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ABSTRACT

ENABLING LOW COST WIFI-BASED TRAFFIC MONITORING SYSTEM USING

DEEP LEARNING

SAYAN SAHU

2018

A traffic monitoring system (TMS) is an integral part of Intelligent Transportation Sys-

tems (ITS) for traffic analysis and planning. However, covering huge miles of rural

highways (119,247 miles in U.S.) with a large number of TMSs is a very challenging

problem due to the cost issue. This paper aims to address the problem by developing

a low-cost and portable TMS called DeepWiTraffic based on COTs WiFi devices. The

proposed system enables accurate vehicle detection (counting) and classification by ex-

ploiting the unique WiFi Channel State Information (CSI) of passing vehicles. Spatial

and temporal correlations of CSI amplitude and phase data are identified and analyzed

using a deep learning technique to classify a vehicle into five different types: motorcy-

cle, passenger vehicle, SUV, pickup truck, and large truck (a vehicle with more than

three axles according to the FHWA classification). The principal component analysis

(PCA) technique is exploited to reduce the dimension of the subcarriers and remove the

device specific noise. The CSI phase data of a received signal are preprocessed by ap-

plying a linear transformation and the correlations of CSI phase information of multiple

subcarriers are taken into account for effective vehicle classification. A convolutional

neural network (CNN) is designed to extract optimal features of the preprocessed CSI
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amplitude and phase data. A huge amount of CSI data of passing vehicles as well as

ground truth video data are collected for about 120 hours to validate the performance

of the proposed proof-of-concept system. The results show that the average detection

accuracy of 99.4%, and the average classification accuracy of 91.1% (Motorcycle: 97.2%,

Passenger Car: 91.1%, SUV:83.8%, Pickup Truck: 83.3%, and Large Truck: 99.7%) can

be achieved with a very small cost of less than $1,000.
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Chapter 1

Introduction

1.1 Motivation

A traffic monitoring system (TMS) is an important component of Intelligent

Transportation Systems (ITS) for improved safety and efficiency of transportation.

TMSs are deployed to collect traffic data that characterize performance of a roadway

system. Different traffic parameters are measured such as the number of vehicles, vehi-

cle density, vehicle speed, and vehicle class [32]. These traffic parameters are essential

information in analyzing transportation systems and estimating future transportation

needs [33]. For example, TMSs have played a key role in supporting decision making

process for road improvement plans, accessing the road network efficiency, and analyzing

economic benefits, etc. [23].

The Department of Transportation (DOT) in each state is charged by the United

States Federal Highway Administration (FHWA) to collect traffic information about

vehicles traveling state and federal highways and roadways to improve the safety and

efficiency [2]. As such, state highway and transportation agencies operate TMSs to

perform vehicle counting, vehicle classification, and vehicle weight measurement. These

traffic monitoring systems are either temporary or permanent [5]. Temporary stations

typically operate less than a full year while permanent ones perform traffic monitoring

on a continuous basis. There are 7,430 traffic monitoring stations under operation in

the U.S. as of August 2015 [5].
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One of the critical issues for DOTs is that they do not have enough TMSs to

cover the huge land area of U.S. especially considering the huge miles of rural highways

of about 119,247 miles. The main reason is the high cost [4]. According to the Georgia

DOT, the minimum cost to install a continuous counting station (CCS) on a two-lane

rural roadway is about $25,000 [1]. 365 day vehicle classification on a two-lane rural

roadway is more expensive costing about $35,770 [4]. This paper aims at alleviating

this cost problem by developing a significantly low-cost, portable, and innovative TMS

based on WiFi channel state information (CSI) and deep learning.

1.2 State of the Art

Vehicle detection and classification techniques are largely categorized into three

types: intrusive, non-intrusive, and off-roadway [8]. Intrusive solutions embed sensors

such as magnetic detectors [49], vibration sensors [40], and inductive loops [20] in the

pavement of roadway using a sawcut or hole. Non-intrusive approaches mount sensors

like magnetic sensors [50], acoustic sensors [15], and LIDAR (Laser Infrared Detection

And Ranging) [27] either on roadsides or over the road. Among these sensors, camera

based solutions are very widely used [36]. Off-roadway solutions use mobile sensors

that are equipped with UAVs [21] or satellite systems [24]. Detailed and comprehensive

discussion of existing technologies is presented in Section 2.

Intrusive approaches are known to be the most expensive option mainly due to

significantly high cost for installation and maintenance, especially for traffic disruption

and lane closure to assure security of road workers. Furthermore, effectiveness of these
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embedded sensors is easily affected by the condition of the pavement and often gen-

erates unreliable results. DOTs are increasingly adopting non-intrusive solutions. A

widely adopted sensor in this category is a camera. However, it has been reported that

the performance is degraded when vision obstructions are present and even more severely

in adverse weather conditions. Furthermore, cameras are expensive especially because

of the installation cost since they must be fixed at a certain mounting height for opti-

mum performance. Other sensors for non-intrusive solutions such as magenetic sensors

and acoustic sensors require precise calibration of sensor direction and placement, thus

not appropriate for general and ad hoc deployment [37]. Although some sensors such

as LIDAR guarantee very good performance, those sensors are extremely expensive.

Thanks to recent advances in UAV technologies, off-road-based approaches are receiving

greater attention. However, these solutions suffer from spatial and temporal limitations.

Specifically, the operation time of a UAV is limited due to the limited flight time, and

satellites are not always available.

1.3 Proposed Work

This paper proposes a portable, non-intrusive, yet inexpensive TMS called DeepWiTraffic.

The proposed TMS hinges on unique wireless channel characteristics created by passing

vehicles. It utilizes WiFi channel state information (CSI) of a received packet to extract

rich information about the channel properties. A deep learning technique is used to

effectively capture the unique features from CSI data, more specifically from CSI am-

plitude and phase data, to train a vehicle classification model that categorizes passing
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vehicles into different car types. More precisely, given a WiFi transmitter and a receiver

deployed on each side of a road respectively, spatial correlations of multiple subcarriers

received via different receiver antennas (three receiver antennas in our system) are an-

alyzed, and distinctive features are extracted. The time domain is considered as well,

i.e., temporal correlations of the time series of CSI amplitude and CSI phase data are

characterized using a machine learning technique for effective vehicle classification.

Numerous techniques are applied to maximize the vehicle classification accuracy.

Environment noise in CSI amplitude data caused by surrounding obstacles and low-speed

moving objects, e.g., people moving around is effectively removed. Principal component

analysis (PCA) is then exploited to reduce the dimension of multiple subcarriers (in

our experiments, 30 subcarriers for each TX and RX pair) down to one, significantly

reducing the computational overhead. Random noise of CSI phase data is effectively

cleared based on a linear transformation. These noise-removed and low-dimensional CSI

data are then used for vehicle detection (counting) and classification. A novel vehicle

detection algorithm is developed based on a simple threshold-based mechanism. This

algorithm shows near 100% detection accuracy. Once a vehicle is detected, vehicle

classification is performed. For vehicle classification, a convolutional neural network

(CNN) is designed to identify, extract optimal features from CSI data, and to maximize

the classification accuracy. CNN is selected due to the large input size. Specifically, the

correlations of the time series of CSI amplitude and phase values are taken into account

by aggregating them as a single input image of size 6× 2, 500.

We have collected huge amounts of CSI data for about 120 hours over a month.
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The video data were obtained that are synchronized with the CSI data. The video

data were used as ground truth, i.e., the vehicle type of a passing vehicle was manually

tagged with the corresponding CSI data. DeepWiTraffic detects and classifies vehicles

into five different types: motorcycle, passenger vehicle, SUV, pickup truck, and large

truck. Nontrival efforts of repeating experiments with different combinations of hyper

parameters were performed to find the best classification accuracy. The average vehicle

classification accuracy was 91.1%.

1.4 Key Contributions

The contributions of this paper are summarized as follows:

• The first WiFi-based traffic monitoring system using deep learning is proposed.

• Spatial and temporal aspects of both CSI amplitude and phase data are taken into

account to improve classification performance.

• An effective CNN model is trained for effective vehicle classification performance.

• Huge amounts of CSI data as well as ground truth video data are collected.

• Extensive experiments are conducted based on real world CSI data to compare

the performance of DeepWiTraffic with other classifiers including support vector

machine (SVM) and k-nearest neighbor (kNN).
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1.5 Thesis Organization

This paper is organized as follows. In Chapter 2, we review the literature on

intelligent traffic monitoring systems. Background of WiFi CSI is discussed and the

problem is defined in Chapter 3. In Chapter 4, followed by the system overview, we

provide the details of the system design. We then present the experimental setup and

analyze the experimental results in Chapter 5. Finally, we conclude in Chapter 6.
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Chapter 2

Related Work

Vehicle detection (counting) and vehicle classification are the key functionali-

ties of traffic monitoring systems [32]. The literature shows that vehicle detection can

be done with very high accuracy. However, the performance of vehicle classification

techniques varies substantially. This section presents a comprehensive review on TMSs

concentrating on vehicle classification mechanisms.

Vehicle classification methods are divided largely into three categories: intrusive,

non-intrusive, and off-roadway approaches. Table 2 summarizes the properties of exist-

ing vehicle classification schemes including sensor types, vehicle types for classification,

classification accuracy, and the cost. As can be seen, it is difficult to directly compare

the performance of different approaches because they are designed to classify vehicles

into different types. As such, this section is focused on drawing meaningful insights by

covering the literature comprehensively and providing general guidelines to readers for

selecting appropriate TMS.

A common property of intrusive solutions is that sensors (e.g., piezoelectric sen-

sors [38], magnetometers [10][49], vibration sensors [40], loop detectors [32]) are installed

on a roadway. As Table I indicates, intrusive approaches are capable of classifying a large

selection of vehicle types with high classification accuracy leveraging close contact with

passing vehicles that allow for collecting precise sensor data. The main concern of these

solutions, however, is the cost issue. Especially when sensors are installed under the

pavement on roads, the cost increases prohibitively. The maintenance cost is nonnegli-
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gible as it incurs extra cost for constructor safety assurance.

Due to the high cost of intrusive solutions, non-intrusive approaches have received

a lot of attention. A typical characteristic of these solutions is that sensors are deployed

on a roadside obviating the construction and maintenance cost for intrusive solutions. A

most widely adopted sensor for non-intrusive solutions is a camera [11][9][19]. Significant

advances in imaging technologies and image processing techniques based on machine

learning algorithms gave a birth to precise camera-based TMSs [34]. As Table I shows,

the classification accuracy of camera-based TMSs is very high. However, achieving high

classification accuracy is still challenging at night, under severe weather conditions, and

when there are obstacles that obstruct the clear view. There are other sensors such

as magnetometers [41][12][22], accelerometers [31], and acoustic sensors [15][35][13] that

have been used in non-intrusive TMSs. Table I shows that these sensors quite impressive

classification accuracy. However, the low fidelity information that these sensors requires

strategic positioning of multiple of those sensors. As such, minor errors in positioning or

adjusting sensing directions may increase classification errors. To address the drawbacks

of these sensors, more advanced sensors such as LIDAR (Laser Infrared Detection And

Ranging), and infrared sensors can be considered [14][16][36]. While these advanced

technologies allow for very high classification accuracy, it is possible only at an extremely

high cost.

Off-roadway solutions utilize cameras mounted on UAVs [42] or satellites [7] for

vehicle classification. As shown in Table I, the classification accuracy of off-roadway

approaches is not quite impressive (note but Liu et al. achieved 98.2% accuracy, but
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this accuracy is for only two vehicle types: cars and trucks). The low classification

accuracy of off-roadway solutions is attributed to the small image size. However, off-

roadway approaches are appropriate when the user needs to cover a large area.

Recently a fundamentally new non-intrusive approach using wireless signals has

been proposed. Haferkamp et al. exploited multiple pairs of RF (radio frequency)

transceivers to develop a TMS [17]. The key intuition of their system is that different

types of vehicles, when passing the line of sight (LoS) between a pair of RF transceivers,

result in unique received signal strength (RSSI) patterns. However, since RSSI represents

only a single dimensional information (i.e., signal strength for a single channel), it

is challenging to correlate effectively the vehicle body shape with the resulting signal

strength. To overcome this difficulty, multiple RF transceivers are necessary. In contrast,

WiFi CSI data contain much richer information conveyed in 30 subcarriers for each pair

of TX-RX antennas allowing us to perform vehicle classification more effectively.
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Table 2.1: Vehicle Classification Approaches

Classification Approach Publication Vehicle Class Cost Accuracy

Intrusive Piezoelectric
sensor

Rajab [38] motorcycles, passenger
vehicles, two axle for tire
unit, buses, two axles six
tire single units, three
axles single units, four
or more axles single
unit, four axles single
trailer, five axles single
trailer, seven axles single
trailer, seven or more
axles multi-trailer

medium 86.9%

Magnetometer Bottero [10] car, van, truck medium 88.0%

Xu [49] hatchbacks, sedans,
buses, and multi-purpose
vehicles

medium 95.4%

Loop Detec-
tor

Meta [32] car, van, truck, bus, mo-
torcycle

high 94.2%

Jeng [20] motorcycles, passenger
cars, other two-axle four-
tire single unit vehicles,
buses, two-axle, six-tire
single-unit trucks, tree-
axle single-unit trucks,
four or more axle single-
unit trucks, four or
fewer axle single-trailer
trucks, five-axle single-
trailer trucks, six or
more axle single-trailer
trucks, five or fewer
axle multi-trailer trucks,
six-axle multi-trailer
trucks, seven or more
axle multi-trailer trucks

high 92.4%
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Classification Approach Publication Vehicle Class Cost Accuracy

Non-
intrusive

Camera Chen [11] car, van, bus, motor-
cycle

medium
/high

94.6%

Bautista [9] jeep, sedan, truck,
bus, SUV, and van

medium
/high

96.4%

Infrared + ul-
trasonic sen-
sors

Odat [36] sedan, pickup truck,
SUV, bus, twoo
wheeler

low/
medium

99.0%

Magnetic
Sensors

Wang [43] bicycle, car, minibus low/
medium

93.0%

Yang [50] motorcycle, passenger
car (two-box and sa-
loon), SUV, bus

low/
medium

93.6%

Acoustic Sen-
sors

George [15] heavy (truck bus),
medium (car, jeep,
van), light (auto rick-
shaws, two wheelers)

low/
medium

73.4%

LIDAR Lee [26][27] motorcycle, passenger
vehicle, passenger
vehicle pulling a
trailer, single-unit
truck, single-unit
truck pulling a trailer,
and multi-unit truck

very
high

99.5%

Off-roadway UAV Liu [30] car, truck medium 98.2%

Tang [42] seven vehicle types,
such as car, truck,
bus, etc. (specific type
not specified)

medium 78.7%

Satellites Audebert [7] pick up, van, truck,
car

high 80.0%
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Chapter 3

Preliminaries and Problem Statement

This section presents basic principles of WiFi CSI, followed by the problem state-

ment.

3.1 WiFi Channel State Information

Figure 3.1: CSI amplitudes and phases of passing vehicles.

The orthogonal frequency division multiplexing (OFDM) modulation scheme is

used to implement the physical layer of contemporary WiFi standards [18]. It is robust

against the frequency selective fading since high data-rate stream is partitioned onto

close-spaced subcarriers. The WiFi CSI represents the channel properties for these

OFDM subcarriers, e.g., a combined effect of fading, scattering, and power decay with

distance. WiFi CSI has been successfully applied to numerous applications such as

human activity recognition [6][52], traffic monitoring [47], and localization [45].
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Formally, WiFi CSI represents the properties of the channel as follows [51].

y = H · x+ n. (3.1)

Here x and y refer to the transmitted and received signal, respectively. n represents the

channel noise. H is a M × N ×W matrix, where M , N , and W , are the number of

receiver antennas, transmitter antennas, and subcarriers, respectively. Matrix H can be

expressed as a vector of W subcarrier groups as follows.

H = [H1, H2, ..., HW ]. (3.2)

Here Hi is a M ×N matrix that represents the channel state information values for the

subcarrier group received via M×N different transmitter-receiver antenna pairs. A CSI

value for the i-th subcarrier received via the transmitter n and the receiver m is denoted

by CSI imn, which is defined as follows.

CSI imn = |h|ejφ. (3.3)

This CSI value contains both the amplitude (|h|) and phase information (φ) of

the i-th subcarrier signal received via the two antennas m and n. These are the two

information that we utilize in this paper based on the observation that when a car passes,

depending on the size and shape of the car, unique amplitude and phase patterns are

generated (Figure 3.1).
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Table 3.1: Notations
Notations

NC the total number of passing cars
N the total number of packets
MCSI a N × 30 matrix that contains CSI values of 30 sub-

carriers for N packets
A = {a1, ...aN} a set of CSI amplitude values extracted from MCSI

P = {p1, ..., pN} a set of CSI phase values extracted from MCSI

Âi a set of CSI amplitude values for i-th passing vehicle,
0 ≤ i ≤ NC , extracted from A

P̂i a set of CSI phase values for i-th passing vehicle, 0 ≤
i ≤ NC , extracted from P

A = {Â1, ...ÂNC
} a collection of CSI amplitude sets for NC passing ve-

hicles

P = {P̂1, ...P̂NC
} a collection of CSI phase sets for NC passing vehicles

M a convolutional neural network model for vehicle clas-
sification

Ad vehicle detection algorithm
Ac vehicle classification algorithm

Parameters
δ1 backward offset
δ2 forward offset
ω minimum inter vehicle distance for clear vehicle de-

tection

3.2 Problem Statement

Let MCSI denote a N × 30 matrix that each element represents a CSI value for

a certain TX-RX antenna pair. Specifically, MCSI is a data structure that contains

CSI values for N successively received packets (Note that each packet corresponds to 30

subcariers). Also let NC denote the total number of cars that passed while collecting the

CSI data. We are tasked to classify NC vehicles into five different types {bike, passenger

car, SUV, pickup truck, large truck} given MCSI . Note that if NC is set to one, then it

implements a real-time TMS.
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The CSI amplitude and phase values are extracted from MCSI . The CSI am-

plitude and phase values are denoted by a set A = {a1, ..., aN}, and P = {p1, ..., pN},

respectively. Note that each ai (pi) is an amplitude (phase) value that represents the

amplitude (phase) values for 30 subcarriers. A technique to reduce the dimension of the

CSI amplitude and phase is discussed in Section 4.2. We then extract from A (P ) the

CSI amplitude (phase) values denoted by Âi (P̂i) that have been affected by a ith passing

car using a vehicle detection algorithm (Ad). Now we can create the collections of Âi

and P̂i for all 0 ≤ i ≤ NC , which are denoted by A = {Â1, ...ÂNC} and P = {P̂1, ...P̂NC},

respectively. These A and P are provided as input to a convolutional neural network

(CNN) either to train a model M (in training mode) or to classify an input instance con-

sisting of Âi and P̂i into five vehicle types {bike, passenger car, SUV, pickup truck, large

truck} using the model. The algorithm used for this vehicle classification is denoted by

(Ac).

Now the problem that we solve in this paper is concentrated on development of

the two algorithms namely Ad and Ac. Specifically we target a typical two-lane rural

highway. In subsequent sections, we will describe (1) the preprocessing methods to

reduce the noise and dimension of raw CSI amplitude and phase data, (2) algorithms

to extract the CSI amplitude and phase portions corresponding to a passing vehicle, (3)

and design of a neural network for effective vehicle classification.
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Chapter 4

Proposed System

4.1 System Overview

Figure 4.1: System architecture of DeepWiTraffic.

DeepWiTraffic consists of four system components, namely Data Collection, Data

Processing, Vehicle Detection, Lane Detection, and Vehicle Classification. Figure 4.1

shows the system architecture of DeepWiTraffic. The data collection module receives N

CSI packets and builds MCSI . Note that in the training mode, N can be sufficiently

large to collect CSI data for a large number of vehicles, while small N can be used for

real-time vehicle classification in the online mode. Basically N controls the window size.

The key roles of the data processing module are threefold: extraction of CSI amplitude

values A and phase values P from MCSI , noise reduction of A and P , and aggregation

of CSI amplitude values for 30 subcarriers for faster processing. The lane detection
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module implements Ad, i.e., extracts corresponding CSI amplitude and phase values for

a passing vehicle, generating A and P . The vehicle classification module consists of two

parts: CNN Training and CNN Prediction. In the former part, the module trains a

CNN model based on A and P , and the ground truth vehicle type typically input by

the user. In the latter part, the module classifies the detected vehicle into five different

types based on A and P .

4.2 CSI Data Processing

4.2.1 Low Pass Filtering
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Figure 4.2: CSI amplitude values of passing car (raw vs filtered).

DeepWiTraffic is designed specifically to capture the CSI amplitudes of passing
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vehicles. Thus, CSI amplitudes contributed by other slow moving objects, e.g., minor

human (mostly system operators) movements, are effectively cleared off. More precisely,

we ensure that CSI amplitude fluctuations caused by any objects that move at a speed

of less than 2m/s are excluded. The WiFi wavelength of our system that operates at

5.32GHz frequency bandwidth is 5.64cm [44]. With the wavelength of 5.64cm and the

movement speed of 2m/s, the corresponding frequency component is calculated as 38Hz.

Consequently, we apply a general low pass filter with a cutoff frequency of 38Hz to

mitigate the impact of irrelevant objects on the received CSI amplitude data. Figure 4.2

shows an example of original CSI amplitude data of a passing car, and the results of low

pass filtering.

4.2.2 PCA-Based Denoising

Environmental noise (e.g., caused by slow moving objects) has been successfully

mitigated by designing and applying a low pass filter. Another important source of

performance degradation is noise caused by internal state transitions in a WiFi NIC

which include changes in transmission power, adaptation of transmission rate, and CSI

reference level changes [28]. Typically, burst noises in CSI data are caused by these

internal state transitions. Ali et al. made an interesting observation that the effect of

these burst noises is significantly correlated across CSI data streams of subcarriers [6].

The principal component analysis (PCA) is used to mitigate the burst noises by

exploiting highly correlated CSI streams for different subcarriers. Figure 4.3 depicts an

example showing that CSI streams for different subcarriers are highly correlated.
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Figure 4.3: Filtered WiFi CSI stream for subcarriers #1, #2, and #3 showing high
correlations.
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The PCA is also used to reduce the dimension of CSI data for all 30 subcar-

riers down to one. More specifically, for each transmitted packet, we obtain 30 CSI

amplitude values for 30 subcarriers. Using PCA, we analyze the correlations of these

multi-dimensional CSI data, extract common features, and reduce the dimension to one.

This noise and dimension reduction process is executed in four steps as follows.

Preprocessing of Sample: For each TX-RX antenna pair, define a N × 30

matrix H that store CSI amplitude values for all 30 subcarriers and N received packets.

A CSI stream (consisting of N CSI amplitude values) for each subcarrier is arranged

in each column of matrix H. After construction of matrix H, the mean value of each

column is calculated and subtracted from each column, which completes this step.

Computation of Covariance Matrix: the covariance matrix HT ×H is cal-

culated in this step.

Computation of Eigenvalues and Eigenvectors of Covariance: Eigende-

composition of the covariance matrix HT ×H is performed to obtain the eigenvectors q

(30× k).

Reconstruction of Signal: By projecting H onto the eigenvectors q (30×k), we

obtain hi = H × qi, where qi is the ith eigenvector and hi is the ith principal component.

Figure 4.4 shows the first PCA component compared with a filtered CSI stream.

As shown, CSI amplitude values for passing vehicles are more clearly distinguished in

the PCA component, which improves the performance of the proposed vehicle detection

and classification algorithms.
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Figure 4.4: PCA #1 that represents all 30 CSI streams vs. a CSI stream

4.2.3 Phase Preprocessing

Since the phase information is one of the two primary features for vehicle classifi-

cation, it is important to effectively mitigate the impact of random noises. This section

presents a method to preprocess CSI phase data so that the random noises are reduced.

We can express the measured CSI phase of subcarrier c as the following [48].

φ̂c = φc − 2π
kc
N
α + β + Z. (4.1)

Here φc is the original phase; kc denotes the subcarrier index; N is the Fast Fourier

Transform size (64 for IEEE 802.11 a/g/n); and Z is the measurement noise. Our

objective is to remove α and β, which are the time lag and the phase offset at the re-
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ceiver, respectively. We adopt a linear transformation to remove these noise factors [39].

Formally, we define the two variables e1 and e2 as follows.

e1 =
φ̂F − φ̂1

2πF
, (4.2)

e2 =
1

F

∑
1≤c≤F

φ̂c, (4.3)

Here F refers to the last subcarrier index. Note that F = 30 because we use the

Intel 5300 NIC which exports 30 subcarriers. We then use a linear transformation:

φ̂f − e1f − e2 to remove both the timing offset α and the phase offset β. We disregard

the small measurement noise Z in this calculation.

Figure 4.5: Raw and processed phase data for a passing vehicle.
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Figure 4.5 shows both the raw and preprocessed CSI phase data (measured with

sampling rates of 2,500 samples/sec). The result indicates that the algorithm successfully

captures the time series of the CSI phase values by effectively reducing the random noises.

4.3 Vehicle Detection

Now we have noise-filtered CSI amplitude values A, and phase values P . The

next task is to detect NC passing vehicles and extract A and P from A and P (i.e.,

extracting only the portions of CSI amplitude and phase values that are influenced by

the passing vehicles). Detecting a passing vehicle is simple because it causes abrupt

changes in CSI amplitude values. As such, we adopt a standard outlier detection tech-

nique based on scaled median absolute deviation (MAD): Scaled MAD = c·median(|Ai−

median(A)|), i = 1, 2, ..., N . A = {A1, A2, ..., AN} is the set of collected CSI data sam-

ples, and c = −1√
2·ζ(3/2) , where ζ is the inverse complementary error function. A sample

CSI amplitude value is considered as an outlier if it is more than three scaled MAD away

from the mean, detecting a vehicle.

Once a vehicle(s) is detected, A and P are extracted. Since A and P are syn-

chronized, outliers are found with A, but the result is applied to both A and P . More

specifically, assume that an outlier is ai ∈ A. Starting from ai, the algorithm extracts the

CSI amplitude samples in the range between ai−δ1 and ai+δ2 . These δ1 and δ2 are system

parameters. We use δ2 to take into account the momentary CSI amplitude fluctuations

after a vehicle passes through the line of sight (LoS) between the TX-RX antenna pair.

δ1 is used to capture the minor changes in CSI amplitude and phase values when the
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Algorithm 1 CSI Data Extraction Algorithm

A and P A and P
O ←− outlier(A).
i← 1 |O|
O[i] && !r
s←− i.
f ←− i.
r ←− TRUE.
O[i] && r
f ←− i.
!O[i] && r
i− f > ω
r ←− FALSE.
(s− δ1) > 0 && (f + δ1) < |O|
A←− A[(s− δ1)...(f + δ1)].
P ←− P [(s− δ1)...(f + δ1)].
continue.

vehicle is very close to the LoS but yet passed through it. In our experiments, we found

that δ1 = 500 (0.25sec), and δ2 = 500 (0.25sec) gave the best results.

Algorithm 4.3 displays the peudocode of the amplitude and phase extraction

process. The function outlier finds the outlier samples and records the sample indices

of the outliers in an array O (Line 2). The algorithm keeps track of the beginning s and

end f of extracted amplitude and phase values, and a flag r is used to indicate that the

extraction process is in progress so that the algorithm can finish when the extraction

process is completed (Lines 4-7). In other words, the extraction process is continued as

long as r is set to TRUE and the sample is considered as an outlier (Lines 8-9). If the

sample is found to be a non-outlier, the interval between the current sample and the last

valid outlier is calculated, and it is compared with the threshold ω (in our experiments,

we used 1,250, i.e., 0.5 second). Finally, if the interval is greater than ω, we reset the
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flag r to FALSE to finish the extraction process and save the extracted CSI amplitudes

and phases in A and P , respectively (Lines 10-15).

4.4 Vehicle Classification

We adopt the convolutional neural network (CNN) for vehicle classification. The

correlations of the time series of CSI amplitude and phase values are taken into account

by aggregating them as a single input image. Specifically, a 6×2, 500 image is provided as

input to CNN. The first three rows of the image represent the time series of extracted CSI

amplitude values for three TX-RX antenna pairs (Note that there are 1 TX antenna, and

3 RX antennas). The subsequent three rows of the image are the time series of extracted

CSI phase values. These 6 CSI data sequences are exactly aligned in the image to enable

CNN extract the hidden correlations between the CSI data sequences. We ensure that

all images have the same size by padding with 0s.

Figure 4.6: CNN architecture.

Figure 4.6 shows the design of the proposed CNN. As shown, it consists of two

layers of alternating Convolution, (Batch Normalization, ReLu), and Pooling sublayers
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such that the lower layer extracts basic features while the higher layer extracts more

complex features [25]. In the following section, we describe the detailed roles of the

sublayers.

4.4.1 Convolutional Layer

The convolutional layer basically convolves the input images by sliding the kernels

(also called as filters) vertically and horizontally and calculates the dot product of the

input and the weights of the kernels.

4.4.2 Batch Normalization Layer

Before providing the result of the convolutional layer as an input to the next layer,

the result goes through the normalization layer. The normalization layer is used to speed

up the training process and reduce the sensitivity to the initial network configuration.

4.4.3 ReLu Layer

After the convolutional layer and batch normalization layer, a nonlinear activa-

tion function σ is executed, for which we adopt the rectified linear unit (ReLU) function.

It basically performs a threshold operation to each element we obtain after the convo-

lutional and batch normalization layer. Specifically ReLu layer is selected to avoid the

vanishing gradients problem and to achieve much faster training speed.
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4.4.4 Max Pooling Layer

In the max pooling layer, the resolution of the feature maps is decreased in order

to prevent overfitting using the max pooling.

4.4.5 Dropout and Fully Connected Layer

While training the CNN model, we observed significant overfitting and decided

to deploy the dropout layer to reduce the impact of overfitting. Basically, this layer

randomly drops out an element of the results of the Max Pooling Layer with a fixed

probability pdrop. In our experiments, we found that a drop out rate pdrop of 0.6 gave

the good results.

4.4.6 Fully Connected Layer

Followed by the two layers of alternating Convolution, Batch Normalization,

ReLu, and Pooling sublayers is the Fully Connected Layer. This layer is basically the

same as the regular neural network which maps the flattened feature into the output

classes (i.e., five vehicle types) generating the scores for each output class. Finally, the

output scores of the Fully Connected Layer is provided as input to the SoftMax layer

in which the scores are converted into values in the range between 0 and 1 such that

the sum is 1. This way the SoftMax layer represents the output as a true probability

distribution.
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Chapter 5

Experimental Results

5.1 Experimental Setup

Figure 5.1: Experimental setting.

We deployed a prototype of DeepWiTraffic in a two-lane rural highway (Fig-

ure 5.1). Two laptops (HP Elite 8730w model) were used to develop the prototype.

One was a WiFi transmitter, and the other one was a WiFi receiver. These laptops

were equipped with 2.53GHz Intel Core Extreme CPU Q9300 processor, 4GB of RAM,

and Intel 5300 NIC. DeepWiTraffic was executed on Ubuntu 14.04.04 (kernel version of

4.2.0-27). We deployed another two laptops to record the ground-truth video data on
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each side of the road. Separate laptops were used to avoid interfering with the WiFi

communication and WiFi CSI data processing. These separate laptops were synchro-

nized with the WiFi transmitter to ensure that video recording is started at the same

time WiFi communication is triggered.

Table 5.1: Vehicle types and number of samples

Vehicle Classification # of Samples

Car-like Small Bike 22

Passenger Car 238

Medium SUV 253

Pickup Truck 252

Truck-like Large Large Truck 18

CSI data were collected for about 120 hours over a month. Extracted CSI ampli-

tude and phase set for each passing vehicle was manually tagged based on the recorded

video. Consequently, we collected CSI data for a total of 783 vehicles. Table III shows

detailed vehicle types and number of samples collected. We referred to Federal Highway

Administration (FHA) vehicle classification [3] to determine the vehicle types. Classi-

fying vehicles with more than two axles is known to be quite effective due to the large

vehicle body. Mostly the challenge exists in classifying vehicles with two axles due to

the very similar body size. As such, we concentrate on classifying vehicles with two

axles, i.e., class 1 (moborcycle) class 2 (passenger car) class 3 (SUVs) class 4 (buses)

class 5 (trucks), and other class (large trucks) according to the Federal Highway Ad-

ministration (FHA) classification [3]. Here the large truck means a single unit with the

axle count greater than three. Note that we excluded the class 4 (buses) since we spot-



30

ted only 2 buses in the rural highway during the period of data collection. As Table III

shows, we adopted two other typical classification methods namely ‘car-like vs truck-like’

classification [3], and ‘small, medium, large’ classification [29].

Table 5.2: Hyper parameters for deep learning

Parameter Type Value

Solver Stochastic Gradient Descent with Momentum (SGDM) Optimizer

Dropout Rate 60%

Shuffle Frequency Every Epoch

Validation Data 30%

Input Image Size 6 × WINDOW SIZE

WINDOW SIZE 2,500

L2 Regularization None

Table IV summarizes the hyper parameters we selected to train the CNN model.

As shown, we used 70% of the collected CSI data to train the CNN model, and the rest

of the 30% for testing purpose. We compared the performance of DeepWiTraffic with

that of support vector machine (SVM) and k nearest neighbor (kNN). In particular we

used the following five features in training the SVM and kNN models: (1) the normalized

standard deviation (STD) of CSI, (2) the offset of signal strength, (3) the period of the

vehicle motion, (4) the median absolute deviation (MAD), (5) interquartile range (IR)

according to [46] which exploited WiFi CSI for fall detection. Specifically, we select

k=5 as we found that it gave the best results.
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5.2 Detection Accuracy

The detection accuracy was 99.4% (778 out of 783). This high vehicle detection

accuracy is attributed to the PCA analysis that achieves sharp differentiation of the CSI

amplitude values for passing vehicles by effectively extracting the common features of

the CSI amplitude values of 30 subcarriers and representing the CSI amplitude values

with a single dimension. The result coincides with the literature that most recent TMSs

have very high vehicle detection accuracy. A total of 24 false positives were observed.

5.3 Classification Accuracy

We measured the classification accuracy of DeepWiTraffic. We used the common

definition of the classification accuracy, i.e., it is defines as the total number of correctly

detected vehicles divided by the total number of detected vehicles. The classification

accuracy of DeepWiTraffic is compared with SVM and kNN-based approaches. In this

experiment, we randomly selected 30% of the passing vehicles as the validation set

for SVM, kNN, and Deep Learning (DeepWiTraffic). We then calculated the average

classification accuracy for 1,000 randomly selected validation sets.

Table 5.3: Classification accuracy - SVM
Classification SVM

Car-like Small Bike 99.3% 85.7% 81.3%
Passenger Car 75.9%

Medium SUV 85.8% 50.6%
Pickup Truck 75.5%

Truck-like Large Large Truck 98.0% 96.2% 95.5%

Average 98.7% 89.2% 75.8%
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Table 5.4: Classification accuracy - kNN
Classification kNN

Car-like Small Bike 99.2% 46.5% 77.2%
Passenger Car 54.5%

Medium SUV 92.8% 47.8%
Pickup Truck 42.5%

Truck-like Large Large Truck 92.8% 91.1% 90.4%

Average 96.0% 76.8% 62.5%

Table 5.5: Classification accuracy - CNN
Classification CNN

Car-like Small Bike 100.0% 91.1% 97.2%
Passenger Car 91.1%

Medium SUV 94.1% 83.8%
Pickup Truck 83.3%

Truck-like Large Large Truck 100.0% 100.0% 99.7%

Average 100.0% 95.1% 91.1%

The results are summarized in Table V. All classifiers did a good job in classi-

fying vehicles into car-like and truck-like types. However, the performance decreased

as the number of classes increased, especially the classification accuracy for SVM and

kNN sharply dropped. In contrast, the average classification accuracy of DeepWiTraffic

remained high as 91.1% for individual vehicle types. However, it seemed still challenging

for Deep Learning to classify similar sized vehicles, i.e., SUV and pickup trucks, with the

accuracy of 83.8% for SUV and 83.8% for pickup trucks. Finding more effective features

of CSI data to improve this accuracy is left as an open problem. Overall, DeepWiTraffic

shows very promising performance comparable to some camera-based solutions [11][9],

and magnetic sensor-based approaches [43][50].
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5.4 Classification Accuracy Per Lane

Another interesting research question that we answer here is: how does the lane

affect the performance of DeepWiTraffic. To answer this question, we created CNN

models separately for each lane. The results for different CNN models for lane 1, lane

2, and aggregated lanes are summarized in Table VI. We found that the effect of lane

was negligible when vehicles are classified into car-like and truck-like types. However,

the accuracy of the CNN model for aggregated lanes significantly degraded by 8.9% and

8.7% for ‘S,M,L’ classification and individual vehicle classification, respectively. The

results indicate that the CNN models should be trained separately for each lane; input

CSI data may be tested with each CNN model; and the output with a higher probability

should be used.

Table 5.6: Classification accuracy - Lane 1
Classification Lane 1

Car-like Small Bike 100.0% 91.1% 97.2%
Passenger Car 91.1%

Medium SUV 94.1% 83.8%
Pickup Truck 83.3%

Truck-like Large Large Truck 100.0% 100.0% 99.7%

Average 100.0% 95.1% 91.1%

Table 5.7: Classification accuracy - Lane 2
Classification Lane 2

Car-like Small Bike 100.0% 90.3% 97.0%
Passenger Car 87.5%

Medium SUV 93.7% 83.1%
Pickup Truck 80.0%

Truck-like Large Large Truck 100.0% 100.0% 99.1%

Average 100.0% 94.7% 89.3%
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Table 5.8: Classification accuracy - Mixed Lane
Classification Mixed Lane

Car-like Small Bike 99.8% 79.6% 95.5%
Passenger Car 81.6%

Medium SUV 80.0% 76.3%
Pickup Truck 66.5%

Truck-like Large Large Truck 99.5% 99.0% 92.1%

Average 99.7% 86.2% 82.4%

Another interesting observation is that the accuracy for Lane 1 is slightly higher

than that for Lane 2. The reason is, as we illustrated in Figure 4.1, when a passing

vehicle is close to the receiver (being located on Lane 1), WiFi signals for different TX-

RX antenna pairs are spaced more widely allowing for capturing more information about

the vehicle body.
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Chapter 6

Conclusion

We have presented the design, implementation, and evaluation of DeepWiTraffic, a

low-cost and portable TMS based on WiFi CSI. With the large amounts of CSI data and

ground truth video data that we collected over a month, we performed extensive real-

world experiments and successfully validated the effectiveness of DeepWiTraffic. Despite

the low cost, the average classification accuracy of 91.1% for five different vehicle types

is comparable to most recent non-intrusive vehicle classification solutions. We expect

DeepWiTraffic to contribute to solving the endemic cost of issue of deploying a large

number of TMSs to cover the huge miles of rural highways.

A possible extension of this work is to develop a WiFi based traffic monitoring

system for congested traffic environments. The current system does not classify vehicles

effectively under high traffic scenarios as it is primarily designed for low traffic rural

highways.
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