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ABSTRACT 

EVALUATING E. COLI PARTICLE ATTACHMENT AND THE IMPACT ON 

TRANSPORT DURING HIGH FLOWS 

LOUIS AMEGBLETOR 

2018 

Fecal indicator bacteria, including E. coli, are the leading cause of water quality 

impairments within assessed waters in the United States. The source of E. coli includes 

WWTP, leaking sewers, animal manure, wildlife, livestock, and stream bed sediment. 

Storm events contribute to bacteria loading within waters through wash-in of land sources 

of bacteria and resuspension of bacteria within sediments. Bacteria introduced into the 

water column are either attached to particles or are unattached (or free-living). The goal of 

this study was to examine the attachment of E. coli to different particle sizes, including 

their impact on contributing to water quality impairments during storm events. A series of 

storm events and baseflow conditions were monitored within an impaired stream (Skunk 

Creek) located in eastern South Dakota. Samples were taken during storm events over a 5-

hour duration via autosampler while baseflow samples were taken via grab sampling. In 

addition, flow and water quality parameters (i.e. turbidity and temperature) were 

monitored, and the bed shear stress was estimated. These variables were used in a 

correlation analysis to determine their relationship with E. coli, including the prediction of 

E. coli within the water column during storm events. Unattached E. coli dominated total E. 

coli concentration across both storm and baseflow events (i.e. at least 75% of total E. coli 

concentrations).  The water quality standard during baseflow conditions was satisfactory 

while storm events consistently exceeded the standard. Total, settleable and free-living E. 
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coli concentrations ranged from 7 × l02 to 22 × l03 CFU 100 mL-1 , 4 × l01 to 66 × l02 CFU 

100 mL-1, and  5× l02 to 15 × l03 CFU 100 mL-1, respectively. The high levels and 

exceedance rate of free-living E. coli mean that sedimentation of the settleable fraction of 

E. coli would not be adequate to reduce bacteria to within the microbiological water quality 

standard. Many instream water quality models assume that the total bacteria concentration 

within the water column can be predicted by modeling bacteria as free-living; this 

assumption was tested by assessing the statistical difference between total and unattached 

bacteria. The findings revealed that free-living E. coli concentrations were equal to total E. 

coli concentrations 5 out of 8 times (63%), meaning that over one third of events would 

not be accurately modelled with only unattached bacteria. Thus, increased understanding 

of attachment and incorporation of bacteria partitioning between attached and unattached 

(free-living) into water quality models could improve model performance and predictive 

capabilities. The correlation analysis revealed a weak (p > 0.05) relationship between flow, 

temperature, turbidity, shear stress and E. coli fractions. Regression models developed to 

predict total E. coli and those attached to different particle fractions during storm events 

performed poorly (R2 = 0.09-0.22). The results presented in this study will further the 

understanding of fate and transport of bacteria within water as well as provide information 

that can be incorporated into the development of microbial water quality models. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Introduction 

 

The major cause of water quality impairments of surface waters within the US is 

fecal indicator bacteria (E. coli, fecal coliform, and enterococci) (USEPA, 2018). Out of 

187,088 miles of streams and rivers found to be impaired by pathogens within the US, E. 

coli alone was found to be responsible for impairment in about 111,827 miles (USEPA, 

ATTAINS (Assessment, Total Maximum Daily Load (TMDL) Tracking and 

Implementation System, 2018). Within the US, bacterial water quality standards, including 

those for recreation, are determined based on the extent of fecal contamination by 

examining the level of total or fecal coliform bacteria, Escherichia coli, or enterococci (US 

EPA 1986). 

The presence of fecal indicator bacteria (FIB) is not limited to the detection of fecal 

contamination, but also includes the detection of other pathogens (Ishii and Sadowsky, 

2008).  Although E. coli originates from the gut of mammals including human beings, the 

bacterium is transported into the environment through the release of fecal matter (Ishii and 

Sadowsky, 2008), where it can survive and persist. Sources of E. coli within the 

environment include livestock, wildlife, leaking sewers, Waste Water Treatment Plant 

(WWTP), animal manure, runoff from agricultural land, and Concentrated Animal Feeding 

Operations (CAFOs) etc. 

E. coli finds its way into surface waters through a number of pathways; including 

the direct deposition of fecal matter into the water column (Collins et al., 2007), wash-in 

of fecal indicator bacteria stores from diffused and land sources by runoff (Davies-Colley 
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et al., 2008a; Stout et al., 2005), WWTP (Baudart et al., 2000; Garcia-Armisen and Servais, 

2007; Haller et al., 2009), leaky septic tanks (Weiskel et al., 1996),  and through the 

resuspension of stores of bacteria within sediment either during natural disturbance of these 

stores (Jamieson et al., 2005b; Stephenson and Rychert, 1982) or artificial disturbance 

(Abia et al., 2017; An et al., 2002; Grimes, 1980; Muirhead et al., 2004a; Stephenson and 

Rychert, 1982).  

Storm events have been implicated in several water quality studies for elevated 

bacteria levels and loading into surface waters (Ballantine and Davies-Colley, 2013; 

Davies-Colley et al., 2008a; Krometis et al., 2007a; McKergow and Davies‐Colley, 2010). 

In addition, increased flow during storm events is linked with the resuspension of bacteria 

from sediment into the water column within streams and rivers. Resuspension of sediment-

borne microorganisms (including pathogens) into the water column could increase the 

health risk when using these waters Apart from wash-in mobilized by runoff from fecal 

pollution from land sources and within catchment, storm events provide additional input 

for bacteria into the water column via resuspension  (McDonald and Kay, 1981).  Once 

bacteria are transported into the water-sediment environment, they  undergo  series of 

processes including settling (sedimentation) into stream bed, die-off, growth, survival, 

attachment, and resuspension. 

The fate and transport of bacteria within the water-sediment interface are affected 

by whether the cells are attached to particles or remain free-living.  Moreover, attachment 

to particles plays a strong role in controlling the transport of FIB in this system as well. 

There have been contradictory reports on the partitioning of bacteria between attached 

(particle-associated) and unattached (free-living) phases within a water column (Jamieson 
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et al., 2004, Wilkinson et al., 1995).  Thus, the incorporation of bacteria attachment into 

water quality models to predict bacteria fate is usually based on assumptions, since this 

phenomenon is poorly understood. 

 

1.2 Goal and objectives  

The overall goal of this study was to further the understanding of the fate and transport of 

E. coli during storm events. The objectives of this study were to:  

I. Measure E. coli concentrations and attachment rates to particle and unattached 

fractions; 

II. Evaluate the relationship between particle size association of E. coli, water quality, 

and hydrological parameters; 

III. Estimate the load contribution by attached and unattached fractions of E. coli; and 

IV. Estimate the transport distance of E. coli by particle size. 

1.3 Hypotheses  

The hypotheses for this study were:  

I. E. coli concentrations associated with various particles will significantly differ 

from each other. 

II. The attached fraction of E. coli will not be significantly different from the total E. 

coli concentration. 

III. E. coli fractions will be significantly correlated with water quality and hydrological 

parameters.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Fecal Indicator Bacteria as a Threat to Water  

2.1.1 Fecal Indicator Bacteria 

Fecal indicator bacteria (FIB) have been studied extensively both in temperate (e.g. 

Pachepsky and Shelton, 2011; Ferguson and Signoretto, 2011) and tropical environments 

(e.g. Rochelle-Newall et al., 2015).  FIB refers to a group of microorganisms that reside in 

the gut of warm-blooded animals and include Escherichia coli, fecal coliforms, and 

Enterococcus spp. These organisms find their way into the environment through fecal 

matter and indicate fecal contamination (Bolster, 2009, Ishii and Sadowsky, 2008; 

Rochelle-Newall et al., 2015). Although other microorganisms (e.g. viruses, protozoa, 

algae, and helminths, intestinal worms) cause water borne disease, more attention is given 

to FIB (Tallon et al., 2005; Chapra, 1997) because these organisms are easier to isolate and 

detect, are usually present in greater numbers than pathogens, and are much safer to work 

with than pathogens (Mubiru et al., 2000; Tate et al., 2000). Thus, FIB is preferred as 

surrogates for the detection of other pathogenic bacteria in environmental samples, such as 

water and soil (Berg, 2001; Elmund et al., 1999, Rochelle-Newall et al., 2015).  

According to Bitton, G. (2005) and Ishii and Sadowsky (2008), an ideal indicator 

bacterium should be one that is found in the gut of warm-blooded animals, be present only 

when there are also pathogens and be absent when there are no pathogens, have similar 

survival patterns to pathogens in the environment, not be able to proliferate in the 

environment, be easily detected and enumerated using cheap methods, and be non-

pathogenic in nature. 
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2.1.2 FIB and waterborne illness 

Epidemiological studies have confirmed a strong relation between presence of fecal 

indicator bacteria and occurrence of highly credible gastrointestinal illness (HCGI) in both 

freshwaters (Stevenson, 1953; Dufour, 1984; Wade et al., 2006) and marine water (Cabelli, 

1983; Cabelli et al., 1979; Colford et al., 2007). A higher risk of “highly credible” 

gastrointestinal infection caused by enterococci and Escherichia coli can occur at densities 

as low as MPN counts of  10 cells per 100 mL within recreational waters (Cabelli et al., 

1982). Cabelli et al. (1982) compared the ratio of swimmer to non-swimmer symptoms and 

concluded that recreation in even lightly contaminated marine waters posed a danger for 

gastroenteritis.  In addition, Haile et al. (1999) conducted an epidemiological study to 

assess the risk posed to a person who swam in marine waters harbouring total and fecal 

coliform, enterococci, and Escherichia coli. A higher risk of disease symptoms, including 

upper respiratory and gastrointestinal illness, was observed for swimmers in waters with a 

high level of one indicator bacterium and a low ratio of total to fecal coliforms.    

In another study by Marion et al. (2010), a strong relationship between FIB and 

illness was found by conducting a comprehensive beach cohort study to examine 

relationships between water quality indicators and associated adverse health outcomes. 

Water use, including wading, playing, or swimming, in waters harbouring FIB resulted in 

a significant risk factor for gastrointestinal (GI) illness, with an adjusted odds ratio (AOR) 

of 3.2. In addition, an elevated Escherichia coli density was found to be significantly 

associated with elevated GI illness risk, where the highest E. coli quartile was associated 

with an AOR of 7.0 (CI 1.5, 32). 
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Studies in the UK also found a relation between health risk and bathing in FIB 

contaminated waters. Beach studies conducted in two different sites produced significant 

results. Swimmers were found to be more susceptible to minor infections and symptoms 

related to gastroenteritis than non-swimmers (Walker, 1992). 

These studies demonstrate that FIB can be used as a surrogate for pathogens when 

examining health risks associated with impaired microbial water quality both in fresh and 

marine waters.  

 

2.1.3 Water Quality Standards 

Recreational and drinking water standards for FIB have been developed due to the 

association of illness with waters contaminated with fecal material. Standards have been 

developed for FIB in waters which are used to determine if a water is qualified to serve its 

designated use. Apart from standards suggested by the USEPA; state, territorial, and 

authorized tribal groups also set their own standards. The United States Environmental 

Protection Agency (USEPA) defines water quality standards as “provisions of state, 

territorial, authorized tribal or federal law approved by EPA that describe the desired 

condition of a waterbody or the level of protection or mandate how the desired condition 

will be expressed or established for such waters in the future”.  

The various designated uses of waterbodies typically described by the USEPA 

include; waters for protection and propagation of fish, shellfish and wildlife, recreation, 

public drinking water supply, and waters for agricultural, industrial, navigational and other 

purposes. Under the Clean Water Act, the EPA is required to develop criteria for ambient 

water quality that fairly convey the scientific knowledge of the effects of pollutants 
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associated with both human health and the environment. States may adopt these criteria or 

use them as a guide in developing their own criteria. Criteria exist for aquatic life, 

biological organism presence, human health, microbial (recreational), and suspended and 

bed sediment.  

Water quality criteria are developed and set by states, territories, and authorized 

tribes to protect the use to which the water body is assigned.  Typically, water quality 

criteria are stated in two forms: (1) a numerical threshold value that should not be exceeded, 

or (2) a narrative describing the desired conditions of a water body to be met before its use.  

The USEPA has developed FIB criteria to protect both recreational waters and drinking 

water sources.  Typically, enterococci and E. coli are used by the USEPA in defining 

Recreational Water Quality Criteria (RWQC). The 2012 RWQC states two numerical 

threshold for bacteria (enterococci and E. coli) namely a geometric mean (GM) and a 

statistical threshold value (STV). In addition, the new criteria are divided into 

“recommendation 1” and “recommendation 2” which represents an estimated illness rate 

of 36 out 1000 persons and 32 out 1000 persons, respectively. Based on recommendation 

1, a geometric mean of 35 CFU 100 mL-1 and 126 CFU 100 mL-1 for enterococci (marine 

and fresh water) and E. coli (fresh waters), respectively should not be exceeded.  

In South Dakota, FIB standards are provided for waters that are designated as 

limited contact recreation, immersion recreation, or domestic water supply. Currently, for 

limited contact recreation, the E. coli concentration should not exceed 1178 CFU 100 mL-

1 in any one sample and 630 CFU100 mL-1  for the 30-day geometric mean (SD DENR, 

2018).  
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2.1.4 Impairment of Water Quality due to FIB 

 

A water body is said to be impaired if it fails to meet the criteria established for its 

designated use. Pathogens are the leading cause of impairments for surface waters in the 

United States based on a nationwide surface water quality summary (US EPA, 2008). A 

national summary of water quality impairment causes from ATTAINS (Assessment TMDL 

Tracking and Implementation System) showed that pathogens alone are responsible for 

impairments in 178,755 miles of streams and rivers (US EPA, 2018). Furthermore, the US 

National Water Quality Inventory Reports to Congress from 2000, 2002, and 2004 also 

reported pathogens as the leading cause of water quality impairments in the assessed rivers 

and streams across the nation (USEPA, 2000; USEPA, 2002; USEPA, 2004).  

 

2.2 Sources of FIB 

The USEPA categorizes pollution into two main groups namely point and non-

point sources. The Clean Water Act defines point sources as “any discernible, confined and 

discrete conveyance, including but not limited to any pipe, ... This term does not include 

agricultural storm water discharges and return flows from irrigated agriculture.” Unlike 

point sources, which are easily traced to a specific or direct source, non-point sources are 

difficult to identify and are sometimes termed as “diffused sources” (USEPA, 2018). 

 

2.2.1 Point Sources 

Numerous studies have reported high concentrations of fecal indicator bacteria 

concentrations at various point source outlets (Table 2.1).  Point sources of FIB include 

storm drains and storm water falls (Brownell et al., 2007; Dickerson Jr et al., 2007; Fujioka, 
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2001; Geldreich et al., 1968; Jiang et al., 2007; Lee et al., 2012; Lewis et al., 2005; Marino 

and Gannon, 1991; Marsalek, 1979; Marsalek et al., 1992; Marsalek and Rochfort, 2004; 

McCorquodale et al., 2004a; McCorquodale et al., 2004b; Petersen et al., 2005; Sercu et 

al., 2011), sewage effluent (Fujioka, 2001; Kay et al., 2008; Petersen et al., 2005), sewage 

(wastewater) treatment plants (Baudart et al., 2000; Garcia-Armisen and Servais, 2007; 

Haller et al., 2009;  Petersen,et. al 2005; Parveen et al., 1997; Sorensen et al., 1989; 

Templar et al., 2016), leaking sewer systems (McLellan et al., 2007; Sercu et al., 2011; 

Weiskel et al., 1996) and industrial and municipal effluents (Geldreich, 1966) 

 Levels of FIB at point source outlets tend to be high, because point source outlets 

are localized (or more concentrated) sources whereas non-point sources are spread out and 

vary spatially at their source. Findings from previous studies reported that FIB levels were 

at least 102 CFU 100 mL-1 regardless of the type of point source (Table. 2.1).  For instance, 

Lewis et al., (2005) found that fecal coliform level within gutters and drains ranged from 

6.9 × 101 to 1.5× 102 CFU 100 mL-1, and 3.1  × 103 to 1 × 106 CFU 100 mL-1 respectively. 

In another study, Hyer, 2007 recorded fecal coliform levels from 7.5 × 105 to 4.1 × 106 

CFU 100 mL-1 in a sewer line. The tendency of the high levels of FIB recorded at various 

point sources could be linked to the reason that FIB within these sources are conveyed 

through conduits and channels which makes them localized.  
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Table 2.1 Examples of FIB concentrations observed across various point sources 

Author Region    Source     FIB Range or Average         Units 

Reeves et al., 2004 Southern California Coastal Outlet Total Coliform 2 × 102 GEOMEAN MPN 100mL-1 

  Coastal Outlet E. coli 2 × 101 GEOMEAN MPN 100mL-1 

  Coastal Outlet Enterococci 3  × 101 GEOMEAN MPN 100mL-1 

  Tidal Channel Total Coliform 19.5  × 103 GEOMEAN MPN 100mL-1 

  Tidal Channel E. coli 2  × 102 GEOMEAN MPN 100mL-1 

  Tidal Channel Enterococcus 3 × 102 GEOMEAN MPN 100mL-1 

Lewis et al., 2005 

Tomales Bay Watershed, 

California Gutter 

Storm Drains 

Fecal Coliform 6.9 × 101 to 1.5× 102 CFU 100mL-1 

  Fecal Coliform 3.1  × 103 to 1 × 106 CFU100mL-1 

Marino and 

Gannon, 1991 Ann Arbor, Michigan Storm Drains Fecal Coliform 1 × 105 CFU100mL-1 

  Storm Drains Fecal streptococci 1 × 105 CFU 100mL-1 

Schillinger and 

Gannon, 1985 Ann Arbor, Michigan Storm Drains Fecal Coliform 2.4 × 105 log CFU 100mL-1 

Schiff and Kinney, 

2001 San Diego, California Storm Drains Enterococcus 1 × 104 MPN 100mL-1 

Stein and 

Tiefenthaler, 2005 Southern California Storm Drains Total Coliform 1 × 106 MPN 100mL-1 

  Storm Drains E. coli < 1 × 102 to 1.4 × 105 MPN 100mL-1 

  Storm Drains Enterococcus 1× 101 to >2.4 × 105 MPN 100mL-1 

  Storm Drains Total coliforms <1× 102  to 2.4 × 105 MPN 100mL-1 

Hyer, 2007 Virginia Sewer line Fecal coliforms 7.5 × 105 to 4.1 × 106 CFU 100mL-1 

Irvine et al., 2011 Western New York 

Storm water 

Outfall E. coli 1.4 × 104 to 2.8 × 104 CFU 100mL-1 

Sauvé et al., 2012 Montréal, Canada 

Storm water 

Outfall Fecal coliforms 2 to 6.1 × 105 CFU 100mL-1 

Ellis and Butler, 

2015 London, UK 

Storm water 

Outfall E. coli 44 x 104 MPN 100 mL-1 
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2.2.2 Non-Point Sources 

 

Non-point sources of water pollution are sources which cannot be traced to a single 

or a direct source. These sources are not concentrated at a point and are therefore referred 

to as diffused sources. Non-point sources of FIB include; surface runoff (Jeng et al., 2005a; 

Lewis et al., 2005), soil leaching (Garcia-Armisen and Servais, 2007),  soil amendment 

(Jiang et al., 2007), foreshore-beach sand (Boehm, 2007; Haack et al., 2003; Kinzelman et 

al., 2004; Wheeler Alm et al., 2003), human bather shedding (Elmir et al., 2007), and 

animal fecal input (Calderon et al., 1991; Field and Samadpour, 2007; Jiang et al., 2007; 

Wright et al., 2009). 

Characterizing non-point sources of FIB is difficult due to high spatial and temporal 

variability of these sources (Bradford et al., 2013).  Non-point sources of FIB are often 

driven by runoff resulting from precipitation. As runoff moves over the land, it mobilizes 

the stores of fecal matter and deposits them into surface waters. Both subsurface drainage 

and leaching of soil also provide a means of transport for non-point sources of FIB. 

The USEPA ranks agriculture as the second most probable source of microbial 

impairments in assessed rivers and streams (USEPA, 2018). Sources of FIB from 

agricultural settings include fecal matter and wastewater generated from CAFOs (Bradford 

and Segal, 2009; Bradford et al., 2008), livestock (grazing or feeding operations), and 

runoff from manure applied field (USEPA, 2018). Unrestricted access to streams by 

livestock has been linked to increase in bacteria levels during water quality studies (Line, 

2003; Miller et al., 2010; Muenz et al., 2006). For instance, Vidon et al. (2008a) observed 

that E. coli concentrations increased within a stream by 36-fold over a 12-month period 

after allowing cattle to access the stream.  
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2.2.2.1.1 Livestock  

Non-human sources of fecal contamination, such as fecal matter from livestock, 

have been identified as a possible source of E. coli (Webster et al., 2004). For instance, 

Valcour et al., (2002) and Michel (1998) found a strong association between the incidence 

of E. coli and cattle density (i.e. total number of cattle per hectare) using a spatial regression 

technique. In another study, Hancock et al. (1998) analysed fecal samples from 12 livestock  

farms and detected the prevalence of Escherichia coli O157 ranging from 1.1 to 6.1% 

among the herds of cattle. Similarly, LeJeune et al., (2004) studied the prevalence of E. 

coli within fecal samples from cattle and reported 13% (636 of 4790) of fecal samples 

having E. coli.  

Unrestricted or direct access of cattle to waterbodies has been linked to fecal 

contamination leading to cases of elevated E. coli concentrations in the water column 

(Byers et al., 2005; Davies‐Colley et al., 2004; Gary et al., 1983). Davies‐Colley et al. 

(2004) studied the impact of a herd of 246 dairy cows accessing a stream. They found that, 

upon crossing the stream, there was a sharp increase in E. coli concentrations that reached 

as high as 50 × 103 CFU 100 mL-1, compared to background concentrations which of  3 × 

102  CFU100 mL-1   . In addition, they found that the herds defecated 50 times more while 

crossing the stream than on the way leading to the stream. In another study, Vidon et al. 

(2008a) investigated the changes in water quality including E. coli levels on a 1005 metres 

long pastoral stream due to access by cattle on the upper 130m of the reach. After a year 

of monitoring water quality, it was found that E. coli levels increased by 36-fold during the 

summer and fall.  Furthermore, Johnson et al. (1978) studied the levels of fecal coliform 
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and fecal streptococci in a stream due to the impact of grazing cattle. After monitoring 

water quality during grazing and non-grazing periods, they found that there was 

approximately a five-fold and two-fold increase in fecal coliform and fecal streptococci, 

respectively, during the grazing period as compared to the non-grazing period.   

In another study, Aitken (2003) assessed the risk associated with livestock intensity 

within a farming catchment and its impact on FIB contamination. Findings revealed that 

FIB in streams within the sub-catchment with high livestock intensity were 4 to 8-fold 

higher compared to those within the sub-catchment which had low livestock intensity.  

These studies have shown that livestock contribute FIB loads directly by defecating 

while wading in the stream, and indirectly by defecating on pastures or cropland that can 

lead to feces being washed off the land during precipitation events. Thus, livestock is a 

potential source of elevated bacteria levels in surface waters. 

 

2.2.2.1.2 Manure  

The negative impact associated with pathogens and FIB within animal manure has 

long been studied (Burkholder et al., 2007; Gerba and Smith, 2005; Mawdsley et al., 1995; 

Pell, 1997). Manure from livestock contains high levels of bacteria including pathogens 

(Crane et al., 1983; Oun et al., 2014).  For instance, Witzel et al. (1966) analysed cattle 

manure and found 3.4 -5 .6 x l 05 MPN g-1, 3.2 -5.6 x l05 MPN g-1
 ,   and 3.5 - 17 x l06 MPN 

g-1 of total coliforms, fecal coliforms, and fecal streptococci, respectively.  Maki and Picard 

(1965) performed a similar analysis on cattle manure and found fecal coliforms and fecal 

streptococci levels as high as 6 x l 05 g-1 and 3.1 x l05 MPN g-1, respectively. 
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Contamination from animal manure occurs through several ways including; 

leaching from land-applied manure, runoff from land applied manure, feedlots and animal 

housing, and manure storage units (Oun et al., 2014).  

Jenkins et al. (2006) studied impact of poultry manure application on the 

microbiological status of runoff from agricultural land. On average, runoff was found to 

contain 5.2, 2.9 and 1.1 log10 MPN 100 mL-1 of total coliforms, E. coli and fecal enterococci 

respectively. Culley and Phillips (1982) studied the bacteria concentrations in runoff from 

cropland receiving liquid dairy manure. Total coliform, fecal coliform, and fecal 

streptococci levels found within the runoff water ranged from 91 × 103 to 214 × 103 MPN 

100 mL-1, 12 × 103 to 19 × 103 MPN 100 mL-1, and 53 × 103 to 72 × 103 MPN 100 mL-1, 

respectively.  In another study, Thurston-Enriquez et al. (2005) assessed the impact of three 

different animal manure; fresh cattle manure, aged cattle and swine slurry manure applied 

on cropland. Results revealed that FIB (Escherichia coli, enterococci, and Clostridium 

perfringens along with coliphage) loads released from the manure upon rainfall ranged 

from 5.52 × 105 to 4.36 × 109, 3.92 × 104 to 4.86 × 108, and 9.63 × 105 to 3.05 × 108 CFU 

for the plot treated with fresh cattle, aged cattle, and swine slurry manure, respectively.  

Bacterial contamination due to from tile drained water from manure applied fields 

has been implicated as a source of FIB contamination (Ball Coelho et al., 2007; Geohring 

et al., 1998; Palmateer et al., 1993). Patni et al. (1984) studied bacteria concentrations 

within tile drainage water from three manured cropped fields over a 4-year period. 

Concentrations of fecal coliforms (FC) and fecal streptococci (FS) found in tile water were 

3–5 orders of magnitude lower than in applied manure. In a similar study, following swine 

manure application on a tile drained field over three-years, Pappas et al. (2008) observed 
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peak fecal coliform (FC), enterococcus (EN), and Escherichia coli (EC) densities in 

subsurface tile water of 9.6 × l02 , 8.2 × l0, 12 × l02 CFU 100 mL-1, respectively. 

Furthermore, elevated FIB concentrations are observed in tile drainage water 

shortly after application to the field, in some cases within an hour of application (Geohring 

et al, 1998). 

 

2.2.2.2 Wildlife and Pets 

Several studies have analyzed and identified fecal matter from wildlife (Allen et 

al., 2011; Guenther et al., 2010; Hancock et al., 1998; Jardine et al., 2012; Literak et al., 

2010; Navarro-Gonzalez et al., 2013; Pesapane et al., 2013) and pets (Geldreich et al., 

1962) to quantify their potential contribution of FIB. For instance, Renter et al. (2001) 

analysed fecal samples from free-ranging deer within south-eastern Nebraska for E. coli 

O157:H7 and found 0.25% of (7 out of 1426) samples tested positive for the presence of 

this strain of E. coli. In another study, Pavlova et al. (1972) found fecal matter from both 

rabbit and rat with fecal streptococci levels of 8.5× l05 MPN g-1 and 3.9 × l 06 MPN g-1, 

respectively. 

Fecal samples from cats and dogs were analysed by Geldreich et al. (1962) to detect 

the presence of bacteria. Fecal matter from cats was found to contain fecal coliform and 

fecal streptococci concentrations as high as 7.9 × l06 MPN g-1 and 2.7 × l 07 MPN g-1, 

respectively.  Similarly, dog feces were also found to contain fecal coliforms (2.3 × l07 

MPN g-1) and fecal streptococci (9.8 × l08 MPN g-1).   

While fecal analyses have estimated the level of some FIB within  fecal matter of 

wildlife and pets, improved indirect methods such as bacteria source tracking have been 
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used to trace sources or origin of FIB contamination in surface waters (Anderson et al., 

2005).  

For instance, Whitlock et al. (2002) studied the sources of fecal pollution within 

Stevenson Creek in Clearwater, Florida and found wild animal feces as the dominant 

source, and lesser amount of pet (dog) feces, using bacteria source tracking. In another 

study, Ahmed et al. (2005) used bacteria source tracking to trace the sources of fecal 

contamination following the detection of E. coli and Enterococcus in a local creek. Based 

on 10 host organism sources studied, dog feces were found to contribute 7% of 

Enterococcus contamination, while duck feces contributed 9% of E. coli contamination. 

Furthermore, Woodruff et al. (2009) performed bacteria source tracking  in Washington’s 

lower Dungeness watershed and Dungeness Bay to determine the sources of fecal coliform 

pollution that impacted  water quality for more than a decade. Out of the 1164 E. coli 

samples tested, wild mammal sources represented about 26% of isolates collected (i.e. 

raccoons, rodents, deer, elk, beaver, otter, rabbit and marine mammals), while domestic 

animals (dog) represented only 4.3%.  

 

2.2.2.3 Sediments 

Sediments are a major source of bacteria to the water column. Sediment reservoirs 

of bacteria are often categorized as non-point sources (US EPA, 2018). Bacteria find their 

way into sediment through; (1) runoff carrying particle-associated bacteria from both 

agricultural (Crowther et al., 2002; Lewis et al., 2005) and urban catchment, (2) through 

direct deposition of fecal matter from livestock and wildlife (Collins and Rutherford, 2004; 

Davies‐Colley et al., 2004) and (3) leaky sewers (McLellan et al., 2007; Sercu et al., 2011), 
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septic tanks systems (Weiskel et al., 1996), and waste water treatment plant (Sorensen et 

al., 1989; Templar et al., 2016 ) Eventually, sources of FIB inputs entering receiving waters 

settle out of the water column and are stored in the bottom sediments where they can 

survive for long periods and can potentially proliferate (Craig et al., 2004; Haller et al., 

2009; Anderson et al., 2005, Lee et al., 2006). Thus, bottom sediments serve as reservoirs 

of FIB within waterbodies (Jamieson et al., 2003; Jeng et al., 2005a; Whitman et al., 2006) 

and as a potential source of fecal bacteria for the overlying water.  

With sediments identified as a potential source for bacteria, some studies have 

quantified these stores. For instance, Muirhead et al. (2004) quantified stores of E. coli 

within sediments by creating three artificial floods on three successive days in the 

Topehaehae stream located in New Zealand. After assuming that each individual flood 

generates a constant proportion of the previous flood E. coli yield, they estimated sediment 

stores of E. coli to be as high as 108 CFU m-2 .   

Bacteria concentrations within sediments are often several folds higher when 

compared to the concentrations within the water column (An et al, 2002; Brinkmeyer et 

al., 2015; Byappanahalli et al., 2003; Byappanahalli et al., 2012; Irvine and Pettibone, 

1993; LaBelle et al., 1980; Matson et al., 1978; Pachepsky and Shelton, 2011; Van Donsel 

and Geldreich, 1971, Pandey and Soupir, 2013). For instance, Crabill et al. (1999) observed 

that FC levels within sediments of a creek were, on average, 2200 times greater than that 

of the water column. Liao et al. (2014) also found that the monthly geometric mean of 

sediment E. coli concentrations was 40 to 350 times that of the water column. In another 

study, Buckley et al. (1998) reported that total coliform concentrations in sediments were 

approximately 1000 times higher than that of the water column. 
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These reservoirs of bacteria are a concern because bacteria within the sediments 

can be mobilized into the water column through resuspension during storm events (e.g. 

Weiskel et al., 1996), increased flow during dam or reservoir discharge (e.g. McDonald et 

al., 1982), recreational activities (An et. al 2002), the passing of livestock within a stream 

(e.g. Sherer et al., 1988), and passage of boats (An et al., 2002).  The resuspension of 

bacteria into the water column from sediment is linked to the deterioration of water quality 

(Crabill et al., 1999; McDonald et al., 1982).  

Sediment stores of bacteria recorded by researchers have been found to vary largely 

between locations. For instance, previous studies have observed E. coli levels as low as 1 

MPN GDW-1 and as high as 108 MPN GDW-1 within sediment of surface water (Table 

2.2). 
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Table 2.2 Examples of FIB concentrations observed within sediments of various surface waters 

Author Region Medium FIB Range or average Units  
Haller et al., 2009 Geneva, Switzerland  River, sediment E. coli  10 to 107  CFU GWW-1 

 

 

 Enterococcus 10 to 107  CFU GWW-1 

Desmarais et al., 2002 Florida, Fort 

Lauderdale 

River Sediment  E. coli 14× 103 MPN GDW-1 

  
River Sediment  Enterococcus 11× 103 MPN GDW-1 

Irvine and Pettibone, 1993 New York, Buffalo 

River 

River sediment Fecal coliform  102-104 GEOMEAN MPN GDW-1 

  
River sediment  Fecal 

streptococci 

101-102 GEOMEAN MPN GDW-1 

 Lee et al., 2006 

Santa Monica, 

California Bay Sediment E. coli 104–108  MPN100 GDW-1 

Garzio-Hadzick et al., 2010 Beltsville, Maryland Stream sediment E. coli 101 to 103 MPN GDW-1 

He et al., 2007 
San Diego, 

California Creek sediment Fecal Coliform 15 × 102 MPN GDW-1 

 

 

 Enterococcus 36 × 102 MPN GDW-1 

 

 

 Total Coliform 85× 103 MPNGDW-1 

Stephenson and Rychert, 

1982 

Boise, Idaho 

River sediment E. coli 6× 102 to 45× 102 MPN GWW-1 

Liao et al., 2014 Blacksburg, Virginia Creek sediment E. coli  33× 102 to 95× 103 CFU GDW-1 

 

 

 Enterococcus 3 × 102 to 59× 102 CFU GDW-1 

Byappanahalli et al., 2003 

Dunes Creek,  

Michigan Creek sediment E. coli 1 to 1× 102 MPN GDW-1 

 

Warren Dunes, 

Michigan Creek sediment E. coli  68 to 102 MPN GDW-1 

Donovan et al., 2008 Newark, New Jersey River Sediment  Fecal coliform 33× 102  CFU GWW-1 

 

 

 Enterococcus 9 × 101  CFU GWW-1 

Evanson &Ambrose, 2006 

Southern California Wetland 

Sediment Total Coliform 12× 102  GEOMEAN MPN 5GDW-1 

   E. coli 20× 102 GEOMEAN MPN 5GDW-1 

   Enterococcus 70× 102 GEOMEAN MPN 5GDW-1 
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GWW = gram wet weight,  GDW =gram dry weight.    
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2.3 Survival of FIB within sediment  

 

Bacteria are able to survive within sediments for days (Gerba and Mcleod, 1976; 

Goyal and Adams, 1984, Anderson et al., 2005; Craig et al., 2004), weeks (Haller et al., 

2009; Jamieson, 2005), or longer (Garzio-Hadzick et al., 2010), which is often longer than 

survival times in the water column. For instance, Czajkowska et al. (2005) found that E.coli 

survived up to 32 days within water, while survival within sediment exceeded 90 days. 

Garzio-Hadzick et al. (2010) supported these findings with a microcosm study which 

revealed E. coli within overlaying water survived up to 30 days, but up to 120 days in 

sediment.  

The survival of FIB is dependent on several factors including physio-chemical 

(abiotic) (e.g. temperature, sunlight, dissolved oxygen, pH, humidity, and salinity) and 

biological (biotic) factors (e.g. the presence of other competing organisms and predators, 

presence of biofilm (Byappanahalli et al., 2012; Ishii and Sadowsky, 2008). In addition, 

the ability of FIB to access and compete for available or limited nutrients and organic 

matter within their environment also affects how long they survive in both favourable and 

unfavourable conditions.  

 

2.3.1 Texture influence on the growth and survival of bacteria in sediment 

Particles size within the sediment has been linked to FIB survival (Garzio-Hadzick 

et al., 2010, Decamp and Warren, 2000; Grimes, 1980; Howell et al., 1996; Sherer et al., 

1992).  Burton et al. (1987) conducted a laboratory microcosm study to determine the 

survival rate of E. coli in different sediment textures varying from high clay content (75%) 

to high sand content (98%).  Results revealed that E. coli survived longer in sediments 
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containing at least 25% clay, with a strong positive correlation (rs = 0.80) between bacteria 

and the survival times in sediments with at least 25% clay content. On the other hand, 

sediment with high sand content showed high die-off of bacteria and short survival periods.   

Garzio-Hadzick et al. (2010) found similar results when they studied the survival 

of E. coli in loamy sand and sandy clay loam-textured sediments (based on USDA texture 

class). Sediments with high fine particle content were found to have higher bacterial 

survival rates (i.e. slower inactivation) compared to others. The authors linked this 

phenomenon to the significantly higher organic carbon content (5.14%) observed in 

sediments with a greater amount of fine particle size when compared to the organic carbon 

content in other sediments (1.35% and 1.78%). In addition to differences in organic carbon 

content, fine–textured sediments can offer bacteria protection from microbial predators (M 

Davies and J Bavor, 2000) allowing for longer survival periods.  

 

2.3.2 Organic Matter Content and Other Nutrient 

The presence of organic matter in the right quantity may also enhance the survival 

of FIB. Survival rates of FIB within sediments were found to improve with increasing 

nutrient and organic carbon availability (Gerba and McLeod, 1976; LaLiberte and Grimes, 

1982; Blumenroth and Wagner-Dobler, 1998; Craig et al., 2004). 

For instance, Lee et al. (2006) performed a microcosm study on sediments in the 

presence and absence of natural organic matter, to determine the importance of organic 

matter on the survival of FIB in the overlaying water. Concentrations of bacteria were 

examined over one day in both experiments. E. coli in sediments with organic matter 

reached as high as 1.5×105 MPN 100 g-1 wet sediment, while sediment without organic 
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matter content fell below detection limit (64 MPN 100 g-1 wet sediment), indicating 

extended survival and persistence of FIB are dependent, at least in part, on sediment 

organic matter content.  

Craig et al. (2004) performed similar a study, but solely on sediment with organic 

carbon content from three different sites under three temperature ranges of 10, 20, and 

30°C. Overall, E. coli in two of the sediments with higher organic carbon content (i.e. 

0.35% and 2.38%) experienced significantly higher survival with decay rates ranging from 

1.15 to 7.69 days and 1.72 to 7.14 days, respectively. On the other hand, sediment with less 

organic carbon content (0.05%) had decay rates ranging from 0.90 to 3.13 days, 

demonstrating shorter survival periods. 

 

2.3.3 Temperature 

The impact of temperature on the die-off of FIB within sediment appears to be more 

pronounced as compared to other environments (Pachepsky and Shelton, 2011). E. coli 

survival rates have been found to be inversely proportional to sediment temperature (Craig 

et al., 2004, Faust et al., 1975). Craig et al. (2004) determined that at 10°C, E. coli was 

likely to survive for more than 28 days, but the survival time dropped to 7 days when 

temperatures reached 30°C. Similarly, Garzio-Hadzick et al. (2010) studied the survival of 

E. coli in sediment mixed with dairy manure under three temperatures (4, 14, and 24°C). 

For the three different sediments samples studied, E. coli inactivation at 4°C was the 

slowest, ranging from 0.0169 to 0.0233 per day, followed by 0.0754 to 0.138 per day, and 

0.110 to 0.346 per day for temperatures of 14 and 24°C, respectively.  
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Furthermore, in attempts to mimic surival of bacteria within sediments, soil is 

sometimes used as a medium to replace sediment. For instance, Sjogren (1994) tested the 

survival of E. coli in sandy-loam podzol soils (‘Webb’ soil and ‘Rich’ soil) taken from two 

different locations. Microcosm experiments were carried out on the soils at temperatures 

of 5, 10, 20, and 37 °C. Survival time was highest under 5 °C for both soil types, with an 

estimate of 23.3 months within the ‘Webb’ soil, and 20.7 months within the ‘Rich’ soil.  

 

2.4 Transport of FIB 

2.4.1 Transport in Runoff 

FIB can survive for long periods of time in the environment and can be mobilized 

from their sources into surface waters, thus contributing to water quality impairments.  

Generally, storm events are associated with inputs of FIB into overlying water, through (1) 

runoff carrying particle-attached and unattached bacteria from within catchment (also 

known as wash-in of bacteria from overland flow), and (2) through the resuspension of 

bacteria from sediment reservoirs due to the bed shear stress exerted by flow (Jamieson, 

et. al 2005).  

Runoff contributes significantly to water quality deterioration within receiving 

waters, sometimes days after the occurrence of a storm event (Jeng et al., 2005a). Several 

studies have quantified concentrations of FIB associated with runoff from catchments 

(Reeves et al., 2004, Kim et al., 2005). For instance, the work of Reeves et al. (2004) 

estimated that, annually, over 99% of fecal indicator bacteria (Escherichia coli) loading 

was contributed by runoff from a highly urbanized watershed in Talbert California into 

surface waters nearby.  Jeng et al. (2005a) studied wet weather runoff entering the Lake 
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Pontchartrain estuary in New Orleans. Runoff samples were found to harbour as high as 

50 × 103, 14 × 103,  and 24 ×103 MPN 100 mL-1 of fecal coliform, Escherichia coli, and 

enterococci, respectively. Levels of indicator organisms were elevated within both the 

water column and the sediment. In addition, they estimated that it would take 3 to 7 days 

for levels of bacteria within the water column to return to background concentrations after 

the impact of runoff. Similarly, Kistemann et al. (2002) reported an increase in 

concentrations of indicator organisms (E. coli, coliforms, fecal streptococci, C. 

perfringens) within the overlying water in three different tributaries in Germany following 

runoff from storm events.  

 

2.4.2 Transport via Resuspension 

The entry of bacteria into the water column is not limited to inputs from runoff from 

within a catchment or direct inputs of fecal matter from livestock and wildlife. Bacteria 

attached to particles and free-living bacteria also have the potential to enter the water 

column from sediment reservoirs though resuspension (Jamieson et. al, 2005a).  

Resuspension is an important mechanism whereby bacteria within sediment 

reservoirs are mobilized into the water column. When stream bottom sediments are 

disturbed, both attached and unattached bacteria are suspended into the water column. 

Resuspension leads to an increase in water column FIB concentrations and the subsequent 

degradation of water quality. Resuspension has been studied via naturally occurring storm 

events (Fries et al., 2006; Jamieson et al, 2005a; Nagels et al., 2002; Pandey and Soupir, 

2013; Stephenson and Rychert, 1982); mechanical disturbance of sediment (Grimes, 1980; 

Seyfried and Harris, 1990; Stephenson and Rychert, 1982) such as raking of the sediment 
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bed (Abia et al., 2017; Gary and Adams, 1985; Sherer et al., 1988); recreational activities 

(An et al., 2002b); the passage of boats or ships (Pettibone et al., 1996); and artificial flood 

events (Gannon et al., 1983; McDonald et al., 1982; Muirhead et al., 2004; Nagels et al., 

2002). 

Field studies have quantified the contribution of bacteria sediment reservoirs to 

water column bacteria concentrations by estimating resuspension rates. For instance, Cho 

et al. (2010) generated an artificial flood within a first order creek in Maryland and found 

a resuspension rate of about 15 × 103 MPN m-2 s-1  for E. coli. Similarly, Jamieson et al. 

(2005a) estimated resuspension rates for E. coli within Swan Creek in Canada. Unlike Cho 

et al. (2010), resuspension was determined for several storm events. Resuspension of E. 

coli coincided with an increase in total suspended solids and was estimated to be 11 × 103, 

8.2 × 103, and 15 × 103 CFU m -2 s-1 across three storm events.  Finally, the authors 

concluded that resuspension of E. coli was limited to solely the rising limb of the storm 

hydrograph, indicating that a finite supply of the bacteria may be available for resuspension 

during individual storm events. 

Laboratory experiments have also been conducted to estimate resuspension rates 

through flume studies (e.g. Cervantes, 2012). For instance, McDaniel et al. (2013) used a 

recirculating flume to mimic resuspension in a shallow stream. Resuspension was 

estimated for direct fecal deposits at various flow rates over time. Overall, resuspension 

rates ranged from 8.5 × 102 to 2.15 × 105 CFU m -2 s-1. The authors reported that these 

values were in ranges of values determined in previous studies of Cho et al. (2010), and 

Jamieson et al. (2005a). 
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2.4.3 Artificial Floods 

To study the resuspension of FIB during high-flow scenarios, such as storm events 

or flooding, researchers have released large amounts of water into water bodies either 

through reservoir releases (Muirhead et al., 2004; Nagels et al., 2002) or by discharging a 

large quantity of water from water tanks into a stream or river (Cho et al., 2010). These 

artificial floods serve as a suitable means to assess the impact of instream stores of bacteria 

on water quality by eliminating the contributions of fecal bacteria from runoff that occurs 

during natural storm events.  

Results obtained from artificial flood events were found to be similar to that of 

natural storm events (Nagels et al., 2002).  In both events, peak E. coli concentrations 

precede peak flow and had similar order of magnitude increases in E. coli concentrations 

from baseflow levels.  Bacteria concentrations can increase by several folds during 

artificial flood events (Muirhead et al., 2004). For instance, McDonald et al. (1982) found 

that bacteria increased by more than 10-fold in response to increased flow after a series of 

water releases from a reservoir.  

Aside from their use as an alternative for studying the dynamics of bacteria during 

high flow conditions such as natural flooding, results from artificial flood experiments have 

been used to validate results from modelling the release and transport of attached and 

unattached bacteria (E. coli) within streams (Bai and Lung, 2005; Cho et al., 2010). For 

instance, the work of Wilkinson et al. (1995) used data from artificial flooding experiments 

conducted within three river sites in England to create a conceptual model of the 

entrainment (resuspension) of particle-attached fecal coliform bacteria from stream bed 

sediment. Similarly, Bai and Lung (2005) used results from artificial flood experiments 
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conducted by Muirhead et al. (2004) to test the resuspension of sediment-associated fecal 

bacteria (E. coli) under flood conditions by using the framework of the Environmental 

Fluid Dynamics Code (EFDC) model. Results showed that the model was capable of 

individually simulating contributions of particle-attached fecal bacteria from either the 

sediment bed or watershed individually.  

 

2.4.4 Shear stress 

Flow within a channel that is parallel to the streambed exerts bed shear stress on 

sediment particulates and the reservoir of bacteria. When shear stress is high enough to 

initiate the movement of particles into the water column, resuspension of bacteria (both 

sediment-attached and unattached) occurs. Shear stress beyond which resuspension will 

occur is known as “critical shear stress”.  High flow during storm events results in increased 

bed shear stress which causes the resuspension of both sediment and bacteria. For instance, 

Jamieson et al. (2005a) reported shear stress ranging from 1.5 to 1.7 Nm-2 was linked with 

the resuspension of sediment-attached bacteria on the rising limb of the storm hydrograph.  

The authors reported that these shear stress values were similar to critical shear stress 

values for cohesive sediments. 

The critical shear stress that triggers the resuspension of sediment-associated 

bacteria varies from one reach to another based on bed material properties, such as texture. 

Cho et al. (2010) estimated critical shear stress at different reaches of the Beaver Dam 

Creek tributary, with sediment particle fractions that ranged from predominantly sandy to 

a high fraction of silt and clay. Shear stress as high as 3.4 N m-2   was associated with the 

reach having high sand content, while the other two reaches had sediment containing 
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mainly silt and clay which was associated with a shear stress of 18.7 and 6.2 N m-2, 

respectively.      



2.4.4.1 Impact of sediment resuspension on the water column 

As described previously, the resuspension of bacteria from sediment can occur 

either naturally (e.g. during storm events) or through manmade activities such as 

recreational activities and crossing of streams by livestock. An increase in water column 

FIB concentrations of several fold has been observed following the resuspension of 

sediment bacteria in both field (Cho et al., 2010; Jamieson et al., 2005a; McDonald et al., 

1982; Abia et al., 2017a; Muirhead et al., 2004) and laboratory experiments (McDaniel et 

al., 2013; Abia et al., 2017).  

To study the impact of microbial resuspension from sediments on water column E. 

coli concentrations, Abia et al. (2017) examined increases in flow via flume experiments, 

as well as simulated disturbances (e.g. mechanical agitation through stirring) of sediment 

in both a flume and within the natural environment (Apies River, South Africa). Results 

revealed increases in E. coli concentrations within the water column of 3.6 to 35.8, 2.4 to 

17.4, and 6.5 to 7.9 times higher than the initial concentration following mechanical 

sediment disturbance in flume, increased flow, and mechanical disturbance (raking and 

cattle crossing) within the river bed, respectively.  McDonald et al. (1982) performed an 

artificial flood experiment by releasing water into the Washburn River in England 

following several rainless days and observed 10-fold increases in water column 

Escherichia coli and total coliform concentrations resulting from resuspension. Similarly, 

both Muirhead et al. (2004) and Nagels et al. (2002) carried out artificial flood experiments 
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within streams in New Zealand to study the effect of instream stores of bacteria on water 

column bacteria concentrations in the absence of wash-in of bacteria from the catchment. 

Results from both studies reported an increase in E. coli concentrations in the water column 

by two or more orders of magnitude from background levels, due to the resuspension of 

sediment bacteria. These studies demonstrate that resuspension of sediment bacteria stores 

is a major contributor to the degradation of water quality within surface waters.  

 

2.5 Bacterial attachment  

2.5.1 Attachment in the environment 

Bacteria exist in one of two states, either attached to particles or unattached 

(planktonic bacteria). The attached fraction of bacteria refers to the ratio of particle-

associated bacteria to the total bacteria concentration usually expressed in a range of 0 to 

1. It is important to know the attached fraction of bacteria because these fractions will more 

easily settle out of the water column into sediments (Pachepsky and Shelton, 2011). In 

addition, Jeng et al. (2005b) and Schillinger and Gannon (1985) noted that the settling of 

particle-associated bacteria is linked to an increase in bacteria concentrations within 

sediments. On the other hand, the unattached bacteria fraction tends to remain in the water 

column for longer periods. Knowing the fraction of bacteria attached to settleable particles 

is important in determining the impact of microbial removal through sedimentation 

(Characklis et al., 2005). 

Researchers have largely reported unattached bacteria as the dominant fraction, 

though the attached fraction is not negligible. However, some studies have found that less 

than half (20 to 35%, and 16 to 47%) of the total FIB concentration is attached to particles 
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(Characklis et al., 2005; Schillinger and Gannon, 1985). Attachment influences the 

transport of bacteria from land sources through runoff into receiving waters. Soupir et al. 

(2010) reported that about 28 to 49% of E. coli and enterococci were attached to 

particulates in runoff. Jeng et al. (2005b) examined attachment of indicator organisms 

within urban storm water runoff associated with estuarine sediments, and found that 19.6%, 

22%, and 9.32% of fecal coliform, E. coli, and enterococci were associated with suspended 

particles, respectively. In addition, Schillinger and Gannon (1985) found the attachment 

rate of fecal coliform to suspended particles ranged between 15.9 to 16.8%.  On the other 

hand, Mote et al. (2012) reported particle attachment of enterococci in estuarine water 

samples as low as 1% and as high as 95%, indicating that under certain circumstances, the 

dominant proportion of FIB can be attached.  

Attachment of bacteria to particles has been reported to vary between storm and 

baseflow. Characklis et al. (2005) studied the attachment of various indicator bacteria to 

settleable particles in storm and baseflow water samples from three locations in and around 

Chapel Hill, North Carolina. The attachment of bacteria to settleable particles differed 

between the baseflow and storm water samples, with 30–55% of indicator organisms 

attached to settleable particles in storm water, while baseflow samples reported 20–35% 

attachment. Similarly, Fries et al. (2006) studied attachment of bacteria during both 

baseflow and storm events. About 37% of bacteria were found to be associated with 

particles in storm water samples, while nearly 50% of particle-associated bacteria were 

found in baseflow samples.  

Attachment rates and partitioning behaviours vary between species of bacteria. For 

instance, Characklis et al. (2005) found that Clostridium perfringens spores exhibited a 
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high proportion of attachment to settleable particles (50–70%) in storm water compared to 

fecal indicator organisms (fecal coliforms, Escherichia coli, enterococci) which had 

attachment rates of 20–35%.  Similarly, Krometis et al. (2007) studied attachment of 

indicator bacteria (fecal coliforms, Escherichia coli, and enterococci), Clostridium 

perfringens spores, and total coliphage to denser settleable particles in storm water samples 

over three storm events.  On average, attachment was highest for Clostridium perfringens 

spores (65%), followed by fecal indicator bacteria (40%) and then total coliphage (13%). 

Furthermore, Jeng et al. (2005b) studied attachment among three indicator organisms, fecal 

coliform, enterococci, and E. coli, and found that enterococci preferentially attached to the 

suspended particles with a diameter range of 10 µm to 30 µm, while fecal coliform and E. 

coli displayed a broader particle diameter range when attaching to particles. 

These studies demonstrate that FIB are partitioned between the attached and 

unattached phase.  

 

2.5.2 Factors affecting attachment 

The partitioning behaviour and attachment of bacteria to particles is affected by a 

range of factors including biological, physical, and chemical factors of the environment in 

which they persist. FIB have been found to be disproportionally associated with certain 

particle sizes. Walters et al. (2013) determined the association of E. coli and enterococci to 

a range of particle sizes (≤ 12, 12-63, 63-1000, > 1000 μm) found in municipal wastewater. 

The majority of E. coli (90.6 %) and enterococci (83.0%) attachment was found in particles 

≤ 12µm in diameter, followed by particle size ranges of 12-63, 63-1000, and > 1000 μm. 

Similarly, Guber et al. (2007) studied the attachment of fecal coliforms to various sand 
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particles sizes (0.0625–0.125, 0.125–0.25, and 0.25–0.5mm), silt particles (0.002 to 0.05 

mm), and clay particles (<0.002 mm) both in the presence and absence of bovine manure. 

The results revealed that in the absence of manure, bacterial attachment was higher in the 

silt and clay fractions as compared to sand particles that had little or no organic coating. 

On the other hand, the presence of manure decreased bacteria attachment in silt, clay, and 

coated sand significantly; however, attachment to sand without coating did not decrease. 

Furthermore, the work of Soupir et al. (2010) studied the attachment of bacteria (E. coli 

and enterococci) to various particle size ranges (> 500 μm, 63-499 μm, and 8-62 μm) in 

runoff samples collected from soil boxes treated with cowpat. At least 60% of all attached 

E. coli and enterococci were associated with particles in the8 to 62-µm particle size range. 

Both biological and chemical factors have been shown to affect bacteria 

attachment, including presence of biofilms (Rochelle-Newall et al., 2015), changes in ionic 

strength of the medium (Otto et al., 1999; Zita and Hermansson, 1994), physio-chemical 

strength of the substrate surface available for attachment (Regina et al., 2014), and presence 

and concentration of total suspended solids (TSSs) (Byamukama et al., 2005). Guber et al. 

(2005) used batch experiments to study the effect of the presence of manure on the 

attachment of E. coli to soil particles and confirmed that increasing manure content of the 

soil decreased the attachment of bacteria. In further studies, Guber et al. (2007) again found 

that the presence of bovine manure decreased the attachment of fecal coliforms (FC) to 

soils, including clay and silt fractions, and coated sand fraction. 

While individual factors are important to understanding the preferential attachment 

of FIB to various particles, the interaction of these physical, chemical, and biological 

factors may result in higher variability in attachment among FIB.  



34 

 

 

 

2.5.3 Methods of measuring attachment 

Partitioning between bacteria attached to various particles size ranges and 

unattached bacteria can be studied using simple methods (e.g. Soupir et al., 2010) or by a 

multi-step method that utilizes both chemical and physical means (Soupir et al., 2008) to 

partition between attached and unattached bacteria (Figure 2.1)  

 

 

Figure 2.1 :  Flow chart depicting the separation technique on attached and 

unattached bacteria 

Source: (Soupir et al., 2008) 

 

Common techniques used to separate unattached and attached bacteria include 

filtration, fractional filtration, settling (sedimentation) (Oliver et al., 2007), and 

centrifugation (Characklis et al., 2005; Cizek et al., 2008; Fries et al., 2006; Garcia-

Armisen and Servais, 2009; Krometis et al., 2007; Soupir et al., 2010; Walters et al., 2013). 

In some cases, a combination of techniques is used. 
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Filtration has been used widely due to its simplicity (Henry, 2004; Mahler et al., 

2000; Qualls et al., 1983). The drawback of this technique is that it cannot be used to 

partition bacteria into various particle size groups. In order to separate bacteria attached to 

particles, the sample (i.e. total bacteria concentration) is passed through an 8 μm filter to 

extract the particle-associated bacteria. The filtrate is processed and enumerated as the 

unattached bacteria, while the unfiltered sample is processed and enumerated as the total 

bacteria concentration (i.e. both attached and unattached bacteria).  The difference between 

the total and the unattached fraction is the attached fraction. 

Fractional filtration, also known as sequential filtration, is another technique used 

in determining attachment (Auer and Niehaus, 1993; Jeng et al., 2005b; Schillinger and 

Gannon, 1985; Soupir et al., 2010). Unlike filtration, this method is used to determine 

association of bacteria to various particle size ranges. Compared to simple filtration, 

fractional filtration is lengthier. For this technique, the sample is run through multiple 

filters in series, and the cells of bacteria trapped on the filter are assumed to be associated 

with particles of that size.  

Another technique used in estimating attachment is settling (Kunkel et al. 2013, 

Oliver et. al, 2007). This technique takes advantage of Stoke’s law. By calculating the 

settling velocity of a particle’s size to which bacteria attach to, the time for the particle to 

settle out of the water column is then estimated. After thoroughly mixing sample in a 

graduated cylinder and allowing for the settling time for a particle to elapse, a portion of 

the sample is collected using a pipette, making sure that the sample is taken above the 

settling distance. The attachment of bacteria to each particle size is determined by 
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calculating  the difference between the concentrations determined before and after the 

settling time for each particle size. 

The fourth technique for estimating attachment that is widely used is centrifugation 

(Characklis et al., 2005; Cizek et al., 2008; Fries et al., 2006; Guber et al., 2005; Krometis 

et al., 2007; Muirhead et al., 2005; Sayler et al., 1975; Schillinger and Gannon, 1985). 

Following centrifugation of samples at a specific revolution per minutes (rpm), the 

supernatant is processed and enumerated to determine the unattached bacteria. To find the 

fraction of attached bacteria, the difference between the total concentration and unattached 

fraction is determined. Henry (2004) stated that one flaw of centrifugation may result 

through the inclusion of clay attached bacteria in the category of unattached bacteria due 

to similarity in size of both clay-attached and unattached bacteria. It is, therefore, necessary 

to determine appropriate centrifuge settings to separate attached bacteria from unattached 

bacteria using this technique.  

Pachepsky and Shelton (2011) hypothesized that; differences in estimates of 

bacteria attached to suspended particles observed in different studies is likely to result from 

the method used in analysing these attachment rates 

 

2.5.4 Incorporating attachment of bacteria into water quality models 

The attachment of bacteria to particles influences their transport and persistence 

within the environment.  According to Russo et al. (2011), the modelling of suspended 

bacteria transport is performed using two methods. One is modelling all bacteria as 

unattached or free-living cells, while the other partitions them between unattached and 

sediment-associated bacteria.  



37 

 

 

Although the attachment of fecal bacteria to suspended particles in the water 

column has significant implications on the fate and transport of bacteria in water bodies 

(Pachepsky and Shelton, 2011), most models developed to predict microbiological water 

quality assume bacteria are solely unattached or free-living cells (Jamieson et al., 2004; 

Wilkinson et al., 1995). Thus, the inclusion of particle-associated bacteria (attachment) will 

likely lead to the improvement of these models.  

Few studies have attempted modelling transport of bacteria by incorporating the 

attached fractions. The work of Bai and Lung (2005) successfully modelled the transport 

of sediment-associated bacteria by incorporating sediment process within the 

Environmental Fluid Dynamics Code (EFDC) model. The fraction of particle-associated 

bacteria in the water column was modelled using Kp, the partition coefficient (L mg-1); and 

m, the sediment concentration in the water column (L mg-1); while particle-associated 

bacteria within the sediment were modelled using 𝛽𝐵, the bulk density of the sediment (mg 

L-1); Ɛ, the porosity of the sediment; and Kp.  

Similarly, several SWAT (Soil and Water Assessment Tool) studies incorporated 

partitioning of bacteria between attached and unattached (or free-living) while predicting 

in-stream bacteria level (Kim et. al 2010, Kim et. al 2017). For instance, Kim et al. (2010) 

made modification to the bacteria transport within the original SWAT 2005 to simulate E. 

coli within three reaches of Little Cove Creek watershed in southern Pennsylvania. They 

included a model to simulate transport of sediment-attached bacteria similar to that used 

by Bai and Lung (2005) in grouping water column bacteria as either attached to particles 

or free living. Overall, in comparing the modified SWAT model that incorporated 

attachment to the original model, the modified model performed better at the three sites 
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with NSE (Nash-Sutcliff model efficiency) of -0.2, -0.7, and 0.2 versus -64.9, -112.2, and 

-94.3 respectively for the original model with no modification. A successful model was 

created to inform swimming advisories based on bacteria concentrations for Lake 

Pontchartrain following storm water. A constant bacterial attachment rate of 0.09 was 

assumed and used for bacteria associated with suspended solids (McCorquodale et al., 

2004b). 

Attachment rates used in modelling differ based on study location. For instance, 

Steets and Holden (2003) simulated the fate of runoff associated with FC through a coastal 

lagoon in California using a mass balance-based, mechanistic model. The authors assumed 

the attachment of bacteria to suspended sediments to be 0.90. Similarly, Pandey and Soupir 

(2013) modelled the impact of sediment E. coli on the resuspension and transport of water 

column E. coli. The authors assumed the attachment rate for E. coli as 80-90% of the total 

E. coli in the water column based on Hipsey et al. (2008). Overall, in comparing the 

predicted E. coli with observed E. coli data, the model performed well and reported a skill 

of 0.78, NSE coefficient of 0.55 and an R2 of 0.85. 

While incorporating the attachment of bacteria to suspended particles yields better 

simulation results, most studies make assumptions of these attachment rates rather than 

using measured attachment rates from the studied system.  
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2.6 Best management practices for the reduction of bacteria and their impact on 

water quality 

Collins et al. (2010) stated that pathways of bacteria transmission occur directly or 

indirectly. They defined direct pathways as “those by which fecal matter is deposited 

directly into waterways or are so close in proximity to waters such that potential for wash-

in is very high”; on the other hand, indirect pathways were defined as “those which involve 

transport of fresh or aged fecal matter via surface runoff and subsurface seepage or 

drainage” 

Management practices designed to improve water quality work in two ways. One 

is to reduce the delivery of the loads of bacteria into receiving water sources using 

engineered systems that intercept, capture, and treat bacteria-contaminated water from 

indirect pathways prior to releasing into receiving waters (e.g. Craggs et al., 2004a; Craggs 

et al., 2004b), or, secondly, by eliminating or reducing the access of direct pathways to 

water sources (e.g. Parkyn, 2004; Sunohara et al., 2016). Examples of management 

practices that are designed to improve microbiological water quality include vegetative 

treatment systems (e.g. vegetative treatment areas, constructed wetlands), riparian area 

management, and permanent fencing to exclude the direct access of livestock to waterways. 

Vegetative treatment systems (VTS), or vegetative treatment areas (VTA), have 

been used extensively as an easily adopted and inexpensive means of improving water 

quality. The USDA-NRCS (2006) defines VTS as “plant-based treatment systems 

(typically perennial grass or forage crops) intended to reduce environmental risk associated 

with runoff and other process waters from an open lot livestock system. These systems 

perform treatment functions including solids settling, soil infiltration, and filtering (soil 
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biological and chemical treatment), thus, the term treatment is used as opposed to filter”. 

Harmel et al. (2018) evaluated the efficiencies of VTAs in reducing bacteria within runoff 

from a small-scale swine operation in three counties in central Texas over a 4-year period. 

Overall, the runoff data showed that VTAs significantly reduced E. coli loads with 

treatment efficiencies ranging from 73 to 94%. Wetlands are another form of vegetative 

system adopted to improve the quality of runoff water entering receiving waters by 

reducing pollutant loads, including bacteria. The processes behind the removal of bacteria 

in constructed wetlands includes filtration, solar irradiation, sedimentation, aggregation, 

oxidation, antibiosis, predation, and competition from other microorganisms (Gersberg et 

al., 1987). Davies and Bavor (2000) demonstrated the reduction of bacteria levels in storm 

water that was routed through a wetland. Over a 6-month period of comparing bacteria 

removal performance of a constructed wetland and a water pollution control pond, they 

found that bacteria removal in the wetland was significantly higher (p < 0.05) and more 

effective than that observed in the water pollution control pond. 

Aside from the use of plant-based systems to treat bacteria-laden water, techniques 

such as restricting livestock access to streams using fences and bridges for cattle crossings 

offer suitable alternatives in reducing the impact of direct microbial pathways. Assessing 

the impact of the installation of livestock exclusion fencing on stream water quality was 

performed by Line (2003). Microbiological analysis over the 5-year period after fencing 

exclusion showed 65.9% and 57.0%, reduction in fecal coliform and enterococci levels, 

respectively. The bacteria levels were significantly reduced, indicating that livestock 

exclusion through fencing was effective at reducing bacteria levels in the stream and 

improving water quality at large. A similar study was conducted by Muenz et al. (2006) to 
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assess stream health for two buffered (fenced from cattle access) and three unbuffered 

(unfenced streams; cattle have access to streams) streams in an agricultural catchment. 

Overall, both average fecal coliform (410 CFU 100 mL-1) and fecal streptococci (1239 

CFU 100mL-1) counts for the three unbuffered streams were higher compared to the 

average fecal coliform (197 CFU 100 mL-1 ) and fecal streptococci (927 CFU 100 mL-1) of 

the two buffered streams, indicating the water quality benefits of stream fencing. 

Furthermore, Doran and Linn (1979) found that fecal coliform levels were 5 to 10 times 

more in runoff collected from an unfenced pasture compared to a fenced pasture within 

eastern Nebraska during a three-year study. 

Parkyn (2004) reviewed the effectiveness of riparian buffer zones and noted that 

adopting both fencing and riparian area management using riparian buffer strips largely 

reduces microbial contamination to pastoral streams. The buffer strips reduce the impact 

and the magnitude of surface runoff, thus providing some time for infiltration and at the 

same time trapping fecal matter and particle-attached bacteria. For instance, Wilcock et al. 

(2009) observed a reduction in median annual Escherichia coli concentrations at a rate of 

116 MPN 100 mL-1 per year within a pastoral stream in the Waiokura catchment in New 

Zealand after reducing diary effluent discharges and adopting riparian management 

involving permanent livestock exclusion from stream banks and riparian buffers to mitigate 

runoff from pasture. 

Studies have shown that tile drains serve as a conduit for transport of pollutants 

including microbial exports into surface waters (e.g. Joy et al., 1998; Lapen et al., 2008; 

Pappas et al., 2008), thus controlling the drainage provides a means of mitigating negative 

impacts of tile drainage on water quality. Controlling drainage in tiles within an agricultural 
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catchment has been used as a management practice to reduce loading fecal indicator 

bacteria such as E. coli and enterococci into surface waters at a watershed scale (Sunohara 

et al., 2016).  Water quality targets were met during the study period spanning from 2005 

to 2013, representing nine growing seasons with 76% and 25% reduction of E. coli and 

enterococci in drainage water. Recent studies by Wilkes et al. (2014) have also 

demonstrated the effectiveness of controlled tile drainage in improving water quality. The 

study monitored the microbiological status within two agricultural watersheds, one with 

controlled tile drainage (CTD) and the other with uncontrolled tile drainage (UCTD) over 

a 7-year period. Significantly lower (at p=0.06 level) waterborne pathogen (bacterial and 

viral pathogens) and, coliphage loading were observed in stream discharge from the 

watershed with CTD compared to the watershed with UCTD systems. Furthermore, Frey 

et al. (2015) found that CTD systems employed on macro porous field plots significantly 

reduced loads of fecal indicator bacteria and Campylobacter spp. in tile drainage water that 

may reach surface waters as compared to UCTD. 

 

2.7 Bacteria attachment (partitioning) :Gaps in knowledge and future work 

The attachment of bacteria within the environment affects the fate and transport of 

the bacteria. Several studies used various techniques to estimate the partitioning of bacteria 

between attached and unattached including filtration (and or fractional filtration), 

centrifugation (Characklis et al., 2005; Cizek et al., 2008; Fries et al., 2006; Henry, 2004; 

Jeng et al., 2005; Krometis et al., 2007; Sayler et al., 1975; Schillinger and Gannon, 1985; 

Soupir et al., 2010; Soupir et al., 2008), and settling (sedimentation) (Kunkel et al., 2013). 

However, there still exist contradictory report on fraction of bacteria that exist as attached 
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or unattached. For instance, a couple of studies reported less than 50% of total bacterial 

concentration as attached (Characklis et al., 2005; Cizek et al., 2008; Fries et al., 2006; 

Krometis et al., 2007; Soupir et al., 2010) while others reported more than 50% of 

attachment (Characklis et al., 2005; Krometis et al., 2007). Furthermore, Pachepsky and 

Shelton, (2011) hypothesized that the discrepancy in estimates of partitioned bacteria 

across various studies could be due to the technique used. Currently no study has been done 

to compare results from various techniques used in estimating partitioning of bacteria. 

Thus, analyzing the significance difference in results across different techniques could 

offer some ideas about how some of these discrepancies can be corrected. 

While the partitioning  of bacteria is receiving growing attention, the representation 

of this phenomenon in water quality models to predict in-stream bacteria is still very poor. 

Most models till date assume attachment instead of estimating in situ attachment which 

could be a fair representation of natural condition within the studied system. It is therefore 

laudable that future should compare results between using assumed and estimated (or in-

situ) attachment coefficient.  

Furthermore, attachment rate among various particle size could also be 

incorporated into mechanistic and watershed scale models since current efforts only 

attempts partitioning mainly between attached and unattached fraction. Involving 

attachment as a distributed parameter among various particle size rather than as a lumped 

parameter-i.e. as attached and unattached could offer water quality managers to target a 

more specific bacteria load contributed by  bacteria attached to a particular size. 
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Abstract: Storm events contribute to the deterioration of microbiological water quality 

status within receiving surface waters. The transport and fate of bacteria within the 

sediment and water column is affected by environmental factors including the partitioning 

of bacteria between free-living and particle associated bacteria. The goal of the study was 

to improve the understanding of the fate and transport of E. coli partitioned between 

attached and unattached (or free-living) phase during high flow regime. Baseflow 

conditions and a series of storm events were monitored for E. coli alongside water quality 

and hydrologic parameters. Satisfactory water quality was observed during baseflow, but  

storm events lead to poor water quality due to elevated E. coli concentrations that resulted 

in high exceedance rates. A significant fraction of E. coli within the water column during 

both storm events and baseflow conditions were free-living or associated with very fine 

particles (  70% of total E. coli). The high concentrations of free-living bacteria (5× l02 – 

15 × l03 CFU 100mL-1) indicate that sedimentation of the settleable fraction of E. coli 

would not be adequate to reduce bacteria to within the microbiological water quality 

standards. Many water quality models assume bacteria are unattached; to test this 
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assumption, a Mann Whitney U-test test was performed to determine if there is a significant 

difference between unattached and total E. coli during storm events. This revealed that the 

free-living E. coli concentration was significantly different than the total E. coli 

concentration in three out of the eight storm events evaluated (38%). Water quality and 

hydrologic parameters, including turbidity, temperature, flow, and bed shear stress, showed 

a weak (p > 0.05) relationship with E. coli. A regression model was developed to estimate 

the concentration and, therefore, risk of E. coli in Skunk Creek; however, this model failed 

to adequately predict storm event E. coli (R2 = 0.09-0.22) even when partitioned between 

the different particle fractions. The findings of this study demonstrate the importance of 

partitioning between particle associated and free-living bacteria when predicting bacteria 

concentrations in the water column as well as the need for determining site-specific 

attachment rates to determine appropriate management practices for bacteria reduction. 

 

 

3.1 Introduction  

Fecal indicator bacteria (FIB), including E. coli, are used to detect the presence of 

other microorganism including pathogens, (Ishii and Sadowsky, 2008) and are recognized 

as major contributors to water quality impairments in both marine and freshwater across 

the United States (US EPA, 2011). In addition, the presence of these bacteria has been 

associated with public health risks and the occurrence of water-borne diseases (Cabelli et 

al., 1979; Cabelli et al., 1982; Dufour, 1984; Prüss, 1998; Wade et al., 2006; Wade et al., 

2003).  For example, Cabelli et al. (1982) found that a higher risk of “highly credible” 

gastrointestinal infection was associated with enterococcus and Escherichia coli 

concentrations as low as 10 MPN 100 mL-1 within recreational waters.  
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FIB can be transported into receiving waters through several pathways, including 

direct fecal deposits from livestock, wildlife, and pets; runoff; and point sources, such as 

septic tanks and wastewater treatment plants. The proximity of land sources including 

pasture land, and  homes with pets, etc.) of fecal matter impacts their susceptibility to be 

mobilized and transported into receiving waters (Collins et al., 2010). 

Upon entering surface waters, bacteria eventually settle out of the overlying water 

into the sediment bed where they can survive and grow (Carrillo et al., 1985; Davies et al., 

1995; Hendricks, 1971; Jamieson et. al, 2005a; Sherer et al., 1992). Streambed sediments 

can act as a reservoir for FIB (Byappanahalli et al., 2003; Gary and Adams, 1985; Gerba 

and Mcleod, 1976; Obiri-Danso and Jones, 2000; Shiaris et al., 1987) which can be 

transported into the water column through resuspension (Jamieson et al., 2005a; McDonald 

et al., 1982; Nagels et al., 2002; Sherer et al., 1988). Storm events are one way through 

which these reservoirs of bacteria can be mobilized and are linked to significant increases 

in E. coli concentrations within the water column due to resuspension (Fries et al., 2006; 

Jamieson et. al , 2005a; Krometis et al., 2007b; McKergow and Davies-Colley, 2010; 

Nagels et al., 2002).  For example, Jamieson et al. (2005a) seeded sediment with a tracer 

bacterium within a creek and recovered these bacteria within the water column over several 

storm events due to resuspension. 

The contributions of bacteria that occur during storm events lead to the 

deterioration of microbiological water quality. Not only do storm events resuspend FIB 

into the water column, they also contribute FIB to surface waters through runoff (Jeng et 

al., 2005a; Reeves et al., 2004). This phenomenon occurs when land sources (e.g. manure 

applied fields, feedlots, CAFOs)  of FIB are mobilized via the impact of runoff (or wash-
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in). For instance, McKergow and Davies-Colley (2009) and Davies-Colley et al. (2008) 

estimated that about 98% and 95% of annual bacteria loading occurred within storm event, 

respectively.  

Bacteria in the sediment environment or water column exist either attached to 

particles or remain free-living, which affects thier fate and transport in the environment. 

For instance, within the water column particle-attached bacteria are less mobile and settle 

out faster (Fries et al., 2006). Similarly, the particle sizes to which E. coli attaches will 

influence how far they are transported downstream. On the other hand, free-living or 

unattached E. coli are buoyant and remain in the water column longer, and are carried 

farther distances downstream.  

Although past studies have looked at E. coli concentrations during storm events, 

there is limited information on the attachment rates during high flow and the size of 

particles E. coli is typically attached to when transported in the water column. 

Understanding attachment rates of E. coli during storm events will provide vital 

information that can be incorporated into water quality models used to predict bacteria 

concentrations in surface waters. In addition, selecting and designing best management 

practices (BMPs) to reduce E. coli will benefit from the expanded knowledge of bacteria 

transport dynamics. 

The goal of this study is to understand the attachment of E. coli to various particle 

sizes affecting its fate and transport. The objectives of this work include: (a) to evaluate E. 

coli concentrations and their attachment rates, (b) evaluate the relationship between both 

attached and unattached E. coli concentrations and water quality parameters, (c) evaluate 

the impact of attached and unattached E. coli concentrations on water quality status, and 
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(d) develop a regression model to predict E. coli partitioned between the different particle 

fractions. 

 

3.2 Materials and Methods  

 

3.2.1 Study site  

The study was conducted on Skunk Creek, a tributary to the Big Sioux River located 

in southeastern South Dakota. The Skunk Creek watershed extends across Moody, Lake, 

and Minnehaha Counties and drains an area of approximately 1613 km2 (SD DENR, 2004) 

(Figure 3.1).  The land use in the watershed is predominantly agricultural with row crop 

production dominating the landscape (64%), followed by hay and pasture (17%), and 

grassland (6%) (NLCD 2011). About 6.5% of the watershed comprise of urban developed 

area (Rajib et al., 2016).  

Skunk Creek contributes a significant proportion of the flow to the Big Sioux River, 

at times making up nearly the entire flow. Thus, water quality issues within Skunk Creek 

greatly impact the water quality in the Big Sioux River. The designated use of Skunk Creek 

includes warm water marginal fish life propagation, limited contact recreation, fish and 

wildlife propagation, recreation, stock watering, and irrigation (SD DENR, 2004). Major 

causes of water quality impairment within Skunk Creek watershed include E. coli, fecal 

coliforms, and Total Suspended Solids (TSS) (US EPA, 2018). According to the US EPA 

Water Quality Assessment Report for 2016, limited contact recreation was not supported 

within the Skunk Creek due to high concentrations of E. coli. The primary source of the 

bacteria in the watershed is believed to be livestock, although human, pet, and wildlife 

sources also contribute a portion of the total load (SD DENR, 2008) .  To reduce E. coli 

concentrations within the creek, riparian area management and seasonal riparian area 
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management practices have been implemented; however, E. coli persists at high levels, 

often above the standard. 

 

 

Figure 3.1 The Skunk Creek Watershed is located within the Big Sioux Watershed 

in eastern South Dakota. 
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3.2.2 Sample collection and processing 

 

Both storm event samples and dry weather (baseflow) samples were collected for 

E. coli analysis. During the study period, discrete water samples were collected for eight 

individual storm events using a Teledyne 6712 ISCO refrigerated auto sampler (ISCO Inc., 

Lincoln, NE USA). Before each storm event, the autosampler was packed with one-liter 

bottles, which were sterilized through autoclaving. The sampler collected water samples 

every 30 minutes over a five-hour period. Turbidity and temperature were also monitored 

using an ISCO turbidity meter and temperature sensor respectively. Dry weather samples 

were collected by grab sampling using sterilized polypropylene bottles.  

Both storm and grab samples were transported on ice to South Dakota State 

University-Water Research Laboratory for microbiological analysis of E. coli 

concentrations and attachment rates. Attachment was assessed by particle size ranges using 

sedimentation in graduated cylinders by employing Stokes’s Law. Samples were plated 

within 24 hours on Modified mTEC agar (USEPA, 2002)  using  standard membrane 

filtration.  Briefly, samples were filtered through 0.45µm filters and placed into a water 

bath for 2 ± 0.5 hours at 35°C ± 0.5°C.  The plates were then placed in the incubator for 22 

± 2 hours at 44.5°C ± 0.2°C. Samples were plated in triplicate and colony counts were 

averaged. 

 

3.2.3 Analysing E. coli attachment using Stoke’s law 

Each sample bottle was inverted several times (more than twice) to thoroughly mix 

any settled particles, thereby ensuring that the sample was homogenized prior to 

sedimentation. Immediately after inverting the samples, they were poured into 500 mL 
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graduated cylinders and a sub-sample was immediately collected for enumeration of total 

E. coli concentration.  

The E. coli was partitioned into three particle size ranges according to the American 

Geophysical Union (AGU) Sediment Classification System Ranges were medium and 

coarse silt (0.016 mm ≤ d ≤ 0.062 mm), fine and very fine silt particles (0.004 ≤ d ≤ 0.016 

mm), and clay and unattached bacteria (d < 0.004 mm). Clay-sized particles were grouped 

with unattached bacteria because the diameter of E. coli (1-2.5 μm) (Holt et al., 1994) is 

similar to the size of clay particles (0.24 to 4 μm). 

The settling velocities (Equation 1) for each particle size range were used to 

calculate the sampling times for each size fraction at a depth of 9 cm from the surface of 

water samples in the graduated cylinders. The settling velocities were computed using 

Stoke’s Law: 

𝑉𝑆 =  
𝑔

18
(

𝜌𝑠 − 𝜌𝑤 

𝜇
) 𝑑2           (1) 

where 𝑣𝑠 is the settling velocity, 𝜌𝑠 is the particle density (estimated at 2.65 gcm-3), 𝜌𝑤 is 

the density of water (1g cm -3), 𝜇 is the dynamic viscosity of water (g cm-1 sec-1) , and 𝑑 is 

the particle diameter (cm). The minimum diameter for each particle size range was used in 

calculating settling velocities. A similar method was employed by Liu et al., (2011).  

After each particle size range settled out of the column, a portion of the sample was 

collected with a pipette and plated using standard membrane filtration as described above. 
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3.2.4 Data Used and Estimation of Storm Event Variables 

3.2.4.1.1 Rainfall Data 

Precipitation data were obtained from the South Dakota Mesonet for the study 

period (Summer 2016 to Summer 2017). The weather station at Colton, Minnehaha 

County, South Dakota (N43.7687, W96.8897) was used to calculate storm precipitation 

amount and intensity. 

3.2.4.1.2 Shear Stress 

Bed shear stress is the stress exerted by the flow of water parallel to the streambed 

within stream channel. The stress exerted on the sediment reservoir of bacteria causes 

resuspension of bacteria into water the column. Bed shear stress was computed using 

Equation (2) according to Jamieson et. al (2005): 

𝜏𝑏 = 𝑦𝑆
1

4  (
𝑛

𝐴
)

3

2
𝑄

3

2                                  (2) 

 

where  𝜏𝑏 is the bed shear stress (Nm-2), y is the specific weight of water (Nm-3), S is the 

slope (m m-1), n is Manning’s roughness coefficient, A is the cross-sectional area of flow 

(m2), and Q is flow (m3s-1). Manning’s roughness coefficient was estimated as 0.045 based 

on channel characteristics (i.e. winding, with some pools, weeds and stones) (Ward and 

Trimble, 2003). The estimated slope of channel bed was 0.0006 m m-1 according to USGS 

StreamStats Web Application Version 4.0 (Ries III et al., 2008).  
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3.2.4.1.3 Bacteria load and Equivalent Background Period Loading 

The baseflow E. coli load represents the average of the estimate of loads of bacteria 

within the water column during dry weather periods. Baseflow load (BL) was computed as 

follows (Equation 3): 

𝐵𝐿 = 𝑄𝐵 𝐶𝐵 ∆𝑡                            (3) 

where, QB is average baseflow for study period (m3 s-1), CB is average baseflow E. coli 

concentration (CFU 100 mL-1); ∆𝑡 = period of storm event sampling (s), and BL is base 

flow loads for the same duration of the storm event being monitored (CFU).  

Baseflow was separated from total stream flow for the study period using the Web-

based Hydrograph Analysis Tool (WHAT) (Lim et al., 2005). WHAT has been used in 

previous studies in separating baseflow from total stream flow (Ahiablame et al., 2017; 

Zhang et al., 2013). The baseflow separated was used to estimate E. coli load during the 

baseflow period. 

To estimate the bacteria load for each storm event (i.e. the event load, EL), the 

bacteria concentrations for samples collected at each time interval, were multiplied by the 

corresponding flow and time, and the result was summed over for each storm event 

monitoring duration (Equation 4): 

EL =104 ∑ 𝑄𝑖 
𝑁
𝑖=1 𝐶𝑖  ∆𝑡                              (4) 

where Ci is the ith discrete bacteria concentration (CFU 100 mL-1); Qi is the ith discrete 

discharge (m3 s-1); N is the total number of discrete concentrations measured for a storm 

event and; Δt is the time interval of each measurement (s). 
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Equations 3 and 4 were combined to estimate the equivalent background period (EBP) 

(Equation. 5). The EBP represents the length of time required for baseflow to yield the 

same load as a storm event (Krometis et al., 2007b). A similar technique was used by Liao 

(2015) and Krometis (2007) in estimating EBP for enterococcus and E. coli: 

 

𝐸𝐵𝑃 = 𝐸𝐿/𝐷𝐿                             (5) 

 

3.2.4.1.4 Event Mean Concentrations 

The event mean concentrations (EMC) are the flow weighted concentrations of E. 

coli present within discrete water samples over the monitoring duration for each storm 

event. EMC for each storm event was calculated to compare E. coli concentrations from 

individual storm events (Equation 6): 

𝐸𝑀𝐶 =  
∑ 𝐶𝑖  𝑄𝑖

𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

                         (6) 

3.2.4.1.5  Estimating transport distance of E. coli by particle size. 

 

Estimate of how far E. coli associated with various particle sizes was estimated by 

combining Stokes’s law, stream flow, and width of stream (Equation 7): 

𝐷𝑇 =
𝑄

𝑉𝑠𝑊
                            (7) 

where Q is stream flow (m3 s-1); Vs  is particle settling velocity (m s-1); and W is stream 

width (m) 

3.2.5 Statistical Analysis 

All statistical analyses were performed using SAS 9.1 SAS Institute Inc., The SAS 

system for Windows Release 9.1, Cary, N.C., 2001. 
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The significance differences (p ≤ 0.05) between the mean bacteria concentrations 

attached to the various particle size ranges, including medium and coarse silt (MC), fine 

and very fine silt (FVF), and clay and unattached (CU), were determined using ANOVA 

for each storm event. Prior to the ANOVA test, the homogeneity of variance (HOV) was 

tested using the Levene Test, Bartlett’s Test, and the Brown-Forsythe Test to determine if 

the variances of the various E .coli fractions were equal. Groups of means whose variance 

were not equal was tested using Welch’s ANOVA. Tukey’s Honest Significant Difference 

(HSD) was used as a post hoc test to group the mean bacteria concentrations of the three 

factions across each storm event.  

The significant difference between the unattached and total bacteria concentrations was 

tested using the Mann-Whitney U test- a non-parametric test since bacteria concentrations 

data were not normally distributed. 

A non-parametric correlation analysis using a two‐tailed Spearman’s Rank was 

used to analyze relationships between bacteria concentrations associated with various 

particle fractions (MC, FVF and CU), as well as the total bacteria concentration with 

water quality parameters and hydrological parameters. The bacteria concentration was 

tested for normality using both graphical method (Q-Q plots) and numerical methods 

(Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling test). 

Spearman’s correlation was used because the data were not normally distributed.   

A correlation analysis was also performed to determine the relationship between 

the amount of rainfall recorded for each storm event and the E. coli EMC. 

A multiple linear regression model was developed for each bacteria fraction to 

predict E. coli concentrations during storm events using measured water quality parameters 
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(turbidity and temperature) and hydrological parameters (flow and shear stress). Both 

independent variables and dependent variables were log10 transformed, to reduce 

skewness and improve normality of data sets. Prior to the regression analysis, 

multicollinearity between the independent variables was assessed by calculating Variance 

Inflation Factors (VIF) (Ott and Longnecker, 2001) to ensure that the developed models 

did not include redundant variables. The regression equations developed for estimating E. 

coli concentrations were of the form: 

 

log(𝐸. 𝑐𝑜𝑙𝑖𝐶𝑜𝑛𝑐) = 𝑙𝑜𝑔𝛽0  +  𝛽1 log( 𝑋1)    +  𝛽2 log( 𝑋2)   + ⋯  𝛽𝑛 log( 𝑋𝑛)       
                        

where  𝐸. 𝑐𝑜𝑙𝑖𝐶𝑜𝑛𝑐 is the E. coli concentration (CFU 100 mL-1); β0 is the regression 

constant; β1,  β2…... βn are regression coefficients; and  X1, X2, …. Xn are the predictor 

variables. Since the equations were developed with log10 transformed variables, the final 

equations are expressed as: 

 

                           𝐸. 𝑐𝑜𝑙𝑖𝐶𝑜𝑛𝑐 = 𝛽0𝑋1
𝛽1𝑋2

𝛽2 … … … .  𝑋𝑛
𝛽𝑛             

 

 

3.3 Results and Discussion 

3.3.1 Statistics of storm events and baseflow E. coli fractions 

The mean concentrations of E. coli associated with the particle fractions varied across the 

storm events. The highest concentration was associated with the clay and unattached 

fractions hereafter referred to as unattached, E. coli (9.3 to 92.8  102 CFU 100 mL-1) 

followed by the medium and coarse silt fraction (0.8 to 17.9  102 CFU 100 mL-1) and then 

fine and very fine silt fraction (0.8 to 8.6  102 CFU 100 mL-1) (Table 3.1). The clay and 

unattached bacteria are hereafter referred to as unattached bacteria. 
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To further explore intra-storm trends, the mean E. coli concentration associated 

with each particle was tested for significant differences. Generally, across each storm, there 

was a significant difference between at least two groups of E. coli fraction (ANOVA, 

p<0.05, Table 3.1). However, the Tukey HSD multiple comparison test (Table 3.1) 

revealed no significant difference between the mean E. coli concentration associated with 

the medium and coarse silt and the fine and very fine silt. On the other hand, the unattached 

E. coli fraction was consistently significantly greater than both the medium silt and very 

fine silt fractions across all the storm events. 

Although clay attached E. coli was grouped with unattached E. coli in this study, 

previous studies reported that bacteria have high affinity for attachment to finer and 

cohesive particles, such as clay (Auer and Niehaus, 1993; Gannon et al., 1983). For 

instance, Gannon et al. (1983) studied the association of fecal coliforms to various particle 

sizes, including clay sized fractions. Across a series of storm events, they found that clay-

sized particles consistently reported highest concentration ranging from 24- 130 CFU 100 

mL-1, followed by silt-sized fraction with concentration within 0-9 CFU 100 mL-1. 

In addition, the average E. coli concentrations across storm events showed greater 

variability than those observed within baseflow. Both average medium and very fine silt 

E. coli were at least 0.8  102  CFU 100 mL-1 while average unattached E. coli  were at 

least 6.2  102 CFU 100 mL-1, across storm events (Table 3.1).  
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Table 3.1 : Bacteria concentration (Mean ± Standard Deviation) (102 CFU 100 mL-1) 

associated with various particle size ranges across storm and baseflow events 

Event Medium and Coarse Silt Fine and Very Fine Silt Clay and Unattached 

S-1 5.9 ± (7.9) b 6.4 ± (5.2) b 34.7 ± (11.9) a 

S-2 0.8 ± (0.6) b 0.8  ± (0.4) b 6.2  ± (0.4) a 

S-3 17.9 ±  (18.1) bǂ 8.6  ± (9.8) b 92.8  ± (43.8) a 

S-4 6.9  ± (5.7) b 3.7  ± (3.7) b 63.1  ± (9.5) a 

S-5 6.9  ± (5.7) b 3.2  ± (2.8) b 38.4  ± (25.3) a 

S-6 3.9  ± (2.8) bǂ 6.2  ± (4.4) ab 48.7  ± (49.2) a 

S-7 0.9  ± (0.7) b 1.0 ±  (0.7) b 9.3  ± (1.1) a 

S-8 6.3  ± (5.9) b 3.0  ± (2.9) b 44.9  ± (13.2) a 

BF 0.1 ± (0.7) 0.9 ± (0.7) 10.2 ± (11.6) 

S = Storm Event; BF = Baseflow Event, Values followed by the same letter are not 

significantly different within each storm event according to Tukey HSD multiple 

comparison test (p < 0.05) after ANOVA test. 
ǂNumber of samples (n) = 6, due to overflow from autosampler. 

 

 

Estimating loads and the equivalent background (baseflow) period for each storm 

event helped define the magnitude and impact of storm events on bacteria loading 

compared to the baseflow period. The E. coli load ranged from 1.210 to 1.512 CFU, 110 to 

112 CFU,  and 29 to 411 CFU, over the storm event monitoring duration ( i.e. over 5 hours 

for storm events 1, 2, 4, 5, 7 and 8, and over 3 hrs. for storm events 3 and 6) for total, 

unattached, and settleable E. coli, respectively ( Figure 3a). The unattached E. coli load 

consistently dominated the total E. coli load within each storm event as it constituted a 

significantly high proportion of total E. coli concentration. 

The results of the EBP of indicates that although storm events were occasional 

events, several periods of baseflow loading would be required to equal E. coli loading 

during these events. For instance, across five of the eight storm events (Figure 3.2b) , it is 

noted that among  E. coli fractions including total E. coli at least two periods of baseflow 

were required to produce similar storm event bacterial loading. This suggests that water 

quality monitoring studies solely dependent on baseflow monitoring cannot fairly represent 
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microbiological status of assessed waters.  This finding corroborates previous work of  

Cizek et al., (2008); Krometis et al.,( 2007); and Liao et al., (2015) 

Since it is required by the Clean Water Act that programs such as Total Maximum 

Daily Load (TMDL)  be established to enable impaired waters to meet set standards, storm 

events should also be targeted. 

 

 
 

 

Figure 3.2 (a) Event loads associated with E. coli fractions across each storm event 

and (b) the  equivalent background period (EBP) for E. coli fractions for each storm 

event. 
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3.3.2 Attachment of E. coli to particle fractions 

 

The percentage of E. coli associated with various particle fractions was expressed 

as a proportion of the total bacteria concentration. It was necessary to estimate attachment 

since contradictory reports exist on the fraction of bacteria that occur as unattached (or 

free-living) and attached to particles (Jamieson et al., 2004). The average percentage of E. 

coli associated with the clay and unattached fraction was highest among the three fractions, 

with at least 70% of the bacteria associated with this fraction across all storm events (Table 

3.2 and Fig 3.3b). Attachment rates among the silt fractions were similar, with the average 

percent attachment ranging from 8.7 to 15.2% for medium and coarse silt, and 5 to 13.6% 

for fine and very fine silt (Table 3.2).  

Although the average percent attachment to particle sizes for baseflow were 

somewhat lesser compared to those across storm events, the baseflow average percent 

attachment to medium and coarse silt (9.1%), fine and very fine silt (9.7%), and clay and 

unattached (81.2%) were within the ranges found in storm events (Table 3.2).  The average 

attachment rates in storm events for medium and coarse silt ranged from 8.7 to 15.2%, fine 

and very fine silt attachment that ranged from 5 to 13.6%, versus clay and unattached that 

ranged from 75.6 to 85.8% (Table 3.2). 

To simplify the attachment analysis, particle fractions were categorized into two 

groups according to size: (1) medium and coarse silt along with the fine and very fine silt, 

hereafter referred to as the settleable fraction; and (2) clay and unattached, hereafter 

referred to as the unattached fraction.  

Across all storm samples, at least 75% of the E. coli were unattached, while at least 

62% of the bacteria in baseflow samples (n=7) were unattached. Similar results were 
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observed by Jeng et al. (2005a) who found 75-80% of indicator bacteria (Escherichia coli, 

fecal coliforms, and enterococci) within storm events samples were unattached. The 

average settleable fraction, on the other hand, constituted at least 15% of the bacteria 

concentrations across both storm flow and baseflow conditions. This pattern compared 

favorably with that of Cizek et al. (2008) who found attachment rates of 15 to 30% for FIB 

(E. coli, fecal coliforms, and enterococci) associated with settleable particles during storm 

events. Krometis (2007) reported similar findings, with less than half (40%) of total FIB 

associated with settleable particles within storm events samples.   

Although five out of eight storm events had a slight increase in the average percent 

(20-24%) of the settleable fraction of E. coli over that of baseflow (Figure 3.3a). Overall, 

the baseflow and storm event settleable E. coli fractions were not significantly different 

(ANOVA, p > 0.05). 

 

 

Figure 3.3 The distribution of the (a) settleable (attached) and (b) unattached E. coli 

over storm and baseflow events. 
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Table 3.2 Percent of bacteria (Mean ± Standard Deviation) associated with various 

particle sizes across each storm event and all baseflow samples 

Event Medium and Coarse Silt (%) Fine and Very Fine Silt (%) Clay and Unattached (%) 

S1 10.8 ± 8.5 13.6 ± 11.1 75.6 ± 11.7 

S2 10.1 ± 7.5 9.6 ± 5.1 80.3 ± 8.2 

S3 14.2 ± 9.4ǂ 7.9 ± 10.2ǂ 77.9 ± 9.4ǂ 

S4 9.2 ± 7.0 5.0 ± 5.2 85.8 ± 8.67 

S5 15.2 ± 10.70 6.9 ± 5.6 77.9 ± 11.7 

S6 9.1 ± 6.6ǂ 12.8 ± 9.5ǂ 78.0 ± 8.7ǂ 

S7 8.7 ± 5.8 7.9 ± 6.3 83.4 ± 7.1 

S8 10.8 ± 7.3 6.1 ± 6.6 83.1 ± 7.6 

BF 9.0 ± 5.9 9.7 ± 8.6 81.3 ± 11.8 
ǂNumber of samples n = 6, due to overflow from autosampler. S = Storm Event. 

BF = Baseflow (n = 7) 

 

 

 

 

3.3.3 Event Mean Concentrations of Storm Events 

 

The EMCs of E. coli across the storm events ranged from 7.8 × 102 to 1.2× 104 

CFU 100 mL-1 (Figure 3.4). Event three had the highest EMC, while S2 had the lowest 

EMC. Correlation analysis showed that although the E. coli EMCs were positively 

correlated with both the total amount of rainfall (0.18) and the average rainfall intensity 

(0.12); however, these relations were not statistically significant (p > 0.05 ). 
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Figure 3.4 Event mean concentration of E. coli across all storm events 

 

 

3.3.4 Comparison of total and unattached E. coli 

 

Most in-stream water quality models assume bacteria within the water column are 

free-living despite the consensus that a portion of the bacteria are associated with particles 

(Jamieson et al., 2004; Wilkinson et al., 1995). To test the hypothesis that E. coli 

concentrations within the water column can be predicted by solely modeling the bacteria 

as unattached, a Mann-Whitney test was performed. The null (𝐻0) hypothesis was the total 

E. coli is equal to unattached.  

Three out of eight storm events (38%) had unattached E. coli concentrations that 

were significantly different from the total E. coli concentrations within the water column 

(Table 3.3 ), although flow during all the storm event sampling durations were significantly 

different (p < 0.05). However, it should be noted that if solely attached bacteria were 

modelled to predict instream water column bacteria levels this could underpredict total 

bacteria load as well as the risk associated with such impaired water. This is because 

attached bacteria have the tendency to settle out of the water column faster compared to 
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unattached ones that persist in water column for longer period. For instance, Rehmann and 

Soupir, (2009) reported that assuming total E. coli as attached E. coli resulted in a model 

that underpredicted E. coli levels within the water column. The authors identified attached 

fractions of bacteria as one source of discrepancy in the model developed. Therefore, 

modeling both attached and unattached bacteria could lead to improved predictions of 

bacteria during storm events. 

Table 3.3 Three out of eight storm events had unattached bacteria concentrations that 

were significantly (p < 0.05) different than the total concentrations as shown by the 

p-values for each storm event 

Storm Events p-value 

S-1 0.073 

S-2 <.0001 

S-3 0.330 

S-4 0.015 

S-5 0.120 

S-6 0.480 

S-7 0.002 

S-8 0.159 

 

 

 

 

3.3.5 Impact of storm event and baseflow on water quality standard 

 

Skunk Creek is currently listed as impaired for limited contact recreation, which 

has a single sample maximum (SSM) E. coli limit of 1,178 CFU 100 mL-1. Skunk Creek is 

a major tributary to the Big Sioux River which is impaired for E. coli, and is designated as 

primary contact recreation which has a SSM of 235 CFU 100 mL-1. Exceedance for the 

total, settleable, and unattached fractions of E. coli for both storm and baseflow samples 

were estimated based on the SSM standard for primary contact recreation and limited 

contact recreation (Table 3.4). During the recreational season, the percentage of flow 

contributed by Skunk Creek to the Big Sioux River ranges from 45% in July and September 
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to 67 % in May, averaging 59% over the entire recreation season (SD DENR, 2012). Thus, 

since water quality within Skunk Creek substantially impacts that of the Big Sioux River, 

therefore water quality analysis was conducted on the standards for both Skunk Creek and 

the Big Sioux River.  

 In comparing the total E. coli concentrations across storm events (n = 8) to the E. 

coli standards, 74% and 100% of total number (n =72) of samples exceeded the limited and 

primary contact recreation standards, respectively. On the other hand, 32% and 76% of E. 

coli attached to settleable particles were above the limited and primary contact recreational 

standard, respectively. The unattached E. coli showed a similar pattern of exceedance as 

observed with the total E. coli across with 72% and 97% of samples exceeding limited and 

primary contact recreational standard for E. coli, respectively.  

The unattached E. coli has a greater tendency to contribute to water quality 

impairments with exceedance rates for limited contact recreation ranging from 9 to 1108% 

, whereas settleable E. coli exceedance rates ranged from 2 to 463% (Table 3.4). Although 

sedimentation of settleable bacteria contributes to the reduction of microbial contamination 

in the water column (Jeng et al., 2005b), this would not be enough to reduce E. coli 

concentrations to within the standard on Skunk Creek.   In studying the removal of bacteria 

from the water column through sedimentation, Davies and Bavor (2000) found that the 

inefficiency in the reduction of bacteria from the water was due to the bacteria associated 

with the clay sized fraction (< 2 m) which is similar in size to unattached E. coli. 

Moreover, Jeng et al. (2005b) found that three to seven days were needed for the elevated 

water column E. coli to return to background levels. 
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Table 3.4 Percent exceedance of total, settleable, and clay and unattached E. coli 

concentrations across storm events and baseflow conditions according to the SSM for 

primary and limited contact recreation 

      Standard = 1178 CFU 100 mL-1. Standard = 235 CFU 100 mL-1.  

 

Event 

Total 

No. of 

Samples 

No. of 

samples 

> 

Standard 

Min 

Exceedance 

by % 

Max 

Exceedance 

by % 

No. of 

samples 

> 

Standard 

Min 

Exceedance 

by % 

Max 

Exceedance 

by % 

Total 

S-1 10 10 129 619 10 1049 3503 

S-2 10 0 - - 10 199 270 

S-3 6 6 443 1773 6 2623 9290 

S-4 10 10 435 706 10 2581 3943 

S-5 10 10 13 885 10 465 4836 

S-6 6 6 49 1255 6 645 6694 

S-7 10 1 21 21 10 313 504 

S-8 10 10 217 605 10 1489 3432 

BF 7 2 21 211 6 120 1460 

Unattached 

S-1 10 10 98 339 10 893 2099 

S-2 10 - - - 10 140 187 

S-3 6 6 299 1210 6 1900 6467 

S-4 10 10 307 613 10 1943 3474 

S-5 10 9 90 746 8 169 694 

S-6 6 6 22 1108 6 513 5957 

S-7 10 1 21 21 10 236 406 

S-8 10 10 138 463 10 1091 2723 

BF 7 1 203 203 6 104 1418 

Settleable 

S-1 10 6 13 180 10 28 1304 

S-2 10 - - - 2 1 30 

S-3 6 5 22 463 6 326 3645 

S-4 10 4 27 87 10 28 836 

S-5 10 4 16 58 8 169 694 

S-6 6 2 2 47 6 32 638 

S-7 10 - - - 3 1 57 

S-8 10 2 53 87 10 28 836 

BF 7 - - - 3 2 46 
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Exceedance rates for the SSM during baseflow conditions were much lower 

compared to those across storm event samples for all E. coli fractions. For instance, the 

maximum exceedance rate for total E. coli across most storm events (6 of 8) based on SSM 

for limited contact recreation was at least three-fold greater than that of the baseflow 

conditions. The limited and primary contact recreation SSMs were exceeded two out of 

seven and six out of seven samples, collected during baseflow conditions with a maximum 

exceedance of 221% and 1460% respectively for total E. coli (Table 3.4). The baseflow 

unattached E. coli showed nearly the same exceedance rate, according to SSM limited (1 

out of 7 samples) and primary (6 out of 7 samples) contact recreation, as total E. coli. 

However, among the settleable fraction, there was no exceedance of the SSM standard for 

limited contact recreation, while 3 of 7 samples exceeded the SSM standard for primary 

contact recreation.  

 

3.3.6 Correlation between E. coli concentrations, water quality, and hydrological 

variables 

No significant correlations (p > 0.05) were observed between the E. coli 

concentrations, water quality parameters (turbidity and water temperature), and hydrologic 

factors (flow, shear stress) (Table 3.5).   

Table 3.5 Spearman’s Rank Correlation (p ≤ 0.05) coefficient between E. coli 

concentrations, water quality parameters, and hydrological factors 

  Turbidity TC MC FVF SF CU 

Flow (m3s-1) -0.47 NS NS NS NS NS 

Water Temperature (°C) 0.99 NS NS NS NS NS 

Turbidity (NTU) NA NS NS NS NS NS 

Bed Shear Stress (N m-2) -0.32 NS NS NS NS NS 

NTU = Nephelometric Turbidity Unit, TC = Total E. coli, MC = Medium and Coarse Silt, 

FVF = Fine and Very Fine Silt, SF = Settleable Fraction (MC + FVF) 
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NS = Not Significant, NA = Not Applicable. 

 

The lack of correlation between E. coli, water quality, and hydrologic parameters 

reflects the variability of bacteria concentrations which are impacted by several factors 

including but not limited to temperature (Chahinian et al., 2012; Ishii et al., 2006), plant-

microbe interaction (Carr et al., 2005; Cinotto, 2005), predation (Davies et al., 1995; 

González et al., 1990; Huws et al., 2008; Iriberri et al., 1994), salinity (Goyal et al., 1977; 

He et al., 2007; Lipp et al., 2001), and resuspension and redistribution of sediments stores 

during and following rainfall (Pachepsky and Shelton, 2011). 

Temperature influences the survival and die-off rates of FIB within sediment and 

water (Bradford et al., 2013; Garzio-Hadzick et al., 2010; Vidon et al., 2008b), thus 

contributing to the concentration of bacteria present. However, previous studies have 

revealed mixed results on whether water temperature relates strongly with water column 

bacteria concentrations. For instance, Gentry et al. (2006) reported a significant negative 

correlation (p < 0.05, r2 = -0.30), whereas Vidon et al. (2008b) reported significant positive 

correlations in two different creeks (p < 0.01 r2 = 0.7, and 0.71), while Islam et al. (2017) 

reported no significant correlation between water temperature and E. coli concentrations. 

Therefore, the lack of correlation found in this study is supported by previous work.  

Although turbidity is sometimes used as a surrogate for FIB within the water 

column, there have been mixed findings with regards to this variable based on flow regime. 

Davies-Colley et al. (2008a), He et al. (2007), Mallin et al. (2001), and  Reeves et al. (2004) 

found significant positive correlations between turbidity and water column FIB 

concentrations during baseflow conditions, and Davies-Colley et al. (2008b) found positive 

correlations during storm events. However, in other studies (Gentry et al., 2006; Vidon et 
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al., 2008b), no significant correlation between turbidity and water column FIB 

concentrations was observed. Vidon et al. (2008b) found no significant correlations (p > 

0.05, p > 0.01) between turbidity and water column E. coli concentrations within two 

different creeks during both baseflow and storm flow conditions. The dominant presence 

of unattached E. coli in the Skunk Creek watershed could have led to the weak relationship 

between turbidity and E. coli concentrations. This relation is supported by Pachepsky and 

Shelton (2011) who explained that turbidity should be significantly correlated with E. coli 

concentrations within water if most of the total bacteria concentration are attached. 

Streamflow was not significantly correlated with E. coli concentrations, which 

contrasts with Pandey and Soupir (2014) and Tiefenthaler et al. (2011) who found 

significant positive correlations. The lack of significant correlation between E. coli and  

flow could be due to a few factors. First, a portion of Skunk Creek is accessible to livestock 

and wildlife that directly deposit fecal matter into its waters thus contributing to water 

column and sediment stores of E. coli. The direct input of fecal matter from these animal 

sources likely does not correlate with streamflow. Secondly, sediment resuspension during 

storm events (Jamieson et. al, 2005a; Sherer et al., 1988) is linked to increased flow, but, 

the impact of flow on water column bacteria could be limited by how much bacteria is 

available for resuspension. Jamieson (2005) studied the impact of the release of in-stream 

E. coli stores on water column E. coli concentrations over three storm events within a creek. 

It was observed that a finite supply of E. coli is available for resuspension and could be 

depleted. This means that, even though flow might increase, once bacteria stores are 

depleted this might not lead to a corresponding increase in water column E. coli. This 

phenomenon could result in a lack of relation between flow and water column E. coli.  In 
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addition, the ‘flushing’ effect of  elevated streamflow on sediment reservoirs of bacteria 

from the onset of storm event and various stages of the storm hydrograph could lead to 

high fluctuations in E. coli concentrations that are likely not to follow the flow pattern, thus 

resulting in a weak relationship between streamflow and water column E. coli 

concentrations. 

Although shear stress impacts the erosion of sediment (Partheniades, 1965) and 

bacteria resuspension from the stream bed (Jamieson et. al, 2005a), it did not have a 

significant relationship with the different E. coli fractions. McDaniel et al. (2013) reported 

similar findings in a laboratory study where a flume was used to mimic the resuspension 

and deposition of E. coli in a stream. Like this study, their work showed both total and 

particle-attached E. coli were not significantly correlated with bed shear stress (p > 0.05). 

 

 

3.3.7 Predicting stormflow E. coli concentration 

 

The parameters considered for developing regression models were flow, 

temperature, turbidity, and shear stress. These variables have been identified to impact the 

concentration of bacteria within the water column (Pachepsky and Shelton, 2011).  

Since more than one independent variable was used in creating the regression 

analysis, models (Table 3.6) were selected based on; (1) a variance inflation factor of less 

than 10 for each independent variable, and (2) statistically significant (p < 0.05) 

independent (predictor) variables. The variance inflation factor quantifies the severity of 

multicollinearity between independent variables (Ott and Longnecker, 2001).  
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Regression results showed that turbidity and shear stress were found to significantly 

contribute to the regression models in predicting E. coli concentrations and should be 

considered when developing a regression model to estimate E. coli during storm flows.  

Turbidity was a significant (p < 0.05) predictor of E. coli in all models with its coefficient 

being consistently positive across them. (Table 3.6), indicating that an increase in turbidity 

would result in an increase in E. coli concentration. Similarly, bed shear stress had a 

positive coefficient across all the models, meaning an increase in bed shear stress would 

result in a corresponding increase in E. coli concentrations.  

Although both turbidity and shear stress significantly (p < 0.05) contributed to E. 

coli regression models, the coefficients of determination (R2) were generally weak (0.09 to 

0.22) in predicting the various E. coli fractions. These results indicate that storm-specific 

hydrologic parameters and water quality parameters were not sufficient to explain the 

variability of E. coli in the water column during storm events.  

Table 3.6 Results of regression analysis to predict storm flow E. coli concentration 

Selected Models R2 

logTC = 1.05 + 1.99log(Turbidity) + 0.10log(Shear Stress) 

0.22 TC = 11.22 × Turbidity1.99 ×  Shear Stress 0.10 

logMC = 0.18 + 1.77log(Turbidity) 

0.09 

MC = 1.51 × Turbidity1.77 

 

logFVF = 0.14 + 1.66log(Turbidity) 

0.09 FVF = 1.38 × Turbidity1.66 

logCU = 0.98 + 1.98log(Turbidity) + 0.11log(Shear Stress) 

0.21 CU = 9.55 × Turbidity1.98 × Shear Stress0.11 

logSF = 0.65 + 1.64log(Turbidity) 

0.13 SF = 4.47 × Turbidity1.64 

TC = Total E. coli concentration, MC = Medium and Coarse E. coli concentration, FVF = Fine and 

Very Fine E. coli concentration, CU = Clay and Unattached E. coli concentration, SF = Particle 

attached fraction = MC + FVF 
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3.3.8 Impact of particle size on travel distance of fraction of E. coli 

 

The distance over which the bacteria travel is dependent on the size of the particle 

it is attached to. For instance, small-sized particles would travel farther and, therefore, stay 

within the water column longer compared to large-sized particles. This phenomenon is 

reflected in the estimated particle travel distance of the various E. coli fractions (Table 3.7). 

The estimated travel distance for fine and very fine silt across each storm event were at 

least 10-folds that of medium and coarse silt. Similarly, unattached bacteria had the 

potential to travel 10 times or more the distance travelled by bacteria attached to fine and 

very fine silt. Across all fractions of E. coli, the unattached bacteria had the potential to 

travel long distances (> 0.4 miles) and contribute to water quality impairments for an 

extended period. 

Table 3.7 Estimated travel distance (miles) (Min-Max) for E. coli associated with 

particle fraction across each storm event 

Storm Event Medium and Coarse Silt Fine and Very Fine Silt Clay and Unattached 

S1 0.009 − 0.01 0.13 −  0.17 2.1 −  2.7 

S2 0.08 −  0.09 1.3 − 1.4 21.2 − 21.3 

S3 0.03 − 0.04 0.6 − 0.7 8.9 − 0.8 

S4 0.04 − 0.05 0.70 − 0.73 11.3− 11.7 

S5 0.0015− 0.013 0.022 − 0.2 0.4 − 3.2 

S6 0.002− 0.0023 0.032 − 0.034 0.51− 0.55 

S7 0.003− 0.005 0.04− 0.07 0.70 − 1.08 

S8 0.004− 0.02 0.06− 0.24 0.90− 3.85 

BF 0.002 − 0.047 0.025− 0.72 0.41− 11.5 
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3.4 Conclusions 

This study examined the fate and attachment of E. coli to various particle sizes as 

well as their impact on water quality during both storm and baseflow events within an 

impaired stream. The study also assessed the relationship between water quality hydrologic 

variables and E. coli in predicting E. coli concentrations.  

Unattached dominated the total E. coli concentration across both storm events (60− 

97% of the total E. coli) and baseflow samples (62− 97% of the total E. coli). With 

unattached E. coli forming the majority of the total E. coli concentration, further analysis 

to test the assumption that the total bacteria concentration can be modeled as free-living 

was performed.  The unattached E. coli were significantly different in three out of eight 

storm events, or 38% of storm events. Thus, partitioning between attached and unattached 

bacteria is recommended when predicting in-stream bacteria levels.  

A comparison of E. coli to the SSM for primary and limited contact recreation 

across both storm and baseflow events was performed. Total and unattached E. coli posed 

a similar and severe threat to water quality, as E. coli levels among these fractions exceeded 

set the standards most of the time across both baseflow and storm event. In addition, 

settling of attached E. coli would not be enough to achieve the set water quality for Skunk 

Creek during a storm event. Generally, E. coli levels during storm events pose a health risk 

for human use based on designated use of this water. 

Bacterial loading among E. coli fractions indicated that at least two periods of 

baseflow could be required to equal the same period for storm event E. coli loading. 



74 

 

 

Attempts to predict E. coli levels were not successful, as regression models 

performed poorly and could not adequately predict E. coli concentrations (R2 = 0.09 − 

0.22). Thus process-based modelling at the watershed scale is recommended to model 

water column E. coli during high flows such as storm events. 

For future and adequate prediction of E. coli levels during storm events,  a process-

based modelling approach using watershed scale models such as SWAT or HSPF is 

recommended. The impact of storm events on bacterial loading could be further studied by 

undertaking scheduled sampling of baseflows prior to occurrence of storm events, in order 

to estimate E. coli levels contributed by storm events via resuspension and runoff. In 

addition, it is also suggested that tracer studies be undertaken to compare results with 

estimated travel distance of E. coli attached to particles.  
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

4.1 Conclusion 

A series of storm events and  baseflow events were monitored to evaluate the fate 

and transport of E. coli within an impaired stream located in eastern South Dakota. E. coli 

concentrations were partitioned into those associated with settleable particles (attached) 

and those that were associated with clay and unattached.  The impact of E. coli fractions 

on the water quality standard during both storm and baseflow events was assessed, 

including their relationship with water quality parameters (turbidity and temperature) and 

hydrologic parameters (flow and bed shear stress). 

Among E. coli associated with particle fractions, the average E. coli concentration 

associated with coarse silt and fine silt were not significantly different, whereas the 

unattached concentrations were significantly higher. Partitioning of  E. coli between 

unattached and settleable E. coli showed that unattached E. coli constituted a substantial 

portion of the total E. coli concentration across both storm events (> 75%) and baseflow (> 

62%). Unattached bacteria consistently exceeded the SSM standard for E. coli. Thus, 

sedimentation of settleable E. coli would not be enough to reduce E. coli concentrations to 

meet the standard.  The total, settleable and unattached E. coli load ranged from 1.210 to 

1.512 CFU, 29 to 411 CFU,  and 110 to 112 CFU respectively across storm events. The EBP 

of loading showed that at least two periods of baseflow would be required to equal E. coli 

loading across most of the storm events. Further analysis to test the assumption that bacteria 

concentrations within the water column could be modeled solely as unattached bacteria 

revealed that this assumption was not appropriate for nearly 40% of storm events. 
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The correlation analysis showed a weak relationship between water temperature, 

turbidity, flow, and bed shear stress. Attempts to model and predict E. coli concentrations 

during storm events as a function of water quality and hydrologic parameters using a 

regression analysis were poor (R2 = 0.09-0.22). 

 

4.2 Recommendations for Future Work 

In this study, baseflow event samples for E. coli were analysed randomly for dry 

weather periods. For future work, baseflow samples could be taken on a day or a few hours 

prior to storm events for E. coli analysis, to enable estimation of additional input of E. coli 

into the water column via resuspension and runoff. 

In addition, prediction of E. coli concentration using regression analysis performed 

poorly, therefore process-based models such as Soil Water Assessment Tools (SWAT) and 

Hydrological Simulation Program-FORTRAN (HSPF) could be used. 

Furthermore, tracer studies could be undertaken to compare results with estimated 

travel distance of particle-attached E. coli. The impact of changing stream characteristics 

on travel distance of E. coli fractions could also be investigated.  
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APPENDIX A: E. COLI CONCENTRATION 

The data below is the E. coli (CFU 100 mL-1 ) associated with particle fractions across 

both storm events and baseflow events 

 

Table A1-:  E. coli concentration across storm and baseflow events 

Events MC FVF CU Total 

S1 133 1300 2567 4000 

567 767 5033 6367 

233 100 4133 4467 

200 100 2400 2700 

233 267 2367 2867 

533 1033 2333 3900 

367 133 2333 2833 

267 1533 3800 5600 

2800 500 5167 8467 

633 700 4567 5900 

S2 120 70 620 810 

7 120 660 787 

30 47 673 750 

10 103 663 777 

120 43 590 753 

173 63 613 850 

40 57 647 743 

60 130 587 777 

183 123 563 870 

73 3 627 703 

S3 1667 33 4700 6400 

867 133 8367 9367 

167 2467 6833 9467 

1300 1200 6400 8900 

1400 33 13967 15400 

5333 1300 15433 22067 

S4 333 767 8400 9500 

1400 133 6133 7667 

500 33 6833 7367 

133 167 6600 6900 

1933 267 5967 8167 

433 67 6667 7167 

933 900 5733 7567 

200 167 6367 6733 
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500 1000 4800 6300 

533 200 5633 6367 

S5 100 33.3 3866.7 4000 

1433 200 9967 11600 

100 833 6267 7200 

1467 167 3567 5200 

467 200 3200 3867 

400 233 2533 3167 

1267 600 2800 4667 

333 700 2867 3900 

1167 200 2233 3600 

190 30 1107 1327 

S6 433 1300 14233 15967 

400 733 6133 7267 

900 300 3767 4967 

67 900 2000 2967 

333 400 1633 2367 

213 97 1440 1750 

S7 20 210 1190 1420 

27 130 957 1113 

17 23 943 983 

63 167 830 1060 

60 77 833 970 

137 13 910 1060 

187 50 940 1177 

123 33 963 1120 

180 10 990 1170  
177 193 790 1160 

S8 133 800 2800 3733 

500 167 6633 7300 

133 167 5067 5367 

967 833 4800 6600 

433 133 3433 4000 

767 33 3167 3967 

400 67 3667 4133 

200 400 3767 4367 

733 333 5533 6600 

2100 100 6100 8300 

BF 150 90 807 1047 

20 10 487 517 

33 67 3567 3667 

120 223 563 907 
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23 107 480 610 

190 147 1090 1427 

30 7 177 213 
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