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ABSTRACT 

EVALUATION OF BERBERINE AS AN ALTERNATIVE TO ANTIBIOTICS IN 

NURSERY PIG DIETS 

EMILY SCHOLTZ 

2018 

Pig weaning process results in reduced growth performance and gut health of 

weaned pigs. Antibiotics can be added in diets for weaned pigs to improve growth 

performance and gut health, but their use is being discouraged because they can lead to 

development of antimicrobial resistant microorganisms. Thus, there is need for 

alternatives to antibiotics in diets for weaned pigs. The overall goal of this thesis research 

was to determine the effects of plant extracts (berberine, quercetin, and allyl 

isothiocyante [AITC]) as alternatives to antibiotics in weaned pig diets.  

The first objective of the research was to determine in vitro antimicrobial 

activities of berberine, quercetin, and AITC against Escherichia coli with the goal of 

identifying the best plant extract for in vivo (animal) studies. Inclusion of berberine in 

incubation medium at 25, 12.5, 6.25 or 3.125 µg/100 µl reduced (P < 0.05) in vitro 

growth of E. coli. However, inclusion of berberine in incubation medium at 1.5625 

µg/100 µl did not affect in vitro growth of E. coli. Inclusion of AITC and quercetin in the 

incubation medium at 50.65 µg/100 µl and 11 µg/100 µl, respectively, did not affect in 

vitro growth of E. coli. Thus, berberine was selected for animal studies because it was 

more effective (at a lower concentration [~3.0%]) in inhibiting in vitro growth of E. coli 

than quercetin or AITC.  
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The second objective was to determine the effects of dietary inclusion of 

berberine at 3.0% inclusion and antibiotics on growth performance and gut health of 

weaned pigs. Pigs were fed experimental diets for 7 days after weaning, at end which 

growth performance and indicators of gut health were measured. Dietary inclusion of 

berberine decreased (P < 0.05) ADFI, ADG, and ileal villous height by 63, 328 and 28%, 

respectively, and tended to decrease (P= 0.078) transepithelial resistance (which is an 

indicator of gut permeability to toxins) in duodenum by 20%.  Dietary antibiotics did not 

affect any of the response criteria measured in this study. 

The last objective was to determine the effects of dietary inclusion of berberine at 

0.05% on growth performance and gut health of weaned pigs. Pigs were fed experimental 

diets (basal diet with or without antibiotics or berberine at 0.05%) for 21 days. Indicators 

of gut health were determined at day 11 of the study, whereas growth performance was 

determined at days 11 and 21 of the study. The overall (day 1 to 21) ADG of pigs was 

increased (P < 0.05) by dietary inclusion of antibiotics by 32.4% and tended to increase 

(P < 0.06) by dietary inclusion of berberine by 16.6%. The overall ADFI of pigs was also 

increased (P < 0.05) by dietary inclusion of antibiotics by 21.1%. However, the overall 

ADFI of pigs was not affected by dietary inclusion of berberine. There was no effect of 

adding berberine or antibiotics to basal diet on villous height and crypt depth, and villous 

height to crypt depth ratio in duodenum and jejunum, and on crypt depth in ileum. Also, 

there was no effect of adding antibiotics to basal diet on villous height and villous height 

to crypt in ileum. However, villous height to crypt depth ratio in ileum was increased (P 

< 0.05) by dietary inclusion of berberine. There was no effect of dietary treatment on 

lactulose:mannitol ratio in urine, which is another indicator of gut permeability to toxins. 
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Inclusion of berberine in basal diet had no effect on TER values in the jejunum and the 

ileum. However, dietary antibiotics improved (P < 0.05) TER in ileum.  Dietary 

berberine increased (P < 0.05) short circuit current (Isc, which is an indicator of nutrient 

absorptive capacity) in jejunum and ileum. However, dietary antibiotics did not affect Isc 

in jejunum and ileum.  

In conclusion, berberine was more effective than quercetin or AITC in inhibiting 

in vitro growth of E. coli. However, berberine did not affect gut health of weaned pigs 

when it was included in diets at 3% (the lowest concentration at which it inhibited in vitro 

growth of E. coli), which was likely due to the reduced ADFI by dietary berberine 

because ADFI negatively influence gut health. Dietary berberine at 0.05% improved 

intestinal nutrient absorptive of and ADG of weaned pigs without affecting ADFI, 

implying that berberine can improve growth performance of weaned pigs, and that the 

negative effects of berberine on feed intake of weaned pigs are alleviated when berberine 

is included in diets at low levels. 
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GENERAL INTRODUCTION 

Piglet weaning is a stressful event that is associated with reduced feed intake, 

nutrient digestion and absorption, and increased susceptibility to gut infections; hence, 

growth performance of piglets is reduced (Kiarie, 2008; Wijtten et al., 2011). Piglet stress 

is due to abrupt changes in their new environment and diet composition, as well as 

interruption of already established social structure with their littermates and sows.  Gut 

infections characterized with diarrhea are the major cause of reduced growth performance 

and increased morbidity and mortality of post-weaned pigs and pathogenic E. coli are a 

major cause of the gut infections (Fairbrother et al., 2005). Growth performance of pigs 

during the weaning phase determines future growth of these pigs and poor performance 

during this time causes huge economic losses in swine industry (Cutler and Gardner, 

1988).  

Antibiotics have long been added in diets for the weaned pigs at low levels to 

improve their performance. The fear of the development of antibiotic resistant 

microorganisms has limited the addition of antibiotics in the diets for food animals. For 

this reason, it is important to find effective antibiotic alternatives to manage gut health. 

Various potential alternatives to antibiotics (feed additives), including prebiotics, 

probiotics, minerals, plant extracts, and animal-derived antibodies are being investigated; 

however, majority of these feed additives have been inconsistent in improving gut health 

and growth performance of pigs (Heo et al., 2013; Thacker, 2013). The use of antibiotic-

free diets in the swine industry will continue to be a challenge unless there is an effective 

alternative.  
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Weaning process results in increased permeability of intestine of pigs due to 

increased oxidative stress (Wijtten et al., 2011). The increased intestinal permeability 

increases translocation of toxins (that are produced by gut microorganisms) into the body, 

causing inflammatory injuries in the gut wall, which increases the susceptibility of 

weaned pigs to gut infections. Thus, for an alternative to antibiotics to be effective, it has 

to reduce growth of pathogenic microorganism in the gut or reduce oxidative stress (that 

results in increased intestinal permeability), or both.  

Quercetin, allyl isothiocyante and berberine were evaluated as potential antibiotic 

alternatives. Quercetin is a flavonoid, flavonoids belong to a group of natural substances 

found in fruit, vegetables, grains, bark, roots, stems, and flowers. They are known for 

their various beneficial health effects. Quercetin has various properties including; 

antihypertensive and antiarrhythmic activity; anti-inflammatory and antiallergic 

properties; and other activities (Formica and Regelson, 1995). Allyl isothiocyante is a 

compound formed from hydrolyzed Glucosinolates, in response to plant tissue injury by 

herbivorous animals or pathogenic microorganisms.  AITC has been shown to have 

strong antimicrobial activity (Lin et al., 2000) and antioxidant activity (Velioglu et al., 

1998). Berberine is a plant alkaloid that has already been isolated from various plant 

species including Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), and 

Berberis aristata (tree turmeric) (Mokhber-Dezfuli et al., 2014). Berberine has been 

shown to reduce diarrhea in humans (Rabbani, 1987) that have been infected with the 

same diarrhea-causing bacteria in weaned pigs. Berberine has also been shown to be an 

effective antioxidant by several mechanisms including removal of oxygen, scavenging of 

reactive oxygen species and nitrogen species or their precursors (Shirwaikar et al., 2006). 
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 Thus, berberine can potentially be used as an alternative to antibiotics in diets for 

weaned pigs. However, the effects of berberine on growth performance and gut health of 

weaned pigs haven’t been determined. 

The main objective of this thesis research was to evaluate berberine, quercetin and 

allyl isothiocyante as alternatives to antibiotics in diets for weaned pigs. 
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CHAPTER ONE 

LITERATURE REVIEW 

Gut Health at Weaning  

The gastrointestinal tract (GIT) of a pig is a complex environment. In particular, 

in newborns and around the time of weaning, the pigs' gut rapidly changes in size, has 

high protein turnover rates, undergoes rapid changes in microbiota, and quickly alters its 

digestive and immune functions (Pluske et al., 1997; Vente-Spreeuwenberg and Beynen, 

2003; Burrin and Stoll, 2003; Lallès et al., 2004). At weaning, pigs are challenged with 

abrupt changes in their environment, and diet composition, as well as interruption of 

already established social structure with their littermates and sows. These weaning 

stressors results in changes in gastrointestinal morphology, microbiology, physiology and 

immunological challenges (Spreeuwenberg et al., 2001; Heo et al., 2012), which in turn, 

results in a decrease in growth performance, an increase in diarrhea incidences, and an 

increase in susceptibility to gut infection. The effects of weaning on diarrhea; growth 

performance; and gastrointestinal morphology, microbiology, physiology and 

immunology of pigs are discussed below. 

Effects of Weaning on Diarrhea. Post-weaning diarrhea is a condition in weaned 

pigs that is characterized by frequent discharge of watery feces during the first 2 weeks 

after weaning and represents one of the major economic problems for the pig industry 

(Cutler and Gardner, 1988). When piglets are abruptly weaned at 3-4 weeks of age, post-

weaning diarrhea commonly occurs as a consequence, and the susceptibility to disease 

increases. Immaturity of the intestinal immune system in combination with lack of 

dietary supply of IgA and other compounds that are derived from sow milk contributes to 
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increased susceptibility of the pigs to these diseases (Bailey et al., 1992, 2005; Stokes et 

al., 2004). Inadequate dietary supply of IgA results in increased bacterial adhesions to 

epithelial receptors that are normally protected by immune defense systems.  

 In addition to immature immune system, weaning results in a reduction in 

absorption of nutrients such as electrolytes from the intestinal lumen of piglets. When 

fluid and electrolytes influx into the gut lumen exceeds their efflux into the blood, a net 

secretary condition occurs, which serve as a predisposing factor for secretory diarrhea 

(Pacha, 2000; Wapnir and Teichberg, 2002). Weaning results in reduction in small 

intestinal absorptive area and in maturation of enterocytes (Hampson, 1986), which partly 

explain the reduced nutrient absorptive capacity, and hence increased susceptibility of the 

pigs to diarrhea and reduced growth rate of pigs in the post-weaning period. 

Effects of Weaning on Growth Performance. It has well been established that 

weaning of pigs is characterized with little or no body weight gain during the first and 

second week post-weaning, and low feed intake during the first 2 weeks post-weaning 

seems to be the main reason for the growth stasis after weaning.  The changes in diet and 

environment during weaning have negative effects on feed intake. Wolter and Ellis 

(2001) determined the effect of feeding liquid-based diet on growth performance of pigs 

from weaning to slaughter weight. In their study, liquid milk-based diet accelerated 

growth rate immediately after weaning, but this advantage was not sustained to slaughter 

weight. Hyum and Ellis (1997) conducted a trial, which looked at the impact of 

environmental stressors on growth performance. In their study, pigs were subjected to 

three different stressors (ambient temperature, re-grouping and space allowance) in a 

factorial arrangement. Of these three stressors, it was found that ambient temperature had 
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the biggest impact on ADG and ADFI. However, all the 3 stressors were additive, 

implying that removal of any of these stressors could improve growth performance on 

pigs. 

The weaning process induced-decreased feed intake by pigs can also be due to 

allergic reaction to dietary soy proteins. Indeed, dietary soybean co-products have 

negative effects on ADG and ADFI during the first two weeks following weaning (Li et 

al., 1991). A decrease in villous height and increase in crypt depth as well as an increase 

in skin-fold thickness were observed when weaned pigs were fed soybean meal-based 

diets, but not when they were fed skim milk-based diets (Li et al., 1991). Since skin-fold 

thickness, which is an indicator of antigen sensitivity, is negatively correlated with 

growth rate, the reduced growth performance of weaned pigs due to dietary soybean 

products is attributed to the allergic reaction to the soybean proteins (Li et al., 1991). 

Dreau et al. (2014) conducted a study to determine hypersensitivity of early-weaned pigs 

to soybean, and observed positive skin tests, and a 25% decrease in villus height in the 

duodenum due to dietary inclusion of soybean proteins. Friesen et al. (1993) reported that 

the early-weaned pigs ought to be fed starter diets containing some soybean proteins in 

order to develop tolerance toward soy protein without causing reduced growth 

performance because they observed a decrease in ADG, ADFI and F:G of weaned pigs 

during first 14 days of exposure to soybean meal, but not after the 35-day feeding period.  

Effects of Weaning on Intestinal Morphology. The small intestine is lined with 

finger-like projections called villi and attached to these villi are microvilli. Both these act 

in increasing surface area and absorptive capacity of the small intestine. There are 

depressions found between the villi referred to as “crypts”, which are a source of new 
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cells that will then migrate to the tips of the villi (Kitt et al., 2001). The lining of the 

intestines has various functions including absorption of nutrients, and secretion of 

electrolytes, mucins and immunoglobulins, and selective barrier protection against 

harmful antigens and pathogens (Lalles et al., 2004). Weaning process results in various 

changes in gut morphology that affect these intestinal functions, leading to a decrease in 

the digestive and absorptive capacities of the small intestine. These changes include 

villous atrophy, crypt hyperplasia, and a decline in brush border enzyme activity (GU et 

al., 2002). Villous atrophy after weaning is caused by either an increased rate of cell loss 

or a reduced rate of cell renewal (Pluske et al., 1997). Villous shortening that occurs 

through an increased rate of cell loss, is associated with increased crypt cell production, 

caused by either a microbial challenge or antigens found in diets (Pluske et al., 1997). 

Villous atrophy that is due to decreased rate of cell renewal is as a result of reduced cell 

division in the crypts, and it is caused by a state of anorexia during the wean phase 

(Pluske et al., 1997). Data from various studies have demonstrated that villous atrophy is 

correlated with depressed feed consumption and that epithelial morphology improves 

when normal feed intake patterns resume (McCracken et al., 1999).  As a result of the 

changes in gut morphology, the villous height:crypt depth ratio for weaned pigs is lower 

than that for unweaned pigs.  

 Verdonk et al. (2007) determined the effect of feed intake by weaned pigs on 

structure and permeability of the small intestine, and observed reduced villous height by 

17% and reduced crypt depth by 13% due to a decrease in feed intake by 31%.  However, 

in their study, gut wall permeability was not affected by feed intake. Kelly et al. (1991) 

determined the effect of post-weaning feed intake on digestive capacity in the weaned 
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pigs using a gastric intubation to control amount of feed consumed, and observed a 19% 

decrease in villous height and a 13% decrease in crypt depth in pigs that had restricted 

feed intake (226 g per day) compared with the pigs that had unrestricted feed intake (864 

g per day), implying that nutrient intake in the weaned pig affects the morphology of the 

gut. Pluske et al. (1996) determined the effect of replacing sow milk diet with starter on 

morphology of small intestine in weaned pigs, and observed that piglets given the starter 

diet had a 30% decrease in villous height and a 4% increase in crypt depth compared with 

the pigs fed milk diets ad libitum. There was also a 28% decrease in DM intake in the 

pigs fed the starter diet versus the milk diet ad libitum, which could be a cause for 

morphology changes. Results from these 3 studies demonstrates that villous height and 

crypt depth can be maintained if piglets are maintained on similar sow milk diet, and if 

the piglets do not suffer from stress of interrupted intake after weaning.   

Effects of Weaning on Intestinal Inflammation. Inflammation occurs in weaned 

pigs in response to physical or chemical damage in GIT or to invasion by an infectious 

agents or feed toxins. This inflammation impairs the epithelial barrier function and 

decreases absorption of nutrients.  

In addition to the reduction in feed intake, age at weaning, dietary factors, as well 

as the stressors caused by change in environment and the separations from sow and 

littermates are all contributors to the changes in intestinal architecture. McCracken et al. 

(1999) determined the effects of a pelleted milk diet or pelleted soy-based diet on small 

intestinal inflammatory responses and morphology alterations by examining T cell 

numbers. They observed a relationship among weaning anorexia, local inflammatory 

responses, and compromising changes of the piglet’s small intestinal morphology. There 
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was an increase in crypt CD4+ T cell numbers on day 7 of the pigs fed soy-based diet, 

but not of those fed the milk-based diet, indicating that the dietary soy antigens induced 

inflammatory and immune responses in the weanling pigs. However, the soy-induced 

inflammation that was present, likely occurred after the intestinal morphology had 

already been compromised due to local inflammation caused by anorexia that occurs 

immediately after weaning.   

Effects of Weaning on Intestinal Permeability. Epithelial barrier function in the 

GIT is reduced in weaned pigs due to stress and dietary alterations. The intestinal barrier 

consists of a single layer of enterocytes and connecting inter-epithelial tight junctions, 

which are responsible of regulating the para-cellular flux of solutes and macromolecules 

(Blikslager et al., 2007). Stress and starvation results in increased intestinal permeability, 

which can be attributed the effects of stress and diet on IgA production, the main 

immunologic defense against bacterial adherence to the mucosa (Spitz et al., 1996). The 

bacterial adherence to intestinal epithelia induces a defect in barrier function that appears 

to occur at the intercellular tight junctions, which are the rate-limiting seal of the para-

cellular pathway between epithelia cells (Spitz et al., 1994). When this rate-limiting seal 

is dysfunctional, permeability increases allowing toxins, allergenic compounds or 

bacteria to enter into body, resulting in inflammatory and immunologic responses 

(Deitch, 1993; Wang, 1995). Heat stress and the stress of transport and shipping can 

cause a reduction in intestinal blood flow and the destruction of tight junctions. This 

reduction in intestinal blood flow results in oxidative stress, which can damage cell 

membranes and open tight junctions (Hall et al., 2001). Moeser et al. (2007) conducted a 

study to determine the role of weaning on serum corticotrophin-releasing factor and 
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cortisol, and intestinal permeability of pig, and observed increased intestinal permeability 

in jejunum (by 59%) and colon (by 34%),  serum corticotrophin-releasing factor level (by 

144%), and serum cortisol level (by 95%) in weaned pigs  due to weaning process. Based 

on results from these studies, it is apparent that weaning induces activation of the stress 

pathways, which may be mediating the intestinal barrier dysfunction.  

In addition to stress, change in diet composition and reduction in feed intake that 

occur during weaning can potentially affect intestinal permeability and epithelial barrier 

function of weaned pigs (Spreeuwenberg et al., 2001). However, Spreeuwenberg et al. 

(2001) observed no effects weaning diet composition on transcellular transport, but did 

see a 39% change in paracellular transport on d 2 and 4 compared to d 0 and 1, indicating 

that the effect of diet composition on mucosal integrity is not as important as the 

sequential effects of low feed intake during the first 4 d post-weaning.  McCracken et al. 

(1999) also reported that intestinal inflammation subsides and epithelial morphology 

improve when normal feed intake patterns resume after weaning. Thus, low feed intake 

and stress seem to be the two main causes of decreases in mucosal integrity. 

 

Dietary Means of Improving Growth Performance and Gut Health of Weaned Pigs 

Various feed additives are available to help improve the transition of newly 

weaned pigs to a new diet and environment, and reduce the incidences of infections. The 

feed additives include antimicrobial agents, organic acids, prebiotics, probiotics, 

improved protein sources, and natural plant and herbal extracts. All of these have the 

potential to improve gut health around weaning, and their effects on growth performance 
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and gut health of weaned pigs are discussed below. However, it’s important to evaluate 

other feed additives to determine their potential to contribute to gut health.  

Effects of Antimicrobial Agents on Growth Performance. Antimicrobial agents 

promote growth performance mainly through their actions in the GIT. Antibiotics are 

type of antimicrobial drugs that are used for treatment and prevention of bacterial 

infections. Antibiotics are included in swine diets as non-nutritive feed additives for their 

therapeutic potential as well as their ability to promote growth and gut health. Examples 

of antibiotics that are included in swine diets include carbadox, tylosin, lincomycin, 

sulfonamides, and tetracyclines.  Apart from antibiotics, other anti-microbial agents that 

are included in swine diets to improve gut health and promote growth include zinc and 

copper (at pharmacological doses). 

When added at low (subtherapeutic) levels in feeds, antibiotics improve growth 

rate and feed efficiency, reduce mortality and morbidity, and improve reproductive 

performance (Cromwell, 2001). Some of proposed mechanisms by which antibiotics 

stimulate growth include the suppression of growth of pathogenic microorganisms, 

promotion of growth of bacteria that synthesize nutrients that are required by the host 

animal, and suppression of growth of bacteria that compete with the host animals for 

dietary nutrients (Cromwell, 2001). 

Several studies have been conducted to determine the effects of dietary antibiotics 

on growth performance of weaned pigs. Teegan et al. (2003) conducted a study in which 

nursery pigs were fed control diet or a control with Denagard/CTC (35 g/ton Denagard™, 

400 g/ton Chlortetracycline), carbadox (g/ton), Neo-Terramycin (140 g/ton Neomycin 

Sulfate, 140 g/ton Oxytetracycline HCl), or Bio Mos (0.3% mannanoligosaccharide) from 
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day 0 to 31 post-weaning. Diet that contained Denagard/CTC (35 g/ton Denagard™, 400 

g/ton Chlortetracycline) tended to have the greater ADG compared with the control diet 

or diet with Bio Mos in the first 9 days. From day 9 to 31, pigs fed the diet containing 

Denagard/CTC had the greater ADG and ADFI than pigs fed all other diets. Overall (d 0 

to 31), pigs fed the diet containing Denagard/CTC had the greatest ADG and ADFI 

compared with pigs fed all other treatment diets. The addition of a 

mannanoligosaccharides did not improve growth performance compared to antibiotic 

diet. Thus, data from this study of Teegan et al. (2003) indicate that antibiotics are 

effective in improving growth performance of weaned pigs, but the effectiveness of 

antibiotics with regard to improving growth performance is partly depended on type of 

antibiotics used.  

Antibiotics are also used at intermediate levels to prevent disease and at high 

(therapeutic) levels to treat diseases in animals (Cromwell, 2002). Often times this means 

treating the entire group of animals with the goal of treating the sick animals and 

medicating healthy animals to prevent disease. In a study by Van Lunen (2003), pigs fed 

diets with or without tylosin phosphate supplementation in a biosecure housing system 

did not differ in growth performance and carcass characteristics, which was attributed to 

the minimal disease status of the pigs housed in the biosecure area. Studies have shown 

that disease challenged pigs show a greater response in growth performance when fed 

diets containing antibiotics at sub-therapeutic levels (CAFA, 1997), indicating that the 

benefits of adding antibiotics in diets at sub-therapeutic levels are greater when pigs are 

challenged with diseases.   



13 

 As previously mentioned, dietary inclusion of micro-minerals (zinc and copper) at 

pharmacological levels can be an effective tool for preventing diarrhea and promoting 

growth of weaned pigs. For instance, dietary zinc improved feed efficiency (Hahn and 

Baker, 1993), ADFI and ADG (Hill et al., 2000) and reduced diarrhea (Broom et al., 

2006) in weaned pigs. Stahly et al. (1980) reported that dietary combination of both 

copper and an antibiotic (CTC or VIR) resulted in a greater feed intake and growth rate 

and tended to improve efficiency of feed utilization when compared with individual 

dietary inclusion of these antimicrobial agents, indicating that the effects of the micro-

minerals (at pharmacological levels) and antibiotics in weanling pigs are additive in 

nature. 

Probiotics. At weaning, when it occurs early, the transition from milk to a solid 

diet leads to dramatic changes in the composition of the microbial community during the 

7–14 days after weaning (Hillman, 2001). This makes the piglet highly susceptible to 

enteric diseases. Non-pathogenic gut microflora contributes to intestinal protection 

against pathogens by competing for binding sites that pathogens would bind, competing 

for nutrients, as well regulating immune response (Roselli et al., 2005). 

Probiotics are orally supplemented living microorganisms used as therapeutic 

agents for improvement and promotion of health (Bauer et al., 2006). Probiotics have 

immunological effects because they have high ability to adhere to the intestinal surface, 

thereby interfering with the adhesion of pathogenic bacteria (Fuller, 1991). Probiotics can 

also beneficially influence intestinal health by stabilization of the endogenous GIT 

microbiota (Salmien et al., 1998). This stabilization is partly due to the production of 

short-chain fatty acids from undigested food materials and endogenous substances, such 
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as mucus by the probiotic bacteria (Ohashi et al., 2009). Lactobacilli and Bifidobacteria 

are non-pathogenic and health-promoting bacteria that are mainly used as probiotics. 

 Several studies have been conducted to determine the effects of probiotics on 

performance and gut health of pigs. Pollmann et al. (1980) determined the effects of two 

commercially available lactic acid-producing bacterial feed additives on weight gain and 

feed conversion ratio of nursery and growing-finishing pigs, and observed  a tendency of 

the probiotics to improve ADG (0.263 vs. 0.270 kg) and F:G (2.28 vs. 2.20) of nursery 

pigs. However, probiotics did not affect growth performance of the growing-finishing 

pigs. In a relatively recent study,  Shu et al. (2001) determined the effects of 

supplementing diets for 3-week-old pigs with Bifidobacterium lactis HN019 probiotic on 

severity of post-weaning diarrhea, and observed severe diarrhea scores of 5 and 6 for the 

control diet on days 1 and 2 and no severe diarrhea for probiotic supplemented diet. The 

animals that were fed B. lactis HN019 also had significantly higher feed conversion 

efficiency (0.66 vs. 0.25) from day 0 to 9 post-weaning than those that were fed 

unsupplemented diet. This shows that feeding of the probiotic B. lactis HN019 can result 

in some protection of weaned pigs against post-weaning diarrhea. Van der Peet-

Schwering et al. (2014) determined the effects of yeast culture and modified yeast culture 

as alternatives to antibiotics in diets for piglets on the growth performance, gut integrity, 

and blood cell composition of weanling pigs. Results from their study showed that piglets 

fed diets with the antibiotic performed similarly to those fed the diet with the yeast 

culture. There was no effect of dietary treatment on the concentration of white blood cells 

and the percentage of lymphocytes or neutrophils within the white blood cell population. 

Also villous length, crypt depth, and the villous:crypt ratio were unaffected by dietary 
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treatment. Another study, Chen et al. (2005) determined the effects of adding complex 

probiotic including Lactobacillus acidophilus, Saccharomyces cerevisae and Bacillus 

subtilis in diets at 0.1 and 0.2% on growth performance, nutrients digestibility, blood 

characteristics and fecal noxious gas content of 40 kg pigs in a 42-day growth trial. Over 

the 42 day period, pigs fed diet with 0.2% probiotic had greater ADG (by 7.5% and 6%) 

than those fed the basal diet, those fed diet with 0.1% probiotic. There was no effect of 

treatment on blood characteristics and nutrient digestibility. Thus, probiotics seem to 

improve growth performance and gut health in some cases, but not in others. Freitag et al. 

(1998) preformed an evaluation of several different probiotics feed additives on their 

effects on growth performance and gut health of weaned pigs, and observed that most 

studies with weaning piglets showed positive effects of probiotics on weight gain and 

feed conversion, whereas some studies showed no or adverse effects. Significance has 

rarely been observed between treatments in trials where there was a positive effect of 

feeding probiotics. Through his evaluation they also observed different doses of a 

Bacillus cereus preparation showed no significant influence on the incidence of diarrhea, 

while other studies showed significant reductions with supplementation. This indicates 

strong differences in reactions of the animals toward the individual probiotics.  

Prebiotics. The term prebiotics was identified by Gibson and Roberfroid (1995) 

as indigestible food ingredients that beneficially affect the host by selectively stimulating 

the growth and/or activity of health-promoting bacteria in gastrointestinal tract. For 

example, prebiotics stimulate growth of Bifidobacterium, which inhibit growth of 

pathogenic bacteria (Gibson and Wang, 1994). This reduction in growth of pathogenic 

bacteria, in turn, can help improve the immune system of the animal. Oligosaccharides 
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are an example of prebiotics that can selectively stimulate the growth of health-promoting 

bacteria.  

The effects of adding prebiotics in diets for pigs on gut health and performance 

pigs have been determined in several studies. Liu et al., (2015) determined the effect of 

supplementing diets with chito-oligosaccharide (COS) on growth performance, intestinal 

structure, and fecal shedding of total E. coli and Lactobacillus in weaned pigs. They 

observed an increase in ADG (315 vs. 285 g), ADFI (460 vs. 436 g) and G:F (0.69 vs. 

0.66 g/g) when COS was supplemented at 200 mg/kg compared with the negative control 

diet. Dietary supplementation of COS at 200 mg/kg and dietary supplementation of 

chlortetracycline (CTC) increased the villus height and villus:crypt ratio in the ileum and 

jejunum, indicating that COS can be an effective alternative to dietary antibiotics with 

regard to improving growth performance and gut health of weaned pigs. Zhao et al., 

(2011) also conducted a study to determine the effects of mannan oligosaccharides (MO) 

and fructan on growth performance, nutrient digestibility, blood immune variables, and 

diarrhea score in weaned pigs. During the entire period of the study (d 0 to 28), pigs fed 

the MO diet had a greater ADG than pigs fed the negative control diet (399 vs. 306 g). 

Pigs fed the positive control and MO diets had greater ADFI than pigs fed the negative 

control diet (485 g and 499 vs. 394 g). No differences were observed in diarrhea score 

among the positive control, negative control plus 0.1% fructan, and negative control plus 

0.05% fructan and 0.05% Bio-Mos. However, diarrhea score in pigs fed the MO diet was 

lower than that of pigs fed the negative control diet. Another study that was conducted by 

Estrada et al., (2000) determined the effects of the dietary supplementation of 

fructooligosacchriades (FOS) and bifidobaterium longum, alone or in combination, on 
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growth performance and fecal bacterial populations of 18 d-old pigs for 3 weeks in two 

different experiments. There was a positive effect of FOS and B. longum in the first week 

on ADG (102 vs. 88 g), but not in the second or third week. On day 7, the number of 

bifidobacteria was higher in the feces for FOS plus B. longum-administered pigs than in 

feces for pigs fed the control diet. However, there were no effects of dietary treatment on 

bacterial count on days 14 and 21. The B. longum supplementation improved BW (13.75 

vs. 11.88 kg) and ADG (397 vs 299 g), whereas supplementation of FOS plus B. longum 

negatively affected growth performance. Thus, prebiotics can have a beneficial effect on 

growth performance and gut health. However, the beneficial effects of prebiotics can vary 

depending on the type of prebiotic used.  

Essential Oils. Essential oils (EOs), also called volatile or ethereal oils, are 

aromatic oily liquids obtained from plant materials (Cho et al., 2006). Most of the EO 

products that are commercially available are blends of various essential oils; and they 

include thymol and cinnamaldehyde, oregano, rosemary, and sage to name a few. EO’s 

have been widely reported to have antimicrobial properties, which are their most evident 

mechanisms by which they improve gut health of animals. However, EOs possess other 

properties such as antioxidant activity, which oregano is well known for (Economou et 

al., 1991). Free radicals are continuously produced by the body during oxygen 

metabolism and exogenous damage, which can cause an inflammatory response or tissue 

damage (Nijveldt et al., 2001). EO products are quite complex mixtures of several dozens 

of components, and this complexity makes it often difficult to explain their activities. 

Some studies have shown that whole EOs (mixture of several EOs) have a greater 

antibacterial activity than a mixture of a few major components (Gill et al., 2002; Mourey 
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and Canillac, 2002), which indicates that the minor components also significantly 

contribute to the antibacterial activity of the EOs products and may have a synergistic 

effects with major components, or have greater influence on the antibacterial activity of 

EOs products (Brenes et al., 2010).  

 EO’s can be supplemented to diets in combination with other alternatives to 

antibiotic to improve gut health and growth performance of weaned pigs. A blend of 

EO’s alone can also be as effective as antibiotics with regard to improving gut health and 

growth performance of weaned pigs. Li et al., (2012) determined the effects of 

supplementing diets for weaned pigs (initial body weight of 8.4 kg) with an EOs blend or 

antibiotics (positive control) for 5 weeks on the growth performance, nutrient 

digestibility, immune status, intestinal morphology, and intestinal microbiology. The dry 

matter and crude protein digestibilities were much higher for the pigs fed the positive 

control (PC) and the EOs diets compared to the negative control diet. The IGF-I 

production and lymphocyte proliferation were higher in the pigs fed PC and EOs diet 

than those fed NC diet. There was an increase in villus height in the jejunum for the PC 

diet (509 µm vs. 466 µm) and EOs (535 µm vs. 466 µm) diet compared with the NC diet. 

They observed an increase in ADG of the pigs by 9 and 14% due to dietary 

supplementation of EO product and antibiotics, respectively. There was also a decrease in 

E.coli in the cecum, colon, and rectum in pigs fed the PC and EO diet compared with 

negative control diet. These improvement in immune status, intestinal morphology, and 

growth performance due to dietary EO diet could be a result of an increase in nutrient 

digestibility and in the ratio of lactobacilli to enterobacteriaceae in the ileum and cecum 

in pigs due to dietary inclusion of EO.   
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 Yan et al. (2010) determined the effects of EO supplement (AROMEX®-ME, 

which is a blend of thyme, rosemary, oreganum extracts and kaolin covered by starch) at 

dietary inclusion of 0.01%, and low or high dietary nutrient density on growth 

performance of grower pigs from 23 to 100 kg. Overall, they observed increased ADG 

due to EO supplementation (0.685 vs. 0.717 kg). However, the magnitude of 

improvement in ADG due to EOs supplementation was greater in pigs fed the high 

nutrient density diet (0.795 vs. 0.734 kg) than those fed the low nutrient diets (0.717 vs. 

0.685 kg). This indicates that the supplementation of EOs can have a positive effect on 

growth performance and that the efficacy of EOs products with regard to improving 

growth performance of weaned pigs is partly dependent dietary nutrient levels. Another 

study was conducted by Cho et al. (2006) to determine the effects of EO product (Fresta 

F Conc®), which consisted of fenugreek (40%), clove (12.5%), cinnamon (7.5%) and 

carrier (40%),  alone or in combination with antibiotics [(Chlortetracycline 100 g + 

Sulfathiazole 100 g + Penicillin 50 g) 0.1%+Fresta F Conc® 0.02%] on growth 

performance, IgG concentration and fecal noxious gas production of weaned pigs (initial 

body weight of 5.5 kg) for 49 days. They reported a significant increase in ADG (by 

11%) and ADFI (by 8%) due to the inclusion of antibiotics in combination with EOs 

compared with negative control, but no significant difference between NC and EO diet or 

diet with antibiotic alone with regard to ADG, ADFI, or F/G.  

  Based on results from these studies, it is apparent that essential oils can be used to 

partly replace antibiotic in diets for weaned pigs; however, the combination of EOs with 

antibiotics results in the better performance than EOs alone, meaning that there is still 

need to find effective alternatives to antibiotics.  
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Flavonoids. Flavonoids belong to a group of natural substances found in fruit, 

vegetables, grains, bark, roots, stems, and flowers. They are known for their various 

beneficial health effects. Most common benefit being their best-described property to act 

as antioxidants (Nijveldt et al., 2001). Flavonoids have also been shown to exhibit 

antimicrobial activity. The antioxidant mechanism of flavonoids can help protect the cells 

from these damaging effects.  

 Flavonoids can be added in weaned pig diets to help levitate the problems caused 

during weaning. Quercetin, datiscetin, kaempferol, myricetin and isoflavones are some of 

the most common food flavonoids, and their effects on gut health of animals is discussed 

below.  Quercetin has various properties including; antihypertensive and antiarrhythmic 

activity; anti-inflammatory and antiallergic properties; and other activities (Formica and 

Regelson, 1995). Ader et al. (2000) conducted a study to determine bioavailability of 

quercetin in pigs, and observed absorption of the quercetin from the small intestine 

mainly in the form of glucuronides. They observed that the amount of quercetin present 

in plasma does not linearly increase as a function of the oral dose and that plasma levels 

were lower than levels that were reported to be effective in in vitro assays; however, this 

does not exclude the fact that some body tissues may accumulate some quercetin or some 

of its metabolites that are sufficient to exert biological effects. Zou et al. (2016) 

conducted a study to determine the effects of quercetin supplementation on intestinal 

integrity, intestinal reactive oxygen species (ROS) levels and intestinal inflammation in 

finishing pigs under transport stress. Pigs were supplemented with 25 mg of quercetin for 

4 weeks and then transported. The quercetin-supplemented pigs showed decreased serum 

levels of endotoxin, increased height of jejunum villi (442 vs. 320 µm), as well as lower 
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intestinal levels of ROS (3.5 vs. 5.8 RUL/mgprot) compared with the control diet. This 

shows that quercetin can improve intestinal injuries in pigs during transport, probably 

through mechanisms associated with oxidative status and anti-inflammatory activity. The 

antimicrobial activity of datiscetin, kaempferol, myricetin and quercetin was determined 

by Xu and Lee (2001) using the disc diffusion method for screening of flavanoids against 

multi-drug resistant bacteria; the 4 flavonols showed antimicrobial activity against 

methicillin-resistant Staphylococcus aureus. 

 Isoflavones are a group of flavonoids that are found in some crops such as 

soybeans and clover (Reinli and Block, 1996). Soy isoflavones have been shown to 

exhibit antioxidant activity.  One of the primary isoflavones in soybean is genistein. 

Greiner et al. (2001) determined the effects of adding  genistein in diets for 10-day old 

pigs at various concentrations (0, 200, 400 and 800 ppm) on growth performance and 

virus persistence during a viral challenge. Pre-inoculation (weaning to inoculation) 

weight gain and feed intake of pigs decreased linearly as dietary genistein concentrations 

increased. During post-inoculation of PRRS (porcine reproductive and respiratory 

syndrome) (d 0 to 24 post-inoculation), an increase in dietary level of genistein resulted 

in a linear reduction in serum concentration of virus and improved ADG by 14% and 

ADFI by 15% when it was supplemented at 200 ppm treatment; however, genistein had 

limited effect on weight gain when it was supplemented at 400 ppm and a negative effect 

on feed intake at both 400 and 800 ppm and a negative effect on weight gain when it was 

supplemented at 800 ppm. 

 Another primary soybean isoflavone is daidzein. Soybean daidzein has been 

reported to enhance phagocytosis rate of macrophages and greater antibody production 
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and cytotoxic T cell activation (Zhang et al., 1997). Greiner et al. (2001) conducted a 

study to determine the effects of supplementing 11-day old pigs with different 

concentrations (0, 200, 400, and 800 ppm) of dietary soy daidzein on pig growth and viral 

replication during a viral challenge. Prior to inoculation of PRRS pig weight was not 

altered between dietary groups. Post-inoculation, dietary daidzein supplementation did 

not alter serum concentrations of virus, but improved ADG by about 5% when it was 

supplemented at 200 or 400 ppm. The ADG, ADFI and F:G were depressed by dietary 

supplementation of daidzein at 800 ppm, and limited improvements were seen in ADFI or 

G:F for all dietary treatments compared to negative control.  

 Based on results from these studies, it appears that flavonoids can help improve 

growth of virally challenged animals, exhibit antioxidant properties on stress induced 

pigs, and reduce growth of specific bacteria. 

Alkaloids. Alkaloids are a large group of organic, basic compounds found in 

plants. They are usually bitter in taste and function in the defense of plants against 

herbivores and pathogens, and may be toxic in large amounts (Wink, 1999). Alkaloids are 

found in the leaf, bark, seed, root and other parts of the plant. Berberine is a plant 

alkaloid with history in Chinese medicinal systems. Berberine has antioxidant (Campisi 

et al., 2014) and antimicrobial activities (Freile et al., 2003); it has been shown to reduce 

gut injury in various laboratory animals including rats (Gu et al., 2013), and to reduce 

diarrhea in humans (Rabbani, 1987) that have been infected with the same diarrhea-

causing bacteria in weaned pigs. Beberine has already been isolated from various plant 

species including Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), and 
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Berberis aristata (tree turmeric) (Mokhber-Dezfuli et al., 2014); and is currently being 

sold in various pharmacies in North America and in Asia. 

 Berberine has strong antioxidant activity. It acts as an antioxidant in the body by 

several mechanisms including removal of oxygen, scavenging of reactive oxygen species 

and nitrogen species, inhibition of reactive oxygen species and nitrogen species, and by 

unregulation of endogenous antioxidant defenses (Shirwaikar et al., 2006). 

 Berberine has been evaluated in many studies for its antidiabetic and antioxidant 

properties. Bhutada et al. (2011) conducted a study to determine the role of berberine on 

cognitive dysfunction in streprozotocin-induced diabetic rats. Rats with chronic treatment 

with berberine (25-100mg/kg twice daily for 30 days) showed improved cognitive 

performance, lowered hyperglycemia, oxidative stress, and choline esterase activity in 

diabetic rats. This study demonstrates that berberine treatment can prevent changes in 

oxidative stress and choline esterase activity. 

  Berberine has been found to have a wide spectrum of other pharmacological 

effects. Some of these include antihypertensive, antihyperglycemic, anticancer, and 

antidepressant, anti-inflammatory (Fan et al., 2015). It has been shown to alleviate 

diarrhea in humans and has been used as a treatment for cardiovascular and other 

lifestyle-related diseases. Study on the antimicrobial nature of berberine sulfate on Vibro 

cholerae and S. aureus indicated that berberine exerts a bactericidal action (killing) on V. 

cholerae and a bacteriostatic action (prevents growth) on S. aureus (Amin et al., 1968). 

However, under the same conditions berberine had little effect on E. coli strains that are 

highly resistant to berberine sulfate (Amin et al., 1968). In a clinical trial performed with 

400 adults presenting with acute watery diarrhea, the effects of 3 treatments (berberine, 
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tetracycline, or berberine and tetracycline) on clearance of vibrios from stools in patients 

with cholera were determined (Khin et al., 1985). Looking at just the patients with the 

type of cholera diarrhea there was a significant reduction in the number of motions, 

duration of diarrhea in hospital and volume of intravenous and oral fluid in tetracycline 

patients. However, there was no significant difference between the patients treated with 

berberine or group of adults administered placebo. This shows that although berberine is 

effective against cholera diarrhea and inhibits V. cholerae enterotoxin in animals, it does 

not seem to have antisecretory effect on cholera diarrhea in patients.  

 Another study conducted by Rabbani et al., (1987) determined the effect of 

administering berberine sulfate at 400 mg in a single oral dose on the reduction of 

diarrhea caused by enterotoxigenic Enterotoxigenic Escherichia coli (ETEC) and V. 

cholerae in 165 adults administered 400mg of berberine sulfate. After 8 h, there was a 

significant reduction in diarrhea in patients with ETEC compared to the controls, and at 

24 hours after treatment, more patients stopped having diarrhea as compared to the 

controls (42 vs. 20%). However, in patients with cholera 8 hours after treatment, stool 

volume was decreased by significantly less margin than for patients that were not treated 

with berberine sulfate (2.22 L vs. 2.79 L). This indicates that berberine is effective at 

reducing in ETEC diarrhea patients but antisecretory effect is slightly less effective in 

cholera patients.  

 Fan et al. (2015) conducted a study to determine the effects of combination of 

probiotics, prebiotics and berberine as an alternative to antibiotic in diets for pigs from 60 

to 120 days of age, and observed no significant difference between treatments on ADG, 

ADFI or feed efficiency. They observed a significant reduction of E. coli  counts in feces 
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from pigs fed berberine supplemented diet (6.20 vs. 7.35 CFU/g) and an increase in fecal 

counts of lactic acid bacteria in groups treated with probiotics and oligosaccharides (9.48 

vs. 8.46 CFU/g) or with berberine were higher than control (9.47 vs. 8.46 CFU/g). Thus, 

results from their study show that the addition of probiotics, oligosaccharides, and 

berberine to pig diets could effectively promote the growth of lactic acid bacteria in the 

gut and reduce the proliferation of E. coli, which would in turn improve pig growth 

performance and nutrient digestibility and reduce diarrhea rates. Further research looking 

at the effects of berberine alone in wean pig diets would improve our understanding of 

the mechanisms by which berberine improves animal performance and health.  

Glucosinolates. Glucosinolates are secondary plant metabolites found in various 

plants, especially plants of Brassica family, in which they serve as defence compounds 

against herbivorous animals and pathogenic microorganisms (Tripathi and Mishra, 2007). 

Glucosinolates are hydrolyzed by the membrane-bound enzyme known as myrosinase 

into various compounds (including allyl isothiocyanate; AITC) in response to plant tissue 

injury by herbivorous animals or pathogenic microorganisms.  AITC has been shown to 

have strong antimicrobial activity and antioxidant activity. Lin et al. (2000) determined 

the antibacterial activity of AITC, streptomycin, penicillin G, and polymyxin B against  

Salmonella Montevideo, E. coli O157:H7, and Listeria monocytogenes, and observed that 

AITC and polymyxin B were effective bactericidal agents against the bacteria at all 

growth stages. E. coli O157:H7 and Salmonella Montevideo at the exponential growth 

phase were completely killed following treatment for 2 h with 10 mg/ml polymyxin B or 

1,000 mg/ml AITC. Antibacterial activity of AITC was similar to that of polymyxin B. 

Velioglu et al. (1998) reported that horseradish oil that contains 90-92% AITC had high 
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antioxidant activity (99.1%), even higher than that of BHA and BHT at 400mg/L (97.2%) 

and α-tocopherol at 200 mg/L (97.3%), which was used as the standard. However, 

information is lacking on the effects of dietary glucosinolates on gut health of weaned 

pigs. Glucosinolates are bitter which may reduce voluntary feed intake when they are 

included in diets for animals (Tripathi and Mishra, 2007). High dietary levels of 

glucosinolates can also reduce efficiency of nutrient utilization and even lead to death of 

pigs, which was observed in dietary glucosinolate levels 1.34 or 2.79 µmol/g resulting in 

reduced feed intake and growth rate of pigs (Bowland, 1975; McKinnon and Bowland, 

1977; Ochetim et al., 1980; Bell et al., 1991). Therefore, it’s important to find the level at 

which glucosinolates can be added in the diets for weaned pigs for improving gut health 

without having negative effects growth performance. 
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HYPOTHESIS AND OBJECTIVES 

 

In this thesis, it was hypothesized that dietary berberine, quercetin, and allyl 

isothiocyante are suitable alternatives to antibiotics in improving gut health of weaned 

pigs. 

The overall objective of this thesis research was to determine a phytochemical as 

a suitable alternative to antibiotics. 

The specific objectives of the thesis research were: 

1. To determine the effect of various levels of berberine, quercetin, and allyl 

isothiocyante on in-vitro growth of E. coli, with the goal of identifying the 

most effective one for the use as potential alternative to antibiotics in animal 

studies. 

2. To determine the effect of down selected phytochemical on growth 

performance, electrophysiological properties of small intestine mounted in 

Ussing chambers, and small intestinal histomorphology of weaned pigs. 
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CHAPTER TWO: 

 Effect of Berberine, Quercetin and Allyl Isothiocyante on in vitro E. coli growth. 

 

ABSTRACT 

A study was conducted to determine the effect of 3 phytochemicals (berberine 

chloride hydrate, quercetin, allyl isothiocyante) and ampicillin on in-vitro growth of E. 

coli. Inclusion of berberine in incubation medium at 25, 12.5, 6.25 or 3.125 µg/100 µl 

resulted in reduced growth of E. coli. Growth of E. coli on incubation medium containing 

25, 12.5 or 6.25 µg/100 µl was similar to growth of E. coli on incubation medium 

containing final concentration of ampicillin at 0.04mg/100µl. Inclusion of AITC in the 

incubation medium at 0.5065 mg/100 µl did not affect in vitro growth of E. coli.  Also, 

inclusion of quercetin at 0.011 mg/100 µl in the incubation medium did not affect in vitro 

growth of E. coli. It can be concluded that quercetin and AITC at concentrations used in 

the current study had limited effects on in vitro growth of E. coli. However, berberine 

exhibited antimicrobial activity similar to that of ampicillin at 25, 12.5 or 6.25 µg/100 µl. 

Thus, berberine was more effective than quercetin, or allyl isothiocyante in inhibiting in 

vitro growth of E. coli.  

 

INTRODUCTION 

Antibiotics have been added to wean pig diets for many years to help reduce the 

negatives effects of weaning on growth performance and gut health. With stricter rules 

pertaining to the use of antibiotics in feed due to the fear of development of antibiotic 
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resistant bacteria, there has become a need to find alternatives to antibiotics. Plant-based 

products have been looked at as possible alternatives to antibiotics. 

The term phytogenic or phytochemical can be referred to as the plant-derived 

compounds added into diets to help improve animal production performance and animal 

health (Steiner, 2009). Phytochemicals can exhibit many modes of action. The 2 modes 

of action that are important during the weaning stage of pigs are antimicrobial and 

antioxidant activities because they result in  reduced growth of pathogenic bacteria in the 

gut and reduced oxidative stress in the gut, respectively.  

Some of the phytochemicals that can potentially be used as alternatives to 

antibiotics include: berberine, quercetin, and AITC. Berberine is a nonbasic, plant 

alkaloid that has been shown to lower oxidative stress in rats (Bhutada et al., 2011) and 

reduce ETEC diarrhea in humans (Rabbani et al., 1987).  Quercetin is a common food 

flavonoid, and its inclusion in diets has been shown to reduce reactive oxygen species in 

growing pigs (Zou et al., 2016), as well as reduce to the growth of Staphylococcus aureus 

(Xu and Lee, 2001). Allyl isothiocyanate (AITC) has been shown to have strong 

antimicrobial activity against E. coli (Lin et al., 2000) and exhibit antioxidant activity 

(Velioglu et al., 1998). However, information is lacking on the effects of these 

phytochemicals or dosage of these phytochemicals on growth of E. coli. The objective of 

this study was to determine the effect of various levels of these three phytochemicals on 

in-vitro growth of E. coli, with the goal of identifying the most effective one for use as 

potential alternative to antibiotics in weaned pig studies.  
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MATERIALS AND METHODS 

Three different experiments were conducted at South Dakota State University’s 

Animal Physiology Laboratory; 1 experiment per phytochemical.  

 

Making Pre-culture 

A vial of E. coli was obtained from the Animal Disease Research and Diagnostic 

Laboratory at South Dakota State University. It was then streaked on an agar plate and 

incubated for 24 h at 37°C in an incubator (Imperial III Incubator, Barnstead 

International). A few colonies were obtained from the plate after the 24 h incubation and 

immersed in 5 ml LB broth in a 20ml tube. The pre-culture tube was then incubated for 

24 hours at 37°C in the fore-mentioned incubator to allow for growth of bacteria in broth.  

 

Determination Antimicrobial Activity of the Phytochemicals  

In Exp. 1, ampicillin solution was made by combining 4µl of stock solution 

ampicillin into 996µl of LB broth. The final concentration of ampicillin was 

0.40µg/100µl. 

The berberine solution was made by dissolving 0.05 grams of berberine chloride 

hydrate (Sigma-Aldrich, St. Louis, MO) in 1000 µl of DMSO. The DMSO-dissolved 

berberine solution was 100-fold diluted using distilled water to create the first working 

solution of berberine. Four serial 10-fold dilutions were further made from the first 

working berberine solution to create 5 different working solutions of berberine.  The 5 

berberine solutions were tested for growth of E. coli as described below. 
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Fifty microliters of each berberine solution and ampicillin solution was pipetted in 

a 96-well plate in triplicate. Fifty microliters of the pre-culture solution was then pipetted 

into each well containing berberine or ampicillin solution. Negative control (100 µl of LB 

broth) solution and positive control (50 µl of LB broth plus 50 µl of pre-culture solution) 

solution were also pipetted into the wells in triplicate for comparison with berberine and 

ampicillin solutions. Final concentrations of berberine that were tested were: 25 µg/100 

µl (Concentration A), 12.5 µg/100 µl (Concentration B), 6.25 µg/100 µl (Concentration 

C), 3.125 µg/100 µl (Concentration D), and 1.563 µg/100 µl (Concentration E ). The final 

concentration that was tested for the ampicillin solution was 0.40 µg/100µl. Each well in 

peripheral rows of the 96-well plate was filled with 100 µl of distilled water, and the 

cover was placed on the 96-well plate to limit evaporation of the contents in the wells. 

The 96-well plate was then incubated at 37°C for 24 hours in an incubator.  

In Exp. 2, 0.01g of quercetin was dissolved in 450 µl of DMSO to give a final 

concentration of 0.011µg/100 µl. The dissolved quercetin was diluted and incubated as 

described above in Exp. 1. Final concentrations of quercetin and ampicillin that were 

tested included: 0.011µg/100 µl and ampicillin at 0.40 µg/100µl 

 In Exp. 3, 10 µl of liquid AITC, with a molecular weight of 1.013g/mL, was 

added to 990 µl of distilled water to give a final concentration of 0.5065 µg/100 µl. The 

liquid AITC was diluted and incubated as described above in Exp. 1. Final concentrations 

of AITC and ampicillin that were tested included: 0.5065 µg/100 µl and ampicillin at 

0.40 µg/100µl.  
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Pooling Dilution Samples 

After the 96-well plate was incubated for 24 hours, it was taken out from the 

incubator, and the 3 replicates of each treatment were pooled. They were then diluted 

once more by taking 10 µl of the pooled samples and combing it with 990 µl of distilled 

water. This was done in order to be able to count CFU on the plate more accurately.  

 

Making Agar Plates 

Agar plates were made by mixing 23.5 g of the agar medium with one liter of 

distilled water. The mixture was then autoclaved at 121°C for 15 minutes, and cooled for 

15 minutes. The cooled agar was agitated in a bottle to achieve a uniform mix, and was 

poured into plates. The plates were left at room temperature to cool and harden.  

 

Streaking the plate 

Plate inoculation was done by spread plate technique. Briefly, 100 µl of the three 

combined dilution samples was placed in the center of the plate using a sterile pipet. A 

bent glass rod was sterilized by first dipping it into a 70% alcohol solution and then 

passing it quickly through the Bunsen burner flame. When all the alcohol had burned off 

and the rod had air-cooled, the rod was streaked back and forth across the plate working 

up and down several times. Backtrack was done many times in order to distribute the 

bacteria as evenly as possible. The plate was turned 90 degrees and repeated with the side 

to side, up and down streaking. The plate was turned again 45 degrees and streaked a 

third time. The glass rod was not sterilized between plate turnings. The plate was covered 
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and sat several minutes before turning it upside down for incubation. Once the plate had 

been allowed to soak up the sample it was placed in a 37°C incubator for 24 hours.  

 

Counting colonies 

Following 24 hour incubation, plates were examined for E. coli growth. The 

number of colonies were counted and expressed in number of colony forming units 

(CFU) per microliter of sample; the dilution factor was taken into account. The average 

for the 2 plates in terms of the number of microorganisms per gram or microliter of 

sample were determined for duplicate plates. 

 

Statistical Analysis 

Data were analyzed using mixed procedure of SAS (SAS Inst. Inc., Cary, NC). 

Plate was used as experimental unit, with eight plates per treatment. To test the 

hypotheses, the level of significance was set at 5%. 

RESULTS 

In Exp. 1, inclusion of ampicillin in incubation medium reduced (P < 0.05) 

growth of E. coli in terms of CFU per microliter (Table 2.1). Also, inclusion of berberine 

in incubation medium at 25, 12.5, 6.25 or 3.125 µg/100 µl resulted in reduced (P < 0.05) 

growth of E. coli. However, inclusion of berberine in incubation medium at 1.5625 

µg/100 µl did not significantly reduce the growth of E. coli. A decrease in berberine 

concentration in incubation medium from 25 µg/100 µl to 12.5 or 6.25 µg/100 µl did not 

affect the growth of E. coli.  Also, growth of E. coli on incubation medium containing 25, 
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12.5 or 6.25 µg/100 µl was similar to growth of E. coli on incubation medium containing 

ampicillin.   

In Exp. 2, inclusion of ampicillin in incubation medium reduced (P < 0.0002) 

growth of E. coli in terms of CFU per microliter (Table 2.2). However, inclusion of AITC 

in the incubation medium at a final concentration of 0.5065 µg/100 µl did not 

significantly reduce the growth of E. coli. The CFU’s per microliter for incubation 

medium that contained AITC were greater (P < 0.001) than those for the negative control 

or incubation medium that contained ampicillin.  

In Exp. 3, inclusion of quercetin at 0.011 µg/100 µl in the incubation medium did 

not affect CFU’s per microliter. However, inclusion of ampicillin in the incubation 

medium reduced (P < 0.0004) growth of E. coli. There was no difference in E. coli 

growth between the incubation medium containing ampicillin and that containing no 

bacteria.  

 

DISCUSSION 

 Inclusion of berberine in incubation medium at 3.125 µg/100 µl and above 

reduced growth of E. coli. Berberine has been reported to exhibit anti-microbial activity 

(Yi et al., 2007). Possible mechanisms by which berberine reduces growth of 

microorganisms include targeting nucleic acids, specifically affecting RNA polymerase 

and gyrase and topoisomerase IV, both on nucleic acid (Yi et al., 2007). Kosalec et al. 

(2009) also reported reduced in vitro growth of Bacillus subtilis and Staphylococcus 

aureus due to inclusion berberine extracts in incubation medium. In their study, 2 

different methods (diffusion method and minimal inhibitory concentration [MIC] 
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method) were used to determine the effects of berberine extracts (Berberis croatica and 

Berberis vulgaris) on growth of B. subtilis and S. aureus. Berberine exhibited significant 

antibacterial activity against the Gram-positive bacteria species with inhibition zones 

ranging between 9.5 mm and 12 mm, and between 9 mm and 16 mm, respectively, when 

extract was added at 60 µl. However, berberine-containing extracts of neither barberry 

species possessed any antimicrobial activity against E. coli or C. albicans when the 

diffusion method was used, but the same extracts showed antimicrobial activity when the  

MIC (≤ 87.5 mg/ml) method was used. Results from this study show that diffusion 

method and MIC result in different conclusions on the effects to certain bacteria. In this 

case the different results seen when using the diffusion method was because the berberine 

extract didn’t diffuse into the agar as well as when it was diluted.  

The reason for lack of effect of AITC on growth of E. coli in the current study is 

not clear. It could probably have been due to low concentration of the allyl isothiocyanate 

in the incubation medium. Lin et al. (2000) reported that bactericidal activity of 

isothiocyanates was dependent on its concentration in incubation medium and exposure 

time. In their study, inclusion of AITC at 500 µg/ml in incubation medium did not 

dramatically affect the in vitro growth of E. coli at any time period (1, 2, or 3 hours). 

However, inclusion of AITC at 2,500 µg/ml in incubation medium completely inhibited 

growth of E. coli after 30 min treatment. Also, inclusion of AITC in incubation medium 

at 1,000 µg/ml, reduced growth of E. coli after a 2-h exposure time. Similarly, Delaquis 

and Sholberg (1997) observed a decrease in colony counts of Salmonella typhimurium, E. 

coli, and Listeria monocytogenes with increasing times (24, 48, and 72 hours) of AITC 

exposure and increasing AITC concentration (500, 1000, 1500, or 2000 µg/L of air). 
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However, when incubated at 25°C to 35°C and exposed to 500 µg/liter of AITC, E. coli 

was not effected at all, but was strongly inhibited when incubated at both 5 and 40°C. 

Thus, it appears that the anti-microbial activity of AITC is dependent on dosage, 

temperature and time of exposure. This research is relevant to our study, because we 

incubated our plates at 37°C which could have affected the growth of bacteria on the 

inoculated plates. Higher doses of AITC were not tested in our in vitro assay because 

AITC is a glucosinolate that has anti-nutritional effects at high of dietary levels. Studies 

reported that glucosinolates in diets at 1.34 or 2.79 µmol/g reduced feed intake and 

growth rate of pigs (Bell et al., 1991). 

In the current study, inclusion of quercetin at 0.011 mg/100 µl in the incubation 

medium did not significantly reduce CFU’s per microliter. Similarly, Gatto et al. (2002) 

reported that quercetin at 100 µg/ml of incubation medium did not exhibit antimicrobial 

activity against E. coli. However, Rauha et al (2000) observed slight (1-3 mm) to 

moderate (3-4 mm) antimicrobial activity of Quercetin at 500µl against E. coli using the 

diffusion method. In an in vivo study that was conducted by Vijaya and Ananthan (1996) 

with guinea pigs, oral administration of quercetin 142.9 mg/kg body weight resulted in 

protection of the guinea pigs against an induced Shigella infection that killed all shigella-

challenged guinea pigs that were not given the quercetin. Shigella is a Gram-negative 

bacteria that is closely related to E. coli. Quercetin wasn’t tested at higher levels in our in 

vitro study because it is expensive, and its inclusion in diets for pigs at dosages that are 

greater than the dosage used in the current study is not cost effective. The cost of 

Quercetin (#1592409) obtained from Sigma-Aldrich is $300 per 500 mg. 
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In conclusion, berberine was the most effective phytochemical at inhibiting the 

growth of E. coli. Berberine exhibited similar antimicrobial activity at 25, 12.5 or 6.25 

µg/100 µl concentrations compared to ampicillin. Quercetin and AITC did not reduce 

CFU’s per microliter compared to the plates incubated with ampicillin. Berberine was 

tested at multiple levels in order to find the most effective concentration after 

antimicrobial activity was observed. Further research on effects of different in vitro 

exposure times and concentrations of quercetin and AITC on growth of E. coli needs to 

be conducted. However, other levels were not tested because of anti-nutritional effects on 

animals or unfeasible cost of products. The effectiveness of the phytochemicals 

antimicrobial activity can change with dose and exposure time. Thus, AITC could be 

tested at longer exposure times than 24 hours to see if that affects antimicrobial activity at 

that level. Based on results from this study, berberine was identified as potentially most 

suitable alternative to antibiotics for use in diets for weaned pigs in subsequent studies.    
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Table 2.2. Effects of including allyl isothiocyante (AITC) in incubation 

medium on in vitro growth of E. coli 

 

  

  AITC1 Negative3 Positive4 Ampicillin2  SEM  

E. coli growth     
 

 

CFU/microliter 741.67a 59.16b 642.86a < 10b  99.50 

             
a–bWithin a row, means without a common superscript differ (P < 0.05). 

1AITC final concentration was 0.5065 µg/100 µl 

2Ampicillin final concentration was 0.40µg/100µl 

3Negative = LB broth only 

4Positive = Preculture only 
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Table 2.3. Effects of including quercetin in incubation medium on in vitro growth of  

E. coli 

 

  

  Quercetin1 Negative3 Positive4 Ampicillin2 SEM   

E. coli growth     
 

 
CFU/microliter 677.22a 59.16b 642.86a < 10b 103.25  

             
a–bWithin a row, means without a common superscript differ (P < 0.05). 

1Quercetin final concentration of 0.011 µg/100 µl 

2Ampicillin final concentration of 0.40µg/100µl 

3Negative = LB broth only 

4Positive = Preculture only 
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CHAPTER THREE:  

The effect of dietary berberine at 3.0% on growth performance, electrophysiological 

properties and histomorphology of small intestine of weaned pigs 

 

ABSTRACT 

A study was conducted to determine the effects of berberine on growth performance, 

electrophysiological properties of small intestine mounted in Ussing chambers, and small 

intestinal histomorphology of weaned pigs. Twenty-four 3 wk-old weaned pigs (average 

initial BW = 6.35 kg) were obtained in 2 batches of 12 pigs each, and assigned to 3 

experimental diets within batch (4 pigs/diet/batch). The diets included a basal diet 

without or with antibiotics or 3% berberine. The experiment lasted for 7 days, and at the 

end, body weight gain and feed consumption were determined. The pigs were then 

euthanized to determine duodenal, jejunal, and ileal trans-epithelial resistance (TER) and 

small intestinal histomorphology. Data was analyzed using Mixed procedure of SAS with 

batch as block and pig as experimental unit. There was no effect of dietary treatment on 

average daily gain. The average final BW was 5.92 ± 0.34 kg. However, pigs fed 

antibiotic-containing diet had greater (P < 0.029) ADFI than those fed the basal diet 

(0.147 vs. 0.127 kg). Inclusion of berberine in the basal diet decreased (P < 0.0001) 

ADFI from 0.123 to 0.056 kg. There was no difference in villous height and crypt depth 

in all sections of small intestine between pigs fed antibiotic-containing diet and basal diet. 

Inclusion of berberine in the basal diet decreased (P < 0.05) crypt depth in duodenum and 

ileum by an average of 35% and tended to decrease (P = 0.069) crypt depth in jejunum by 

32%. Ileal villous height was decreased (P < 0.0001) by 28% due to inclusion of 
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berberine in basal diet. However, there was no effect of including berberine in basal diet 

on villous height in duodenum and jejunum. Pigs fed antibiotic-containing diet and basal 

diet had similar TER values (which reflects intestinal mucosal barrier function) in all 

sections of the small intestine. Inclusion of berberine in basal diet tended to decrease (P = 

0.078) TER in duodenum from 55.53 to 44.31Ω. It can be concluded that inclusion of 

antibiotic had minimal impact on intestinal health parameters. Dietary inclusion of 

berberine appeared to have a negative effect on intestinal health; however, the influence 

of berberine is confounded by very low feed intake, which can also negatively influence 

gut health. 

Key words:  berberine, pig, growth performance, gut health 

 

INTRODUCTION 

At weaning, pigs are stressed due to abrupt changes in their new environment and 

diet composition, as well as interruption of already established social structure with their 

littermates and sows. The weaning stress results in a decrease in growth performance and 

an increase in diarrhea incidences. The decrease in growth performance and increase in 

diarrhea incidences occur mainly during the first 2 weeks after weaning and causes huge 

economic losses in swine industry (Cutler and Gardner, 1988). 

Antibiotics have been added in diets for the weaned pigs at low levels to improve 

their performance. However, addition of antibiotics in diets for food animals is currently 

being discouraged because they can lead to development of antibiotic resistant 

microorganisms. Thus, the effects of various potential alternatives to antibiotics (feed 

additives), including prebiotics, probiotics, minerals, plant extracts, and animal-derived 
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antibodies are being investigated; however, majority of these feed additives have been 

inconsistent in improving gut health and growth performance of pigs (Heo et al., 2013; 

Thacker, 2013). For this reason, there is still a critical need to develop effective 

alternative agents to manage gut health. Otherwise, the use of antibiotic-free diets in the 

swine industry will continue to be a challenge.  

Weaning process results in increased permeability of intestine of pigs due to 

increased oxidative stress (Wijtten et al., 2011). The increased intestinal permeability 

increases translocation of toxins that are produced by gut microorganism into the body, 

causing inflammatory injuries in the gut wall, thereby increasing the susceptibility of 

weaned pigs to gut infections. Thus, for an alternative to antibiotics to be effective, it has 

to reduce growth of pathogenic microorganism in the gut or reduce oxidative stress (that 

results in increased intestinal permeability), or both.  

Berberine is a is a nonbasic, plant alkaloid that has already been isolated from 

various plant species including Berberis aquifolium (Oregon grape), Berberis vulgaris 

(barberry), and Berberis aristata (tree turmeric) (Mokhber-Dezfuli et al., 2014). 

Berberine has antioxidant (Campisi et al., 2014) and antimicrobial (Freile et al., 2003) 

activities; it has been shown to reduce gut injury in various laboratory animals including 

rats (Gu et al., 2013), and to reduce diarrhea in humans (Rabbani, 1987) that have been 

infected with the same diarrhea-causing bacteria in weaned pigs. In the previous study 

(see Chapter 2 of this thesis), berberine inhibited in vitro growth of E. coli when it 

added in incubation medium at ≥3.125%. Thus, berberine can potentially be used as an 

alternative to antibiotics in diets for weaned pigs. However, the effects of berberine on 

growth performance and gut health of weaned pigs haven’t been determined. 
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The objective of this study was to determine the effects of berberine on growth 

performance, electrophysiological properties of small intestine mounted in Ussing 

chambers, and small intestinal histomorphology of weaned pigs. 

 

MATERIALS AND METHODS 

Experimental Animals and Housing 

Twenty-four pigs (12 barrows and 12 gilts; large white-Landrace female × Large 

white-Hampshire male, Pig Improvement Company) weaned at 3 wk of age and with 

average initial BW of 6.35 kg ± 0.66 were obtained in 2 batches of 12 pigs (balanced for 

sex) each from the South Dakota State University’s Swine Research Barn and 

individually housed in metabolism crates with a feeder and nipple drinkers. The mean 

daily temperature throughout the trial was 28.3°C and they were exposed to lighting all 

throughout the experiment.   

 

Experimental Diets 

 The diets fed included a corn-soybean meal-based basal diet (control diet) without 

or with antibiotics (Tylan 40 at 0.05%) or 3% berberine (Table 1). The antibiotic-

containing diet also contained zinc oxide at 0.25%. The basal diet was formulated to meet 

or exceed NRC (2012) nutrient requirements for weaned pigs. The berberine product 

used was Berberine Chloride Hydrate, (#4101062757) and was obtained from Sigma-

Aldrich (St. Louis, MO).  The dietary level of berberine (3%) was chosen based on 

results from the first study (see Chapter 2) in which inclusion of berberine in incubation 

medium at ≥3.0% reduced in vitro growth of E. coli. 
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Experimental Design and Procedure 

The pigs were fed the 3 experimental diets within batch and gender for a total of 4 

pigs/diet/batch. The experiment lasted for 10 days. Body weight gain and feed 

consumption were determined on day 7. On days 7, 8, 9, and 10, 3 pigs balanced for 

dietary treatment were anesthetized by an intramuscular mixture of telazol-ketamine-

xylazine (TKX; telazol and xylazine at 50 mg/mL each; ketamine at 100 mg/mL), and then 

euthanized by penetrating captive bolt followed by exsanguination daily, and the 

following procedures took place. Ten centimeter sections of the duodenum (at 70 cm 

below the pylorus), jejunum (at the middle of small intestine), and ileum (at 70 cm above 

ileo-cecal junction) were immediately collected and placed in ice-cold Ringer’s solution 

(NaCl; 6.72 g/l, K2HPO4; 0.42 g/l, KH2PO4; 0.05 g/l, CaCl2 dihydrate; 0.18 g/l, MgCl2 

hexahydrate; 0.24 g/l, NaHCO3; 2.1 g/l, glucose 1.80 g/l; pH of 7.3-7.4) for 

determination of intestinal electrophysiological properties using Ussing chambers 

technique as described below. Indomethacin (10µM) was added in the buffer solution at 

3µl/L to help minimize the effects of pro-inflammatory eicosanoids on intestinal tissue 

electrophysiological properties. Also, 5 cm sections of the duodenum, jejunum, and 

ileum were obtained (from the same locations where sections for Using Chamber were 

obtained) and placed into 10% buffered formalin solution for later determination of 

histology as described below.  

 

Histology Analysis  
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Samples for histology analysis were sent to the Animal Disease Research and 

Diagnostic Laboratory at South Dakota State University for staining with haematoxylin 

and eosin. Villous height (from the tip of the villi to the villous-crypt junction) and crypt 

depth (from the villous-crypt junction to the base) were measured at 20x magnification 

using a Nikon microscope (Tokyo, Japan) equipped with a DS2MV Nikon camera 

(Tokyo, Japan) and NIS Elements software (Tokyo, Japan) in 20 well-oriented villi and 

crypt columns. The villous height-to-crypt depth ratio was calculated. 

 

Determination of Electrophysiological Properties  

 The electrophysiological properties (potential difference, PD; short-circuit 

current; Isc and trans-epithelial electrical resistance, TER) were determined using a 

Ussing chamber (VCC-MC6; Physiologic Instruments Inc., San Diego, CA) containing 

pairs of current (Ag wire) and voltage (Ag/AgCl pellet) electrodes housed in 3% agar 

bridges and filled with 3 M KCl. Samples for determining gut permeability were 

transported (while in ice cold Ringer buffer solution) to the laboratory, where they were 

opened along the mesenteric border. The opened samples were gently stripped of serosal 

layer using micro-forceps to remain with the mucosa. The prepared mucosal tissues (4 

tissues per intestinal segment) were placed in tissue holders with an aperture of 1 cm2.  

First slider of tissue holder was placed over the serosal side of the tissue. The second 

slider of tissue holder was placed on mucosal side of the tissue and 2 sliders were 

gently pressed together. Liquid was dried out from chamber recess and the tissue 

holders were mounted in the chambers with the mucosal layer facing the left side of the 

chamber. Ringer buffer solution was added to the serosal and mucosal half chambers (3 
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mL per each of the half chamber). The chambers were continuously gassed with a 

mixture of 95% O2 and 5% CO2. The temperature of the chambers was maintained at 

37°C. After mounting tissues in the chambers, the Ussing chambers system was placed in 

remote mode to allow for Acquire and Analyze software program to obtain data, and 

tissues were referenced on the Acquire and Analyze Data acquisition software and 

hardware system. After referencing, 10 mM glucose was added to the serosal bathing 

solution, which was balanced on the mucosal side with 10 mM mannitol. The Acquire 

and Analyze software was turned on (to start collecting data) immediately after adding 

glucose and mannitol, and tissues were allowed to equilibrate for 10-15 min. After the 

equilibration, 10 mM glucose was added to the mucosal side and balanced with 10 mM of 

mannitol of the serosal side. The spontaneous PD was measured using Ringer-agar 

bridges connected to calomel electrodes, and the PD was short circuited through Ag-

AgCl electrodes using voltage clamp that corrected for fluid resistance. The TER (which 

reflects intestinal permeability) was calculated from the Isc and PD. After 120 minutes, 

forskolin (10 µM) was added to both the mucosal and serosal sides of the chambers to 

determine whether or not the tissues were still alive. Significant changes in Isc within 10 

min indicated that the tissues were still alive.  

 

Statistical Analysis  

Data were analyzed as a randomized complete block design with batch as block 

using mixed procedure of SAS (SAS Inst. Inc., Cary, NC). Pig was used as experimental 

unit. Treatment means were compared by probability of difference. To test the 

hypotheses, the level of significance was set at 5%. 
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RESULTS 

 The berberine-containing diet had CP value that was numerically greater and 

ether extract value that was numerically lower than those for the basal diet or antibiotic-

containing diet (Table 3.1). The average final BW of pigs was 5.92 ± 0.34 kg (Table 3.1). 

The inclusion of berberine in the basal diet decreased (P < 0.0001) ADG of pigs. 

However, there was no difference between basal diet and antibiotic-containing diet with 

regard to ADG of pigs (Table 3.2). Inclusion of berberine in the basal diet decreased (P < 

0.0001) ADFI, there was no difference in ADFI between basal diet and antibiotic-

containing diet. There was no effect of adding antibiotics to basal diet on villous height 

and crypt depth in all sections of small intestine (Table 3.3). However, inclusion of 

berberine in the basal diet decreased (P < 0.05) crypt depth in duodenum, jejunum, and 

ileum. Also, ileal villous height was decreased (P < 0.0001) by inclusion of berberine in 

the basal diet. However, there was no effect of including berberine in basal diet on villous 

height in duodenum and jejunum. Pigs fed antibiotic-containing diet and basal diet had 

similar TER values in all sections of the small intestine. Inclusion of berberine in basal 

diet tended to decrease (P = 0.078) TER in duodenum, but had no effect on TER in the 

jejunum and ileum. There was no difference in Isc values in any sections of the small 

intestine between diets.  

 

DISCUSSION 

Inclusion of berberine in basal diet resulted in increased dietary CP content, 

which was due to the presence of N in berberine. Berberine is an alkaloid that contain N 

in its molecular structure (Shirwaikar et al., 2006).  The addition of antibiotics to the 
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basal diet did not affect ADG and ADFI, which as contrary to expectations. The addition 

of antibiotics in the diets for weaned pigs at sub-therapeutic levels has resulted in 

improved feed intake and growth rate, and reduced mortality and morbidity (Cromwell, 

2001). Stahly et al. (1980) reported increased feed intake and growth rate of 28-day old 

weaned pigs due to dietary inclusion of both copper and an antibiotic (55 ppm of 

Chlortetracycline or 27.5 ppm of virginiamycin). Mereu et al. (2016) also observed 

increased ADFI (507 vs. 480 g), ADG (377 vs. 328 g), and G:F (0.82 vs. 0.78 g/g) of 

weaned pigs due to inclusion of tiamulin, chlortetracycline and zinc oxide in pre-starter 

diets at 40, 400 and 2,500 g/metric ton, respectively; and in starter diets at 40, 110, and 

2500 g/metric ton, respectively. Several mechanisms by which dietary antibiotics could 

increase growth performance of animals have been proposed. Some of the proposed 

mechanisms by which antibiotics promote growth include the suppression of growth of 

pathogenic microorganisms, promotion of growth of microorganisms that synthesize 

nutrients such as vitamins and volatile fatty acids that are required by pigs, and 

suppression of growth of microorganisms that compete with host for nutrients (Cromwell, 

2001). The lack of effect of dietary antibiotics and zinc on ADG and ADFI in the current 

study is not clear. It could probably have been due to the fact that the experimental period 

of 7 d was not long enough for dietary antibiotics to impact growth performance of 

weaned. Hong et al. (2004) also observed lack of effect of dietary antibiotics on growth 

performance of weaned pigs during first 10 after weaning, but observed increased growth 

performance of the pigs after feeding the antibiotic-containing diets for 20 d after 

weaning. Keegan et al. (2003) similarly reported increased ADG and ADFI of weaned 

pigs due feeding of antibiotic-containing diets for 30 d but not for 9 d after weaning.  
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Studies have shown that disease-challenged pigs show a greater response in growth 

performance when they are fed diets containing antibiotics at sub-therapeutic levels. For 

instance, Hsu et al. (1983) determined the effects of adding low levels of tiamulin, a 

semisynthetic derivative of the antibiotic pleuromulin in diet for Mycoplasma 

pneumonia-challenged 8 wk-old pigs and observed greater ADG (0.54 vs. 0.44 kg) and 

feed conversion ratio (3.01 vs. 3.66 kg/kg) for pigs fed antibiotic-containing diets than for 

those fed nonmedicated diets from d 28 to 42 after medicated feed was withdrawn, but 

there was no difference in growth parameters for d 0 to 28. Pigs used in the current study 

were not disease-challenged, which could also partly explain the lack of effect of dietary 

antibiotics on growth performance of the pigs.  

Although antibiotics are effective in improving growth performance of weaned 

pigs, their inclusion in diets for food animals is being discouraged because they lead to 

development of antimicrobial resistance. Thus, we conducted the current study to 

evaluate berberine as possible alternative to antibiotics in diets for weaned pigs. Dietary 

inclusion of berberine decreased ADG and ADFI of pigs, which was contrary to the 

expectations. In previous studies, berberine exhibited antimicrobial and antioxidant 

activities (Campisi et al., 2014; Freile et al., 2003).  Also, in the first study of this thesis 

research, berberine reduced in vitro growth of E. coli. Thus, it had been hypothesized that 

dietary berberine would improve growth performance and gut health of weaned pigs 

because the reduction in growth performance of pigs after weaning is attributed to 

increased growth of pathogenic microorganisms in gut, and increased oxidative stress in 

the gut, which results in increased gut permeability to toxins. However, it should be noted 

that berberine is an alkaloid with bitter taste, and hence its inclusion in diets at a higher 
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level can result in reduced palatability of feed. In the current study, berberine was added 

in diets at 3% because it is at this level that it reduced in vitro growth of E. coli in the first 

study (see Chapter 2). Blaney et al. (2000) observed a decrease in feed intake of sows by 

50% due to dietary inclusion of sorghum (that contained 40 mg/kg alkaloids) at 4%. Jugl-

Chizzola et al. (2006) and Schone et al. (2006) also observed dose-related reduction in 

palatability of feed for pigs due to increasing dietary level of essential oils from fennel 

and caraway, as well as from the herbs thyme and oregano. Similarly, Godfrey et al. 

(1985) included lupin seed (that contains alkaloids) in diets for growing pigs at 

concentrations that ranged from 0.05 to 0.52 g/kg, and observed that inclusion of lupin 

seed in diets at ≥0.20% resulted in reduced growth rate (624g vs. 576g), largely a result 

of reduced feed intake (1.81 vs. 1.69 kg) due to bitterness of the feed. Thus, the reduced 

feed intake by dietary inclusion of berberine at 3% could have been due to reduced feed 

palatability. The reduced ADG due to dietary berberine could have been due to the 

decrease in feed intake by dietary berberine.  

Antibiotics have long been used to promote growth, and have been shown to have 

positive effects on the intestinal health when they are included in diets at sub-therapeutic 

levels, as stated earlier. Mereu et al. (2016) observed increased growth performance and 

intestinal TER (163 vs. 115 Ω.cm2) of weaned pigs due to inclusion of tiamulin, 

chlortetracycline and zinc oxide in pre-starter diets at 40, 400 and 2,500 g/metric ton, 

respectively; and in starter diets at 40, 110, and 2500 g/metric ton, respectively. They also 

observed decreased Isc (2.2 vs 6.1 µA cm2) of mid-ileum segments of the intestine. Silva 

et al. (2010) also observed increased height of villus (320 vs. 275 µm) in piglets at 14 

days post-weaning due to supplementation of diet with antibiotics alone compared with 



52 

supplementation of the diet with antibiotics plus probiotics. However, in the current 

study, inclusion of antibiotics in diets for weaned pigs did not affect villous height, Isc, 

and TER, and the reason for this is not clear. 

Pigs fed diet with berberine had lower villous height in all sections of the small 

intestine than pigs fed basal diet, which could have been due to decreased feed intake by 

dietary berberine. Data from various studies have demonstrated that villous height is 

positively correlated with feed intake (Cera et al. 1988, Kelly et al. 1991a and 1991b, 

McCracken et al. 1995, Pluske et al. 1996a and 1996a). Indeed, Verdonk et al. (2007) 

observed reduced villous height by 17% and reduced crypt depth by 13% due to a 

decrease in feed intake of weaned pigs by 31%.  Also, Kelly et al. (1991b) observed a 

19% decrease in villous height and a 13% decrease in crypt depth in pigs due to a 

decrease in feed intake (by restriction) from 864 to 226 g/day, indicating that nutrient 

intake in the weaned pigs affects the morphology of the gut. 

The addition of berberine in the basal diet tended to decrease TER in the 

duodenum, and jejunum. Decreased TER reflects increased paracellular permeability of 

the intestinal mucosa, which in turn, reflects the opening of tight junctions between 

epithelial cells (Hu et al., 2014), implying that the reduction in TER due to dietary 

berberine was due to opening of tight junctions. Chang et al. (2005) investigated the 

functional and morphological changes of the gut barrier of rats after hemorrhagic shock 

and found that the recovery of gut barrier function was much slower than that of the 

morphology and there was no direct correlation between them. Hu et al. (2014) observed 

that mRNA expression of occludin and claudin-1 (which are tight junction proteins) on d 

3, 7, and 14 post-weaning and ZO-1 (which is another tight junction protein) mRNA 
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expression on d 3 and 7 post-weaning was decreased compared with d 0, implying that 

weaning process resulted in decreased synthesis of tight junction protein. This decrease in 

synthesis of tight junction proteins results in increased paracellular permeability in the 

gut, and is mainly attributed to weaning stress. Carey et al. (1994) determined the effects 

of a 48-hour fast on jejunal ion transport in 23-day-old pigs, and observed reduced 

mucosal weight, villus height, and crypt depth due to the fasting, which often times is a 

result of weaning. In their study, fasting increased basal Isc, which reflects active ion 

transport, and total tissue conductance (Gt) (the opposite of TER) of muscle-stripped 

jejunal sheets mounted in Ussing chambers. Thus, a sufficient feed intake after weaning 

prevents the loss of the barrier function that occurs after weaning. Spreeuwenberg et al. 

(2001) did not observe any effects weaning diet composition on transcellular transport, 

but did observe a 39% change in paracellular transport on d 2 and 4 compared with day 0 

and 1, This trial indicates that the effect of diet composition on mucosal integrity is not as 

important as the sequential effects of low feed intake during the first 4 days post-weaning 

as shown by Carey et al (1994). Thus, in the current study, the decrease in TER due to 

dietary inclusion of berberine could have been due to reduction in feed intake with the 

dietary inclusion of berberine. 

In conclusion, our results show that berberine has negative effects on ADG and 

gut function when it was included in the diet at 3.0%; however, these results were 

confounded by reduced voluntary feed intake by pigs due to dietary berberine inclusion.  
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Table 1. Diet composition     

Ingredients (%) 

Phase I 

Basal Diet 

Antibiotic 

Diet 
Berberine 

Diet 

Ground Corn 53.58 53.58 53.58 

SBM 26.65 26.65 26.65 

Whey 10.00 10.00 10.00 

Fish Meal 60% 4.50 4.50 4.50 

Lysine 0.30 0.30 0.30 

Threonine 0.13 0.13 0.13 

Methionine 0.15 0.15 0.15 

Soy Oil 3.00 3.00 3.00 

Monocal 21% 0.50 0.50 0.50 

Calcium Carbonate 0.65 0.65 0.65 

White salt 0.30 0.30 0.30 

Swine Vitamin 0.05 0.05 0.05 

Swine Mineral 0.15 0.15 0.15 

Zinc Oxide - 0.25 - 

Tylan 40 - 0.05 - 

Toxin Binder MMI 0.05 0.05 0.05 

Berberine - - 3.00 

Chemical Composition    
Crude protein (%) 22.55 21.67 23.65 

Ether Extract (%) 6.65 6.27 4.05 

    
1Basal = control diet without antibitotics and berberine; Antiobiotic = basal diet plus 

antibiotics and ZnO; Beberine = basal diet plus berberine at 3%. 

2Provided the following per kilogram of diet: 2226 IU vitamin A, 340 IU vitamin D3, 

11.3 IU vitamin E, 0.01 mg vitamin B12, 0.91 mg menadione, 2.04 mg riboflavin, 12.5 mg 

pantothenic acid, 11.3 mg niacin, 0.23 mg folic acid, 0.68 mg pyridoxine, 0.68 mg thiamine, and 

0.04 mg biotin. 

3Provided the following per kilogram of diet: 75 mg Zn as ZnSO4, 75 mg Fe as FeSO4; 7 

mg Cu as CuSO4, and 20 mg Mn as MnSO4. 
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Table 3.2. Effects of treatment on growth performance 

Item 

Basal Diet 

Antibiotic 

Diet Berberine Diet 

SEM P-value 

 

Initial BW 6.137 6.35 6.475 -   

Final BW 5.925 6.312 5.537 0.223   

ADFI, g 0.127a 0.147a 0.047b 0.010 < .0001  

ADG, g -0.025a -0.011a -0.107b 0.014 < .0001  

G:F, g/g -0.236a 0.050a -4.615b 0.557 < .0001  

a–bWithin a row, means without a common superscript differ (P < 0.05). 

1Basal = control diet without antibitotics and berberine; Antiobiotic = basal diet plus 

antibiotics and ZnO; Beberine = basal diet plus berberine at 3%. 
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Table 3.3. Effects of treatment on gut health  

Item Basal 

Diet 

Antibiotic 

Diet 

Berberine 

Diet 

SEM P-value 

 

Duodenum 

Villous Height 

Crypt Depth 

Jejunum 

Villous Height 

Crypt Depth 

Ileum 

Villous Height 

Crypt Depth 

TER 

Duodenum 

Jejunum 

Ileum 

Isc 

Duodenum 

Jejunum 

Ileum 

 

161.76 

73.91a 

 

173.71ab 

72.17a 

 

199.88a 

78.72a 

 

61.28a 

44.44ab 

67.14 

 

24.54 

26.79 

12.08 

 

176.89 

74.63a 

 

203.49a 

79.30a 

 

183.72a 

85.87a 

 

52.99ab 

49.15a 

57.45 

 

29.08 

29.82 

5.42 

 

159.94 

55.05b 

 

157.76b 

54.61b 

 

143.24b 

57.90b 

 

44.31b 

34.55b 

48.19 

 

36.62 

20.97 

9.02 

 

10.134 

4.259 

 

14.357 

6.225 

 

6.592 

5.034 

 

6.354 

4.956 

7.784 

 

5.135 

7.811 

5.090 

 

0.560 

0.008 

 

0.099 

0.032 

 

< .0001 

0.004 

 

0.202 

0.151 

0.279 

 

0.370 

0.785 

0.658 

a–bWithin a row, means without a common superscript differ (P < 0.05). 
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CHAPTER FOUR: 

The effect of dietary berberine at 0.05% on growth performance, and 

electrophysiological properties and histomorphology of small intestine of weaned 

pigs 

ABSTRACT 

A study was conducted to determine effects of including berberine in diets for 

weaned pigs at 0.05% on growth performance, small intestinal permeability, 

electrophysiological properties of small intestine mounted in Ussing chambers, and small 

intestinal histomorphology. A total of 216 three-week old pigs with average initial BW of 

5.5 kg ± 0.99 were obtained in 2 blocks of 108 pigs each. Pigs in each batch were housed 

in 18 pens (6 pigs per pen) and assigned to 3 experimental diets (6 pens/diet/batch). The 

diets were basal diet without or with berberine or antibiotics. The experimental diets were 

fed for a period of 21 days and in 2 phases; Phase 1 from day 1 to 11 post-weaning, and 

Phase 2 from day 12 to 21 post-weaning. During the experimental period, feed intake and 

BW were determined on days 11 and 21, whereas indicators of intestinal health were 

determined on day 11 of the experiment. Inclusion of antibiotics or berberine in basal diet 

increased (P < 0.05) ADG of pigs in Batch 1 but not in Batch 2 during the first phase of 

feeding. There was an interaction (P = 0.038) between diet and batch on ADG for during 

the second phase of feeding such that ADG of pigs in Batch 1 was unaffected by dietary 

treatment, whereas ADG of pigs in Batch 2 was decreased (P < 0.05) by dietary inclusion 

of berberine but not of antibiotics. There was also an interaction (P = 0.048) between diet 

and batch on ADG for the entire study period (d 1 to 21) such that ADG of pigs in batch 

1 was increased (P < 0.05) by dietary inclusion of antibiotics by 32% and tended to 
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increase (P < 0.06) due to dietary inclusion of berberine by 16.6%, whereas ADG of pigs 

in batch 2 was decreased (P < 0.05) by dietary inclusion of berberine, but not of 

antibiotics. There was no effect of adding antibiotics or berberine to the basal diet on 

ADFI of pigs for day 1 to 11 and for day 12 to 21 regardless of the batch. However, for 

entire study period (day 1 to 21), pigs fed antibiotic-containing diet had greater (P < 0.05) 

ADFI than those fed the basal diet and those fed the berberine diet. Batch and diet tended 

to interact (P = 0.082) on ileal villous height such that that was no effect of dietary 

treatment on ileal villous height of pigs in Batch 1, whereas inclusion of berberine (but 

not antibiotics) in the basal diet increased (P < 0.05) the ileal villous height of pigs in 

Batch 2. There was no effect of dietary treatment on lactulose:mannitol ratio in urine. 

Inclusion of antibiotics in the basal diet increased (P < 0.05) transepithelial resistance 

(TER) in ileum of pigs in Batch 1 by 35%. Inclusion of berberine in basal diet had no 

effect on TER values in the jejunum and the ileum. There was no effect of dietary 

treatment on permeability of the jejunal and ileal mucosa to the FITC-dextran 4 kDa for 

pigs. Batch and diet interacted on short-circuit current in jejunum and ileum such that 

dietary inclusion of berberine but not antibiotics increased (P < 0.05) Isc in jejunum and 

ileum of pigs in Batch 1 by at least 60%, whereas dietary inclusion of berberine or 

antibiotics did not affect Isc in jejunum and ileum of pigs in Batch 2. Some pens of Batch 

2 pigs fed diets containing berberine or antibiotics had diarrhea. In conclusion, dietary 

berberine improved growth performance and Isc intestine of pigs in Batch 1.  However, 

dietary berberine did not ADG and Isc intestine of pigs in Batch 2 likely due to 

confounding effect of diarrhea of some pigs fed diets containing berberine. The improved 

ADG and Isc intestine of pigs in Batch 1 by dietary berberine imply that berberine can 
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improve growth performance of weaned by increasing intestinal nutrient absorptive 

capacity. 

 

INTRODUCTION 

Weaning stressors are associated with changes in gastrointestinal morphology, 

microbiology, and physiology; and immunological challenges (Spreeuwenberg et al., 

2001; Heo et al., 2012). The stress of weaning results in a decrease in growth 

performance, an increase in diarrhea incidences, and an increase in susceptibility to gut 

infections. Gut infections characterized with diarrhea are the major cause of reduced 

growth performance and increased morbidity and mortality of post-weaned pigs and 

pathogenic E. coli are a major cause of the gut infections (Fairbrother et al., 2005). 

Antibiotics have been added to weaned pig diets for many years to help reduce the effects 

of weaning stressors on growth performance. However, with stricter rules pertaining to 

the use of antibiotics in feed for the fear of antibiotic resistant bacteria, there has become 

a need to find alternatives to antibiotics.  

Berberine has been reported to have a wide spectrum of pharmacological effects 

including antihypertensive, anticancer, and antidepressant, anti-inflammatory, and 

antioxidant (Fan et al., 2015). It has been shown to alleviate diarrhea in humans and has 

been used as a treatment for cardiovascular and other lifestyle-related diseases, however 

there is limited information on effects of including berberine in diets for weaned pigs on 

growth performance and gut health. 

In our previous study (see Chapter 2), inclusion of berberine in incubation 

medium at 3% reduced growth of E. coli. However, in our other previous study (see 
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Chapter 3), inclusion of berberine in diets for weaned pigs at 3.0% reduced ADFI and 

ADG. Berberine is a bitter alkaloid (Shirwaikar et al., 2006), and its inclusion diets at 

high levels can result in reduced palatability of the diet. Indeed, Godfrey et al. (1985) 

observed reduced feed intake of growing pigs due to an increase in dietary level of 

alkaloids to ≥0.20% through dietary inclusion of lupin. Hence, the reduction in ADFI and 

hence ADG of weaned pigs due to dietary inclusion of berberine at 3% in our previous 

study could have been due to the fact that dietary berberine at 3% was high enough to 

reduce diet palatability. Berberine at 0.08% of daily feed intake was effective in 

controlling coccidiosis in chickens (Malik et al., 2014), implying that berberine at 

dosages less than 1%, may alleviate gut infections.   

The objective of this study was to determine the effects of including berberine in 

diets for weaned pigs at a lower inclusion rate (0.05%) on diet palatability, growth 

performance, permeability and electrophysiological properties of small intestine mounted 

in Ussing chambers, and small intestinal histomorphology. 

 

MATERIALS AND METHODS 

Two separate experiments were conducted at South Dakota State University. 

Exp. 1 

 The experiment was conducted to determine the effect of dietary inclusion of 

0.05% berberine without or with a sweetener (saccharine) on feed intake of weaned pigs. 

Six three-week old weaned pigs (Large white-Landrace female × Large white-Hampshire 

male, Pig Improvement Company) were acquired. Pigs were housed individually in 

grower pens (2.3 × 1.8 m) that allowed freedom of movement. Each pen had a metal slate 
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floor with concrete sides, a 3 space dry feeder, and a nipple drinker. Each pigs was given 

3 different diets; 1 diet per space of feeder. The diets were a basal diet with antibiotics 

(Tylan 40), Berberine Chloride Hydrate, (#4101062757) and was obtained from Sigma-

Aldrich (St. Louis, MO) at 0.05%, or berberine at 0.05% plus saccharine (an artificial 

sweetener, obtained from Sigma-Aldrich, St. Louis, MO) at 0.023% (Table 4.1). The 

experiment lasted for 7 days. During the experimental period, the diets and water were 

given ad libitum. Diets were placed into feeders in containers that fitted the dimensions 

of each of the 3 spaces in the feeder. Diets were fed daily to ensure that there was 

adequate amount of each diet in each feeder for the pig to choose from. On the final day 

of the study, feed that had remained in the feeders was weighed to determine average 

daily feed intake of each diet for each pig.  

Exp. 2 

 The experiment was conducted to determine the effects of including berberine in 

diets for weaned pigs at 0.05% on growth performance, permeability and 

electrophysiological properties of small intestine mounted in Ussing chambers, and small 

intestinal histomorphology. 

Experimental Animals  

A total of 216 three-week old pigs (Large white-Landrace female × Large white-

Hampshire male, Pig Improvement Company) with average initial BW of 5.5 kg ± 0.99 

were obtained from a commercial farm in 2 batches of 108 pigs each. Pigs in each batch 

were weighed upon arrival and housed in 18 pens (6 pigs/pen) balanced for initial BW. 

Pigs were housed individually in pens (2.3 × 1.8 m) that allowed freedom of movement. 
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Each pen had a metal slate floor with concrete sides, a 3 space dry feeder, and a nipple 

drinker.  

Experimental Diets and Design  

 Pigs in each batch were fed 3 experimental diets in a completely randomized 

design (6 pens/diet/batch). The diets included basal diet without or with berberine 

(berberine chloride hydrate, #4101062757; Sigma-Aldrich, St. Louis, MO) at 0.05%, or 

control with antibiotic (Table 3 and Table 4). All diets were formulated to meet or exceed 

NRC (2012) nutrient requirements for weaned pigs. The diets were fed in 2 growth 

phases based on age; Phase 1 (d 1 to 11 post weaning), and Phase 2 (d 11 to 21 post 

weaning). The diets were analyzed for CP and ether extract as described in Chapter 3. 

Experimental Procedure 

  During the experimental period, pigs were offered diets and water ad libitum. 

From d 10 to 12 6 pigs (2 pigs per diet) were euthanized per day for collection jejunal and 

ileal tissues. Three hours prior to euthanization, a bolus (15 ml/kg) of 5% lactulose and 

5% D-mannitol solutions was orally administered to pigs that had been marked for 

euthanization.  Just before euthanization, pigs were anesthetized with 1.5 ml of telazol-

ketamine-xylazine (TKX; telazol and xylazine at 50 mg/mL each; ketamine at 100 mg/mL) 

and the abdomen was numbed with lidocaine. A small incision was made in the lower 

abdomen, which allowed access to the bladder. Urine collection was collected directly 

from the bladder using sterile needle and syringe for later determination of gut 

permeability by lactulose:mannitol ratio in urine as described below. The pigs were then 

euthanized by captive bolt. Upon the euthanization, the abdominal cavity was exposed by 

large incision through the abdominal wall. The small intestine was excised and ten 
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centimeter sections of the jejunum (at the middle of small intestine), and ileum (at 70 cm 

above ileo-cecal junction) were obtained and placed into Ringer’s solution (NaCl; 6.72 

g/l, K2HPO4; 0.42 g/l, KH2PO4; 0.05 g/l, CaCl2 dihydrate; 0.18 g/l, MgCl2 

hexahydrate; 0.24 g/l, NaHCO3; 2.1 g/l, Glucose 1.80 g/l; pH of 7.3-7.4) for later 

measuring intestinal permeability and electrophysiological parameters using Ussing 

chamber technique as described below. Indomethacin (10µM) was added in the buffer 

solution at 3µl/L to minimize the effects of pro-inflammatory eicosanoids on intestinal 

tissue electrophysiological properties. Also, 5 cm sections were obtained from duodenum 

(at 70 cm below the pylorus), middle of jejunum and ileum (from the same locations 

where sections for Using Chamber were obtained), and placed in neutral buffered 10% 

formalin-containing vials for histomorphology analysis as described below.  

Determining Intestinal Permeability by Lactulose:Mannitol Ratio  

Permeability was quantified by the ratio of lactulose:mannitol concentrations in 

the urine as described by Nguyen et al. (2013). Lactulose and mannitol sugars are used 

due to a consistent increase in the absorption of disaccharide (lactulose) and a reduction 

in the absorption of monosaccharide (mannitol) after the ingestion of a solution 

containing the sugar probe molecules. The transport of monosaccharides occurs either 

through tight junctions between the epithelial cells or through aqueous pores in the cell. 

Disaccharides are transported through the tight junctions of the crypts. The ratio of the 

two sugars in the urine provided is used because there are some mucosal factors (gastric 

emptying, urinary collection) and the ratio is said to not be disturbed by these. An 

increase in lactulose:mannitol ratio indicates decreased barrier function and vice versa. 
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Concentrations of lactulose and mannitol in urine were determined using 

commercial kits from BioAssay Systems (Hayward, CA). Briefly, 4 standards for each kit 

were prepared and pipetted into 4 wells in a flat bottomed 96-well plate. Then, 20 µl 

urine samples were pipetted into the well plate at 2 wells per sample (sample wells). 

Some wells were left empty to serve as blanks. A working reagent (80 µl) and blank 

working reagent (80 µl) were prepared to be pipetted into each sample well and blank 

sample well. Well plates for lactulose assay were prepared and incubated in the darkness 

for 60 min at room temperature before reading optical density at 565 nm. Well plates for 

mannitol assay were prepared and incubated in light for 30 min at room temperature 

before reading optical density at 565 nm. Standards were graphed to determine the slope, 

and concentrations of sample were determined using this equation; 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =

𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒− 𝑂𝐷𝑏𝑙𝑎𝑛𝑘

𝑆𝑙𝑜𝑝𝑒 (𝑚𝑀−1) × 𝑛 (𝜇𝑀). If sample wells values were higher than the standard wells, 

the sample was diluted in water and the assay was repeated. The results were then 

multiplied by the dilution factor. 

 

Determining Intestinal Permeability and Physiological parameters with 

Ussing Chambers  

The electrophysiological properties Isc, PD and TER were determined using a 

Ussing chamber (VCC-MC6; Physiologic Instruments Inc., San Diego, CA) containing 

pairs of current (Ag wire) and voltage (Ag/AgCl pellet) electrodes housed in 3% agar 

bridges and filled with 3 M KCl. Samples were prepared, mounted in Ussing chambers, 

and referenced as described in Chapter 3. Also, the PD, Isc, and TER were measured for 

120 min as described in Chapter 3.  
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In addition to PD, Isc, and TER, mucosal permeability in Ussing chambers was 

assessed by measuring mucosal to serosal fluxes of FITC-dextran 4 kDa (#46944, 

Sigma-Aldrich, St. Louis, MO). This was because FITC dextran 4 kDa can only pass 

through larger pores in the gut wall. Thus when it is added to the solution in the chamber 

at the luminal side, its appearance in the chamber at the serosal side reflects the 

permeability of the mucosa to the FITC-dextran 4 kDa, and hence permeability to toxins 

and pathogenic microorganisms. The mucosal to serosal flux of FITC-dextran 4 kDa 

was measured in darkness as described below. Briefly, the FITC-dextran 4 kDa was 

added to the mucosal side of the Ussing chambers at a final concentration of 104 nM 

and 200 µl samples were taken from the serosal sides at 0 (just before the addition of 

FITC-dextran 4 kDa on mucosal side), 30, 60, 90 and 120 min for determination of 

FITC-dextran 4 kDa concentration, and replaced with 200 µl of buffer solution. After 

120 minutes, lights were switched on, and forskolin (10 µM) was added to both the 

mucosal and serosal sides of the chambers to determine whether or not the tissues were 

still alive as described in Chapter 3. The quantity of FITC-dextran 4 kDa was 

determined by measuring the fluorescence in the collected serosal samples using a 

fluorescence plate reader (Synergy 2 Multi-detection Microplate Reader, BioTek, 

Winooski, VT) at 540 nm. 

 

Histomorphology Analysis  

Samples for histology analysis were sent to the Animal Disease Research and 

Diagnostic Laboratory at South Dakota State University for staining with haematoxylin 

and eosin. Villus height (from the tip of the villi to the villus-crypt junction) and crypt 
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depth (from the villus-crypt junction to the base) were measured at 20x magnification 

using a Nikon microscope (Tokyo, Japan) equipped with a DS2MV Nikon camera 

(Tokyo, Japan) and NIS Elements software (Tokyo, Japan) in 20 well-oriented villi and 

crypt columns. The VH-to-CD ratio was calculated. 

 

Statistical Analysis 

Data from the Experiment 1 was analyzed using mixed procedure of SAS (SAS 

Inst. Inc., Cary, NC). Pig was used as experimental unit. To test the hypotheses, the level 

of significance was set at 5%. 

Data from Experiment 2 were analyzed as a randomized complete block design 

with batch as block using mixed procedure of SAS (SAS Inst. Inc., Cary, NC). Pen was 

used as experimental unit. Main effects of batch and diet and their interactions were 

determined using specific contrasts. Diet means were compared by probability of 

difference. To test the hypotheses, the level of significance was set at 5%. 

 

RESULTS 

Exp. 1 

The ADFI for berberine diet did not differ from that for berberine plus saccharine 

diet (Table 4.2). The ADFI for the antibiotic diet was greater (P < 0.05) than that for the 

berberine diet or berberine plus saccharine diet. 

Exp. 2 

Phase 1 basal diet had numerically greater dietary CP content and lower ether 

extract content than Phase 1 antibiotic diet or berberine diet (Table 4.3). However, 
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inclusion of berberine in the Phase 2 basal diet resulted in a numerical increase in CP and 

ether extract contents (Table 4.3).  

Some pigs fed antibiotic and berberine diets developed spontaneous diarrhea 

during the first phase of feeding. For this reason, data is presented by batch to show the 

effects of batch on response criteria that were measured. Inclusion of antibiotics in basal 

diet increased ADG of pigs in Batch 1 (P < 0.05) for d 1 to 11. Also, inclusion of 

berberine in basal diet increased ADG of pigs in Batch 1 (P < 0.05) for d 1 to 11. 

However, there was no effect of dietary treatment on ADG of pigs in Batch 2 for d 1 to 

11. There was an interaction (P = 0.038) between diet and batch on ADG for d 12 to 21 

such that ADG of pigs in Batch 1 was unaffected by dietary treatment, whereas ADG of 

pigs in Batch 2 was decreased (P < 0.05) by dietary inclusion of berberine but not of 

antibiotics. There was also an interaction (P = 0.048) between diet and batch on ADG for 

the entire study period (d 1 to 21) such that ADG of pigs in Batch 1 was increased (P < 

0.05) by dietary inclusion of antibiotics and tended to increase (P < 0.06) by dietary 

inclusion of berberine, whereas ADG of pigs in Batch 2 was decreased (P < 0.05) by 

dietary inclusion of berberine, but not of antibiotics.  

There was no effect of adding antibiotics or berberine to the basal diet on ADFI of 

pigs for d 1 to 11 and for d 12 to 21 regardless of the batch. However, for entire study 

period (d 1 to 21), pigs fed antibiotic-containing diet had greater ADFI (P = 0.03) than 

those fed the basal diet and those fed the berberine diet (P = 0.001). Inclusion of 

antibiotics in basal diet increased G:F of pigs in Batch 1 (P < 0.05) for d 1 to 11. Also, 

inclusion of berberine in basal diet increased G:F of pigs in Batch 1 (P < 0.05) for d 1 to 

11. However, there was no effect of dietary treatment on G:F of pigs in Batch 2 for d 1 to 
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11. There was an interaction (P = 0.042) between diet and batch on G:F for d 12 to 21 

such that G:F of pigs in Batch 1 was unaffected by dietary treatment, whereas G:F of pigs 

in Batch 2 was decreased (P < 0.05) by dietary inclusion of berberine but not of 

antibiotics. There was also an interaction (P = 0.049) between diet and batch on G:F for 

the entire study period (d 1 to 21) such that G:F of pigs in Batch 1 was increased (P < 

0.004) by dietary inclusion of berberine, whereas G:F of pigs in Batch 2 there was no 

effect by dietary inclusion of berberine. 

There was no effect of adding antibiotics or berberine to basal diet on villous 

height, crypt depth, and villous height to crypt depth ratio in duodenum and jejunum, and 

on crypt depth in ileum (Table 4). Batch and diet tended to interact (P = 0.082) on villous 

height in ileum such that that was no effect of dietary treatment on villous height of pigs 

in Batch 1, whereas inclusion of berberine (but not antibiotics) in the basal diet increased 

(P < 0.05) the villous height of pigs in Batch 2. Also, villous height to crypt depth ratio in 

the ileum was increased (P < 0.05) by dietary inclusion of berberine, but not antibiotics.  

There was no effect of dietary treatment on lactulose:mannitol ratio in urine 

(Table 4.7). Inclusion of antibiotics in the basal diet increased (P < 0.05) TER in ileum of 

pigs in Batch 1. Inclusion of berberine in basal diet had no effect on TER values in the 

jejunum and the ileum. There was no effect of dietary treatment on permeability of the 

jejunal and ileal mucosa to the FITC-dextran 4 kDa for pigs in both Batch 1 and Batch 2. 

There was a tendency (P <0.080) for increased dextran levels in the ileum of the pigs fed 

the berberine diet compared to the pigs fed the antibiotic diet in Batch 2.  

 Batch and diet interacted on Isc in jejunum and ileum such that dietary inclusion 

of berberine but not antibiotics increased (P < 0.05) Isc in jejunum and ileum of pigs in 
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Batch 1, whereas dietary inclusion of berberine or antibiotics did not affect Isc in jejunum 

and ileum of pigs in Batch 2 (Table 4.7). 

 

DISCUSSION 

Exp. 1 

The ADFI for diet with antibiotics was greater than that for diet with berberine or 

diet with berberine plus sweetener, implying that dietary inclusion of berberine at 0.05% 

reduced diet palatability. There was no difference in ADFI for diet with berberine and 

diet with berberine plus sweetener, implying that inclusion of the sweetener to the 

berberine-containing diet did not affect diet palatability. The palatability of a food or feed 

is dependent on the effect of that food or feed upon several different sensory systems in 

the mouth. Sweetening agents have been included in feeds for pigs to the palatability of 

the feeds. However, the effects of sweetening agents on feed palatability has been 

variable. For instance, Notzold et al. (1955) reported that inclusion of the sweetener 

saccharin at 0.03 or 0.1% in diets for weaned pigs did not affect feed consumption, 

growth rate or feed efficiency. However, when the sweetener was included in diets at 

0.05% in a 55-day trial, they (Notzold et al., 1955) observed greater feed consumption for 

sweetened diet than for unsweetened diet during the first half of the study period, 

implying that there may be specific dietary levels of sweeteners at which there is taste 

preference for sweetened diets. This was also demonstrated in another study by Goatcher 

and Church (1970) in which 8 pigs were used to test the preference of water with 

saccharin at concentrations ranging from 0.25 to 25 g/L, and it was observed that at 

higher concentrations of saccharin, 6 pigs preferred saccharin solution over water, 



70 

whereas 2 pigs preferred water over saccharin solution. Results from the studies of 

Notzold et al. (1955) and Goatcher and Church (1970) imply that the effect of sweetener 

on feed palatability can vary among pigs. Thus, the lack of effect of sweetener on 

palatability of berberine-containing diet in the current study could probably have been 

due to dosage of the sweetener and pigs used in the study. It should be noted weaned pigs 

had high preference soybean meal over canola meal (84 vs. 16%) when they were offered 

both soybean meal-based diet and canola meal-diet (Landero et al., 2012); canola meal 

contains glucosinolates that are bitter.  However, the ADFI for canola-meal-based diet 

did not differ from that of soybean meal-based diet when the diets the weaned pigs were 

offered only canola meal-based diet or soybean meal-based diet (Landero et al., 2011). 

The preference for antibiotic-containing diet over that containing berberine or berberine 

plus saccharin in the current study was low (43 vs. 33 vs. 24%), implying that weaned 

pigs can consume sufficient amounts of diets containing ~0.05% when the pigs are only 

offered berberine-containing diet. Because the ADFI for diet that contained berberine did 

not differ from that for diet that contained berberine plus saccharin, berberine was 

included in diets that were fed in Exp. 2 at 0.05% and without a sweetener. 

 

Exp. 2 

The addition of antibiotics to the basal diet increased ADG and ADFI of pigs in 

Batch 1 for d 1 to 11 and for entire period of the study. These results are in agreement 

with results from several studies (Hays, 1977; CAST, 1981; Zimmerman, 1986; Weber, 

2001) that reported improved growth rate and feed efficiency of pigs due to dietary 

inclusion of antibiotics. Antibiotics are included in swine diets as non-nutritive feed 
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additives for their therapeutic potential as well as their ability to promote growth. The 

proposed mechanisms by which antibiotics improve growth performance of weaned pigs 

include the suppression of bacteria that are responsible for production of toxic 

compounds such as ammonia and amines in hindgut (Catron, 1953; Henderickx 1981). 

Reduced production of toxins by these bacteria also result in a decrease in intestinal wall 

thickness, which results in greater nutrient absorption (Catron, 1953; Henderickx 1981). 

Dietary antibiotics promote growth of certain microorganisms that synthesize certain 

nutrients that are required by host animals (Cromwell, 2001). Dietary antibiotics also 

depress growth of certain microorganisms that compete with host animal for nutrients 

such as amino acids and vitamins (Cromwell, 2001). The addition of berberine to the 

basal diet increased ADG of pigs in Batch 1 for d 1 to 11 and tended to increase ADG for 

entire period of the study, which could partly have been due to increased nutrient 

absorptive capacity as evidenced by the increased Isc in jejunal and ileal mucosa by 

dietary berberine. Berberine may improve growth performance by directly affecting the 

epithelial cells of the gut. Berberine affects pumps and channels involved with chloride 

secretion and nutrient absorption. A decrease in secretory action plays a role in 

decreasing electrolyte and water secretion across the intestinal mucosa, which will play a 

role in improving pig health and performance (Joshi et al., 2011).  Berberine is also an 

effective antioxidant by several mechanisms including removal of oxygen, scavenging of 

reactive oxygen species and nitrogen species or their precursors, which can occur when 

the animal is stressed (Shirwaikar et al., 2006), as well as exhibits antimicrobial activities 

(Freile et al., 2003). Rahimi et al. (2011) observed an increase in feed intake and feed 

conversion ratio of broiler chicks by the addition of herbal extracts (0.1% thyme or 
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garlic) to diets fed from hatch to 42 days of age. Nofrarı´as et al. (2014) also observed 

increased ADFI of weaned pigs by 21% due to supplementation of diets with a plant 

extract product (5% carvacrol, 3% cinnamaldehyde, and 2% capsicum oleoresin). 

Inclusion of an extract from Quillaja saponaria in diets for 24 day-old weaned pigs at 0, 

125, 250, 500 mg/kg did not affect growth performance of the pigs after 28 days of 

feeding (Turner et al., 2002). In another study, inclusion of Q. saponaria in diets for 

weaned pigs at 65 and 125 mg/kg plus antimicrobials improved growth rate of pigs 

(Cromwell et al., 1985), which indicated that the Q. saponaria extract is beneficial when 

it is supplemented together with antimicrobials. 

The addition of antibiotics or berberine to the basal diet did not increase ADG and 

ADFI of pigs in Batch 2. It should be noted that some Batch 2 pigs fed antibiotic- and 

berberine-containing diets developed diarrhea, whereas all pigs fed the basal diet did not 

develop diarrhea. Thus, the diarrhea could have confounded the effects of dietary 

antibiotics or berberine in Batch 2 pigs. However, it is not clear why some pigs fed 

antibiotics- and berberine-containing diets in Batch 2 developed diarrhea. 

There was no effect of addingg antibiotic to basal diet on villous height, crypt 

depth or villous height to crypt depth ratio in duodenum and jejunum of pigs. There was, 

however, an increase in villous height and villous height to crypt depth ratio in ileum of 

pigs in Batch 2 due to inclusion of berberine in diet. Yazdani et al. (2013) also observed 

an increase in duodenal and jejunal villous height in 1-day-old broiler chickens due to 

supplementation of their diets with Berberis vulgaris extract in which berberine was the 

most important active compound. Hanczakowska and Swiatkiewicz (2012) similarly 

reported an increase in villous height in the ileum of piglets due to supplementation of 
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diets with extracts from sage (Salvia officinalis), lemon balm (Melissa officinalis), nettle 

(Urtica dioica), and purple coneflower (Echinacea purpurea). The mechanism by which 

berberine improves gut morphology could potentially be through macrophage apoptosis 

and inhibition of pro-inflammatory cytokine production, macrophages have been shown 

to promote repair of damaged mucosal tissue by producing immunosuppressive factors 

(Pull et al., 2005)  which was observed in DSS-induced mice (Yan et al., 2012). 

However, the decrease in growth performance of pigs in Batch 2 due to dietary inclusion 

of berberine we would’ve been expected to be associated with either a decrease or no 

change in villous height, since a decrease in villous height is linked to a decrease in 

absorption in nutrients and barrier protection against harmful pathogens (Lalles et al., 

2004). Thus, the reasons for discrepancy between growth performance and ileal 

histomorphology data are not clear. 

 Inclusion of antibiotics in the basal diet increased TER values in both the 

jejunum and ileum of pigs in Batch 1. However, inclusion of berberine in basal diet had 

no effect on TER values in the jejunum and the ileum. Inclusion of antibiotics in the basal 

diet had no effect on Isc values of the small intestine in both the jejunum and the ileum. 

Inclusion of berberine in the basal diet increased Isc in the jejunum and ileum. However, 

an interaction between diet and batch on Isc was observed such that Isc was increased 

with the addition of berberine to the basal diet in the ileum in batch 1 but not in batch 2; 

the same interaction occurred in the jejunum. Stress and restricted energy intake are 

known to increase basal Isc and increase epithelial conductance (the opposite of TER) 

(Carey et al., 1994; Santos et al., 2000). Thus, the increase in jejunal and ileal mucosa Isc 

of pigs in batch 1 by dietary inclusion of berberine could have been due to reduced feed 
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intake.vIt is not clear why dietary berberine did not affect Isc in jejunum and ileum of 

pigs in batch 2. It could have been due to diarrhea by some of the in pigs (in batch 2) fed 

berberine-containing diet. The lower ADFI for berberine diet than for antibiotic diet 

could be the reason for the decrease in TER in small intestine of pigs fed the berberine 

diet because of the decrease in intake. However, an increase in ileal villous height we 

would be expected to result in an increase in TER in batch two rather than batch one, and 

the reason for lack of association between TER and villous height is not clear. Contrary 

to the results in the current study, Robbins et al. (2013) observed a higher mean ileal TER 

(62 Ω/cm2) in salmonella-challenged 5-week old pigs fed diet with 

benzo(c)phenanthridine alkaloid at 1.5 g/1000 kg  than in those fed diet with 

chlortetracycline (59.4 g/1000 kg).  Ferraris and Carey (2000) reported that changes in 

conductance (opposite of TER) largely reflect changes in size or selectivity of the tight 

junctions that separate the enterocytes, which would allow bacteria or toxins through the 

tight junctions. 

In conclusion, dietary berberine improved ADG, G:F and Isc in jejunum and 

ileum of pigs in batch 1. However, dietary berberine did not affect small intestinal 

histomorphology, jejunal and ileal TER, permeability of the jejunal and ileal mucosa to 

the FITC-dextran 4 kDa, and lactulose:mannitol ratio in urine of pigs in batch 1. Thus, it 

appears that dietary berberine can improve growth performance of weaned pigs through 

increasing small intestinal nutrient absorptive capacity because small intestinal Isc is 

positively correlated with small intestinal nutrient absorptive capacity. However, dietary 

berberine did not improve growth performance and Isc in small intestine of pigs in batch 

2. However, it should be noted that some pigs (in batch 2) fed berberine-containing diets 
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(also and antibiotic-containing diets) had diarrhea, which could have confounded the 

effects of dietary berberine on growth performance and small intestinal nutrient 

absorptive capacity.    
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Table 4.1. Composition of diets fed in Experiment 1     

Item 
Diet1 

Antibiotic Berberine  Saccharine  

Ingredient, %    

Corn 53.58 53.58 53.58 

Soybean meal 26.65 26.65 26.65 

Whey 10.00 10.00 10.00 

Fish Meal 60% 4.50 4.50 4.50 

L-Lysine.HCl 0.30 0.30 0.30 

L-Threonine 0.13 0.13 0.13 

DL-Methionine 0.15 0.15 0.15 

Soybean oil 3.00 3.00 3.00 

Monocalcium phosphate 0.50 0.50 0.50 

Calcium carbonate 0.65 0.65 0.65 

White salt 0.30 0.30 0.30 

Vitamin premix2 0.05 0.05 0.05 

Mineral premix3 0.15 0.15 0.15 

Zinc oxide 0.25 - - 

Tylan 40 0.05 - - 

Toxin binder MMI 0.05 0.05 0.05 

Berberine - 0.05 0.05 

Saccharine - - 0.23 

Analyzed chemical composition, %   

Crude protein  21.67 23.65 22.55 

Ether extract  6.27 4.05 6.65 

    
1Antibiotic = basal diet plus antibiotics and ZnO; Berberine = basal diet plus 

berberine at 3%. Saccharine diet = Berberine plus 0.23% Saccharine 

2Provided the following per kilogram of diet: 2226 IU vitamin A, 340 IU vitamin 

D3, 11.3 IU vitamin E, 0.01 mg vitamin B12, 0.91 mg menadione, 2.04 mg riboflavin, 

12.5 mg pantothenic acid, 11.3 mg niacin, 0.23 mg folic acid, 0.68 mg pyridoxine, 0.68 

mg thiamine, and 0.04 mg biotin. 

3Provided the following per kilogram of diet: 75 mg Zn as ZnSO4, 75 mg Fe as 

FeSO4; 7 mg Cu as CuSO4, and 20 mg Mn as MnSO4. 
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Table 4.2. Effects of dietary treatment on diet palatability  

  

Items Antibiotic diet1 Berberine diet 

Berberine 

diet + 

saccharine 

SEM P-value 

ADFI 136.23a 103.63b 77.73b 10.95 0.006 

      
a–cWithin a row, means without a common superscript differ (P < 0.05). 

1Antibiotic = basal diet plus antibiotics and ZnO; Berberine = basal diet plus 

berberine at 3%. Saccharine diet = Berberine plus 0.23% Saccharine 
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Table 4.3. Composition of Phase 1 diets (as-fed basis) fed in 

Experiment 2   

Ingredients (%) 
Diet1 

Antibiotic  Berberine  Basal 

Corn 32.54 33.28 33.35 

SBM, 46.5% 15.00 15.00 15.00 

Whey, dried 30.00 30.00 30.00 

Menhaden Fishmeal 8.00 8.00 8.00 

Hamlet Protein 300 8.00 8.00 8.00 

L-lysine HCl 0.26 0.26 0.26 

L-Threonine 0.06 0.06 0.05 

DL-Methionine 0.15 0.15 0.15 

L-Typtophan 0.02 0.02 0.02 

Soybean Oil 4.00 4.00 4.00 

Monocal 0.48 0.48 0.47 

Limestone 0.25 0.25 0.25 

Salt 0.25 0.25 0.25 

Nursery Vitamin2 0.05 0.05 0.05 

Nursery TM3 0.15 0.15 0.15 

Zinc Oxide 0.42 - - 

Denagard 0.17 - - 

Chlortetracycline 0.20 - - 

Berberine - 0.05 - 

Analyzed chemical Composition    

Crude protein (%) 21.97 22.32 23.37 

Ether Extract (%) 9.70 9.00 6.37 

        
1Basal = control diet without antibiotics and berberine; Antibiotic = basal diet 

plus antibiotics and ZnO; Berberine = basal diet plus berberine at 0.05%. 

2Provided the following per kilogram of diet: 2226 IU vitamin A, 340 IU vitamin 

D3, 11.3 IU vitamin E, 0.01 mg vitamin B12, 0.91 mg menadione, 2.04 mg riboflavin, 

12.5 mg pantothenic acid, 11.3 mg niacin, 0.23 mg folic acid, 0.68 mg pyridoxine, 0.68 

mg thiamine, and 0.04 mg biotin. 

3Provided the following per kilogram of diet: 75 mg Zn as ZnSO4, 75 mg Fe as 

FeSO4; 7 mg Cu as CuSO4, and 20 mg Mn as MnSO4. 
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Table 4.4. Composition of Phase 2 diets (as-fed basis)in 

Experiment 2   

Ingredients (%) 
Diet1 

Antibiotic  Berberine  Basal 

Corn 54.84 54.49 55.49 

SBM, 46.5% 28.50 28.50 28.50 

Whey, dried 10.00 10.00 10.00 

Menhaden Fishmeal 3.00 3.00 3.00 

L-lysine HCl 0.35 0.35 0.35 

L-Threonine 0.09 0.09 0.09 

DL-Methionine 0.12 0.12 0.12 

L-Typtophan 0.02 0.02 0.02 

Monocal 1.10 1.10 1.10 

Limestone 0.83 0.83 0.83 

Salt 0.30 0.30 0.30 

Nursery Vitamin2 0.05 0.05 0.05 

Nursery TM3 0.15 0.15 0.15 

Zinc Oxide 0.28 - - 

Denagard 0.17 - - 

CTC 0.20 - - 

Berberine - 0.05 - 

Chemical Composition    

Crude protein (%) 21.65 22.68 21.71 

Ether Extract (%) 3.24 6.37 2.89 

        
1Basal = control diet without antibiotics and berberine; Antibiotic = basal diet 

plus antibiotics and ZnO; Berberine = basal diet plus berberine at 0.05%. 

2Provided the following per kilogram of diet: 2226 IU vitamin A, 340 IU vitamin 

D3, 11.3 IU vitamin E, 0.01 mg vitamin B12, 0.91 mg menadione, 2.04 mg riboflavin, 

12.5 mg pantothenic acid, 11.3 mg niacin, 0.23 mg folic acid, 0.68 mg pyridoxine, 0.68 

mg thiamine, and 0.04 mg biotin. 

3Provided the following per kilogram of diet: 75 mg Zn as ZnSO4, 75 mg Fe as 

FeSO4; 7 mg Cu as CuSO4, and 20 mg Mn as MnSO4. 
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Table 4.5. Effects of treatment on growth performance.     

  Diet1   P-value 

Item Basal Antibiotic Berberine SEM Diet Batch Diet*Batch 

1-11 days        
ADG (g)        

Batch 1 0.100c 0.151a 0.125b 0.012 0.159 0.005 0.150 
Batch 2 0.097 0.096 0.089 

ADFI (g)    
    

Batch 1 0.160 0.196 0.190 
0.014 0.716 0.005 0.207 

Batch 2 0.151 0.135 0.109 

G:F    
    

Batch 1 0.622b 0.770a 0.706ab 0.042 0.485 0.319 0.399 
Batch 2 0.641 0.618 0.687 

12-21 days    
    

ADG (g)    
    

Batch 1 0.307 0.360 0.323 
0.014 0.001 0.450 0.038 

Batch 2 0.325a 0.378a 0.249b 

ADFI (g)    
    

Batch 1 0.618 0.699 0.562 
0.053 0.093 0.674 0.801 

Batch 2 0.639 0.679 0.483 

G/F    
    

Batch 1 0.498 0.541 0.580 
0.041 0.282 0.149 0.042 

Batch 2 0.519 0.558 0.330 

1-21 days    
    

ADG (g)    
    

Batch 1 0.386b 0.511a 0.450ab 
0.024 0.007 0.099 0.048 

Batch 2 0.422ab 0.473a 0.308b 

ADFI (g)    
    

Batch 1 0.530b 0.642a 0.505b 
0.027 0.001 0.493 0.424 

Batch 2 0.558ab 0.624a 0.431b 

G/F    
    

Batch 1 0.722b 0.801ab 0.898a 0.053 0.804 0.072 0.049 
Batch 2 0.758 0.755 0.567 

a–cWithin a row, means without a common superscript differ (P < 0.05). 

1Basal = control diet without antibiotics and berberine; Antiobiotic = basal diet 

plus antibiotics and ZnO; Berberine = basal diet plus berberine at 0.05%. 
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Table 4.6. Effects of treatment on intestinal histomorphology 

    

Item 

Diet1 

SEM 

P-value 

Basal Antibiotic Berberine Diet Batch Diet*Batch 

Duodenum        

Villous height        

Batch 1 148.02 164.97 153.50 
10.149 0.704 0.028 0.894 

Batch 2 176.64 183.8 184.96 

Crypt depth    
    

Batch 1 61.53 38.66 61.77 
3.016 0.694 0.056 0.570 

Batch 2 71.37 70.22 70.62 

VH/CP    
    

Batch 1 2.41 2.41 2.47 
0.134 0.850 0.270 0.933 

Batch 2 2.50 2.64 2.65 

Jejunum    
    

Villous height    
    

Batch 1 225.56 218.08 200.23 
13.131 0.614 0.024 0.226 

Batch 2 224.02 266.96 258.50 

Crypt depth    
    

Batch 1 69.37 70.88 73.32 
3.405 0.682 0.003 0.963 

Batch 2 80.80 84.68 84.92 

VH/CP    
    

Batch 1 3.24 3.09 2.73 
0.161 0.663 0.996 0.176 

Batch 2 2.79 3.15 3.12 

Ileum    
    

Villous height    
    

Batch 1 211.49 211.29 210.53 
7.214 0.099 0.005 0.082 

Batch 2 214.54b 234.51ab 260.8a 

Crypt depth    
    

Batch 1 67.97 71.29 68.25 
3.419 0.258 0.001 0.656 

Batch 2 79.75 90.72 79.9 

VH/CP    
    

Batch 1 3.11 2.97 3.09 
0.105 0.050 0.196 0.119 

Batch 2 2.72b 2.69b 3.29a 
a–bWithin a row, means without a common superscript differ (P < 0.05). 

1Basal = control diet without antibiotics and berberine; Antiobiotic = basal diet 

plus antibiotics and ZnO; Berberine = basal diet plus berberine at 0.05%. 
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Table 4.7. Effects of treatment on gut permeability           

Item 

Diet1 

SEM 

P-value  

Basal Antibiotic Berberine Diet Batch Diet*Batch 

TER        

Jejunum        

Batch 1 57.44ab 77.59a 41.76b 7.248 0.037 0.9596 0.666 
Batch 2 51.48 72.01 52.02 

Ileum    
    

Batch 1 82.83b 125.58a 77.04b 7.865 0.037 0.179 0.187 
Batch 2 81.53 88.08 78.29 

Isc    
    

Jejunum    
    

Batch 1 21.94b 19.35b 38.25a 
3.616 0.211 0.462 0.039 

Batch 2 36.43 26.27 26.28 

Ileum        

Batch 1 16.28b 13.96b 34.56a 
2.714 0.011 0.551 0.045 

Batch 2 21.17 16.87 21.04 

Dextran        
Jejunum 

Batch 1     

Batch 2 

2.01 

1.05 

0.85 

0.96 

1.47 

1.30 
0.401 0.521 0.468 0.630 

Ileum 

Batch 1 

Batch 2 

1.84 

1.13 

0.89 

0.69 

0.86 

1.23 
0.225 0.117 0.484 0.273 

Lactulose/Mannitol       

 
0.224 0.465 0.295 0.0827 0.141 0.553 0.527 

a–bWithin a row, means without a common superscript differ (P < 0.05). 

1Basal = control diet without antibiotics and berberine; Antiobiotic = basal diet 

plus antibiotics and ZnO; Berberine = basal diet plus berberine at 0.05%. 
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CHAPTER FIVE 

 

GENERAL DISCUSSION 

The overall objective of this thesis research was to identify a phytochemical that 

can be as a suitable alternative to antibiotics in diets for weaned pigs. Since the concerns 

of human risks involved with inclusion of antibiotics in feeds for food animals, there has 

been a greater need for identification of effective alternatives to antibiotics in diets for 

food animals.  

In the first study, antimicrobial activities of 3 phytochemcals (berberine, 

quercetin, and AITC) against in vitro growth of E. coli were determined with the goal of 

identifying the best phytochemical for animal studies.  As previously mentioned, suitable 

alternatives to antibiotics should have antimicrobial properties or antioxidant properties, 

or both. Berberine an alkaloid has exhibited both antimicrobial (Freile et al., 2003) and 

antioxidant activities (Campisi et al., 2014). Quercetin is a flavonoid, which has various 

properties including antihypertensive and antiarrhythmic activities, anti-inflammatory 

and antiallergic properties; and other activities (Formica and Regelson, 1995). The AITC, 

which  is a compound that is derived from glucosinolates, has been shown to have strong 

antimicrobial (Lin et al., 2000) and antioxidant (Velioglu et al., 1998) activities. Thus, 

these 3 phytochemicals were hypothesized to be suitable alternatives to antibiotics. 

Results from the in vitro study indicated that berberine exhibited stronger antimicrobial 

activity against E. coli than quercetin or AITC. The lowest concentration of berberne at 

which it reduced in vitro growth of E. coli was 3.125%. Thus, beberine was selected for 

weaned pig studies, and it was included in diets for the weaned at 3.0%. However, 

inclusion of berberine in the diets at 3.0% decreased ADFI, ADG and G:F, and 
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negatively affected gut health of weaned pigs. The negative effects of beberine on gut 

health was attributed to reduced voluntary feed intake due to bitterness of berberine.  

Berberine at lower dosages (less than 1% of daily food intake) alleviated 

coccidiosis in chickens (Malik et al., 2014). Thus, it was hypothesized that dietary 

berberine at less than 1% would be effective in improving gut health of weaned pigs 

without negative effects on voluntary feed intake, leading to improved growth 

performance of weaned pigs. A third study was conducted to determine the effects of 

including berberine in diets for weaned pigs at 0.05% on growth performance and gut 

health of weaned pigs. Berberine at 0.05% increased in ADG and Isc of weaned pigs, and 

did not affect ADFI, implying that the negative effects of dietary berberine on gut health 

in the second study was indeed partly due to reduced voluntary feed intake as result of 

bitterness of berberine.  Because the lowest level of berberine at which it reduced growth 

of E. coli in vitro was 3%, whereas the berberine at 0.05% improved ADG and Isc of 

weaned pigs, it is apparent that the reduction in growth of E. coli is not the major the 

mechanism by which berberine can improve growth performance and gut health weaned 

pigs. It appears other mechanisms (such as reduction in oxidative stress) through which 

berberine can improve can improve growth performance of weaned pigs are more 

important than reduction in growth of pathogenic microorganisms.  

In most studies, the in vivo data match the in vitro ones. Thus, it had been 

hypothesized that the results from in vitro study will be applicable to in vivo studies. 

However, this was not the case due to lower palatability of berberine. Thus, in vitro 

antimicrobial activity assay may be used to evaluate feed additives that are palatable.  
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The exact mode of action of berberine is not clear from the three studies that were 

conducted. A decrease in intestinal TER and increase in Isc that were observed in the 

third study due to dietary berberine has been linked to food deprivation (Carvey et al., 

1994). However, intestinal Isc is positively correlated with small intestinal nutrient 

absorptive capacity, which could be the mechanism by which berberine improved growth 

performance. However, Robbins et al. (2013) observed a higher mean ileal TER (62 

Ω/cm2) in salmonella-challenged 5-week old pigs fed diet with benzo(c)phenanthridine 

alkaloid at 1.5 g/1000 kg  than in those fed diet with chlortetracycline (59.4 g/1000 kg). 

Thus, the alkaloid could have improved TER through reduction in gut permeability 

toxins. There is need to conduct research to establish mechanisms through which 

berberine improves gut health and growth performance of weaned pigs. 

 

GENERAL CONCLUSION 

Based on results from the antimicrobial activity assay that was conducted, 

berberine (compared with quercetin and AITC) was the most effective phytochemical at 

inhibiting the growth of E. coli. Berberine had negative effects on ADG and gut function 

when it was included in the diet at 3.0%; but, these results were confounded by reduced 

voluntary feed intake by pigs due to dietary berberine inclusion. However, dietary 

berberine at 0.05% improved ADG, G:F and Isc in jejunum and ileum of pigs without 

significant effect on ADFI. Thus, it appears that dietary berberine at low dietary 

concentration (0.05%) has less effect voluntary feed intake of weaned pigs, and can 

improve growth performance of weaned pigs through increasing small intestinal nutrient 

absorptive capacity. 
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FURTHER RESEARCH 

Further research is suggested to: 

1. Effect of dietary berberine on gut health and growth performance of disease 

challenged weaned pigs  

2. Effect of dietary berberine on gut health and growth performance of other 

food animals  

3.  Establishment of mechanisms by dietary berberine improves gut health and 

growth performance of food animals.  

4. Determine the optimal inclusion of berberine at which ADFI isn’t negatively 

affected. 

5. Determine the effect berberine and other phytochemcials have on tight 

junction proteins, because this is an effective tool at determining gut 

permeability as well. 

6. Determine if adding alternatives to antibiotics directly to the Ussing Chambers 

is an effective tool at determining the effects on gut health prior to inclusion 

into the diet, because other research has used this as a technique for potential 

antibiotic alternatives. 

  



87 

LITERATURE CITED 

Amin, A. H., T. V. Subbaiah, and K. M. Abbasi. 1969. Berberine sulfate: antimicrobial 

activity, bioassay and mode of action. Can. J. Microbiol. 15:1067-1076. 

Bailey, M., C. J. Clarke, A. D. Wilson, N. A. Williams, and C. R. Stokes. 1992. 

Depressed potential for interleukin-2 production following early weaning of 

piglets. Vet. Immunol. Immunopathol. 34:197–207. 

Bailey, M., K. Haverson, C. Inman, C. Harris, P. Jones, G. Corfield, B. Miller, and C. 

Stokes. 2005. The development of the mucosal immune system pre- and 

postweaning: balancing regulatory and effector function. Proc. Nutr. Soc. 64:451–

457. 

Baird, A.W., C. T. Taylor, D. J. and Brayden, 1997. Non-antibiotic anti-diarrhoeal drugs: 

factors affecting oral bioavailability of berberine and loperamide in intestinal 

tissue. Adv. Drug Deliv. Rev. 23:111-120. 

Blaney B. J., R. A. McKenzie, J. R. Walters, L. F. Taylor, W. S. Bewg, M. J. Ryley, and 

R. Maryam. 2000. Sorghum ergot (Claviceps africana) associated with agalactia 

and feed refusal in pigs and dairy cattle. Aust. Vet. J. 2: 102-107. 

Blikslager, A.T., Moeser, A.J., Gookin, J.L., Jones, S.L. and Odle, J., 2007. Restoration 

of barrier function in injured intestinal mucosa. Physiolog. Rev. 87:545-564. 

Bhandari, S. K., B. Xu, C. M. Nyachoti, D. W. Giesting, and D. O. Krause. 2008. 

Evaluation of alternatives to antibiotics using an E coli K88 model of piglet 

diarrhea: effects on gut microbial ecology. J. Anim. Sci. 86:836-847. 



88 

Burrin, D., and B. Stoll. 2003. Intestinal nutrient requirements in weanling pigs. In: 

Pluske, J.R., Le Dividich, J., Verstegen, M.W.A. (Eds.), Weaning the Pig: 

Concepts and Consequences. Wageningen Academin Publishers, The 

Nethherlands, pp. 301–335. 

Campisi, A., R. Acquaviva, R. Bonfanti, G. Raciti, A. Amodeo, S. Mastrojeni, S. Ragusa, 

and L. Iauk. 2014. Antioxidant properties of Berberis aetnensis c. presl 

(berberidaceae) roots extract and protective effects on astroglial cell cultures. 

World J. Vol. 2014, Article ID 315473, 7 pages 

Catron, D.V., M. D. Lane, L. Y. Quinn, G. C. Ashton, and H. M. Maddock. 1953. Mode 

of action of antibiotics in swine nutrition, Antiniot. Chemother. 3:571 

Carey H. V., U. L. Hayden, and K. E. Tucker, 1994. Fasting alters basal and stimulated 

ion transport in piglet jejunum. Am. J. Physiol. – Regul. Integr. Comp Physiol.   

267:156-163.   

Chang, J. X., S. Chen, L. P. Ma, L. Y. Jiang, J. W. Chen, R. M. Chang, L. Q. Wen, W. 

Wu, Z. P. Jiang, and Z. T. Huang. 2005. Functional and morphological changes of 

the gut barrier during the restitution process after hemorrhagic shock. World J. 

Gastroenterol.11:5485–5491. 

Cromwell, G. L., T. S. Stahly, and H. J. Monegue. 1985. Efficacy of sarsaponin for 

weanling and growing-finishing swine housed at two animal densities. J. Anim. 

Sci. 61(Suppl. 1):111 (Abstr.) 



89 

Cromwell, G. L., 2001. Why and how antibiotics are used in swine production. Anim. 

Biotechnol. 13:7-27. 

Cutler, R.; Gardner, I., 1988: A Blue Print for Pig Health Research. Pig Research 

Council, Canberra, Australia. 

Delaquis, P. J. and P. L. Sholberg. 1997. Antimicrobial activity of gaseous allyl 

isothiocyanate. J. Food Prot. 60:943-947. 

Dreau, D., J. P. Lalles, V. Philouze-Rome, R. Toullec, and H. Salmon. 1994. Local and 

systemic immune responses to soybean protein ingestion in early-weaned pigs. 

Journal of animal science, 72:2090-2098. 

Fairbrother, J. M., E. Nadeau, and C. L. Gyles. 2005. Escherichia coli in postweaning 

diarrhea in pigs: an update on bacterial types, pathogen- esis, and prevention 

strategies. Anim. Health Res. Rev. 6:17–39. 

Freile, M. L., F. Giannini, G. Pucci, A. Sturniolo, L. Rodero, O. Pucci, V. Balzareti, and 

R. D. Enriz. 2003. Antimicrobial activity of aqueous extracts and of berberine 

isolated from Berberis heterophylla. Fitoterapia 74:702–705. 

Friesen, K. G., R. D. Goodband, J. L. Nelssen, F. Blecha, D. N. Reddy, P. G. Reddy, and 

L. J. Kats. 1993. The effect of pre-and postweaning exposure to soybean meal on 

growth performance and on the immune response in the early-weaned pig. J. 

Anim. Sci. 71:2089-98. 



90 

Gatto, M.T., S.  Falcocchio, E. Grippa, G. Mazzanti, L. Battinelli, G. Nicolosi, D. 

Lambusta, and L. Saso. 2002. Antimicrobial and anti-lipase activity of quercetin 

and its C2-C16 3-O-acyl-esters. Bioorg. Med. Chem. 10:269-272. 

Goatcher, W. D. and D. C. Church. 1970. Review of some nutritional aspects of the sense 

of taste. J. Anim. Sci., 31:973-981. 

Godfrey, N. W., A.  R. Mercy, Y. Emms, and H. G. Payne, 1985. Tolerance of growing 

pigs to lupin alkaloids. Aust. J. Exp. Agric. 25:791-795. 

Gu, L., N. Li, W. Yu, J. Gong, Q. Li, W. Zhu, and J. Li., 2013. Berberine reduces rat 

intestinal tight junction injury induced by ischemia–reperfusion associated with 

the suppression of inducible nitric oxide synthesis. Am. J. Chin. Med., 41:1297-

1312. 

Gu, X., D. Li, and R. She. 2002. Effect of weaning on small intestinal structure and 

function in the piglet. Arch. Anim. Nutr. 56:275-286. 

Hampson, D. J. 1986: Alterations in piglet small intestinal structure at weaning. Res. Vet. 

Sci. 40:32–40. 

Hanczakowska, E. and Swiatkiewicz, M., 2012. Effect of herbal extracts on piglet 

performance and small intestinal epithelial villi. Czech J. Anim. Sci. 9:420-429. 

Hendrickx, H. K., I. J. Vervaecke, J. A. Decuypere, and N. A. Dierick. 1981. Mode of 

action of growth promotion drugs. In Proceedings of the Growth Promotion 

Mode-of-Action Symposium, SmithKline Corp., Philadelphia, 3-9. 



91 

Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 

2013. Gastrointestinal health and function in weaned pigs: a review of feeding 

strategies to control post-weaning diarrhoea without using in-feed antimicrobial 

compounds. J. Anim. Physiol. Anim. Nutr. 97:207–237. 

Hong, J.W., I. H. Kim, O. S. Kwon, B. J. Min, W. B. Lee, and K. S. Shon. 2004. 

Influences of plant extract supplementation on performance and blood 

characteristics in weaned pigs. Asian-Australas J. Anim. Sci. 17:374-378. 

Hsu, F. S., T. P. Yeh, and C. T. Lee. 1983. Tiamulin Feed Medication for the 

Maintenance of Weight Gains in the Presence of Mycoplasmal Pneumonia in 

Swine. J. Anim. Sci. 57:1474-1478 

Hu, C.H., K. Xiao, Z.S. Luan, J. and Song. 2013. Early weaning increases intestinal 

permeability, alters expression of cytokine and tight junction proteins, and activates 

mitogen-activated protein kinases in pigs. J. Anim. Sci. 91:1094-1101. 

Hyun, Y., M. Ellis, G. Riskowski, and R. W. Johnson. 1998. Growth performance of pigs 

subjected to multiple concurrent environmental stressors. J. Anim. Sci. 76:721-

727. 

Jugl-Chizzola M, E. Ungerhofer, C. Gabler, W. Hagmüller, R. Chizzola, K. Zitterl-

Eglseer, and C. Franz. 2006. Testing of the palatability of Thymus vulgaris L. and 

Origanum vulgare L. as flavouring feed additive for weaner pigs on the basis of a 

choice experiment. Berl. Munch. Tierarztl. Wochenschr. 119:238-43. 



92 

Keegan, T. P., J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, R. D. Goodband, and S. S. 

Dritz. 2003. Comparison of antibiotics on growth performance of weanling pigs in 

a commercial environment. Kansas State University Experiment Station. 

Kelly, D., J. A. Smyth, and K. J. McCracken. 1991b. Digestive development of the early-

weaned pig. Br. J. Nutr. 65:181-188. 

Khin-Maung-U, M.K. and A.K. Nyunt-Nyunt-Wai. 1985. Clinical trial of berberine in 

acute watery diarrhoea. B. M. J. (Clin. Res. ed.) 291:1601-1605. 

Kosalec, I., B. Gregurek, D. Kremer, M. Zovko, K. Sanković, and K. Karlović. 2009. 

Croatian barberry (Berberis croatica Horvat): a new source of berberine—analysis 

and antimicrobial activity. World J. Microbiol. Biotechnol. 25:145-150. 

Lallès, J. P., G. Boudry, C. Favier, N. Le Floc'h, I. Luron, L. Montagne, I. P. Oswald, S. 

Pié, C. Piel, and B. Sève. 2004. Gut function and dysfunction in young pigs: 

physiology. Anim. Res. 53:301–316. 

Landero, J. L., E. Beltranena, and R. T. Zijlstra. 2012. Growth performance and 

preference studies to evaluate solvent-extracted Brassica napus or Brassica 

juncea canola meal fed to weaned pigs. J. Anim. Sci. 90:406–408. 

Landero, J. L., E. Beltranena, M. Cervantes, A. Morales, and R. T. Zijlstra. 2011. The 

effect of feeding solvent-extracted canola meal on growth performance and diet 

nutrient digestibility in weaned pigs. Anim. Feed Sci. Technol. 170:136–140. 

Lewis, A. J., and  Southern, L. L. 2001. Swine nutrition. Boca Raton, FL: CRC Press. 



93 

Li, D. F. J. L. Nelssen, P. G. Reddy, F. Blecha, R. D. Klemm, D. W. Giesting, J. D. 

Hancock, G. L. Allee, and R. D. Goodband. 1991: Measuring suitability of 

soybean products for early-weaned pigs with immunological criteria. J. Anim. 

Sci. 69:3299–3307. 

Lin, C. M., J. F. Preston III, and C. Wei. 2000. Antibacterial Mechanism of Allyl 

Isothiocyanate. J. Food Prot. 63:727-734. 

Malik, T. A., A. N. Kamili, M. Z. Chishti, S. Tanveer, S. Ahad, and R. K. Johri. 2014. In 

vivo anticoccidial activity of berberine [18,5,6-dihydro-9,10-dimethoxybenzo(g)-

1,3-benzodioxolo(5,6-a)quinolizinium] – An isoquinoline alkaloid present in the 

root bark of Berberis lyceum. Phytomedicine. 21:663–669. 

 McCracken, B. A., M. E. Spurlock, M. A. Roos, F. A. Zuckermann, and H. R. Gaskins. 

1999. Weaning anorexia may contribute to local inflammation in the piglet small 

intestine. J. Nutr. 129:613-619. 

Mereu, A., J. Pastor, G. Tedo, and I. R. Ipharraguerre. 2016. Pig growth promotion by 

antimicrobials is associated with enhanced intestinal barrier function. Journées de la 

Recherche Porcine en France, 48:129-130. 

Mokhber-Dezfuli, N., S. Saeidnia, A.R. Gohari, and M. Kurepaz-Mahmoodabadi, 2014. 

Phytochemistry and pharmacology of berberis species. Pharmacogn. Rev. 8:8-15. 

Moeser, A. J., C, Vander Klok, K. A. Ryan, J. G. Wooten, D. Little, V. L. Cook, and A. 

T. Blikslager. 2007. Stress signaling pathways activated by weaning mediate 



94 

intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol. 

292:G173-G181. 

Nofrarias, M., E. G. Manzanilla, J. Pujols, X. Gibert, N. Majo, J. Segalés, J. and Gasa. 

2006. Effects of spray-dried porcine plasma and plant extracts on intestinal 

morphology and on leukocyte cell subsets of weaned pigs. J of Anim. Sci. 

84:2735-2742. 

Notzold, R. A., D. E. Becker, S.W. Terrll, and A. H. Jensen. 1955. Saccharine and dried 

cane molasses in swine rations. J. Anim. Sci. 14:1068-1072. 

Onning G., Q. Wang, B. R. Westrom, N. G. Asp, and B. W. Karlsson. 1996. Influence of 

oat saponins on intestinal permeability in vitro and in vivo in the rat. Br. J. Nutr. 

76:141–151. 

Pa´cha, J. 2000: Development of intestinal transport function in mammals. Physiolog. 

Rev. 80:1633–1667. 

Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996. Villous height and crypt depth in 

piglets in response to increases in the intake of cows' milk after weaning. Anim. 

Sci., 62:145-158. 

Pluske, J. R., D. J. Hampson, and I. H. William. 1997. Factors influencing the structure 

and function of the small intestine en the weaned pig: a review. Livest. Prod. Sci. 

51:215–236. 

Pull S. L., J. M. Doherty, J. C. Mills, J. I. Gordon, and T. S. Stappenbeck. 2005. 

Activated macrophages are an adaptive element of the colonic epithelial progenitor 



95 

niche necessary for regenerative responses to injury. Proc. Natl. Acad. Sci. 102:99–

104. 

Rabbani G. H., T. Butler, J. Knight, S. C. Sanyal, and K. Alam. 1987. Randomized 

controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic 

Escherichia coli and Vibrio cholerae. J. Infect. Dis. 155: 979-984. 

Rahimi, S., Z. Teymori Zadeh, K. Torshizi, R. Omidbaigi, and H. Rokni. 2011. Effect of 

the three herbal extracts on growth performance, immune system, blood factors 

and intestinal selected bacterial population in broiler chickens. J. Agri. Sci. 

Technol. 13:527-539. 

Rauha, J. P., S. Remes, M. Heinonen, A. Hopia, M. Kähkönen, T. Kujala, K. Pihlaja, H. 

Vuorela, and P. Vuorela. 2000. Antimicrobial effects of Finnish plant extracts 

containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 

56:3-12. 

Robbins, R.C., V. C. Artuso-Ponte, A. J. Moeser, W. M. Morrow, J. W. Spears, and W. 

A. Gebreyes. 2013. Effects of quaternary benzo (c) phenanthridine alkaloids on 

growth performance, shedding of organisms, and gastrointestinal tract integrity in 

pigs inoculated with multidrug-resistant Salmonella spp. Am. J. Vet Res. 

74:1530-1535. 

Shirwaikar, A., A. Shirwaikar, K. Rajendran, I. S. R. and Punitha, 2006. In vitro 

antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. 

Pharm. Bull., 29:1906-1910. 



96 

Silva, M.L.F., J.A.D.F. Lima, V.D.S. Cantarelli, N.D.O. Amaral, M.G. Zangerônimo, and 

E.T. Fialho, 2010. Probiotics and antibiotics as additives for sows and piglets 

during nursery phase. R. Bras. Zootec. 39:2453-2459. 

Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, H. R. Gaskins, and M. W. A. Verstegen. 

2001. Small intestine epithelial barrier function is compromised in pigs with low 

feed intake at weaning. J. Nutr. 131:1520-1527. 

Spitz, J., G. Hecht, M. Taveras, E. Aoys, and J. Alverdy. 1994. The effect of 

dexamethasone administration on rat intestinal permeability: the role of bacterial 

adherence. Gastroenterol. 106:35-41. 

Spitz, J. C., S. Ghandi, M. Taveras, E. Aoys, and J. C. Alverdy. 1996. Characteristics of 

the intestinal epithelial barrier during dietary manipulation and glucocorticoid 

stress. Crit. Care Med. 24:635-641. 

Stahly, T. S., G. L. Cromwell, and H. J. Monegue. 1980. Effects of the dietary inclusion 

of copper and (or) antibiotics on the performance of weanling pigs. J. of Anim. 

Sci. 51:1347-1351. 

Steiner, T. 2009. Phytogenic in animal nutrition. Natural concepts to optimize gut health 

and performance. 1st Ed. Nottingham University Press, Nottingham, p 181 

Stokes, C. R., M. Bailey, K. Haverson, C. Harris, P. Jones, C. Inman, S. Pié, I. P. Oswald, 

B. A. Williams, A. D. L. Akkermans, E. Sowa, H. J. Rothkötter, and B. G. Miller. 

2004. Postnatal development of intestinal immune system in piglets: implications 

for the process of weaning. Anim. Res. 53:325–334. 



97 

Thacker, P. A. 2013. Alternatives to antibiotics as growth promoters for use in swine 

production: a review. J. Anim. Sci. Biotechnol. 4:35.  

Tripathi, M. K., and A. S. Mishra. 2007. Glucosinolates in animal nutrition: A review. 

Anim. Feed Sci. Technol. 132:1–27. 

Turner, J. L., S. S. Dritz, J. J. Higgins, K. L. Herkelman, and J. E. Minton. 2002. Effects 

of a extract on growth performance and immune function of weanling pigs 

challenged with. J. Anim. Sci. 80:1939-1946. 

Van Lunen, T.A., 2003. Growth performance of pigs fed diets with and without tylosin 

phosphate supplementation and reared in a biosecure all-in all-out housing 

system. Can. Vet. J. 44:571-576. 

Velioglu, Y. S., G. Mazza, L. Gao, and B. D. Oomah. 1998. Antioxidant activity and total 

phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 

46:4113-4117 

Vente-Spreeuwenberg, M. A. M.,  J. M. A. J. Verdonk, M. W. A. Verstegen, and A. C. 

Beynen. 2003. Villus height and gut development in weaned piglets receiving 

diets containing either glucose, lactose or starch. Br. J. Nutr. 90:907–913. 

Verdonk, J. M. A. J., E. M. A. M. Bruininx, J. Van Der Meulen, and M. W. A. Verstegen. 

2007. Post-weaning feed intake level modulates gut morphology but not gut 

permeability in weaned piglets. Livest. Sci. 108:146-149. 

Vijaya K, and S. Ananthan. 1996. Therapeutic efficacy of medicinal plants against 

experimentally induced shigellosis in guinea pigs. Indian J. Pharm. Sci. 58:191–3. 



98 

Wapnir, R. A., and S. Teichberg. 2002: Regulation mechanisms of intestinal secretion: 

implications in nutrient absorption. J. Nutr. Biochem. 13:190–199. 

Windisch, W., K. Schedle, C. Plitzner, and A. Kroismayr. 2008. Use of phytogenic 

products as feed additives for swine and poultry1. J. of Ani. Sci. 86:E140-E148. 

doi:10.2527/jas.2007-0459 

Wolter, B. F. and M. Ellis. 2001. The effects of weaning weight and rate of growth 

immediately after weaning on subsequent pig growth performance and carcass 

characteristics. Can. J. Anim. Sci. 81:363-369. 

Yan, F., L. Wang, Y. Shi, H. Cao, L. Liu, M. K. Washington, R. Chaturvedi, D. A. Israel, 

H. Cao, B. Wang, and R. M. Peek. 2012. Berberine promotes recovery of colitis 

and inhibits inflammatory responses in colonic macrophages and epithelial cells 

in DSS-treated mice. Am. J. Physiol. Gastrointest. Liver Physiol., 302:G504-

G514. 

Yazdani, A., S. L. Poorbaghi, H. Habibi, S. Nazifi, F. Rahmani, and M. Sepehrimanesh. 

2013. Dietary Berberis vulgaris extract enhances intestinal mucosa morphology in 

the broiler chicken (Gallus gallus). Comp. Clin. Path., pp.1-5. 

Yi Z. B., Y. Yan, Y.Z. Liang, and B. Zeng. 2007. Evaluation of the antimicrobial mode 

of berberine by LC/ESI-MS combined with principal component analysis. J. 

Pharm. Biomed. Anal. 44:301–304 

Xu, H. X., and S. F. Lee. 2001. Activity of plant flavonoids against antibiotic-resistant 

bacteria. Phytother. Res. 15:39-43. 



99 

Zou, Y., H. K. Wei, Q. H. Xiang, W. A. N. G. Jun, Z. H. O. U. Yuan-Fei, and P. E. N. G. 

Jian. 2016. Protective effect of quercetin on pig intestinal integrity after transport 

stress is associated with regulation oxidative status and inflammation. J. Vet. 

Med. Sci. 78:1487-1494. 

 

 


	Evaluation of Berberine as an Alternative to Antibiotics in Nursery Pig Diets
	Recommended Citation

	tmp.1534350083.pdf.Uu97v

