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ABSTRACT 

MECHANISMS BY WHICH MECHANOTRANSDUCTION 

PROMOTES PROLIFERATION IN KERATINOCYTES 

CHHAVI CHAUDHARY 

2018 

 Chronic wounds are wounds that do not heal within 30 days and often they can 

last over a year.  Interference in any of the wound healing stages may hinder the process. 

Some of the local and systemic factors such as infection, old age, diabetes, AIDS, and the 

regular application of corticoids may also have negative effects on the healing process. 

Cell proliferation is an important phase in epidermal wound healing in which surviving 

epithelial cells replicate independently into daughter cells through mitosis and maintain a 

balance between cell growth and cell loss during the cell cycle. Physical and chemical 

stimuli play important roles in regulating cell proliferation through activating intracellular 

signal transduction pathways. A physical stimulus which enhances skin cell proliferation 

relies on mechanical stretch. However, the mechanism(s) by which cells sense and 

respond to mechanical stimulation remain(s) unknown. 

 Most research regarding sensing of mechanical stimuli emphasizes the role of 

cellular membrane proteins including channels, integrins, and receptors for growth 

factors. Channels could be selective or non-selective, or mechanosensitive for inorganic 

ions or small molecules, with high permeability to ions such as sodium, potassium, 

calcium, and magnesium. Mechanosensitive channels (MSCs) are present in many cell 

types including epidermal keratinocytes. MSCs play a crucial role as a mechanosensors 

which convert mechanical stimuli into electrical or chemical signals. MSCs may affect 



 xi 

cells through the movement of specific ions, such as calcium, across the plasma 

membrane. Cytosolic calcium in the form of steady or transient changes is required for 

cell cycle progression, cell proliferation and cell division. In other words, Ca2+ influx is 

required for mechanosensitive cell proliferation in human keratinocytes. In this study, we 

monitored the proliferation rate of stretched cells and observed that mechanical stretching 

induces a higher percentage of keratinocytes into S-phase.  Proliferation was reduced or 

inhibited in the absence of extracellular Ca2+ or when Ca2+ influx was blocked, 

respectively. Many pharmacological inhibitors of MSCs were screened to evaluate their 

effect on cell proliferation and the results demonstrate that blockage of the 

mechanosensitive ATP channel, pannexin, significantly inhibited proliferation.  

Identification of a pathway that promotes proliferation of keratinocytes provides us with a 

target for a chemical treatment that speeds proliferation and promotes wound healing. 
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INTRODUCTION 

 Skin is the largest organ of the body and it covers most of the external surface of 

the body.  It consists of the outermost epidermis and the underlying dermis. Some have 

listed the hypodermis, a layer beneath the dermis as a third layer of skin (1). Skin is 

supported by several underlying structures including fascia (connective tissue), muscle, 

tendons, ligaments, and arterial and venous blood vessels (2). It is a defensive and 

sensory barrier between the external environment and the internal organs which protects 

against water loss, damaging chemicals, micro-organisms, mechanical stress, and 

radiation.  Skin has sensory functions related to touch, pressure, temperature, and pain, 

and alerts the body to potential tissue damage (3-7).  

 The epidermis is the outermost layer of the skin comprised of nearly 95% 

keratinocytes, but also includes melanocytes, Langerhans cells, and Merkel cells (8). It 

works as a waterproof barrier which repels fluids but retains water in the body. Its 

thickness varies from 0.07 mm to 0.12 mm, except on the palms and soles, where it varies 

from 0.8 mm to 1.4 mm (9). The epidermis does not contain any blood vessels, however, 

even the deepest layer of epidermis obtains some O2 which diffuses in from the external 

atmosphere.   

 Cells of the epidermis replicate through mitotic division at the deepest layer and 

the cells move superficially to the outermost layer. The cells change shape and 

composition during their movement through the epidermis.  The outermost layer of the 

epidermis is approximately 25 times thicker than the basement membrane layer (10). This 

process takes place within weeks. Below is a detailed description of the five different 

layers of epidermis from deep to superficial. 
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 1. The basal layer of epidermis is known as the stratum basale and contains 

keratinocytes, melanocytes, and Merkel cells. The keratinocytes, from the lowest layer of 

the epidermis, are continually moving to the outermost surface by the production of new 

cells beneath them. Keratinocytes fill with keratin as they are pushed to the surface of the 

epidermis and this process is known as keratinization.   

 2. The stratum spinosum is the second layer superficial to the stratum basale 

where keratinocytes begin to develop cell-cell junctions and begin producing lamellar 

bodies, secretory granules filled with lipids, hydrolytic enzymes, and many other 

proteins.  

 3. In the next layer, the stratum granulosum, keratinocytes lose their nuclei and 

the cytoplasm is more packed with lamellar bodies.  

 4. The stratum corneum is the outermost layer which is made of the mature or 

dead keratinocyte epithelium. Keratin protein in the stratum corneum layer moves 

superficially and these cells are sloughed off from the surface constantly. The stratum 

corneum has an acidic pH, called the acid mantle, which protects the body from some 

bacteria and fungi.  Most of the barrier function of the epidermis is contained in this outer 

most layer. 

 5. The palms of the hands and the soles of the feet contain a 5th epidermal layer, 

called the stratum lucidum, a clear inner layer of the stratum corneum.  This layer is made 

of dead and flattened cells.  
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Epidermal Wounds 

 Epidermal wounds occur when skin is cut, punctured, or damaged through some 

other form of injury such as ischemic injury which occurs during prolonged blood 

restriction.  Injuries can damage the epidermal and dermal cells, nerves, blood vessels 

and other underlying tissues, and even organs. Based on the cause of damage, site, depth, 

and duration to heal, wounds can vary from simple to life threatening.  According to the 

healing time, wounds can be classified as acute or chronic and a descriptive comparison 

between these two groups of wounds is listed in Table 1 below (11, 12).   

Table 1. Acute vs. chronic wounds.  
Parameter Acute Wound Chronic wound 

Duration 
wounds that heals within 

expected period. e.g. weeks to 
months 

wounds that do not heal within 
anticipated time. e.g. one 

month to three months 

Symptoms pain, swelling or bleeding, foul 
smelling pus or drainage 

signs are noticeable but   
unknown or unclear such as 
erythema, edema, heat, or 

severe inflammation 

Examples surgical wounds, bites, burns, 
abrasions trauma 

venous stasis ulcer, diabetic 
foot ulcer, bedsores, pressure 

ulcer and arterial ulcer 

Wound 
Assessment 

chemical treatment, minimal 
mediation, surgical debridement, 

antimicrobial therapy 

no chemical treatment, wound 
dressing, negative pressure 

therapy, electrical stimulation 

 

 Wound healing requires many important factors to work in a coordinated manner.  

Non-healing wounds are wounds which fail to heal through the normal process or in a 

timely manner (13). Chronic wounds generally last more than 30 days but can last for 

over a year.  Multiple factors affect the wound healing process and they can be divided 

into two classes depending on their source. First, local factors affect the patient from the 

external environment including dehydration of the wound, microbial load, level of 
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maceration, necrosis, pressure, trauma, and edema.  On the other hand, systemic factors 

directly affect the performance of bodily functions through the patient’s own physiology 

or condition such as age, gender, diabetes, obesity, hypothyroidism, immunosuppression, 

radiation therapy or chemotherapy, macronutrients or micronutrients and smoking (14-

18).   

 Chronic wounds are the result of vascular ulcers (e.g., venous and arterial ulcers), 

diabetic ulcers, and pressure ulcers (19). Some common features shared by each of these 

wounds include prolonged or excessive inflammation (20), persistent infections (21), 

formation of drug-resistant microbial biofilms (22), and the inability of dermal and/or 

epidermal cells to respond to reparative stimuli (23-25). Altogether, these 

pathophysiological phenomena result in the failure of these wounds to heal. The 

underlying pathologies, however, differ among various types of chronic wounds. 

 Chronic wounds have been a major challenge for both patients and the healthcare 

system throughout the world.  It has been estimated that the annual chronic wound costs 

exceed $15 billion with the chronic wounds affecting approximately 2.4–4.5 million 

patients, in the United States alone (26-28).  It has been reported that the cost to treat 

chronic wounds in the USA is 2-3% of the healthcare budget in other developed countries 

and it represents approximately 2% of total European Union financial resources, Table 2 

(27, 29, 30). 
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Table 2. Summary of the impacts of chronic wounds (30) 

 

 The chronic wounds listed above are more commonly found in elderly patients 

and the elderly population in the USA continues to increase. The number of citizens 65 

years or older is expected to nearly double (from 35 million to 53 million people) by 

2030 (35) and the estimated risk of developing diabetes for children born in 2000 is as 

high as 35% (36). The anticipated risks of diabetes and age-associated nonhealing 

chronic wounds continue to increase dramatically, and the estimated chance of diabetes 

and age-associated chronic wounds will increase in the future and throughout the world. 

 The medical treatment for chronic wounds often uses advanced treatments such as 

growth factors, extracellular matrices (ECMs), engineered skin, Electrical stimulation 

therapy (EST) and negative pressure wound therapy (NPWT) (37).  The latter two 

treatments have been used to speed the healing of chronic wounds.  Both appear to make 

use of mechanotransduction pathways to promote healing.   

Epidermal Wound Healing 

 Epidermal wound healing is a crucial and complicated process to repair the 

strength and missing portions of the organ to regain structure and function. Four-stages 

Type No. of affected 
patients Cost of treatment Total annual cost 

Venous ulcers 400,000–600,000 $5,000–$10,000 $1.9 - $2.5 billion (31) 

Arterial ulcers 100,000 (32) $9,000–$16,000  

Diabetic ulcers 2 million   $6,000/patient $150 million 
(33) 

Pressure ulcers 1.3 - 3 million Up to $70,000 
(34) 

$3.5 - $7.0 billion 
(34) 
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are involved in epidermal repair and reconstruction including hemostasis, inflammation, 

proliferation, and maturation. 

 The first phase of healing is known as hemostasis, in which bleeding is stopped. 

Platelets bind with collagen outside of the bloodstream to promote platelet plug 

formation. The release of other chemical messages promotes activation of clotting 

factors, including thrombin, to form the fibrin mesh to prevent further loss of blood.  

 Preparation of the wound bed for the growth of new tissue is part of the defensive 

or inflammatory phase of wound healing. This is done by the process of phagocytosis in 

which white blood cells invade the injured site and engulf bacteria and remove foreign 

material or debris from the wound within 2 days. Release of growth factors including 

platelet derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) are 

also released and lead to the beginning of the proliferative phase.  

 The formation of new blood vessels and filling of the wound bed through 

granulation occurs during the very early stage of the proliferative phase. Then, 

construction of the wound margin takes place. Migration of epithelial cells from the 

edges of the wound toward the center of the wound occurs.  The process continues until 

the epithelial cells cover the wound completely. 

 The last phase of wound healing is known as maturation or the remodeling phase. 

New tissue is remodeled and matures to attempt to recover the original strength and 

flexibility.  Unused cells will undergo apoptosis or programmed cell death. 

 Most cells are sensitive to different forms of mechanical stimuli. Different 

physical forces are important for the regulation of cell physiology and pathogenesis of 

skin.  Mechanotransduction is the process by which cells sense mechanical forces from 
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the surrounding environment and convert these physical forces into appropriate 

biochemical signals.  Forces are required to maintain cell shape and function, during 

proliferation, migration, and apoptosis. The mechanosensitive nature of tissues is well 

known and is used to help drive development of better medical devices, novel drugs, and 

therapies for treating diseases, and novel tissue scaffolds for tissue repair and 

reconstruction (38-42). 

 There are many signaling pathways by which cells respond to mechanical stress.  

It is now apparent that there are also multiple types of mechanoreceptors, ranging from 

stretch-activated channels in the plasma membrane, to cytoplasmic proteins, and the 

nucleus itself undergoes changes in response to force.  However, the exact mechanisms 

by which a cell senses and reacts to mechanical signals are not entirely unknown. Over 

the past few decades, the importance of mechanical signals in tissue development, 

homeostasis and repair have been recognized, and the underlying mechanisms are being 

actively identified. 

 Cells are subjected to various combinations of mechanical stimuli in their 

physiological environment. Hence, it is difficult to predict which stimulus is responsible 

for which change within the cell. To understand the nature of physical forces, 3 different 

forces will be discussed, including compression, tension, and shear (43). 

 

Figure 1. Different types of mechanical forces.  

Compression Tension Shear 
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Compression  

 Compression is known as a pushing force and leads to a decrease in the length of 

the object along a specified axis. 

Tension 

 Tension is a pulling force that tends to stretch the material in opposite directions. 

An increase in blood pressure increases tension on the endothelial cells while a rapid 

increase in weight gain places an increase in tension on the epidermis.  Stretching of 

epidermal keratinocytes promotes proliferation to reduce the stretching force (44-47).  

 A common way to apply tension to cells is to seed them on a stretchable surface. 

After cells have adhered to the stretchable surface, the substrate is stretched in opposite 

directions from two ends and the adherent cells become stretched as well. 

Shear 

 Shear is a force which tends to slide one face of an object over an adjacent face.   

It can bend or twist the object.  The endothelial cells lining blood vessels are subject to 

shear stresses produced by blood flow (48).  

 The process of cellular mechanotransduction is divide into three stages: 

(i) Mechanoreception: Detection of the stimulus and transmission of the signal from 

outside the cell to the inside. 

(ii) Intracellular signal transduction: Transduction of mechanical stimulus into 

biological signals in the cell where a series of signaling response can be generated. The 

intracellular signal is transmitted by second messengers, and a network of intracellular 

signaling proteins. 
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(iii) Target activation: Activation of proteins that causes changes in cell structure and 

function in response to stretch. 

 Mechanoreceptors respond to extracellular physical signals and transmit these 

extracellular stimuli from the outside of the cell to the inside. Mechanoreceptors are 

commonly present in the cell membrane including (i) integrins, (ii) mechanosensitive or 

stretch-activated channels, and (iii) other cell-surface receptor proteins.  This thesis will 

emphasize plasma membrane, mechanosensitive channels.  

Mechanosensitive Channels 

 Mechanosensitive or stretch-activated channels (49-54) are proteins that span the 

plasma membrane, connecting the cytosol to the cell exterior. The permeability of ion 

channels is highly controlled. However, while some channels are most permeable to only 

one ion e.g. Na+, K+, Ca2+, and Cl−, some are non-selective and allow multiple cations or 

anions to pass through, while others allow passage of small organic molecules.  In the 

resting state many mechanosensitive channels are usually closed.  Introduction of a 

mechanical stimulus shifts the channels to an open state and ions or molecules move 

down their electrochemical gradient.  Mechanosensitive ion channels are the sensors for 

several systems including the senses of touch, hearing, and balance, as well as 

participating in cardiovascular regulation and osmotic homeostasis (55-57).  

 Based on the permeability of ions, mechanosensitive ion channels can be divided 

into different groups.  Cation-selective MSCs show a selective permeability for positive 

ions such as Na+, K+ and Ca2+.  They exhibit a small single channel conductance range of 

25-35 pS (54). These cation-selective MSCs are blocked by the trivalent gadolinium ion. 

Anion selective MSCs are permeable for negative ions and generally contain a large 
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conductance (> 300pS).  Non selective ion channels are found in the Archaea and 

prokaryotes, and rarely in Eukarya (58).  

Examples of Mechanosensitive channels in Eukaryotes - 

1. ENaC/DEG superfamily (59) 

2. TRP superfamily:  There are seven subfamilies within the TRP superfamily:  

TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin),  

TRPML(mucolipin), TRPA (ankyrin), and TRPN (NOMPC-like)  (59) 

3. Piezo1 and Piezo2 (60) 

4. Pannexin (61) 

 Cells are mechanically stimulated through several major interrelated pathways 

which include integrin–matrix interactions, cytoskeletal strain, and membrane stress. Two 

mechanisms are supposed to be responsible for the opening of mechanically gated ion 

channels.  First, the conformation of ion channels is modified in response to applied 

forces that affect the membrane-embedded proteins. This is known as lipid bilayer 

tension or the stretch method (62, 63). Second, stretch activated channels have an ability 

to be deformed by the actin cytoskeleton or extracellular matrix which is attached to the 

stretch-activated channel and they directly regulate the opening of ion channels (55, 64). 

This process is known as the spring-like tether model.  In addition, mechanosensitive 

channels control calcium-dependent pathways that further regulate intracellular 

signaling and cytoskeletal remodeling (65-67). 

Mechanical Forces Promotes Cell Proliferation 

 Mechanical forces regulate various phases of the cell cycle which include the 

onset of mitosis.  Researchers found that the tension and mechanical energy of a tissue 
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could anticipate the regulation and duration of the phase G1–S transition and mitotic 

rounding. Cells that experience the higher intercellular tension exhibit a higher 

probability to transition from G1 to S, as well as a shorter G1 and shorter S–G2–M 

phases. It is also found that tension increases during the cell cycle but decreases 

3 hours before mitosis to facilitate the process of mitosis. In addition, neighboring cells 

collaborate in this process before and during division (44-47).    

 The research in this thesis will be directed toward understanding the Ca2+ influx 

pathway that is used by keratinocytes to promote proliferation.  Cells cultured on a 

flexible silicone membrane, will be stretched and multiple pharmacological blockers will 

be screened to help identify this pathway.  We hypothesize that the pathway that is used 

to promote keratinocyte proliferation, could be stimulated chemically to help promote 

cellular proliferation and speed wound closure. 
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MATERIALS AND METHODS 

Cell Culture  

 Clonal human epidermal keratinocytes, HaCaT, were maintained in Dulbecco's 

Modified Eagle Medium (DMEM, Gibco, Fisher Scientific) containing 10% Fetal Bovine 

Serum (Gibco, Fisher Scientific), 1% of 10,000 index units of penicillin-streptomycin 

solution.  Cells were cultured in a 5% CO2, 37o
 C, humidified incubator.  For 

experimentation, cells were seeded on polydimethylsiloxane (PDMS) chambers in normal 

DMEM medium (Appendix A) for 24 hrs. Optimum cell density for seeding the cells on 

the PDMS chambers was ~1x105 cells/ml). Cell density was determined prior to seeding 

the PDMS chambers by counting cells with a hemocytometer. 

Preparation of Cell Suspension for Splitting or Transferring Cells 

 Removing cells from the bottom of the tissue culture flask prior to splitting the 

culture to a different flask or prior to seeding cells in the PDMS chambers required gentle 

removal of those cells using a trypsin-EDTA solution.  EDTA chelates divalent ions and 

loosens cells from the bottom of the dish while trypsin, a protease, cuts protein 

connections between the cells and the bottom of the flask. The protocol below is used to 

prepare the cell suspension: 

1. Gradually remove the DMEM from flask with adherent cells. 

2. Rinse cells with brief treatment, < 20 s, of 2 ml of 0.25% trypsin-EDTA. 

3. Add 2 ml of 0.25% trypsin-EDTA and keep in incubator for 3-5 mins to dissociate 

adherent cells from the bottom of the flask. 

4. Add 10 ml of DMEM to halt trypsin activity. 
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5. Gently transfer the cells into a 15 mL conical tube and centrifuge the cells at 800-1000 

rpm, 5 mins, to pellet the cells and remove dilute trypsin-EDTA.  

6. Remove the dilute trypsin-EDTA and DMEM from the conical tube. 

7. Submerge the cell pellet with 1mL of DMEM and gently resuspend the cells. 

Counting Cells with the Hemocytometer  

 Cell numbers are determined by using a hemocytometer.  Hemocytometers are 

essentially a grid, etched into a glass slide with a coverslip placed a known distance from 

the bottom of the slide (Figure 2).  Therefore, a 2D cell count can be calculated to determine 

a 3D cell density. 

Figure 2. Example of a hemocytometer.   
(“Hemocytometer” by Matt Janicki. CC BY 2.0. https://creativecommons.org/licenses/by/2.0/#) 
 

The following protocol is used to prepare and count cells on a hemocytometer. 

1. Hemocytometer and glass coverslip should be cleaned with ethanol before use.  

2. Place 10 μl of 5x diluted cell suspension on the hemocytometer grid and cover with 

coverslip.  

3. Using an upright microscope, focus on the grid lines of the small, internal squares with 

a 10x microscope objective. 

4. Count the live cells within 16 small squares (4 by 4 squares) with volume of 4 nL. 

https://creativecommons.org/licenses/by/2.0/#)
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5.  Move the hemocytometer and count 3 addition 4 by 4 boxes, along the corners of the 

hemocytometer grid. 

6. Take the average of cells from all of the regions. 

7. Divide by 4 x 10 -6 mL to obtain cells/mL and multiply by 5 to correct for the dilution. 

8. The final cell count is the number of viable cells per ml in the original cell suspension. 

Preparation of Silicone Chambers  

 The SYLGARD ® 184, silicone elastomer kit (Dow Corning) is used to prepare the 

PDMS chambers.  PDMS chambers (68) were prepared by mixing, uncured polymer and 

curing reagent in [10: 0.86 (w/w)] for 10-15 s. The mixture was degassed at room 

temperature and cured at 37°C overnight in a plastic mold (Figure 3).  The mold includes 

removable aluminum pylons in order to enable attachment to a stretching rack. 

Additionally, small rectangular pieces of polycarbonate were inserted in the bottom of the 

mold prior to PDMS in order to fabricate a well in the PDMS chamber (Figure 3). After 

curing, chambers were treated to enable cell adhesion to the hydrophobic silicone. 

Surface Modification of PDMS Chambers 

 The hydrophobic silicone surface was made more hydrophilic through oxidation 

with piranha solution, a mixture of concentrated H2SO4 and 30% H2O2 in a 3:1 ratio (69).  

This mixture is exothermic and was allowed to cool to room temperature before applying 

on chambers.  Over oxidation of the chambers caused an opaque surface and even rippling 

at higher oxidation which made imaging of cells difficult.  Also curing times varied with 
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Figure 3. PDMS chamber mold, finished PDMS chamber and stretching rack. 

 

The pylons of the stretching rack are 10% further apart than the pylons in the mold so that 

when the chamber is mounted on the rack, the PDMS will be stretched by 10% different 

batches of the purchased starting materials. Therefore, a test oxidation was performed for 

each batch.  A successful test was determined by the absence of opaqueness after oxidation 

when dried.  As a result, oxidation with piranha solution varied from 30s to 5 mins at room 

temperature. After oxidation, chambers were rinsed with DI water. 

 To ensure removal of oxidation products and piranha solution from the chambers 

they were soaked in DI water for 10 mins in repetition. PDMS is porous and repetition of 

this process enhanced cellular adhesion on the chambers. 

Silicone Chamber Sterilization and Coating with Collagen 

 Cell adhesion was enhanced through collagen coatings.  Chambers were sterilized 

with 70% ethanol and allowed to dry for 30 mins in a sterile, laminar flow hood. Collagen 

(Advanced Biomaterial Pure Collagen type I) was diluted in sterile filtered, DI water, 1:30 

PDMS mold PDMS chamber Stretching Rack 
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(v/v). The mixture was spread on the chambers in order to allow the collagen protein to 

bind on the chambers at room temperature for 2-3 hours (68). Fluid was removed and the 

chambers were allowed to air dry in the sterile hood for 30-60 mins. Collagen coated 

chambers were used immediately after drying or stored at 2-8°C until use. Before 

introducing cells, collagen coated chambers were gently rinsed with PBS or culture 

medium to remove any nonadherent collagen and to ensure neutral pH during cell adhesion. 

A step by step protocol for chamber preparation is provided in Appendix B. 

Stretch-Induced Cell Proliferation Assay 

 HaCaT cells were plated on sterilized and collagen-coated, PDMS chambers with 

similar cell density so that cells could grow on the chamber surface for 48 hours.  Cells 

were initially plated in DMEM to inactivate residual trypsin and enhance adhesion. After 

4 hrs incubation, unattached cells were removed by washing with fresh Hank’s media (70) 

and adherent cells were incubated for 24 hours at 37°C before stretching (71). During 

experiments, cells were stretched on aluminum stretching racks (Figure 3) and fresh Hank’s 

media was added to the chambers. Overnight cultures of cells were exposed to unstretched 

and stretched conditions in attempts to identify the mechanosensitive signaling pathway 

which promotes cell proliferation.  Three hours before the end of the 24 hour stretching 

period (68), the EdU (5-ethynyl-2'-deoxyuridine) reagent was added on the chambers.  EdU 

is a nucleoside, a thymidine analog which has been chemically modified for easy 

fluorescent tagging.  Cells in the proliferation phase of the cell cycle incorporate EdU into 

their nuclei during DNA replication.  The EdU reagent enables identification of the relative 

numbers of cells within the S-phase of the cell cycle which precedes mitosis.  
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Preparation of Hank’s Balanced Salt Solution (HBSS) 

 Serum free, HBSS was used during experimentation as HaCaT cells show a 2.5-

fold increase in proliferation during 10% stretch in HBSS (70, 71).  HBSS was made by 

adding each of the components from Table 3. Media was filter sterilized and stored at 4oC 

in the refrigerator. 

Table 3. Composition of HBSS (1L). 
Component Mass Molarity 

NaCl (mw: 58.4 g/mol) 8 g 0.14 M 
KCl (mw: 74.6 g/mol) 400 mg 0.005 M 
CaCl2 (mw: 111.0 g/mol) 140 mg 0.001 M 
MgSO4-7H2O (mw: 246. 5 g/mol) 100 mg 0.0004 M 
MgCl2-6H2O (mw: 203.3 g/mol) 100 mg 0.0005 M 
Na2HPO4 (mw: 178.0 g/mol) 60 mg 0.0003 M 
KH2PO4 (mw: 136.1 g/mol) 60 mg 0.0004 M 
Glucose (mw: 180.2 g/mol) 1 g 0.006 M 
NaHCO3 (mw: 84.0 g/mol) 350 mg 0.004 M 

 

Pharmacological Blockers 

 Pharmacological blockers of mechanosensitive channels were added in the culture 

media in attempts to block stretch-induced proliferation.  Blockers were made as stock 

solutions in aqueous media or dimethyl sulfoxide (DMSO) for the more hydrophobic 

agents (Appendix A).  For example, a 10 mM stock solution of amiloride was dissolved in 

DMSO and diluted in HBSS prior to experimentation to obtain a final working 

concentration of 10 μM.  Other compounds were diluted to final working concentrations 

listed in Table 4. 
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Table 4. List of pharmacological blockers of mechanosensitive channels. 
Blocker Channel Working Concentration 

Amiloride (72) Epithelial Na+ channel 10 μM 
Carbenoxolone (73) pannexin 100 μM 

Gadolinium (III) chloride (74) nonspecific 10 μM 
MK-886 (75) TRPM7 20 μM 
ML-204 (76) TRPC4 10 μM 
RN1734 (67) TRPV4 30 μM 

 
 
 In addition to specific blockers of mechanosensitive channels, nonspecific blockers 

of Ca2+ signaling were used during positive control experiments.  EGTA, a selective 

chelator for Ca2+, was used to remove Ca2+ from the media. The composition of Ca2+ free 

HBSS is given in Table 5.  

Table 5. Composition of Ca2+-free HBSS (0.1L). 
Component Mass Molarity 
NaCl (mw: 58.4 g/mol) 0.8 g 0.14 M 
KCl (mw: 74.551 g/mol) 40 mg 0.005 M 
EGTA (mw: 380.35 g/mol) 38.035 mg 0.001 M 
MgSO4-7H2O (mw: 246.475 g/mol) 10.0 mg 0.0004 M 
MgCl2-6H2O (mw: 203.303 g/mol) 10.0 mg 0.0005 M 
Na2HPO4 (mw: 177.99 g/mol) 6.0 mg 0.0003 M 
KH2PO4 (mw: 136.086 g/mol) 6.0 mg 0.0004 M 
Glucose (mw: 180.156 g/mol) 0.1 g 0.006 M 
NaHCO3 (mw: 84.007 g/mol) 35 mg 0.004 M 

 
 
Cell Fixation and Permeabilization 

 At the end of the 24 hour experimental period, both control and experimental cells 

in the silicone chambers were fixed for 15 min. using 3.7% paraformaldehyde in PBS.  

Cells were permeabilized for 20 min. with PBST (0.1% Triton X-100 in PBS) to enable 

penetration of the reagents in the EdU kit. 
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Fluorescence Labelling of S-Phase Cells 

 Cell proliferation is measured by identifying cells in S-phase of the cell cycle i.e. 

the DNA synthesis phase, using the Edu Click-iT® kit (Invitrogen).  The EdU contains the 

alkyne and the Alexa Fluor® dye contains the azide.  A click-chemistry reaction works, 

when a copper-catalyzed covalent reaction occurs between an azide and an alkyne.  

Additionally, standard aldehyde fixation and detergent based permeabilization are 

compulsory for the Click-iT® detection reagent. The detergent removes lipids and helps to 

increase access to the DNA for the two fluorescent stains. The Click-iT® EdU assay is 

useful to produce low background and high detection sensitivities. The components of the 

kit were assembled, used and stored according to manufacturer’s instructions. A step by 

step protocol is provided in Appendix C. 

Immunofluorescence and Image Analysis 

 Stained cells were visualized using widefield fluorescence microscopy with an 

Olympus BX-50 system (Cell Sens standard v1.14).  The EdU labeled DNA was visualized 

using the TRITC filter cube while the Hoechst fluorescent DNA stain was visualized using 

the DAPI filter cube which has similar excitation and emission spectra.  Images were 

processed and analyzed.  Cells in S-phase, staining red, were compared to the total number 

of cells in a field of view, with blue, Hoechst-stained, nuclei.  The ratio of S-phase cells to 

all cells in the fields of view were compared for the different treatments and a Students 

two-tailed t-test was used to assess statistical significance. 
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In-silico Identification of Mechanosensitive Channels in Human Keratinocytes 

 A human keratinocyte transcriptome (77) was downloaded, annotated and 

screened for mechanosensitive channels.  The transcriptome screened human fibroblasts, 

melanocytes, and keratinocytes for 22582 genes from the human genome and reported at 

least one transcript for 19161 genes from 4 different screenings of human keratinocytes.  

Transcripts were arranged according to their reads per kilobase of transcript per million 

mapped reads (RPKM), a normalized unit of transcript expression. The BioMart program 

was then used to identify the gene name for all the ensemble identifiers.  First, all 

channels were sorted from the large list of transcripts. Second, MSCs s were and Ca2+ 

permeable channels were extracted and listed from highest RPKM to lowest RPKM in 

Table 6.   
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RESULTS 

Identification of Mechanosensitive Channels in Human Keratinocytes 

 Stretch-induced cellular proliferation in keratinocytes requires Ca2+ influx. In 

order to identify the most abundant mechanosensitive ion channels in human 

keratinocytes and other mechanosensitive, Ca2+-dependent pathways, a human 

keratinocyte transcriptome (77) was downloaded and screened for the transcripts of 

interest. The transcriptome listed 22,582 transcripts from human keratinocytes according 

to reads per kilobase of transcript, per million mapped reads (RPKM) a relative measure 

of transcript quantity. 

 309 out of 22,582 transcripts are identified as membrane channels permeable to 

Na+, K+, Ca2+, Cl-, Zn2+, H+, water (aquaporins) and small organics. Furthermore, 91 

transcripts out of the 309 are transcripts for Ca2+ permeable channels, their associated 

proteins, and associated factors. Transcripts for MSCs, Ca2+ permeable channels, their 

associated proteins, and associated factors are arranged in order of most abundant 

transcript to least abundant in Table 6 below for RPKM values ≥ 0.5.  An extension of 

Table 6 is listed in Appendix D for transcripts with lower RPKM values.  According to 

this list TRPM7, Piezo1, TRPV3, polycystic 2 (TRPP2), polycystic 1 (TRPP1), TRPM8, 

TRPM1, TRPV2, TRPM4 and the epithelial Na+ channel have RPKM values greater than 

1.  A transcript for Pannexin 1, a mechanosensitive ATP release channel which activates 

purinergic receptors is the 2nd most abundant.  Numerous purinergic channels are present 

including P2X4, P2X7, P2Y1 and P2Y11.  Therefore, activation of pannexin which 

releases ATP could increase Ca2+ influx through purinergic receptors.  These influx 

pathways will be tested to determine their relevance in keratinocyte proliferation. 
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Table 6. Transcripts for Ca2+ influx pathways. 

Ensemble ID Annotation Transcript 
(RPKM) 

ENSG00000092439 transient receptor potential cation channel subfamily M 
member 7 [Acc:HGNC:17994] 14.2 

ENSG00000110218 pannexin 1 
[Acc:HGNC:8599] 9.5 

ENSG00000103335 piezo type mechanosensitive ion channel component 1 
[Acc:HGNC:28993] 3.7 

ENSG00000196557 calcium voltage-gated channel subunit alpha1 H 
[Acc:HGNC:1395] 3.5 

ENSG00000167723 transient receptor potential cation channel subfamily V 
member 3 [Acc:HGNC:18084] 3.3 

ENSG00000118762 polycystin 2, transient receptor potential cation channel 
[Acc:HGNC:9009] 3.0 

ENSG00000008710 polycystin 1, transient receptor potential channel interacting 
[Acc:HGNC:9008] 2.7 

ENSG00000135124 purinergic receptor P2X4 
[Acc:HGNC:8535] 2.3 

ENSG00000198420 TRPM8 channel associated factor 1 
[Acc:HGNC:22201] 2.1 

ENSG00000107614 polycystin 2 like 1, transient receptor potential cation 
channel [Acc:HGNC:9011] 1.6 

ENSG00000134160 transient receptor potential cation channel subfamily M 
member 1 [Acc:HGNC:7146] 1.6 

ENSG00000187688 transient receptor potential cation channel subfamily V 
member 2 [Acc:HGNC:18082] 1.6 

ENSG00000130529 transient receptor potential cation channel subfamily M 
member 4 [Acc:HGNC:17993] 1.3 

ENSG00000111319 sodium channel epithelial 1 alpha subunit 
[Acc:HGNC:10599] 1.2 

ENSG00000089041 purinergic receptor P2X 7 
[Acc:HGNC:8537] 1.1 

ENSG00000169860 purinergic receptor P2Y1 
[Acc:HGNC:8539] 1.0 

ENSG00000167535 calcium voltage-gated channel auxiliary subunit beta 3 
[Acc:HGNC:1403] 0.9 

ENSG00000160325 calcium channel flower domain containing 1 
[Acc:HGNC:1365] 0.8 

ENSG00000168447 sodium channel epithelial 1 beta subunit 
[Acc:HGNC:10600] 0.8 

ENSG00000144935 transient receptor potential cation channel subfamily C 
member 1 [Acc:HGNC:12333] 0.8 

ENSG00000078795 polycystin 2 like 2, transient receptor potential cation 
channel [Acc:HGNC:9012] 0.5 

ENSG00000244165 purinergic receptor P2Y11 
[Acc:HGNC:8540] 0.5 

ENSG00000170379 TRPM8 channel associated factor 2 
[Acc:HGNC:26878] 0.5 
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Tensile Stress Promotes Keratinocyte Proliferation 

 Cell proliferation of a clonal, human epidermal keratinocyte cell line (HaCaT) 

was monitored during application of tensile stress. Proliferation was monitored under 

stretched and unstretched conditions. Under stretched conditions keratinocytes were 

subjected to one-dimensional tensile stress by increasing their length by 10% on silicone 

chambers for 24 h.  Control cells were grown on the same silicone chambers without 

stretch.  Cell proliferation was quantitated by monitoring EdU incorporation during the 

last 3 hours of experimentation.   

 Four independent unstretched chambers were seeded with HaCaTs, (Figure 4A).  

After the experimental incubation period, cells were fixed and the EdU was stained with 

the Click-IT method (Figure 4B) to identify cells in the proliferative state and all nuclei 

were stained with Hoechst (Figure 4C), in order to count all cells in the field of view.  

The proliferation rate (number of EdU labeled cells/ Hoechst labeled cells) was 

normalized to 100% (Figure 5).  Stretching of six independent silicone chambers, seeded 

with HaCaTs, increased the number of cells in S-phase to 198% compared to the 

unstretched controls (Figure 5), with a high statistical significance (p < 0.0001). 
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Figure 4. Images of human keratinocytes and labelled keratinocyte nuclei. (A) HaCaT 

cells, visualized with phase contrast, adhere well to the collagen-functionalized silicone 

chambers. (B) EdU incorporated into the nuclei was stained with Alexa Fluor 555. (C) 

Hoechst 33342 was used to stain all cellular nuclei. The images in B and C are collected 

from the same chamber. 

Figure 5. Stretching cells promotes the proliferative state. Stretching cells by 10% of their 

initial length, places twice as many cells in the proliferative state compared to unstretched 

conditions. (*** = p < 0.0001).   
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Stretch-Induced Proliferation Requires Ca2+ Influx 

 Previous studies have indicated that Ca2+ influx is required for cellular 

proliferation (68, 78-80).  We tested these former results in order to confirm them in our 

system (Figure 6).  Ca2+ was removed from the extracellular medium by first not adding 

it to the culture media and second by buffering any remaining Ca2+ with EGTA (1mM).  

Ca2+ influx through plasma membrane Ca2+ channels was blocked with the non-selective 

channel blocker gadolinium (10 μM).  In the presence of normal extracellular Ca2+, 

stretched cells proliferated nearly 2-fold greater than unstretched cells (Figure 6). 

However, reduced extracellular Ca2+ (EGTA), reduced proliferation (p < 0.02).  By 

blocking Ca2+ influx with the Ca2+ channel blocker, Gd3+, proliferation was also impaired 

(Figure 6, p < 0.001). 

Figure 6. Impairing Ca2+ influx reduces proliferation of stretched cells.  Removing 

extracellular Ca2+ and buffering remaining Ca2+ with EGTA significantly reduced 

proliferation.  The non-selective Ca2+ channel blocker, Gd3+, also impaired proliferation.  

(* = p < 0.05, *** = p < 0.001) 
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DMSO Reduces Proliferation 

 DMSO is an amphiphilic solvent that promotes solubilization of hydrophobic 

pharmacological agents.  It was required to dissolve some of the pharmacological agents 

in the culture media. However, 0.1% DMSO, a low concentration that normally does not 

affect cell function, impaired proliferation of HaCaTs. In the presence of 10% stretch and 

0.1% DMSO (Figure 7), proliferation was no greater than in the unstretched state. 

 

Figure 7. DMSO decreases stretch-activated proliferation. 0.1% DMSO completely 

nullifies the increased proliferation due to 10% stretch. (*** = p < 0.001) 

 

 Pharmacological agents with high selectivity for blocking specific 

mechanosensitive, Ca2+ permeable channels were selected to block Ca2+ influx and assess 

proliferation in the stretched state.  0.1% DMSO was used as a control but did have a 

dramatic effect on cells itself, as noted above.  Stock solutions of amiloride, RN1734, 

ML204 and MK-886 were dissolved in DMSO.  Final concentrations of the compounds 
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were used that are known to block greater than 90% of the channels including 

amiloride (10 μM), RN1734 (30 μM), MK886 (20 μM), ML204 (10 μM).  However, 

when compared to the 0.1% DMSO control itself, none of the pharmacological agents 

caused statistically significant reduction in the proliferation in the 10% stretched 

condition. 

 

Figure 8. Effect of pharmacological drugs and DMSO on HaCaT proliferation.  When 

compared to DMSO neither amiloride, blocker of the epithelial Na+ channel, nor 

RN1734, blocker of TRPV4, nor MK886, blocker of TRPM7, nor ML204, 

blocker of TRPC4 inhibited proliferation.  

  

 Pharmacological inhibition of pannexin 1, the channel with the 2nd greatest 

RPKM in human keratinocytes, Table 6, was performed with 100 μM carbenoxolone in 

the absence of DMSO, as it is a hydrophilic compound.  Pannexin 1 is an ATP release 
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channel.  Released ATP can activate Ca2+ influx through local purinergic channels which 

are also present in Table 6.  Carbenoxolone significantly impaired cellular proliferation in 

response to 10% stretch. 

  

Figure 9. Blocking the pannexin channel inhibits cell proliferation. (p < 0.001). 
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DISCUSSION 

 Human keratinocytes are highly sensitive to tensile stress and respond by 

increasing DNA synthesis in preparation for cell division, to reduce the tensile stress. As 

a result, tensile stress induces cell proliferation as shown earlier (68, 70).  We confirm 

that continuous mechanical stretching of keratinocytes by +10% for 24 hrs. significantly 

promotes DNA replication when compared to unstretched controls, Fig. 5, (p < 0.0001).  

In the stretched condition, the number of cells in S-phase during the final 3 hours of 

stretching, monitored by using EdU incorporation in HaCaT  nuclei, nearly doubled 

compared to unstretched controls.  

 Calcium channel activation on the cell membrane and calcium influx is crucial for 

promoting cellular proliferation especially under the stretched condition (68, 70).  In 

order to confirm these earlier reports and assess the reliability of our setup, we impaired 

Ca2+ influx by removing it from the medium and by using a non-selective Ca2+ channel 

blocker, Gd3+.   The Ca2+ reaction was significantly inhibited in Ca2+-free solution (1 mM 

EGTA), although not as much as anticipated.  Under these conditions the free Ca2+ 

concentration can only be estimated and no Ca2+ concentration measurements were 

performed.  Reducing extracellular Ca2+ even further with 2 mM EGTA may provoke a 

larger response.  The addition of Gd3+ (10 μM), in the stretched state, reduced 

proliferation to about 65% of the proliferation in the unstretched state.  We conclude that 

increased HaCaT proliferation due to stretch is dependent on Ca2+ influx from the 

extracellular medium.   

 In order to assess the Ca2+ influx pathway which leads to proliferation, we 

collected a human keratinocyte transcriptome, identified all of the transcripts and filtered 
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the transcripts in 2 steps: first, identification of all plasma membrane channels, second, 

identification of all channels with Ca2+ permeability or that were linked to 

mechanosensitive Ca2+ influx.  That list, shown in Table 6 was used to select the channels 

with the highest RPKM values as we hypothesize that those would have the greatest 

impact on cellular function if they were impaired.  Table 6 was used only as a guide as 

protein levels are not directly proportional to transcript levels. 

 We performed pharmacological inhibition of some of the top channels in Table 4, 

including TRPM7 (RPKM 14.2) and pannexin (RPKM 9.5) and other channels 

commonly found in keratinocytes for which pharmacological inhibitors were 

commercially available including epithelial Na+ channels, alpha subunit (RPKM 1.2) and 

beta subunit (RPKM 0.8) and TRPV4 which is closely related to TRPV3 (RPKM 3.3) 

and TRPV2 (RPKM 1.6).  Unfortunately, there is no specific inhibitor for the 

mechanosensitive channel Piezo 1 which had the 3rd largest RPKM value in 

keratinocytes. 

 Most of the blockers had hydrophobic properties and were dissolved in DMSO to 

increase their solubility in aqueous media. When we assessed the influence of DMSO on 

cellular proliferation we were surprised to learn that it suppressed cell proliferation at the 

low concentration of 0.1%.  We hypothesize that DMSO may have influenced 

proliferation by reducing stretch in the membrane.  DMSO is lipophilic and therefore 

partitions within the plasma membrane.  The 10% stretch of the plasma membrane may 

have been offset by the inclusion of the DMSO into the membrane, thus decreasing 

tension in the membrane and reducing channel activation.  This hypothesis should be 

tested further. 
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 Pharmacological inhibition of TRPM7, TRPV4, TRPC4 and ENaC had no effect 

on proliferation in comparison to the DMSO control, which was used as a carrier for 

these compounds.  By contrast, inhibition of pannexin by CBX, had a significant affect in 

inhibiting proliferation.  Pannexin however, is not a mechanosensitive Ca2+ channel. It is 

a mechanosensitive ATP release channel (80-83).  ATP is known to promote cellular 

proliferation in other cell types (84-86).  In keratinocytes, ATP release by pannexin 

channels can activate purinergic channels which are also found in keratinocytes as 

indicated by Table 6. P2X4 and P2X7 are ligand gated Ca2+ permeable channels that 

open in response to extracellular ATP (61, 87, 88).  The P2Y1 and P2Y11 channels are 

also activated by ATP and lead to a rise in intracellular Ca2+  (89, 90). 

 We hypothesize that mechanotransduction promotes proliferation of human 

epidermal keratinocytes by activating an ATP channel, pannexin, which promotes a rise 

in intracellular Ca2+.  Considering that our hypothesis involves purinergic channels, we 

can further test our hypothesis by blocking the purinergic receptors with known 

inhibitors.  These experiments could be followed up by performing concentration 

dependent response curves for the channel blockers and possibly by performing channel 

knockdown experiments to remove critical proteins involved with the stretch-induced 

proliferation pathway. 

 These results are useful for explaining the changes made by tensile stress in 

keratinocytes during wound healing.  The epidermis makes use of tensile stress to 

determine whether more or fewer cells are required to cover the entire body.  Increased 

tensile stress indicates an epidermis with a larger surface area is required while less stress 

indicates a lower surface area is required and cells are extruded from the epithelium (91). 
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By identifying pharmacological activators of this mechanosensitive pathway, we could 

speed wound healing by promoting proliferation of the cells to cover the wound bed. This 

study also helps to clarify the role of the multiple different Ca2+ permeable channels in 

human keratinocytes. 
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APPENDIX A 

 This appendix lists the full composition of DMEM culture medium and the stock 

solutions of pharmacological inhibitors used in the experiments. All the media was sterile 

filtered and kept in refrigerator at 2-8 °C.  Stock solutions were also kept at 2-8 °C 

Table 7. Composition of DMEM culture medium. 

 

Table 8. Stock solutions of pharmacological inhibitors.  

 

  

Component Amount Concentration 
DMEM (Gibco™ DMEM) 1 packet High Glucose 

DI H2O 1000 mL  
FBS 100 mL 10% 
NaHCO3 (mw: 84.007 g/mol) 3.7 g  
Pen-strep 10 mL 10,000 U/mL 

Blockers Amount Solvent 
Amiloride 5 mg 1.88 mL DMSO 
ML-204 2.26 mg 1 mL DMSO 
CBX 0.615mg 1 mL Hank's Medium 
Gd+3 26.36 mg 1 mL water 
MK-886 2.36 mg 250 µL DMSO 
RN1734 0.6 DMSO 
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APPENDIX B 

 This appendix describes the step by step protocol for the preparation of the 

silicone chambers and surface modification of chambers 

Preparation of silicon chambers:  

SYLGARD ® 184 Silicone elastomer kit is used to prepare the PDMS chambers.  

1. Weight the base and curing reagents in [10: 0.86 (w/w)].  

2. Mix them well for 10-15 sec. 

3. Pour the mixture into the chamber molds 

4. The mixture was degassed at room temperature for 2-3 hrs. within chamber molds. 

5. Chamber molds were baked at 37°C for overnight in dry hot air oven.  

6. Chambers must be at room temperature for 30 mins. 

7. Gently take the chambers off from the chamber mold. 

8. Keep them in clean and dry place. 

Protocol for surface modification of chambers 

1. Measure Conc. (90%) Sulfuric acid and (30%) Hydrogen peroxide in 3:1 ratio 

carefully.  

2. Carefully, mixing the Conc. H2SO4 and 30 % H2O2 together. This mixture 

produces heat at room temperature and generate an exothermic reaction. 

3. Allow the mixture to cool down at room temperature before applying on 

chambers.  

4. Cured PDMS chambers were treated with piranha solution for 2 mins at room 

temperature and washed with water. 

5. Soaking the chambers will get better cell adhesion on the chambers.  
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6. Chambers were filled with DI water. 

7.  Keep the chambers in the same stages for 10 mins. 

8.  Repeat the same process twice to remove the proper chemicals from the 

chambers.      
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APPENDIX C 

 This appendix describes the methods for using the Click-iT® EDU Alexa Fluor 

555 Imaging kit solution. All the vials must be at room temperature before opening and 

all the stock solution must keep at deep freezer or refrigerator. 

Table 9. Stock solutions of Click-iT® kit components.  

 

Table 10.  Composition of Click-iT® kit cocktails for 10 chambers 

 

Protocol to use Click-iT® EDU Alexa Fluor 555 Imaging kit solution. 

      1. Remove the medium from the chambers. 

2. Add 1 ml of 3.7 % Paraformaldehyde into the chambers and incubate them for 15 

mins at room temperature. 

3. Remove the fixative solution and wash the solution with 3% BSA dissolved in 

PBS two times. 

4. Add of 1 ml of 0.5 % Triton X-100 in PBS into the chambers and incubate the 

chambers for 20 mins. 

Name Component Solvent 
10 mM EdU A 2 mL DMSO 
Alexa Fluor® azide B 70 µL DMSO 
DMSO C n.a. 
EdU reaction buffer D 36 mL DI H2O 
EdU buffer additive (10 x) F 2 mL DI H2O 
Hoechst 33342 G n.a. 

Component Dilution Required amount 
1X Click-iT® EdU reaction buffer 180 µL + 1620 µL 1800 µL 
CuSo4 80 µL 80 µL 
Alexa Fluor® azide 5 µL 5 µL 
Click-iT® EdU buffer additive 20 µL + 180 µL 200 µL 
Total amount 2085 µL 2ml 
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5. Prepare the cocktail from the stock solution for 10 chambers. 

6. Remove the permeabilizing solution from the chambers and wash with 3% BSA 

dissolved in PBS two times. 

7. Add the 200 μl of cocktails in each chambers and cover with coverslip. 

8. Keep the chambers in a dark place. 

9. Incubate the chambers for 45 mins at room temperature. 

10. Remove the cocktail mixture and wash the chambers with 3% BSA dissolved in 

PBS, one time. 

11. Remove the wash solution and wash the chambers with PBS one time. 

12. Prepare Hoechst Dye 33342 by adding 1 ul of dye to 2 ml of PBS and mix it.  

13. Add 200 μl of solution onto the chambers and cover it with coverslip. 

14. Keep the chambers in a dark place. 

15. Incubate the chambers for 45 mins at room temperature. 

16. Remove the solution from chambers and wash the chambers with PBS one time. 

17. Add the mounting media and let them dry overnight. 

18. Chambers are ready for capturing the image through Brightfield BX-50 

fluorescence microscopy system. 
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APPENDIX D 

 This appendix lists the extended identification of plasma membrane channels in 

human keratinocytes.  

Table 11. Transcripts for Ca2+ influx pathways (extended) 

Gene Stable ID Gene description Transcript 
(RPKM) 

ENSG0000010245
2 

Sodium leak channel, non-selective 
[Acc:HGNC:19082] 0.4 

ENSG0000015395
6 

Calcium voltage-gated channel auxiliary subunit 
alpha2delta 1 [Acc:HGNC:1399] 0.3 

ENSG0000016599
5 

Calcium voltage-gated channel auxiliary subunit 
beta 2 [Acc:HGNC:1402] 0.3 

ENSG0000017163
1 Pyrimidinergic receptor P2Y6 [Acc:HGNC:8543] 0.3 

ENSG0000011088
1 

Acid sensing ion channel subunit 1 
[Acc:HGNC:100] 0.3 

ENSG0000014240
8 

Calcium voltage-gated channel auxiliary subunit 
gamma 8 [Acc:HGNC:13628] 0.3 

ENSG0000000628
3 

Calcium voltage-gated channel subunit alpha1 G 
[Acc:HGNC:1394] 0.2 

ENSG0000014840
8 

Calcium voltage-gated channel subunit alpha1 B 
[Acc:HGNC:1389] 0.2 

ENSG0000010200
1 

Calcium voltage-gated channel subunit alpha1 F 
[Acc:HGNC:1393] 0.2 

ENSG0000008345
4 Purinergic receptor P2X 5 [Acc:HGNC:8536] 0.2 

ENSG0000011912
1 

Transient receptor potential cation channel 
subfamily M member 6 [Acc:HGNC:17995] 0.2 

ENSG0000017559
1 Purinergic receptor P2Y2 [Acc:HGNC:8541] 0.2 

ENSG0000019821
6 

Calcium voltage-gated channel subunit alpha1 E 
[Acc:HGNC:1392] 0.2 

ENSG0000006719
1 

Calcium voltage-gated channel auxiliary subunit 
beta 1 [Acc:HGNC:1401] 0.2 

ENSG0000021319
9 

Acid sensing ion channel subunit 3 
[Acc:HGNC:101] 0.2 

ENSG0000014448
1 

Transient receptor potential cation channel 
subfamily M member 8 [Acc:HGNC:17961] 0.2 

ENSG0000016257
2 

Sodium channel epithelial 1 delta subunit 
[Acc:HGNC:10601] 0.2 
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ENSG0000013767
2 

Transient receptor potential cation channel 
subfamily C member 6 [Acc:HGNC:12338] 0.2 

ENSG0000018238
9 

Calcium voltage-gated channel auxiliary subunit 
beta 4 [Acc:HGNC:1404] 0.1 

ENSG0000016686
2 

Calcium voltage-gated channel auxiliary subunit 
gamma 2 [Acc:HGNC:1406] 0.1 
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