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ABSTRACT 

EVALUATING BIGHORN SHEEP HERD RESPONSE AFTER SELECTIVE 

REMOVAL OF MYCOPLASMA OVIPNEUMONIAE CHRONIC SHEDDERS 

TYLER GARWOOD 

2018 

 Infected individuals vary in their contribution to disease persistence, and 

chronically infected individuals may sustain disease in a population. One disease 

that might persist in a population through chronically infected individuals is 

pneumonia in wild sheep. Mycoplasma ovipneumoniae (Mo), a pathogen of Caprinae 

commonly present in domestic sheep and goats, strongly correlates with pneumonia 

epizootics when it infects wild sheep populations. These epizootics can cause 40-

100% herd mortality in an initial all-age dieoff, precipitate annual lamb mortality as 

high as 100% in following years, and sustain adult mortality long after initial all-age 

dieoffs. We conducted an experiment in the Black Hills of South Dakota to evaluate 

whether we could eliminate Mo infection and pneumonia in a bighorn sheep 

population by removing chronically infected individuals, termed “chronic shedders”. 

We classified chronic shedders as adults that consistently tested positive for Mo on 

multiple nasal swabs collected over a 20 month period. We identified and removed 

chronic shedders from a treatment population (Custer State Park) and left the 

adjacent control population (Rapid City) unmanipulated. Mo and respiratory disease 

were not detected following treatment, whereas Mo persisted in the control herd 

and pneumonia was the leading source of mortality among both adults and 

lambs. Adult and juvenile annual survival in the treatment population averaged 93% 
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and 76%, respectively, as compared to 83% and 35% in the control herd. Overall 

mortality hazard for adults was significantly reduced in the treatment population 

relative to the control (���������� =-0.95, CI=-2.03, -0.039), as was the hazard for 

lambs (����������=-1.40, CI=-2.42, -0.46). These results support the hypothesis that 

Mo is the primary causative agent of epizootics of pneumonia in bighorn sheep, are a 

proof-of-concept of epidemics being sustained by chronic carriage, and provide 

direction for management actions aimed at treating respiratory disease in bighorn 

sheep. 
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CHAPTER 1: REMOVAL OF BIGHORN SHEEP CHRONICALLY INFECTED WITH 

MYCOPLASMA OVIPNEUMONIAE ELIMINATES PATHOGEN PRESENCE AND 

PNEUMONIA IN POPULATION, PROVIDING EVIDENCE OF CHRONIC CARRIERS 

SUSTAINING DISEASE TRANSMISSION 

This chapter is being prepared for publication and was coauthored by Daniel P. Walsh, 

E. Frances Cassirer, Thomas E. Besser, Chadwick P. Lehman, and Jonathan A. Jenks. 
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Abstract 

Infected individuals vary in their contribution to disease persistence, and 

chronically infected individuals may sustain disease in a population. One disease 

that might persist in a population through chronically infected individuals is 

pneumonia in wild sheep. Mycoplasma ovipneumoniae (Mo), a pathogen of Caprinae 

commonly present in domestic sheep and goats, is associated with pneumonia 

epidemics when it infects wild sheep populations. These infections linger and are 

responsible for adult mortality long after initial all-age dieoffs. We conducted an 

experiment in the Black Hills of South Dakota to evaluate whether we could 

eliminate Mo infection and pneumonia in a bighorn sheep population by identifying 

and removing individuals that chronically carry and shed Mo, termed “chronic 

shedders”. We classified chronic shedders as adults that consistently tested positive 

for Mo on multiple nasal swabs collected over a 20 month period. We identified and 

removed chronic shedders from a treatment population (Custer State Park) and left 

the adjacent control population (Rapid City) unmanipulated. Mo and respiratory 

disease were not detected following treatment, whereas Mo persisted in the control 

herd and pneumonia was the leading source of mortality among adults. Adult 

survival in the treatment population averaged 93% annually, as compared to 83% in 

the control herd.  Overall mortality hazard for adults was significantly reduced in 

the treatment population relative to the control herd (���������� =-0.95, CI=-2.03, -

0.039). This outcome supports the hypothesis that Mo is a primary agent of 

pneumonia infections in bighorn sheep and is maintained by chronic shedders in 

free-ranging populations. These results provide direction for management actions 
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aimed at treating respiratory disease in bighorn sheep and are a proof-of-concept of 

disease being sustained in a population by chronic carriage. 

Introduction 

Variation among individuals in their contribution to disease spread and persistence 

has been theorized to serve an important role in sustaining disease presence in a 

population (Woolhouse et al. 1997, Lloyd-Smith et al. 2005, Paull et al. 2012). One 

way individuals vary is in their propensity to chronically sustain infections, and it 

has been suggested that a few chronically infected individuals can sustain the 

presence certain diseases by shedding the responsible pathogen and reinfecting 

other individuals within their population (Monack et al. 2004, Buhnerkempe et al. 

2017). To our knowledge, experimental evidence of disease presence being 

eliminated by identifying and isolating such “chronic shedders” remains 

undocumented in the literature, despite the fact that chronic shedding may be 

ubiquitous across a variety of taxa (Wertheim et al. 2005, Buhnerkempe et al. 2017, 

Plowright et al. 2017). Experimental evidence testing the concept of eliminating 

chronic shedders to control disease outbreaks would demonstrate the efficacy of 

this disease management action and be applicable across the human, domestic 

animal, and wildlife health sectors. 

 Epizootics of pneumonia have generally precipitated significant declines in 

bighorn sheep (Ovis canadensis) populations across the American West (Valdez and 

Krausman 1999, Singer et al. 2000). Researchers also noted that pneumonia is often 

hyperendemic in post-epizootic populations, preventing population recovery 

(Cassirer and Sinclair 2007, Smith et al. 2015). Evidence suggests that domestic 
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Caprinae serve as a reservoir for the responsible infectious agent (Monello et al. 

2001, George et al. 2008, Besser et al. 2013, Besser et al. 2017), and that pathogen 

transmission can occur when bighorns interact with domestic sheep and goats 

(George et al. 2008). Infected bighorns also infect naïve bighorns, causing 

intraspecies transmission within and between herds (Cassirer et al. 2013). After 

subsequent transmission within the bighorn population, an all-age epizootic can 

occur, and may initially kill 40-80% of the herd (Spraker et al. 1984, Enk et al. 

2001). The all-age epizootic is often followed by annual juvenile pneumonia 

epizootics of similar or greater magnitude (Cassirer et al. 2013, Smith et al. 2014). 

Adults may also experience pneumonia-related mortalities in years following the 

initial all-age dieoff (Smith et al. 2015). Because of the importance of adult bighorn 

sheep in maintaining high population growth rates (Johnson et al. 2010) and their 

likely role in contributing to juvenile pneumonia epizootics (Plowright et al. 2017), 

treating and preventing adult pneumonia could be an important component to 

ensuring population recovery in ailing herds. 

 Historical management attempts to curtail pneumonia mortality rates in wild 

bighorn sheep populations have been varied and directed at a wide variety of causal 

agents, but met with little success. Antibiotics (Coggins and Matthews 1998, 

Rudolph et al. 2007, McAdoo et al. 2010), vaccination (Cassirer et al. 2001, 

Sirochman et al. 2012), partial and complete depopulation (Cassirer et al. 1996, 

McFarlane and Aoude 2010, Bernatowicz et al. 2016), and mineral supplementation 

(Coggins 2006) have all been tested. One likely reason for the unsuccessful results is 

that the techniques targeted the wrong etiological agent. Several bacteria (i.e., 
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Pasteurella multocida, Bibersteinia trehalosi, Mannheimia haemolytica) and parasites 

(Protostongylus sp) are detected in the lungs of bighorn sheep fatally affected by 

pneumonia and have been the target of numerous treatments (Foreyt et al. 1994, 

Miller et al. 2000, Dassanayake et al. 2009, Grigg et al. 2017). Some researchers still 

identify leukotoxigenic Pasteurella as playing the primary role in pneumonia 

development (Dassanayake et al. 2017, Grigg et al. 2017). However, of all potential 

candidates, bacterial Mycoplasma ovipneumoniae (Mo) exhibits the strongest 

correlation with bighorn sheep pneumonia mortalities (Besser et al. 2012, Besser et 

al. 2013, Cassirer et al. 2018), a trend that was discovered only a decade ago with 

access to improved molecular techniques (Besser et al. 2008). Ultimately, the lack of 

a clearly successful treatment indicates that more research is needed to develop 

management solutions, and that definitively identifying the causative agent of 

pneumonia in bighorn sheep would allow wildlife managers and veterinarians to 

better direct their limited resources (Cassirer et al. 2018).   

 Years of studying pneumonic bighorn sheep herds have produced useful 

epidemiological insights that suggest further research avenues. One such insight is 

that ewe infection is likely responsible for annual juvenile epizootics; most juvenile 

pneumonia mortalities occur prior to weaning, and lambs rarely interact with 

individuals outside their nursery groups during this timeframe (Cassirer et al. 2013, 

Manlove et al. 2017). Whether ewe-driven transmission plays a strong role in 

persistent adult pneumonia mortalities is less clear, but it is possible given that 

pneumonia-induced mortalities generally occur during and shortly after rut when 

close contact between sexes might increase transmission (Bleich et al. 1997, 
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Cassirer et al. 2013). Secondly, only a small proportion (median=22%) of bighorns 

tend to test positive for shedding Mo in a given herd at any point in time, despite 

high herd seroprevalence (median =67%; Cassirer et al. 2018). Although only based 

on a single sub-population, a third paper noted that 50% of bighorns remained 

positive for Mo infection after their first positive test, suggesting chronic carriage in 

some individuals (Plowright et al. 2017). Based on this groundwork, it is reasonable 

to hypothesize that Mo may be maintained in bighorn sheep populations by chronic 

shedder ewes that are few in number and identifiable with adequate testing 

intensity. A natural prediction of this hypothesis is that identifying and removing all 

chronically shedding ewes would reduce or eliminate pneumonia in that herd and 

increase survival. Since chronic shedders may maintain disease within a population 

in a variety of taxa (Foley et al. 1997, Wertheim et al. 2005, Buhnerkempe et al. 

2017), research designed to test this hypothesis could yield insights applicable 

beyond bighorn sheep management. 

 To test the effect of chronic shedder removal, we utilized free-ranging 

bighorn sheep herds near Custer State Park (CSP; treatment herd) and Rapid City 

(control herd), South Dakota, USA (Figure 1). Our objectives were to 1) determine if 

removing chronically shedding ewes would reduce the prevalence of Mo shedding in 

the treatment herd, and 2) document whether the chronic shedder removal would 

be accompanied by a lack of pneumonia-related mortality in adult bighorn sheep. 

Methods 

Study Area 
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The Black Hills are a small, isolated mountain range rising from the Great Plains of 

southwestern South Dakota and east-central Wyoming (Froiland 1990) that occupy 

an area of approximately 8,400 square kilometers (Fecske et al. 2004). They range 

in elevation from 972 meters above sea level to 2,207 meters at Black Elk Peak. 

Ponderosa pine (Pinus ponderosa) is the dominant tree species (Brown and Sieg 

2016). Black Hills spruce (Picea glauca Densata) and aspen (Populus tremuloides) 

increase in abundance at higher elevations in the central and northern Black Hills. 

Based on data collected at the Rapid City Airport weather station, average annual 

precipitation over the course of our study was 11.3 cm of rainfall and 29.6 cm of 

snow. Temperatures ranged from -30°C to 41°C, with an average high of 17°C and an 

average low of 1°C (National Oceanic and Atmospheric Administration 2018). 

 Bighorn sheep were likely common in the Black Hills before European 

settlement but extirpated by 1899 (Seton 1929, Witte and Gallager 2012). Beginning 

in 1922, managers and conservationists performed 9 reintroduction events that 

resulted in current populations of bighorn sheep in 5 distinct locations: CSP, Rapid 

City, Elk Mountain, Hell Canyon, Deadwood (South Dakota Department of Game Fish 

and Parks 2018). Only the CSP and Rapid City herds were known to be experiencing 

pneumonia epizootics at the time of chronic shedder removal and Mo presence was 

verified in both (Smith et al. 2015) (Table 1). These herds utilized ranges that were 

spatially isolated by approximately 12 km straight-line distance (Figure 1). We did 

not observe range overlap during the course of the study. Both areas were easily 

accessible by U.S. Forest Service and state fire roads. Predator assemblages were 

similar between study areas and consisted of mountain lions (Puma concolor), 
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coyotes (Canis latrans), bobcats (Lynx rufus), bald eagles (Haliaeetus leucocephalus), 

and golden eagles (Aquila chrysaetos) (Smith et al. 2015).  

 We designated the CSP herd as the treatment herd, which was located 

primarily within a 28,733 ha park in Custer County, South Dakota. Source herds for 

the treatment herd were Whiskey Mountain, Wyoming (22 bighorns, 1965) and 

Alberta, Canada (20 bighorns, 1999)(South Dakota Department of Game Fish and 

Parks 2018). Deep canyons and exposed rocky outcroppings in the central and 

northeastern regions of the park characterized bighorn sheep habitat in the 

treatment area. At the beginning of the study, the treatment population numbered 

14 ewes, 6 rams, and 2 lambs. No farms inside this study area were known to raise 

domestic sheep or goats, but several residents kept domestic sheep within 10 km of 

the park boundary.  

 We designated the Rapid City herd as the control herd, which inhabited a 

mixture of public and private land in Spring Creek and Rapid Creek canyons near 

Rapid City in Pennington County, South Dakota. Control source herds were 

Georgetown, Colorado (26 bighorns, 1991) and Badlands National Park, South 

Dakota (5 bighorns, 1992) (South Dakota Department of Game Fish and Parks 

2018). Bighorn sheep in the control herd generally used canyon bottoms and walls 

for parturition and summer range, and then moved to residential lawns closer to 

Rapid City for winter range (Smith et al. 2014, Smith et al. 2015). At least one farm 

within the control study area kept domestic sheep and goats. Approximately 45 

ewes, 20 rams, and 5 lambs inhabited in the control area at the beginning of the 

study. 
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Radio-collaring, Data Collection, and Pathogen Detection 

We chemically immobilized bighorn sheep (BAM; 0.43 mg/kg butorphanol, 0.29 

mg/kg, azaperone, 0.17 mg/kg medetomidine, Wildlife Pharmaceuticals) via dart 

rifle (Dan-Inject, Børkop, Denmark, EU) or captured them by net-gunning from a 

helicopter (Quicksilver Air, Inc., Fairbanks, AK and Hells Canyon Helicopters 

Lewiston, ID). We fitted bighorn sheep with very high frequency (VHF) collars 

(M252OB; ATS) to detect mortality events and facilitate repeated sampling. We also 

attached color-coded, numbered tags to the collar and ear to enable individual 

identification.  

 We collected information and samples regarding sex, age, Mo 

carriage/antibody presence, and the presence of other pathogens during capture. 

We examined molar and incisor eruption on the lower jaw to estimate age, which 

allowed us to reliably age individuals up to 3.5 years old (Valdez and Krausman 

1999). Adults older than 3.5 were treated as a single group. We collected Mo 

mucosal samples via three nasal swabs, which were consecutively inserted deep 

into each of the nares and then removed while being slowly rotated around the wall 

of the nasal cavity (Drew et al. 2014). Two of these swabs were returned to their 

sheath and one was immersed in a Tryptic Soy Broth media with 15% Glycerol 

(Hardy Diagnostics; Butler et al. 2017). To detect Mo antibodies, we collected blood, 

from which we obtained serum. To detect the presence of other pneumonia-

inducing bacteria, we rotated oropharyngeal swabs along the back of the throat 

while ensuring that the swab contacted each tonsilar crypt, and then stored them 

similarly to nasal swabs. We refrigerated all swabs and serum and then shipped 
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them to the Washington Animal Disease Diagnostic Lab (WADDL), or Dr. Thomas 

Besser’s lab at Washington State University (Pullman, Washington), for analyses. 

 To detect Mo presence and to estimate its abundance in a nasal swab sample, 

we extracted and amplified bacterial deoxyribonucleic acid (DNA) using realtime 

polymerase chain reaction (RT-PCR) techniques (McAuliffe et al. 2003, Besser et al. 

2008). We deemed a sample to be positive if fluorescence generation exceeded the 

threshold before the 36th RT-PCR cycle, indeterminate if detected between the 36th 

and 40th cycle, and negative if undetected through all 40 cycles. Utilizing the 

collected serum, we determined Mo antibody presence by competitive enzyme-

linked immunosorbent assay (ELISA) using standard techniques (Ziegler et al. 

2014). We documented the presence of other pathogens on nasal and 

oropharyngeal swabs through culture and PCR techniques customarily performed 

on swab samples from bighorn sheep (Besser et al. 2008). 

Chronic Shedder Identification and Experimental Removal  

We commenced Mo testing of adult bighorn sheep in the treatment herd in August 

2014 and compiled Mo histories for each individual in that herd by April 2016. We 

strove to sample each animal for Mo presence 3 times before April but obtained a 

minimum of 2 tests on every adult individual before or shortly after experimental 

manipulation (Table 1). When we compiled all tests for a given individual, we 

classified them as a chronic shedder (always tested positive after the first positive 

test), intermittent shedder (negative test after positive test), or non-shedder (all 

negative tests). We repeated this process for all individuals in the treatment herd 

prior to experimental manipulation. We also documented the Mo shedding status of 
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control herd sheep to gauge baseline shedding rates and facilitate future 

management actions (Table 2). 

 Once we identified chronic shedders in the treatment herd, we relocated 

them to a penned facility at South Dakota State University (SDSU). Post-removal, we 

monitored adult bighorn sheep in both the treatment and control herd for Mo 

presence using similar testing techniques. The South Dakota State University 

Institutional Animal Care and Use Committee approved all capture and handling 

procedures prior to project initiation (Approval number 16-00A). We developed 

capture protocol based on recommendations from the American Society of 

Mammalogists (Sikes and Animal Care and Use Committee of the American Society 

of Mammalogists 2016). 

Survival Monitoring 

To obtain high-quality cause-specific mortality data on adult bighorn sheep, we 

needed to investigate and collect cadavers in a timely fashion. The collars we 

deployed were movement-sensitive and changed signal transmission from 40 to 80 

pulses/min when the collar was not moved for ≥8 hours. Hence, we monitored for 

mortality signals from the collars of the adults a minimum of 2 times a week in both 

study areas using handheld directional antennas from 22 January 2016 to 1 May 

2018. We also attempted to observe all adults when possible because predators and 

scavengers may move collars as they consume carcasses, delaying mortality 

detection and thereby making a cause-of-death determination difficult.  

 Upon detecting a mortality signal from the collar, we immediately located the 

bighorn and assessed the site for evidence indicative of potential causes of death. 
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Specifically, we examined the site for signs of predator presence (feces, tracks, 

scrapes; Elbroch 2003) and the bighorn carcass for caching, bite marks, 

hemorrhaging, and skeletal disarticulation (Stonehouse et al. 2016). We also noted if 

the cadavers were generally still intact, which provided evidence of potential 

pneumonia or other health-related causes. We performed field necropsies of intact 

cadavers, with an emphasis on investigating the respiratory tract. If the cadaver was 

relatively fresh, we collected nasal swabs and the sheep’s lungs and shipped them to 

WADDL for pathogen testing. We used the test results to supplement field 

observations in assigning the likelihood of the various causes of death. For all 

samples, we incorporated our knowledge based on field necropsies, evidence at the 

site, and previous behavioral observations of the individual to assign probabilities to 

each cause-of-death category (Table 3). Cause-specific mortality categories were 

“predation”, “pneumonia”, “human-caused”, and “other”. This created a vector of 

probabilities across all categories, and these probabilities summed to one. When 

cause of death was certain, we created the vector by assigning a single, non-zero 

entry to the appropriate cause-of-death category. Based on the causes of death that 

were assigned as most likely in the probability vectors, as well as the date of those 

deaths, we determined mean dates for each cause-specific mortality source and 

used ANOVA to determine whether the differences between mean dates were 

statistically significant. 

Survival Analysis 

We deemed treatment (i.e., herd identity), testing positive for Mo bacteria, year of 

the study (Gaillard et al. 2000), individual sex (Jorgenson et al. 1997), and age 
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(Loison et al. 1999) as covariates potentially important in affecting survival of adult 

bighorn sheep. We coded the treatment effect as a constant binary variable 

throughout the study, assigning individuals in the treatment herd to “1” and those in 

the control herd to “0”.  We also coded the positive test effect as a constant binary 

variable, assigning individuals that tested positive at least once to “1” and those that 

never tested positive to “0”. Similarly, we coded sex as a constant binary variable, 

giving males a value of “1” and females “0”. We considered age time-varying and 

treated it as a categorical variable separated into 4 groups based on an individuals 

age class (1-2 years old, 2-3 years old, 3-4 years old, and 4+ years old). Individuals 

advanced in age class on May 22nd each year to correspond with peak lambing time 

in our study area.  Year was a categorical variable and spanned 2016–2018. We 

treated it as a time-varying covariate and assigned each week of the study to the 

appropriate calendar year.  

 To incorporate covariates, we built a priori models that tested relevant 

hypotheses about the disease ecology of bighorn sheep in the Black Hills. In our 

global model (Model 8, Table 4), we calculated log unit cumulative hazard as 

ln(Λ,�) = � +

 ���������� x ��������� + ������� ���� x � !"�"#� ��!�+ �$��� [ &����] +

��(� )�*��+ +  ���, x !�- + .� , where � was the base-line, log unit cumulative 

hazard rate. We denoted the effect of the treatment as  ����������, with ��������� 

being an indicator for the treatment herd. We similarly designated the effect of a 

positive test as  ������� ����, with � !"�"#� ��!� being an indicator for an individual 

with at least one positive test. We assigned �$��� as the effect of year, with  �$��� [1] 
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indicating the effect of 2017 and �$��� [2] indicating the effect of 2018 on the ith 

individual in the jth week. We denoted ��(� as the effect of an individual’s age, 

with ��(� [1] indicating the effect of being 2-3 years old, ��(�[2] indicating the effect 

of being 3-4 years old, and ��(�[3] indicating the effect of being 4 or more years old. 

We signified the effect of an individual’s sex through ���,, with !�- being an 

indicator of males. We signified the week effect with .� . 

 Using a novel Bayesian time-to-event survival analysis framework 

implemented through Nimble in Program R, we fit the models to the collected data 

(NIMBLE Development Team 2018, Walsh et al. 2018). This framework first 

calculated the overall weekly hazard of dying irrespective of cause of death (Cross et 

al. 2015) using a weakly informative truncated-normal prior on the baseline log unit 

cumulative hazard that assumed a mean annual adult survival of 86% and a 95% 

probability of lying in the interval of ~20% to ~ 95% 

(�~dnorm[−3.745, precision = 3.5] T[−9.5, −2]; all priors are specified in BUGS 

language format; Loison et al. 1999). We specified an intrinsically conditional 

autoregressive prior (ICAR; Heisey 2010, Cressie and Wikle 2011) for the effect of 

each week on the overall hazard (.�) to account for variability and temporal 

correlation in the weekly hazard rates. Thus, we specified a prior with a uniform 

distribution (.D~EF�"G(−0.5, precision = 0.5)) for the first week effect, and the 

effect for the jth week was specified as .�~dnormI.�JD, precision = KL. Lastly, we 

specified the prior for the precision parameter as: (K~dgamma(1, precision = 1); 

Heisey 2010). The ICAR prior provided temporal smoothing across weekly hazard 

estimates. Priors on covariate effects were flat (�, = dnorm(0, precision = 0.01)).  
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In the second component of our framework, we calculated cause-specific 

mortality by extending Cross et al.’s (2015) methodology to explicitly incorporate 

observer uncertainty into parameter estimation (Walsh et al. 2018). Specifically, we 

treated the true cause of death for each individual as a latent unknown variable for 

which we assigned a vector of prior predictive probabilities. These prior predictive 

probabilities specified the observer’s belief that each cause of death of interest was 

the true cause of death given their assessment of the death site evidence (Table 3). 

We then imputed the true cause of death using a data augmentation approach that 

generated a cause of death at each Markov chain Monte Carlo (MCMC) iteration 

based on a categorical distribution with a parameter vector equal to the prior 

predictive probability vector specified for that individual. Using random starting 

values, we ran 3 MCMC chains for 100,000 iterations with the first 10,000 

repetitions removed for burn-in.  

 We calculated Watanabe-Akaike Information Criteria (WAIC) from each 

model after running our 7 a priori models and compared them to identify the 

models that best described the data (Table 4; Gelman et al. 2014). We considered 

models that differed by ≤ 2 WAIC as potential alternatives to the selected model 

with the caveat that we preferred a more parsimonious model (Burnham and 

Anderson 2002, Arnold 2010). Therefore, we based our conclusions on the 

parameter estimates from the most parsimonious model with the lowest WAIC 

value. We calculated 95% credible intervals (CI) for all estimated parameters. 

Results 

Overall Capture and Testing Effort 
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We radio-collared 92 bighorns between 1 August 2014 and 1 May 2018: 33 were in 

the treatment herd and 59 were in the control herd. By the study’s conclusion, we 

were monitoring 100% of the treatment herd and approximately 90% of the control 

herd. 

Chronic Shedder Testing and Removal  

We tested 24 bighorn sheep for Mo in the treatment herd prior to finalizing chronic 

shedder removal: 7 males and 17 females (Table 1). This accounted for all bighorn 

sheep known to be present in the treatment study area. We tested each bighorn 

sheep 1 (n=2), 2 (n=10), 3 (n=10), or 4 (n=2) times for Mo presence over 60 

samples. Fifty-one (85%) of these samples tested negative, 1 (2%) tested 

indeterminate, and 8 (13%) tested positive. Two female individuals produced 7 of 

the 8 positive tests and always tested positive for Mo. We classified these bighorns 

as chronically shedding Mo and removed them from the population on 13 March 

2016 (Table 1). A ewe that later tested negative on her second test and died before 

chronic shedder removal generated the other positive test. One other ewe died 

before chronic shedder removal, leaving 20 individuals present immediately post-

removal. We concluded testing to identify chronic shedders on 8 April 2016. 

Post-Removal Pathogen Testing in Treatment Herd 

During the first 2 years following chronic shedder removal, we tested 26 individuals 

in the treatment herd: 9 males and 17 females (Table 2). This accounted for all adult 

bighorn sheep in the area, as 9 individuals were recruited into the population and 3 

died before they could be retested following chronic shedder removal. We tested 

each sheep 1 (n=17) or 2 (n=9) times for Mo presence over the course of 35 tests. 
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We did not detect Mo post-removal in the treatment herd, as 26 (74%) of the tests 

were negative and 9 (26%) were indeterminate. Ten (50%) individuals had 

detectable antibodies, 8 (40%) did not have detectable antibodies, and 2 (10%) 

were indeterminate for antibodies. We did not obtain serum for 6 individuals in the 

treatment herd. Other potential pneumonia agents we detected after chronic 

shedder removal were Trueperella pyogenes (n=4, 15% of treatment herd), 

Bibersteinia trehalosi (n=8, 31% of treatment herd), Mannheimia sp. (n=4, 15% of 

treatment herd), Mannheimia haemolytica (n=1, 4% of treatment herd), and 

Pasteurella sp. (n=1, 4% of treatment herd).   

Pathogen Testing in Control Herd 

Between 1 January 2016 and 1 May 2018, we tested 58 different bighorn sheep in 

the control herd: 18 males and 40 females (Table 5). We tested each sheep 1 (n=38), 

2 (n=18), or 3 (n=2) times for Mo presence over 80 tests. We detected Mo in 38 tests 

(48%). Nine were indeterminate (11%) and 33 were negative (41%). Forty-nine 

(94%) of the tested bighorns in the control herd had detectable antibodies, 1 (2%) 

had an indeterminate antibody status, and 2 (4%) had no detectable antibodies. We 

also detected Trueperella pyogenes (n=25, 43% of control herd), Bibersteinia 

trehalosi (n=23, 40% of control herd), Mannheimia sp. (n=2, 3% of control herd), 

Mannheimia haemolytica (n=1, 2% of control herd), Mannheimia glucosida (n=1, 2% 

of control herd), and leukotoxigenic Pasteurella (n=1, 2% of control herd) in the 

control herd. 

Mortalities and Removals 
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We documented 24 mortalities in both study populations (5 treatment, 19 control) 

following chronic shedder removal in the treatment herd. We censored 2 mortalities 

in the control herd that were related to capture. Of the 22 adult bighorn mortalities 

that occurred from causes not related to capture, we documented 5 (2 males, 3 

females) in the treatment herd and 17 (6 males, 11 females) in the control herd. 

These mortalities constituted 29% of adult bighorn sheep in the control herd and 

17% in the treatment herd. Using the most likely cause of death based on field 

evidence (see Table 3 for full assigned cause-specific probabilities), we determined 

that 80% of mortalities were due to predation events (n=4) and the remaining 20% 

were due to other causes (n=1) in the treatment herd (Figure 2[i]). In the control 

herd, we attributed 59% of mortalities to pneumonia (n=10), 23% to human causes 

(n=4), 12% to other causes (n=2), and 6% to predatory events (n=1) (Figure 2[i]). 

Across study areas, we calculated the peak week for pneumonia death as 20-27 

November 2016 (sd=6 weeks), for predation as 14-20 August 2016 (sd=8 weeks), 

for human-causes as 27 November-3 December 2017 (sd=14 weeks), and for other 

causes as August 27-September 2, 2017 (sd=8 weeks) (Figure 3). We did not find 

these peaks to be statistically distinguishable at the 95% confidence level 

(p=0.0773). 

Survival Analysis   

We included 86 bighorn sheep in the survival analysis. Our analysis included 29 

bighorns (10 rams, 19 ewes) in the treatment herd and 57 bighorns (19 rams, 38 

ewes) in the control herd. We commenced the analysis with 13 March 2016 and 

concluded it with 1 May 2018, encompassing 112 weeks of data. We included 22 
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mortalities (described in the previous paragraph) in the analysis. As categorized by 

age at the end of the study, we followed 16 (9 in treatment, 7 in control) 1-2 year 

olds, 4 (2 in treatment, 2 in control) 2-3 year olds, 10 (4 in treatment, 6 in control) 

3-4 year olds, and 56 (14 in treatment, 42 in control) bighorns that were 4 years of 

age or older. 

 According to WAIC values (P =0.61), we found that our data most strongly 

supported the following model: Q�IΛ�L = � + ���������� x ��������� + .� . No 

other model was within 2 ΔWAIC (Model 1, Table 4). Hence, we calculated and 

reported the log unit cumulative hazard measurements for each week based on this 

model (Figure 3). Our selected model suggested that living in a herd where chronic 

shedders were removed had a negative mean effect on overall adult weekly 

cumulative hazard (���������� =-0.95) that was statistically significant (CI=-2.03, -

0.039). This corresponds with an annual adult survival rate of 93% (CI=76%, 98%) 

in the treatment herd and 83% (CI=75%, 89%) in the control herd. 

 We calculated that the hazard of dying from pneumonia for adults in the 

treatment herd was significantly reduced relative to the control herd (Probability 

difference = -51%, CI=-78%, -15%)(Figure 2[ii]). Adult bighorns in the treatment 

herd had a 10% probability of dying from pneumonia (CI=0%, 41%) and control 

herd adults had a 61% probability of dying from pneumonia (CI=36%, 84%). 

Conversely, adult bighorn sheep in the treatment herd were significantly more likely 

to be killed by predators than those in the control herd (treatment herd probability= 

61%, CI=22%, 92%; control herd probability=10%, CI=1%, 27%; probability 

difference=51%, CI=13%, 83%). We attributed all known predation mortalities to 
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mountain lions. The probabilities of dying from other causes and human-induced 

mortality events were similar between study areas. 

 Although other models were not as strongly supported as Model 1, they 

provided insight on how other effects may have contributed to an individual’s 

hazard.  Among effects other than ����������, only �$��� was found to be statistically 

significant, with 2017 and 2018 having lower hazard than 2016 (�$���[2017] = -

2.32, CI=-4.19, -0.68; �$���[2018] = -3.75, CI= -7.99, -0.08; Model 4, Figure 4). We 

did not find ��(�, ������� ����, and ���, to be significant in the most strongly 

supported models that included those effects (Model 6, ��(�[2 − 3]= -0.29, CI= -1.85, 

1.00, ��(�[3 − 4]= -0.69, CI=-2.61, 0.82, ��(�[4 +]= -0.60, CI=-1.45, 0.25; Model 3, 

������� ����= -0.52, CI=-1.33, 0.25; Model 2, ���,= -0.01, CI=-0.87, 0.78). 

Discussion 

Pneumonia and Mo infection were no longer detected in the treatment herd after the 

removal of chronic shedders (Table 5, Figure 2[i]). Our findings provide strong 

evidence that Mo chronic shedders play a critical role in pneumonia persistence in 

bighorn sheep, and that removal of chronic shedders can be used as a management 

tool in ailing bighorn sheep herds. A formal experimental structure such as the one 

presented here is rare in free-range, large mammal studies and allows for stronger 

inferences about the effect of chronic shedder removal than any published study to 

date. Our ability to monitor every bighorn sheep in our treatment herd also allowed 

for definitive statements about cause-specific adult mortality sources, which is an 

area of speculation in many observational wildlife studies (Cassirer and Sinclair 

2007, Smith et al. 2015).  
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 Predation rates on adult bighorn sheep were significantly higher in the 

treatment herd, which may be explained by the unique movement patterns of the 

control herd. Previous studies suggest that mountain lion predation on bighorns 

increases during the winter and early spring (Ross et al. 1997, Hayes et al. 2000, 

Cassirer and Sinclair 2007). Our control herd inhabited wintering grounds in the 

suburban neighborhoods of Rapid City during this season of potentially increased 

predation pressure. Although we lack fine-scale predator density data for this study 

area, predators have been shown in previous studies to preferentially avoid 

urban/suburban areas (Rebolo-Ifran et al. 2017, Biel et al. 2018). For treatment 

herd sheep, urban habitat was unavailable within their home range, potentially 

making them more vulnerable to predation. Ultimately, the treatment herd’s 

survival rates were higher than other healthy herds, indicating that predation did 

not strongly impact the treatment herd survival rate. 

 We included age class in our model based on its important role in describing 

survival in previous research (Jorgenson et al. 1997, Loison et al. 1999), but we did 

not find this effect to be significant in the populations we studied. Jorgenson et al. 

(1997) found survival to be high among 2-7 year old bighorn sheep, only detecting 

potential senescence at ages older than 7. Unfortunately, we were not able to 

reliably age individuals older than 4 years, so the effect of senescence was likely 

undetectable in that age class because of the wide range of ages included. Jorgenson 

et al. (1997) also found yearlings to have lower survival than prime-aged adults, a 

finding that is common among ungulates (Clutton-Brock and Albon 1982, Gaillard et 

al. 2000). That yearlings in our study did not have significantly lower survival than 
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other age classes is more surprising, because we were able to specifically age these 

individuals (n= 30 yearlings).  Similarly, sex was not a significant determinate of 

hazard in the populations we studied, whereas Jorgenson et al. (1997) found a 

significant sex effect. Our lack of a sex effect may be explained by the relatively low 

hunting pressure in our study areas; only one sheep (male) was harvested in either 

of our study areas over the course of the experiment, whereas Jorgenson et al. 

(1997) noted that hunting accounted for significant mortality among rams older 

than 5 years (also see Festa-Bianchet 1989). 

 Researchers first hypothesized that Mo was a necessary pathogenic 

component driving bighorn sheep pneumonia epizootics nearly a decade ago 

(Besser et al. 2008), and our study convincingly supports this hypothesis. Despite 

the polymicrobial nature of bighorn sheep pneumonia, our removal efforts were 

focused solely on those individuals carrying Mo (Table 1). Samples taken from 

individuals not removed in the treatment herd revealed a suite of other pathogens 

associated with respiratory disease, including Bibersteinia trehalosi, Mannheimia 

haemolytica (lktA positive and negative), and Trueperella pyogenes (Tables 1 and 5). 

However, their presence failed to induce pneumonia in treatment herd adults. This 

finding makes physiological sense: while other pathogens clearly contribute to 

disease manifestation (Besser et al. 2013), Mo appears to be necessary, through its 

effect of disrupting mucociliary clearance, for these other pathogens to establish 

lung infections (Niang et al. 1998, Cassirer et al. 2018). Our findings therefore 

suggest that Mo should be the focal pathogen of management actions aimed at 

eliminating respiratory disease infections in bighorn sheep herds. 
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 We initially speculated that three sampling events per individual over a 16-

20 month period was an appropriate sampling intensity to identify chronic shedders 

with a minimum of 4-6 months between tests (Table 1). Previous work supports this 

sampling frequency, reporting that the vast majority (93%) of intermittent shedders 

returned to non-shedding status by their third test or within 1 - 2 years of their first 

positive sample (Plowright et al. 2017). Based on data collected in our treatment 

herd, we found that a single test would have been sufficient to identify chronic 

shedders. Conversely, we observed 9 bighorns in the control herd that tested PCR-

negative for Mo on their first test and positive on their second test. If we were 

testing each control herd individual once before removal, these individuals would 

be left in the population despite potentially later changing to a chronic shedders. We 

only observed one individual (2% of the control population) switch from PCR-

positive to PCR-negative in the control herd, indicating that a policy of removing 

individuals immediately after a single test positive may be a cost effective way of 

identifying chronic shedders in the control herd while minimizing unnecessary 

removals.  In other herds, removal after a single PCR-positive test could result in 

higher removal of non-chronic shedders, as Plowright et al. (2017) observed 12 

individuals (28% of all individuals tested) that returned to non-shedding states 

after a positive test. However, if a herd can sustain higher removal rates, classifying 

chronic shedders based on a single positive test may be a cost-effective method for 

removing pneumonia from the population. Another option could be developing a 

“culture rule” for Mo that differentiates between persistent and intermittent or non-

carriers across populations with high reliability using a minimal number of tests.  
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Such techniques have been successfully developed to identify Staphylococcus aureus 

chronic carriers among humans (Nouwen et al. 2004), and would provide more 

clarity on appropriate testing intensity.  

 Reduced adult mortality following chronic shedder removal is a novel and 

encouraging finding. In previous studies, adult survival rates in healthy and 

pneumonic bighorn herds tended to converge after the initial all-age epizootic and, 

in some cases, were higher than before disease introduction (Manlove et al. 2016). 

However, comparing survival rates over a wide variety of time frames and locations 

makes it difficult to discern the effect of pneumonia on adult survival across studies. 

The close proximity of our study areas allowed us to make a reasonable assumption 

that climatic, nutritional, and other important factors were similar when making 

comparisons between treatment and control herd vital rates. Therefore, we 

reasonably speculate that pneumonia has an additive effect on adult mortality in our 

study area, since overall mortality hazard in the non-pneumonic treatment herd was 

significantly lower over the course of our study.  
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Table 1: Testing dates and results for bighorn sheep sampled in the treatment herd prior to and shortly after chronic shedder 
removal, 1 August 2014- 8 April 2016. Individuals who always tested positive after their first positive test were 
considered chronic shedders, and removed 13 March 2016.  Antibody presence indicates exposure to Mo. 

Treatment 

Identifier 
Sex Age 

PCR Test Result1 

Chronic 

Shedder  

Mo 

Antibodies
2 

Other Detected 

Pathogens3 Test Dates 
1 2 3 4 

1 ♀ 4+ - - - -  No D Bt 8/1/14, 1/1/15, 10/22/15, 3/1/16 

2 ♀ 4+ + + + + Yes D Bt 8/6/14, 4/15/15, 10/22/15, 3/13/16 

3 ♀ 4+ - - -    No D Bt 8/11/14, 11/16/15, 3/13/16 

4 ♀ 4+ - - -    No D 

 

8/26/14, 10/31/14, 9/9/2015 

5 ♂ 4+ - - -     No D Bt, Tp 1/15/15, 12/3/15, 3/13/16 

6 ♂ 4+ - - in     No D 

 

1/15/15, 11/5/15, 2/11/16 

7 ♀ 4+ - - -     No D LktA 1/28/2015, 11/4/15, 3/1/16 

8 ♀ 4+ - - -     No  D 

 

1/15/15, 9/15/15, 2/29/16 

9 ♀ 4+ - - -     No D 

 

1/15/15, 10/2/15, 3/7/16 

10 ♀ 0.5 - -       No D Bt, Tp 3/20/15, 4/8/16 

11 ♀ 0.5 - -       No D Bt, Tp 3/24/15, 4/8/16 

12 ♀ 1.5 - - -     No D Bt 4/6/15, 9/11/15, 3/8/16 

13 ♂ 1.5 - -       No  ND Ms 4/7/15, 4/8/16 

14 ♂ 0.5 - -       No  ND Bt, Tp, Ms 4/7/15, 3/13/16 

15 ♂ 2.5 -  -       No  ND Bt 7/28/15, 3/13/16 

16 ♂ 3.5 -  -       No  ND Bt 7/28/15, 3/13/16 

17 ♀ 4+ - - 
 

    No D 

 

7/30/15, 4/8/16 

18 ♀ 4+ - - 
 

    No D Bt, Tp 9/3/15, 3/13/16 

19 ♀ 4+ + +  +   Yes D 

 

10/20/14, 10/31/15, 3/13/16 

20 ♀ 4+ - - -   No D Tp, LktA 2/4/15, 4/6/15, 2/22/16 

21 ♂ 0.5 -     No in  4/4/16 

22 ♀ 0.5 -     No ND Bt, LktA 4/4/16 

23 ♀ 4+ + -    No D  8/26/14, 5/1/15 

24 ♀ 3.5 - -    No D  3/19/15, 10/20/15 
1  - = Not Detected, + = Detected, in = Indeterminate ;  2 D = Detected, ND = Not Detected, in = Indeterminate;  3 Bt = Bibersteinia trehalosi, Tp = Trueperella pyogenes, LktA = Leukotoxigenic 

Pasteurella,  Ms = Mannheimia sp 
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Table 2: Testing dates and results for bighorns sampled in the control herd over the course of the study, 1 January 2016- 1 May 
2018. Antibody presence indicates exposure to Mo. 

Control 

Identifier 
Sex 

PCR Test Result1 Chronic 

Shedder  

Mo 

Antibodies2 

Other Pathogens 

Detected3 
Test Dates 

1 2 3 
1 ♂ +   No D Lkta 4/6/16 

2 ♂ + -  No D Tp 3/11/16, 2/5/17 

3 ♀ - -  No D Tp, Ms 3/11/16, 2/5/17 

4 ♀ - in  No D Bt, Tp 3/12/16, 2/4/17 

5 ♂ - +  No D Tp 3/22/16, 2/7/17 

6 ♀ - in  No D Tp 3/22/16, 2/5/17 

7 ♀ - -  No D Bt, Tp, Mg 3/22/16, 2/5/17 

8 ♀ in in  No D Bt,Tp, Mh 3/22/16, 2/5/17 

9 ♂ -   No D  3/22/16 
10 ♂ +   No D  3/22/16 
11 ♀ +   No D  3/22/16 
12 ♂ + +  Yes D Tp 3/22/16, 2/7/17 

13 ♂ +   No NT  10/26/16 
14 ♀ -   No D  11/16/16 
15 ♀ +   No D Bt 11/17/16 
16 ♂ -   No D Tp 2/5/17 

17 ♀ in +  No D Tp 3/11/16, 2/5/17 

18 ♀ + + + Yes D Tp 3/11/16, 2/5/17, 4/17/18 

19 ♀ - + in No D Bt, Tp 3/13/16, 2/7/17, 4/6/17 

20 ♀ -   No D Bt,Tp 3/13/16 

21 ♂ -   No NT  3/22/16 
22 ♀ - +  No D Tp 3/22/16, 2/7/17 

23 ♀ - +  No D Bt, Tp 3/22/16, 2/7/17 

24 ♀ - +  No D Bt, Tp 3/22/16, 2/7/17 

25 ♀ + +  Yes D Bt, Tp 2/23/16, 2/7/17 

26 ♂ +   No NT  10/6/16 
27 ♂ +   No D Bt, Tp 12/13/16 

28 ♀ +   No D Tp 12/20/16 
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29 ♀ - +  No D Bt, Tp 2/27/16, 2/7/17 

30 ♂ -   No D Bt 2/7/17 

31 ♂ +   No NT  2/7/17 

32 ♀ -   No D Tp 2/7/17 

33 ♀ in   No D  2/7/17 

34 ♀ - +  No D Bt, Ms 3/7/16, 2/7/17 

35 ♀ -   No NT  2/2/18 

36 ♀ - +  No D Bt, Tp 3/8/16, 2/7/17 

37 ♀ - +  No D Bt 3/9/16, 4/13/17 

38 ♂ -   No D Bt 3/13/16 

39 ♀ - -  No D Tp 3/13/16, 2/7/17 

40 ♀ +     No D   3/13/16 

41 ♀ 

 

-   No ND  1/22/16 

42 ♀ 

 
+   No D Bt 1/22/16 

43 ♂ +   No D Bt 1/27/16 

44 ♀ 

 

in   No D Bt, Tp 1/27/16 

45 ♀ 

 
+   No ND Bt 2/18/16 

46 ♀ 

 
+   No D Bt 2/18/16 

47 ♀ 

 
+   No D Bt, Tp 2/27/16 

48 ♀ 

 
-   No D Bt 3/8/16 

49 ♀ 

 
-   No D  3/11/16 

50 ♀ 

 
-   No D  3/11/16 

51 ♀ 

 
+   No D  3/11/16 

52 ♂ +   No in  3/11/16 

53 ♂ +   No NT  3/11/16 

54 ♂ -   No D  3/11/16 

55 ♀ 

♀ 

+   No D  3/11/16 

56 ♀ 

 
-   No D  3/11/16 

57 ♀ 

 
in   No D  3/11/16 

58 ♀ 

 
+   No D  3/12/16 

1  - = Not Detected, + = Detected, in = Indeterminate; 2 D = Detected, ND = Not Detected,  NT= Not Tested, in = Indeterminate ; 3 Lkta = Leukotoxigenic 
Pasteurella, Tp = Trueperella pyogenes, Ms= Mannheimia sp, Bt= Bibersteinia trehalosi, Mg= Mannheimia glucosida, Mh=Mannheimia haemolytica 
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Table 3: Cause of death probabilities assigned to all individuals that were included 
in the survival analysis. For analysis, these probabilities were converted into 
vectors that summed to one across cause-specific categories for each 
individual that died. 

 
 

Treatment 

Identifier 

Human-Caused Other Pneumonia Predation 

1 
   

100% 

3 
 

5% 5% 90% 

6 
   

100% 

7 
 

100% 
  

14 
   

100% 

 
 

Control 

Identifier 
Human Caused Other  Pneumonia Predation 

1 
 

40% 60% 
 

9 100% 
   

12 
 

40% 60% 
 

20 
 

5% 95% 
 

21 
  

100% 
 

24 
 

90% 
 

10% 

28 25% 
 

75% 
 

41 100% 
   

42 100% 
   

43 
 

10% 90% 
 

45 100% 
   

46 
  

25% 75% 

47 25% 
 

75% 
 

50 
  

100% 
 

51 
 

70% 30% 
 

53 
 

10% 90% 
 

56 
 

5% 95% 
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Table 4: Descriptions and rankings of all models tested to explain log unit cumulative hazard [Q�IΛ�L] for each individual adult 
bighorn sheep, 13 March 2016 – 1 May 2018. Ranking is based upon Watanabe-Akaike Information Criteria (WAIC) and 
is reported with ΔWAIC (difference in WAIC between top model and model being compared) and wi (WAIC weight). � is 
baseline log unit cumulative hazard rate,  ���������� is the effect of the treatment (whether an individual was in the 
treatment or control herd),  �$��� is the effect of year,  ��(�is the effect of age,  ���, is the effect of sex, and .�  is the 
effect of a given week (j) with a random walk prior for temporal smoothing across estimates.  

 

Model Description Effects WAIC ΔWAIC ST 

1) Hazard varied by treatment � ,  ���������� , .�   344.7 0 0.61 

2) Hazard varied by treatment and sex � ,  ���������� ,  ���, , .�   346.9 2.2 0.20 

3) Hazard varied by treatment and positive 

test 
� ,  ���������� ,  ������� ����, .� 348.3 3.6 0.10 

4) Hazard varied by treatment and year � ,  ���������� ,  �$��� , .�   349.5 4.8 0.05 

5) Hazard varied by treatment, year, and sex � ,  ���������� ,  �$��� ,  ���, , .�   351.5 6.8 0.02 

6) Hazard varied by treatment and age � ,  ���������� ,  ��(� , .�  354.1 9.4 0.01 

7) Hazard varied by treatment, age, and sex � ,  ���������� ,  ��(� ,  ���, , .�  357.5 12.8 0.00 

8) Global Model � ,  ���������� ,  �$��� , ��(� ,  ���,  ������� ����, .� 359.8 15.1 0.00 
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Table 5: Testing frequency, results, and dates for bighorns sampled in the treatment herd after chronic shedder removal, 9 
April 2016 - 1 May 2018. Antibody presence indicates past exposure to Mo. 

Treatment Identifier PCR Test Result1 Chronic Shedder 
Mo Antibodies2 Other Pathogens Detected3 Test Dates 

1 2 

4 - No D Tp 2/4/17 

5 - - No D Bt, Tp, Ms 11/10/16, 2/4/17 

6 - in No NT Tp 11/28/16, 2/8/17 

7 - No in 2/4/17 

8 - No ND 2/4/17 

9 - in No ND Ms, Mh 11/1/16, 2/4/17 

10 - No D 2/6/17 

11 - - No D Bt 10/15/16, 2/4/17 

12 - No ND Bt, Tp 2/6/17 

13 - No NT 2/6/17 

15 in - No D 8/5/16, 2/8/17 

16 in No D Ms 2/4/17 

17 - No NT 2/4/17 

18 - No D 2/4/17 

20 - No D 10/16/16, 2/4/17 

21 - No in 2/4/17 

22 - No ND 2/4/17 

25 in No ND Bt, Ms 2/8/17 

26 - No NT Bt 2/6/17 

27 - No NT 2/6/17 

28 - in No ND 8/8/16, 2/8/17 

29 - in No ND 8/8/16, 2/8/17 

30 in in No ND Bt 9/20/16, 2/4/17 

31 - - No D Bt 9/21/16, 2/4/17 

32 - No NT Ps 2/6/17 

33 -  No D Bt 9/18/17 

1  - = Not Detected, + = Detected, in = Indeterminate; 2 D = Detected, ND = Not Detected, NT= Not Tested, in = Indeterminate ; 3 Tp = Trueperella pyogenes, Bt = 
Bibersteinia trehalosi, Ms = Mannheimia sp,  Mh=Mannheimia haemolytica, Ps = Pastuerella sp. 
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Figure 1: Ranges of study populations of bighorn sheep in the Black Hills, South 
Dakota, USA, 2016-2018. The Custer State Park herd is the treatment herd.  
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Figure 2: A comparison of mortality sources for adult bighorn sheep between herds 
after chronic shedder removal in the treatment herd on 13 March 2016. Panel [i] 
shows cause-specific mortality sources based on the most likely cause of death 
assigned in the field. No pneumonia was recorded in the treatment herd during the 
study. Panel [ii] shows the estimated cause-specific mortality probabilities based on 
the survival analysis. It is significantly less likely that bighorn sheep will die from 
pneumonia in the treatment herd, but more likely that they will die from predation. 
Credible intervals are 95%. 
 
[i] 

 
 
 
 
 
 
[ii] 
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Figure  3: Overall log hazard for an adult bighorn sheep in Rapid City (�), 13 March 
2016-1 May 2018. Plot is based on our top model, Q�IΛ�L = � +
���������� x ��������� + .� , where Q�IΛ�L is the unit log cumulative hazard for the 
ith individual in the jth week, ���������� is the effect of being in the treatment herd, 
��������� denotes whether individual i was in the treatment herd, and .�  is the 
effect of a given week (j) which is temporally smoothed via a conditional intrinsic 
autoregressive random walk prior. Brackets indicate peak periods for each cause 
specific mortality source, and 95% credible intervals are shown in gray. 
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CHAPTER 2: MYCOPLASMA OVIPNEUMONIAE CHRONIC SHEDDER REMOVAL IS 

ASSOCIATED WITH IMPROVED HEALTH AND SURVIVAL OF BIGHORN SHEEP 

LAMBS  

 

 

 

This chapter is being prepared for publication and was coauthored by Daniel P. Walsh, 

E. Frances Cassirer, Thomas E. Besser, Chadwick P. Lehman, and Jonathan A. Jenks. 
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Abstract 

Infected individuals vary in their contribution to disease persistence, and 

chronically infected individuals may sustain disease within a population. Pneumonia 

in wild sheep is one disease that might persist through chronically infected 

individuals and can precipitate annual lamb mortality as high as 100%. Bacterial 

Mycoplasma ovipneumoniae (Mo) presence strongly correlates with lamb 

pneumonia epizootics, and is a respiratory pathogen of Caprinae commonly present 

in domestic sheep and goats. Utilizing Mo-infected bighorn sheep populations in the 

Black Hills of South Dakota, we evaluated whether removing chronic shedders of Mo 

improved lamb survival and eradicated juvenile pneumonia mortality. We classified 

chronic shedders as adults (aged 3+) that tested positive for Mo on every nasal swab 

collected over a 20 month period. Once identified, we removed chronic shedders 

from our treatment population (Custer State Park) and not in an adjacent control 

population (Rapid City). We did not detect pneumonia mortality among lambs 

following treatment, whereas it was the leading source of mortality among control 

herd lambs. Lamb survival in the treatment population averaged 76% annually, as 

compared to 35% survival in the control. Overall mortality hazard for lambs up to 

0.5 years old was significantly reduced in the treatment population relative to the 

control (����������=-1.40, CI=-2.42, -0.46). These outcomes support the hypothesis 

that Mo is the primary causative agent of pneumonia epidemics in bighorns and is 

maintained by chronic shedders in free-ranging populations. Our results of 

removing chronic shedders and improving lamb survival give wildlife managers 

options to address low recruitment in pneumonic bighorn sheep populations. 
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Introduction 

Variation among individuals in their contribution to disease spread and persistence 

has been theorized to serve an important role in sustaining human and wildlife 

epidemics (Woolhouse et al. 1997, Lloyd-Smith et al. 2005, Paull et al. 2012). One 

way individuals vary is in their propensity to chronically sustain infections, and 

research suggests that a few chronically infected individuals can sustain the 

presence of certain diseases within a population by shedding the responsible 

pathogen and reinfecting other individuals within their population (Monack et al. 

2004, Buhnerkempe et al. 2017). To our knowledge, experimental evidence of 

disease outbreaks being halted by identifying and isolating such “chronic shedders” 

remains undocumented in the literature. Chronic shedding may be ubiquitous 

across a variety of taxa (Wertheim et al. 2005, Buhnerkempe et al. 2017, Plowright 

et al. 2017). Experimental evidence testing the concept of eliminating chronic 

shedders to control disease outbreaks would demonstrate the efficacy of this 

disease management action, and be applicable across the human, domestic animal, 

and wildlife health sectors. 

 Recurrent epizootics of pneumonia, believed to be initiated by infection in 

adults, limit lamb survival and prevent population recovery in bighorn sheep (Ovis 

canadensis) herds across North America (Cassirer and Sinclair 2007, George et al. 

2008, Wood et al. 2017). Evidence suggests that domestic Caprinae serve as a 

reservoir for the responsible infectious agent (Monello et al. 2001, George et al. 

2008, Besser et al. 2013, Besser et al. 2017), and that pathogen transmission can 

occur when bighorns interact with domestic sheep and goats (George et al. 2008, 
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Besser et al. 2012). Infected bighorns also infect naïve bighorns, causing 

intraspecies transmission within and between herds (Cassirer et al. 2013). After 

subsequent transmission within the bighorn population, an all-age epizootic can 

occur, and may initially kill 40-80% of the herd (Spraker et al. 1984, Enk et al. 

2001). The all-age epizootic is often followed by annual juvenile pneumonia 

epizootics of similar or greater magnitude (Cassirer et al. 2013, Smith et al. 2014). 

With little annual recruitment, bighorn herds experiencing juvenile pneumonia 

epizootics exhibit an age structure skewed towards older individuals, which 

increases the population’s vulnerability to extinction (George et al. 2008, Cahn et al. 

2011, Manlove et al. 2016). Despite conservation’s clear need for methods to 

improve lamb survival in pneumonic herds, no published study demonstrates a 

method that clearly achieves this goal. 

 Historical attempts to curtail pneumonia mortality rates in bighorn sheep 

populations varied in approach and directed their efforts at a wide variety of causal 

agents, but met little success. Antibiotics (Coggins and Matthews 1998, Rudolph et 

al. 2007, McAdoo et al. 2010), vaccination (Cassirer et al. 2001, Sirochman et al. 

2012), partial and complete depopulation (Cassirer et al. 1996, McFarlane and 

Aoude 2010, Bernatowicz et al. 2016), and mineral supplementation (Coggins 2006) 

have all been tested. One likely reason for the unsuccessful results is that the 

techniques targeted the wrong etiological agent. Several bacteria (i.e., Pasteurella 

multocida, Bibersteinia trehalosi, Mannheimia haemolytica) and parasites 

(Protostongylus spp.) are detected in the lungs of bighorn sheep fatally affected by 

pneumonia and have been the target of numerous treatments (Foreyt et al. 1994, 
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Miller et al. 2000, Dassanayake et al. 2009, Grigg et al. 2017). Some researchers still 

identify leukotoxigenic Pasteurella as playing the primary role in pneumonia 

development (Dassanayake et al. 2017, Grigg et al. 2017). However, of all potential 

candidates, bacterial Mycoplasma ovipneumoniae (Mo) exhibits the strongest 

correlation with bighorn sheep pneumonia mortalities (Besser et al. 2012, Besser et 

al. 2013, Cassirer et al. 2018), a trend that was discovered only a decade ago with 

access to improved molecular techniques (Besser et al. 2008). Ultimately, the lack of 

a clearly successful treatment indicates that more research is needed to develop 

management solutions, and that definitively identifying the causative agent of 

pneumonia in bighorn sheep would allow wildlife managers and veterinarians to 

better direct their limited resources (Cassirer et al. 2018).   

 Years of studying pneumonic bighorn sheep herds produced useful 

epidemiological insights that suggest further avenues of research. One such insight 

is that ewe infection is likely responsible for annual juvenile epizootics; most 

juvenile pneumonia mortalities occur prior to weaning, and lambs rarely interact 

with individuals outside their nursery groups during this timeframe (Cassirer et al. 

2013, Manlove et al. 2017). Lambs with both Mo-positive and Mo-negative dams die 

during these outbreaks (Weyand et al. 2018). Secondly, only a small proportion 

(median=22%) of bighorns tend to test positive for shedding Mo in a given herd at 

any point in time, despite high herd seroprevalence (median =67%; Cassirer et al. 

2018). Although only based on a single sub-population, a third paper noted that 

50% of bighorns remained positive for Mo infection after their first positive test, 

suggesting chronic carriage in some individuals (Plowright et al. 2017). Based on 
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this groundwork, it is reasonable to hypothesize that ewes chronically shedding Mo 

are few in number, responsible for annual pneumonia epizootics in lambs, and 

identifiable with adequate testing intensity. A natural prediction of this hypothesis 

is that identifying and removing all chronically shedding ewes would reduce or 

eliminate juvenile pneumonia mortality and lead to improved survival among 

bighorn sheep lambs. Since chronic shedders may maintain disease within a 

population in a variety of taxa (Foley et al. 1997, Wertheim et al. 2005, 

Buhnerkempe et al. 2017), research designed to test this hypothesis could yield 

insights applicable beyond bighorn sheep management. 

 To test the effect of chronic shedder removal, we utilized free-ranging 

bighorn sheep herds near Custer State Park (CSP; treatment herd) and Rapid City 

(control herd), South Dakota, USA (Figure 1). Our objective was to document 

whether the removal of Mo chronic shedders would improve lamb survival. 

Methods 

The Black Hills are a small, isolated mountain range rising from the Great Plains of 

southwestern South Dakota and east-central Wyoming (Froiland 1990) that occupy 

an area of approximately 8,400 square kilometers (Fecske et al. 2004). They range 

in elevation from 972 meters above sea level to 2,207 meters at Black Elk Peak. 

Ponderosa pine (Pinus ponderosa) is the dominant tree species (Brown and Sieg 

2016). Black Hills spruce (Picea glauca Densata) and aspen (Populus tremuloides) 

increase in abundance at higher elevations in the central and northern Black Hills. 

Based on data collected at the Rapid City Airport weather station, average annual 

precipitation over the course of our study was 11.3 cm of rainfall and 29.6 cm of 
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snow. Temperatures ranged from -30°C to 41°C, with an average high of 17°C and an 

average low of 1°C (National Oceanic and Atmospheric Administration 2018). 

 Despite being common in the Black Hills before European settlement, the 

introduction of livestock and market hunting led to the local extirpation of bighorn 

sheep in 1899 (Seton 1929, Witte and Gallager 2012). Beginning in 1922, managers 

and conservationists performed 9 reintroduction events that resulted in current 

populations of bighorn sheep in 5 distinct locations: CSP, Rapid City, Elk Mountain, 

Hell Canyon, Deadwood (South Dakota Department of Game Fish and Parks 2018). 

Only the CSP and Rapid City herds were known to be experiencing pneumonia 

epizootics at the time of chronic shedder removal, and researchers verified Mo 

presence in both (Smith et al. 2015; Table 1). These herds utilized ranges that were 

spatially isolated by approximately 12 km straight-line distance (Figure 1). We did 

not observe range overlap during the course of the study. Both areas were easily 

accessible by U.S. Forest Service and state fire roads. Predator assemblages 

consisted of mountain lions (Puma concolor), coyotes (Canis latrans), bobcats (Lynx 

rufus), bald eagles (Haliaeetus leucocephalus), and golden eagles (Aquila chrysaetos) 

(Smith et al. 2015).  

 We designated the CSP herd as the treatment herd, which was located 

primarily within a 28,733 ha park in Custer County, South Dakota. Source herds for 

the treatment herd were Whiskey Mountain, Wyoming (22 bighorns, 1965) and 

Alberta, Canada (20 bighorns, 1999)(South Dakota Department of Game Fish and 

Parks 2018). Deep canyons and exposed rocky outcroppings in the central and 

northeastern regions of the park characterized bighorn sheep habitat. At the 
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beginning of the study, 14 ewes, 6 rams, and 2 lambs resided in the treatment 

population. No farms inside this study area were known to raise domestic sheep or 

goats, but several residents kept domestic sheep within 10 km of the park boundary.  

 We designated the Rapid City herd as the control herd, which inhabited a 

mixture of public and private land in Spring Creek and Rapid Creek canyons near 

Rapid City in Pennington County, South Dakota. Control source herds were 

Georgetown, Colorado (26 bighorns, 1991) and Badlands National Park, South 

Dakota (5 bighorns, 1992) (South Dakota Department of Game Fish and Parks 

2018). Bighorn sheep in the control herd generally used canyon bottoms and walls 

for parturition and summer range, and then moved to residential lawns closer to 

Rapid City for winter range (Smith et al. 2014, Smith et al. 2015). At least one farm 

within the control study area kept domestic sheep and goats. Approximately 45 

ewes, 20 rams, and 5 lambs populated in the control area at the beginning of the 

study. 

Adult Collaring, Disease Testing, and PCR Analysis 

We chemically immobilized bighorn sheep (1.5-3.0 milliliters BAM; 0.43 mg/kg 

butorphanol, 0.29 mg/kg, azaperone, 0.17 mg/kg medetomidine, Wildlife 

Pharmaceuticals) via dart rifle (Dan-Inject, Børkop, Denmark, EU) or captured them 

by net-gunning from a helicopter (Quicksilver Air, Inc., Fairbanks, AK and Hells 

Canyon Helicopters Lewiston, ID). While they were immobilized, we fitted bighorn 

sheep with very high frequency (VHF) collars (M252OB; ATS). We also attached 

color-coded, numbered tags to the collar and ear of each captured bighorn sheep to 

enable individual identification.  
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 Before releasing the bighorns, we collected samples to determine Mo 

carriage and Mo antibodies. We collected Mo mucosal samples via three nasal swabs, 

which were consecutively inserted deep into each of the nares and then removed 

while being slowly rotated around the wall of the nasal cavity (Drew et al. 2014). 

Two of these swabs were returned to their sheath and one was immersed in a 

Tryptic Soy Broth media with 15% Glycerol (Hardy Diagnostics; Butler et al. 2017). 

To detect Mo antibodies, we collected blood, from which we obtained serum. We 

refrigerated all swabs and serum and then shipped them to the Washington Animal 

Disease Diagnostic Lab (WADDL), or Dr. Thomas Besser’s lab at Washington State 

University (WSU, Pullman, Washington), for analysis. 

 To detect Mo presence and to estimate its abundance in a nasal swab sample, 

we extracted and amplified bacterial deoxyribonucleic acid (DNA) using realtime 

polymerase chain reaction (RT-PCR) techniques (McAuliffe et al. 2003, Besser et al. 

2008). We deemed a sample to be positive if fluorescence generation exceeded the 

threshold before the 36th RT-PCR cycle, indeterminate if detected between the 36th 

and 40th cycle, and negative if undetected through all 40 cycles. Utilizing the 

collected serum, we determined Mo antibody presence by competitive enzyme-

linked immunosorbent assay (ELISA) using standard techniques (Ziegler et al. 

2014). 

Chronic Shedder Identification and Experimental Removal  

We commenced Mo testing of adult bighorn sheep in the treatment herd in August 

2014 and compiled Mo histories for each individual in that herd by April 2016. We 

strove to sample each animal for Mo presence 3 times before April but obtained a 
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minimum of 2 tests on every adult individual before or shortly after experimental 

manipulation (Table 1). When we compiled all tests for a given individual, we 

classified them as a chronic shedder (always tested positive after the first positive 

test), intermittent shedder (negative test after positive tests), or non-shedder (all 

negative tests). We repeated this process for all individuals in the treatment herd 

prior to experimental manipulation. 

 Once we identified chronic shedders in the treatment herd, we relocated 

them to a penned facility at South Dakota State University (SDSU). Post-removal, we 

monitored adult bighorn sheep in both the treatment and control herd for Mo 

presence using similar testing techniques.  

Lamb Capture 

 We checked breeding-age ewes for pregnancy via ultrasonography during Mo 

testing in late winter and early spring (2015/16 and 2016/17; E.I. Medical Imaging, 

Loveland, CO). Following methods described in Smith et al. (2014b) and Bishop et al. 

(2011), we fitted pregnant ewes with very high frequency (VHF) vaginal implant 

transmitters (VITs). We monitored VITs daily from the ground using hand-held 

directional radio telemetry units starting on 15 April each year (Telonics, Inc., Mesa, 

AZ). 

 If we detected an expelled VIT, we tracked in on the adult ewe’s radio collar 

to locate her and check for the presence of a lamb. We used latex gloves and 

minimized handling time to avoid abandonment during radio marking (Smith et al. 

2014b). Captured lambs were weighed, fitted with an expandable VHF collar, and 
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their sex was determined. We recorded GPS waypoints at both the site of the lamb 

capture and the location of the VIT. 

 If a VIT malfunctioned, was prematurely ejected, or a ewe was never fitted 

with a VIT, we performed daily visual checks for lamb presence. We determined age 

based on its size, ambulatory ability, and associations with other bighorn sheep. If 

the lamb seemed immobile and the terrain was safely navigable, we attempted hand 

capture. We used a small netgun to capture older, mobile lambs (ACES, LLC, 

Broomfield, CO). Lambs that we failed to capture within 2 weeks of birth were 

immobilized at 2-3 months of age using the ground-based chemical immobilization 

technique described for adult bighorns but using 0.5 cubic centimeters of BAM. The 

South Dakota State University Institutional Animal Care and Use Committee 

approved all capture and handling procedures prior to project initiation (Approval 

number 16-00A). We developed capture protocol based on recommendations from 

the American Society of Mammalogists (Sikes and Animal Care and Use Committee 

of the American Society of Mammalogists 2016). 

Lamb Monitoring 

To obtain high-quality cause-specific mortality data on bighorn sheep lambs, we 

needed to investigate and collect cadavers in a timely fashion. Hence, we monitored 

lambs every day in both study areas using handheld directional antennas, starting 

on the date of capture and ending on 20 November. The lamb collars were 

movement-sensitive and changed signal transmission from 40 to 80 pulses/min 

when the collar was not moved for ≥8 hours.  We also attempted to visually observe 

all lambs when possible because predators and scavengers moved collars as they 
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consumed the carcass, delaying mortality detection and thereby making a cause-of-

death determination difficult.  

 Upon detecting a mortality signal from the collar, we immediately located the 

bighorn and assessed the site for evidence indicative of potential causes of death. 

Specifically, we examined the site for signs of predator presence (scat, tracks, 

scrapes; Elbroch 2003) and the bighorn carcass for caching, bite marks, 

hemorrhaging, and skeletal disarticulation (Stonehouse et al. 2016). We also noted if 

the cadavers were generally still intact, which provided evidence of potential 

pneumonia or other health-related causes. We shipped fresh cadavers to WADDL for 

a necropsy and used the test results to supplement field observations in assigning 

the likelihood of the various causes of death. For all samples, we incorporated our 

knowledge based on necropsies, evidence at the site, and previous behavioral 

observations of the individual to assign probabilities to each cause-of-death 

category (Table 2). Cause-specific mortality categories were “predation”, 

“pneumonia”, and “other”. This created a vector of probabilities across all 

categories, and these probabilities summed to one. When cause of death was certain, 

we created the vector by assigning a single, non-zero entry to the appropriate cause-

of-death category.  

Survival Analysis 

We deemed treatment (i.e., herd identity), year (Gaillard et al. 2000a), individual sex 

(Rioux-Paquette et al. 2011), birth timing (Feder et al. 2008), and birth weight 

(Festa-Bianchet et al. 1997) as covariates potentially important in affecting survival 

of lambs to 0.5 years old. We coded the treatment effect as a constant binary 
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variable throughout the study, assigning individuals in the treatment herd to “1” and 

those in the control herd to “0”.  Similarly, we coded sex as a constant binary 

variable, giving males a value of “1” and females “0”. We assigned birth timing as a 

categorical variable that consisted of 3 groups: lambs born within ±3 days of the 

median date of lamb births in a given year (i.e., peak birth group), those born >3 

days before the peak period (i.e. early-born group), and those born >3 days after the 

peak period (late-born group)(Smith et al. 2014a). Birth weight was a continuous 

variable and measured with a scale to the nearest 0.10 kg. Both birth timing and 

birth weight could only be accurately measured if the lamb was caught at a time 

close to parturition; hence, we approximated missing values associated with late-

caught lambs through resampling. 

 After considering the biology and disease ecology of bighorn sheep lambs in 

the Black Hills, we built a priori daily survival models to test relevant hypotheses 

(Table 3). In our global model (Model 6, Table 3), we calculated log unit cumulative 

hazard as ln(Λ,�) = � + ���������� x ��������� + �$��� x &��� + ���, x !�- +

�U��V ���( [W"��ℎ �"�"�*] + �U��V Y�(V� x W"��ℎ P�"*ℎ� + .� , where � was the 

base-line, log unit cumulative hazard rate. We signified the effect of the treatment as 

 ����������, with ��������� being an indicator for the treatment herd. We denoted 

the effect of year as �$���, with &��� indicating the effect of 2017 on the ith lamb. We 

assigned ���, to represent the effect of an individual’s sex, with !�- serving as an 

indicator of males. We denoted the effect of the period of lambing a given lamb was 

born in as �U��V ���(, where �U��V ���( [1] indicated the effect of the ith individual 

born in the peak lambing period and �U��V ���( [2] indicated the effect of an 
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individual being born in the late lambing period. We assigned the effect of birth 

weight as �U��V Y�(V�, with W"��ℎ P�"*ℎ� being the specific birth weight of the ith 

individual. We signified the day effect with .� . 

  Using a novel Bayesian time-to-event survival analysis framework 

implemented through Nimble in Program R, we fitted the models to the collected 

data (NIMBLE Development Team 2018, Walsh et al. 2018). This framework first 

calculated the overall daily hazard of dying irrespective of cause of death (Cross et 

al. 2015), using a weakly informative truncated-normal prior on the baseline log 

unit cumulative hazard that assumed a mean annual lamb survival of 50% and a 

95% probability of lying in the interval ~10% to ~ 80% (specifically, 

�~dnorm[−6.26, precision = 3]T[−8, −1]; all priors are specified in the BUGS 

language format, Parr et al. 2018). To account for variability and temporal 

correlation in the daily hazard rates, we specified an intrinsically conditional 

autoregressive prior (ICAR; Heisey 2010, Cressie and Wikle 2011) for the effect of 

each day on the overall hazard (.�). Thus, we specified a prior with a uniform 

distribution (.D~EF�"G(−0.5, precision = 0.5)) for the first day effect, and we 

specified the effect for the jth day as .�~dnormI.�JD, precision = KL. Lastly, we 

specified the prior for the precision parameter as:  K~dgamma(1, precision = 1) 

(Heisey 2010). The ICAR prior provided temporal smoothing across daily hazard 

estimates. Priors on covariate effects were flat (�, = dnorm(0, precision = 0.01)).  

In the second component of our framework, we calculated cause-specific 

mortality by extending Cross et al.’s (2015) methodology to explicitly incorporate 

observer uncertainty into parameter estimation (Walsh et al. 2018). Specifically, we 
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treated the true cause of death for each individual as a latent unknown variable for 

which we assigned a vector of prior predictive probabilities. These prior predictive 

probabilities specified the observer’s belief that each cause of death of interest was 

the true cause of death given their assessment of the death site evidence (Table 2). 

We then imputed the true cause of death using a data augmentation approach that 

generated a cause of death at each Markov chain Monte Carlo (MCMC) iteration 

based on a categorical distribution with a parameter vector equal to the prior 

predictive probability vector specified for that individual. Using random starting 

values, we ran 3 MCMC chains for 100,000 iterations with the first 10,000 

repetitions removed for burn-in. We had 6 missing values for both birth timing and 

birth weight. 

 After running our 6 a priori models, we calculated Watanabe-Akaike 

Information Criteria (WAIC) from each model and compared them to identify the 

models that best described the data (Table 3: Gelman et al. 2014). We considered 

models that differed by ≤ 2 WAIC as potential alternatives to the selected model 

with the caveat that we preferred a more parsimonious model (Burnham and 

Anderson 2002, Arnold 2010). Therefore, we based our conclusions on the 

parameter estimates from the most parsimonious model with the lowest WAIC 

value. We calculated 95% credible intervals (CI) for all estimated parameters. 

Results 

Chronic Shedder Testing and Removal  

We tested 24 bighorn sheep for Mo in the treatment herd prior to finalizing chronic 

shedder removal: 7 males and 17 females (Table 1). This accounted for all bighorn 
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sheep known to be present in the treatment study area. We tested each bighorn 

sheep 1 (n=2), 2 (n=10), 3 (n=10), or 4 (n=2) times for Mo presence over 60 

samples. Fifty-one (85%) of these samples tested negative, 1 (2%) tested 

indeterminate, and 8 (13%) tested positive. Two female individuals produced 7 of 

the 8 positive tests and always tested positive for Mo. We classified these bighorns 

as chronically shedding Mo and removed them from the population on 13 March 

2016 (Table 1). An ewe that later tested negative on her second sample and died 

before chronic shedder removal generated the other positive test. One other ewe 

died before chronic shedder removal, leaving 20 individuals present immediately 

post-removal. We concluded testing to identify chronic shedders on 8 April 2016. 

VIT Deployment, Lamb Capture, and Birth Weights 

Between January 2016 and August 2017, we implanted VITs in 59 ewes (31 in 2016, 

28 in 2017). 35 of the deployed VITs worked properly (18 in 2016, 17 in 2017). We 

observed VIT retention rates of 70% (12 retained/17 deployed) in the treatment 

and 55% (23 retained/42 deployed) in the control. We captured 45 lambs (26 in 

2016, 19 in 2017). The mean birth date across study areas was 23 May (median=20 

May, SE=1.7 days), with control herd lambs born slightly earlier (mean=22 May, 

median=19 May, SE=2.5 days) than treatment herd lambs (mean=24 May, median= 

26 May, SE=1.7 days).  

 We calculated the average birth weight of lambs to be 5.05 kg (SE=0.08, 

n=37; 2016=4.99 kg, SE=0.09, n=20; 2017=5.1 kg, SE=0.15, n=17). Male lambs 

weighed significantly more than female lambs (males=5.28 kg, SE=0.11, n=18; 

females=4.82 kg, SE=0.11, n=19; t=-2.98, df=25 p=0.005).  
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Mortalities and Recruitment 

Twenty-seven (60%) of the captured lambs died within 6 months of 1 May 2016 and 

2017. We later excluded two of these individuals from the survival analysis due to 

attributes that compromised their inclusion in the dataset. Of the 25 lamb 

mortalities deemed fit for analysis, we observed 7 (5 males, 2 females) in the 

treatment herd and 18 (6 males, 12 females) in the control herd.  These mortalities 

constituted 35% of all lambs born in the treatment herd and 69% of lambs in the 

control herd. Using the most likely cause of death based on field and necropsy 

evidence (see Table 2 for full assigned cause-specific probabilities), we found that 

71% of mortalities were due to predation events (n=5) and the remaining 29% were 

due to other causes (n=2) in the treatment herd (Figure 2[i]). In the control herd, we 

attributed 39% of mortalities to pneumonia (n=7), 33% to other causes (n=6), 17% 

to predatory events (n=3), and 11% as equally likely to be several causes (n=2) 

(Figure 2[i]).  An additional 3 lambs died in the control herd in 2016 after the first 6 

months (1 pneumonia, 1 human-caused, 1 uncertain). Across studies areas, we 

noted peak lamb predation on 11 July (median=21 June, SE=17.5 days), peak lamb 

pneumonia mortality on 8 August (median=3 August, SE=17.4 days), and peak death 

due to other causes on 6 June (median=4 June, SE=5.8 days) (Figure 3). All 

confirmed predation events were attributed to mountain lions.  

Survival Analysis 

We included 43 lambs in the survival analysis. We captured 20 of these lambs as 

neonates in 2016 (5 in treatment, 15 in control) and another 17 (10 in treatment, 7 

in control) in 2017. The remaining 6 lambs were caught several months after birth 
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in 2016 (4 in treatment herd, 2 in control herd) and left-censored until capture date. 

Because of their late capture date, we did not gather birth weight or birth date 

information on those individuals. The earliest lamb birth date was 1 May; therefore 

we commenced our survival analysis on that date and concluded it 6 months later 

on 1 November for both 2016 and 2017.  

 According to WAIC values (P =0.99), we found that our data most strongly 

supported the following model: Q�IΛ�L = � + ���������� x ��������� +

�$��� x &��� + .�].  No other model was within 2 ΔWAIC (Model 1, Table 3). Hence, 

we calculated and reported the log unit cumulative hazard measurements for each 

day based on this model (Figure 3). Our selected model suggested that living in a 

herd where chronic shedders had been removed had a negative mean effect on daily 

hazard in bighorn lambs (����������=-1.40) that was significant (CI=-2.42, -0.46). 

This corresponds with an annual lamb survival rate of 76% (CI=24%, 96%) in the 

treatment herd and 35% (CI=10%, 63%) in the control herd. We observed 

significantly higher lamb mortality in 2017 than in 2016 (�$���=1.15, CI=0.28, 2.02). 

 We analyzed all mortalities and calculated that the probability of a lamb 

dying from pneumonia in the treatment herd (probability=6%, CI=0-27%) was 

significantly lower than in the control herd (probability=48%, CI=24-73%), with a 

probability difference of -42% (CI=-68%,-12%). Lambs had a 60% probability of 

dying from predation in the treatment herd (CI=26-87%), which was significantly 

higher than in the control herd probability of 16% (CI=3-36%; probability 

difference = 45%, CI 9%-77%). The probability of dying of other causes was similar 

in both study areas (Figure 2[ii]). 
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 Although other models were not as strongly supported as Model 1, they 

provided insight on how other effects may have contributed to an individual lamb’s 

hazard. We did not find a significant effect of sex, birth timing, or birth weight 

(Model 2, ���,=-0.01, CI=-0.84, 0.79; Model 4, �U��V ���([1] = 0.45, CI=-0.70, 1.68, 

�U��V ���([2] = 0.72, CI=-0.83, 2.19; Model 5, �U��VY�(V�=  -0.07, CI=-0.53, 0.37). 

Discussion 

Our study is the first to rigorously apply the concept of chronic shedding (Monack et 

al. 2004, Nouwen et al. 2004, Buhnerkempe et al. 2017) to achieve conservation 

aims in a free-range setting. It also is the first to present strong evidence that 

chronic shedder removal results in significantly improved lamb survival. Our results 

indicate that this technique could be a widely applicable management tool to 

improve lamb recruitment in ailing bighorn sheep herds, especially given accessible 

terrain and small populations. 

 Although we never documented a lamb in the treatment herd actively 

shedding Mo bacteria after chronic shedder removal, a 26 day old lamb from the 

treatment herd that WADDL necropsied had Mo antibodies. This could be 

interpreted as an indication of lamb exposure to living Mo pathogens. However, the 

seropositive lamb did not exhibit lung damage, and RT-PCR did not detect Mo 

bacteria in samples submitted from the cadaver. Passive transfer from bighorn 

dams to lambs occurs within 24 hours of birth in ruminants and decays with a half-

life of 14-21 days (Weaver et al. 2000, Nowak and Poindron 2006). The process is 

thought to be similar in bighorn sheep (Highland et al. 2017). The mother of the 

lamb in question was alive before chronic shedder removal and tested positive for 
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Mo antibodies, indicating likely exposure to the bacteria. Hence, the antibodies in 

this lamb were likely acquired from the mother through colostrum.  

 We expected to see a treatment effect but did not anticipate a significant year 

effect when designing the study. Given the short temporal time scale and relatively 

small sample sizes of our study, the significant year term is most likely explained by 

stochasticity. But it is useful to consider alternative explanations, and we could 

conjecturally assign it to the increased mountain lion predation we observed on 

2017 treatment herd lambs (Figure 2[ii]). Temporal variation in mountain lion 

predation rates, similar to that reported in our experiment, was recorded in a study 

of mountain lion consumption of camelid species in Patagonia (Donadio et al. 2010). 

These authors noted that mountain lion consumption of a given camelid species 

increased as that species became more abundant. Similarly to those researchers, we 

also observed this trend of increased consumption with increased abundance, as 

population size (not including young of the year) in the treatment herd increased 

from 18 to 26 individuals between the 2016 and 2017 lambing seasons.  This is a 

small increase numerically, but accounts for 44% more bighorns on the landscape in 

the treatment area in 2017.  If mountain lion predation on bighorns continues to 

increase with growing bighorn population sizes, predator management actions may 

be warranted to ensure population recovery in the treatment herd (Bourbeau-

Lemieux et al. 2011, Rominger 2018). 

  We included a birth timing effect in our modeling based on its important role 

in describing bighorn sheep lamb survival in the last study performed in Rapid City 

(Smith et al. 2014a), but we did not find this effect to be significant. Our lack of a 
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significant birth timing effect also is contrary to another study performed at Ram 

Mountain, Alberta, where late birth date corresponded with decreased survival to 

one year old in male lambs (Feder et al. 2008).  One possible explanation for this 

discrepancy is that we included both male and female lambs in our analysis, 

whereas Feder et al. (2008) differentiated by sex and noted that males were more 

likely to be affected by late birth date. It is additionally worth noting that both Feder 

et al. (2008) and Smith et al. (2014a) performed their survival analyses for the 

entire year, whereas ours was conducted over the first six months of a lamb’s life.  

Because pneumonia mortality usually occurs in the first six months of life in bighorn 

sheep lambs (Grigg et al. 2017), our time frame is appropriate for our question of 

interest. Extending our analysis to include a full year might reveal a stronger effect 

of birth timing.  

 In bighorn sheep, Festa-Bianchet et al. (1997) found body weight to have a 

significant effect on lamb survival, but we did find this effect to be significant. Our 

lack of a significant weight effect also is contrary to observations of other ungulates 

(Fairbanks 1993, Cassinello and Alados 1996).  Early deaths due to pneumonia in 

the control herd may have prevented weight from becoming an important 

determinate of hazard in our experiment. To our knowledge, no published study 

examined the relationship between birth weight and pneumonia mortality in 

bighorn sheep herds, but population-level variables such as social group 

interactions and density dependent factors seem more predictive of dying from 

pneumonia as a lamb (Monello et al. 2001, Manlove et al. 2014). Also, increased 

body mass is advantageous for surviving the winter in ungulates (Cook et al. 2004, 
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Hurley et al. 2014), but we only examined survival through November.  Based on 

our findings, it is likely that birth weight is not an important descriptive variable of 

hazard until after that lamb escapes the threat of mortality from pneumonia.  

 Our lamb survival rates in the treatment herd were similar to those observed 

in studies of other healthy herds of bighorn sheep in South Dakota (Zimmerman 

2008, Smith et al. 2014a, Werdel 2017, Parr et al. 2018)(Table 4). Previous studies 

of healthy herds in the Black Hills and Badlands reported that the percentage of 

collared lambs surviving ranged between 37.5% and 90% for a given year. Since 

90% of our treatment lambs survived in 2016 and 40% survived in 2017, lamb 

survival in the treatment herd after chronic shedder removal falls within the range 

of survival rates in other healthy bighorn sheep populations. Similarly, 35% of the 

collared lambs in our control herd survived in 2016 and 0% survive in 2017, which 

falls within the range of 0-60% of collared lambs surviving in studies of diseased 

herds in western South Dakota (Parr et al. 2018, Werdel et al. 2017, Smith et al. 

2014a, Zimmerman 2008). This comparison provides further evidence that chronic 

shedder removal resulted in the treatment herd exhibiting characteristics of a 

typical healthy population.  

 Our experiment confirms other findings of improved bighorn lamb survival 

after Mo chronic shedder removal. Weyand et al. (2018) found that lambs comingled 

with chronic shedder ewes still developed pneumonia, even if their mother was not 

a carrier. However, lambs born to non-shedders in their study did not contract 

pneumonia when chronic shedders were removed before lambing. Both sample size 

and the captive setting limited the extendibility of their results, but based on our 
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findings, they appear extendable to free-range settings. Similarly, preliminary work 

in the Hell’s Canyon bighorn sheep population compares favorably to our findings. 

Researchers following the Asotin Creek herd removed 3 chronic shedders and noted 

31-54 lambs:100 ewes and no pneumonia in the following lambing seasons, as 

compared to <10 lambs:100 ewes in the nearby, Mo-infected Yakima Canyon herd 

(Bernatowicz et al. 2016). The results from the Asotin Creek study lacked the 

experimental design to make definitive statements about causes and effects, but our 

study improves on this by sampling all individuals in our treatment herd multiple 

times. Although repeating chronic shedder removal in different locations would 

improve strength of inference, our study and the evidence gathered in captive 

settings and Asotin Creek strongly suggest that chronic shedder removal will result 

in Mo clearance in a variety of free-range settings.  
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Table 1: Testing dates and results for bighorn sheep sampled in the treatment herd prior to and shortly after chronic shedder 
removal, 1 August 2014- 8 April 2016. Individuals who always tested positive after their first positive test were 
considered chronic shedders, and removed 13 March 2016.  Antibody presence indicates exposure to Mo. 

 
Treatment 

Identifier 
Sex 

PCR Test Result1 

Chronic Shedder Mo Antibodies2 Test Dates 
1 2 3 4 

1 ♀ - - - -  No D 8/1/14, 1/1/15, 10/22/15, 3/1/16 

2 ♀ + + + + Yes D 8/6/14, 4/15/15, 10/22/15, 3/13/16 

3 ♀ - - -    No D 8/11/14, 11/16/15, 3/13/16 

4 ♀ - - -    No D 8/26/14, 10/31/14, 9/9/2015 

5 ♂ - - -     No D 1/15/15, 12/3/15, 3/13/16 

6 ♂ - - in     No D 1/15/15, 11/5/15, 2/11/16 

7 ♀ - - -     No D 1/28/2015, 11/4/15, 3/1/16 

8 ♀ - - -     No  D 1/15/15, 9/15/15, 2/29/16 

9 ♀ - - -     No D 1/15/15, 10/2/15, 3/7/16 

10 ♀ - -       No D 3/20/15, 4/8/16 

11 ♀ - -       No D 3/24/15, 4/8/16 

12 ♀ - - -     No D 4/6/15, 9/11/15, 3/8/16 

13 ♂ - -       No  ND 4/7/15, 4/8/16 

14 ♂ - -       No  ND 4/7/15, 3/13/16 

15 ♂ -  -       No  ND 7/28/15, 3/13/16 

16 ♂ -  -       No  ND 7/28/15, 3/13/16 

17 ♀ - - 
 

    No D 7/30/15, 4/8/16 

18 ♀ - - 
 

    No D 9/3/15, 3/13/16 

19 ♀ + +  +   Yes D 10/20/14, 10/31/15, 3/13/16 

20 ♀ - - -   No D 2/4/15, 4/6/15, 2/22/16 

21 ♂ -     No in 4/4/16 

22 ♀ -     No ND 4/4/16 

23 ♀ + -    No D 8/26/14, 5/1/15 

24 ♀ - -    No D 3/19/15, 10/20/15 
1 - = Not Detected, + = Detected, in = Indeterminate; 2 D = Detected, ND = Not Detected, in = Indeterminate  
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Table 2: Cause of death probabilities assigned to all lambs that were included in the 
survival analysis. For analysis, these probabilities were converted into 
vectors that summed to one across cause-specific categories for each lamb 
that died. 

 
 

Treatment Lamb 

Identifier 

Year Other Pneumonia Predation 

1 2016 5% 
 

95% 

2 2017 
  

100% 

3 2017 
  

100% 

4 2017 100% 
  

5 2017 
  

100% 

6 2017 100%   

7 2017   100% 

 

Control Lamb 

Identifier 
Year Other  Pneumonia Predation 

1 2016 60% 40% 
 

2 2016 100% 
  

3 2016 
 

100% 
 

4 2016 10% 
 

90% 

5 2016 
 

100% 
 

6 2016 100% 
  

7 2016 
 

100% 
 

8 2016 100% 
  

9 2016 100% 
  

10 2016 34% 33% 33% 

11 2016 
 

100% 
 

12 2017 50% 50% 
 

13 2017 
  

100% 

14 2017 100% 
  

15 2017 
 

100% 
 

16 2017 
 

100% 
 

17 2017 
 

40% 60% 

18 2017  100%  
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Table 3: Descriptions and rankings of all models tested to explain log unit cumulative hazard [Q�IΛ�L] for each individual 
bighorn sheep lamb, 1 May  2016 – 1 November 2016 and 1 May  2017 – 1 November 2017. Ranking is based upon 
Watanabe-Akaike Information Criteria (WAIC) and is reported with ΔWAIC (difference in WAIC between top model and 
model being compared) and wi (WAIC weight). � is baseline log unit cumulative hazard rate,  ���������� is the effect of 
the treatment (whether a lamb was in the treatment or control herd),  �$��� is the effect of year,  ���, is the effect of sex, 
 �U��V ���( is the effect of birth timing,  �U��V Y�(V� is the effect of birth weight, and .�  is the effect of a given day (j) 
with a random walk prior for temporal smoothing across estimates.  

 

Model Description Effects WAIC ΔWAIC ST 

1) Hazard varied by treatment and year �,  ����������,  �$��� , .�   295.7 0 0.995 

2) Hazard varied by treatment, year, and sex �,  ����������,  �$��� ,  ���,, .�  307.0 11.3 0.004 

3) Hazard varied by treatment �,  ����������, .�   309.4 13.8 0.003 

4) Hazard varied by treatment, year, sex, and birth 

timing 

� ,  ����������,  �$��� ,  ���,,
 �U��V ���(, .�  

441.1 145.5 0.000 

5) Hazard varied by treatment, year, sex, and birth 

timing 

� ,  ����������,  �$��� ,  ���,,
 �U��V Y�(V�, .�  

492.4 196.8 0.000 

6) Global Model 
� ,  ����������,  �$��� ,  ���,,   
  �U��V ���(,  �U��V Y�(V�, .� 

640.5 344.8 0.000 
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Table 4: Comparison of % of lambs surviving and cause-specific mortality sources between bighorn sheep herds in this study 
and other wild herds recently studied in South Dakota. Percentages of cause-specific mortality contributions are based on 
most likely cause of death determined from field and necropsy evidence (see Table 2 for full assigned cause-specific 
probabilities). 
 

Diseased Herds Collared Lambs Surviving 

Pneumonia 

Contribution 

Predation 

Contribution 

Other/Unassignable 

Contributions 

Control Herd 35%, 0% 39% 17% 44% 

Smith et al. (2014a)1 4%, 8%, 7% 35% 30% 35% 

Werdel (2017)2 60% 42% 0% 58% 

Healthy Herds 

Treatment Herd 90%, 40% 0% 71% 29% 

Parr et al (2018)3 37.5%  0% 35% 75% 

Wieseler (2018)4 74% 0% 80% 20% 

Zimmerman (2008)6 90%, 88%, 88% NI NI NI 
1Smith, J. B., Jenks, J. A., Grovenburg, T. W., & Klaver, R. W. (2014). Disease and predation: sorting out causes of a bighorn sheep (Ovis canadensis) decline. PLoS One, 9(2), 

e88271 
2Werdel, T. J. (2017). Evaluation of the Deadwood Bighorn Sheep Herd Translocation. (Wildlife and Fisheries Sciences), South Dakota State University, Open PRAIRIE. (1704) 
3Parr, B. L., Smith, J. B., & Jenks, J. A. (2018). Population Dynamics of a Bighorn Sheep (Ovis canadensis) Herd in the Southern Black Hills of South Dakota and Wyoming. 

American Midland Naturalist, 179, 1-14. 
4Wiesler, A., Personal Communication, 2018 
5No information available 
6Zimmerman, T. J. (2008). Evaluation of an Augmentation of Rocky Mountain Bighorn Sheep at Badlands National Park, South Dakota. (Wildlife and Fisheries Sciences), 

South Dakota State University, Open PRAIRIE. (611) 
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Figure 1: Ranges of study populations of bighorn sheep in the Black Hills, South 
Dakota, USA, 2016-2018. The Custer State Park herd is the treatment herd. 
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Figure 2: A comparison of mortality sources for lambs between herds after chronic 
shedder removal in the treatment herd on 13 March 2016. Panel [i] shows cause-
specific mortality sources based on the most likely cause of death assigned. No 
pneumonia was recorded in the treatment herd during the study. Panel [ii] shows 
the estimated cause-specific mortality probabilities based on the survival analysis. 
Given that a lamb dies, it is significantly less likely that the mortality will be caused 
by pneumonia in the treatment herd, but more likely that it will be due to predation. 
Credible intervals are 95%. 
 
[i] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [ii] 
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Figure 3: Overall log hazard for a bighorn sheep lamb in Rapid City (�). Plot is based 
on our top model, Q�IΛ�L = � + ���������� x ��������� + �$���x &��� + .� , where 

Q�IΛ�L is the unit log cumulative hazard for the ith individual in the jth day, 
���������� is the effect of being in the treatment herd, ��������� denotes whether 
individual i was in the treatment herd, �$��� is the effect of 2017, &��� denotes 
whether individual i was born in 2017, and .�  is the effect of a given day (j) which is 
temporally smoothed via a conditional autoregressive random walk prior. Peak 
periods for each cause specific mortality source are indicated by brackets, and 95% 
credible intervals are shown in gray. For resolution, X-axis begins on day 7 to 
remove large CI associated due to low sample sizes early in the year; the first lamb 
died on day 18. 
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