystems in different 

fire-prone regions. 

  The derived CONUS FBCC values are affected by uncertainties in combustion 

completeness, fuel loads, and satellite FRE estimates that need to be addressed in future 

work. Although the FBCC based on the burn severity parametrized CC only differ 

slightly from the FBCC derived using a fixed CC, it is likely that CC values summarized 

from limited studies (Table 2-1 in Chapter 2) may not well represent the real CC values 

over the 455 wildfires. This is because wildfire CC is spatially explicit and is very 

difficult to estimate (Veraverbeke & Hook, 2013). Furthermore, although the best 

available fuel data, the FCCS fuel, in the CONUS is used, it is not able to characterize 

fuel dynamics. The challenge of estimating fuel consumption may be mitigated by 

advances in remote sensing technology, i.e., LiDAR. The LiDAR data from the airborne- 

and ground-based platforms have shown large potential in mapping vegetation structure 

and measuring fuel loads (Hudak et al., 2016; Lefsky et al., 2002). In the CONUS, a 

solution of applying LiDAR data to estimate fuel has been proposed by the LANDFIRE 

project (Peterson et al., 2015). In addition, the reported FBCC does show variation with 

FRE estimates from the MODIS and GOES sensors. Because of the improved capability 

of detecting fires, the advanced sensors (i.e., GOES-R series and VIIRS) will provide 

more accurate FRE estimates than the current GOES and MODIS sensors (Csiszar et al., 

2014; Schmit et al., 2017). The potential advantages of VIIRS for improving FRP and 

FRE and thus BBE estimates over MODIS have been demonstrated in the third 

hypothesis (See hypothesis #3). Thus, studies are needed to investigate the FBCC using 

the accuracy-improved FRE. 
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5.2.  Hypothesis #2 

Diurnal FRP cycles can be reconstructed from the polar-orbiting and geostationary 

satellites FRP retrievals to improve emissions estimation. 

5.2.1. Summary of the Methods 

Diurnal FRP cycles were reconstructed by fusing GOES and MODIS FRP 

retrievals, and the reconstructed diurnal FRP cycles were further applied to estimate BBE 

in the CONUS. First, GOES FRP retrievals were calibrated against MODIS FRP to 

mitigate underestimate in GOES FRP. The calibration coefficients were derived for five 

land cover types (including forest, shrubs, savannas, grassland, and cropland) by 

comparing contemporaneous GOES and MODIS FRP over 628 fires across the CONUS. 

Second, the calibrated GOES FRP were fused with MODIS FRP to provide FRP in every 

15min. Third, to predict FRP in the temporal gaps without observations due to sensor 

saturation or clouds obscurations, diurnal FRP climatology was derived for all 45 

ecosystems in the CONUS using calibrated GOES FRP; and it was further applied to fit 

the fused FRP. A reconstructed diurnal FRP cycle consists of the fused and predicted 

FRP. Fourth, the reconstructed diurnal FRP cycles were used to estimate hourly BBE 

(i.e., PM2.5 and CO) at a 0.25°×0.3125° grid cell across the CONUS for the period from 

2011 to 2015. The BBE estimates were evaluated in three ways by comparing with: (1) 

BBE based on Landsat burned area over 60 wildfires, (2) BBE from eight regional and 

global emissions inventories, and (3) BBE simulated by the WRF-Chem model over the 

Rim Fire in California, 2013. These BBE comparisons were used for the indirect 

evaluation of the applicability of the reconstructed diurnal FRP cycles. 
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5.2.2. Results and Conclusions 

Hypothesis #2 was partially confirmed. Diurnal FRP cycles for the CONUS fire 

activity were reconstructed from the FRP estimates that were produced by fusing MODIS 

and GOES (11, 13, & 15) FRP retrievals at a 0.25°×0.3125° grid cell for the period from 

2011 to 2015. The climatologic diurnal FRP cycle varies significantly in shape and 

magnitude among the 45 CONUS ecosystems. The mean annual BBE estimated using the 

reconstructed diurnal FRP cycles is approximately 690 Gg across the CONUS. For 

individual fire events in the Western CONUS, the estimated emissions compared well 

with the estimates based on the Landsat burned area, and with the hourly CO emissions 

that were simulated using the WRF-Chem model. In addition, the seasonal variation of 

the estimated PM2.5 emissions shows good agreement with that of existing emissions 

inventories, and the magnitude values are reasonable compared to existing inventories.  

5.2.3. Implications and Future Work 

The proposed method for reconstruction of diurnal FRP cycles in the CONUS is 

applicable in other regions in low-middle latitudes where geostationary satellite FRP 

retrievals are available. Studies have shown that the diurnal FRP cycle from only 

geostationary satellites leads to underestimation of BBE (Zhang et al., 2012). Thus, 

integrating higher spatial-resolution FRP from the polar-orbiting satellite into diurnal 

FRP cycle potentially improves the estimation of BBE. This method could be applied to 

improve diurnal FRP reconstruction and BBE estimates using FRP retrievals from the 

advanced VIIRS sensor (Csiszar et al., 2014) and geostationary sensors of SEVIRI 

(Wooster et al., 2015) for Africa, Himawari 9 (Xu et al., 2017) for Asia, and latest 
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generation of GOES (i.e., GOES-R series) (Schmidt et al., 2012) for South and North 

Americas.   

 Three main challenges in the estimation of BBE need to be addressed in future 

work. First, it is difficult to determine the consistent burning duration of fires using 

satellite observations for the purpose of reconstruction of diurnal FRP cycles. Based on 

the diurnal and seasonal distributions of GOES fire detections, this study applied the 

same assumptions of burning durations to all fire types (Section 3.2.5.2 in Chapter 3). 

These assumptions may result in moderate uncertainty in FRE and BBE estimates. For 

example, in most cases, GOES has very temporally sparse detections of low-intensity 

fires (e.g., agricultural and prescribed burnings), which may only last from less than an 

hour to a few hours (Baucum et al., 2002). Assumption of a consistent burning period of 

one hour before and after a GOES fire observation in the early afternoon could result in 

overestimate of FRE and BBE. Therefore, integration of the field-based data of burning 

duration will help to deal with this challenge.  

Second, datasets and/or methods for validating BBE are greatly needed. Many 

efforts, including this study, have been put to estimate BBE and develop operational BBE 

products. However, very large discrepancies exist among BBE products. For instance, the 

long-term GFED data estimates annual global carbon emissions of 2.2 Pg (van der Werf 

et al., 2017), approximately 23% annual global carbon emissions from burning fossil 

fuels in 2014 (Boden et al., 2017), whereas the NASA’s QFED products tripled the 

estimates of GFED emissions (Darmenov & Silva, 2015), approximately 60% of the 

fossil-fuel carbon emissions. Both datasets have been widely used as the smoke 

emissions input in chemical transport models (i.e., GEOS-CHEM) (Kim et al., 2015; 
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Eastham & Jacob, 2017). To evaluate the accuracy of BBE, the common practice is to 

simulate AOD using BBE estimates and compare it with the observed AOD. However, 

the models that simulate AOD require many parameters (i.e., weather data), which are 

often oversimplified and thus have large uncertainty (Ichoku & Ellison, 2014; Zhang et 

al., 2014). Therefore, independent validation datasets are greatly needed. Although a few 

satellites, i.e., NASA’s Orbiting Carbon Observatory-2 (OCO-2) and Terra 

Measurements of Pollution In The Troposphere (MOPITT), provide direct measurements 

of Carbon emissions (i.e., CO2 and CO), these emissions retrievals are either only 

sensitive to very large fires (Heymann et al., 2016) or impaired by thick smoke plumes 

(Deeter et al., 2016). Therefore, new special sensors for smoke emissions from fires are 

needed.  

Last but not the least, there is a big gap between the emissions community and the 

application community. The emissions community, for the application purpose, tries to 

estimate BBE as accurately as possible. On the other hand, the application models take 

BBE as input to forecast air quality and assess the impact of smoke aerosols on numerical 

weather prediction (Reid et al., 2009). However, the application community provides 

very limited feedbacks to the emissions community, at least in the published literatures. 

Specific feedbacks are very important for the emissions community to target and fix 

issues in estimation of BBE.  

  

5.3.  Hypothesis #3 

The 750-m VIIRS sensor has better capability of characterizing fires than the 1-km 

MODIS sensor. 
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5.3.1. Summary of the Methods 

FRP retrievals from the 750-m VIIRS and 1-km MODIS sensors were compared 

to investigate the similarities and discrepancies between their capabilities of 

characterizing fire. First, the VIIRS and MODIS level-2 active fire products were 

preprocessed to correct the inter-scan and inter-orbital fire detection duplicates. Then, 

VIIRS and MODIS FRP were compared in four ways using: (1) contemporaneous 

(minimal, mean, maximal, and sum) FRP in different satellite view zenith angles across 

the swath; (2) FRP for 619 contemporaneous fire clusters over global 13 regions of 

savannas, tropical rainforest, boreal forests, broadleaf forest, and croplands; (3) 

contemporaneous FRP at continental scale; (4) FRP at global 1°×1° grid cells and along 

latitude variation using all detections (including contemporaneous and not 

contemporaneous detections). 

5.3.2. Results and Conclusions 

Hypothesis #3 was confirmed partially. The VIIRS sensor is able to detect many 

more small and cool fires than MODIS sensor, as expected theoretically. First, the 

minimal FRP (per pixel) of VIIRS is much less dependent on satellite view angles than 

that of MODIS. Second, for the low-intensity agricultural burnings and savanna grass 

fires, VIIRS FRP is overall larger than MODIS FRP for contemporaneous fire detections 

at continental scale and for all fire detections at a 1°×1° grid cell. For the 

contemporaneously detected individual fire events of different intensities, VIIRS and 

MODIS FRP estimates are generally comparable. However, VIIRS FRP is smaller than 

MODIS FRP in a few regions that were blanked out by thick smoke, i.e., Siberia boreal 

forest and the transition zone from savannas to rainforests in South America. This is 
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mainly due to the overlapping of the VIIRS 4-μm M-band with a significant CO2 

absorption window, which results in the attenuation of VIIRS FRP by the smoke CO2. In 

summary, the VIIRS sensor does perform better than MODIS in characterizing low-

intensity fires, but thick smoke plume affects VIIRS FRP retrievals. 

5.3.3. Implications and Future Work 

 VIIRS 750m active fire data benefits the BBE science community in several 

aspects. First, advanced capability of characterizing fires will significantly improve the 

estimation of BBE. Being able to detect more small and cool fires, VIIRS active fire 

product potentially reduce underestimation of BBE in tropical savanna fires-the largest 

source of global BBE (van der Werf et al., 2010), and agricultural fires in which BBE is 

of large uncertainty due to detection capabilities of current sensors (Giglio et al., 2009; 

Roy et al., 2008). Nevertheless, VIIRS FRP is overall smaller than MODIS FRP for 

nighttime fires that do not burn intensely in most cases due to lower temperature and 

higher humidity compared to daytime burnings. This may be due to the slight difference 

between the fire detection algorithms of the two sensors and is expected to be fixed by a 

future improved algorithm.  

Second, the VIIRS sensor has better coverage of low-latitude areas than MODIS. 

At low latitudes, VIIRS has a full coverage every day (Wolfe et al., 2013), whereas 

MODIS takes two days to cover all areas (Wolfe et al., 1998). The missed fire 

observations in the daily gaps between MODIS swaths at low latitudes obviously affect 

BBE estimates, which has been observed (Wiedinmyer et al., 2011) but is not 

quantitatively known yet. Wang et al. (2018) tried to correct BBE bias caused by MODIS 

swath gaps in a very empirical way based on two-day MODIS fire detections. However, a 
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better way is to apply the contemporaneous VIIRS observations to predict missed 

observations by MODIS, which is very meaningful for correcting the MODIS gap-

induced BBE bias in the past almost two decades.  

Third, the VIIRS active fire data provides a good continuity to MODIS fire 

records. The long-term fire data is essential to understand the role of biomass burning in 

climate change and atmosphere dynamics. However, thick smoke plum affects the VIIRS 

FRP retrievals. Thus, efforts on atmospheric correction of VIIRS FRP are needed to 

mitigate the effect of smoke plumes.  

 

5.4. A brief summary of the three hypotheses 

The three hypotheses tested in this research address the parameters of FBCC and 

FRE in the FRP-based method to improve BBE estimation. First, hypothesis #1 

investigates the FBCC at landscape scale in CONUS wildfires using surface biomass 

consumption based on Landsat burned area and GOES and MODIS FRE estimates. The 

results further confirm the empirical relationship that biomass consumption is a linear 

function of FRE. The derived FBCC has a similar range to the reported FBCC in the 

controlled small fire experiments, although the derived FBCC value in landscape-scale 

wildfires varies with GOES and MODIS FRE and with biomass consumption estimated 

in different parameterizations  

Second, hypothesis #2 attempts to improve accuracy of FRE estimates through 

reconstructing diurnal FRP cycles (or high-spatiotemporal-resolution FRP) by fusing 

MODIS and GOES FRP retrievals. The BBE estimates based on the reconstructed diurnal 
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FRP cycles match well with the Landsat-burned-area-based and the model-simulated 

BBE, as well as BBE from some emissions inventories. This suggests that reconstruction 

of diurnal FRP cycles by fusing polar-orbiting and geostationary satellite FRP retrievals 

is a promising way to improve FRE and BBE estimates.  

Third, hypothesis #3 investigates the potential improvement of VIIRS FRP and 

FRE estimates by examining the similarities and discrepancies between FRP retrievals 

from 1-km MODIS and the follow-on 750-m VIIRS. The results indicate that VIIRS and 

MODIS FRP are generally comparable over most contemporaneously detected fire 

clusters and for contemporaneous fire detections at continental scale as well. However, 

the continental-scale VIIRS FRP is larger than MODIS FRP in Europe and Africa 

dominated by low-intensity agricultural and savanna grass fires. Considering all annual 

fire detections, VIIRS FRP is ~20% larger than MODIS FRP in most fire-prone regions 

except boreal forest areas where VIIRS FRP is generally smaller than MODIS FRP. 

Therefore, FRP from the VIIRS sensor potentially improve FRE and BBE estimates. 

In summary, this research confirms the linear relationship between biomass 

consumption and FRE at landscape scale, provides FBCC values for MODIS and GOES 

FRE, develops a method to simulate high-spatiotemporal-resolution FRP, generates 

hourly BBE emissions (i.e., PM2.5 and CO) at a 0.25°×0.3125° grid across the CONUS 

from 2011 to 2015, and investigates the potential of VIIRS FRP for improving FRE and 

BBE estimates. The developed methods could be used to improve the estimates of 

regional-to-global BBE which could be used as input of air quality forecast models.   
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5.5. Recommendations for Future Research 

This part gives a vision of future research directions on biomass-burning 

emission. Based on the discussions of demanding future work in the above three 

hypotheses (See Sections 5.1.3, 5.2.3, and 5.3.3), I recommend the following three main 

directions for future research work.    

First, observations of the fire and smoke-aerosol dedicated sensors hold large 

potentials to estimate and evaluate of BBE. The new generation of geostationary satellites 

(i.e., Himawari-9 and GOES16) observe fires every 5-10 min with a spatial resolution of 

2 km (Schmit et al., 2017; Xu et al., 2017), which provides very good opportunities to 

understand the diurnal cycle of fire activity. Thus, integration of FRP from these new 

geostationary satellites and the advanced polar-orbiting satellites (i.e., VIIRS) could 

largely improves BBE estimation. Furthermore, the TROPOspheric Monitoring 

Instrument (TROPOMI) on board the Sentinel-5 Precursor satellite launched on 13 

October 2017 provides daily global observations of aerosols and carbon monoxide (CO) 

at a spatial resolution of 7 km (the highest resolution for CO observation to date) 

(Borsdorff et al., 2018), which could be used as a good-quality dataset for evaluating 

BBE estimates at a variety of spatial scales. Besides the TROPOMI instrument, a similar 

sensor is also planned for the Sentinel-5 mission starting from 2021 (Ingmann et al., 

2012). 

 Second, validation of BBE at landscape scales is urgently needed. As discussed 

in Section 5.2.3, very large discrepancies existing between BBE products raise large 

uncertainties in BBE applications (i.e., air quality forecast). This is primarily due to the 

lack of good-quality datasets for validating BBE estimates. The advancements of remote 
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sensing technology make it possible to validate BBE at landscape scale. For example, the 

LiDAR data from the airborne- and ground-based platforms has shown large potential in 

measuring landscape-scale fuel loads (Hudak et al., 2016; Lefsky et al., 2002). Thus, fuel 

consumption can be obtained by measuring pre-fire and post-fire fuel loads using LiDAR 

even for wildfires if field campaigns are well planned during fire season. Integration of 

airborne- and ground-based LiDAR data with high-spatial-resolution burned area based 

on Landsat8 and Sentinel-2A data provides a promising way to validate BBE at 

landscape scales. 

Third, BBE contribution from small fires could be substantial, yet has not been 

well quantitatively understood. Small fires often occurring in agriculture-related regions 

generally burn for short time periods in small-size areas with low intensity, which makes 

satellite sensors difficult to detect (Giglio et al., 2016) and map the burned areas (Giglio 

et al., 2009; Hawbaker et al., 2017; Huang et al., 2018; Roy et al., 2008). Small fires may 

contribute a substantial portion of annual regional and global BBE estimates (McCarty, 

2011; Randerson et al., 2012), and some important areas (e.g., Southeastern United 

States) have not been well targeted (Randerson et al., 2012). Combination of fire 

detections from new sensors, like VIIRS, Landsat-8 OLI, and Sentinel-2 (2A & 2B) for 

instance, may help to detect small fires. For example, the 375-m VIIRS I band has shown 

large potential in detecting agricultural fires (Zhang et al., 2017); yet it still misses a 

significant number of small fires compared to 30-m Landsat-8 fire detections (Schroeder 

et al., 2016) that, however, have a long revisit interval. Besides the new sensors, more 

field campaigns are needed in important areas for understanding emissions from small 
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fires, although limited campaigns have been conducted (Kim Oanh et al., 2011; Liu et al., 

2016).      

 

References 

Baucum, L., R. Rice, and T. Schueneman (2002), An overview of Florida sugarcane, 

Agronomy Department, Florida Cooperative Extension Service, Institute of Food 

and Agricultural Sciences, University of Florida. Publication# SS-AGR-232. 

Boden, T. A., G. Marland, and R. J. Andres (2017), Global, Regional, and National 

Fossil-Fuel CO2 Emissions, edited by O. R. N. L. Carbon Dioxide Information 

Analysis Center, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A., doi: 

https://doi.org/10.3334/CDIAC/00001_V2017. 

Borsdorff, T., J. Aan de Brugh, H. Hu, I. Aben, O. Hasekamp, and J. Landgraf (2018), 

Measuring Carbon Monoxide With TROPOMI: First Results and a Comparison 

With ECMWF‐IFS Analysis Data, Geophysical Research Letters, 45(6), 2826-

2832, doi: https://doi.org/10.1002/2018GL077045. 

Boschetti, L., and D. P. Roy (2009), Strategies for the fusion of satellite fire radiative 

power with burned area data for fire radiative energy derivation, Journal of 

Geophysical Research: Atmospheres, 114(D20), D20302, doi: 

https://doi.org/10.1029/2008JD011645. 

Csiszar, I., W. Schroeder, L. Giglio, E. Ellicott, K. P. Vadrevu, C. O. Justice, and B. 

Wind (2014), Active fires from the Suomi NPP Visible Infrared Imaging 

Radiometer Suite: Product status and first evaluation results, Journal of 



214 

 

Geophysical Research: Atmospheres, 119(2), 2013JD020453, doi: 

https://doi.org/10.1002/2013JD020453. 

Darmenov, A. S., and A. d. Silva (2015), The Quick Fire Emissions Dataset (QFED): 

Documentation of versions 2.1, 2.2 and 2.4Rep. TM–2015–104606, 212 pp, 

NASA. 

Deeter, M. N., S. Martínez-Alonso, L. V. Gatti, M. Gloor, J. B. Miller, L. G. Domingues, 

and C. S. C. Correia (2016), Validation and analysis of MOPITT CO observations 

of the Amazon Basin, Atmos. Meas. Tech., 9(8), 3999-4012, doi: 

https://doi.org/10.5194/amt-9-3999-2016. 

Eastham, S. D., and D. J. Jacob (2017), Limits on the ability of global Eulerian models to 

resolve intercontinental transport of chemical plumes, Atmos. Chem. Phys., 17(4), 

2543-2553, doi: https://doi.org/10.5194/acp-17-2543-2017. 

Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P., 

& Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and 

trace gas and aerosol emissions during laboratory biomass fires. Journal of 

Geophysical Research, 113, DO1301, doi: 

https://doi.org/10.1029/2007JD008679. 

Giglio, L., T. Loboda, D. P. Roy, B. Quayle, and C. O. Justice (2009), An active-fire 

based burned area mapping algorithm for the MODIS sensor, Remote Sensing of 

Environment, 113(2), 408-420, doi: https://doi.org/10.1016/j.rse.2008.10.006. 

Giglio, L., W. Schroeder, and C. O. Justice (2016), The collection 6 MODIS active fire 

detection algorithm and fire products, Remote Sensing of Environment, 178, 31-

41, doi: https://doi.org/10.1016/j.rse.2016.02.054. 



215 

 

Hawbaker, T. J., M. K. Vanderhoof, Y.-J. Beal, J. D. Takacs, G. L. Schmidt, J. T. 

Falgout, B. Williams, N. M. Fairaux, M. K. Caldwell, J. J. Picotte, S. M. Howard, 

S. Stitt, and J. L. Dwyer (2017), Mapping burned areas using dense time-series of 

Landsat data, Remote Sensing of Environment, 198, 504-522, doi: 

https://doi.org/10.1016/j.rse.2017.06.027. 

Heymann, J., M. Reuter, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, S. 

Massart, J. W. Kaiser, and D. Crisp (2017), CO2 emission of Indonesian fires in 

2015 estimated from satellite-derived atmospheric CO2 concentrations, 

Geophysical Research Letters, 44(3), 1537-1544, doi: 

https://doi.org/10.1002/2016GL072042. 

Huang, R., X. Zhang, D. Chan, S. Kondragunta, G. Russell Armistead, and M. T. Odman 

(2018), Burned Area Comparisons Between Prescribed Burning Permits in 

Southeastern United States and Two Satellite‐Derived Products, Journal of 

Geophysical Research: Atmospheres, 123(9), 4746-4757, doi: 

https://doi.org/10.1029/2017JD028217. 

Hudak, A. T., M. B. Dickinson, B. C. Bright, R. L. Kremens, E. L. Loudermilk, J. J. 

O’Brien, B. S. Hornsby, and R. D. Ottmar (2016), Measurements relating fire 

radiative energy density and surface fuel consumption – RxCADRE 2011 and 

2012, International Journal of Wildland Fire, 25(1), 25-37, doi: 

https://doi.org/10.1071/WF14159. 

Ichoku, C., and L. Ellison (2014), Global top-down smoke-aerosol emissions estimation 

using satellite fire radiative power measurements, Atmos. Chem. Phys., 14(13), 

6643-6667, doi: https://doi.org/10.5194/acp-14-6643-2014. 



216 

 

Ingmann, P., B. Veihelmann, J. Langen, D. Lamarre, H. Stark, and G. B. Courrèges-

Lacoste (2012), Requirements for the GMES Atmosphere Service and ESA's 

implementation concept: Sentinels-4/-5 and -5p, Remote Sensing of Environment, 

120, 58-69, doi: https://doi.org/10.1016/j.rse.2012.01.023. 

IPCC (2006). 2006 IPCC guidelines for National Greenhouse Gas Inventories. In H. S. 

Eggleston, et al. (Eds.), Prepared by the National Greenhouse gas Inventories 

Programme (Chap. 2, pp. 1–59). IGES, Japan. 

Kim Oanh, N. T., B. T. Ly, D. Tipayarom, B. R. Manandhar, P. Prapat, C. D. Simpson, 

and L. J. Sally Liu (2011), Characterization of particulate matter emission from 

open burning of rice straw, Atmospheric Environment, 45(2), 493-502, doi: 

https://doi.org/10.1016/j.atmosenv.2010.09.023. 

Kim, P. S., D. J. Jacob, J. A. Fisher, K. Travis, K. Yu, L. Zhu, R. M. Yantosca, M. 

Sulprizio, J. L. Jimenez, and P. Campuzano-Jost (2015), Sources, seasonality, and 

trends of southeast US aerosol: an integrated analysis of surface, aircraft, and 

satellite observations with the GEOS-Chem chemical transport model, 

Atmospheric Chemistry and Physics, 15(18), 10411-10433, doi: 

https://dx.doi.org/10.5194/acp-15-10411-2015. 

Lefsky, M. A., W. B. Cohen, D. J. Harding, G. G. Parker, S. A. Acker, and S. T. Gower 

(2002), Lidar remote sensing of above‐ground biomass in three biomes, Global 

Ecology and Biogeography, 11(5), 393-399, doi: https://doi.org/10.1046/j.1466-

822x.2002.00303.x. 

Liu, X., Y. Zhang, L. G. Huey, R. J. Yokelson, Y. Wang, J. L. Jimenez, P. Campuzano-

Jost, A. J. Beyersdorf, D. R. Blake, Y. Choi, J. M. St. Clair, J. D. Crounse, D. A. 



217 

 

Day, G. S. Diskin, A. Fried, S. R. Hall, T. F. Hanisco, L. E. King, S. Meinardi, T. 

Mikoviny, B. B. Palm, J. Peischl, A. E. Perring, I. B. Pollack, T. B. Ryerson, G. 

Sachse, J. P. Schwarz, I. J. Simpson, D. J. Tanner, K. L. Thornhill, K. Ullmann, 

R. J. Weber, P. O. Wennberg, A. Wisthaler, G. M. Wolfe, and L. D. Ziemba 

(2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of 

trace gases and particles and evolution of ozone, reactive nitrogen, and organic 

aerosol, Journal of Geophysical Research: Atmospheres, 121(12), 2016JD025040, 

doi: https://doi.org/10.1002/2016JD025040. 

McCarty, J. L. (2011), Remote Sensing-Based Estimates of Annual and Seasonal 

Emissions from Crop Residue Burning in the Contiguous United States, Journal 

of the Air & Waste Management Association, 61(1), 22-34, doi: 

https://doi.org/10.3155/1047-3289.61.1.22. 

Peterson, B., K. J. Nelson, C. Seielstad, J. Stoker, W. M. Jolly, and R. Parsons (2015), 

Automated integration of lidar into the LANDFIRE product suite, Remote Sensing 

Letters, 6(3), 247-256, doi: https://doi.org/10.1080/2150704X.2015.1029086. 

Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton (2012), 

Global burned area and biomass burning emissions from small fires, Journal of 

Geophysical Research: Biogeosciences, 117(G4), G04012, doi: 

https://doi.org/10.1029/2012JG002128. 

Reid, J. S., E. J. Hyer, E. M. Prins, D. L. Westphal, Z. Jianglong, W. Jun, S. A. 

Christopher, C. A. Curtis, C. C. Schmidt, D. P. Eleuterio, K. A. Richardson, and J. 

P. Hoffman (2009), Global Monitoring and Forecasting of Biomass-Burning 

Smoke: Description of and Lessons From the Fire Locating and Modeling of 



218 

 

Burning Emissions (FLAMBE) Program, Selected Topics in Applied Earth 

Observations and Remote Sensing, IEEE Journal of, 2(3), 144-162, doi: 

https://doi.org/10.1109/JSTARS.2009.2027443. 

Roy, D. P., L. Boschetti, C. O. Justice, and J. Ju (2008), The collection 5 MODIS burned 

area product — Global evaluation by comparison with the MODIS active fire 

product, Remote Sensing of Environment, 112(9), 3690-3707, doi: 

https://doi.org/10.1016/j.rse.2008.05.013. 

Schmidt, C. C., J. Hoffman, and E. M. Prins (2012), GOES-R Advanced Baseline Imager 

(ABI) Algorithm Theoretical Basis Document For Fire / Hot Spot 

Characterization Version 2.5, edited, pp. 1-97, NOAA NESDIS STAR. 

Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair 

(2017), A Closer Look at the ABI on the GOES-R Series, Bulletin of the 

American Meteorological Society, 98(4), 681-698, doi: 

https://doi.org/10.1175/bams-d-15-00230.1. 

van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. 

C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen (2010), Global fire 

emissions and the contribution of deforestation, savanna, forest, agricultural, and 

peat fires (1997–2009), Atmos. Chem. Phys., 10(23), 11707-11735, doi: 

https://doi.org/10.5194/acp-10-11707-2010. 

van der Werf, G. R., J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. 

Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, 

and P. S. Kasibhatla (2017), Global fire emissions estimates during 1997–2016, 



219 

 

Earth Syst. Sci. Data, 9(2), 697-720, doi: https://doi.org/10.5194/essd-9-697-

2017. 

Veraverbeke, S., and S. J. Hook (2013), Evaluating spectral indices and spectral mixture 

analysis for assessing fire severity, combustion completeness and carbon 

emissions, International Journal of Wildland Fire, 22(5), 707-720, doi: 

https://doi.org/10.1071/WF12168. 

Wang, J., Y. Yue, Y. Wang, C. Ichoku, L. Ellison, and J. Zeng (2018), Mitigating 

Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission 

Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African 

Region, Journal of Geophysical Research: Atmospheres, 123(1), 507-528, doi: 

https://doi.org/10.1002/2017JD026840. 

Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. 

Orlando, and A. J. Soja (2011), The Fire INventory from NCAR (FINN): a high 

resolution global model to estimate the emissions from open burning, Geosci. 

Model Dev., 4(3), 625-641, doi: https://doi.org/10.5194/gmd-4-625-2011. 

Wolfe, R. E., G. Lin, M. Nishihama, K. P. Tewari, J. C. Tilton, and A. R. Isaacman 

(2013), Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and 

characterization, Journal of Geophysical Research: Atmospheres, 118(20), 

2013JD020508, doi: https://doi.org/10.1002/jgrd.50873. 

Wolfe, R. E., D. P. Roy, and E. Vermote (1998), MODIS land data storage, gridding, and 

compositing methodology: Level 2 grid, Geoscience and Remote Sensing, IEEE 

Transactions on, 36(4), 1324-1338, doi: https://doi.org/10.1109/36.701082. 



220 

 

Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of 

biomass combustion rates and totals from fire radiative power observations: FRP 

derivation and calibration relationships between biomass consumption and fire 

radiative energy release. Journal of Geophysical Research, 110, D24311, doi: 

https://doi.org/10.1029/2005JD006318. 

Wooster, M. J., G. Roberts, P. H. Freeborn, W. Xu, Y. Govaerts, R. Beeby, J. He, A. 

Lattanzio, D. Fisher, and R. Mullen (2015), LSA SAF Meteosat FRP products – 

Part 1: Algorithms, product contents, and analysis, Atmos. Chem. Phys., 15(22), 

13217-13239, doi: https://doi.org/10.5194/acp-15-13217-2015. 

Xu, W., M. J. Wooster, T. Kaneko, J. He, T. Zhang, and D. Fisher (2017), Major 

advances in geostationary fire radiative power (FRP) retrieval over Asia and 

Australia stemming from use of Himarawi-8 AHI, Remote Sensing of 

Environment, 193, 138-149, doi: https://doi.org/10.1016/j.rse.2017.02.024. 

Zhang, F., J. Wang, C. Ichoku, E. J. Hyer, Z. Yang, C. Ge, S. Su, X. Zhang, S. 

Kondragunta, and J. W. Kaiser (2014), Sensitivity of mesoscale modeling of 

smoke direct radiative effect to the emission inventory: a case study in northern 

sub-Saharan African region, Environmental Research Letters, 9(7), 075002, doi: 

https:// dx.doi.org/10.1088/1748-9326/9/7/075002. 

Zhang, T., M. J. Wooster, and W. Xu (2017), Approaches for synergistically exploiting 

VIIRS I- and M-Band data in regional active fire detection and FRP assessment: 

A demonstration with respect to agricultural residue burning in Eastern China, 

Remote Sensing of Environment, 198, 407-424, doi: 

https://doi.org/10.1016/j.rse.2017.06.028. 



221 

 

Zhang, X., S. Kondragunta, J. Ram, C. Schmidt, and H.-C. Huang (2012), Near-real-time 

global biomass burning emissions product from geostationary satellite 

constellation, Journal of Geophysical Research-Atmospheres, 117, doi: 

https://doi.org/10.1029/2012jd017459. 


	Biomass Burning in the Conterminous United States: A Comparison and Fusion of Active Fire Observations from Polar-Orbiting and Geostationary Satellites for Emissions Estimation
	Recommended Citation

	ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER 1: Introduction
	1.1. Overview of Biomass Burning in the Conterminous United States
	1.2. Challenges for Estimating Biomass-Burning Emissions
	1.3. Research Aim, Objectives, and Hypotheses
	1.4. Significance of the Research
	1.5. Organization of the Dissertation
	References

	CHAPTER 2: Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals over the Conterminous United States
	Abstract
	2.1. Introduction
	2.2. Methods and Data
	2.2.1. Bottom-Up Estimation of Biomass Consumption
	2.2.1.1. Burned Area and Severity
	2.2.1.2. Fuel Load
	2.2.1.3. Combustion Completeness

	2.2.2. Top-Down Estimation of Biomass Consumption
	2.2.2.1. MODIS FRE Estimation
	2.2.2.2. GOES FRE Estimation

	2.2.3. Processing of Data to Ensure Contemporaneous Observations
	2.2.4. Estimation of the FRE Biomass Combustion Coefficient (FBCC)
	2.2.5. Sensitivity Analysis

	2.3. Results
	2.4. Discussion and Conclusions
	Acknowledgments
	References

	CHAPTER 3: Estimation of Biomass-Burning Emissions by Fusing the Fire Radiative Power Retrievals from Polar-Orbiting and Geostationary Satellites across the Conterminous United States
	Abstract
	3.1. Introduction
	3.2. Methods
	3.2.1. Fire Radiative Power from Polar-Orbiting and Geostationary Satellites
	3.2.2.1. MODIS FRP
	3.2.2.2. GOES FRP

	3.2.2. Adjustment of GOES FRP at Large View Zenith Angles
	3.2.3. Calibration of GOES FRP against MODIS FRP
	3.2.4. Fusion of MODIS FRP with the Calibrated GOES FRP
	3.2.5. Reconstruction of Diurnal FRP Cycles
	3.2.5.1. Establishment of diurnal FRP climatology
	3.2.5.2. Reconstructing diurnal FRP cycles

	3.2.6. Estimation of FRE and Biomass-Burning Emissions
	3.2.7. Evaluations of Biomass-Burning Emissions
	3.2.7.1. Comparison of GOES-MODIS BBE with existing emissions inventories
	3.2.7.2. Comparison of GOES-MODIS BBE with model-simulated BBE


	3.3. Results
	3.3.1. Fusion of GOES FRP with MODIS FRP
	3.3.2. Diurnal FRP Cycles
	3.3.3. Spatial Distribution of the PM2.5 Emissions
	3.3.4. Temporal Variation in the PM2.5 Emissions
	3.3.5. Evaluation of Biomass-Burning Emissions Estimated from GOES-MODIS FRE

	3.4. Discussion
	3.5. Conclusions
	Acknowledgments
	References

	CHAPTER 4: Comparison of Fire Radiative Power Estimates from VIIRS and MODIS Observations
	Abstract
	4.1. Introduction
	4.2. Data
	4.2.1. MODIS Active Fire Data
	4.2.2. VIIRS 750-m Active Fire Data
	4.2.3. Land Cover Data

	4.3. Methods
	4.3.1. Correction of Inter-Scan Duplicate Fire Detections
	4.3.2. Correction of Inter-Orbital Duplicate Fire Detections
	4.3.3. Comparison between MODIS and VIIRS FRP Retrievals

	4.4. Results
	4.4.1. Effect of Duplicate Detections on FRP Estimates
	4.4.2. Dependence of FRP Retrievals on Satellite View Zenith Angle
	4.4.3. Fire Cluster FRP
	4.4.4. Continental-Scale FRP
	4.4.5. Spatial Pattern of Global FRP
	4.4.6. Latitudinal FRP Distributions

	4.5. Discussion
	4.6. Conclusions
	Acknowledgments
	References

	CHAPTER 5: Summary of the Research
	5.1.  Hypothesis #1
	5.1.1. Summary of the Methods
	5.1.2. Results and Conclusions
	5.1.3. Implications and Future Work

	5.2.  Hypothesis #2
	5.2.1. Summary of the Methods
	5.2.2. Results and Conclusions
	5.2.3. Implications and Future Work

	5.3.  Hypothesis #3
	5.3.1. Summary of the Methods
	5.3.2. Results and Conclusions
	5.3.3. Implications and Future Work

	5.4. A brief summary of the three hypotheses
	5.5. Recommendations for Future Research
	References


