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ABSTRACT 

 

EVALUATION OF ALTERNATIVE HOSTS AND MANAGEMENT STRATEGIES 

FOR SOYBEAN CYST NEMATODE IN SOUTH DAKOTA 

 

PAWAN BASNET 

2018 

 

The soybean cyst nematode (SCN; Heterodera glycines, Ichinohe) is an important 

pathogen of soybean in South Dakota which causes significant yield losses. SCN has 

been found in 30 South Dakota counties as on 2017 and is estimated to cause yield loss of 

1.9 Metric tons (Mt) annually. SCN has diverse crop and weed hosts as it can reproduce 

in several crops and weeds. The presence of Heterodera glycines (HG) types can reduce 

the effectiveness of SCN-resistant cultivars and the HG types reproduction on weed hosts 

can negate the effectiveness of crop rotation by continued build-up in the field. This 

study examined the alternative weed hosts of SCN in South Dakota based on field and 

greenhouse studies. Out of 63 weed species studied, field pennycress and purple 

deadnettle were determined to be the good hosts whereas white clover, common mallow, 

shepherd’s purse, Canada thistle and cocklebur were determined to the poor hosts of SCN 

in South Dakota.  

 

This research also investigated the reproduction of  three commonly found HG types 0, 

2.5.7, and 7 on three major weed hosts of SCN in the United States: purple deadnettle, 
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field pennycress, and henbit relative to a susceptible check, Williams-82, under 

greenhouse conditions. SCN reproduction was found to be influenced by the type of weed 

species, HG types and their interaction. SCN reproduction was highest for HG type 2.5.7 

(FI = 6.4) followed by HG type 7 (FI = 6.1) and HG type 0 (FI = 5.9). Similarly, among 

weed species, henbit (Lamium amplexicaule) was found to harbor highest SCN cysts 

followed by purple deadnettle (Laminum purpureum) (FI = 6.9) and field pennycress 

(Thalpsi arvense) (FI = 4.8). These results indicate that all the three weeds considerably 

supported SCN HG types tested and hence these weeds should be managed proactively as 

an important component of SCN management strategies.  

 

Another aspect of this research was to determine the effects of flooding on SCN 

development with or without nematicide seed treatment. Flooding days and seed 

treatment affected the number of SCN cysts on the susceptible cultivar. The greatest 

number of cysts developed when plants were flooded for 2 days (Cyst = 36) followed by 

treatments flooded for 0, 4, and 6 days. The number of cyst was lowest for the plants 

flooded for 8 days (Cysts = 26). This study also indicated that ILeVO seed treatment 

lowered SCN reproduction on a SCN susceptible soybean cultivar and promoted root 

development. 

 

This study indicated that a few weeds support SCN reproduction which is impacted by 

the presence of different HG types of SCN, flooding and seed treatments. All these 

aspects should be integrated with other management strategies in order to manage SCN 

effectively.  
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Keywords: Heterodera glycines, HG types, SCN, winter annual weeds, SCN weed hosts, 

female index, flooding, ILeVO, management, reproduction
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CHAPTER 1 

 

1. Literature review

1.1. Soybean history 

Soybean [Glycine max (L.) Merr.] originated from Southeast Asia (Hymowitz, 1970; 

Hymowitz and Newell, 1981). It was first domesticated in Northeast China about 1100 

BC, and this area is regarded as its primary gene center. Soybean was introduced and 

developed as landrace into several countries including Japan, Indonesia, Philippines, 

Vietnam, Thailand, Malaysia, Burma, Nepal and India which are regarded as secondary 

gene centers (Hymowitz, 1990). Samuel Bowen (a seaman in East India Company) from 

Savannah, Georgia first introduced soybean to the United States in 1765 AD (Harlan and 

Hymowitz, 1983). Later, Benjamin Franklin also sent soybean seeds from London to 

Philadelphia, Pennsylvania in 1770 (Harlan and Hymowitz, 1983). Soybean was 

introduced to Illinois in 1851 and subsequently to the corn-belt (Hymowitz, 1990).  

Initially, it was grown for the manufacture of soy sauce, vermicelli (soybean noodles), 

coffee berries to brew coffee (Harlan and Hymowitz, 1983), forage crop (Probst and 

Judd, 1973), poultry feed, soybean oil, vegetable protein meat and other uses (Hymowitz, 

1990). However, its status as grain crop became prominent after 1920 AD (Probst and 

Judd, 1973). 

 

1.2. Production and economy 

Soybean is second most important crop in terms of acreage and production in the United 

States (USDA NASS-ERS, 2017). North America and South America contribute around 

80% of total soybean produced in the world (Chang et al. 2015). United States of 
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America contributed around 35% of world’s total soybean production and was worth 

about $40.8 billion in 2017 (http://SoyStats.com, 2017) with a production of 119.5 

million metric tons (Mmt) for the year 2017 (USDA ERS, 2017). This makes the USA 

first in soybean production in the world and is followed by Brazil, Argentina, and China, 

which contribute 33%, 14%, and 4% of the world soybean supply, respectively (USDA-

FAS, 2017-2018).  

 

Global soybean production is estimated to reach 354.5 million metric ton by 2018 

suggesting an increase in production around the globe (USDA-FAS, 2017-2018). In 

South Dakota, soybean is second most important crop grown in the eastern half of the 

state in an area of 2.1 million hectares producing 6.6 Million metric tons and worth 

around $2 billion in 2017 (USDA NASS, 2017).  

 

1.3.1. Soybean cyst nematode  

Soybean production is affected by numerous plant pathogens (Hartman and Sinclair, 

1999) and among all the biological factors causing soybean yield loss, soybean cyst 

nematode (Heterodera glycines, Ichinohe) ranks first (Niblack, 2005; Wrather and 

Koenning, 2006). In a three-year study, it was found that soybean cyst nematode (SCN) 

caused an estimated annual loss of $1.3 billion (Koenning and Wrather, 2010). Thus, 

soybean cyst nematode is an important pathogen which continuously threatens soybean 

production all around the globe (Mitchum, 2016). Soybean cyst nematode is a soilborne, 

obligatory, sedentary, endoparasitic nematode which parasitizes soybean roots (Niblack 

et al. 2006).  

http://soystats.com/
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Soybean cyst nematode belongs to phylum Nematode, order Tylenchida, and family 

Heteroderidae. The genus Heterodera comprises cyst-forming nematodes which are 

diagnosed by their ability to form cysts (thick walled dead female shielding eggs) on the 

roots (Agrios, 2005). Furthermore, the genus Heterodera is one of the three genera of 

sedentary endoparasites which is considered as the most economically important group of 

plant-parasitic nematodes (Williamson and Gleason, 2003).  

 

1.3.2. Origin and distribution of SCN 

SCN was first identified and reported in Japan in 1915 AD (Hori, 1915). There had been 

reports of SCN being present before 1915 AD, however, it was misidentified as sugar 

beet cyst nematode, Heterodera schachtii (Ishikawa, 1916). Later it was named ‘soybean 

yellow dwarf disease’ in 1921 (Ito, 1921). In 1880, there had been reports of SCN in 

Northeastern China which remained unconfirmed (Noel, 1992; Liu et al.1997). It was 

later reported from Korea (Yokoo, 1936), China (Nakata and Asuyana, 1938), and the 

United States of America (Winstead et al. 1955). Other reports of SCN from Canada, 

Italy, and Iran followed (Yu, 2011).  

 

In the United States, SCN was first detected in Hanover County of North Carolina in 

1954 (Winstead et al. 1955). It is believed to have been introduced from Japan through 

soil infested with Bradyrhizobium spp. (Hymowitz, 1990) while some scientists advocate 

the view that SCN evolved from H. schachtii. Some scientists even believe that it had 

been introduced through soybean seeds and flower bulbs of narcissus and gladiolus from 
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Japan (Spears, 1955). SCN was detected in Missouri and Tennessee in 1956, Arkansas, 

Kentucky and Mississippi in 1957, and Virginia in 1958 (Riggs, 1975) and quickly 

spread to the corn-belt. SCN was first detected in South Dakota in Union county in 1995 

(Smolik and Draper, 1998) and has since been found in 30 counties of South Dakota 

(Acharya, 2015) causing estimated yield loss of 1.9 Metric tons (Mt) annually. 

https://www.sdsoybean.org.   

 

1.3.3. Life cycle and infection process of SCN 

The life cycle of SCN is comprised of three main stages: egg, juvenile, and adult which 

begin with the fertilized eggs. Embryogenesis and molting result in the formation of the 

first stage juvenile (J1) inside the egg (Niblack, 2005). The J1s continue molting to form 

second-stage juvenile (J2). Egg hatching is influenced by several factors such as soil 

temperature (Wallace, 1955; Slack and Hamblen, 1961; Clarke et al. 1978; Tefft et al. 

1982), soil texture (Hillel, 2004), host root exudates (Tefft and Bone, 1985), pH (Tefft et 

al. 1982) and sometimes egg hatching is age-mediated (Niblack, 2005). The J2 locate the 

root through chemo-location (Perry, 1996) and infects the susceptible host with the help 

of specialized penetrating organ called stylet (Lauritis et al. 1983). Failure in finding the 

root ultimately results in nematode starvation and death (Hershman, 1997). The J2 then 

migrates towards the vascular system (Davis et al. 2004) and destroys cortical and 

epidermal cells by cellulase enzyme (Ross, 1958; Wang et al. 1999). The juveniles then 

produce pathogenesis factors that dissolve cell wall which results in substantial 

cytoplasmic changes forming a dense mass of cytoplasm (Endo, 1998). These dissolved 

cells undergo morphological changes and enlarge to metabolic sink known as a 

https://www.sdsoybean.org/
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syncytium (Davis et al. 2004) which remains intact throughout the life of nematode 

(Koenning and Sipes, 1998). The juveniles now become sedentary and continue drawing 

nutrients from the syncytium and molt into next stage, the third stage juvenile (J3). At 

this development stage, the J3s undergo sexual differentiation (Riggs and Wrather, 1992; 

Wrather et al. 1984). J3 males undergo metamorphosis regaining their vermiform shape 

and exit the root (Triantaphyllou and Hirschman, 1962). These adult males become free 

living and move in the soil searching for the females to mate with the help of sex 

pheromone (Jaffe et al. 1989) and consequently die after mating. J3 females continue to 

draw nutrients and eventually change into a lemon-shaped structure called cyst that break 

externally through the root surface. Each cyst contains 40-600 eggs with an average of 

200 eggs (Sipes et al. 1992). Most of the eggs are present inside the cyst but few eggs are 

present outside in the gelatinous secretion as well (Koenning, 2004). Upon death, the cyst 

produces antimicrobial compounds like chitinase and polyphenol oxidase (Niblack et al. 

2006) to guard eggs against desiccation and microbial infection. Eggs can remain viable 

in optimal conditions for up to 9 years (Inagaki and Tsutsumi, 1971; Melito et al. 2010; 

Niblack et al. 2006). Typically, SCN takes around 3 to 4 weeks to complete its life cycle 

but this is influenced by several environmental factors such as temperature, moisture, and 

pH (Riggs and Wrather, 1992). However, under the controlled environment of 25 °C, it 

takes 21 days for SCN to complete its life cycle (Lauritis et al. 1983). In South Dakota, 

depending upon the soybean maturity group planted, SCN can complete up to 3-4 life 

cycles in a single growing season (Acharya, 2015).  

 

 1.3.4. Symptoms and detection measures 
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SCN infection starts when second stage juvenile penetrates into fine epidermal root of 

young soybean plants. The injury causes morphological and physiological damage to the 

root (Schmitt et al. 2004) but the extent of damage in terms of yield and growth is 

dependent on the number of second stage juveniles feeding the roots (Endo, 1992). These 

syncytia (metabolically active nematode feeding sites in the roots) interfere with the 

secondary root growth (Noel, 2004) leading to root system reduction and the blockage of 

the vascular bundles. A reduced root system with clogged vascular bundles affects the 

transport of minerals and nutrients from the soil. Sometimes, it also reduces nodule 

formation resulting in fewer nodules that supply nitrogen to the plant and is an important 

factor for soybean growth (Noel, 2004).  Typical symptoms of SCN include stunting, 

yellowing, midday wilting, and ultimately resulting in yield reduction (Niblack, 2005). 

However, foliar symptoms are not confirmatory symptoms and sometimes, the infestation 

may not be detected due to lack of visual symptoms (Wang et al. 2003; Young, 1996). 

Foliar symptoms produced by SCN can also be misinterpreted for other problems like 

nutrient deficiency (iron, potassium, and nitrogen), drought stress, herbicide injury, other 

pests and disease interactions (Niblack et al. 2006). Soil sampling for SCN is the most 

reliable means of confirming and monitoring SCN infestations and there are also several 

molecular techniques which can detect SCN effectively (Sankaran et al. 2010; Baidoo et 

al. 2017). Polymerase chain reaction (PCR) and Real-time PCR, Enzyme-Linked 

Immunosorbent Assay test (ELIZA), Immunofluorescence (IF), Fluorescence in-situ 

hybridization (FISH) and DNA microarrays, Amplified Fragment Length Polymorphism 

(AFLP) are commonly used techniques (Lopez et al. 2003; Martin et al. 2000; Hooper et 

al. 2005). 
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1.3.5. Race and HG type  

SCN are highly heterozygous in nature, which results in the variability in parasitism that 

differs among soybean cultivars. After the development of the first resistant cultivars 

against SCN, several reports of variability in pathogenesis were also reported (Ross, 

1962; Niblack and Chen, 2004). To explain the variability of SCN to growers and 

breeders, the race concept was developed in 1970. To characterize the race, resistance or 

susceptibility of SCN against four SCN differential lines PI 88788, PI 90763, Peking and 

Picket were utilized (Golden et al. 1970; Riggs and Schmitt, 1988). Race classification 

was expanded again into 16 different races utilizing the original four differential lines 

(Riggs and Schmitt, 1988). SCN population was determined to be virulent to a resistant 

source if the relative number of females developed was equal or greater than 10% of the 

number of females developed in SCN susceptible check Lee 74 (Schmitt and Shannon, 

1992). Constantly changing pathogenicity of SCN and the development of new resistant 

sources of soybean, the race system became very complex using the race formula to 

determine the diversity of SCN population. Thus, the race system was then replaced by 

HG type system (HG: Heterodera glycines) (Niblack et al. 2002). HG type is ameliorated 

classification system of SCN by considering the reproduction of SCN on seven soybean 

differential lines which are PI 548402 (Peking) (1), PI 88788 (2), PI 90763 (3), PI 437654 

(4), PI 209332 (5), PI 89772 (6), and PI 548316 (Cloud) (7)  as compared to the standard 

susceptible check (Niblack et al. 2002; Wang et al. 2013). Unlike the race system, HG 

type system does not use Picket as this differential line was derived from Peking and has 

4 additional differential lines.  
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Peking and PI 88788 are the two important sources of resistance against SCN in North 

America (Concibido et al. 2004). PI 88788 alone constituents more than 95% of the share 

in commercial resistant cultivars (Mitchum, 2016; Joos et al. 2013; Tylka and Mullaney, 

2015). This has led to the adaptation of SCN to PI 88788 source of resistance which is 

supported by reports of shifts and breakdown of PI 88788 resistance from different 

soybean growing states (Mitchum et al. 2007; Niblack et al. 2008; MacGuidwin, 2012; 

Hershman et al. 2008; Zheng and Chen, 2011; Acharya et al. 2017b).  In South Dakota, 

race determination was done in 2005 using two populations of SCN from Turner and 

Union county which was identified as race 3 (HG type 0) (Jones, 1997) while a recent 

report suggests that HG type 0, 2.5.7 and 7 are more prevalent in South Dakota (Acharya 

et al. 2017a).  

 

1.3.6. SCN crop hosts  

Soybean is the major host of SCN but it can also infest a wide range of other crops and 

weeds. Over 140 genera of plants can be infected by SCN with a majority of hosts 

belonging to the family Leguminosae while 22 non-legume families have been found to 

be the hosts (Riggs and Wrather, 1992). Riggs (1987) reported the penetration and 

development of SCN in crops such as turnip (Brassica rapa L.), alfalfa (Medicago sativa 

L.), lima bean (Phaseolus lunatus L.), common bean (P. vulgaris L.), hairy vetch (Vicia 

villosa Roth.), cowpea (Vigna unguiculata), tomato (Lycopersicon esculentum Mill.), 

white lupine (Lupinus albus L.), purple bush bean (Macroptilium atropurpurea), wild 

bush bean (Macroptilium lathyroides), tepary bean (P. acutifolius A.), and adzuki bean 

(Vigna angularis Willd.) (Riggs, 1987). Legumes such as Canada tick clover 
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(Desmodium canadense L.), hairy vetch (Vicia villosa Roth.), lima bean (Phaseolus 

lunatus L.), little marvel pea (Pisum sativum L.), strawberry clover (Trifolium fragiferum 

L.), string bean (Phaseolus vulgaris L.) and tender bean (Phaseolus vulgaris L.) were 

reported to be good hosts of SCN in a greenhouse study (Jones, 1997). Dry beans such as 

Black bean (Phaseolus vulgaris L.), Kidney bean (Phaseolus vulgaris L.), Navy bean 

(Phaseolus vulgaris L.), and Pinto bean (Phaseolus vulgaris L.) were also reported to be 

good hosts of SCN (Poromarto et al. 2011; Poromarto and Nelson, 2009; Yan et al. 

2017).  

 

1.3.7. Weed hosts 

Several winter annual weeds were determined to be alternative hosts of SCN and 

therefore pose significant impact on its management in the field (Duncan and Noling, 

1998; Thomas et al. 2005). Resistant cultivars, seed treatments, and crop rotation are 

important measures to manage the SCN (Hartman and Sinclair, 1999) but weed hosts 

supporting high reproduction of SCN could reduce the effectiveness of these 

management measures (Poromarto et al. 2015). Riggs and Hamblen conducted a the 

detailed study on the alternative weed hosts of SCN where 164 weed species were listed 

as poor hosts from the collection of 286 weed species from 22 families. The weed species 

were declared hosts if SCN were able to form at least 1 cyst in the weed roots (Riggs and 

Hamblen, 1966a). In 1987, a comprehensive list of crops and weed species was 

determined and categorized as 1) plants not penetrated by SCN, 2) plants penetrated but 

no development occurred, 3) plants penetrated and slight development occurred and 4) 

plants penetrated and development occurred to maturity (Riggs, 1987). In another study, 
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Poromarto et al. (2015) detected 26 new alternative weed species from 11 plant families 

from different collections. However, henbit (Lamium amplexicaule L.) (Epps and 

Chambers, 1958; Riggs and Hamblen, 1962; Poromarto et al. 2015; Werle et al. 2015; 

Creech et al. 2007b), common purslane (Portulaca oleracea L.) (Riggs, 1992; Riggs and 

Hamblen, 1966a; Poromarto et al. 2015), purple deadnettle (Lamium purpureum L.) 

(Riggs and Hamblen, 1962; Poromarto et al. 2015; Werle et al. 2015; Creech et al. 

2007b), and field pennycress (Thalpsi arvense L.) (Venkatesh et al. 2000; Poromarto et 

al. 2015) are the major alternative weed hosts commonly reported from different states in 

the United States.  

 

Winter annual weeds have added daunting challenges to crop production in the recent 

years (Nice and Johnson, 2005). Different types of tillage practices adopted by growers 

have contributed to the weed establishment in the field. For an instance, conservation 

tillage practice contributed around 27% of total tillage practices and no-till contributed 

around 37% of the total cultivable land (USDA NASS, 2017) which has resulted in the 

reduction in soil disturbance and has facilitated weed establishment and seed production.  

Another important cause for the resurgence in weed populations is the adoption of 

herbicide-resistant soybean cultivars. In 2017, herbicide tolerant soybean constituted 

around 94% of total soybean acreages in the United States (USDA ERS, 2017). Increased 

use of herbicide-tolerant soybean has led to a reduction in the use of soil residual 

herbicides that has also promoted weed seed bank (USDA ERS, 2017). Mild winters 

experienced in recent years also has reduced winter killing of the weeds (Krausz et al. 

2003). Soybean growers who use more intensive tillage practices as a measure to control 
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weeds can promote the SCN spread and multiplication as a result of these soil 

disturbances (Koenning and Barker, 1995; Young, 1987). Meanwhile, herbicides used to 

manage the weeds also facilitate SCN growth by altering the soil temperature (Creech et 

al. 2007b).  

 

1.3.8. Role of weeds in HG type diversity  

Reproduction of SCN HG types on different weed hosts is an important aspect of SCN 

management. This knowledge can help to determine whether a particular SCN HG type is 

able to reproduce on specific weed hosts along with the ability of the weed hosts to 

support different SCN HG types. Furthermore, several reports have documented that 

weed species are responsible for the selection pressure of SCN in a particular region 

(Poromarto et al. 2015).  

 

The most conventional measure for SCN management is planting of resistant cultivars 

and when a resistant cultivar derived from a single source of resistance is continuously 

planted over subsequent cropping seasons, SCN HG types which are able to reproduce on 

the resistance source may be developed. Similarly, several weed hosts in the field may be 

able to support a particular SCN HG type and maintain the source of inoculum for the 

subsequent cropping season. This, in turn, can favor particular SCN HG type to dominate 

in the field. This phenomenon is witnessed by major soybean producing states where 

shifts in the SCN HG types had been observed. The reason behind the shift is not well 

known but may be due to alternative weed hosts influencing development of different HG 

types in the field further complicating SCN management. HG type diversity and 
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interaction with different hosts can impart important information on HG type shifts, 

selection pressure, and abundance of new HG types which in turn can inform about 

devising appropriate management strategies against SCN.  

 

1.4. SCN interaction with other pathogens 

SCN and brown stem rot (BSR) are commonly found diseases throughout the soybean 

growing region of the United States (Workneh et al. 1999). Incidence and severity of 

BSR of soybean were highly correlated with the presence of SCN regardless of the 

resistance or susceptibility of cultivars to BSR. Some sources of SCN resistance also 

confer resistance to BSR (Oplinger et al. 1999), which is validated by the fact that PI 

88788 source of resistance of SCN performed better than BSR resistant check in 

preventing the infection of BSR, whereas Peking performed similarly to standard BSR 

susceptible check under in the greenhouse conditions (Kurtzweil et al. 1999).  

 

Sudden Death Syndrome (SDS) and SCN are generally prominent in the low-lying parts 

of the field where the soil has higher moisture (Roy et al. 1997). Though SDS and SCN 

are unrelated in the infection mechanism, they are often found occurring together (Roy et 

al. 1989) but the relationship among these pathogens have been reported to be 

inconsistent. Some research reported positive correlation between the fungus and SCN 

(McLean and Lawrence, 1993; Xing and Westphal, 2006; Brzostowski et al. 2014, 

Westphal et al. 2014) while other studies reported weak interaction or no correlation 

between the pathogens (Roy et al. 1993; Gao et al. 2006; Marburger et al. 2014).   
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An additive interaction was observed between SCN and the Phytophthora rot pathogen P. 

sojae where the lesion length caused by P. sojae was significantly higher in presence of 

SCN (Adeniji et al. 1975). In another study, P. sojae incidence was increased on the SCN 

infected soybean plants (Kaitany et al. 2000). P. sojae and SCN were found to possess 

damaging effect on all the growth variables of soybean plants when combined as 

compared to the single pathogen (Chowdhury, 2017). Increased lesion length was 

observed for P. sojae in presence of SCN whereas SCN population was significantly 

reduced in presence of P. sojae (Chowdhury, 2017).  

 

It was reported that the presence of SCN can reduce the lesion length of stem canker 

pathogen Diaporthe caulivora by 40% on soybeans (Russin et al. 1989) depicting the 

negative effect of SCN on the fungal pathogen on SCN (Raven and Johnson, 2002; 

Russin et al. 1989). Reduction in the cyst and juvenile numbers in presence of D. 

caulivora has also been reported (Russin et al. 1989). In another study, it was reported 

that co-infestation of both SCN and D. phaseolorum caulivora did not significantly 

reduce yield as compared to non-inoculated control (Pacumbaba, 1991). In a recent study, 

SCN reproduction was also found to be reduced by 90% or greater when the fungus was 

inoculated earlier to the plants than SCN whereas the lesion length was increased by 76% 

or more when SCN was inoculated earlier (Posch, 2017). 

 

Soybean aphid and SCN possess an indirect effect on one another if soybean is infected 

with both of pests (McCarville et al. 2014). In the presence of soybean aphid, SCN 

reproduction increased on the SCN resistant cultivar whereas reproduction decreased on 
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the susceptible cultivar (McCarville et al. 2014) which indicated that the aphid feeding 

favors the SCN but at higher aphid population densities, this effect is compensated by 

decrease in resources for both pests (McCarville et al. 2014). Moreover, it was also 

reported that the cultivars containing soybean aphid resistant Rag1 gene do not confer 

protection against SCN (Macintosh et al. 2009). In a recent study, it was also found that 

the number of SCN cysts increased when soybean aphids were increased for SCN 

resistant cultivars while this pattern was not observed for SCN on the susceptible cultivar 

(Knodel et al. 2016). 

 

 

1.5. SCN management  

SCN management is a challenge to soybean growers because of SCN ability to survive 

for a long period of time even in absence of hosts, its ability to break down the resistance 

of commonly grown SCN resistant cultivars and its ability to survive in a wide range of 

deleterious environmental conditions (Niblack and Chen, 2004). The most commonly 

practiced SCN management measures are crop rotation, seed treatment, and planting of 

resistant cultivars (Niblack et al. 2003; Faghihi and Ferris, 2006; Niblack, 2005; Tylka, 

2008; Oyekanmi and Fawole, 2010).  

 

 

1.5.1. Host resistance  

Resistant varieties are a promising management tool to manage SCN (Niblack et al. 2003; 

Faghihi and Ferris, 2006; Niblack, 2005; Tylka, 2008; Oyekanmi and Fawole, 2010). In 
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resistant cultivars, second stage juveniles fail to form a permanent feeding site i.e. 

syncytia (Davis et al. 2004; Davis et al. 2000; Johnson et al. 1993).  After the discovery 

of SCN in North Carolina (Winstead et al. 1955), efforts to identify SCN resistance genes 

began and subsequently, a resistant cultivar was introduced in 1957 (Ross and Brim, 

1957). From 1973-82, $405 million profit was obtained by the deployment of a resistant 

cultivar called Forrest (Bradley and Duffy, 1982). Around 118 PI lines resistant to SCN 

were identified from USDA-ARS soybean germplasm collection (Arelli et al. 2000). 

Among these 118 PI lines, only two (PI 88788 and PI 548402/Peking) have been utilized 

in breeding programs depicting the narrow genetic base of today’s host resistance 

(Concibido et al. 2004). In soybean PI line Peking, 3 recessive QTLs’: rhg1, rhg2, and 

rhg3 were found which confer resistance on Peking germplasm (Caldwell et al. 1960). A 

fourth dominant gene linked to I-locus, Rhg4 has been identified from Peking source of 

germplasm responsible for seed coat pigmentation as well as SCN resistance (Matson and 

Williams, 1965). Dominant gene Rhg5 was also discovered from PI 88788 (Rao-Arelli, 

1994; Rao-Arelli et al. 1992). However, it was determined that LRR-kinase gene 

(classical gene family conferring resistance) at rhg1 and Rhg4 were independent of 

resistance to SCN which led the researchers to refine the linkage maps (Liu et al. 2011; 

Melito et al. 2010). In another study, it was reported that the 3 dissimilar genes in 10 

tandem copies of 31 kb segment are responsible for PI 88788 type of resistance (Cook et 

al. 2012) whereas the gene serine hydroxy-methyltransferase (SHMT) was responsible 

for Peking-type resistance (Liu et al. 2012). Moreover, genetic mapping studies suggested 

that PI 88788 type resistance requires Rhg1 whereas Peking-type resistance requires 

Rhg4 to confer resistance to SCN (Concibido et al. 2004; Meksem et al. 2001). 
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Seven PI lines PI-548402 (Peking), PI-88788, PI-90763, PI-437654, PI-209332, PI-89772 

and PI-548316 (Cloud) are usually utilized for development of SCN resistant varieties in 

which PI-88788 constituents more than 95% of resistant sources in the United States 

(Concibido et al. 2004; Schmitt et al. 2004; Shannon et al. 2004; Mitchum, 2016). 

Remaining 5% is shared by Peking, PI-437654 or by their combinations (Joos et al. 2013; 

Tylka and Mullaney, 2015). A QTL was identified on PI-567516C conferring resistance 

to multiple HG types (Vuong et al. 2010). Resistant cultivars were found to reduce SCN 

infestation along with increasing soybean yield (Chen et al. 2001b). The yield benefit was 

about 48% when resistant cultivar was combined with nematicides (Heydari et al. 2012).  

 

SCN resistance is found to be governed by the group of dissimilar genes at multiple loci 

and the variation of their copy numbers, therefore, more in-depth research is needed 

beyond a single gene model (Mitchum, 2016).  Another alternative strategy for imparting 

resistance is through turning-off or modifying susceptibility genes (Fosu-Nyarko and 

Jones, 2015) which were first demonstrated by Guo et al. (2015). Approaches that can 

stack R and S genes could be promising for improving SCN resistance in soybean along 

with sustaining natural resistance. For now, a combination of crop rotation with non-host 

crops along with planting SCN resistant cultivars differing in their resistant gene sources 

are followed to manage the disease (Niblack, 2005; Tylka and Mullaney, 2015; Mitchum, 

2016).  

 

1.5.2. Crop rotation  
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Though SCN has broad host range consisting of many cultivated crops and weed hosts, 

crop rotation is an important measure to manage the SCN (Ross, 1960; Niblack and 

Chen, 2004). Crop rotation is the most sustainable and environmentally friendly measure 

to check the SCN population increase in the field. 

 

In the Midwestern region, corn is one of the commonly rotated crops with soybean (Noel 

and Edwards, 1996; Chen et al. 2001a; Perez-Hernandez, 2013). It has been found that 

corn rotation with soybean in the form of annual, biennial or longer crop rotations 

reduces SCN population densities (Young and Hartwig, 1992; Noel, 2008) but the 

underlying mechanism is not precisely known. In another study, the average decline of 

SCN was 51% during a three-year crop rotation study in Nebraska (Perez-Hernandez, 

2013). However, stimulation of egg hatching but failure to get subsequent infections is 

found to reduce the number of SCN in such rotation (Warnke et al. 2008). However, one 

year of rotation was not found to be effective in reducing the number of nematodes 

(Miller et al. 2006). Rotation with corn coupled with soil fumigation with nematicides 

was found to be effective in controlling SCN. However, fumigation is no longer 

recommended a as most fumigants have been removed from the market because of threat 

to the environment (Sasser and Grover, 1991).  

 

1.5.3. Use of cover crops 

Several cover crops are found to reduce nematodes in the field either in rotation or when 

inter-seeded with the major cash crops (Duncan and Noling, 1998; Abawi et al. 2000). 

However, the effect of cover crops on the nematodes depends upon species of cover 
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crops and the nematodes present in the field (Phatak, 1998; McSorley, 1998; Abawi et al. 

2000). Several research studies have shown there is a potential of cover crops to help in 

SCN management (Niblack and Chen, 2004). For instance, Brassica spp. which contain 

glucosinolates that decompose to form isothiocyanate, which has a strong nematicidal 

property is effective against nematodes (Donkin et al. 1995; Chitwood, 2002; Jing and 

Halbrendt, 1994). Crops such as wheat and other cereals were found to produce phenolic 

compounds responsible for reducing nematode populations (Hershman and Bachi, 1995), 

although winter wheat coupled with poultry manure did not reduce SCN population 

significantly (Wight et al. 2011). Cereal rye produces toxic compound benzoxazinoids, 

which have been found to reduce nematode populations (Zasada et al. 2005). Another 

study reported the use of annual ryegrass after soybean harvest reduced SCN (Pedersen 

and Rodriguez-Kabana, 1991) as the residue of annual ryegrass (Lolium multiflorum) 

stimulated hatching of SCN eggs in absence of soybean, and thus reducing the 

subsequent SCN population and parasitism (Mock et al. 2009; Riga et al. 2001). Bean 

sprout residue was also found to reduce SCN population when applied in the field 

(Toyota et al. 2013). In a greenhouse study, SCN cyst development was not found in 

cover crops such as annual ryegrass, Camelina, carinata, Ethiopian cabbage, faba bean, 

foxtail millet, radish, rape dwarf Essex, red clover, sweet clover, triticale and winter rye, 

indicating their use in the form of crop rotation would not increase SCN in the soil 

(Acharya et al. 2017a).   

 

1.5.4. Effect of irrigation and tillage on SCN 
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The impact of irrigation on SCN is not well documented. However, it was found that 

SCN population density was lowered in irrigated plots than in non-irrigated plots 

(Koenning et al. 1995) but it was unknown whether it was due to the water content or 

oxygen content ratio. Nevertheless, water is crucial for the spread of SCN from the 

previously infested field to the new fields (Faghihi et al. 2010). Drought stress facilitates 

soybean to increase root mass to absorb more water and nutrients and the increased root 

mass also favors SCN infection (Huck et al. 1986). Since SCN nematode requires aerobic 

respiration in its life cycle, the soil oxygen level also plays an important role in SCN 

survival (Koenning and Barker, 1995). Coarse-textured soil has larger pores and drains 

more easily than fine-textured soils, and favors nematode activity by allowing longer 

periods of aerobic conditions (Vrain, 1986).    

 

Many studies have been conducted to determine the effect of tillage on SCN populations 

but the results obtained are inconsistent. This may be attributed to the fact that the results 

obtained from tillage types were field specific (Noel and Wax, 2003; Niblack and Chen, 

2004; Westphal et al. 2009). It was also found that the tillage, especially of fine-textured 

soil, could increase the nematode population in the field (Workneh et al. 1999). Another 

study confirmed that tillage could be responsible for the regional spread of SCN 

(Gavassoni et al. 2007). Reduced tillage intensity in fine-textured soils was found to 

lower the SCN population in rotated experimental plots (Westphal et al. 2009). In another 

multifactorial analysis of 8 predictors, it was found that soil type was the important factor 

in predicting the SCN mortality in annually rotated plots in Nebraska (Perez-Hernandez, 

2013; Perez-Hernandez and Giesler, 2014).   



20 

 

 

1.5.5. Biological control measures 

Several studies were conducted to determine the effect of different fungi and bacteria for 

SCN management. Fungi such as Hirsutella minnesotensis, H. rhossiliensis, 

Cylindrocarpon heteronema and bacteria such as Pseudomonas spp., Lysobacter spp., 

and Variovorax spp. had been found to possess antagonistic effects on SCN. 

Endoparasitic fungal species such as Hirsutella minnesotensis and H. rhossiliensis were 

reported to infest SCN juveniles and thus reduce the infection on the roots (Chen, 2007; 

Chen and Liu, 2005; Chen et al. 2000; Zhang et al. 2006). Sinorhizobium fredii strain 

Sneb183 is reported to reduce SCN cysts and juveniles by lengthening their 

developmental period (Tian et al. 2014). Pirformospora indica, a plant growth promoting 

fungi suppresses SCN eggs and juveniles along with enhancing flowering in soybean 

(Bajaj et al. 2015).   

 

Pasteuria nishizawae, an endospore-forming endoparasite of SCN reduces SCN juveniles 

and eggs considerably (Sayre et al. 1991; Noel et al. 2005). Syngenta has developed a 

nematicidal seed treatment ClarivaTM based on Pasteuria nishizawae (Sharma et al. 2015) 

which is found to reduce nematode population along with enhancing yield in soybean 

(Fawcett et al. 2014). Bacillus firmus is the other bio-control agent which is an 

endospore-forming bacteria that feeds on root exudates and thus, reduces the possibility 

of SCN juveniles infestation of roots (Crow, 2014). However, the effect of Pasteuria 

nishizawae and Bacillus firmus has been inconclusive under field conditions (Tylka and 

Marett, 2014; Musil et al. 2015; Robertson et al. 2016). Poncho/ VOTiVO is another 

nematicidal seed treatment developed by Bayer CropSciences (2018). It is derived from 
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the bacteria Bacillus firmus which shields young roots against SCN juveniles by creating 

a living barrier. 

  

Research studies have shown that seven strains of Pseudomonas were found to suppress 

the activity of SCN through 15 independent sets of greenhouse assays (Taylor, 2017). It 

has also been speculated that microorganisms naturally regulate SCN populations in the 

infected field for some period (Chen, 2004). Though several bio-control agents for 

managing SCN have been identified, the cost-effective integration of these biological 

control agents in conventional soybean production still challenges the SCN research 

community and commercial producers.  

 

1.5.6. Chemical control measures 

Several chemical compounds (nematicides, herbicides, fungicides)  have been found to 

impart some control over SCN along with enhancing plant health. Aldicarb, a carbamate 

group of nematicide, has some level of control on SCN but is a restricted use nematicide 

in Midwest region (Grabau, 2013). Its efficacy, however, is not consistent in different 

states (Niblack, 1992; Noel, 1987; Rotundo et al. 2010; Smith et al. 1991). Telone C-35 is 

another multi-purpose liquid fumigant and nematicide developed by Dow AgroSciences 

having chloropicrin as an active ingredient reported to control all types of nematodes 

including SCN and soil-borne pathogens. In a research study in Iowa, Telone 15 was 

found to enhance soybean yield by 10% while reducing SCN egg population by 42% (De 

Bruin and Pedersen, 2008). However, the chemical product is federally restricted-use 

pesticide and is not registered for sale and use in all states (Dow AgroSciences, 2018).  
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In another study, benzyl isothiocyanate prepared in 1% methanol was effective in 

reducing juvenile movement, SCN egg hatching, and reproduction (Wu et al. 2014). 

Though isothiocyanates have immense potential in crop protection, its biological effects 

are not well known but these compounds have been the focus of attention for many 

researchers (Brown and Morra, 1997). ILeVO® is another nematicidal seed treatment 

developed by Bayer Crop Science, which is based on Fluropyram and is reported to 

possess direct impact on SCN in seed zone along with a season-long reduction in 

nematode numbers in the field (Bender, 2017). ILeVO® is recommended to be applied 

with Poncho/VOTiVO for triple action protection. Avicta (actinomycetes derived 

product) developed by Bayern Crop Sciences was found to provide yield benefits when 

coupled with Aeris (a neonicotinoid insecticide) but was not found to reduce SCN 

population (Frye, 2009).  

 

Among different commonly used herbicides, Blazer (Acifluorfen) was reported to 

suppress hatching of SCN eggs (Wong et al. 1993). Among different fungicides tested for 

the effect on SCN, Cleary 163336F was reported to suppress SCN significantly (Faghihi 

et al. 2007). Although chemical nematicides are effective in controlling the nematode to a 

certain extent, they also pose a serious threat to the environment and are restricted or fail 

to make it to market. Application of chemical compounds for control of SCN is not eco-

friendly as they pose threats to the handlers and have the potential to affect aquatic 

organisms. Besides, chemical nematicides are not economical when considered for SCN 

management because of their high market prices and the high cost of application 

(Matthiessen and Kirkegaard, 2006; Oka, 2010). 
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1.5.7. Plant extracts  

Several nematicide fumigants and nematicides were banned due to their harmful effect on 

the environment and human health (Rich et al. 2004). This has led to developing and 

testing different types of organic compounds and organic amendments for nematode 

control (Rodriguez-Kabana, 1986).  Many plant extracts have been tested and found to be 

effective for managing SCN and other nematodes along with isolation of nematicidal 

compounds from them (Gommers and Bakker, 1988; Chitwood, 2002). Leaf extracts, oil 

cakes and kernel oils from Neem (Azadirachta indica) were tested for their nematicidal 

activity (Silva et al. 2008; Mojumder and Mittal, 2003; Akhtar, 2000). Nematicidal 

compounds such as limonoids, azadirachtin, nimbin, salanin and many others were 

identified (Devkumar et al. 1985; Akhtar, 2000). In a recent study, 120 µg/ml leaf extract 

from neem was found to reduce egg hatching of SCN by about 72%, caused 100% 

juvenile mortality within 84 hours of treatment, and reduced cyst development in 

susceptible soybean cultivar, Wiliam-82 by 83% (Hassan et al. 2013). Many plants 

species of Asteraceae family like Tagetes, Artemisia spp., Chrysanthemum spp., 

Gaillardia spp., Inula viscosa, and Rudbeckia hirta were studied for their nematicidal 

activity (Gommers an Bakker, 1988; Timchenko and Maiko, 1989; Dias et al. 2000; 

Ploeg, 2000; Debprasad et al. 2000; Natarajan et al. 2006; Bar-Eyal et al. 2006). 

However, no information regarding testing of plant extracts from these species have been 

reported on SCN.  

 

Glucosinolates are one of the main compounds secreted by most of the plant species from 

the Brassicaceae. These chemicals hydrolyze to release compounds such as 
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isothiocyanates, thiocyanates, nitriles, and oxazolidine-2-thiones (Matthiessen and 

Kirkgaard, 2006; Mumm et al. 2008; Oka, 2010). Many attempts have incorporated 

rapeseed (Brassica napus) and Indian mustard (Brassica juncea) for nematode 

management worldwide (Mojtahedi et al. 1991, 1993; Walker and Morey, 1999; Ploeg 

and Stapleton, 2001; Stirling and Stirling, 2003; Zasada and Ferris, 2004; Rahman and 

Somer, 2005). However, only Chinese cabbage (Brassica chinensis) from the 

Brassicaceae family has been studied to test its activity against SCN. The Chinese 

cabbage leaf extract at 120 µg/ml was found to reduce egg hatching of SCN by around 

63%, caused 68% juveniles mortality at 84 hours of treatment and reduced cyst 

development in susceptible soybean cultivar, Wiliam-82 by 66% (Hassan et al. 2013). 

Thus, numerous plant-derived extracts and compounds have been found to exhibit 

efficacy against different plant-parasitic nematodes (Bones and Rossiter, 2006; Kabeh 

and Jalingo, 2007; Elbadri et al. 2009; Khan et al. 2009; Sultana et al. 2011; Hassan et al. 

2013) but their field effectiveness is yet to be determined.   

 

 

1.5.8. Biotechnology 

Novel sources of SCN resistance deployed through molecular mechanisms or through 

plant breeding expands the genetic basis of SCN resistance. Biotechnological tools such 

as RNAi gene silencing and effector proteins mechanism are being tested for SCN 

management. RNAi induced suppression of genes associated with physiological functions 

of SCN can be useful in gene expression studies on feeding sites (Li et al. 2011). 

Similarly, silencing or overexpression of genes associated with the SCN pathogenesis has 
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shown a great potential for engineering resistance against SCN. For instance, silencing of 

aldolase gene of SCN was found to reduce the number of SCN cysts (Youssef et al. 2013) 

and eighteen virus-induced gene silencing based on Bean pod mottle virus (BPMV) was 

used in the functional analysis of genes involved in SCN resistance (Kandoth et al. 2013). 

It had also been reported that the resistance against SCN was enhanced in soybean by 

silencing putative CLE (CLAVATA3/EMBRYO SURROUNDING REGION) receptors 

emphasizing the novel means of engineering resistance in soybeans (Guo et al. 2015). 

The same research group also discovered that the silencing of cytokinin synthesizing 

isopentenyl transferase gene in cyst nematode caused a significant reduction in virulence 

which further demonstrated the ability of cyst nematode to synthesize a plant hormone in 

order to control the host system for prolonged parasitic activity (Siddique et al. 2015). On 

the other hand, overexpression of candidate gene, salicylic acid methyl transferase 

(SAMT) which promotes the formation of methyl salicylate from salicylic acid was found 

to confer resistance against SCN (Lin et al. 2013).  

 

Recently, SCN research community has been focused on the parasitism mechanism 

influenced by effector proteins where more than 80 H. glycines effector proteins have 

already been documented (Gao et al. 2001, Gao et al. 2003; Wang et al. 2003; Noon et al. 

2015). Effector protein with N terminal secretion signal peptides were found to be 

released in the plant via mouth spear (Mitchum et al. 2013) and play an important role in 

suppression or activation of plant innate immunity (Hewezi and Baum, 2013; Mitchum et 

al. 2013; Goverse and Smant, 2014; Hewezi, 2015). HgGLAND18 effector protein was 

reported to suppress plant innate immunity and thus was responsible for pathogenicity 
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obtained from the compatible interactions with the soybean plant (Baum et al. 2016). 

Signal transduction study from Arabidopsis thaliana showed that the cyst nematode 

parasitism may require suppression of salicylic acid signaling in the roots (Wubben et al. 

2008). Time course RNA gel blot analysis revealed that Arabidopsis homologs gene at 

17.1 was found to be closely associated with cyst nematode parasitism of plants (Baum et 

al. 2004). A gene expression study revealed that the active ethylene-signaling pathway 

reduced the vulnerability of soybean roots by SCN and the authors concluded that there 

are important roles for ethylene pathways during pathogenicity at early and later parasitic 

stages (Li et al. 2017). Even though several molecular mechanisms governing resistance 

of soybean and pathogenesis have been discovered, there is still a lot of complexity yet to 

be resolved. However, molecular tools possesses immense potential for SCN 

management through the development of novel SCN resistant soybean cultivars.  

 

 

1.6. Justification of the study   

SCN is an important pathogen of soybean in South Dakota and is ranked number one 

among yield limiting biological factors in soybean production worldwide. It was first 

detected in South Dakota in Union county in 1996 (Smolik and Draper, 1998) and has 

since been found in 30 soybean growing counties (Acharya, 2015). SCN is found to 

primarily infect soybean, however, no studies have been carried out to determine 

alternative weed hosts of SCN in South Dakota and their role in influencing SCN 

reproduction in absence of soybean. Reports from other states suggest that several winter 

annual weeds act as the alternative hosts of SCN posing a significant impact on SCN 
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management in the field (Duncan and Noling, 1998; Thomas et al. 2005). Most 

commonly practiced measures for SCN management are crop rotation coupled with the 

planting of resistant cultivars (Niblack et al. 2003; Faghihi and Ferris, 2006; Niblack, 

2005; Tylka, 2008; Oyekanmi and Fawole, 2010). Crop rotation is one of the ineluctable 

measures to manage SCN (Hartman and Sinclair, 1999) but weed hosts might negate its 

effect supporting reproduction of SCN and thus reducing the effectiveness of crop 

rotation (Poromarto et al. 2015). Weeds such as henbit (Lamium amplexicaule), common 

purslane (Portulaca oleracea), purple deadnettle (Lamium purpureum), and field 

pennycress (Thlaspi arvense) have been commonly reported from other states as SCN 

weed hosts. However, there is no information on the weed species that might serve as 

alternative weed hosts of SCN in South Dakota. Furthermore, very little is known about 

the interaction of weed hosts and SCN HG types yet this is important in order to 

determine the role of alternative weed hosts in influencing different HG types in the soil. 

Among all the environmental factors, soil moisture is an important factor impacting SCN 

activity in the field. However, there is a paucity of information on the impact of excessive 

moisture on SCN infectivity and effectiveness of nematicide seed treatment.  

Thus, the objectives of this study were to:  

I. Determine weeds serving as alternative hosts for SCN in South Dakota 

II. Assess the reproduction of most prevalent HG types (HG type 0, 7 and 

2.5.7) on major three SCN weed hosts (field pennycress, henbit, and 

purple deadnettle) 

III. Determine the effects of flooding on SCN infectivity and effectiveness of 

nematicide seed treatments. 
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CHAPTER 2 

 

2. Determination of Alternative Weed Hosts of Soybean Cyst Nematode in South 

Dakota 

 

Abstract  

Soybean cyst nematode (SCN; Heterodera glycines) causes an estimated $1 billion losses 

in revenue annually in the USA and consistently ranks as the most threatening pathogen 

for soybean. Winter annual weeds can further exacerbate the SCN problem by harboring 

SCN in the absence of soybean in the field. These weeds have become widespread in 

recent years due to an increase in conservational tillage practices and the reduction in the 

use of residual herbicides. Identification and evaluation of alternative weed hosts of SCN 

is important to provide effective management strategies against SCN. To determine 

alternative annual winter weed hosts in South Dakota, 670 whole weed samples were 

collected from 48 SCN infected fields from 13 counties during fall 2016 and spring 2017 

comprising 63 weed species. The weed species were soaked in water for 48 hours to 

separate the adhered soil from the roots. The roots were dissected into smaller pieces of 2 

cm length, macerated in a blender at 12,000 rpm and the resulting suspension was passed 

through the series of 250, 150 and 45 µm sieves. Using a dissecting microscope, the 

filtrate was then examined within a counting dish.  

 

Based on the morphological features, SCN juveniles were detected and greenhouse 

confirmation study was conducted for the development of cysts on the weed hosts and the 

female index (FI) were determined. Twelve weeds out of 63 were found to harbor SCN 
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juveniles in the field. Female index (FI) was highest for purple deadnettle (FI=36.3) 

followed by field pennycress (FI=29), common mallow (FI=3.07), Canada thistle 

(FI=1.88), shepherd’s purse (FI=3.08), white clover (FI=1.15) and cocklebur (FI=1.15). 

Field pennycress and purple deadnettle were found to be good hosts of SCN whereas the 

other weed species were poor hosts of SCN in South Dakota. All the weed species 

determined as hosts from this study were similar to the previous studies except common 

mallow, which was weed hosts only in this study.  

 

Keywords: SCN, Heterodera glycines, winter annual weeds, weed hosts, female index, 

reproduction  
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2.1. Introduction 

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a major pest of soybean 

in the soybean growing regions (Niblack et al. 2006, Winter et al. 2006). Among all the 

biological yield-limiting factors, SCN ranks first in the U.S. and has been reported from 

most of the soybean growing states of the USA (Niblack, 2005, Wrather and Koenning, 

2006; Wrather et al. 2010; Tylka and Marett, 2014). Nearly 36% yield losses had been 

reported from 1996 to 2014 from SCN which accounted for $1.2 billion losses per annum 

in the revenue in the United States (Koenning and Wrather, 2009; Nguyen et al. 2016). In 

South Dakota, soybean is the second most important crop after corn and is grown in an 

area of 2.1 million hectares with a total production of 6.9 million metric tons generating 

$2.33 billion revenue (USDA NASS, 2017). SCN has been reported from 30 counties of 

South Dakota and is continuously spreading to other soybean growing counties (Acharya, 

2015) causing estimated revenue loss of 1.9 Metric tons (Mt) annually 

(www.sdsoybean.org). 

 

Soybean and some other legumes are the crop hosts of SCN. However, weeds can also be 

the alternative hosts of SCN in the field and can play a critical role in the development of 

the continuous SCN inoculum in the field (Duncan and Noling, 1998; Thomas et al. 

2005). Generally, winter annual weeds play an important role in harboring SCN (Gibson 

et al. 2005; Nice et al. 2005). Winter annual weeds emerge during fall, overwinter as 

seedlings and then complete their life cycle in the spring. There have been reports of the 

proliferation of winter annual weeds in different states attributed to factors such as 

adoption of conservation tillage practices, increased use of herbicide for the weed 

http://www.sdsoybean.org/


31 

 

 

management and relatively mild winters (Buhler, 1995; Cardina et al. 2002; Thomas et al. 

2004; Wicks et al. 1994; Barnes et al. 2003; Krausz et al. 2003). Resistant cultivars and 

crop rotations with non-host crops are commonly practiced techniques for SCN 

management (Hartman and Sinclair, 1999; Niblack, 2005; Faghihi and Ferris, 2006; 

Tylka, 2008; Okekanmi and Fawole, 2010; Mitchum, 2016). However, a weed host can 

negate the effects of crop rotation (Poromarto et al. 2015) and can continuously support 

SCN population in the field if present. Additionally, because SCN is capable of 

reproducing on the alternative weed hosts, this can possibly influence the HG type 

(Heterodera glycines) by the development of the selection pressure favoring particular 

SCN HG type reproduction, along with possibilities of development of new HG types in 

a long run. This is supported by the fact that many major soybean producing states have 

witnessed changes in the SCN HG types (Mitchum et al. 2007; Niblack et al. 2008; 

MacGuidwin, 2012; Hershman et al. 2008; Zheng and Chen, 2011; Acharya et al. 2017b). 

Hence, weed hosts complicate SCN management by reducing the effectiveness of other 

management measures.  

 

Several studies have been conducted to evaluate the status of weeds as alternative hosts, 

which is important in devising long-term SCN and weed management strategies. 

However, identification of alternative weed host species is complicated due to complexity 

in the weed host species, the development of different HG types of SCN in response to 

the localized environment, and selection pressures associated with the production 

practices (Koskinen and McWhorter, 1986; Riggs, 1987; Riggs and Schmitt, 1988).  

Although considerable genetic variability exists within single weed species and the SCN 
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types (Radosevich et al. 1997; Niblack, 1992), very few research studies have included 

weed genetic variations, weed HG types preferences and weed field variations in the 

weed host research. Riggs and Hamblen, 1962 conducted a first detailed study on the 

alternative weed host of SCN where 146 weed species were listed as hosts from the 

collection of 286 weed species from 22 families based on their ability to form at least 1 

cyst (Riggs et al. 1992; Riggs and Hamblen 1966a, 1966b). 

 

Sixty-six weed species belonging to nine plant families were reported to be the hosts of 

the soybean cyst nematode. The nine plant families found to be SCN hosts were 

Capparidaceae, Caryophyllaceae, Cruciferae, Geraniaceae, Labiatae, Leguminosae, 

Phytolaccaceae, Portulacaceae, and Scrophulariaceae. Species classified in the family 

Leguminosae were the most numerous, followed by Scrophulariaceae Furthermore, the 

plant species were divided as plants not penetrated by SCN, plants penetrated but no SCN 

development occurred, plants penetrated where slight SCN development occurred and 

plant penetrated and SCN development occurred to the maturity (Riggs, 1987). Only 

plants penetrated and where SCN development occurred to the maturity are considered 

hosts of SCN. In a recent study, 51 weed species from the Northern Great Plains were 

evaluated for their host/ nonhost status where cysts formed on 31 weed species but only 

henbit and field pennycress allowed significant cyst development (Poromarto et al. 2015). 

However, SCN weed hosts may depends on the types of HG type present in the field and 

also on the weed biotype which needs further research.  

 



33 

 

 

Environmental factors play important roles in the development of SCN on the winter 

annual weeds. Though SCN can hatch, penetrate roots and develop into mature cysts over 

a wide range of temperatures, the rate of SCN growth and development is highly 

temperature dependent (Creech et al. 2007b). The optimum temperature suitable for the 

proper development of SCN is 25 °C (Alston and Schmitt, 1988). However, the rate 

increases linearly from 15 to 30 °C (Creech et al. 2007b). SCN reproduction has also 

been reported to be higher in autumn than in the spring which may be attributed to a 

favorable environment suitable for the nematode to complete its life cycle. In addition, 

number of J2, J3, and J4 inside the weeds were found to be higher in the spring than in 

the autumn season. This is found to be reasonable as the rate of SCN egg hatch and 

development of J2 declines in the autumn due to a reduction in soil temperature whereas 

increases in the spring soil temperature increases will decrease dormancy (Bonner and 

Schmitt, 1985, Hill and Schmitt, 1989; Ross, 1963). It had also been found that the risk of 

the infection and continuous development of SCN juveniles inside the root of winter 

annual weeds in the spring is the major factor responsible for the development of 

continuous inoculum in the field which ensures that these weeds should be removed from 

the field before planting (Creech et al. 2007a). Thus, it is important to manage these 

winter annual weeds effectively during the autumn to disrupt the SCN life cycle.  

 

Commonly found weed hosts of SCN in different soybean producing states in the United 

States include burclover, alsike clover, crimson clover, scarlet clover, common 

chickweed, mouse-ear chickweed, common mullein, field pennycress, henbit and purple 

deadnettle (Wrather and Mitchum, 2015; Giesler and Wilson, 2011; Tylka, 2012; Noel, 
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2015; Faghihi and Ferris, 2017; Poromarto et al. 2015; Chen, 2012; Niblack, 2013, Mock 

et al. 2007). However, fewer weeds are reported as hosts only in some state and host/ 

non-host status of weeds varies from states to states. For an instance, shepherd’s purse is 

reported as hosts only in Indiana (Faghihi and Ferris, 2017) and Ohio (Niblack, 2013), 

small flower bittercress only in Indiana (Faghihi and Ferris, 2017) and wild mustard in 

Illinois (Mock et al. 2007). This shows that weed host determination in a particular region 

is attributed to several factors such as HG type diversity, weeds distribution, climate and 

soil conditions and farming practices.  

 

Nematode populations obtained from root and soil are useful for weed host evaluation 

studies of the endoparasitic nematode. However, most of the research studies related to 

weed host determination are conducted under controlled condition by infesting the host 

with SCN inoculum and determining the respective female index (percentage of the 

average number of cysts found on the weed species compared to a susceptible soybean 

check). Moreover, it is important to assess whether the weed hosts really follow the 

similar trend in the field as there are several factors which affect the SCN pathogenicity 

such as the differences in HG types, the presence of different species of the nematodes, 

interactions among different soilborne pathogens, and different environmental factors. In 

addition, there had also been contrasting reports of plants species penetrated by SCN 

from multiple locations where cyst development has the varying trend among the same 

weed species (Poromarto et al. 2015). Hence, it is important to address field and 

greenhouse variations and weed hosts complexity in weed hosts determination study.  
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Thus, the objective of this research was to determine the weed hosts of SCN in South 

Dakota through field and greenhouse study and also to determine weed hosts distribution 

in the soybean-producing region of South Dakota.  

 

2.2. Methodology 

2.2.1. Sample collection  

SCN infected fields in 13 different counties of SD were identified from the research study 

conducted by Acharya, 2015. Whole weed samples along with soil from 0- 30 cm depth 

were collected from the infected field using a shovel. Weed species were collected based 

on the abundance of the weed species in each particular field but generally, at least two 

samples for each weed species were collected at each field. Weed samples were collected 

in the fall of 2016 from September to November and in the spring of 2017. A total of 48 

fields were sampled, 11 fields in the fall 2016 and 37 fields during spring 2017. Samples 

were collected in the ziplock bags of 10 by 13 cm size and placed in the cooler with ice 

bags and the coordinates of each field in each county were noted at the entry point. 

Additionally, a gallon of soil sample was collected from every sampled field in zig-zag 

pattern out of which 100 cc of soil was used to confirm the presence of SCN in the 

sampled field.  

 

2.2.2. Sample processing and SCN extraction  

Samples were placed in a bucket filled with water without disturbing the roots. They 

were left for 48 hours to facilitate easy release of soil from the roots. SCN cysts and eggs 

were extracted from the 100 cc of the representative soil sample taken from 10 different 
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parts of each field by soil cores to confirm the presence of SCN in the field following the 

extraction procedure by Faghihi and Ferris, 2000. Roots were separated from the 

individual sampled weed species and stored for further analysis.  

 

2.2.3. Juvenile extraction  

The root of each weed was cut into small pieces (1-2 cm length) and was macerated in a 

blender in 100 ml at 12000 rev/min for 1 minute (EPPO, 2013). The resulting suspension 

was passed through the two set of sieves with 250 µm at the top and 25 µm at the bottom. 

The suspension was collected in 50 ml beaker and then analyzed in a counting slide for 

the presence of juveniles through the dissecting microscope. Based on the morphology of 

the juveniles obtained, nematodes from the Genus Heterodera were identified and 

confirmed.   

 

2.2.4. Greenhouse assay 

Twelve weed species positive for the presence of juvenile from the field sample were 

collected and grown in the greenhouse. The experiment was set up to determine the cyst 

development in previously identified positive weed species from the field study. Weed 

seeds were pre-germinated at the room temperature in the petri-dish in a filter paper. Pre-

germinated seeds of each weed species and susceptible soybean cultivar Williams 82 

were transplanted into individual cone-tainer (3.8 cm diameter and 21 cm height, Stuewe 

and Sons Inc., Tangent OR) filled with sterilized clay-sand mixture (2 parts of sand and 1 

part of clay by volume). The weed species and the susceptible soybean cultivar were 

placed in a 7.6-litre bucket filled with sand and was placed in a water bath in the 
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greenhouse. The water bath was maintained at the temperature of 27-28 °C and at day 

length of 16 hours. Individual cone-tainers were inoculated 3 cm below the soil surface 

with 1ml egg-water solution containing egg density of 2000 eggs per ml through a 

pipette. All the treatments were arranged in completely randomized design with 8 

replications and a susceptible Williams 82 check and were repeated twice.  

 

After 40 days post-inoculation, the cone-tainers were taken out of the bucket, soaked in 

water for 20 min and the treated plant species were gently uprooted and removed. Cysts 

were collected in 210 µm pore sized sieve nested under 710 µm pore sized sieve sprayed 

with a strong stream of water to dislodge the cysts from the roots where the roots were 

weighed and stored at 4°C in 5 by 7.6 cm ziplock bags.   

 

2.2.5. Data analysis 

Field data comprised of the total number of weeds found in each location, weeds 

distribution frequency and the number of juveniles found from each weed species in 

fields sampled. Greenhouse data included the total number of cysts developed on the root 

of the weed species and their respective female index determined relative to the cysts 

formed in the susceptible check.  

 

 

2.3. Results 

2.3.1. Distribution of weed samples  
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A total of 670 whole weed samples were collected from the fields during fall 2016 and 

spring 2017. Canada thistle (Cirsium arvense) was the most abundant with a distribution 

frequency of 69% (33 out of 48) sampled locations (Table 2.1). Common lamb squarters 

(Chenopodium album), field pennycress (Thlaspi arvense), dandelion (Taraxacum 

officinale), white clover (Trifolium repens), field bindweed (Convolvulus arvensis), 

cocklebur (Xanthium strumarium) and kochia (Bassia scoparia) were found in 59%, 

56%, 50%, 46%, 44%, 42%, 42% of the sampled fields respectively, (Table 2.1). Weeds 

such as alfalfa (Medicago sativa), bittercress (Cardamine parviflora), broadleaf plantain 

(Plantago rugelii), chickweed (Stellaria media), field horsetail (Equisteum spp.), moth 

mullein (Verbascum blattaria), musk mallow (Malva moschata), purple poppy mallow 

(Callirhoe involucrate), prostrate knotweed (Polygonum aviculare), wild onion (Allium 

ascalonicum), and yellow spine thistle (Cirsium ochrocentrum) were observed once 

among the 48 sampled fields. However, the low abundance of the weed species does 

exclude them from being an alternative host of SCN. 

 

2.3.2. SCN confirmation from the infected field 

Cysts and eggs from each infected field were extracted from the representative 100 cc 

soil sample soil collected which confirmed the presence of SCN in the majority of the 

sampled fields. Only 3 out of 48 fields were not infected with SCN. SCN populations 

ranged from 700 to 100,000 per 100 cc soil sample suggesting highly variable SCN 

distribution in the infected fields in South Dakota (Table 2.2).  
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2.3.3. Juvenile extraction and identification 

Among all the weed species, juveniles were obtained from the field pennycress and white 

clover in the majority of the fields (50% and 24% respectively). In addition, juveniles 

were obtained from cocklebur, leafy spurge and Canada thistle from more than five 

fields. Juveniles were also obtained from the other weed species such as Venice mallow, 

horseweed, small flower bittercress, shepherd's purse, purple poppy mallow, purple 

deadnettle and common mallow from few fields (Figure 2.1).   

 

2.3.4. Greenhouse confirmation of weed hosts 

Cyst development on weed hosts was assessed through the greenhouse confirmation 

experiment from the weeds which were found to be positive for the presence of juveniles 

from the field samples. Field pennycress and purple deadnettle were found to support 

considerable cyst development in the greenhouse with the female index were 29.03 and 

36.31, respectively, and hence considered as strong hosts of SCN. Female indices were 

considerably lower for Canada thistle (FI=1.88), common mallow (FI=3.07), shepherd’s 

purse (FI=3.08), cocklebur (FI=1.15) and white clover (FI=1.15) which showed that these 

weeds hosts supported SCN development poorly and thus can be considered as the poor 

hosts of SCN in South Dakota. However, horseweed, Venice mallow, and leafy spurge 

did not support cyst development in the greenhouse while small flowered bittercress was 

not tested in the greenhouse due to unavailability of seeds.  
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2.4. Discussion 

The results from this study suggest that there are few winter annual weed hosts species 

which support SCN cyst development in South Dakota. Although weeds such as field 

pennycress, purple deadnettle, common mallow, shepherd’s purse, white clover, 

cocklebur and Canada thistle supported SCN cyst development in the greenhouse, there 

was variation in the number of cyst that developed for each of these weed species. 

Results from this research study also showed that field pennycress and purple deadnettle 

supported SCN development significantly in the field and the greenhouse suggesting 

these weed species to be the good hosts of SCN in South Dakota.  

 

In this study, 38 commonly found weed species in the soybean fields in South Dakota 

were assessed as hosts of SCN in the field and the greenhouse. Out of these, only 12 

weed species were found to harbor juveniles in their roots from the field samples. This is 

supported by the previous findings which have shown that the SCN presence in the field 

conditions is highly variable because of different environmental factors such as soil 

temperature, soil texture, soil pH, number of inoculum, seasons, weed density and 

abundance (Wallace, 1955; Slack and Hamblen, 1961; Clarke et al. 1978; Tefft et al. 

1982; Hillel, 2004; Tefft et al. 1982; Mock et al. 2007). Additionally, most of the 

research studies conducted to determine the weed hosts were limited to the greenhouse as 

it is extremely difficult to control all the variables in field conditions. However, this study 

investigated weed hosts supporting SCN in the field conditions as well as the greenhouse 

conditions.  

 



41 

 

 

Greenhouse studies for determining alternative weed hosts species of SCN in different 

states showed varying results. In a research study conducted by Wong and Tylka (1994), 

cocklebur and Canada thistle were found to be the non-hosts of SCN in Iowa. Similarly, 

Venkatesh et al. (2000) determined shepherd’s purse, field pennycress, henbit and purple 

deadnettle as the hosts of SCN in Ohio. Similarly, purple deadnettle was determined to be 

an alternative weed host of SCN in Nebraska (Werle et al. 2015; Werle, 2012) and in 

Indiana (Creech et al. 2007a). In a recent study, 31 weed species were determined to 

support SCN development out of which only henbit and field pennycress allowed 

substantial reproduction while similar SCN development was determined for shepherd’s 

purse, Canada thistle, horseweed, Venice mallow, henbit, leafy spurge and field 

pennycress (Poromarto et al. 2015). In our study, common mallow was the weed species 

to support SCN development that has not been reported in other studies.  

 

This study confirmed 7 weed species that supported SCN cyst growth in the greenhouse 

and the field conditions. This suggests that the weed species which support juveniles and 

cyst development fall in the host range as determined previously from the study by Riggs 

et al. (1987). Interestingly, all the weed species except purple deadnettle and field 

pennycress did not have cysts in all the replicates in the greenhouse. This indicates that 

some biotype may be present within a weed species which may not support cyst 

development while others are able to support cyst development (Poromarto et al. 2015). 

Weeds such as purple poppy mallow, horseweed, Venice mallow and leafy spurge failed 

to support cyst growth in the greenhouse conditions. This might be due to fact that these 

species only allow penetration and juvenile development but do not allow completion of 
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the cyst development which was also reported by Riggs   (1987). Surprisingly, white 

clover was found with SCN juveniles from the field samples but never developed cysts 

under greenhouse conditions. This could indicate that this weed species may act as a trap 

crop.  

 

Although most of the SCN management practices followed by the soybean growers in 

South Dakota are based on non-host crop rotation and host resistance, growers should 

also be aware of the weed hosts and their abundance to implement effective management 

practices. The greenhouse confirmation study suggests that field pennycress is an 

important SCN weed host from the SCN management point of view as it can support 

SCN reproduction. The abundance of field pennycress in the soybean growing fields in 

South Dakota further indicate its importance as abundant alternative SCN weed host. 

This research findings suggest that the weed hosts determined to be SCN hosts should be 

proactively managed as a part of effective SCN management strategies.  
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Table 2.1. Distribution frequency (%) of different weed species sampled from previously 

soybean cyst nematode positive fields during fall 2016 and spring 2018. (Total number of 

fields = 48) 

 

Weed species Scientific names Frequency (%) 

Canada thistle Cirsium arvense 69.4 

Common lambsquarters Chenopodium album 58.9 

Field pennycress Thlaspi arvense 56.8 

Dandelion Taraxacum officinale 50.5 

White clover Trifolium repens 46.3 

Field bindweed Convolvulus arvensis 44.2 

Cocklebur Xanthium strumarium 42.1 

Kochia Kochia scoparia 42.1 

Horseweed Conyza Canadensis 37.9 

Rumex Rumex crispus 37.9 

Knotweed Polygonum aviculare 35.8 

Ragweed Ambrosia artemisifolia 35.8 

Milkweed Asclepias syriaca 33.7 

Shepherd’s purse Capsella bursa-pastoris 31.6 

Flixweed Descurainia sophia 29.5 

Velvetleaf Abutilon theophrasti 27.4 

Giant ragweed Ambrosia trifida 25.2 

Waterpod Hydrolea quadrivalvis 25.2 
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Wild lettuce Lactuca virosa 25.2 

Catnip Nepeta cataria 23.1 

Leafy spurge Euphorbia esula 23.1 

Water hemp Amaranthus tuberculatus 23.1 

Common mallow Malva neglecta 21.0 

Marijuana Cannabis indica 21.0 

Purslane speedwell Veronica peregrina 21.0 

Silvery cinquefoil Potentilla argentea 18.9 

Alsike Clover Trifolium hybridum 16.8 

Russian thistle Salsola spp. 16.8 

Catchweed Galium aparine 16.8 

Buffalobur Solanum rostratum 14.7 

Stinging nettle Urtica dioica 14.7 

Burdock Arctium lappa 14.7 

Common groundsel Senecio vulgaris 12.6 

Spiny thistle Sonchus asper 12.6 

Venice mallow Hibiscus trionum 12.6 

Wild rose Rosa acicularis 12.6 

Black mustard Brassica nigra 10.5 

Motherwort Leonurus cardiaca 10.5 

Wild mustard Sinapis arvensis 10.5 

Pigweed Amaranthus retroflexus 8.4 

Blue violet Viola sororia 8.4 
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Indian mustard Brassica juncea 8.4 

Red clover Trifolium pratense 8.4 

Smartweed Polygonum pensylvanicum 8.4 

Wormweed Artemisia absinthium 8.4 

Pinneaple weed Matricaria discoidea 6.3 

Plantain Plantago major 6.3 

Wild garlic Allium vinale 6.3 

Hedge bindweed Calystegia sepium 4.2 

Horsetail Equisetum arvense 4.2 

Woolyleaf bursage Ambrosia eriocentra 4.2 

Purple deadnettle Lamium purpureum 2.1 

Alfalfa Medicago sativa 2.1 

Bittercress Cardamine parviflora 2.1 

Blackseed plantain Plantago rugelii 2.1 

Chickweed Stellaria media 2.1 

Field horsetail Equisetum spp. 2.1 

Moth mullein Verbascum blattaria 2.1 

Musk mallow Malva moschata 2.1 

Purple poppy mallow Callirhoe involucrata 2.1 

Prostrate knotweed Polygonum aviculare 2.1 

Wild onion Allium ascalonicum 2.1 

Yellowspine thistle Cirsium ochrocentrum 2.1 
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Table 2.2. Soybean cyst nematode (SCN) population density (expressed in eggs per 100 

cc of soil samples) obtained from the  soil samples sampled counties previously 

confirmed to have SCN in South Dakota in fall 2016 and spring 2017 

Field 

Sampled 

County SCN eggs/ 100 cc soil 

1 Turner 8500 

2 Turner 5900 

3 Turner 100000 

4 Turner 4600 

5 Lincoln 7000 

6 Lincoln 2900 

7 Brookings 2600 

8 Brookings 2400 

9 Brookings 2200 

10 Brookings 2500 

11 Brookings 2500 

12 Brookings 2200 

13 Turner 2600 

14 Turner 1200 

15 Lincoln 3400 

16 Lincoln 2900 

17 Clay 1500 
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18 Clay 1900 

19 Clay 1900 

20 Turner 2700 

21 Deuel 1600 

22 Hamlin 1400 

23 Brookings 2500 

24 Hamlin 1600 

25 Turner 2900 

26 Bon Homme 3300 

27 Bon Homme - 

28 Bon Homme 2500 

29 Bon Homme 1800 

30 Bon Homme 1900 

31 Hutchinson 900 

32 Hutchinson 1600 

33 Hutchinson 2700 

34 Hanson 1200 

35 Hanson 2300 

36 Hanson 1500 

37 McCook 2600 

38 Minnehaha 1800 

39 Minnehaha - 

40 Roberts - 
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41 Roberts 1500 

42 Roberts 2500 

43 Grant 700 

44 Turner 4000 

45 Turner 6700 

46 Brookings 11500 

47 Brookings 3500 

48 Brookings 5800 
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Table 2.3. Average number of soybean cyst nematode cysts formed on weed roots after 

inoculation with SCN eggs and the respective female index for weed samples in the 

greenhouse SCN host confirmation experiment 

 

Weed Species Number of fields 

found  

Average number 

of cysts 

Female Index 

(%) 

Field Pennycress 27/48 9 29.03 

Cocklebur 20/48 0.375 1.15 

Common Mallow 10/48 0.875 3.07 

Canada Thistle 33/48 0.5 1.88 

Purple Deadnettle 1/48 10.71 36.31 

Shepherd’s Purse 15/48 1.25 3.08 

White Clover 22/48 0.375 1.15 
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Figure 2.1. Number of juveniles obtained from the roots of each weed species after 

maceration. Weeds were sampled from the previously SCN positive soybean fields 

 

FP: Field pennycress; CM: Common mallow; CB: Cocklebur; PPM: Purple poppy 

mallow; PD: Purple deadnettle; CT: Canada thistle; VM: Venice mallow; HW: 

Horseweed; SFBC: Small-flowered bittercress; LS: Leafy spurge; WC: White clover;  

SP: Shepherd’s purse  
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CHAPTER 3 

 

3. Reproduction of Heterodera glycines Types on Field Pennycress, Henbit and 

Purple Deadnettle in South Dakota 

 

Abstract 

The soybean cyst nematode (SCN; Heterodera glycines, Ichinohe) is an important 

pathogen of soybean in South Dakota causing significant yield losses. SCN has been 

found in 30 South Dakota counties as on 2017 and is estimated to cause yield loss of 1.9 

Metric tons (Mt) annually. The presence of Heterodera glycines (HG) types can limit the 

performance of SCN-resistant cultivars, moreover, HG types reproduction on weed hosts 

can negate the effectiveness of crop rotation by a continued build-up in the field. This 

study was conducted to determine the reproduction of three commonly found HG types 0, 

2.5.7, and 7 on three major weed hosts of SCN: purple deadnettle, field pennycress, and 

henbit compared to a susceptible check, Williams-82, under greenhouse conditions. Two 

ml suspension of eggs and juveniles having egg density of approximately 2000 eggs per 

ml of each HG type were inoculated to each weed species and the plants were kept in a 

water-bath at 27-28 °C. SCN reproduction was found to be influenced by the type of 

weed species, HG types and their interaction. SCN reproduction was highest for HG type 

2.5.7 (FI = 6.4) followed by HG type 7 (FI = 6.1) and HG type 0 (FI = 5.9). Similarly, 

among weed species, henbit (Lamium amplexicaule) was found to harbor highest SCN 

cysts (FI = 7.1) followed by purple deadnettle (Laminum purpureum) (FI = 6.9) and field 

pennycress (Thalpsi arvense) (FI = 4.8). The number of cysts that developed on purple 

deadnettle and henbit was statistically similar whereas the field pennycress had relatively 
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lower cyst numbers. These results indicate that all the three weeds differentially support 

HG types development in South Dakota and hence these weeds should be managed 

proactively as an important component of SCN management strategies. 

 

Keywords: Heterodera glycines, HG types, SCN, winter annual weeds, SCN weed hosts, 

female index, management, reproduction 
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3.1. Introduction 

Soybean [Glycine max (L.) Merr.] is second most important crop in terms of acreage and 

production in the United States (NASS ERS, 2017). In South Dakota, soybean is grown 

in over 2.1 million hectares producing 6.9 million metric tons and fetching over $2 billion 

(USDA NASS, 2017). Several biotic and abiotic constraints affect soybean production in 

the United States (Hartman et al. 2011; Nguyen et al. 2016). However, among all the 

biological constraints, soybean cyst nematode (SCN; Heterodera glycines, Ichinohe) is 

the most important yield-limiting factor (Niblack, 2005; Wrather and Koenning, 2006; 

Wrather, 2009). Soybean cyst nematode has been reported in 30 main soybean producing 

counties in South Dakota (Acharya, 2015) causing yield loss estimated at 1.9 Metric tons 

(Mt) annually (www.sdsoybean.org). 

 

Soybean cyst nematode is an obligate and sedentary endoparasitic cyst forming nematode 

which causes chlorosis, stunting, premature defoliation, root damage and generally a 

yield reduction of 10-20 % (Niblack et al. 2006; Winter et al. 2006). SCN occurs 

throughout the soybean production areas of the United States (Niblack, 2005; Wrather 

and Koening, 2006, Tylka and Marret, 2014, Wrather et al. 2010) except West Virginia. 

Average yield loss of around $1.2 billion is estimated annually in the United States 

(Koenning and Wrather, 2009) which makes it the most devastating pathogen of soybean. 

 

Resistant soybean cultivars and crop rotation with non-host crops are the commonly 

practiced measures for SCN management (Hartman and Sinclair, 1999; Niblack, 2005; 

Faghihi and Ferris, 2006; Mitchum, 2016). Crop rotation with the non-host crops has 

http://www.sdsoybean.org/
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been found to reduce SCN population by 55% (Faghihi, 2012). However, weed hosts can 

negate the effects of crop rotation (Poromarto et al. 2015). Winter annual weeds play an 

important role in the biology of the plant parasitic nematodes (Norton, 1978) as they can 

serve as alternative hosts of SCN facilitating them to continue their life cycle even in the 

absence of the major host, soybean (Duncan and Noling, 1998; Thomas et al. 2005). 

 

Although several research studies have reported that winter annual weed species may be 

alternative weed hosts of soybean cyst nematode, the most commonly known weed 

species determined to be alternative weed hosts of SCN are purple deadnettle (Lamium 

purpureum L.) (Riggs and Hamblen, 1962; Creech et al. 2005; Creech and Johnson, 

2006; Werle et al. 2015; Poromarto et al. 2015), henbit (Lamium amplexicaule L.) (Epps 

et al. 1958; Riggs et al. 1962; Creech and Johnson, 2006; Creech et al. 2007b; Werle et 

al. 2015; Poromarto et al. 2015) and field pennycress (Thalpsi arvense L.) (Venkatesh et 

al. 2000; Creech et al. 2005; Creech et al. 2007a; Poromarto et al. 2015). 

 

The HG type of SCN population is an important factor that indicates the level of 

reproduction on a given SCN resistant soybean. However, there is a paucity of 

information regarding the reproduction of SCN population (HG) types on common weed 

hosts. Previous studies only tested the reproduction of race 3 or HG type 0 (Venkatesh et 

al. 2000; Poromarto et al. 2015) which does not take into account the diversity of SCN 

population types present in the field. Different states with a long history of use of 

resistant cultivars like Iowa and Missouri have been shown to possess greater diversity in 

virulence of SCN populations linked to selection pressure (Niblack et al. 2002; Niblack et 
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al. 2008). Thus, it is important to determine the reproduction of HG types on major 

alternative weed hosts found in the region to understand and devise effective 

management strategies for the SCN type. 

 

The objective of this study was to determine the reproduction of three prevalent HG types 

of SCN in South Dakota, HG type 0, 2.5.7, and 7 on three major weed hosts: purple 

deadnettle, field pennycress and henbit under greenhouse conditions. This information 

would elucidate the roles of alternative weed hosts in influencing HG type diversity. 

 

3.2. Materials and methods 

 

3.2.1. Source of inoculum 

Three HG types prevalent in South Dakota, i.e. 0, 2.5.7 and 7 (Acharya, 2015), were used 

in this study. The HG types were obtained from soybean fields in South Dakota and were 

increased in the greenhouse by inoculating susceptible cultivar Williams 82. Cysts from 

roots of Williams 82 were processed following the SCN eggs extraction procedure by 

Faghihi and Ferris (2000). 

 

3.2.2. Weed source 

Seeds of field pennycress were collected from different locations in South Dakota and 

were bulked and stored at 4°C until planting. Henbit seeds were obtained from 

collections by Dr. Rodrigo Werle from the University of Nebraska Lincoln and the purple 
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deadnettle seeds were obtained from the field collection of Dr. Bruce A. Ackley from The 

Ohio State University. 

 

3.2.3. Experiment set up 

Pre-germinated seeds of each weed species and a susceptible cultivar Williams 82 were 

transplanted into individual cone-tainer (3.8 cm diameter and 21 cm height, Stuewe and 

Sons Inc., Tangent OR) filled with sterilized soil mixture (2 parts of sand and 1 part of 

soil by volume). A replicate (one bucket) contained each of three weed species (single 

plant in a cone) and the susceptible soybean check treated inoculated with each of the 

three HG types placed in 18.9-litre bucket filled with sand. SCN inoculum was prepared 

from the three HG types cysts maintained on susceptible soybean cultivar in the 

greenhouse.  Cysts of the three HG types were individually crushed to a solution 

containing approximately 2000 eggs per ml. The cone-tainers were inoculated with 2 ml 

of the egg solution 3 cm below the soil surface. All the treatments were arranged in a 

completely randomized design with 6 replications and the experiments were repeated 

once. The buckets were then placed in a water bath that was maintained at the 

temperature of 27-28 °C and daylight length of 16 hours. After 35 days, the plants in 

cone-tainers were taken out from the bucket, soaked in water for 20 min and the plants 

were gently uprooted and washed to collect cysts. Cysts were collected in 210 µM pore 

sized sieve nested under 710 µM pore sized sprayed with a strong stream of water to 

dislodge them from the roots. The number of cysts on weed species and the susceptible 

check Williams-82 was to calculate the female index (FI) using the formula: 
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Female Index (FI) = 
Average number of cysts found on the Weed species

Average number of cysts found on the  susceptible check
 * 100 

 

Six cysts from each replication of individual treatment were randomly selected using a 

2ml plastic transfer pipette which were placed on a glass slide in a drop of water and 

burst with the help of a teasing needle. Eggs from each cyst were counted using a 

hemocytometer under the inverted microscope.   

 

3.2.4. Data analysis 

Number of cysts that developed on the root, female index, number of cysts per gram root 

weight and number of eggs per cyst were analyzed with R studio version 3.4.3 (The R 

Foundation for Statistical Computing Platform). An average number of cysts and the 

female index were determined from 6 replications and a repetition pooled after Bartlett’s 

homogeneity test. Analysis of variance was used to test interactions and the main effect 

of the HG types on the weed species. Duncan’s multiple range test for multiple pairwise 

comparisons was used to separate means at P ≤ 0.05 using R package “Agricolae” 

through R studio version 3.4.3. 

 

3.3. Results 

3.3.1. SCN Reproduction 

The total number of cysts formed varied among the three weeds species and across the 

HG types (Table 3.1, 3.2, 3.3). Among HG types, HG type 0 2.5.7 had the highest 

reproduction (Cysts = 11.8) whereas HG type 0 had lowest reproduction (Cysts = 9.7). 

HG type 7 had statistically similar cyst formation (Cysts = 9.8) as that of HG type 0.   
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Among weed species, henbit supported the highest reproduction (Cysts = 11.8) followed 

by purple deadnettle (Cysts = 11.4) across all the HG types whereas field pennycress 

(Cysts = 9.6) were found to support statistically similar cyst reproduction across all the 

HG types (Table 3.2). All three HG types reproduced statistically higher on henbit and 

purple deadnettle, and lower on field pennycress. Interaction effect was significant 

between HG types and weed species where cyst reproduction was observed to be highest 

for HG type 2.5.7 followed by 7 and 0. Among weed species, henbit was observed to 

have higher cyst number followed by purple deadnettle and field pennycress. However, in 

purple deadnettle, HG 0 had numerically slightly higher reproduction on than the other 

HG types.  

 

 

3.3.2 Female Index 

The female index for all HG types on field pennycress, henbit and purple deadnettle 

varied significantly. HG type 2.5.7 had the highest female index (FI = 6.4) on three weed 

species. HG type 7 (FI = 6.1) and HG type 0 (FI = 5.9) had statistically similar female 

index on all the three weed species (Table 3.5).  

 

Among the weed species, henbit had the highest female index (FI = 7.1) which insinuates 

that it supports highest cyst reproduction when inoculated with all the HG types. 

Meanwhile, purple deadnettle (FI = 6.9) and field pennycress (FI = 4.8) had statistically 

lower female index than henbit (Table 3.4).  
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3.3.3. Cysts per gram root weight 

Total number of cyst per gram root weight were determined from cysts formed on weed 

species per unit root weight. HG types and the weed species had significant impact on the 

cyst per gram root weight which varied across all the treatments. HG type 2.5.7 had the 

highest cyst per gram root weight (cyst/gram root weight = 21.7). HG type 7 (cyst/gram 

root weight = 16.5) and HG type 0 (cyst/gram root weight = 18.3) (Table 3.6).  

 

Similarly, among weed species, henbit (cyst/gram root weight = 23.6) had highest cyst 

per gram root weight followed by purple deadnettle (cyst/gram root weight = 20.4) and 

field pennycress (cyst/gram root weight = 12.5) which indicates that henbit and purple 

deadnettle had ability to support more cyst per gram root weight than field pennycress 

(Table 3.7).   

 

3.3.4. Eggs count per cyst 

The number of eggs in cysts on all the three weeds species varied significantly vary 

among HG types. An average number of eggs contained in cyst among different 

treatments ranged from 294 to 397 (Table 3.8). Meanwhile, eggs count per cyst was 

found to be statistically similar on each weed species for all the HG types.  

 

3.4. Discussion 

The knowledge of reproduction of HG types on weed hosts is important to determine 

whether a weed host significantly supports certain HG types in a particular region.  

Furthermore, it can also help to determine whether a weed species can cause a selection 
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pressure in SCN over a particular region (Poromarto et al. 2015). This knowledge can 

motivate the soybean growers for the proper management of particular weed species that 

facilitate continuous development of SCN inoculum in the field. The results suggested 

that all the three weeds studied supported cyst development. 

 

The number of cysts on the field pennycress, henbit, and purple deadnettle followed a 

similar pattern as the susceptible check cultivar Williams-82 where HG type 2.5.7 had 

significant reproduction than HG type 0 and 7. In addition, HG type 0 had less SCN 

reproduction in both susceptible soybean check and weed species which might be 

attributed to HG type 0 being less aggressive than HG type 2.5.7 and 7. Cyst 

development on weeds also revealed that HG type 7 is less aggressive than HG type 2.5.7 

for the three weed species tested. The results also suggested that the purple deadnettle 

and henbit had a similar tendency to support SCN growth whereas field pennycress was 

had a lesser number of cysts when compared to the purple deadnettle and henbit. This 

might be due to the fact that purple deadnettle and henbit belongs to the same family 

Lamiaceae (mint family) whereas field pennycress belongs to the family Brassicaceae 

(mustard family). However, all the three weed species were determined to be good hosts 

of SCN in South Dakota.  

 

The results from HG type reproduction on weeds are consistent with the research studies 

conducted by Venkatesh et al. (2000) and Poromarto et al. (2015). Cyst formation in field 

pennycress, henbit, and purple deadnettle were 73, 155 and 510 respectively for race 3 in 

a research study conducted by Venkatesh et al. (2000). Similarly, in another research 
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study conducted by Poromarto et al. (2015) for HG type 0, the female index for field 

pennycress and henbit were 34 to 42 and 15.5 to 45.5 respectively. The results from both 

these research reports are comparable with the findings from our findings. Our study also 

showed variation in cyst formations in the treatments among the weed species but the 

variations were not significantly different for each species treated with a particular HG 

type. The difference with the Poromarto et al. (2015) study may be due to the use of weed 

species from multiple collections. However, this research addressed the effect of three 

prominent HG type of SCN in South Dakota on three important major weed hosts. 

 

Although all the HG types varied in the number of SCN reproduction on the weed species 

tested, it is also important to note that the abundance of the weed species in a particular 

field varied in South Dakota (Chapter 2). Since the research was conducted in the 

greenhouse in controlled conditions, there might be some variation in the results under 

the field condition. Previous research studies had also shown that the environmental 

factors play an important role in the development of SCN on the winter annual weeds. 

SCN can hatch, penetrate roots and develop into mature cyst over a wide range of 

temperatures and the rate of SCN growth and development is highly temperature 

dependent (Creech et al. 2007a). Similarly, SCN reproduction is higher in the autumn 

than in the spring periods which may be attributed to favorable environmental conditions 

suitable for the SCN.  

 

Use of a resistant cultivar with the same source of resistance continuously may limit 

some SCN HG type reproduction on such cultivars. However, SCN HG types having the 
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ability to reproduce differentially on the alternative weed hosts in the field can be the 

source of inoculum for the next cropping season. Additionally, SCN capable of 

reproducing on the alternative weed hosts may influence the HG type development 

through exhibiting the selection pressure favoring particular SCN HG type reproduction 

along with possibilities of development of new HG types in a long run. This is supported 

by the fact that many major soybean producing states had witnessed the changes in the 

SCN HG types. The reason is not well known but weed hosts might be a crucial factor. 

Findings from our other research study conducted to determine the weed hosts abundance 

in the field showed that field pennycress is found in more than 50% of the fields sampled 

in soybean growing regions of South Dakota whereas purple deadnettle was found only 

in 4% of the sampled fields (Chapter 2). This shows that field pennycress is the most 

important weed host prominent in the soybean growing regions of the South Dakota 

which is crucial from SCN management point of view. Although HG types reproduction 

varied on field pennycress, it is important to note that the female index was significantly 

higher for all HG types which insinuate that irrespective of HG types of SCN, field 

pennycress should be managed early in the soybean fields in South Dakota for effective 

SCN management. 
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Table 3.1. Effect of weed species on reproduction of Heterodera glycines across the three 

HG type 0, 2.5.7 and 7 under greenhuse conditons.  

 

 

 

 

 

 

 

a Data were transformed using square root transformation before being subjected to              

analysis of variance (ANOVA). The values are pooled mean from 6 replications and two   

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by  

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.   

 

 

 

 

 

 

 

 

 

Weed species  Mean cysts a  

Henbit  11.8 a 

Purple deadnettle  11.4 a 

Field Pennycress 8.0 b 
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Table 3.2. Reproduction of  HG types 0, 2.5.7 and 7 across three weed species under 

greenhouse conditions 

 

 

 

 

 

 

 

b Data were transformed using square root transformation before being subjected to            

analysis of variance (ANOVA). The values are pooled mean from 6 replications and        

across three weed species (purple deadnettle, henbit and field pennycress) and two           

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by   

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.   

 

 

 

 

 

 

 

 

HG types Mean cysts b 

2.5.7 11.8 a 

7                      9.8 b 

0 9.7b 
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Table 3.3. Effect of weed species and HG types on reproduction of Heterodera glycines 

under greenhouse conditions  

 

 

 

c Data were transformed using square root transformation before being subjected to            

analysis of variance (ANOVA). The values are pooled mean from 6 replications and 2     

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by   

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.   

 

Weed species  HG types Mean cysts c 

Henbit  0  10.4 cd 

2.5.7 13.2 a 

7 11.9 abc 

Purple deadnettle  0 11.6 bcd 

2.5.7 12.2 ab 

7 10.5 cd 

Field Pennycress 0 6.9 e 

2.5.7 10.1 d 

7 6.9 e 
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Table 3.4. Effect of  weed species on the female index of field pennycress, henbit and 

purple deadnettle after being inoclulated with HG type 0, 2.5.7 and 7 

 

 

 

 

 

 

 

d Data were transformed using square root transformation before being subjected to            

analysis of variance (ANOVA). The values are pooled mean from 6 replications and 2     

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by   

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.    

 

 

 

 

 

 

 

 

Weed species Female index d 

Henbit 7.1 a 

Purple deadnettle                      6.9 a 

Field pennycress 4.8 b 
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Table 3.5. Effect of  HG types of Heterodera glycines on the femalee index across field 

pennycress, henbit and purple deadnettle 

 

 

 

 

 

 

 

e Data were transformed using square root transformation before being subjected to            

analysis of variance (ANOVA). The values are pooled mean from 6 replications and 2     

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by   

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.   

 

 

 

 

 

 

 

 

  

HG types Female index e 

2.5.7 6.4 a 

7                      6.1  b 

 0 5.9 b 
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Table 3.6. Effect of HG types on cyst per gram root weight of field pennycress, henbit 

and purple deadnettle after being inoclulated with HG type 0, 2.5.7 and 7    

 

 

 

 

 

 

 

 

f Data were transformed using square root transformation before being subjected to             

analysis of variance (ANOVA). The values are pooled mean from 6 replications and 2     

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by   

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.   

 

 

 

 

 

 

 

 

HG types Cyst per gram root weight f 

2.5.7 21.7 a 

7 16.5 b 

 0                  18.3 b 
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Table 3.7. Effect of weed species on cyst per gram root weight of henbit, field pennycress 

and purple deadnettle after being inoclulated with HG type 0, 2.5.7 and 7    

  

 

 

 

 

 

 

g Data were transformed using square root transformation before being subjected to                  

analysis of variance (ANOVA). The values are pooled mean from 6 replications and 2     

repetitions after homogeneity test using Bartlett’s homogeneity test. Values followed by   

the same letter are not significantly different according to least significant difference test 

at P ≤ 0.05.   

 

 

 

 

 

 

 

 

 

 

Weed species Cyst per gram root weight g 

Henbit 23.6 a 

Purple deadnettle 20.4 b 

 Field pennycress                  12.5 c 
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Table 3.8. Number of eggs per cyst on field pennycress, henbit, purple deadnettle and 

susceptible check soybean cultivar after being inoculated with soybean cyst nematode 

HG types 0, 2.5.7 and 7 

 

 

h Values followed by a similar letter are not significantly different according to the least      

significant difference P ≤0.05. The values are the mean of 6 replications   

 

 

 

 

 

 

 

 

 

 

HG  

types 

Eggs count per cyst h 

Soybean  

check  

Purple 

Deadnettle 

Henbit Field  

Pennycress 

0 386.3 a 369.2 ab 394.0  a 293.8 b 

2.5.7 361.3 ab 385.7 a 390.0 a 330.8 ab 

7 339.5 ab 317.2 ab   396.7 a 309.5 ab 
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CHAPTER 4  

 

4. Effect of Flooding on the Reproduction of Soybean Cyst Nematode on Soybean 

 

Abstract 

The soybean cyst nematode (SCN; Heterodera glycines, Ichinohe) is an important soil-

borne pathogen whose survival and infection process is affected by several biotic and 

abiotic factors. Among abiotic factors, soil moisture is one of the crucial factors for SCN 

juvenile movement in the soil hence the infection process. Soil moisture may also affect 

the effectiveness of nematicide seed treatments and physiology of the plant. This study 

was conducted to determine the effects of 2, 4, 6, and 8 days of flooding of soybean 

seedlings on SCN reproduction or both nematicide seed treated (ILeVo nematicide 

treated) and non-treated in the greenhouse. Non-flooded plants were the check. Each 

experimental unit consisted of 10 plants: 5 plants for susceptible treated and susceptible 

untreated which were inoculated with approximately 2000 SCN eggs and were arranged 

in randomized block design. After 5 days of inoculation, the plants were flooded for a 

period of 2, 4, 6, and 8 days which were later kept in a water-bath at 27-28 °C. The 

number of cysts after 35 days post-inoculation was counted, eggs were obtained by 

crushing cysts and dry root weight was taken from each treatment. Flooding days and 

seed treatment affected the number of SCN cysts on the susceptible cultivar. The highest 

number of cysts developed when plants were flooded for 2 days (Cyst = 36) followed by 

treatments flooded for 0, 4, and 6 days. The number of cyst was lowest for the plants 

flooded for 8 days (Cysts = 26). This study also indicated that ILeVO seed treatment 
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lowered SCN reproduction on a SCN susceptible soybean cultivar and promoted root 

development.  

 

Keywords: SCN, Heterodera glycines, resistant, susceptible, flooding, ILeVO seed 

treatment, reproduction 
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4.1. Introduction 

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is an important pathogen 

which continuously threatens soybean production all around the globe (Mitchum, 2016). 

Among the soybean yield-limiting factors, SCN is the most important constraint for the 

soybean production (Niblack, 2005; Wrather and Koenning, 2006). SCN is a soil-borne 

pathogen which is affected by several abiotic and biotic factors incumbent on soil status 

of a particular region. Abiotic factors such as soil temperature, soil pore size, soil 

aeration, water content, and pH have been documented to affect the SCN life cycle and 

infection process (Riggs and Wrather, 1992; Heatherly and Young, 1991). However, very 

little is known about the impact of these abiotic factors on SCN.  

 

Soybean is the dominant oilseed which accounts for a significant share of 14% of the 

total harvested irrigated acres in the United States (USDA ERS, 2018). Upper Midwest 

contributes more than 80% of the US total soybean acreage where non-irrigated soybean 

production is comparably abundant than the irrigated ones. Though there is an increasing 

trend of soybean yield in US, soybean is still vulnerable to erratic yearly variations in 

weather conditions (NCA, 2014). Among all the weather parameters affecting soybean 

production and SCN activity, precipitation is the most important and fickle factor. The 

rise in the annual rainfall by 20% in some regions of the Midwest is proof that the region 

generally experiences the greatest precipitation and the heavy downpour is common 

(USGCRP, 2014) which might impact soybean growth as well as SCN infectivity.  
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Impact of excessive moisture on SCN infectivity and effectiveness of nematicide seed 

treatment is not well known. However, it was found that SCN population density was 

lowered in irrigated plots than in non-irrigated plots (Koenning and Barker, 1995) but it 

was unknown whether it was due to moisture content or oxygen content ratio. It was also 

found that the hatched juveniles of Meloidogyne hapla and Heterodera schachtii were 

unable to migrate without moisture in the soil (Couch and Bloom, 1960; Wallace, 1955). 

Furthermore, well-irrigated soil was found to maintain the juveniles of Heterodera 

glycines for a longer period of time although the excessive wet soil was found to hinder 

the cyst development (Heatherly et al. 1982). Nevertheless, water is crucial for the spread 

of SCN from the previously infested field to new fields (Faghihi et al. 2010). Drought 

stress facilitates soybean to increase root mass to absorb more water and nutrients and the 

increased root mass also favors SCN infection (Huck et al. 1986). Since the nematode 

requires aerobic respiration in its life cycle, soil oxygen level also plays an important role 

in SCN survival (Koenning and Barker, 1995). In addition, coarse-textured soil drains 

more easily than fine-textured which favors nematode activity by allowing aerobic 

conditions (Vrain, 1986). However, increasing irrigation was not found to reduce yield 

suppression by SCN (Heatherly et al. 1992). Nematodes affect plant roots and thus the 

plant’s ability to uptake water and nutrients. Hence, yield loss due to nematodes is often 

higher when moisture is limited. In some cases, alleviating water stress with irrigation or 

other practices was found to reduce yield loss, although it did not reduce nematode 

populations (Windham, 1998).  
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Soybean is grown mostly in the Midwestern region of the United States which 

experiences erratic weather changes in terms of rainfall and drought conditions. Besides, 

water is an important factor impacting SCN activity in the field. Hence, it is very 

important to determine the impact of the flooding on the SCN infectivity. Thus, the 

objective of this research was to determine the effect of flooding on SCN reproduction in 

both untreated and nematicide seed-treated susceptible cultivar. 

 

4.2. Materials and Methods 

SCN susceptible soybean cultivar Williams-82was selected for the experiment. Seeds 

were treated with the standard dose of ILeVO, 0.125 mg ai/seed or left untreated. ILeVO 

seed treatment contains fluopyram as an active ingredient and is labelled as broad-

spectrum fungicide and nematicide reported to reduce SCN population (Bayer Crop 

Science, 2018). 

 

Pre-germinated seeds treated or not treated with ILeVO were transplanted into individual 

cone-tainer (3.8 cm diameter and 21 cm height, Stuewe and Sons Inc., Tangent OR) filled 

with sterilized soil mixture (2 parts of sand and 1 part of soil by volume). Each 

experimental unit consisted of 10 plants: 5 plants treated and untreated inoculated with 

1ml of the egg solution 3 cm below the soil surface. The egg solution was obtained by 

crushing cysts from the maintained population of the SCN HG type 0 and standardized as 

2000 eggs per ml. Five days after inoculation, all the plants except the day 0 plants were 

flooded with water in a plastic bucket. Individual plants were removed after 2, 4, 6 and 8 

days of flooding. All plants were placed in a bucket filled with sand and placed in a water 
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bath which was maintained at the temperature of 27-28 °C and daylight length of 16 

hours. All the treatments were arranged in a partially randomized block design with 6 

replications and the experiments were repeated once.  

 

After 35 days of the inoculation, the plants in cone-tainers were taken out from the 

bucket, soaked in water for 20 minutes, gently uprooted, washed to collect cysts and the 

roots were kept in blotting paper for 24 hours and weighted. Cysts were collected in 210 

µM pore sized sieve nested under 710 µM pore sized sprayed with a strong stream of 

water to dislodge them from the roots and eggs were extracted from the cysts following 

the SCN eggs extraction procedure by Faghihi and Ferris (2000).   

 

4.2.1. Data analysis 

Data comprising the total number of cysts developed on the roots, number of eggs, and 

the dry root weight were analyzed with R studio version 3.4.3 (The R Foundation for 

Statistical Computing Platform). An average number of cysts and a total number of eggs 

were determined from 6 replications and a repetition. Analysis of variance was used to 

test interactions and the main effects. Duncan’s multiple range test for multiple pairwise 

comparisons was used to separate means at P ≤ 0.05 using R package “Agricolae”. 

 

4.3. Results 

The total number of cysts formed varied among the untreated and treated susceptible 

cultivar as well with the flooding (Table 4.1, 4.2). The number of cysts developed in the 

susceptible cultivar was impacted significantly by both seed treatment and flooding 
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period (Table 4.1, 4.2) while the interaction of seed treatment and the flooding days was 

not significant (Table 4.1). The number of cysts that developed on the non-treated (cysts 

= 36.5) was significantly higher than that of seed treatment (cysts = 26.8) (Table 4.2). 

Days of flooding period also impacted the cyst development significantly. Maximum cyst 

development was observed on the plants subjected to 2 days of flooding (cysts = 35.7) 

(Table 4.2). Cyst development was statistically similar in the treatments subjected to 

flooding period of 4 days (cysts = 31.6) and 6 days (cysts = 29.9) and lowest on the 

treatments flooded for 8 days (cysts = 26.2) (Table 4.2).  

 

The total number of eggs formed across the treatments were significantly impacted by 

seed treatment, days of flooding and their interactions across both the repetitions (Table 

4.3 and Table 4.4). Total number of eggs formed on the non-treated plants were 

significantly higher than the seed treatment plants. The total number of eggs formed on 

the non-treated plants subjected to flooding period of 2, 4, 6 and 8 days were statistically 

similar. However, the unflooded plants had lower eggs number in both the repetitions 

(Table 4.3 and table 4.4). Contrastingly, the total number of eggs formed on the seed-

treated showed that the total number of eggs were significantly higher on the unflooded 

plants in the first run which were statistically similar to the eggs in the rest of the 

flooding days (Table 4.3). In the second run of the experiment, total number of eggs 

formed was statistically similar for unflooded and the 8 days flooding period (Table 4.4). 

 

Fresh root weight from each treatment varied across treated and the non-treated (check). 

Root weight for the non-treated plants was significantly lower while the root weight was 
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higher for the seed-treated plants across both the runs of the experiment (Table 4.5 and 

table 4.6).  

 

4.4. Discussion 

Results from this study suggest that the SCN development in susceptible soybean cultivar 

was affected by both ILeVO seed treatment and the flooding days. Seed treatment with 

ILeVO had statistically fewer cysts than the non-treated seed. This is similar to a research 

study conducted by Heatherly et al. 1992 where the seed treatment lowered cyst 

development.  

 

The number of cysts in the susceptible soybean cultivar was influenced by different days 

of flooding. Number of cysts was statistically higher in the treatment subjected to 2 days 

of flooding and this was statistically similar to the unflooded treatment. The treatment 

subjected to 4 and 6 days of flooding showed similar cyst development. This finding is 

similar to where irrigation for soils having lower moisture level were found to have a 

positive effect on the nematode density while the effect becomes negative in presence of 

excess moisture (Vandegehuchte et al. 2015). In our study, the flooding for 2 days 

promoted SCN development while the flooding for 8 days had negative impact on the 

cyst number.  

 

Similarly, the total number of eggs formation was significantly impacted by the seed 

treatment and the flooding days. Seed treatment was found to be effective in lowering the 

total number of eggs on treated susceptible cultivars as compared to the non-treated. 
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Contrastingly, on the treated susceptible cultivar, unflooded cultivars had higher eggs 

number. This indicated that flooding did not significantly impact total number of eggs on 

untreated susceptible cultivar however, seed treatments reduced the total number of eggs 

on the treated susceptible cultivars. Additionally, seed treatment had significant impact 

on the dry root weight. It indicates that ILeVO seed treatment impact root development 

on the susceptible cultivar. This finding contrasts with another research study conducted 

by Heatherly et al. 1992 where the irrigation did not significantly affect the yield among 

the treatments.  

 

Nematode development depends on the water availability for their activities and their 

density was found to decrease in drought condition (Landesman et al. 2011, Stevnbak et 

al. 2012) and increased with water addition (Smolik and Dodd, 1983). However, it had 

also been found that the nematode population is less sensitive to short-term changes in 

the water availability (Stevnbak et al. 2012) while they were negatively correlated with 

the excess soil moisture for a longer period of time (Freckman et al. 1987). Increased 

precipitation was not found to increase nematode population, neither decreased 

precipitation reduced nematode population (Vandegehuchte et al. 2015).  

 

Our research study was to determine the effect of flooding and the seed treatment on 

susceptible and resistant cultivar in the greenhouse. The results from this research study 

demonstrated that the ILeVO seed treatment significantly reduce cyst formation and also 

increase root biomass in flooded conditions. Further, cyst formation in susceptible 

soybean cultivar was higher on the unflooded and the treatment flooded for 2 days while 
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reduced on the treatments subjected for 8 days of flooding implying that short period 

flooding can increase cyst formation while long period gradually reduces the cyst 

development. In addition, flooding was not found to countermine the resistance of SCN 

resistant cultivar. 

 

  

4.5. Acknowledgments 

We thank South Dakota Soybean Research and Promotional Council and USDA NIFA 

hatch grant for funding this project. We thank Dr. Gary Hatfield for his assistance in 

experimental design and the statistical analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

 

 

 Table 4.1. Total number of SCN cysts on seed treated and untreated susceptible cultivar 

after being subjected to flooding period of 0, 2, 4, 6 and 8 days 

 

Treatments Cysts a 

Non-treated  36.55 a 

Treated 26.81 b 

 

 

a The values are pooled mean from 6 replications and 2 repetitions after homogeneity test 

using Bartlett’s homogeneity test. Values followed by the same letter are not significantly 

different according to least significant difference test at P ≤ 0.05.  
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Table 4.2. Cysts developed on susceptible cultivar after being subjected to 0, 2, 4, 6 and 8 

days of flooding 

 

Treatments (Days of flooding) Cysts b 

0 

2 

34.8 a 

35.7 a 

4 31.6 b 

6 29.9 b 

8 26.2 c 

  

  

 

b The values are pooled mean from 6 replications and 2 repetitions after homogeneity test 

using Bartlett’s homogeneity test. Values followed by the same letter are not significantly 

different according to least significant difference test at P ≤ 0.05.  
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Table 4.3. Total number of eggs on seed-treated and non treated susceptible cultivars 

after being subjected to 0, 2, 4, 6 and 8 days of flooding   

 

Cultivar * Days of flooding Total number of eggs c 

Non-treated: 0 14.7 b 

Non-treated: 2 15.8 a 

Non-treated: 4 15.5 a 

Non-treated: 6 15.7 a 

 Non-treated: 8 13.0 d 

Treated: 0 14.7 b 

 Treated: 2 13.7 c 

 Treated: 4 13.0 d 

 Treated: 6 12.7 de 

 Treated: 8 12.2 e 

 

 

c Data were transformed using square root transformation before being subjected to              

analysis of variance (ANOVA). Values followed by similar letter are not significantly 

different according to least significant difference test at P ≤ 0.05. The values are the mean 

of treatments from 6 replications from the first run of the experiment. 
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Table 4.4.  Total number of eggs on seed-treated and non treated susceptible cultivar after 

being subjected to 0, 2, 4, 6 and 8 days of flooding on the repetition experiment 

 

Cultivar * Days of flooding Total number of eggs d 

Non-treated: 0 15.4 bc 

Non-treated: 2 16.1 a 

Non-treated: 4 16.1 a 

Non-treated: 6 15.7 ab 

 Non-treated: 8 15.5 ab 

Treated: 0 14.8 d 

 Treated: 2 13.8 e 

 Treated: 4 13.9 e 

 Treated: 6 13.9 e 

 Treated: 8 14.9 cd 

 

 

d Data were transformed using square root transformation before being subjected to              

analysis of variance (ANOVA). Values followed by similar letter are not significantly 

different according to least significant difference test at P ≤ 0.05. The values are the mean 

of treatments from 6 replications from the second run of the experiment. 
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Table 4.5. Dry root weight of treated and untreated susceptible cultivar after being 

subjected to flooding period of 0, 2, 4, 6, and 8 days    

 

Treatments Root weight (g) e 

Non-treated   1.04 b 

 Treated 1.11 a 

 

 

e Data were transformed using square root transformation before being subjected to              

analysis of variance (ANOVA). Values followed by similar letter are not significantly 

different according to least significant difference test at P ≤ 0.05. The values are the mean 

of treatments from 6 replications from the first run of the experiment 
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Table 4.6.  Dry root weight of treated and untreated susceptible cultivar after being 

subjected to flooding period of 0, 2, 4, 6, and 8 days on the repetition experiment 

 

Treatments Root weight (g) f 

Non-treated   1.08 b 

 Treated 1.11 a 

 

  
 
f Data were transformed using square root transformation before being subjected to              

analysis of variance (ANOVA). Values followed by similar letter are not significantly 

different according to least significant difference test at P ≤ 0.05. The values are the mean 

of treatments from 6 replications from the second run of the experiment. 
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General Conclusions 

This thesis encompasses research studies on alternative weed hosts of SCN, reproduction 

of different HG types of SCN on three weed hosts: henbit, field pennycress, and purple 

deadnettle, and the effect of flooding on the reproduction of SCN for seed-treated and 

non-treated resistant and susceptible cultivars. All the research studies conducted aimed 

to improve the SCN management strategies in South Dakota.  

 

SCN has diverse crop and weed hosts as it can reproduce in several crops and weeds. 

This study examined the alternative weed hosts of SCN in South Dakota based on field 

and greenhouse data. Field pennycress and purple deadnettle were determined from both 

field and greenhouse studies to be the good hosts of SCN in South Dakota whereas white 

clover, common mallow, shepherd’s purse, Canada thistle, and cocklebur were 

determined to the poor hosts of SCN in South Dakota. All the weed species determined as 

hosts from this study were similar to the previous studies except common mallow, which 

was found to be weed host only in this study. 

 

This research also determined the reproduction of SCN HG types on common weed 

hosts: purple deadnettle, field pennycress, and henbit relative to a susceptible check, 

Williams-82, under greenhouse conditions. Though all the three weed hosts supported 

SCN HG types differentially, purple deadnettle and henbit were found to have higher 

number of cysts developed whereas field pennycress was found to support lower cyst 

development. These results indicate that all three weeds considerably support SCN 
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development in South Dakota and hence these weeds should be managed proactively as 

an important component of SCN management strategies.  

 

This thesis has also determined the effects of flooding on SCN resistant and susceptible 

cultivars with and without an ILeVO seed treatment. Water being a crucial factor for 

SCN survival and the infection process and nematicide seed treatment being effective and 

common for soybean growers in South Dakota, it was an important study from growers 

point of view regarding SCN development. Susceptible cultivar untreated and treated 

with ILeVO showed varying SCN development whereas the resistant cultivar did not 

show cyst development irrespective of ILeVO treatment and flooding. Though ILeVO 

treatment and flooding were found to reduce SCN development significantly, the 

practical significance was barely observed suggesting the need for further research in the 

field. Thus, this research study suggests that the integration of the various strategies such 

as weed management, crop rotation, seed treatment and the planting of resistant cultivars 

based on HG type of SCN are crucial for the effective management of SCN in South 

Dakota. 
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