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ABSTRACT 

DISTRIBUTION, ECOLOGY, DISEASE RISK, AND GENETIC DIVERSITY OF 

SWIFT FOX (VULPES VELOX) IN THE DAKOTAS 

EMILY L. MITCHELL 

2018 

The swift fox (Vulpes velox), a native species once abundant throughout the Northern 

Great Plains (NGP), has declined due to changes in land use, historic predator eradication 

programs, and predation by larger canid species.  Currently, the species is estimated to 

occupy 44% of its historic range.  In the NGP, the status of the swift fox varies by state, 

ranging from furbearer to endangered species.  However, knowledge of the current status 

of swift foxes in the NGP is lacking due to an absence of systematic population 

monitoring.  Improving the current state of knowledge concerning swift fox populations 

in the NGP is necessary to assess the population status of the species and will be 

instrumental in assisting managers in conservation and, if needed, restoration of this rare 

species.  The swift fox is considered rare in North Dakota and state threatened in South 

Dakota.  We evaluated the distribution of swift fox, red fox (Vulpes vulpes), and coyote 

(Canis latrans) populations, investigated ecology and life history of swift fox, and 

assessed disease risk and genetic diversity of resident swift foxes in northwest South 

Dakota and southwest North Dakota.  To accomplish these objectives, we first conducted 

a systematic camera-trap survey to assess occupancy and distribution of swift fox, 

coyotes, and red fox.  Using camera trap detections and anecdotal sightings, we live-

trapped, radio-collared, and tracked swift foxes to locate den sites to assess den site 

habitat selection.  Using samples collected during camera-trap surveys and radio-



 
ix 

collaring, we conducted disease and genetic diversity analyses.  We conducted occupancy 

and distribution models at two different scales (sympatric canids: double-home range, 

6.68 km, and home range, 3.34 km; swift fox: sub-home range, 30 m, and home range, 

3.34 km);  both scales created overfit models, producing inaccurate distribution maps for 

swift fox.  Therefore, we do not suggest using either of these models for management 

purposes.  However, we found that coyotes occupied 63-69% of the study area while red 

fox occupied 46-53% of the study area.  We documented average litter sizes (3.25 pups), 

large home ranges (55.38 km2), late dispersal (February), large dispersal distances (17.20 

km), high survival (0.857), and found dens farther from roads than other studies, with no 

correlation between den-site location and vegetation height. We also found high 

prevalence of canine parvovirus (71.43%) and Francisella tularensis (67.74%), but low 

prevalence of canine distemper virus (10.34%) and Yersinis pestis (3.32%).  The high 

prevalence of canine parvovirus and exposure to canine distemper are cause for concern, 

due to their typically highly fatal outcomes.  This swift fox population occupying 

northwestern South Dakota and southwestern North Dakota is genetically viable, with 

high intrapopulation connectivity and no sign of a genetic bottleneck.  Our study is the 

first of its kind in northwest South Dakota and southwest North Dakota and most of our 

findings can and should be used in future monitoring, conservation, and restoration plans 

for this native species in the Dakotas.   
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CHAPTER 1 

INTRODUCTION 
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Distribution 

 The swift fox (Vulpes velox) inhabits short and mixed-grass prairies in the North 

American Great Plains (Egoscue 1979, Scott-Brown et al. 1987).  Historically, the 

species ranged from southern Alberta, Manitoba, and Saskatchewan provinces in Canada 

south to New Mexico and Texas in the United States (Moehrenschlager and Sovada 

2004).  Once abundant throughout the Great Plains, by the early 1900's the species had 

greatly declined and was considered rare or extirpated in most of its historical range.  

This reduction was largely associated with conversion of native short-grass prairies to 

agriculture, changes in land use, historic unregulated hunting and trapping, and predator 

eradication efforts (Egoscue 1979, Sovada et al. 1998, Schauster et al. 2002, Kilgore 

1969, Carbyn et al. 1994, Allardyce and Sovada 2003).   

 In 1992, the swift fox was petitioned to be listed as threatened under the 

Endangered Species Act, but by 1994 the United States Fish and Wildlife Service 

(USFWS) determined the threatened listing was warranted but precluded by higher 

priority species and thus, the species was placed on the candidate list (Federal Register 

1994, Federal Register 1995).  In response, wildlife agencies within the historic range of 

the species formed the Swift Fox Conservation Team (SFCT) to aggregate existing data, 

gather new data, and implement monitoring and management programs to gain a better 

understanding of the species’ status (Allardyce and Sovada 2003).  In 2001, the USFWS 

reviewed the status of the swift fox and determined the species did not warrant listing and 

removed it from the candidate list (Federal Register 2001). 
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 By the mid 1950's, changes in predator control methodology allowed gradual 

swift fox recovery in portions of its range (Egoscue 1979).  The swift fox is now 

estimated to occupy 44% of the historic species range (Sovada et al. 2009). However, 

some populations, such as the peripheral populations in the Northern Great Plains (NGP), 

have continued to exhibit low densities and remain extirpated or rare in much of their 

historic range.  The swift fox is currently considered threatened in South Dakota and rare 

in North Dakota, while anecdotal evidence implies small isolated populations are all that 

remain in Montana, South Dakota, Nebraska, and parts of Wyoming (Merrill et al. 1996, 

Redmond et al. 1998, North Dakota Game and Fish Department 2017, South Dakota 

Game, Fish, and Parks Department 2014, Soper 1964, Sovada and Scheick 1999, 

Allardyce and Sovada 2003). Reintroduction efforts were conducted in parts of Canada 

and Montana in the 1980's and 1990's (Carbyn 1998, Moehrenschlager and 

Moehrenschlager 2006, Ausband and Foresman 2007) and in the early to mid-2000's in 

South Dakota (Schroeder 2007, Goodman et al. 2012, Sasmal et al. 2015, S. Grassel, 

LBST, personal communication).  Despite partial recovery of the species and 

reintroduction efforts, populations in the NGP remain small and isolated. 

 The majority of extant swift fox populations in the NGP are the result of 

reintroduction efforts, rather than natural recovery (Smeeton and Weagle 2000, Montana 

Fish, Wildlife and Parks Department 2006, Ausband and Foresman 2007).  In South 

Dakota 459 swift fox were released between 2002 and 2010 (Honness et al. 2007, Swift 

Fox Conservation Team 2006, Swift Fox Conservation Team 2011, Oglala Sioux Parks 

and Recreation Department 2012).  These reintroductions occurred in four areas in the 

west-central portion of the state: Bad River Ranches (Stanley and Jones counties), Lower 
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Brule Sioux Tribal Land (Lyman county), Badlands National Park (Pennington and 

Jackson counties), and Pine Ridge Indian Reservation (Oglala Lakota county).  Today, 

swift foxes are known to exist around Badlands National Park and in Fall River County 

(a remnant population) South Dakota (Swift Fox Conservation Team 2011, Swift Fox 

Conservation Team 2014).  Beginning in 2006, intermittent swift fox sightings in 

northwest South Dakota and southwest North Dakota were recorded via aerial telemetry, 

incidental capture, or recovered mortality, implying the potential re-establishment of 

swift fox in the region (unpublished data, Turner Endangered Species Fund and South 

Dakota Game, Fish and Parks).  Systematic surveys conducted in 2017 confirmed the 

presence of a swift fox population in the area; however, the species distribution is patchy 

and swift fox occur at low densities.   

Life History and Ecology 

 Swift foxes are typically monogamous, pairing with a mate for life, and living 

together as a breeding pair or sometimes as a group with one breeding female and 

nonbreeding "helper" foxes (Kilgore 1969, Covell 1992, Ralls et al. 2001).  They breed 

once a year, beginning in March in the northern portion of their range (Kilgore 1969, 

Hines 1980, Carbyn et al. 1994, Asa and Valdespino 1998).  The average liter size is 2.4-

5.7 pus (Kilgore 1969, Hillman and Sharps 1978, Covell 1992, Carbyn et al. 1994, Roell 

1999, Schauster et al. 2002, Anderson et al. 2003, Nevison 2017).  Both parents 

contribute to rearing pups, and pups typically stay with their parents for four to six 

months (Rongstad et al. 1989, Covell 1992).  Pups typically disperse from September to 

January, with males often dispersing sooner and farther than females (Zoellick et al. 
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1989, Covell 1992, Sovada unpublished data, Kitchen et al. 1999); dispersal distances 

range from 2.1 km to 25 km (Sovada unpublished data, Covell 1992). 

 The cause and extent of mortality in wild canids, such as the swift fox, are often 

difficult to assess.  Their elusiveness, and in the case of the swift fox their low 

abundance, often make the likelihood of finding mortalities low.  However, a better 

understanding of mortality factors is vital to managing for the species persistence.  

Potential predators of the swift fox include coyotes, red fox (Vulpes vulpes), bobcats 

(Lynx rufus), and large raptors (Sovada et al. 1998).  Human factors, including vehicle 

collisions, secondary poisoning, shooting, and trapping, contribute to mortality (Kilgore 

1969, Rongstad et al. 1989, Carbyn et al. 1994).  Most studies have found coyote 

predation and vehicle collisions to be the top causes of swift fox mortality (Covell 1992, 

Carbyn et al. 1994, Sovada et al. 1998, Kitchen et al. 1999, Olsen and Lindzey 2002, 

Kamler et al. 2003, Nevison 2017).   

  The swift fox is one of the most den-dependent canid species in North America 

(Jackson and Choate 2000).  Swift foxes use dens as natal and pup rearing sites and as 

escape refugia from inclement weather and predators throughout the year (Herrero et al. 

1986, Pruss 1999).  Often having more than one den within their home range, swift foxes 

move among dens throughout the year (Kilgore 1969, Chamber 1978, Hillman and 

Sharps 1978, Hines and Case 1991).  Dens are usually located in open areas with sparse 

vegetation, low slope, and well-drained soils (Cutter 1958, Kilgore 1969).  In South 

Dakota, dens may be located in active black-tailed prairie dog (Cynomys ludovicianus) 

colonies and heavily grazed pastures (Uresk and Sharps 1986, Sasmal et al. 2011).  Swift 

fox population viability is, in part, dependent on the availability of suitable den sites 
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(Egoscue 1979, Russell and Scotter 1984, Pruss 1999, Harrison and Whittaker-Hoagland 

2003).   

 Swift foxes are predominantly nocturnal, with the exception of some daytime 

activity around the den site (Laurion 1988, Kilgore 1996, Kitchen et al. 1999, Anderson 

et al. 2003).  Their nocturnal activity, elusiveness, and often low abundance make 

estimating home range sizes difficult and variable between studies.  Radio collared 

individuals must be tracked throughout the night to accurately document movement 

(Sasmal et al. 2011).  This can make it difficult for researchers to schedule tracking 

activities, and gaining access to areas occupied by swift fox can be complicated, often 

resulting in studies obtaining few data points for analyses.  Also, not all studies use the 

same methodology to estimate home range, making it difficult to compare swift fox home 

range sizes among study areas and regions.  Estimates of home range have been found to 

vary widely from as low as 7.6 km2 to a high of 32.3 km2 (Worton 1989, Hines and Case 

1991, Kitchen et al. 1999, Anderson et al. 2003, Sovada unpublished data, Zimmerman et 

al. 2003). 

Study Objectives 

 Investigating potential drivers for the continued local rarity of the species is 

necessary to inform swift fox conservation in this area.  Potential drivers include 

interspecific competition with larger canids (Ralls and White 1995, White et al. 1994, 

Kamler et al. 2003, Pamperin et al. 2006), exposure to disease (Johnson et al 1994, Pence 

et al. 1995, Gese et al. 1997, Miller et al. 2000, Olson and Lindzey 2002, Gese et al. 

2004, Sobrino et al. 2008, Di Sabatino et al. 2014), loss of genetic diversity (Ouborg 
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2009, Koons 2010, Sasmal et al. 2012), and lack of suitable habitat (Egoscue 1979, 

Sovada et al. 1998).  A better understanding the characteristics and behaviors of this 

population and the individuals in it can be used to enhance current and future 

management, conservation, and reestablishment efforts of the species in the Dakotas. 
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ABSTRACT 

Conservation of small populations is difficult because often times data and information 

regarding life history characteristics and ecological factors influencing the survival of the 

population are either lacking or missing all together.  Small, isolated populations are 

especially difficult to study and are often times subject to Allee effects, consecific 

attraction, and experience adverse reactions to settlement costs due to habitat selection by 

dispersal. We studied a small, re-colonizing population of swift fox (Vulpes velox) in 

northwest South Dakota and southwest North Dakota (hereafter “Dakotas”) in an attempt 

to better understand the life history characteristics and ecological factors that may be 

influencing this population.  We monitored 26 swift foxes to assess reproductive success, 

survival, den site selection, and home range, from July 2016 to December 2017.  We 

documented 4 litters with an average litter size was 3.25 and first emergence of pups on 5 

May.  Estimated survival was 0.857, with predation by coyotes (Canis latrans) as the 

leading cause of mortality.  Den sites were found to be farther from roads (average of 

570.99 m), and in areas with no correlation between den site selection and vegetation 

height.  The average number of den entrances was 1.38.  Juveniles dispersed from natal 

home ranges from 23 October to 14 February, with most dispersal events occurring in 

February.  Juveniles dispersed an average distance of 17.20 km, with dispersal distances 

ranging from 4.75 km to 29.64 km.  Home range size varied from 21.53 km2 to 132.44 

km2, with an average of 55.38 km2 and core area of 12.20 km2. Our results indicate that 

swift foxes in the Dakotas occur at a low density likely due to predator avoidance and 

anthropogenic activities that disturb life history characteristics associated with 

established populations.  
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INTRODUCTION 

Habitat-selection theory generally assumes that individual fitness declines as a 

function of density, that social interaction among settlers are solely competitive (Greene 

and Stamps 2001).  However, when animals settle at low densities, other fitness 

distributions (e.g., Allee effects (Allee 1951)) and positive interactions (e.g., conspecific 

cueing (Greene and Stamps 2001) are possible.  One form of habitat selection is through 

dispersal, which can be divided into 3 stages: search, settlement, and residency (Stamps 

2001).  This process affects distribution, density, and fitness of the individuals in 

different habitats (Hilden 1965, Morris 1991, Stamps 1994).  Habitat selection by 

dispersers can have great effects on population size and dynamics (Pulliam and Danielson 

1991, Lima and Zollner 1996), population persistence (Kokko and Sutherland 2001, 

Greene 2003), and the management of endangered species (Schlaepfer et al. 2002, Morris 

2003).  Understanding dispersal in low density populations is necessary in single-species 

conservation to predict the movements of a threatened species, especially in a fragmented 

landscape (Lande 1988, Lamberson et al. 1992, Goss-Custard et al. 1995). 

Allee effects (Allee 1951) occur when fitness increases as a function of low 

density (Greene and Stamps 2001), and influences the amount of habitat used (Fretwell 

and Lucas 1970).  Settlement costs reduce individual fitness during the settlement period 

(Greene and Stamps 2001).  Conspecific attraction, which occurs when the presence of 

conspecifics increases the probability that other individuals will settle in same area, can 

occur at low population densities (Stamps 1988, Stamps 1991, Schmitt and Holbrook 

1996).  The benefits of having neighbors includes increased efficiency of removing 

intruders (Eason and Stamps 1993, Meadows 1995), reduced the risk of predation (Smith 
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1986, Wisenden and Sargent 1997), and improved access to mates (Levitan and Young 

1995, Wagner 1997).  It has also been found that individuals exposed to certain stimuli as 

juveniles are likely to select a new habitat containing those stimuli (Wecker 1963, Hilden 

1965, Klopfer and Gonzhorn 1985, Arvedlund and Nielson 1996), and those individuals 

that do choose a post-dispersal habitat similar to that of their pre-dispersal habitat achieve 

higher reproductive success (Stamps 2001).  This is likely due to more developed 

perceptual and motor skills, increasing foraging performance (Oretega-Reyes and 

Provenza 1993, Mclean 1996, Yoerg and Shier 1997), anti-predator behavior (Curio 

1993), and social interactions (Nelson 1997, West et al. 1997).  A better understanding of 

dispersal characteristic and drivers of species with low population density is necessary to 

increase the success of current and future management and conservation strategies. 

The swift fox (Vulpes velox) inhabits short and mixed-grass prairies in the North 

American Great Plains (Egoscue 1979, Scott-Brown et al. 1987).  Historically, the 

species ranged from the Canadian provinces of Alberta, Manitoba, and Saskatchewan 

south to New Mexico and Texas in the United States (Moehrenschlager and Sovada 

2004).  Once abundant throughout the Great Plains, by the early 1900's the species had 

greatly declined and was considered rare or extirpated in most of its historical range.  

This reduction was largely associated with conversion of native short-grass prairies to 

agriculture, changes in land use, historically unregulated hunting and trapping, and 

predator eradication efforts (Kilgore 1969, Egoscue 1979, Carbyn et al. 1994, Sovada et 

al. 1998, Schauster et al. 2002, Allardyce and Sovada 2003).  The swift fox is considered 

warranted for listing under the endangered species act, but precluded by species with 
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greater need. It is listed as threatened in South Dakota, and rare in North Dakota (South 

Dakota Game, Fish, and Parks 2014, North Dakota Department of Game and Fish 2017). 

The majority of extant swift fox populations in the northern Great Plains are the 

result of reintroduction efforts, rather than natural recovery (Smeeton and Weagle 2000, 

Montana Fish, Wildlife and Parks Department 2006, Ausband and Foresman 2007).  For 

South Dakota, specifically, 459 swift fox were released between 2002 and 2010 (Swift 

Fox Conservation Team 2006, Honness et al. 2007, Swift Fox Conservation Team 2011, 

Oglala Sioux Parks and Recreation Department 2012, Sasmal 2012, Sasmal 2016).  These 

reintroductions occurred in four areas in the west-central portion of South Dakota: Bad 

River Ranches (Turner Endangered Species Fund), Lower Brule Sioux Tribal Land 

(Lower Brule Sioux Tribe Department of Wildlife, Fish and Recreation and the Maka 4 

Foundation), Badlands National Park (National Park Service), and Pine Ridge Indian 

Reservation (Oglala Sioux Parks and Recreation Authority).  Prior to this study, swift 

foxes are known to exist around Badlands National Park and in Fall River County (a 

remnant population), South Dakota (Swift Fox Conservation Team 2011, Swift Fox 

Conservation Team 2014, Nevison 2017). 

 Anecdotal evidence indicates that swift fox may also occur in northwest South 

Dakota and southwest North Dakota. This population is assumed to exhibit low densities 

and to be small overall, given the intermittent nature of opportunistic observations. 

However, swift fox ecology, including litter size, home range size, dispersal timing and 

distance, survival, and den site characteristics have not been assessed in this region.  

Understanding these factors specific to the swift fox population in this area will inform 

habitat needs of the species and drivers of the assumed continued low density, which can 
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be used to enhance current and future management, conservation, and reestablishment 

efforts of the species in the Dakotas.  We hypothesize that due to this populations, likely, 

small size swift fox will have larger home ranges and juveniles will disperse longer 

distances than swift fox populations with higher densities and larger overall population 

size.  We also hypothesis that swift foxes in the Dakotas will select den sites close to 

roads, with low vegetation density.  Finally, we hypothesize that this population will have 

low levels of mortality, with the leading cause of death being coyotes, likely because of 

Allee effects.  A better understanding of these life history characteristics and ecological 

factors influencing the swift fox population in the Dakotas is vital to encourage an 

enhance management and conservation efforts in the region. 

STUDY AREA 

 The study area included Harding, Butte, Perkins, and Meade counties in South 

Dakota and Slope, Bowman, Adams, and Hettinger counties in North Dakota (Figure 1).  

The study was conducted on state, federal (i.e., Forest Service and Bureau of Land 

Management), and private lands within the region.  The study area encompassed 

approximately 4,099,174 ha dominated by mixed grass prairie, interspersed with 

sagebrush (Artemisia spp.).  Prominent grasses of the mixed grass prairie in the area 

were: western wheatgrass (Pascopyrum smithii), green needlegrass (Nassella viridula), 

needle-and-thread (Hesperostipa comata), blue grama (Bouteloua gracilis), and side-oats 

grama (Bouteloua curtipendula).  Topography was largely flat to gently rolling hills with 

occasional buttes. The primary soil types were clays derived from Cretaceous Pierre 

Shale (Johnson et al. 1995).  Predominate water features included Shadehill Reservoir, 
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Belle Fourche Reservoir, and the Belle Fourche River.  Lands were primarily used for 

cattle and sheep grazing.   

 Since 2006 regular swift fox sightings have been reported in northwest South 

Dakota, with three marked foxes from the Bad River Ranches reintroduction found via 

aerial telemetry, incidental capture, and mortality (unpublished data, Turner Endangered 

Species Fund and South Dakota Game, Fish and Parks).  Starting in 2008, in southwest 

North Dakota an increase in fatalities due to vehicles collisions also indicated potential 

for an existing population in the area.  These opportunistic records indicate that swift fox 

populations may exist in northwest South Dakota and southwest North Dakota.   

MATERIALS AND METHODS 

Capture and radio telemetry:  

 We live captured swift fox from July 2016 to April 2017, using modified wire box 

traps (Model 108SS; Tomahawk Live Trap Co., Tomahawk, WI, USA) of dimensions 

81.30 cm × 25.40 cm × 30.50 cm (Sovada et al. 1998).  We manually restrained captured 

swift fox while we determined and recorded sex, age (juvenile or adult, determined by 

tooth wear), weight, and body condition.  We also collected blood and skin samples for 

disease and genetic analyses.  We microchipped (AVID Identification Systems Inc., 

Norco, CA) each fox dorsally between the scapulae.  We fitted foxes weighing over 2 kg 

with mammal necklace-type VHF radio collars (Model 1830, Advanced Telemetry 

Systems, Isanti, MN, USA). 

 We located radio-collared swift foxes from July 2016 to December 2017 once 

weekly, after dark. We used a null peak vehicle mounted system to locate foxes from July 

2016 to October 2016 (Brinkman et al. 2002).  Winter weather and access issues such as 
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absence of roads and private landownership precluded continued tracking of swift fox 

from the ground, thus we located foxes from the air from October 2016 to December 

2017, pending pilot availability and weather conditions, using wing mounted antennae on 

a fixed wing aircraft.  We tracked each fox after dark and when we located the signal, the 

pilot would maneuver the airplane in increasingly tight circles around the signal to 

improve accuracy of the presumed location, which we recorded with a handheld GPS unit 

(GPSMAP 62s, Garmin International Inc., Olathe, KS, USA).  All live capture, handling, 

and tracking were approved by the South Dakota State University Institutional Animal 

Care and Use Committee (permit # A3958-01). 

Den site/habitat selection: 

 We tracked radio-collared foxes on the ground during the day to locate den sites, 

from September 2016-December 2016 and May-August 2017.  We attempted to locate at 

least one den per fox during the study.  We recorded the number of entrances, distance to 

road, and visual obstruction at each den site, as well as at one random site per den.  We 

intended to capture visual obstruction from the perspective of a swift fox, which can be 

important for avoiding ambush by coyotes or other predators.  We measured visual 

obstruction using a modified Robel pole with alternating black and white bands that were 

2.54 cm wide (Robel et al. 1970).  We recorded the lowest band that was totally 

obstructed from a distance of 25 m with an eye height of 40 cm, roughly the eye level of 

a swift fox (Egoscue 1979), in each of the four cardinal directions.  We chose random 

sites using a random number generator (R N G Random Number Generator, Version 

1.01, mobile application, A. Rutkowskij).  We generated a random bearing (1-360°) and a 

random distance (200-500 m) from the den site, allowing assessment of selection of sites 
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from local habitat features available to the fox, rather than habitat features within the 

whole home range of the fox.  We used the statistical computing environment R (R 

Development Core Team, cran.r-project.org, accessed 1 May 2016) to evaluate den site 

characteristics using linear regression; we used analysis of variance (ANOVA) to 

compare visual obstruction at den sites to random sites.  Alpha was set at α < 0.05 when 

considering significance of statistical analyses. 

Reproduction: 

 We did not systematically monitor assumed male-female pairs to confirm 

reproduction. Rather, we conducted litter counts opportunistically in April and May 2017, 

as new den sites were discovered.  It is unknown how many pups were born to each 

female, because parturition occurs within the den and pups remain underground for 

approximately three weeks (Asa 2003).  We determined litter size post-emergence of 

pups.  We did this by conducting litter counts using two methods. First, we used motion 

activated, infrared trail cameras (Black Ops HD, Browning, Morgan, UT) placed 3-4 

meters from the den entrance and checked biweekly to determine litter count (Nevison 

2017), where the litter count was considered to be the maximum number of pups 

observed in a single photo. Second, we used binoculars to conduct observation of natal 

dens that were on private property and could not be accessed, but were close to major 

public roads. These dens were observed for at least 60 minutes of pup activity to 

determine the maximum number of pups around the den site at one time. 

Home range and dispersal: 

 Using the weekly tracking data we estimate home range size, core area size, 

dispersal date, and dispersal distance.  Using the Geospatial Modeling Environment 
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(GME; Spatial Ecology LLC, Hawthorne L. Beyer, 2001-2014) and ArcGIS (ESRI, 

Redlands, CA, USA) we modeled the 95% kernel density estimate (home range; Worton 

1989) and the 50% kernel density estimate (core area; Sovada et al. 2003) for each radio 

collared fox.  We used the 95% kernel density method with LSCV bandwidth (Horne and 

Garton 2006) to estimate home range similar to previous swift fox studies (Kitchen et al. 

1999, Pechacek et al. 2000, Kamler et al. 2003a, Sovada et al. 2003).  We calculated 

home ranges from foxes with over 13 tracking locations, with the number of locations 

ranging from 13 to 53.  We estimated juvenile dispersal date as the date of the first 

observation of a juvenile fox >4.82 km from their original capture location.  This was the 

shortest distance a juvenile was observed to move and leave the natal natal home range.  

Dispersal distance was the farthest a juvenile fox traveled from the original capture 

location once it was met the criteria for dispersal defined previously.  For juvenile foxes 

that had two distinct home ranges, one prior to dispersal and one after dispersal, we 

calculated home range after dispersal was completed. 

Survival: 

 We used weekly tracking data to model survival, using known fate in Program 

MARK (White and Burnham 1999) to estimate the probability of survival to the end of 

the study.  Due to the fact that we live captured foxes sporadically from August 2016 to 

March 2017 foxes were entered into the model using staggered entry (Pollock et al. 

1989); foxes that disappeared throughout the study were censored.  We developed a 

priori models that included age, sex, and time covariates, selecting the best fit model with 

the lowest AIC value.  Cause of mortality was determined by field necropsy.  Swift fox 

carcasses with hemorrhaging and puncture wounds consistent with coyote bites, evidence 
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of being shaken (e.g., broken neck and/or back), and/or punctures on the radio collar 

consistent with coyote bites were classified as coyote predations (Sovada et al. 1998, 

Olson and Lindzey 2002a, Kamler et al. 2003a).  Carcasses found on roads and showing 

visible signs of trauma from vehicles (e.g., shattered bones and/or having flattened 

portions of the carcass) were classified as vehicle collisions. 

RESULTS  

  We live captured 41 individual swift foxes, in 376 trap nights, throughout the 

study area sporadically from August 2016 to March 2017.  Of these, 23 were female (5 

adults and 18 juveniles), 16 were male (12 adults and 4 juveniles), and 2 were of 

undetermined sex (Table 1).  We fit radio collars on 26 foxes, including: 2 adult females, 

13 juvenile females, 10 adult males, and 1 juvenile male.  We monitored eight den sites 

in late April and early May 2017 to obtain litter counts.  Three of these dens were 

monitored visually from a distance, while the remaining five dens were monitored via 

trail camera. Of these, pups were observed and counted at four dens. Average litter size 

per den was estimated at 3.25 pups.  However, due to camera malfunctions we were only 

able to record one emergence date, which occurred on 5 May 2017.  

 Four of the 26 radio collared swift fox died, 2 from coyote predation, 1 from a 

vehicle collision, and 1 unknown (Table 1).  An additional 5 swift fox were censored 

because they disappeared during the sampling period, thus the total number of foxes 

included in survival analyses was 21. At the time of mortality, all four foxes were adults, 

and were comprised of one female and three males. However, the vehicle collision, which 

was the lone female mortality, occurred after the sampling period and was not included in 

our survival estimate.  The time model (AIC = 29.85; Table 2) was found to be the best 
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fit for our data. Using this model, the probability of surviving the study was estimated as 

0.86 (SE=0.08, 95% CI=0.64-0.95) and the leading cause of death was coyote predation. 

 We conducted 27 den surveys throughout the study.  The distance to the nearest 

road from den sites ranged from 1 to 4,232 m and from random sites from 0 to 4,393 m at 

random sites.  Average distance to the nearest road at den sites was 570 m (SD = 923 m) 

while it was 630 m (SD = 995 m) at random sites.  Average visual obstruction at den sites 

was 31 cm (SD = 33 cm) and 30.57 cm (SD = 25.51 cm) at random sites; visual 

obstruction at den sites and random sites did not differ significantly (p = 0.929, DF = 1).   

 Of the 14 juvenile radio-collared foxes, 7 were observed to disperse a minimum 

of 4.82 km from their original capture location.  Dispersal dates ranged from 23 October 

to 14 February, with most juveniles dispersing in February (n = 5; Table 3).  Dispersal 

distances ranged from 4.82 km to 29.64 km (Table 3); average distance dispersed was 

17.20 km (SD = 8.76 km).  However, only one fox dispersed less than 10 km; excluding 

this outlier average dispersal was 19.27 km (SD = 7.48).  We estimated the 95% kernel 

density home range and the 50% kernel density core area for 24 of 26 radio collared 

foxes; we did not calculate home range or core range estimates for the remaining 2 foxes 

because they either never settled down enough to form a home range or the fox 

disappeared within 2 weeks of its capture.  We completed these analyses with a total of 

364 fixes for adults and 439 fixes for juveniles; the minimum number of fixes for any 

individual was 13.  Home range size varied from 21.53 km2 to 132.44 km2, while core 

area ranged from 3.62 km2 to 37.34 km2 (Table 4).  Average home range size (95% 

kernel density) was 55.38 km2 (SD = 28.62 km2) and average core area size (50% kernel 

density) was 12.19 km2 (SD = 7.69 km2).  However, 3 individuals had exceptionally large 
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home ranges, exceeding 100 km2.  Excluding these 3 individuals the average home range 

size was 46.61 km2 (SD = 16.64 km2) and average core area size was 9.83 km2 (SD = 

3.80 km2). 

DISCUSSION 

 The swift fox population in the Dakotas that we studied is assumed to be a small 

isolated population, but has not previously been studied or monitored.  When the swift 

fox selects habitat by dispersal it effects distribution, density, and fitness of the 

individuals in the population (Hilden 1965, Morris 1991, Pulliam and Danielson 1991, 

Stamps 1994, Lima and Zollner 1996).   Low population density can effect fitness 

distributions (Allee effects), conspecific interactions, and the amount of habitat used 

(Allee 1951, Fretwell and Lucas 1970, Stamps 1988, Stamps 1991).  A better 

understanding of the litter size, home range size, dispersal timing and distance, survival, 

and den site characteristics is necessary to evaluate and manage the population.  Our 

study provides a first look into the general ecology of the swift fox population in 

northwest South Dakota and southwest North Dakota. 

 The average swift fox litter size in northwest South Dakota and southwest North 

Dakota (average litter size = 3.25) was within the range of estimates in similar studies 

conducted throughout the species range (Table 5; Kilgore 1969, Moehrenschlager 2000, 

Olson and Lindzey 2002a, Sovada et al. 2003, Karki 2007, Nevison 2017).  However, it 

was slightly lower than the combined average of these studies (i.e., 3.57).  It is unclear if 

this difference is biologically significant to swift fox recovery in the area.  However, it 

indicated that this is likely a viable re-colonization, with comparable litter sizes to other 

established populations.  It is possible that lower pup counts could be related to a high 
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prevalence of canine parvovirus and/or canine distemper virus in the population (E. 

Mitchell in prep), although this relationship has yet to be studied in swift foxes.  

Production of pups in kit fox is likely related to prey abundance (White and Ralls 1993, 

White et al. 1996, Cypher et al. 2000), and is likely the case for swift foxes as well.  We 

hypothesize that the prey abundance in the Dakotas is similar to other areas with swift 

fox, due to our comparable litter sizes.  However, we suggest further examination of diet 

selection and prey abundance in this population to better understand the possible food 

limitations in the region.  The motion activated cameras at den sites allowed monitoring 

of dens continuously, potentially providing more accurate pup counts than visual 

observations while also reducing labor and logistic demands.  This study and that of 

Nevison (2017), conducted at Badlands National Park in South Dakota, are the only 

studies to date that have used motion activated cameras to conduct swift fox pup counts.   

 Our results are consistent with many other studies that have found that coyotes are 

the leading cause of mortality of swift and kit foxes (Vulpes macrotis) (Laurion 1988, 

Covell 1992, Carbyn et al. 1994, Ralls and White 1995, Sovada et al. 1998, Olson and 

Lindzey 2002a, Schauster et al. 2002, Ausband and Foresman 2007, and Cypher et al. 

2009).  Overall, however, swift fox survival rates were higher in the study area compared 

to values reported elsewhere. For example, reported swift fox survival rates in the 

Northern Great Plains range from 0.26, 0.39, and 0.50 for reintroduced populations in 

South Dakota ( Sharps and Whitcher 1984, Sasmal et al. 2016, Nevison 2017), 0.48 and 

0.53 for resident individuals in Colorado (Rongstad et al. 1989, Covell 1992), 0.58 for 

resident individuals in Wyoming (Olson and Lindzey 2002a), 0.51 for resident 

individuals in Canada (Moehrenschlager et al. 2007), and up to 0.73 for resident 
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individuals in a reintroduced population in northern Montana (Ausband and Foresman 

2007). The large confidence intervals surrounding this estimate indicate uncertainty in the 

measure and imply that survival may be within the range reported for other populations 

(Table 6). This variance is potentially influenced by modest sample size and a limited 

time period for data collection; survival estimates in other portions of the species 

distribution are generally calculated over multiple years and, further, show high inter-

annual variation (Olson and Lindzey 2002a, Kamler et al. 2003a, Nevison 2017). Thus, it 

is unclear if survival in the Dakotas is sustained at the rate we detected, or if it fluctuates 

as in other populations. One notable difference between the Dakotas and other regions 

where survival has been estimated is the extensive predator removal programs in the 

region, of which coyotes are a primary target. Karki et al (2007) reported increased 

survival of both juvenile and adult swift fox during experimental coyote removal; the 

effect was temporary in their study but could easily be extended when coyote control is a 

sustained, year-round management strategy, as is the case in the Dakotas.  With 

presumably small, isolated, populations, adult survival is important, as adult fecundity is 

generally higher than juvenile fecundity (Sovada et al. 1998, Nevison 2017), a vital factor 

in population growth.  Conversely, low juvenile survival and recruitment may be a 

limiting factor in swift fox population density and expansion (Sovada et al. 1998, Kamler 

et al. 2003a, Nevison 2017).  Assessing survival rates over multiple years and exploring 

the potential link between coyote control and swift fox survival may elucidate unique 

factors shaping swift fox survival and, ultimately, re-colonization in this region.    

 Although there was no statistically significant difference in the distance to the 

nearest road from den sites and random sites our study found den sites to be generally 
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farther from roads that similar studies.  Swift fox den sites in the Dakotas are an average 

of 570.99 m from the nearest road.  This is contrary to most other studies, which found 

dens tend to be much closer to roads (range = 161 m - 267 m) than those in our study 

area.  For example, Olson (2000) recorded an average distance of 215 m to the nearest 

road in Wyoming.  In a previous study in southwestern South Dakota, dens were an 

average of 160.90 m from the nearest road (Nevison 2017).  Finally, swift fox dens in 

Canada were an average of 267 m from the nearest road (Pruss 1999).  Only Harrison 

(2003) reported findings similar to our study; he documented dens sites an average of 660 

m from roads.  We suggest two possible explanations for this disparity. First, it is 

possible that swift fox in the Dakotas select den sites farther from roads due to increased 

risk of anthropogenic sources of mortality near roadways.  For example, swift fox are 

frequently mistaken for coyote pups and shot in other parts of the species distribution; 

although swift fox are protected in South Dakota, it is possible that mistaken identity may 

result in higher mortality for swift foxes near roads.  In addition, although adults denning 

near roads may persist for many years, pup mortality is often very high (Nevison 2017).  

Finally, vehicle strikes are a common source of mortality for swift foxes (Sovada et al. 

1998, Matlack et al. 2000, Kamler et al. 2003a, Nevison 2017) and, in one study, 

exceeded coyotes as the primary source of mortality in swift foxes (Kamler et al. 2003a).  

Second, extensive coyote control throughout the study area may release swift fox from 

intraguild predation risk and facilitate denning further from the anthropogenic shield 

provided by roadways in other parts of the species distribution, where coyote control is 

less intense.  Distance to road is considerably lower for the only other swift fox 
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population in South Dakota in which it has been studied (Nevison 2017); notably, coyote 

control in that region is neither as intense nor as systematic as in the study area. 

 Our study found an average visual obstruction of 31.28 cm compared to 30.57 cm 

in height at random sites.  There was no significant difference in vegetation density 

between den and random sites, indicating that swift foxes were not selecting den sites 

based on the parameters we measured or the scale we used.  Vegetation is often 

considered a primary tool for prey species to hide from predators (DePerno et al. 2003).  

However, in the case of the swift fox, tall vegetation likely allows its primary competitor, 

the coyote, to remain undetected when at close proximity to foxes, enhancing the chance 

of mortality (Kitchen 1999, Harrison 2003).  Cutter (1958) and Cameron (1984) located 

swift fox dens in areas with little to no vegetation, whereas Jackson and Choate (2000), 

Uresk et al. (2003) and Kitchen et al. (2006) observed foxes selecting for denser 

vegetation or not selecting based on vegetation, but simply using what was available to 

them.  With conflicting results, the role of vegetation in den site selection is currently 

uncertain.  Similar to our study, Kitchen et al. (2009) failed to detect factors which 

influenced swift fox dens site selection at the scale of the den site, but location within the 

home range was an important predictor of use.  It is possible that den site selection by 

swift foxes is influenced by factors at broader scales than the one we used.  It is also 

possible that swift fox habitat selection, and there for den site selection, is driven by an 

environmental factor not included in either study. 

 Juvenile swift foxes are generally thought to disperse from the natal home range 

beginning in September through February (Covell 1992, Sovada et al. 2003, Kamler et al. 

2004).  Swift foxes in Oklahoma have been documented to disperse in August/September 
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(Kilgore 1969), whereas foxes in Colorado were found to disperse in September/October 

(Covell 1992), and Sovada et al. (2003) observed that swift foxes in Kansas dispersed in 

November.  In a comprehensive assessment of dispersal in 109 adult and 114 juvenile 

swift fox in Colorado, New Mexico, and Texas, Kamler et al. (2004) reported bimodal 

dispersal patterns, with two pulses occurring in September-October and January-March. 

Our results are consistent with these findings and further, imply that swift fox dispersal in 

the NGP may be biased towards the later peak in dispersal. This later timed dispersal 

could possibly be caused by high resource availability around the natal den, encouraging 

pups of the year to stay with the family group until the mating season (February-March; 

Tannerfeldt et al. 2003).  All seven juveniles with recorded dispersal events were female, 

which contrasts with male-biased juvenile dispersal rates reported for swift fox elsewhere 

(Sovada et al. 2003, Kamler et al. 2004). All other juvenile foxes were either radio-

collared after they dispersed, including those individuals radio collared in March 2017, or 

remained within the natal home range. We were also unable to locate two juveniles after 

14 February and for the remainder of the study, both of which were female.  

Average dispersal distance in this study (17.20 km; range 4.82 km - 29.64 km) 

was larger than values reported in most similar studies; when a single, exceptionally short 

dispersal distance is removed from our data set, this average increases to 19.27 km (range 

12.07 km - 29.64 km). Swift foxes in Colorado were found to disperse an average of 

12.60 km (range 8.40 – 15.90 km; Schauster 2002), foxes in Canada were observed to 

disperse 12.10 km on average (Moehrenschlager 2000), and swift foxes in Kansas 

dispersed 14.70 km on average (SE = 4.80; Sovada et al. 2003).  In Texas, average 

dispersal distance differed by individual status and habitat fragmentation (Nicholson et al. 
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2007). Average dispersal distances for juveniles and resident adults (13.10 km +/- 0.30 

km and 10.00 km +/- 4.70 km, respectively) were less than the dispersal average we 

report here, but the average dispersal distance of transients was greater (25.40 km +/- 

9.10).  Average dispersal distance, regardless of status, was greater in fragmented habitats 

than contiguous habitats (27.40 km +/- 21.40 km vs 21.80 km +/- 22.50 km). Both 

estimates exceed the average dispersal distance we report here, but when only juveniles 

are considered then dispersal in contiguous habitats is lower and dispersal in fragmented 

habitats is higher (9.30 km +/- 8.70 km vs 25.90 km +/- 20.80 km, respectively) than 

average juvenile dispersal reported here. We hypothesize that the longer dispersal 

distances in the Dakotas were due to the population being small and isolated, causing 

Allee effects to occur. Juveniles must travel longer distances to find a non-family 

member with which to mate (Creel and Creel 2002). High levels of relatedness in the 

population (Mitchell et al. in prep) may exacerbate individuals’ search for an unrelated 

mate, increasing dispersal distances.  

Although we documented a larger average juvenile dispersal distance than most 

other studies, only about 40% of our juveniles dispersed.  The other 60% stayed within 

their natal home range.  We documented a much lower dispersal rate than other studies; 

of the 10 swift foxes in a Kansas study 7 dispersed (70%; Sovada et al. 2003), of the 114 

juvenile swift foxes in Colorado, New Mexico, and Texas 59 dispersed (52%; Kamler et 

al. 2004), of the 25 swift foxes in northwestern Texas 18 dispersed (72%; Nicholson et al. 

2007).  However, we observed a higher dispersal rate than Schauster (2002), who 

recorded 8 dispersed juvenile swift fox of the 25 monitored in Colorado (32%).  The low 

percentage of dispersing individuals in this study could be due to high resource 
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availability at natal sites, possibly high availability of mates near natal sites, due to 

clustering of different family groups.  Swift fox are likely dispersing at low rates due to 

conspecific attraction occurring near natal dens, and reducing the want/need to disperse at 

all.  We did document one juvenile with exploratory movements prior to dispersal.  This 

fox left the natal home range, traveling distances ranging from 3.70 km to 15.26 km 

before returning, and eventually dispersed into a new home range.  We likely missed 

other exploratory movements due to the limit frequency at which data was collected 

using the VHF radio collars.  

Swift fox have been documented to disperse extreme distances compared to their 

body size in some instances. For example, Ausband and Moehrenschlager (2009) 

recorded a straight-line dispersal distance of 181 km by a juvenile swift fox in Montana, 

while Olson and Lindzey (2002b) report a dispersal distance of 67 km  by a yearling 

female and Nicholson et al (2007) reports multiple instances of individual dispersal 

distances exceeding 60 km. While we observed larger than typical average dispersal 

distances, we did not record any such long-distance dispersal events, although the fate of 

4 individuals in the population is unknown and long-distance dispersal cannot be ruled 

out.  

 The average home range size of 55.38 km2 for swift foxes in our study area is 

higher than those estimated in other studies of swift fox. This estimate includes three 

exceptionally large home ranges which exceed 100 km2 (Table 7); however, when these 

three home ranges are excluded, the average home range remains large (46.61 km2).  It is 

difficult to compare home range sizes from study to study due to different monitoring and 

data analysis techniques, e.g., some studies used the 95% kernel density method and 
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others used the minimum convex polygon method; variation in the number of locations 

used between studies also influences these calculations.  Six studies found swift fox home 

ranges to vary between 7.60 km2 and 32.20 km2, with an average of 14.92 km2 (Hines 

and Case 1991, Kitchen et al. 1999, Pechacek et al. 2000, Zimmerman et al. 2003, 

Kamler et al. 2003, Sovada et al. 2003).  Prior to beginning this study, we hypothesized 

that swift fox home ranges in the Dakotas would be larger than other populations, due to 

their assumed low abundance.  This low abundance likely allows them to exploit more of 

the resources in a larger area and causes them to travel longer distances to find a mate.  

We hypothesize that the larger home range size is a result of Allee effects, due to the low 

population density.  In general, reported average home ranges are larger for swift foxes in 

the northern end of the species distribution (Olson and Lindzey 2002b, Hines and Case 

1991) including in this study.  This implies that swift fox in the northern Great Plains 

may experience different resource availability (e.g., prey abundance, amount of suitable 

habitat, interspecific competition) or other population-level factors (e.g., disease, human 

inflicted mortality) compared to swift fox in the central or southern Great Plains.  Further 

research is necessary to determine the mechanisms regulating swift fox densities, and 

therefore, swift fox home range size in the northern portion of the species’ distribution.  

Little was known about the swift fox population in northwest South Dakota and 

southwest North Dakota prior to this study.  With the species listed as threatened in South 

Dakota and considered rare in North Dakota a better understanding of the fox populations 

that do currently exist is vital to the success of future conservation efforts.  This is 

especially important since the evidence we present here implies that this population may 

be different in many ways from populations in southerly regions, where more empirical 
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information has been generated for this species. These differences may be attributed to a 

possible lack of resources, the likely low swift fox abundance, and/or predator removal 

practices.  Further research is necessary to determine the mechanisms that result in lower 

litter size, higher survival rates, den site locations, dispersal patterns, and large home 

ranges.  Understanding the mechanisms behind the ecology of this population will allow 

wildlife managers to develop site-specific conservation plans and programs, thus 

encouraging continued reestablishment of the species in this region.  
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Figure 1. The map includes the focal counties in southwest North Dakota (Bowman, 

Adams, Hettinger, and Slope) and northwest South Dakota (Harding, Perkins, Meade, 

and Butte) where swift fox were captured. Individual fox trapping locations are shown as 

black dots, reintroduction sites are shown as black triangles, and the remnant population 

is shown as a black star. 
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Table 1. Radio collared swift fox capture, sex (F = female, M = male), age (A = adult, J = 

juvenile), and mortality data. 

Fox ID 
Date 

Captured County Sex Age 
Mortality 

Date 
Mortality 

Cause 

1602 7/26/2016 Bowman F J   

1604 7/26/2016 Bowman F A   

1606 9/14/2016 Meade F J   

1608 9/14/2016 Meade M J   

1609 9/14/2016 Meade F J   

1611 9/14/2016 Meade F J   

1612 9/14/2016 Meade F J   

1614 9/17/2016 Bowman M A   

1615 9/27/2016 Meade F J   

1616 9/28/2016 Meade F J   

1617 10/11/2016 Perkins M A   

1618 11/12/2016 Perkins F J   

1621 11/6/2016 Perkins F J   

1622 11/6/2016 Perkins M A   

1623 11/11/2016 Butte M A 11/7/2017 unknown 

1624 11/26/2016 Harding M A   

1625 12/13/2016 Harding F J   

1702 1/14/2017 Harding F J   

1704 1/26/2017 Harding F J 11/24/2017 vehicle 

1705 2/3/2017 Harding M A 8/25/2017 coyote 

1707 3/28/2017 Harding F J   

1708 3/28/2017 Harding M A   

1709 3/30/2017 Meade M A 8/28/2017 coyote 

1710 3/31/2017 Butte M A   

1711 3/31/2017 Meade F A   

1714 4/1/2017 Butte M A   
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Table 2. Swift fox survival model results for known fate in program MARK.  The best fit 

model (t; time, the number of weeks monitored) was decided by lowest AIC value. 

Model AICc 
Delta 
AICc 

AICc 

Weight 
Model 

Likelihood 
Number of 
Parameters Deviance 

{S(t)} 29.85 0.00 0.99 1.00 3.00 23.82 

{s(.)} 41.85 12.01 0.00 0.00 1.00 39.85 

{S(age*sex)} 53.70 23.86 0.00 0.00 3.00 47.68 

{S(age+sex)} 60.50 30.66 0.00 0.00 2.00 56.49 

{S(sex)} 399.11 369.26 0.00 0.00 2.00 395.09 

{s(age)} 728.90 699.05 0.00 0.00 2.00 724.89 
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Table 3. Radio collared juvenile swift fox age, dispersal dates, distances, and the fate 

(i.e., survival status/reproductive status) of the fox for 15 individuals. Seven of the 

juvenile radio collared swift fox were documented to have an obvious dispersal event, 

moving at least 4.82 km from their original capture location. All seven dispersing 

individuals were female. 

Fox ID 

 Dispersal 
Event 

Dispersal 
Date 

Dispersal Distance   

Sex (km) Fate 

1602 F N lost 2/14 ---------- unknown 

1606 F N ---------- ---------- survived/ unknown 

1608 M Y 3-Nov 26.95 survived/ unknown 

1609 F Y 23-Oct 12.07 survived/ reproduced 

1611 F Y 3-Nov 4.82 survived/ reproduced 

1612 F Y 3-Feb 19.05 survived/ unknown 

1615 F N lost 2/14 ---------- unknown 

1616 F Y 3-Feb 15.57 survived/ unknown 

1618 F Y 14-Feb 29.64 survived/ unknown 

1621 F Y 3-Feb 12.35 survived/ unknown 

1625 F N ---------- ---------- survived/ unknown 

1702 F N ---------- ---------- survived/ reproduced 

1704 F N ---------- ---------- died - vehicle collision 

1707 F N ---------- ---------- 
survived/ did not 
reproduce 

1708 M N ---------- ---------- survived/ unknown 
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Table 4. Radio collared swift fox home range estimates, using 95% Kernel Density 

Estimate (KDE; home range) and 50% Kernel Density Estimate (core area), with sex (F = 

female, M = male), age (A = adult, J = juvenile), and number of telemetry fixes for each 

fox. 

Fox ID Sex Age # Fixes 95% KDE 50% KDE 

1602 F J 22 29.70 6.49 

1604 F A 52 32.90 6.09 

1606 F J 46 49.48 7.79 

1609 F J 42 105.54 21.44 

1611 F J 45 55.87 10.85 

1612 F J 26 132.44 37.34 

1614 M A 53 49.11 10.84 

1615 F J 19 37.20 9.35 

1616 F J 32 58.46 14.75 

1617 M A 50 28.87 5.57 

1618 F J 29 16.73 3.62 

1621 F J 45 71.19 12.84 

1622 M A 16 70.32 16.09 

1623 M A 40 112.20 27.5 

1624 M A 44 21.53 4.69 

1625 F J 39 39.01 9.05 

1702 F J 35 29.01 4.85 

1704 F J 32 44.27 7.37 

1705 M A 21 45.45 11.47 

1707 F J 27 46.52 10.86 

1708 M A 26 58.88 12.06 

1709 M A 13 73.45 16.26 

1711 F A 26 53.27 11.46 

1714 M A 27 67.64 14.06 

Average    55.37667 12.19542 
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Table 5. Average swift fox litter sizes reported by similar studies throughout the range of 

the swift fox.   

Location 
Average 

Litter 
Sample 

Size Reference 

Badlands National Park, South Dakota 
4.30 

(±0.30) 17 Nevison 2017 

Southeastern Colorado 
2.50 

(±1.90) 51 Karki 2007 

Kansas 
3.10 

(±0.40) 10 Sovada et al. 2003 

Southeastern Wyoming 
4.60 

(±0.40) 25 Olson and Lindzey 2002a 

Alberta/Saskatchewan 
3.90 

(±1.8) 29 Moehrenschlager 2000 

Southeastern Colorado 
2.40 

(±0.30) 13 Covell 1992 

Beaver County, Oklahoma 
4.30 

(±1.10) 4 Kilgore 1969 

AVERAGE 3.57    

Southwest South Dakota/Northwest North 
Dakota 

3.25 
(±0.50) 4 This study 
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Table 6. Swift fox survival estimates with in the Northern Great Plains region and 

throughout the species range.  

Location 
Survival 

Probability 
Sample 

Size Method Reference 

Badlands National Park, South Dakota 0.38-0.47 22 Kaplan-Meier Nevison 2017 

Badlands National Park, South Dakota 0.20-0.47 341 
Cormack–

Jolly–Seber Sasmal  et al. 2016 

Southeast Wyoming 0.40-0.69 56 Kaplan–Meier 
Olson and Lindzey 
2002a 

Montana 0.46 11 Kaplan–Meier Zimmerman 1998 

Colorado 0.13-0.53 94 Kaplan-Meier Covell 1992 

Northern Montana 0.47-0.73 58 
Matlab 

‘‘eigenall’’ 
Ausband and 
Foresman 2007  

Piñon Canyon Maneuver Site, 
Colorado 0.55-0.75 90 MICROMORT Schauster 2001 

Western Kansas 0.55-0.67 65 Kaplan-Meier Sovada et al. 1998 

Texas 0.52-0.66 42 MICROMORT Kamler et al. 2003a 

Southwest South Dakota/Northwest 
North Dakota 0.86 26 known-fate This study 
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Table 7.  Average home range size of 5 similar studies, throughout the swift fox range.  

Comparing results can be difficult due to different methods of analyzing data. 95% 

adaptive kernel density (ADK) and minimum convex polygon (MCP) are the most 

common.  

Location 

Average 
Home 
Range 
(km2) SE/range 

Sample 
Size Method Reference 

Kansas 15.90 SE = 1.60 21 95% ADK 
Sovada et al. 
2003 

Colorado 7.60 SE = 0.50 73 95% ADK 
Kitchen et al. 
1999 

Texas 11.70 SE = 1.00 17 MCP 
Kamler et al. 
2003a 

Nebraska 32.20 7.70-79.30 7 MCP 
Hines and Case 
1991 

Montana 10.40 7.30-16.90 5 MCP 
Zimmerman et 
al. 2003 

AVERAGE 14.92      

Southwest South Dakota/Northwest 
North Dakota 55.38 SE = 5.84 24 

95% ADK 
(LSCV) This study 
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CHAPTER 3 

AFFECT OF SYMPATRIC CANIDS ON DISTRIBUTION OF SWIFT FOXES 

(VULPES VELOX) IN THE DAKOTAS, USA 
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ABSTRACT 

Interspecific competition between coyotes (Canis lupis), red fox (Vulpes vulpes) and 

swift fox (Vulpes velox) is likely a factor determining species distribution throughout the 

landscape.   We conducted a systematic survey of suitable swift fox habitat in 6 counties 

and all suitable home ranges in 2 counties from August - December 2015 (North Dakota), 

and 2016 (South Dakota) to shed light on how these species interactions affect swift fox 

distribution.  We placed the camera stations 6.68 km apart, roughly two swift fox home 

ranges, and each camera station was deployed for 7 consecutive trap nights.  We detected 

swift fox at 10 camera sites, coyotes at 191 camera sites, and red fox at 190 camera sites 

in 3,929 effective trap nights.  We live captured swift fox and tracked weekly, from July 

2016 to April 2017; capturing 41 swift fox, deploying 26 radio collars, collecting 611 

locations. We also located 32 active den locations, confirmed 7 incidental sightings, and 

located 9 road mortalities.  We used the camera detection data to model occupancy of 

coyotes and red fox at two different scales, double-home range (6.68 km) and home range 

(3.34 km).  At the double-home range scale, we estimated a detection probability of 0.176 

(SE = 0.013) for coyotes, a detection probability of 0.195 (SE = 0.0119) of red fox.  We 

estimate that coyotes occupy 63% of the study area, while red fox occupy 53%.  At the 

home range scale, we estimated a detection probability of 0.175 (SE = 0.013) for coyotes, 

a detection probability of 0.802 (SE = 0.137) of red fox.  We estimate that coyotes 

occupy 69% of the study area, while red fox occupy 46%.  We used Random Forest (RF) 

and the combined detection data (camera, trapping, tracking, den sites, mortalities, and 

incidental sightings) to model distribution of swift fox, adding the sympatric canid 

occupancy models in as predictor variables, also at two different scales, the sub-home 

range (30 m) and the home range (3.34 km).  The swift fox distribution model at the sub-
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home range scale had an overall out-of-bag (OOB) of 0.108, OOB error of presence of 

0.140, and an OOB of absence of 0.078.  The top prediction variables were elevation, 

coyote occupancy, red fox occupancy, percent sand in soil, and road density.  Of the 

40,632.49 km2 study area only about 5,000 km2, or 12%, has a ≥ 50% chance of being 

used by swift fox.  While at the home range scale, overall out-of-bag (OOB) of 0.480, 

OOB error of presence of 0.256, and an OOB of absence of 0.559.  The top prediction 

variables were red fox occupancy, roughness, percent scrub, coyote occupancy, and 

greenness. With this model about 14,000 km2, or 34%, has a ≥ 50% chance of being used 

by swift fox.  Both models were overfit, but both also found coyote and red fox 

occupancy to be negatively correlated with swift fox habitat use.  This study is one of the 

first to explicitly incorporate interspecific three-way interactions into a species 

distribution model, and it is the first of its kind to do so for swift foxes.  The results 

illustrate the importance of including the effect of sympatric canid occupancy in future 

assessments of swift fox distribution.  

INTRODUCTION 

 Apex predators, species that occupy the top trophic position in a community, have 

been found to play a leading role in suppressing populations of mesopredators (Crooks 

and Soulé 1999, Johnson et al. 2007, Berger et al. 2008, Ritchie and Johnson 2009).  

Apex predators can affect abundance and distribution of mesopredators directly through 

lethal encounters, as well as indirectly by inducing behavioral changes to reduce 

mortality risk (Ritchie and Johnson 2009).  Mesopredator release hypothesis predicts an 

increase in mesopredators abundance when apex predator abundance is reduced (Soulé et 

al. 1988).  This is thought to be due to a decrease in intraguild predation and competition.   
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One form of lethal encounter between apex predators and mesopredators is 

interspecific killing, where the mesopredator is killed for reasons other than food 

consumption (Minta et al. 1992, Gese et al. 1996, Palomares and Caro 1999, Helldin et 

al. 2006).  Interspecific killing is especially common among canid species (Carbyn 1982, 

Paquet 1992, Thurber et al. 1992, White et al. 1994, Ralls and White 1995, Palomares 

and Caro 1999, Kamler et al. 2003b, Pamperin et al. 2006), and is generally associated 

with interspecific competition for food resources (Donadio and Buskirk 2006). In some 

cases the rate of interspecific killing has direct, negative demographic effects on the 

smaller canid species (Caro 1987, Palomares and Caro 1999, Sergio and Hiraldo 2008).  

For example, Ralls and White (1995) demonstrated that coyote predation can cause 

significant population declines in kit fox (Vulpes macrotis). Interspecific killing can also 

create a landscape of fear response (Brown et al. 1999), causing mesopredators to alter 

their behavior to avoid high-risk areas. This ultimately results in spatial displacement of 

smaller canids by the larger canids which kill them, as has been well documented in 

coyote and red fox interactions (Voigt and Earle 1983, Major and Sherburne 1987, 

Sargeant et al. 1987) and in red fox and arctic fox interactions (reviewed in Hof et al. 

2012). 

In the Dakotas, the coyote is considered an apex predator, due to the extirpation of 

wolves (Canis lupus; Crooks and Soulé 1999). Coyotes are sympatric, in the mixed grass 

prairies of the Dakotas, with two smaller canid species, red fox and swift fox.  Of these 

species, the swift fox is considered rare in North Dakota and is listed as threatened in 

South Dakota (North Dakota Game and Fish 2017, South Dakota Game, Fish, and Parks 

2017).  The current swift fox distribution is unknown, and could be negatively affected 
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by the presence of coyotes, and potentially also by red fox.  For example, interspecific 

killing is a well-documented outcome of coyote/swift fox interactions (Kamler at al. 

2003a, White et al. 1994, Ralls and White 2016, Karki et al. 2007), and coyotes have 

been found to be the primary cause of mortality in swift fox, resulting in suppression of 

swift fox populations (Covell 1992, Carbyn et al 1994, Sovada et al. 1998, Olson and 

Lindzey 2002, Schauster et al. 2002, Kamler et al. 2003b, Ausband and Foresman 2007).  

Swift fox home ranges have been found to not overlap coyote core areas, presumably to 

avoid the predation threat (Kamler et al. 2003b, Thompson and Gese 2007).  Neither 

interspecific killing nor exclusion of swift fox by red fox has been described.  

Nonetheless, red fox are known to kill arctic fox and kit fox to remove them from 

preferred habitat (Frafjord et al. 1989, Ralls and White 1995, Pamperin et al. 2006), so it 

is likely that red fox also kill swift fox.  Likewise, behavioral avoidance of red fox by 

arctic fox has been observed at den sites (Frafjord et al. 1989) and the presence of red fox 

is the primary factor limiting arctic fox recolonization of areas from which it was 

extirpated in Fennoscandia (Hamel et al. 2013), thus it seems probable that red fox may 

negatively influence the local distribution of swift fox in the Dakotas.   

Taken together, the evidence of both coyote and red fox predation on and 

exclusion of smaller fox species provides clear evidence that interspecific interactions 

between canid species, in addition to habitat attributes, likely play an important role in 

understanding species distribution and habitat use for smaller canids like the swift fox. To 

date, most investigations of swift fox distribution have focused on habitat characteristics 

(e.g., Finley et al. 2005, Martin et al. 2007, Corral 2012) or focused on site-specific 

characteristics such as vegetation height, slope, soils, and distance to road (e.g., Cutter 
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1958, Kilgore 1969, Chambers 1978, Hillman and Sharps 1978, Roy and Dorrance 1985, 

Hines and Case 1991, Sovada et al. 2001).  It is currently unclear whether or not red fox 

or coyotes affect swift fox space use in the study site.  Our objective was to assess the 

influence of the presence of sympatric canids, in addition to habitat characteristics, on 

swift fox home range distribution in an area where the species is rare and appears to be in 

the process of recolonization. To meet this objective, we conducted a systematic camera 

survey to record species presence, and used a unique approach which combined 

occupancy model outputs for coyotes and red fox into a species distribution model 

(SDM) for swift fox.  If either coyotes or red fox were to displace swift fox, we expect to 

observe a negative relationship between swift fox presence and the probability of 

occupancy of either sympatric canid. We also hypothesize that sympatric canids can 

displace swift fox from their preferred habitat. If this were the case, we would expect to 

observe habitat relationships that are opposite or unusual (e.g. a negative relationship 

with % cover of grass) based on what is known for swift fox in other areas.  Lastly, we 

hypothesize that there is a tri-trophic interaction between coyotes, red fox, and swift fox; 

with coyotes excluding both red fox and swift fox, likely encouraging red fox to then 

exclude swift fox.   

STUDY AREA 

 The study area included Harding, Butte, Perkins, and Meade counties in South 

Dakota and Slope, Bowman, Adams, and Hettinger counties in North Dakota (Figure 1).  

The study was conducted on state, federal (i.e., Forest Service and Bureau of Land 

Management), and private lands within the region.  The study area encompassed 

approximately 40,600 km2 dominated by mixed grass prairie, interspersed with sagebrush 
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(Artemisia sp.).  Prominent grasses of the mixed grass prairie in the area were: western 

wheatgrass (Pascopyrum smithii), green needle grass (Nassella viridula), needle and 

thread (Hesperostipa comata), blue grama (Bouteloua gracilis), and side-oats grama 

(Bouteloua curtipendula).  Topography was largely flat to gently rolling hills with 

occasional buttes. The primary soil types were clays derived from Creataceous Pierre 

Shale.   Predominate water features included Shadehill Reservoir, Belle Fourche 

Reservoir, and the Belle Fourche River.  Lands use was primarily cattle and sheep 

production.  77% of the study area was deemed suitable swift fox habitat via a habitat 

suitability index (Olimb et al. 2018).  

MATERIALS AND METHODS 

Camera survey: 

 We used ArcGIS (ESRI, Redlands, CA) and Geospatial Modeling Environment 

(GME; Spatial Ecology LLC, Hawthorne L. Beyer, 2001-2014), and a swift fox habitat 

suitability index, created by World Wildlife Fund (WWF; Olimb et al. 2018), to generate 

a grid of survey sites 6.68 km apart, about two swift fox home ranges (Sovada et al. 

2003) for Meade and Perkins counties in South Dakota and Slope, Bowman, Adams, and 

Hettinger counties in North Dakota.  In all but two counties, locations are within swift 

fox predicted high-quality habitat.  However, camera locations in Harding and Butte 

County in South Dakota were similarly spaced but were chosen without regard to habitat 

type or suitability. This was done to obtain samples from areas not defined as suitable by 

the swift fox habitat suitability index.  When access to the site centroid could not be 

obtained, we placed cameras in the nearest accessible habitat, maintaining a minimum 

spacing of 3.34 km (one swift fox home range) to reduce the likelihood of the same swift 
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fox being detected at multiple sites (Figure 1).  We sampled sites by placing a Browning 

Black Ops HD (Browning Trail Cameras) or Moultrie (EBSCO Industries Inc.) trail 

camera on an existing structure (i.e., fence post or power pole) in the highest quality swift 

fox habitat nearest the site centroid. We placed cameras approximately 40 cm above the 

ground, facing various directions.  We did not face them due east or west in order to 

avoid glare from the sun.  We then applied a scent lure, such as Canine Call (Carman's, 

New Milford, PA) and/or Powder River (O'Gorman Enterprises, Broadus, MT), to a 

wooden stake placed 3 m in front of the camera. We also applied sent lure to the ground 

at random locations between the camera and the stake.  To provide an additional 

attractant, we punched 8 holes in a can of cat food, and staked it to the ground 2-3 inches 

in front of the wooden stake (Figure 2).  

 Camera trapping occurred for 7 consecutive days at each site from August to 

December in 2015 (North Dakota) and 2016 (South Dakota). We chose fall sampling 

because swift fox pups begin to forage independently, juveniles begin to disperse, and 

adults are more active and travel farther from their dens during this time (Olson et al. 

2003). This increased activity maximized the chance of detecting individuals in this small 

population (E. Mitchell in prep.).  We defined a sampling occasion to be a 24 hour period 

beginning at the time of set up.  We defined encounter history as detected, "1", if the 

animal was photographed at least once in a sampling occasion and undetected, "0", if it 

was not.  

Live capture and radio telemetry:  

 We captured swift foxes from July 2016 to April 2017 using modified wire box 

traps (Model 108SS; Tomahawk Live Trap Co., Tomahawk, WI, USA) of dimensions 
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81.3 cm × 25.4 cm × 30.5 cm (Sovada et al. 1998).  We fitted captured foxes weighing 

over 2 kg with a necklace-type VHF radio collars (model 1830, Advanced Telemetry 

Systems, Isanti, MN, USA) and released them at the capture site. We located radio 

collared swift foxes after dark once weekly, on average, between July 2016 and 

December 2017. We used a null peak vehicle mounted system (Brinkman et al. 2002) for 

radio telemetry until snow closed the roads in October 2016. From then until sampling 

ended in December 2017 we located foxes from a fixed-wing aircraft with wing-mounted 

antennae when weather conditions allowed and pilots were available. We located foxes 

after dark and recorded a GPS location using aerial telemetry or triangulation. We tracked 

foxes using handheld antennae to find den sites. 

Predictor Variable Selection: 

 We chose predictor variables that were likely to represent important determinants 

of swift fox and sympatric canid habitat suitability based on previously published 

literature (Table 1).  We obtained these predictor variables from publically available 

landcover, soil type, DEM, and road GIS layers.  We calculated separate GIS layers for 

crop, grass, forest and scrub land cover types using the National Land Cover Database 

(NLCD 2012). For each layer, we calculated the proportion of the target land cover type 

using a moving window with a 1 km radius implemented in the Geomorphometry and 

Gradient Metrics add-on toolbox in ArcGIS 10.0 (Evans and Oakleaf 2012). We used the 

tasseled cap transformation (ESRI 2010) to measure brightness of soil (brightness), 

presence and density of green vegetation (greenness), and soil and vegetation moisture 

content (wetness) from the Global Land Survey dataset (GLS 2010).  We calculated 

percent sand from a soil composition layer based on the NRCS General Soil Map (NRCS 
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USDA 2006; Sarah Olimb/WWF).  We created measures of topographic complexity (i.e., 

roughness and surface relief ration (SRR)), slope (degrees) and northness (a cosine 

transformation of aspect) using a Digital Elevation Model (DEM; USDA NRCS 

datagateway.nrcs.usda.gov accessed 1 May 2012).  To calculate slope and northness we 

used the slope and aspect functions in ArcToolbox (ArcGIS 10.3.1).  We calculated 

roughness and SRR using a moving window with a 1 km radius implemented in the 

Geomorphometry and Gradient Metrics add-on toolbox in ArcGIS 10.0 (Evans and 

Oakleaf 2012).  We created a road density layer using the density function in ArcToolbox 

(ArcGIS 10.3.1), based on the North and South Dakota primary and secondary roads map 

(USDA NRCS datagateway.nrcs.usda.gov accessed 1 May 2012).  Because we built 

occupancy models for coyotes and red fox (double home range and home range scale, see 

Sympatric canid occupancy, bellow), as well as species distribution models for swift fox 

(sub-home range and home range scales, see Swift fox distribution, below), we resampled 

all layers >30 m resolution (e.g., % crop, % forest, % grass, % scrub, elevation, slope, 

northness, roughness, surface relief ration, road density, brightness, and wetness) to 30m 

resolution for the double-home range scale and the sub-home range scale. For the home 

range scale, we resampled the original rasters for all predictor variables to 3.34 km, 

roughly the size of one swift fox home range. We calculated a Pearson correlation 

coefficient (Pearson 1896) to evaluate collinearity between landscape variables, 

excluding one variable if pair-wise correlations were > 0.59, and continuing until no 

correlated variables remained.   

 To generate predictor variables associated with red fox and coyote occupancy, we 

used the following steps.  First, we converted the predicted occupancy tables for coyotes 
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and red foxes (see Sympatric canid occupancy, below) into point shapefiles in ArcMap 

(ArcGIS 10.3.1).  We then converted the point shapefiles into raster layers using the 

occupancy prediction at each point on the grid.  As part of the raster creation process, we 

made the occupancy rasters to have the same spatial resolution, extent, and projection as 

the rest of the predictor variables (i.e., 30 m).  We used the resulting raster layers of 

coyote and red fox occupancy as additional predictor variables in the distribution model 

for swift fox (Random Forest).  For the model attempt at the swift fox home range scale, 

we used the coyote occupancy layer as an additional predictor variable in the red fox 

occupancy model. 

Sympatric canid occupancy: 

 We used the "unmarked" package in the R statistical computing environment 

(Fiske and Chandler 2011; R Development Core Team, cran.r-project.org, accessed 1 

May 2016) to model site occupancy of sympatric carnivores, coyote and red fox, using 

two different scales intended to model occupancy at the double-home range scale (6.68 

km) and home range scale (3.34 km). We followed a two-step methodology to estimate 

the probability of detection and occupancy (Richmind et al. 2010).  We first held 

occupancy constant and modeled detection probability as a function of environmental 

covariates that may affect the probability that red fox or coyote would be detected by the 

cameras when present (Ψ(.), p(covariate); Table 2).  Covariates used that may affect 

detection were % crop, % scrub, % forest, and wetness. They were chosen because they 

indicate environmental factors that could block the camera, inhibiting the ability to detect 

an animal in front of it.  We chose the detection model with the lowest AIC value, and 

began fitting models representing biological hypothesis, such as habitat characteristics 
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coyotes or red foxes select for, that may explain occupancy (Burnham and Anderson 

2002; Table 2 and Table 4).  We standardized continuous environmental covariates using 

z-scores to facilitate the interpretation of coefficients (Cooch and White 2006, Silva et al. 

2017).  We ranked candidate models using the Akaike Information Criterion (AIC) 

(Burnham and Anderson 2002).  We used environmental covariates for all models, except 

the red fox occupancy model, at the home range 3.34 km scale.  In which we also used 

coyote occupancy as an added covariate, due to the potential influence interspecific 

completion with coyotes may have on red fox occupancy. 

Swift fox distribution: 

 We used a machine learning approach, random forest (RF) (Brieman 2001), to 

model distribution of swift foxes at two scales (sub-home range and home range).  We 

chose random forest because it has high classification accuracy and has been found to 

create better species range maps in under sampled areas (Guisan and Thuiller 2005, 

Cutler et al. 2007, Drew et al. 2011, Mi et al. 2017). Random forest uses regression trees 

to model species distribution (Breiman 2001), where the response variable is recursively 

partitioned into increasingly homogenous groups through binary splits of one predictor 

variable at a time (Breiman et al. 1984).  At each node, the threshold value and the 

predictor variable(s) are selected at random from the entire suite of predictors, so that the 

difference between the resulting branches is maximized.  For greater predictive accuracy, 

random forest combines predictions from many regression trees (Breiman 2001).  A 

major advantage of the random forest approach is that it is non-parametric and lacks 

distributional assumptions about study design, allowing use of multiple data sources 

(Cutler et al. 2007).  Here, we used live trapping and radio tracking records to include 
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swift fox detections in areas where the camera survey failed to detect the species.  

However, care must be taken to avoid over fitting and bias associated with non-random 

sampling (Domingos 2012).  We attempted to avoid over fitting by having binary splits 

of three predictor values at a time, rather than one, and reducing the number of decision 

trees from 1501 (sub-home range scale) to 1001 (home range scale), and for the model at 

the home range scale we altered cutoffs to accept more sensitivity. 

 We preformed random forest analysis using the "randomForest" package in the R 

statistical computing environment (Liaw and Wiener 2002; R Development Core Team, 

cran.r-project.org, accessed 1 May 2016) to model the potential distribution of swift fox, 

using two different scales intended to model habitat suitability at the sub-home range 

scale (30 m) and home range scale (3.34 km). We used swift fox presence data from 

multiple sources, including camera detections, road kills, confirmed incidental sightings, 

and tracked locations of radio collared foxes.  For the model at the sub-home range scale 

we used all known such locations.  Conversely, for the model at the home range scale we 

deemed the centroid of each cell either occupied or not occupied regardless of the number 

of known swift fox locations within the cell.  We then used a random number generator 

to randomly select 33% of the absence locations to remove, in an attempt to reduce the 

effect of pseudo-absences (Hanberry et al. 2012).  We used landscape and topographical 

variables of elevation metrics, as well as the probability of predicted occupancy of 

sympatric red fox and coyotes. After removing correlated variables, for the 30m scale 

model the total number of predictor variables was 13, total number of trees was 1501, and 

total number of variables at each split was 3.  For the 3.34 km scale model the total 

number of predictor variables was 6, total number of trees was 1001, and total number of 
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variables at each split was 3.  To assess prediction error in the generated Random Forest, 

we withheld 33% of samples in an out-of-bag (OOB) sample random forest model.  We 

then applied a predictive classifier, "raster" package in the R statistical Computing 

environment (Hijman and van Etten 2012; R Development Core Team, cran.r-project.org, 

accessed 1 May 2016) to produce a map of predicted distribution for swift fox (Figure 3 

and 4).  To investigate model fit, at both scales, we calculated Out of Bag (OOB) error, 

Area Under the Receiver Operating Characteristic curve (AUROC; Fawcett 2006), 

sensitivity, and specificity for each model.   

RESULTS  

 We deployed trail cameras at 582 locations on the grid of 590 potential survey 

sites, 56 of these in North Dakota and 526 in South Dakota, for a total of 3,929 trap 

nights.  We recorded >300,000 photographs, and swift fox at 10 camera stations on 25 

nights, coyotes at 191 camera stations on 304 nights, and red fox at 105 camera stations 

on 190 nights. We obtained 611 locations from 26 radio-collared swift foxes. Collared 

animals included: 15 females (2 adults and 13 juveniles) and 11 males (10 adults and 1 

juvenile). We recorded 27 den locations by tracking radio-collared individuals. We found 

5 dens, 7 live foxes and 9 road mortalities independently of the telemetry effort.  This 

effort resulted in the detection of swift fox in 126 sample units that were used for random 

forest modeling. 

Sympatric canid occupancy (double-home range scale):  

 We detected coyotes on 304 of the 3,929 effective trap nights, a global trapping 

rate of 7.46 captures/100 trap nights or 1 coyote capture every 13.4 trap days.  The 

constant detection model was the chosen to best fit the data, and the detection probability 
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was 0.176 (SE = 0.0134).  There were 6 models with AIC < 2 (Table 2).  All of these top 

six models include different covariates.  Although model selection uncertainty was high, 

the best model predicted that the probability a site was occupied by coyotes was 

positively related to percent grass cover (Table 3).  Sixty-three percent of the study area 

was predicted to have ≥ 50% likelihood of being used by coyotes (~25,700 km2; Figure 

5).  

 We detected red fox on 190 of 3,929 effective trap nights, with a global trapping 

rate of 4.66 captures/100 trap nights or 1 red fox capture every 21.56 days.  Detection 

probability for red fox was negatively related percent roughness and positively related to 

the percent of scrub (Table 3), and the probability that red fox occupied a site was 

negatively related to percent sand in the soil (Table 3).  There were only 2 models with 

AIC < 2 (Table 4).  Both of these top models include percent sand in the soil as a 

covariate, indicating that percent sand is an important variable in predicting red fox 

occupancy.  Fifty-four percent of the study area was predicted to have ≥ 50% likelihood 

of being used by red foxes (~21,700 km2; Figure 7). 

Sympatric canid occupancy (home range scale):  

 Similar to the previously discussed coyote model the constant detection model 

was the chosen to best fit the data.  The detection probability was 0.175 (SE = 0.013).    

However, model selection uncertainty was higher at this scale, because there were 10 

models with AIC < 2 (Table 2).  Four of these top models include percent grass as a 

covariate, indicating that percent grass is an important variable when predicting coyote 
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occupancy.  Sixty-nine percent of the study area was predicted to have ≥ 50% likelihood 

of being used by coyotes (~29,000 km2; Figure 6).  

 Red fox detection probability estimate was 0.802 (SE = 0.137).  There were only 

1 model with AIC < 2 (Table 2).  Red fox detection probability was negatively related to 

the percent of crop and the data the survey station was set (Table 3). The occupancy 

probability a site was negatively related to percent sand in the soil and the slope (Table 

3).  Forty-six percent of the study area was predicted to have ≥ 50% likelihood of being 

used by red foxes (~19,200 km2; Figure 8). 

Swift fox distribution (sub-homerange scale): 

 The overall out of bag error (OOB) estimate was 0.108; the specific measure of 

OOB for presence was 0.140, and absence was 0.078.  Area Under the Receiver 

Operating Characteristic curve was 0.494, sensitivity was 93.24%, and specificity was 

86.14%.  Of the variables included in the model elevation, coyote occupancy, red fox 

occupancy, percent sand in soil, percent forest, road density, and percent grass are the 

most important variables in the model, with elevation being the most important of them 

all (Figure 9).  Elevation, coyote, and red fox occupancy have a negative correlation with 

swift fox distribution (Figure 11).  Percent sand in soil has a positive correlation with 

swift fox distribution, until a certain point (~38) when it them becomes a negative 

correlation.  This is likely due to too much sand inhibiting their digging ability.  Percent 

forest has a slightly negative correlation.  Road density had a positive correlation to swift 

fox occupancy, likely due to swift fox using roads as travel corridors.  Twelve percent of 
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the study area was predicted to have ≥ 50% likelihood of being used by swift foxes 

(~5,000 km2).   

Swift fox distribution (home range scale):  

 The larger scale model had more variables that were collinear.  Of the 6 variables 

included in the model red fox occupancy, surface relief ratio, roughness, percent scrub, 

coyote occupancy, and greenness are the most important variable in the model, with red 

fox being the most important variable of them all (Figure 10).  The overall out of bag 

error (OOB) estimate was 0.480; the specific measure of OOB for presence was 0.256, 

and absence was 0.559.  Area Under the Receiver Operating Characteristic curve was 

0.502, sensitivity was 75.40%, and specificity was 43.26%.  Of the top variables in the 

model, red fox has a negative correlation with swift fox distribution, likely due to 

interspecific competition with red fox (Figure 12).  Roughness and coyote occupancy has 

a positive correlation, until a certain point (roughness ~110 and coyote ~0.35).  This is 

likely due to and the inability to traverse very rough terrain and increased interspecific 

competition as coyote occupancy increases.  Percent scrub and surface relief ratio are 

negatively correlated with swift fox distribution, until a certain point (percent scrub ~0.2 

and surface relief ratio ~0.3).  This is odd because swift fox are usually assumed to select 

specifically ofr short grass or mixed grass prairies and not areas with scrub.  Brightness 

does not have an effect on swift fox distribution, until ~135 when it begins to have a 

positive correlation and then ~175 it begins to have a negative correlation.  This is likely 

due to some sand in the soil being good for digging, but too much making digging dens 

harder.  Thirty-four percent of the study area was predicted to have ≥ 50% likelihood of 

being used by swift foxes (~14,000 km2).   
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DISCUSSION 

 We found that both coyote and red fox occupancy have a negative correlation 

with swift fox distribution.  This result was expected because coyotes have been found to 

spatially displace swift fox by killing them and/or causing them to avoid certain areas 

(Kamler et al. 2003b, Thompson and Gese 2012).  Our observation that swift fox tend to 

occur in areas with lower probability of occupancy by both coyote and red fox suggests 

that they are avoiding the larger canids. This is also true in the case of the coyote and red 

fox; red fox occupancy is negatively related to coyote occupancy in both the occupancy 

model attempts, suggesting that red fox are avoiding coyotes.  Mesopredator release 

could be assisting in natural re-colonization of the area. This relationship is likely driven 

by competition and prey availability, due to the swift fox highly overlapping prey with 

coyotes and red fox (Robinson et al. 2014).  The extensive predator removal programs in 

northwest South Dakota and southwest North Dakota may be benefitting swift fox by 

releasing them from predation or competition from both dominant predators (Rayner et 

al. 2007, Trewby et al. 2008, Ritchie and Johnson 2009, Cupples et al. 2011).    

 We found that fewer sites were predicted to be occupied by coyotes than 

expected. We hypothesize that this is due to the large scale predator removal that occurs 

in the area.  However, it is also possible that we simply did not have enough survey 

stations to adequately survey for the species.  Swift fox survival and recruitment has been 

shown to increase after reducing the coyote population, by removing coyotes via aerial 

gunning (Kamler et al. 2003b, Karki et al. 2007).  Although not conclusive, this lower 

than expected occupancy of sympatric canids could be a factor in the recent success of 
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the swift fox in the area (Carbyn et al 1994, Ralls and White 1995, Sovada et al. 1998, 

Olson and Lindzey 2002).   

We hypothesized that red fox play a role in swift fox mortality and displacement 

due to their documented predation on smaller arctic and kit fox (Ralls and White 1995, 

Pamperin et al. 2006).  Although swift fox mortality by red fox has not been confirmed, 

both random forest models predicted that the presence of red fox is negatively impacted 

the presence of swift fox.  This implies that swift fox are being displaced or killed by red 

fox, or both. Our study is the first to show a negative relationship between swift fox and 

red fox. 

 We observed, trapped, and tracked a number of swift foxes that were not detected 

by the cameras, indicating limitations in the ability to detect swift foxes in low-density 

populations with the survey method used.  Of the cameras with swift fox detections 40% 

had 1 detection, 20% had 2 detections, 20% had 3 detections, 10% had 5 detections, and 

10% had 6 detections. This is in contrast to results from a swift fox survey conducted in 

Montana using identical methodology, where swift fox were observed to visit the camera 

station repeatedly during the survey period (Schwalm unpublished data).  We hypothesis 

that the use of the single-camera survey method is likely providing a low detection 

probability and the use of multiple cameras at survey sites would greatly increase 

detection probability (Pease et al. 2016).  Since the completion of this study a swift fox 

survey in Texas has taken into account the observed low detection probability generated 

here and is using multiple cameras per survey grid (D. Schwalm personal 

communication).  Similar camera surveys are often completed through the range of the 

swift fox in order to calculate and monitor swift fox occupancy (Cudworth et al. 2011, 
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Stratman 2012, Corall 2016).  All of these surveys used a grid system with 5 to 10 

cameras per grid.  We suggest that future studies use a multi-camera survey design. 

 In Random Forest models, out-of-bag (OOB) measures model reliability through 

estimation of misclassification error, or the incorrect classification of a presence as an 

absence or vice versa, with lower values indicating higher classification accuracy.  Our 

first attempt at Random Forest generated a distribution model of swift fox, at the sub-

home rage scale, demonstrating high accuracy on average, with an OOB of 10.8%.  

However, the OOB error of presence (14.0%) is higher than the OOB error of absence 

(7.8%) is indicating that the model overestimates the probability of absence.  It may be 

possible to reduce overfitting by changing the scale, subsetting the telemetry locations, 

and accounting for false absences, or pseudo-absence.  Having an OOB error of absence 

higher than an OOB error of presence, indicates that the model is not over predicting 

swift fox distribution.  The sensitivity value (93.24%) indicates that this model predicts 

presence of swift fox correctly 93.24% of the time, while the specificity value (86.14%) 

indicates that the model predicts absence of swift fox correctly 86.14% of the time.  

However, the low AROCC value (0.494) indicates imperfect balance between specificity 

and sensitivity, and therefore poor model performance at the level class. 

 After increasing the scale to one swift fox home range (3.34 km), subsetting swift 

fox detection locations to only have one record per cell, and randomly removing 33% of 

the absences we re-ran the Random Forest analysis.  This approach generated a 

distribution model of swift fox demonstrating low accuracy on average, with an OOB of 

48.03%.  It is still over fitting, with an OOB error of presence of 25.91%, an OOB error 

of absence of 55.86%, an AUROC of 0.502, sensitivity of 75.50%, and specificity of 
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43.26%.  However, this model is overestimating the probability of presence.  Indicating 

an over prediction of suitable habitat.  The sensitivity value indicates that this model 

predicts presence of swift fox correctly 75.50% of the time, while the specificity value 

indicates that the model predicts absence of swift fox correctly 43.26% of the time.  

However, the AROCC value (0.502) indicates no discrimination between sensitivity and 

specificity.  There are multiple reasons why our model may still be over fitting including 

inappropriate scale, possible high pseudo absence, failure to include one or more 

important environmental variables, limited presence data (due to the small population 

size) and/or Random Forest may not be the appropriate model (Wiens 2002, Guisan and 

Thuiller 2005).  In the future I suggest  testing multiple scales, reducing the number of 

absences, and re-running the Random Forest analysis, or using a presence only species 

distribution model (e.g., Maxent (CITE) to correct for the potentially high frequency of 

pseudo-absences in the dataset.   

 Multiple attempts at modeling swift fox distribution in the Dakotas resulted in 

swift fox distribution models which are over fit.  More specifically, these models appear 

to underperform in the accurate identification of potential species distribution, based on 

the recurrent and highly skewed misclassification error of presence records.  The models 

presented here, and their associated spatial predictions, should be interpreted as 

inaccurate and not suitable for use in swift fox management decisions or as accurate 

representations of swift fox ecology.  Future attempts at modeling swift fox distribution 

are necessary for assessing the status of the swift fox in this area, and we intend to 

continue with this work.  This study has provided vital information regarding potential 

project design setbacks, and we suggest that future swift fox distribution studies which 
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intend to use trail camera surveys consider using multiple cameras within each grid cell 

and, potentially, at each individual camera location.  Additional monitoring efforts may 

be necessary to better assess swift fox distribution in the Dakotas. 
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Figure 1. The study area surveyed for swift fox and sympatric canids in 2015 and 2016. 

Survey locations in North Dakota are represented as blue dots, and survey locations in 

South Dakota are represented as pink dots. All survey locations were space 6.68 km (two 

swift fox home ranges) apart in predicted suitable habitat, except for those in Harding and 

Butte County in South Dakota in which a survey station was set every 6.68 km regardless 

of habitat suitability. These added survey locations are represented as orange stars. 
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Figure 2. Diagram of survey station setup used to detect swift fox and sympatric canids in 

the western Dakotas. A camera was placed ~40 cm above the ground on an existing 

structure. A wooden stake was placed 3 meters in front of the camera.  A scent lure was 

applied on the top of the stake and at random locations between the camera and the stake.  

8 holes were punched into a can of cat food, and it was staked to the ground 2-3 inches in 

front of the wooden stake.  
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Figure 3. Predicted distribution of swift fox in the Dakotas, using Random Forest 

(Breiman 2001) at the 30 m scale.  Overall out of bag error (OOB) was 0.108, OOB for 

records of presence was 0.140, and OOB for records of absence was 0.078.  Of the 

roughly 40,600 km2 in our study area, about 5,000 km2, or 12%, have a likelihood of ≥ 

50% of swift fox presence.   
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Figure 4. Predicted distribution of swift fox in the Dakotas, using Random Forest 

(Breiman 2001) at the 3.34 km scale.  Overall out of bag error (OOB) was 0.480 OOB for 

records of presence was 0.259, and OOB for records of absence was 0.559.  Of the 

roughly 40,600 km2 in our study area, about 14,000 km2, or 34%, have a likelihood of ≥ 

50% of swift fox presence.  
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Figure 5. Predicted occupancy of coyotes in the Dakotas, using the most parsimonious 

model (Ψ(grass), p(.)) at the double-home range (6.68 km) scale. Of the roughly 40,600 

km2 in our study area, about 25,700 km2, or 63%, have a likelihood of ≥ 50% of coyote 

occupancy. 
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Figure 6. Predicted occupancy of coyotes in the Dakotas, using the most parsimonious 

model (Ψ(grass), p(.))at the home range (3.34 km) scale. Of the roughly 40,600 km2 in 

our study area, about 29,000 km2, or 69%, have a likelihood of ≥ 50% of coyote 

occupancy. 
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Figure 7. Predicted occupancy of red fox in the Dakotas, using the most parsimonious 

model (Ψ(sand), p(scrub+rough)) at the double-home range (6.68 km) scale. Of the 

roughly 40,600 km2 in our study area, about 21,700 km2, or 54%, have a likelihood of ≥ 

50% of red fox presence. 
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Figure 8. Predicted occupancy of red fox in the Dakotas, using the most parsimonious 

model (Ψ(grass), p(.)) at the home range (3.34 km) scale. Of the roughly 40,600 km2 in 

our study area, about 19,200 km2, or 46%, have a likelihood of ≥ 50% of red fox 

occupancy. 
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Figure 9. A measure of variable importance in the sub-home range (30 m) scale swift fox 

distribution model.  Of the variables included in the model elevation (“elev”), followed 

by coyote occupancy (“coy”) and red fox occupancy (“rfox”) had the highest effect on 

classifying correctly. 

 

 

 

 

 

 

 

 



102 
 

Figure 10. A measure of variable importance in the home range (3.34 km) scale swift fox 

distribution model.  Of the variables included in the model red fox occupancy ("rfox") 

had the highest effect on classifying correctly. 
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Figure 11.  Partial dependence plots of the top variables in the swift fox distribution model at the sub-home range (30 m) scale. 

Elevation, coyote, and red fox occupancy have a negative correlation with swift fox distribution.  Percent sand in soil (“sand”) 

has a positive correlation with swift fox distribution, until a certain point (~38) when it them becomes a negative correlation.  

This is likely due to too much sand inhibiting their digging ability.  Percent forest (“forest”) has a slightly negative correlation.  

Road density (“road”) had a positive correlation to swift fox occupancy, likely due to swift fox using roads as travel corridors.   
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Figure 12.  Partial dependence plots of the affect the top variable have on swift fox distribution at the home range (3.34 km) 

scale.  Red fox (“rfox”) has a negative correlation with swift fox distribution.  Roughness (“rough”) and coyote occupancy 

(“coy”) has a positive correlation, until a certain point (roughness ~110 and coyote ~0.35).  Percent scrub (“scrub”) and surface 

relief ratio (“srr”) are negatively correlated with swift fox distribution, until a certain point (percent scrub ~0.2 and surface 

relief ratio ~0.3).  Brightness (“bright”) does not have an effect on swift fox distribution, until ~135 when it begins to have a 

positive correlation and then ~175 it begins to have a negative correlation.  
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Table 1. Variable name, description, and ecological justification for inclusion of 16 predictor variables used to assess swift fox 

distribution, and 14 predictor variables used to assess coyote and red fox distribution. 

 
1Used in sub-home range swift fox distribution (Random Forest) model. 
2Used in double-home range coyote and red fox occupancy models. 
3Used in home range swift fox distribution (Random Forest) model. 
4Used in home range coyote and red fox occupancy models 
5Used in home range red fox occupancy model. 

Variable Variable description Ecological justification 

forest124 percent of the landscape that is forest Influences pop size, habitat connectivity, habitat availability 

grass124 percent of the landscape that is grass Influences pop size, habitat connectivity, habitat availability 

sand124 percent of sand in the soil Influences ability to dig in soil, create dens 

road124 road density Influences survival and acts as travel corridors 

green1234 greenness- a measure of vegetation Influences pop size, habitat connectivity, habitat availability 

bright1234 brightness- a measure of soil Influences ability to dig in soil, create dens 

wet23 wetness- a measure of vegetation Influences pop size, habitat connectivity, habitat availability 

slope124 slope in degrees Influences habitat availability 

crop124 percent of the landscape that is forest Influences pop size, habitat connectivity, habitat availability 

scrub1234 percent of the landscape that is scrub Influences pop size, habitat connectivity, habitat availability 

elev1 elevation In-site shelter, between site traversability 

rough1234 surface roughness In-site shelter, between site traversability 

srr13 surface relief ration In-site shelter, between site traversability 

aspect1 northness Influences den site selection 

coy135 coyote occupancy Influences survival 

rfox13 red fox occupancy Influences survival 
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Table 2. Results of AIC model selection, and ecological justification, applied to coyotes 

camera trapped on a systematic grid in suitable habitat for swift fox in southwest North 

Dakota and northwest South Dakota, USA, August-December 2015 and 2016. Of the 

3,929 trap nights coyotes were detected on 304 trap nights. 

 

Model K AIC ΔAIC AICwt Ecological justification 

double-home range (6.68 km) scale:    

Ψ(grass), p(.) 3 2014.46 0 0.109 Habitat availability 

Ψ(grass+road), p(.) 4 2015.32 0.87 0.87 
Habitat availability and travel 
corridors 

Ψ(bright), p(.) 3 2015.45 1 0.066 Ability to dig in soil 

Ψ(sand), p(.) 3 2015.51 1.05 0.065 Ability to dig in soil 

Ψ(grass+rough), p(.) 4 2015.85 1.39 0.054 
Habitat suitability and in-site 
shelter 

Ψ(scrub), p(.) 3 2016.08 1.63 0.048 Habitat suitability 

Ψ(rough), p(.) 3 2016.99 2.54 0.031 In-site shelter 

Ψ(sand+rough), p(.) 4 2017.14 2.69 2.69 
Ability to dig in soil and in-site 
shelter 

Ψ(road), p(.) 3 2017.23 2.78 0.027 Travel corridor 

Ψ(scrub+rough), p(.) 4 2017.25 2.79 0.027 
Habitat suitability and in-site 
shelter 

home range (3.34 km) scale:     

Ψ(grass), p(.) 3 2005.23 0 0.1134 Habitat availability 

Ψ(grass+wet), p(.) 4 2005.8 0.57 0.0854 Habitat availability 

Ψ(wet), p(.) 3 2005.96 0.72 0.0789 Habitat availability 

Ψ(grass+road), p(.) 4 2006.1 0.87 0.0735 
Habitat availability and travel 
corridors 

Ψ(.), p(.) 2 2006.29 1.06 0.0666 Constant 

Ψ(sand), p(.) 3 2006.38 1.15 0.064 Ability to dig in soil 

Ψ(bright), p(.) 3 2006.45 1.22 0.0615 Ability to dig in soil 

Ψ(sand+bright), p(.) 4 2006.53 1.3 0.0591 Ability to dig in soil 

Ψ(grass+rough), p(.) 4 2006.66 1.43 0.0554 
Habitat suitability and in-site 
shelter 

Ψ(scrub), p(.) 3 2006.92 1.69 0.0487 Habitat availability 
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Table 3.  Regression coefficients (a) and standard error (SE) for all of the occupancy 

models with ΔAIC < 2.  

Model a SE 

Sub-home range scale:   

Coyote (Canis latrans)   

Ψ(grass), p(.) 0.187 0.11 

Ψ(bright), p(.) -0.124 0.109 

Ψ(sand), p(.) 0.0667 0.106 

Ψ(scrub), p(.) 0.0441 0.104 

Ψ(rough), p(.) 0.146 0.106 

Ψ(road), p(.) 0.148 0.107 

Red Fox (Vulpes vulpes)   

Ψ(sand), p(scrub+rough) -0.211 0.116 

Ψ(sand+bright), p(scrub+rough) 0.0754 0.114 

Home range scale:   

Coyote (Canis latrans)   

Ψ(grass), p(.) 0.191 0.11 

Ψ(grass+wet), p(.) -0.324 0.129 

Ψ(wet), p(.) -0.166 0.109 

Ψ(grass+road), p(.) -0.325 0.128 

Ψ(.), p(.) -0.32 0.127 

Ψ(sand), p(.) 0.148 0.107 

Ψ(bright), p(.) 0.144 0.107 

Ψ(sand+bright), p(.) -0.326 0.128 

Ψ(grass+rough), p(.) -0.324 0.128 

Ψ(scrub), p(.) -0.127 0.109 

Red Fox (Vulpes vulpes)   

Ψ(slope+sand), p(crop+date) 1.40141 0.86593 
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Table 4. Results of AIC model selection, and ecological justification, applied to red fox 

camera trapped on a systematic grid in suitable habitat for swift fox in southwest North 

Dakota and northwest South Dakota, USA, August-December 2015 and 2016. Of the 

3,929 trap nights red fox were detected on 190 trap nights. 

Model K AIC ΔAIC AICwt Ecological justification 

Double-home range (6.68 km) 
scale:     

Ψ(sand), p(scrub+rough) 5 1367.26 0 0.304 Ability to dig in soil 

Ψ(sand+bright), 

p(scrub+rough) 6 1369 1.74 0.1276 Ability to dig in soil 

Ψ(sand+rough), 

p(scrub+rough) 6 1369.26 2 0.1121 
Ability to dig in soil and in-site 
shelter 

Ψ(bright), p(scrub+rough) 5 1370.25 2.99 0.0621 Ability to dig in soil 

Ψ(road), p(scrub+rough) 5 1370.44 3.18 0.0621 Travel cooridor 

Ψ(grass), p(scrub+rough) 5 1370.49 3.23 0.0606 Habitat availability 

Ψ(rough), p(scrub+rough) 5 1370.49 3.36 0.0566 In-site shelter 

Ψ(scrub+rough), 

p(scrub+rough) 6 1370.98 3.72 0.0472 
Habitat availability and in-site 
shelter 

Ψ(grass+road), 

p(scrub+rough) 6 1372.12 4.86 0.0267 
Habitat availability and travel 
cooridor 

Ψ(grass+rough), 

p(scrub+rough) 6 372.48 5.22 0.0223 
Habitat availability and in-site 
shelter 

Ψ(.), p(.) 2 1380.55 13.29 0.0004 Constant 

Home range (3.34 km) scale:      

Ψ(slope+sand), 

p(crop+date) 6 1348.09 0 9.90E-01 
Habitat availability and ability to 
dig in sand 

Ψ(scrub+rough), 

p(crop+date) 6 1357.76 9.67 7.90E-03 
Habitat availability and in-site 
shelter 

Ψ(scrub), p(crop+date) 5 1364.21 16.12 3.10E-04 Habitat availability 

Ψ(sand+rough), p(crop+date) 6 1364.58 16.49 2.60E-04 
Habitat availability and in-site 
shelter 

Ψ(sand+rough+coy), 

p(crop+date) 7 1365.25 17.17 1.90E-04 
Ability to dig in sand, habitat 
availability, and survival 

Ψ(wet), p(crop+date) 5 1366.09 18 1.20E-04 Habitat availability 

Ψ(sand+scrub+coy), 

p(crop+date) 7 1366.34 18.25 1.10E-04 
Ability to dig in sand, habitat 
availability, and survival 

Ψ(rough), p(crop+date) 5 1366.75 18.66 8.80E-05 In-site shelter 

Ψ(grass+rough), 

p(crop+date) 6 1366.97 18.88 7.90E-05 
Habitat availability and in-site 
shelter 

Ψ(wet+aspect), p(crop+date) 6 1367.21 19.12 7.00E-05 
Habitat availability and den site 
selection 
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CHAPTER 4 

SEROLOGIC SURVEY OF INFECTIOUS DISEASES  

IN SWIFT FOXES (VULPES VELOX) IN THE DAKOTAS, USA 

 

Intended for publication in the Journal of Wildlife Diseases 
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ABSTRACT 

Infectious diseases are a recognized threat to carnivore species worldwide. To determine 

the prevalence of Yersinis pestis, Francisella tularensis, canine distemper virus (CDV), 

and canine parvovirus (CPV) in swift foxes in northwest South Dakota and southwest 

North Dakota we collected blood samples from 31 individual swift fox.  Of these, 1 was 

antibody-positive for Y. pestis (3.23%) and 21 were antibody-positive for F. tularensis 

(67.74%). Of the 29 fox samples tested for CDV, 3 were antibody-positive (10.34%), and 

of 28 swift fox samples tested for CPV, 20 were found to be antibody-positive (71.43%).  

Disease results were not related to age or sex of foxes.  F. tularensis and CPV prevalence 

was higher than documented in similar studies, while Y. pestis prevalence was lower than 

in similar studies; results for CDV were similar to other studies. Evidence of high 

mortality in canines infected with CPV and our indication of a high prevalence of CPV 

antibodies suggest that this disease is likely a concern for swift fox population 

conservation and re-establishment within the western Dakotas.  Effects of F. tularensis 

on swift fox are largely unknown; however, our finding of high prevalence in the study 

population could be cause for concern.  Low prevalence of Y. pestis suggests that plague 

exposure in swift fox is limited in this region of the Dakotas at this time.  In the future, 

infectious diseases should be considered an important factor in swift fox conservation 

efforts. 

INTRODUCTION 

 Disease has become a worldwide conservation threat, especially for carnivore 

species (Murray et al. 1999).  Wild carnivores can be exposed to infectious diseases 

through contact with both wild and domestic carnivores (Woodroffe et al. 2004).  The 

prevalence of such diseases has begun to increase due to an increase in the wildland-
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urban interface (Woodroffe et al. 2004, Nelson et al. 2012).  Diseases such as sylvatic 

plague (Yersinia pestis), tularemia (Francisella tularensis), canine parvovirus (CPV), and 

canine distemper virus (CDV) have been found to infect swift foxes throughout the Great 

Plains region and may be a threat to the continued success of both established and re-

colonizing populations (Miller et al. 2000, Olson and Lindzey 2002, Harrison 2003, Gese 

et al. 2004, Nevison 2017, S. Grassel personal communication, and K. Bly personal 

communication). 

 Sylvatic plague (Yersinia pestis) is associated with fleas found in black-tailed 

prairie dog (Cynomys ludovicianus) populations throughout the species distribution 

(USFWS 2014), including North and South Dakota (Dyer and Huffman 1999, Nevison 

2017).  Swift foxes have been found to carry Y. pestis antibodies in studies conducted in 

northwestern Texas and southeastern Colorado (McGee et al. 2006, Gese et al. 2004), as 

well as in Wyoming, Colorado, and Kansas (Turner Endangered Species Fund, Badlands 

National Park, and Lower Brule Department of Wildlife, Fish and Recreation, 

unpublished data).  However, canids, such as swift fox, typically do not exhibit clinical 

symptoms of the disease (Von Reyn et al. 1976, Barnes 1982, Pybus and Williams 2003, 

Gage and Kosoy 2005, Malmlov et al. 2014), a finding supported by post-exposure 

survival of swift fox captured for translocation in Wyoming (Turner Endangered Species 

Fund, unpublished data).  Serologic testing of carnivores can help establish the presence 

of plague among local rodent populations (Willeberg et al. 1979, Thomas and Hughes 

1992).  With nearly 66% of the prairie dog range affected by Y. pestis (USFWS 2014), it 

is likely that swift foxes in these affected areas within the Northern Great Plains (NGP) 

have been exposed to the disease.  In South Dakota, swift foxes use prairie dog towns for 
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den sites and as a source of food, especially during the pup-rearing season (Sasmal 2011, 

Russell 2006).  A recent study in west-central South Dakota (Badlands National Park and 

Buffalo Gap National Grasslands) found swift foxes were 69.6% seropositive for Y. pestis 

(Nevison 2017).   

 CDV and CPV have been found to cause high morbidity and mortality in wolves 

(Canis lupus; Johnson et al 1994, Pence et al. 1995, Di Sabatino et al. 2014; Canis 

latrans Gese et al. 1997), while CDV caused the disappearance in the last wild population 

of black-footed ferrets (Mustela nigripes) in Spain (Sobrino et al. 2008).  CDV affects all 

canine species (Montali et al. 1987), but few swift foxes and kit foxes (Vulpes macrotis) 

sampled throughout the western United States were exposed to this potentially deadly 

disease (Miller et al. 2000, Olson and Lindzey 2002, Gese et al. 2004).  Effects of CPV 

on swift fox survival and population trends is unknown because most studies have not 

tested for it, and of those that did, all reported positive CPV tests in a captured swift fox 

(Miller et al. 2000, Harrison 2003, Gese et al. 2004).  Swift fox have been documented to 

succumb to CDV in two instances (Olson and Lindsey 2002).  Studies on coyotes (Canis 

latrans) and wolves have also documented mortality associated with the disease, 

especially in pups (Johnson et al. 1994, Gese et al. 1997, Mech et al. 2008).   

F. tularensis is a known infectious agent in species swift fox commonly prey on 

(e.g., lagomorphs and rodents; Brown et al. 2015, Mani et al. 2016).  Tularemia has been 

found in black footed ferrets in South Dakota, implying that prairie dogs in the state are 

also infected (Prairie Wildlife Research unpublished data).  However, the impact 

tularemia has on canid species in unknown (Gese et al. 1997).  It is likely that canids 

contract the disease, but are relatively unsusceptible and healthy individuals are able to 
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recover (Gier and Ameel 1959, Zarnke and Ballard 1987).  In general, the prevalence of 

F. tularensis in the NGP, frequency of exposure for swift foxes, and effect of that 

exposure is unknown. 

Infectious disease can be a threat to the viability of small populations, such as the 

swift fox populations in the Dakotas, and exposure to infectious disease pathogens could 

threaten recovery efforts for this species (Miller et al. 2000).  Because the exposure rate 

and impact of these diseases on swift foxes is largely unknown, we evaluated disease 

exposure of swift foxes in the western Dakotas to inform species conservation efforts in 

the region 

STUDY AREA 

 The study area included Harding, Butte, Perkins, and Meade counties in South 

Dakota and Slope, Bowman, Adams, and Hettinger counties in North Dakota (Figure 1).  

The study was conducted on state, federal (Forest Service and Bureau of Land 

Management), and private lands within the region.  The study area encompassed 

approximately 4,099,174 ha dominated by mixed grass prairie, interspersed with 

sagebrush (Artemisia sp.).  Prominent grasses of the mixed grass prairie in the area were: 

western wheatgrass (Pascopyrum smithii), green needle grass (Nassella viridula), needle 

and thread (Hesperostipa comata), blue grama (Bouteloua gracilis), and side-oats grama 

(Bouteloua curtipendula).  Topography was largely flat to gently rolling hills with 

occasional buttes. The primary soil types were clays derived from Creataceous Pierre 

Shale.   Predominate water features included Shadehill Reservoir, Belle Fourche 

Reservoir, and the Belle Fourche River.  Lands were primarily used for cattle and sheep 

grazing.  
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MATERIALS AND METHODS 

 Swift foxes were live captured from July 2016 to April 2017 using modified wire 

box traps (Model 108SS; Tomahawk Live Trap Co., Tomahawk, WI, USA) of 

dimensions 81.3 cm × 25.4 cm × 30.5 cm, baited with road killed deer or  rabbit.  

Captured swift fox were manually restrained while we collected a blood sample.  Up to 5 

mL of blood was drawn with a 20 gauge needle from the saphenous vein (Salkeld et al. 

2007).  Immediately after releasing the captured fox the needle was removed from the 

syringe and the blood was placed in serum separator tubes (Monoject Blood Collection 

Tube, Covidien, Dublin, Republic of Ireland), with polymer gel.  Within 12 hours of 

collection, the serum separator tubes were centrifuged for 30 minutes and the serum 

collected and stored at -20 C (Gese et al. 1997, Arjo et al. 2003, Mech et al. 2008).  All 

methods were approved by the Institutional Animal Care and Use Committee (IACUC) at 

South Dakota State University (permit # A3958-01).   

 The serum samples were analyzed at the Department of Microbiology, 

Immunology & Pathology, Colorado State University, Fort Collins, Colorado (USA) for 

antibodies against Y. pestis and F. tularensis and at the Colorado State University 

Veterinary Diagnostic Laboratory, Fort Collins, Colorado (USA) for CDV and CPV. Y. 

pestis antibody titers of fraction 1 capsular antigen protein (F1) and low calcium response 

V antigen protein (LcrV) were determined using enzyme-linked immunosorbent assay 

(ELISA) for immunoglobin G (IgG) as described by (Rocke et al. 2004) with 

modifications; modifications included use of recombinant antigens F1 and LcrV (BEI 

Resources, Manassas, VA) to coat plates and horseradish peroxidase conjugated Protein 

A/G (at 1:10,000; Pierce Biotechnology, Rockford, IL) used for the secondary antibody.  

https://www.researchgate.net/institution/Colorado_State_University/department/Department_of_Microbiology_Immunology_Pathology
https://www.researchgate.net/institution/Colorado_State_University/department/Department_of_Microbiology_Immunology_Pathology
https://www.researchgate.net/institution/Colorado_State_University
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Presence of either antigen in the blood indicated exposure to Y. pestis bacterium (Gomes-

Solecki et al. 2005).  It was previously thought that the F1 antigen was an important 

virulance factor that added to the effectiveness of Y. pestis immunosuppression; however, 

F1 negative strains have been reported (Gomes-Solecki et al. 2005).  Due to this finding, 

samples also were tested for the LcrV antigen, which has been confirmed to be an 

essential virulence factor (Gomes-Solecki et al. 2005).  

 A positive plague titer was considered ≥ 1:50 dilution concentration (L. Baeten, 

Colorado State University, personal communication; Nevison 2017).  If a positive titer 

was detected at 1:50, the sample was subsequently diluted to 1:150 or 1:450 to assess 

highest concentration, with 1:450 being the most concentrated.  Elution scores were 

assessed visually based on color change after samples were eluted in ELISA buffer, 

ranging from 1–4.  Elution scores of 3 and 4 are considered reliable for negative titer 

results, while elution scores of 1 and 2 can produce false negatives because of the lower 

quality of the sample (L. Baeten, Colorado State University, personal communication).  A 

positive result at any elution score is considered reliable 

 F. tularensis antibodies were detected using an enzyme-linked immunosorbent 

assay, as described by Brown et al. (2015) with the modification of horseradish 

peroxidase conjugated Protein A/G (at 1:10,000; Pierce Biotechnology, Rockford, IL) 

used for the secondary antibody.  Samples with 3 standard deviations (SDs) above the 

mean of a negative-control domestic rabbit serum were considered positive. 

 Antibodies for CDV were detected using the serum virus neutralization test 

(Appel and Robinson 1973).  A titer level of ≥ 1:32 was considered positive for CDV.  
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Antibodies for CPV were detected using hemagglutination inhibition (HI) test 

(Carmichael et al. 1980).  A titer level of ≥ 1:64 was considered positive for CPV. 

 Each individual fox was used as the sampling unit for all statistical analyses. To 

statistically analyze the prevalence of antibodies among age class and sex we used 

Fisher's exact test of independence (Fay 2010).  A p-value < 0.05 was considered 

significant.  All statistical analyses were performed with the computer software R (R 

Foundation for Statistical Computing, Vienna, Austria). 

RESULTS 

 We collected blood samples from 31 swift foxes from July 2016 to April 2017; 

sex and age class are reported in Table 1.  All 31 foxes were tested for Y. pestis and F. 

tularensis.  However, due to limited blood samples, 29 foxes were tested for CDV and 28 

were tested for CPV.  Foxes 1606, 1703, and 1714 were not tested for CPV and fox 1606 

and 1703 were not tested for CDV (Table 1). 

 Seroprevalence of Y. pestis was 3.23%, with only one fox, an adult male, testing 

positive for antibodies (fox # 1617) (Table 2).  There was no correlation between age or 

sex of the fox and positive results (Fisher's exact test: age: p = 0.4194; sex: p = 0.4839).  

The number ofantibodies were 1:150 in the F1 analysis and 1:50 in the LcrV analysis. 

 Laboratory analysis for F. tularensis indicated that 21 foxes were positive for 

titers, with a seroprevalence of 67.74%.  Of these, 12 were juveniles, 9 were adults, with 

equal numbers of males and females (10 males and 10 females), and 1 of unknown sex.  

However, there was no relationship between age or sex of the fox and positive lab results 

(Fisher's exact test: age: p = 1; sex: p = 0.8028). 
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 Analysis for CDV titers indicated that 3 foxes were positive for titers; 

seroprevalence was 10.34%.  Of these, 1 was a juvenile and 2 were adults, with 1 female 

and 2 males represented.  There was no relationship between age or sex of the fox and 

positive lab results (Fisher's exact test: age: p = 0.5534; sex: p = 0.6264).  However, 

adults and males had higher seroprevalance (adults: 16.67%, juveniles: 5.56%; males: 

15.38%, and females: 6.25%).  Positive antibodies ranged from 1:64, 1:256, to 1:2048, 

with the only positive juvenile having the lowest number of antibodies. 

 Analysis for CPV titers indicated that 20 foxes were positive for titers, with a 

seroprevalence of 71.43%.  Of these, 12 were juveniles, 9 were adults, with equal 

numbers of males and females (10 males and 10 females), and 1 of unknown sex.  There 

was no correlation between age or sex of the fox and positive lab results (fisher's exact 

test: age: p = 0.4087; sex: p = 1).  Positive antibodies ranged from 1:64 to 1:2048.   

DISCUSSION 

 Our study is the first to assess swift fox exposure to CDV, CPV, and F. tularensis 

in the Northern Great Plains, and the only assessment of swift fox exposure to Y. pestis in 

the study area. Seroprevalence tests were positive for all four diseases, with results for 

CPV and F. tularensis particularly high, indicating regular exposure of swift fox to 

harmful or potentially harmful diseases.  Swift fox populations in the Dakotas are small 

and disease could play a role in both long-term population viability and the ability of the 

populations to expand into suitable habitat.  Knowing and understanding the exposure to 

and effect of infectious diseases could be an important factor in future conservation and 

reestablishment of these populations.  Below, we place our results in the context of 
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similar studies in different parts of the species distribution, and discuss potential 

implications in terms of population viability and future conservation action. 

 We documented high prevalence of antibodies for F. tularensis (67.74%) and 

CPV (71.43%) in swift foxes.  Studies conducted for both swift fox and the closely 

related kit fox found considerably lower antibody prevalence for these two diseases.  For 

example, lower seroprevalence was reported for CPV in Colorado (39%), California 

(10%), Utah (22%), and Arizona (30%) (Miller et al. 2000, White and Ralls 1993, Disney 

and Spiegel 1992). Similarly low seroprevalence was reported for F. tularensis in 

Colorado (0%) and California (8% and 31%) (Gese et al. 2004, McCue and O'Farrell 

1988).  The high prevalence of CPV antibodies is particularly concerning given high 

juvenile mortality rates associated with CPV infection in other canid species (Mech et al. 

2008, Murray et al. 1999, Deem at al. 2000, Kreeger et al. 2003, Pratelli et al. 2006, 

Almberg et al. 2009, Nandi and Kumar 2010, Mech and Goyal 2011, Johnson 1994, Gese 

et al. 1997).  High prevalence suggests a high rate of exposure to the disease; however, 

because prevalence is measured only in surviving animals, our results are not directly 

indicative of a negative impact (Arjo et al. 2003).  Therefore, the effect of CPV on 

individual survival and the overall trajectory of the swift fox population in the Dakotas is 

unknown. Given high mortality rates in other canid species, at least some mortality in 

swift fox can be assumed.  Improved monitoring and, potentially, intervention (e.g., 

vaccination) would benefit swift fox recovery in this small population. 

 Swift foxes are likely exposed to F. tularensis through their prey (i.e., rabbits 

[Sylvilagus sp.], Hestvik et al. 2015, Cutter 1958; prairie dogs and other rodents, Baird 

1858, Kilgore 1969).  The effect of F. tularensis on canids, including the swift fox, is 
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largely unknown (Gese et al. 2004).  However, Keuhn et al. (2013) proposed that red fox 

(Vulpes vulpes) could be an indicator of the spread of F. tularensis due to the species 

ability to develop antibodies. This could also be true of the swift fox. The role foxes play 

in the F. tularensis cycle has rarely been investigated (Ebani et al. 2017).  However, 

regular testing of swift fox could be used to monitor F. tularensis prevalence regionally. 

 CDV antibody prevalence in this study was low (10.34%) compared to similar 

studies of swift fox and kit fox elsewhere.  For example, low seroprevalence was reported 

for swift fox or kit fox in Colorado (18%), Kansas (20%), California (0%), New Mexico 

(0%), Utah (13%), and Arizona (0%) (Miller et al. 2000, White and Ralls 1993, Disney 

and Spiegel 1992). Low seroprevalence could be because close contact is necessary for 

the transmission of the disease, and because CDV does not survive long in the 

environment (Gorham 1966). It may be indicative of low survival of infected individuals, 

which could succumb to the disease prior to being tested.  This is particularly true given 

high mortality rates in other canid species from CDV infection (Johnson et al. 1994, Gese 

et al. 1997, Mech et al. 2008).  The high rate of mortality in other canid species and our 

finding of CDV positive animals within the population in the Dakotas may indicate that 

CDV is a serious threat to the continued survival of this population.  Regular monitoring 

may help elucidate the influence of CDV on swift fox populations in the Dakotas. 

 We found a low prevalence of Y. pestis (3.23%) in our study area. However, a 

recently completed study in west-central South Dakota documented high prevalence for 

Y. pestis (69.6%) in swift fox population sympatric to prairie dog towns with a high 

prevalence of the disease (i.e., Canata Basin region and Buffalo Gap National Grassland)  

(Nevison 2017).  Because swift foxes typically do not exhibit clinical symptoms (Gese et 
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al. 2004), we conclude that Y. pestis likely does not directly impact swift foxes in 

northwest South Dakota and southwest North Dakota.  They likely are an indicator 

species (Gese et al. 2004). However, indirect effects may be considerable given the high 

susceptibility exhibited by common swift fox prey species (e.g., rabbits and rodents) 

(Von Reyn et al. 1976, McGee et al. 2006, Russell 2006).  In addition, epizootic plague 

outbreaks can substantially reduce prairie dog availability, reducing availability of 

suitable habitat for swift foxes; this may have contributed to swift fox population declines 

at Badlands National Park in South Dakota (Kristy Bly, personal communication; 

Nevison 2017). Monitoring for Y. pestis and, potentially, treating prairie dog colonies to 

limit epizootic events may aid swift fox recovery in the area.  

Infectious disease prevalence in wild canid populations is believed to have 

increased due to rural development, expansion of urban areas, and an increase in 

domestic dog (Canis familiaris) and feral cat (Felis cattus) populations (Arjo et al. 2003).  

As a result, disease is recognized as a growing threat to carnivore conservation 

worldwide (Murray et al. 1999).  Carnivore conservation and restoration efforts should 

incorporate the potential risks presented by infectious diseases.  Despite significant 

efforts to recover swift fox in the Dakotas through reintroduction, populations remain 

small and are potentially in decline (Nevison 2017), leaving them vulnerable to 

perturbations such as those imparted by disease outbreaks.  Our results, combined with 

those of Nevison (2017), demonstrate that swift fox in the Dakotas are regularly exposed 

to four infectious agents; of these, two have demonstrated negative impacts on the 

survival of canids, one has a strong negative association with the survival of key swift fox 

prey species, and the other is highly prevalent but the impact on swift fox is not 
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understood.  If these diseases are causing large mortality events in this small, re-

colonizing, population it is likely slowing or completely halting the natural re-

colonization process.  This could be very devastating to the future of swift fox 

populations, especially small ones like this.  Future conservation efforts in the Dakotas 

should include improving understanding of the effects of these diseases on swift fox 

population recovery and developing mediation actions where warranted.   
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Figure 1. Focal counties in southwest North Dakota (Bowman, Adams, Hettinger, and 

Slope) and four counties in northwest South Dakota (Harding, Perkins, Meade, and 

Butte) where swift fox were captured for disease testing. Individual fox locations are 

shown as black dots.  
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Table 1. Results of Yersinia pestis, Francisella tularensis, canine distemper virus (CDV), 

and canine parvovirus (CPV) for each swift fox in the study.  P represents positive 

antibodies and N represents negative antibodies. Samples that were not available for 

testing are represented with an NA. 

Fox # Age Sex 
Y. 
pestis 

F. 
tularensis CDV CPV 

1602 J F N N N P 

1602 J F N N N P 

1603 J F N P N N 

1605 J F N N N N 

1606 J F N P NA NA 

1607 J M N P N P 

1608 J M N P N P 

1609 J F N P N P 

1610 J Unk N P N P 

1611 J F N P N P 

1612 J F N P N P 

1613 J F N N N P 

1614 A M N P N N 

1615 J F N N N P 

1616 J F N N N P 

1617 A M P P P P 

1618 J F N N N P 

1619 A M N N N P 

1621 J F N P P N 

1622 A M N N N P 

1623 A M N P N N 

1624 A M N P N P 

1702 J F N P N P 

1703 A M N N NA NA 

1704 J F N P N P 

1705 A M N P N P 

1707 J F N P N N 

1708 A M N N P P 

1709 A M N P N N 

1710 A M N P N N 

1711 A F N P N N 

1714 A M N P N NA 
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Table 2. Seroprevalence of four diseases [Yersinia pestis, Francisella tularensis, canine 

distemper virus (CDV), and canine parvovirus (CPV)]  in swift foxes in the Dakotas from 

2016-2017, reported as the proportion of all swift foxes tested, all males tested, all 

females tested, all adults tested, and all juveniles tested which yielded a positive result. 

Category Y. pestis F. tularensis CDV CPV 

All Foxes (n = 31) 3.23  67.74  10.34  71.43 

Males (n = 14) 7.14 71.43 15.38 66.67 

Females (n = 16) 0 62.50 6.25 68.75 

Adults (n = 12) 7.69 69.23 16.67 54.55 

Juveniles (n = 19) 0 66.67 5.88 82.35 
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CHAPTER 5 

ASSESSMENT OF GENETIC DIVERSITY IN A RECENTLY RE-

ESTABLISHED SWIFT FOX POPULATION 

 

Intended for publication in the Journal of Conservation Genetics 
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ABSTRACT 

The swift population found in the Dakotas is assumed to be a small, isolated population 

resulting from recolonization by founders from either reintroduced populations in central 

South Dakota or a naturally occurring population in northern Wyoming.  To assess the 

genetic diversity and viability of this population we collected 59 scat and tissue samples 

for microsatellite DNA analysis.  Of these 59 samples 50 were successfully genotyped to 

15 microsatellite loci, representing a total of 50 individuals.  We observed a mean 

observed heterozygosity of 0.66 (SD = 0.19), a mean expected heterozygosity of 0.64 

(SD = 0.18), and allelic richness of 6.18 (SD = 3.52).  Four loci significantly deviated for 

Hardy-Weinberg equilibrium with the majority indicating heterozygote deficit; we also 

observed evidence of inbreeding (FIS = 0.0324; p = 0.0005).  Using the random and 

monogamous models in program NEstimator, we estimated an effective population size 

between 33.6 and 68.9 individuals.  We used kinship analysis to identify 24 first order, 34 

second order, and 186 third order relationship within the population, and further found 

that all individuals exhibited at least one third order relationship with another individual.  

These relationships were found to be distributed throughout the study area.  We 

determined that there was no evidence of a recent bottleneck in the population.  We 

concluded that the swift fox population in northwest South Dakota and southwest North 

Dakota is a small, but genetically viable population with high interapopulation 

connectivity.  This is the first study to assess genetic composition in a recolonizing 

population of swift foxes, and one of the only detailed genetic assessments of a small, 

low density swift fox population more generally.  
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INTRODUCTION 

 Monitoring genetic indices can provide vital insight into demographic and 

evolutionary processes in populations (Barrett et al. 2005), and can be a helpful tool in 

assessing the status of and documenting changes in those populations being monitored.  

The genetic diversity of populations is an important measure of the intrinsic viability of 

each population.  Genetic theory predicts that levels of genetic variation should increase 

with effective population size (Frankham 1996).  Small, isolated populations are highly 

susceptible to loss of genetic variation through genetic drift and inbreeding (Brook et al. 

2002, Frankham et al. 2002, Frankham et al. 2005, Jamieson et al. 2006).  Isolated 

populations have been found to lose genetic variation at a faster rate than connected 

populations due to the lack of migration and genetic exchange; making populations with 

limited genetic diversity prone to extinction (Ouborg 2009, Koons 2010).  A reduction in 

genetic diversity might cause inbreeding depression, reduce adaptability, increase 

mortality and physical abnormalities which, in small populations, can reduce long-term 

viability of a species population (Allendorf and Ryman 2002).   

 Inbreeding is known to reduce reproduction, and therefore survival, of species 

(Darwin 1876, Charleworth and Charlesworth 1987, Falconer and Mackay 1996, Lynch 

and Walsh 1998).  It can have negative impacts on reproduction through sperm 

production, mating ability, female fecundity, juvenile survival, mothering ability, age at 

sexual maturity, and adult survival (Frankham et al 2005).  The effects of inbreeding can 

only be reduced following crossbreeding with individuals from unrelated populations 

(Speilman and Frankham 1992, Falconer and Mackay 1996, Westemeier et al. 1998, 

Schwartz and Mills 2005).   
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 Species re-colonization occurs through migration and dispersal. Often, these new 

populations are founded by a small number of individuals (Schwaegerle and Schaal 

1979), and exhibit founder effects, where the genetic diversity of the newly formed 

population is limited to that contained within the founders, and not the species as a 

whole.  Similarly, a reduction in population size to a few individuals, followed by rapid 

expansion is known as a bottleneck (Allendorf et al. 2010).  Both founder effects and 

bottlenecks result in a loss of genetic diversity (Wright 1931, Nei et al 1975, Denniston 

1978, Allendorf 1986).  However, adaptive alleles can be quickly restored after re-

establishment even with low rates of gene flow from other populations (Carlquist 1966, 

MacArthur and Wilson 1967, Williamson and Charlesworth 1976).  Monitoring genetic 

characteristics of a re-colonizing population, including inbreeding, heterozygosity, 

effective population size, allelic diversity, evidence of a bottleneck or founder effect, and 

relatedness can be used to determine population viability and to evaluate when the 

population has reached a critical threshold that requires management action (Schwartz et 

al. 2006). 

 Anecdotal evidence implies small isolated populations of swift fox (Vulpes velox) 

are all that remain in Montana, South Dakota, Nebraska, and parts of Wyoming (Merrill 

et al. 1996, Redmond et al. 1998, North Dakota Game and Fish Department 2017, South 

Dakota Game, Fish, and Parks Department 2014, Soper 1964, Sovada and Scheick 1999, 

Allardyce and Sovada 2003).  The majority of extant swift fox populations in the 

Northern Great Plains, in particular in Montana and the Dakotas, are the result of 

reintroduction efforts, not natural recovery (Smeeton and Weagle 2000, Montana Fish, 

Wildlife and Parks Department 2006, Ausband and Foresman 2007).  Due to state-wide 
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extirpation, 459 swift fox were released in South Dakota between 2002 and 2010 

(Honness et al. 2007, Swift Fox Conservation Team 2006, Swift Fox Conservation Team 

2011, Oglala Sioux Parks and Recreation Department 2012, Sasmal et al. 2012).  These 

reintroductions occurred in four areas in the west-central portion of the state: Bad River 

Ranches (Turner Endangered Species Fund), Lower Brule Sioux Tribal Land (Lower 

Brule Sioux Tribe Department of Wildlife, Fish and Recreation and the Maka 4 

Foundation), Badlands National Park (National Park Service), and Pine Ridge Indian 

Reservation (Oglala Sioux Parks Recreation Authority).  Today, swift foxes are known to 

exist around Badlands National Park and in Fall River County (a remnant population) 

South Dakota (Swift Fox Conservation Team 2011, Swift Fox Conservation Team 2014). 

Since the start of these reintroduction efforts, regular swift fox sightings have been 

reported in northwest South Dakota and there has been a spike in regular fatalities due to 

vehicles in southwest North Dakota, indicating potential for an existing, yet small, 

population in the area.   This area is outside of the boundaries of recent reintroduction 

projects, where swift fox were not known to occur; it is not clear if these foxes are 

descendants of reintroduced foxes, natural dispersal from nearby Wyoming and Montana, 

or both potential sources.  

It is unknown if the genetic variation within the re-established population is 

reduced. The apparent small population size and patchy distribution of individuals imply 

potential for reduced genetic variation, while the history of multiple reintroductions from 

genetically diverse source populations (Sasmal et al. 2012, Schwalm et al. 2014) 

combined with potential immigration from nearby populations may counteract the effects 

of size and distribution – or, in the instance of reintroductions specifically, could 
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confound losses through founder effects and genetic bottlenecks.  The objective of this 

study was to measure genetic diversity and assess population genetics characteristics such 

as founder effects, bottlenecks, inbreeding and relatedness in a small, recolonizing swift 

fox population, of which little is known about the distribution, abundance, connectivity, 

or genetic diversity.  Notably, we provide one of the first studies of the genetic 

composition of a naturally re-colonizing swift fox population and one of few studies of 

genetic diversity in newly re-established population of vertebrates. 

STUDY AREA  

 The study area included Harding, Butte, Perkins, and Meade counties in South 

Dakota and Slope, Bowman, Adams, and Hettinger counties in North Dakota (Figure 1).  

The study area encompassed approximately 4,099,174 ha dominated by mixed grass 

prairie, interspersed with sagebrush (Artemisia sp.).  Prominent grasses of the mixed 

grass prairie in the area were: western wheatgrass (Pascopyrum smithii), green needle 

grass (Nassella viridula), needle and thread (Hesperostipa comata), blue grama 

(Bouteloua gracilis), and side-oats grama (Bouteloua curtipendula).  Topography was 

largely flat to gently rolling hills with occasional buttes. The primary soil types were 

clays derived from Creataceous Pierre Shale.  Predominate water features included 

Shadehill Reservoir, Belle Fourche Reservoir, and the Belle Fourche River.  Lands were 

primarily used for cattle and sheep grazing. The southwestern edge of the study area is 

roughly 33.70 km from the BNP reintroduction site, 8.46 km from the Pine Ridge 

Reservation reintroduction site, 143.23 km from the Bad River Ranch reintroduction site, 

186.68 km from the Lower Brule Reservation reintroduction site, and 119.09 km from the 

remnant population in Fall River County in South Dakota. Its western boarder likely 
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abuts the small southeastern Montana population and the slowly expanding Wyoming 

population. It is roughly 413.60 km from the north central Montana reintroduction site. 

MATERIALS AND METHODS 

Sample collection and preservation 

 We captured swift foxes from July 2016 to April 2017 using modified wire box 

traps (Model 108SS; Tomahawk Live Trap Co., Tomahawk, WI, USA) of dimensions 

81.30 cm × 25.40 cm × 30.50 cm (Sovada et al. 1998).  We manually restrained captured 

fox while we recorded sex, age (juvenile or adult, determined by tooth wear), and 

collected a 3-mm tissue sample 2.54 cm from the outer edge of the ear using a sterile 

biopsy punch (Schwalm et al. 2012).  We also collected tissue samples from any 

opportunistically obtained swift fox carcasses, typically from road mortalities.  We then 

stored tissue samples at room temperature in a 0.70 ml screw-cap cryovial filled with 

lysis buffer (Longmire et al. 1997).   

 In addition to tissue samples, we collected scat samples during a systematic 

camera survey conducted from August 2016-December 2016 (Mitchell et al, in prep). We 

also collected scats left at live trapping sites, outside of the traps.  We allowed scat to dry 

in a paper bag at room temperature for 7 days then placed the paper bag in a sealed 

plastic bag with silica beads.  We collected 49 swift fox tissue samples and 10 potential 

swift fox scats.   

Laboratory analyses 

We extracted whole genomic DNA from tissue samples using the QIAGEN 

DNeasy tissue and blood kit (QIAGEN Inc., Valencia, California, USA) except we 

modified the Qiagen protocol to include a 12-hour incubation at step 3 and 210 μl of 
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ethanol at step 6. We next generated individual genotypes using 15 microsatellite primer 

sets previously used for swift fox (Kitchen et al. 2005; Cullingham et al. 2007, Sasmal et 

al. 2012, Schwalm et al. 2014; Table 1).  We included primer pairs in one of three 

multiplexes using the QIAGEN Multiplex Kit. PCR conditions (7μl final volume) for 

multiplex one were 1μM sample, 1X Master Mix, 0.5X Q solution, 0.07μM both primers 

for locus CXX173, 0.06μM both primers for locus CXX377, 0.08μM both primers for 

locus FH2054, 0.17μM both primers for locus CXX20, 0.10μM both primers for loci 

CPH3 and CXX250, and 0.27μM both primers for locus CXX403.  The PCR 

thermoprofile included initial denaturation for 15 min at 95ºC, 14 cycles of 30 s at 94ºC, 

90 s at 55ºC (decreasing 0.3ºC per cycle to 50.8ºC) and 1 min at 72ºC, followed by 25 

cycles of 30 s at 94ºC, 90 s at 51ºC and 1 min at 72ºC, then final elongation at 60ºC for 

30 min.   

PCR conditions for multiplex two were 1μM sample, 1X Master Mix, 0.5X Q 

solution, 0.15μM both primers for locus CXX263, 0.10μM both primers for locus VVE2-

111, 0.10μM both primers for locus FH2062, 0.40μM both primers for locus VVE5-33, 

and 0.10μM both primers for locus CXX109. PCR conditions for multiplex three were 

1μM sample, 1X Master Mix, 0.5X Q solution, 0.06μM both primers for locus VVE-

M19, 0.08μM both primers for locus VVE3-131, and 0.25μM both primers for locus 

VVE2-110.  For scat samples only, species ID markers described by De Barbara et al. 

(2014) also were included in this multiplex. These were SIDLF (0.20 μM both primers), 

HI6145R (0.14 μM both primers) and H3RR (0.07 μM both primers). The PCR 

thermoprofile for multiplex two and three included initial denaturation for 15 min at 

95ºC, 12 cycles of 30 s at 94ºC, 90 s at 53ºC (decreasing 0.3ºC per cycle to 49.4ºC) and 1 
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min at 72ºC, followed by 25 cycles of 30 s at 94ºC, 90 s at 47ºC and 1 min at 72ºC then 

final elongation at 60ºC for 30 min.  For all multiplexes, an additional 10 cycling steps 

were added for scat samples. 

We completed DNA extraction and amplification in the Epps’ lab for 

Conservation Genetics at Oregon State University, which has dedicated space for DNA 

analysis of low-quality/low-quantity samples generated from feces. PCR products were 

run on an ABI 3730 capillary DNA sequencer (Applied Biosystems, Inc.) at the OSU 

Center for Genome Research and Biocomputing. We determined allele size, number of 

alleles and individual genotypes using GeneMapper 3.7 (Applied Biosystems, Inc.). 

All tissue samples were successfully genotyped. Of the 10 scat samples we 

collected, 7 failed to amplify, 1 was identified as a red fox (Vulpes vulpes) scat, and 2 

were identified as swift fox scats. Of these two swift fox scats, one was successfully 

genotyped while the other produced a partial genotype and was not used in further 

analyses. Thus, in total, we generated genotypes for 50 unique swift fox. 

Data analysis 

 Using Arlequin 3.5.2.2 (Excoffier and Lischer 2010), we estimated observed and 

expected heterozygosity.  Using FSTAT 2.9.3.2 (Goudet 2001), we tested for linkage 

disequilibrium to determine if there were any significant associations between all pairs of 

microsatellite loci, and we corrected for multiple tests using Bonferroni corrections (Rice 

1989). We also tested for Hardy-Weinberg equilibrium (HWE), correcting for multiple 

comparisons with a sequential Bonferroni correction at a nominal α value of 0.05.  We 

estimated pairwise relatedness (R) among individuals, accounting for null alleles, with 

ML-Relate (Kalinowski et al. 2006).  We estimated genetic effective population size (i.e., 
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number of breeding individuals, Ne) using NEstimator 2.1 (Do et al. 2014).  For these 

analyses, we used both the monogamous-mating model and the random-mating model, 

since swift fox are not always strictly monogamous (Kamler et al. 2004, Kitchen et al. 

2006).  Lastly, we tested for signs of a genetic bottleneck using the Wilcoxon tests in 

BOTTLENECK 1.2.02 (Cornuet and Luikart 1997). 

RESULTS  

 There were no signs of linkage disequilibrium between any pair of loci (p > 0.05 

in all instances).  Observed heterozygosity at each locus ranged from 0.18 to 0.86 and 

expected heterozygosity at each locus ranged from 0.17 to 0.863 (Table 1).  Estimated 

expected global heterozygosity (He) was 0.64 (SD = 0.18) and observed global 

heterozygosity (H0) was 0.66 (SD = 0.19).  Allelic richness at each locus ranged from 

3.99 to 15.92 and the number of alleles detected ranged from 3 to 16 (Table 1).  Allelic 

richness (AR) was 6.18 (SD = 3.52).  We found 4 loci with significant deviation from 

HWE, with significant heterozygote deficiencies.  Many factors can influence HWE, but 

because our population had some clustering of relatives these deviations may be due to 

the Wahlund effect (Wahlund 1929).  This phenomenon has been reported in swift fox 

populations elsewhere (Kitchen et al. 2005).  We also found evidence of inbreeding (FIS = 

0.03, p = 0.0005).  Using the random mating model and monogamous mating models, 

respectively, we estimated a genetic effective population size (Ne) between 33.60 (95% 

CI: 33.60-57.50) and 68.90 (95% CI: 68.90 - 116.50) individuals.  We found 24 first 

order relationships (i.e., parent/offspring), 34 second order relationships (i.e., full 

sibling), and 186 third order relationships (i.e., half sibling, grandparent-grandchild, 

aunt/uncle-niece/nephew) throughout the entire data set (Table 2).  All individuals had at 
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least one third order relationship with another individual in the dataset and 68% of 

individuals (n = 34) exhibited at least one second order relationship with another 

individual in the dataset. These relationships were distributed throughout the study area.  

None of the models used (i.e., I.A.M., T.P.M, and S.M.M) showed evidence of a 

bottleneck within the population (p > 0.05 in all cases). 

DISCUSSION  

We observed no evidence of a genetic bottleneck in the study population, similar 

to reintroduced and re-colonizing populations (Forbes and Boyed 1996a, Forbes and 

Boyed 1996b).  However, we did observed evidence of high individual relatedness within 

the population and reduced genetic diversity compared to neighboring swift fox 

populations.  Combined, the small to modest sized effective population estimate, current 

evidence of inbreeding and reduced genetic diversity, and the high relatedness of 

individuals in the population imply that the population is at risk of inbreeding and loss of 

genetic diversity over time.  This is particularly true if the population is isolated from 

immigration nearby populations in Montana and Wyoming. The relationship to and level 

of connectedness between swift foxes in the Dakotas, Montana, and Wyoming is 

currently unknown, and would be a useful topic for further study. 

The observed heterozygosity and allelic richness we report here are comparable to 

those found by Schwalm et al. (2014) for the seven unique swift fox genetic groups that 

encompass the majority of the species range in the United States (H0 range = 0.50 to 0.68; 

AR range = 3.70 to 4.73; Table 4).  Garner et al. (2005) reported that across mammal 

species an average heterozygosity of 0.69 is an indicator of genetic health.  Our global 
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heterozygosity level (Ho = 0.66),  is not only close to this indicator of genetic health but 

also is very similar to that of other stable canid populations (Forbes and Boyd 1996a, 

Kitchen et al. 2005, Williams et al. 2003, Cullingham et al. 2010, Cullingham and 

Moehrenschlager 2013).  Thus, we conclude that the swift fox population in northwest 

South Dakota and southwest North Dakota is a genetically viable population currently.  

However, given that the population in the Dakotas exhibits reduced genetic diversity 

compared to putative source populations including BNP, Wyoming, and Colorado, it 

should be monitored to ensure that this reduction is not symptomatic of ongoing decline 

in genetic diversity.   

Observed heterozygosity (Ho = 0.66) wass higher than expected heterozygosity 

(He = 0.64) indicating an isolated-breaking effect, also known as the Wahlund effect, or 

the mixing of two previously isolated populations (Wahlund 1928). This supports our 

hypothesis that the swift fox population in northwest South Dakota and southwest North 

Dakota is a re-colonizing population, likely including dispersing individuals from from 

reintroduced populations and from distant natural source populations.   

 Genetic effective population size (Ne) is a key determinant in the rate of loss of 

genetic diversity and is the best overall metric of genetic diversity (Lande and 

Barrowclough 1987, Hoehn et al. 2012). The longer a population remains small, the more 

likely it will experience adverse effects from inbreeding (i.e. inbreeding depression). 

Estimates of Ne for the swift fox population in the Dakotas ranged from 33.60 (95% CI: 

33.60-57.50) to 68.90 (95% CI: 68.90 - 116.50), with higher precision indicated for the 

smaller of these two estimates. Ne estimates assume the population is closed, however 

there is a knowledge gap in the Dakotas related to swift fox population connectivity on a 
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regional scale.  It is possible that this population is influenced by immigration from 

neighboring Wyoming and/or Montana populations. If this is the case then the Ne 

estimate in this study may be inflated.  The low genetic effective population estimate was 

expected yet concerning, considering the 50/500 rule (Franklin 1980).   

The 50/500 rule proposes that genetic Ne be > 50, in the short term and > 500 in 

the long term, to avoid inbreeding depression.  Following this guideline the population in 

the Dakotas is likely at risk to experience inbreeding depression, in both the long term 

and short term.  Indeed, we found support for inbreeding in the study population (Fis = 

0.03, p = 0.0005), and observed that what seems to be exceptionally high relatedness 

throughout the population, with 48% (n = 24) of individuals sharing a parent-offspring 

relationship with another individual, 68% (n = 34) of individuals sharing at least a full 

sibling relationship with another individual and 100% (n = 50) of individuals sharing at 

least a half sibling, grandparent-grandchild or aunt/uncle-niece/nephew relationship with 

another individual in the dataset. The majority (n = 46; 92%) were related to multiple 

individuals in the dataset. Thus, the risk of mating with a relative is high in this 

population. This may, in part, explain the high spatial dispersion of these relationships, as 

well as the relatively large movements and home ranges observed in the population 

(Mitchell et al. in prep), which could be the result of individuals seeking mating 

opportunities with non-relatives (Gandon 1999) although it is unknown if swift foxes are 

able to recognize relatives outside of parents and litter-mates.  

 The spatial dispersion of closely related individuals in the study area also points 

to high intra-population connectivity, which can positively affect the retention of genetic 

diversity in populations (Gandon 1999).  This study found that closely-related individuals 
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(2nd and 3rd order) were distributed throughout the study area, with related individuals 

separated by large distances (E. Mitchell, unpublished data).  Conversely, we also 

observed evidence of kin clusters (1st and 2nd order relatedness) in some parts of the 

study area, similar to those reported in a swift fox population by Kitchen et al. (2005) and 

those in a kit fox population by Ralls et al. (2001).  Kin clusters occur when neighboring 

foxes are closely related, and can result in an increased level of tolerance and overlapping 

home ranges.  This is supported by telemetry data, which shows overlapping home ranges 

between closely related individuals within the population in some instances (E Mitchell et 

al., in prep).  The long-term effect of kin clustering on genetic diversity in swift fox 

populations is unknown, although it appears to be a naturally occurring phenomenon and 

could be linked to cooperative breeding intermittently observed in swift fox populations 

(Kitchen et al. 2006, Kamler et al. 2004), which also has been documented in other 

vulpid species (Ralls et al. 2001, Kamler et al. 2013). 

 These findings suggest that the swift fox population in the western Dakotas is 

currently a small, but viable population, exhibiting good genetic diversity.  Related 

individuals are broadly scattered throughout the population implying gene flow across the 

study area, which may positively influence the rate of loss of genetic diversity 

(decreasing it).  Nonetheless, genetic diversity was lower than reported in many other 

swift fox populations including those populations that are the likely sources of 

recolonization in the study area, estimated effective breeding size was lower than 

recommended for both short and long term viability, and evidence of inbreeding was 

observed.  All three findings point towards a need to monitor the genetic composition of 

this population in the future; the heterozygosity levels, allelic richness, and estimated 
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genetic effective population size we report here provide as a baseline for such future 

assessments.  In addition, gene flow between this population and surrounding populations 

in South Dakota, Wyoming, and Montana should be explored; region-wide processes of 

immigration and emigration may play a large role in the long-term viability of the swift 

fox population in the Dakotas. 
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Figure 1. Location of individual swift fox samples, shown as black dots, collected in the 

study area from August 2016 – July 2017. The study area is comprised of four counties in 

southwest North Dakota (Bowman, Adams, Hettinger, and Slope) and four counties in 

northwest South Dakota (Harding, Perkins, Meade, and Butte). The four reintroduction 

sites are shown as black triangles and the remnant population is shown as a black star. 
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Table 1. Size range and observed polymorphisms per microsatellite locus pair used to 

analyze 50 swift fox scat and tissue samples. Samples are shown grouped in the PCR 

multiplex in which they were run. For reference the # of alleles known to occur 

throughout the species distribution (i.e., # Alleles Distrib.), reported by Schwalm et al. 

2014, are also shown. 

 

Multiplex Locus 

Size range 

(bp) # Alleles 

# Alleles 

Distrib. 

1 

FH20541 171-183 4 7 

CPH32 152-162 6 6 

CXX203 116-136 5 9 

CXX1733 122-126 3 4 

CXX2503 127-139 7 10 

CXX3773 169-187 6 8 

CXX4033 268-276 3 5 

2 

CXX1093 160-164 5 6 

CXX2633 112-120 4 5 

FH20621 133-146 4 6 

VVE2-1114 128-141 5 5 

VVE5-334 197-217 3 9 

3 

VVE-M194 249-274 12 27 

VVE2-1104 239-336 16 40 

VVE3-1314 156-189 5 6 
Francisco et al. 19961 

Fredholm et al. 19952 

Olstrander et al. 19933 

Cullingham et al. 20074 
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Table 2. Observed (Ho) and expected (He) heterozygosity, allelic richness (AR), number 

of alleles per loci, and results of Hardy-Weinberg equilibrium (HWE; p < 0.05), mean 

observed and expected heterozygosity and allelic richness for each of 15 microsatellite 

loci used to assess genetic diversity in a swift fox population in the Dakotas.  Four loci 

deviating from HWE are indicated with an asterisk.  Heterozygosity, allelic richness, and 

number of alleles per loci were calculated using Arlequin 3.5.2.2 and HWE was 

calculated using FSTAT 2.9.3.2 with a Bonferroni correction. 

Alleles H0 He AR 

# 

alleles 

CPH3 0.84 0.81556 6 6 

CXX173* 0.32 0.44505 3 3 

CXX20 0.7 0.75677 5 5 

CXX250 0.8 0.79778 7 7 

CXX377 0.6 0.53495 5.88 6 

CXX403 0.18 0.16909 3 3 

FH2054 0.6 0.65475 4 4 

CXX109 0.66 0.65919 4.94 5 

CXX206 0.78 0.72949 4 4 

CXX263* 0.52 0.55859 3.997 4 

VVE2-111* 0.64 0.68889 4.94 5 

VVE5-33 0.6383 0.67582 8 8 

VVE2-110 0.77083 0.86272 15.916 16 

VVE3-131 0.86 0.76768 5 5 

VVE-M19* 0.74 0.85576 11.988 12 

Mean 0.643275 0.664806 6.1774 6.2 
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Table 3. Number of first order (parent/offspring), second order (full sibling), and third 

order (half sibling) relationships per individual fox. Relatedness was calculated using 

ML-Relate. 

Fox ID 
1st 
Order 

2nd 
Order 

3rd 
Order 

ND1701    1 6 

ND1702    1 9 

ND1703      4 

ND1704      10 

SD1701  1   9 

SD1702  1 1 1 

SD1703  2 1 4 

SD1704    1 7 

SD1705      6 

SD1706  1 4 2 

SD1707  1 2 2 

SD1708  1 3 2 

SD1709  1 2 2 

SD1710  4   5 

SD1711    1 3 

SD1712    2 2 

SD1713R    1 4 

SD1714      5 

SD1715      1 

SD1716  1   4 

SD1718    1 3 

SD1719    1 3 

SD1720  2   3 

SD1721      3 

SD1722    1 2 

SD1723      4 

SD1724    2 3 

SD1725      3 

SD1726      3 

SD1727  2 2 4 

SD1728    1 2 

SD1729R      2 

SD1730    1 3 

SD1731      2 

SD1732      1 

SD1733  4   1 
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SD1734    1 1 

SD1735    1 3 

SD1736      2 

SD1737      4 

SD1738    2 2 

SD1739      1 

SD1741      5 

SD1742  1 1 6 

SD1743      5 

SD1744      5 

SD1745  1   5 

SD1746  1   7 

SD1747      5 

SDS03      5 

Total 24 34 186 
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