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ABSTRACT 

A DEVELOPMENT OF TRAVEL TIME EQUATION FOR OVERLAND 

FLOW AS AFFECTED BY VEGETATION 

NAGA VARA PRASAD GANTI 

2018 

In overland flow water research, travel time is a significant parameter used in 

estimating peak discharge in channels or rivers. Overland flow is assumed to be in turbulent 

condition to estimate travel time using Manning’s Velocity Equation (MVE). When the 

flow is in a laminar condition, Grismer’s Laminar Mean Velocity Equation (GLMVE) is 

applied but fails to consider the roughness parameter. A review of the literature shows 

numerous equations for overland travel time, but there is no known equation that 

determines the mean velocity of overland flow under laminar condition with a roughness 

coefficient or other coefficient related to the effect vegetation has on the flow. In this study, 

a new overland flow travel time equation was developed by assuming laminar flow and 

incorporating Chezy’s vegetation roughness coefficient (𝐶𝑣). In this paper, relationships 

were established between GLMVE and 𝐶𝑣 and that relationship is used to develop a new 

travel time equation. The new equation was employed on theoretical models for bare soil, 

corn growing on the soil, and Bermuda grass growing on the soil. Standard design tables 

for Darcy’s vegetation roughness coefficient (𝑓𝑣) and Chezy’s vegetation roughness 

coefficient (𝐶𝑣) were developed for selected crops at different slopes and crop residues. 

Validation of the equation was performed by comparing the calculated results for travel 

time with published data.
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CHAPTER 1: INTRODUCTION 

1.1 General: 

Time of concentration (𝑇𝑐)  is the time taken by a water droplet to travel from the 

farthest point in a watershed to travel along the land surface to the outlet (McCuen, 2005). 

Time of concentration is equal to the sum of travel times of sheet flow, shallow 

concentrated flow, and channel flow. Accurate estimation of travel time is necessary for 

the economical design of hydraulic structures and to avoid flash floods. There are many 

experimental and theoretical models developed to estimate travel time with some 

drawbacks (Henderson & Wooding, 1964, Yen & Chow, 1983, Chen & Wong, 1993, 

Wong, 2005, Kerby, 1959, Kirpich, 1940).  

The Ganti and Burckhard travel time equation presented here is based on kinematic 

wave theory (Lighthill and Whitham, 1955) with fewer assumptions than those made by 

previous researchers (Henderson & Wooding, 1964, Yen & Chow, 1983). Many 

researchers dedicated their time and effort to find a vegetation roughness coefficient, for 

example, in the case of the SCS curve method they defined the roughness coefficient as the 

curve number (CN) (NRCS, 1986), The rational method contains a separate roughness 

coefficient based on landscape characteristics and Manning developed an equation 

empirically to estimate flow velocity in both natural and man-made channels i.e. 𝑉 =

𝐶 𝑅
2

3 𝑆
1

2 , but he didn’t propose a new roughness coefficient instead he suggested Chezy’s 

roughness coefficient (C) (Chezy, 1776) for Manning’s velocity equation (Manning, 1889). 

Later, in a letter to Alfred Flamant, French hydraulician, Manning mentioned that the 

Chezy’s roughness coefficient in MVE is almost equal to reciprocal of Kutter’s roughness 

coefficient (n) (Manning, 1889). Manning’s rejected his own formula i.e. 𝑉 = 𝐶 𝑅
2

3 𝑆
1

2 due 
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to difficulty in calculating cube root and dimensional homogeneity. Later Manning 

proposed another equation i.e. 𝑉 = 𝐶√𝑔𝑆 [ √𝑅 +
0.22

√𝑚 
(𝑅 − 0.15𝑚)] in which ‘m’ is 

barometric pressure in meters mercury (Manning, 1889). Practicing engineers preferred 

𝑉 = 𝐶 𝑅
2

3 𝑆
1

2 instead of 𝑉 = 𝐶√𝑔𝑆 [ √𝑅 +
0.22

√𝑚 
(𝑅 − 0.15𝑚)]. The flow conditions for 

Manning’s velocity equation are highly turbulent. Generally, it is assumed that overland 

mostly flow is laminar, and vegetation is assumed to be in a non-submerged condition.  

To generate a practical expression, we need to consider laminar mean flow velocity 

equation and roughness coefficient for non-submerged vegetation. Manning’s equation 

doesn’t give accurate results in estimation of mean velocity in overland flow with lower 

slopes because MVE is presumed to apply at much greater slopes as well in watershed 

modelling (Grismer, 2016). Based on this, a new equation for estimating laminar flow 

mean velocity was proposed by Mark. E. Grismer hence referred to as Grismer’s Laminar 

Mean Velocity Equation (GLMVE) (Grismer, 2016). Grismer neglected to consider a 

roughness parameter in his equation therefore a modified GLMVE is developed in this 

study by incorporating Chezy’s roughness coefficient. The form of Chezy’s roughness 

coefficient for non-submerged vegetation used was given by Petryk and Bosmajian (1975) 

of which was verified by Baptist (2007).  That modified GLMVE is used to develop a travel 

time and flow depth equation using kinematic wave theory. 

1.2  Background:  

Before reviewing the literature, a few definitions are necessary.  Flooding occurs when the 

runoff generated is more than the storage capacity of the flow surface over which the runoff 

is flowing. A watershed is defined as the surface area or land which contributes runoff to a 

defined outlet after a precipitation event. Time of concentration (𝐓𝐜)  is the time taken by 
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a water droplet to travel from the farthest point in a watershed to the outlet (McCuen, 

2005). Time of concentration is a significant parameter used for estimation of peak flow in 

many runoff studies. Intensive research on the role of vegetation in hydrological sciences 

is started in 1970’s, but a gap existed between the theoretical and practical results. This gap 

can be minimized by using advanced technology. Particle Image Velocimetry (PIV) 

technology is the advanced particle tracking methodology which can be used to measure 

particle velocity. Henderson and Wooding (Henderson & Wooding, 1964), Yen and Chow 

(Yen & Chow, 1983), Chen and Wong (Chen & Wong, 1993, Wong, 2005) have provided 

major contributions in estimating overland flow travel time.   

1.3 Objective: 

The purpose of this study is to understand how vegetation is affects overland flow 

travel time. Theoretical research is conducted by developing a new kinematic wave model 

based on laminar flow conditions and vegetation roughness, defined by stem density per 

square meter, which is compared with published experimental data and other kinematic 

wave models. Theoretical analysis was carried out by comparing how vegetation affects 

travel time and the results are validated by comparing with published experimental data.  

The tasks associated with this project are as follows. 

1.) Development of new travel time equation based on number of stems per square 

meter using kinematic wave theory. 

2.) To perform trend analysis between travel time and vegetation roughness. 

Comparing developed kinematic wave equation results with existing kinematic 

wave equations.  

3.) Analyzing the effect of vegetation stems on overland flow travel time.  
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4.) Develop Chezy’s and Darcy’s roughness coefficient tables based on the vegetation 

density. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Time of concentration:  

      There are two commonly accepted definitions for the time of concentration. Tc is the 

time taken by water droplet to travel from farthest point in the watershed to the outlet 

(McCuen, 2005). This is a theoretically based definition that depends on watershed 

characteristics; and many empirical and kinematic wave models are developed based on 

this definition. The second definition is based on rainfall hyetograph and resulting direct 

runoff hydrograph. The TC can also be defined by the time between the center of mass of 

rainfall excess to the inflection point on the recession of the direct runoff hydrograph. 

Sometimes this definition is modified to be the time between the end of excess rainfall to 

the inflection point on the recession branch of a direct runoff hydrograph (McCuen, 2005).  

2.2 Overland flow travel time:  

Overland flow travel time is divided into sheet flow travel time and shallow concentrated 

flow travel time. The overland flow is occurring after completion of infiltration or 

saturation process, it is generally assumed to be turbulent even though it mostly 

representing laminar characteristics (Grismer, 2016). Various researchers have attempted 

to estimate accurate travel time based on kinematic wave theory, SCS method, and other 

empirical equations (Henderson & Wooding, 1964, Yen & Chow, 1983, Chen & Wong, 

1993, Wong, 2005). Most of the researchers have assumed that the flow regime is turbulent. 

In general, kinematic wave equations are derived by assuming flow velocity can be 

estimated through Manning’s equation.  

2.3 Kinematic wave theory:  
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Kinematic wave models were first introduced by Lighthill and Whitham (1955). 

Kinematic wave theory is the simplified version of dynamic wave theory. The dynamic 

wave theory accounts for the entire spectrum of the physical processes which comprise 

flow in a stream or channel. Kinematic wave theory was developed by considering some 

physical processes (i.e. inertia and pressure forces) to be negligible.  

The dynamic wave models consist of two partial differential equations i.e. conservation 

of mass (Continuity) and momentum (dynamic) equations they are also referred as Saint- 

Venant equations (Miller, 1984).  The physical factors governing these equations are local 

acceleration, convective acceleration, hydrostatic pressure forces, gravitational forces and 

frictional forces. 

The kinematic wave models consist of continuity equation and simplified form of 

momentum equation. Hence the physical factors governing these equations are 

gravitational forces and frictional forces.  

2.3.1 Momentum equation in kinematic wave form: 

The continuity equation is applicable for both kinematic and dynamic approaches. The 

equation of conservation of momentum can be written as 

𝜕Q

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 𝑞 

Where Q is the discharge (
𝑚3

𝑠
), A is the cross-sectional area (𝑚2), q is the lateral inflow 

(
𝑚2

𝑠
), x is the space co-ordinate in the direction of flow (𝑚) and t is the time in seconds 

(Chow, 1988, Mays, 1996, Schultz,1992). 

The momentum equation is based on Newton’s second law of motion can be written as   

                                           
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
+ 𝑔

𝜕𝑦

𝜕𝑥
− 𝑔(𝑆0 − 𝑆𝑓) = 0 
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Where V is the mean velocity in (
𝑚

𝑠
), y is the flow depth (𝑚), 𝑆0 is the bed slope, 𝑆𝑓is the 

friction slope and 𝑔 is the acceleration due to gravity (
𝑚

𝑠2). 

The simplified momentum equation in kinematic wave form can be written as   

                                                         𝑆0 − 𝑆𝑓 = 0  

 Overland flows are dominant in small watersheds such agricultural plots, rooftops, 

roadways, parking lots and open areas. In these watersheds, the kinematic wave is 

dominant in the rising branch of the hydrograph and much of the recession limb. The 

dynamic and diffusion portion is also rising, but these are short-term and plays a minor role 

(Singh. V. P, 2002). Hence kinematic wave prediction would be a better approximation for 

overland flow compared to dynamic wave even though dynamic flow may be dominant in 

some cases. 

2.4 Previous research in overland flow travel time: 

Previous research in overland flow travel time estimation have been done in mostly 

theoretical such as Kinematic wave theory (Henderson & Wooding, 1964), and in some 

cases experimentally such as Kirpich (1940) and Kerby (1959).  

2.4.1 Soil conservation service method (Soil Conservation Services, 1986): 

The volume of runoff depends on the number of factors. Certainly, rainfall volume is the 

most significant factor. For large watersheds, runoff volume for single storm events is 

dependent on the rainfall volume of previous storm events. However, for small watersheds, 

design hydrologists assume that the runoff volume for a single storm event is independent 

of previous storm events. In developing the SCS rainfall-runoff relationship the total 

rainfall (𝑃) in meters is divided into three factors; direct runoff depth (𝑄) in meters, Actual 
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or continuous retention of precipitation (𝐹) in meters, and Initial abstraction (𝐼𝑎) in meters. 

Hence the conceptual relationship between 𝐹, 𝑄, 𝐼𝑎, 𝑃 is as follows.      

                                                     
𝐹

𝑆𝑟
=  

𝑄

𝑃−𝐼𝑎
  

 𝑆𝑟 is potential maximum retention. The actual retention is  

                                   𝐹 = (𝑃 − 𝐼𝑎) − 𝑄 

Therefore,  
(𝑃−𝐼𝑎)−𝑄

𝑆𝑟
=

𝑄

𝑃−𝐼𝑎
 

Hence 𝑄 =
(𝑃−𝐼𝑎)2

(𝑃−𝐼𝑎)+𝑆𝑟
 

The retention, 𝑆𝑟, should be the function of five factors; land use, interception, infiltration, 

depression storage, and antecedent soil moisture. Empirical evidence indicated that 

retention and initial abstraction are related as follows. 

𝐼𝑎 = 0.2𝑆𝑟 

Therefore, 𝑄 =
(𝑃−0.2𝑆𝑟)2

(𝑃+0.8𝑆𝑟)
 

The retention, 𝑆𝑟, can be calculated from the curve number (CN) which is developed 

through empirical analysis. 

𝑆𝑟 =
1000

𝐶𝑁
− 10 

Note: It is important to remember that 𝑃 ≥ 0.2𝑆𝑟. When 𝑃 < 0.2𝑆𝑟 it is necessary to 

assume 𝑄 = 0. 

The Soil conservation service developed a lag formula for estimating time of concentration 

by defining that it is time between the center of mass of excess rainfall to the peak 

discharge. The lag time is defined as time between peak rainfall to peak discharge in direct 
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runoff hydrograph. The SCS method also indicates that time of concentration is equal to 

1.67 time of the lag time.  

Limitations of SCS method (Soil Conservation Service, 1986): 

➢ This method should be used on watersheds that are homogeneous in CN.  

➢ The graphical method can be used only when CN is 50 or greater. 

➢ The computed value of 
𝐼𝑎

𝑃
 should be 0.1 to 0.5. 

➢ This method should be used when watershed has one main channel otherwise 

hydrograph method should be used. 

The adopted equations for estimating travel time based on watershed characteristics 

and limitations are as follows.   

2.4.2 Hathway-Kerby equation (Kerby, 1959):  

This equation can be used for small watersheds which are less than 40468.6 𝑚2 and 

flow length should be less than 0.37 km. Kerby developed a nomograph to estimate time 

of concentration in watershed.   

𝑇𝑡= 1.441𝑁𝑓
0.467𝐿0.467𝑆−0.233 

 𝑇𝑡=Travel time in minutes, 

𝑁𝑓 = flow retardance factor, 

L = overland flow length, (𝑚)     

S = overland flow path slope, (𝑚
𝑚⁄ ) 

2.4.3 Kirpich equation (Kirpich, 1940):  

This equation can be used for watersheds less than 453248 𝑚2 and slope is in 

between 0.03 to 0.1. Kirpich equation is experimentally developed by only six data points 
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and it is independent of roughness parameter and rainfall excess intensity which is in 

sufficient for estimating accurate travel time. 

𝑇𝑡 = 2.495K𝐿0.77𝑆𝑌 

For Tennessee K = 0.0078, Y= -0.385 

For Pennsylvania K = 0.0013, Y = -0.5  

𝑇𝑡=Travel time in minutes, 

L = Length of channel/ditch from head water to outlet, m 

S = average watershed slope, (𝑚
𝑚⁄ ) 

2.4.4 Yen and chow equation (Yen & Chow, 1983): 

This equation can be used for small watersheds and it is developed based on 

kinematic wave theory. Yen and Chow equation is independent up on intensity and it is 

developed based on Manning’s velocity equation which is developed based turbulent 

condition. 

𝑇𝑡 = 1.2 (
𝑛 𝐿

𝑆0.5)0.6 

The above formula is derived from “Woalhiser and Liggetts” (Woalhiser 

and Liggetts, 1967)  

𝑇𝑡 = 7( 
𝑛0.6𝐿0.6

𝑆0.3𝑖0.4) 

By substituting i = 80mm/hr. we get 

𝑇𝑡 = 1.2 (
𝑛 𝐿

𝑆0.5
)0.6 

Where L = Length of overland flow (m) 

n = Manning’s roughness coefficient.  

 𝑇𝑡 = Travel time in minutes. 

S = overland slope (m/m) 
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 i = Intensity (mm/hr.). 

2.4.5 Henderson-Wooding equation (Henderson and wooding, 1964): 

This equation is developed based on kinematic wave theory for flow in overland 

area. It is based on Manning’s velocity equation which is developed based turbulent 

condition.  

                      𝑇𝑡 = 0.44 (𝐿𝑛)0.6 𝑆−0.3 𝑖−0.4 

Where 𝑇𝑡 = Travel time in minutes. 

            n = Manning’s roughness coefficient.  

L = Longest overland flow length, (𝑚)     

S = Average overland flow path slope, (𝑚
𝑚⁄ )   

 i = Intensity(
𝑚

ℎ𝑟
). 
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CHAPTER 3: METHODOLOGY 

3.1 Watershed characteristics: 

The concept of a watershed is the basic for many hydrologic designs. Generally, large 

watersheds are the summation of small watersheds, in that any rainfall occurring in the 

region of outlet will contribute runoff to that outlet. The entire contributing region is 

termed as a watershed. In general, every watershed has its characteristics like length, 

shape, drainage area, slope, roughness, land cover and use. 

3.1.1 Drainage area:  

The drainage area, A, is the most significant watershed parameter used to estimate runoff 

generation for a storm event. The volume of runoff produced is equal to the product of 

rainfall depth and drainage area, by considering this assumption this parameter is widely 

used in linear models (McCuen, 2005). The drainage area can be estimated after delineation 

of the watershed using planimeter or by grid area method.  

3.1.2 Watershed length: 

The length of the watershed, L is the significant parameter in estimating time of 

concentration, usually, the length of the watershed is the distance between the farthest point 

in contributing drainage area to the watershed outlet (McCuen, 2005).  

3.1.3 Watershed slope: 

The slope of the watershed, S, is defined as the ratio of the difference in elevation 

between endpoints of the principal flow path along the hydrologic flow length (McCuen, 

2005). Usually in overland flow, the difference in elevation can be estimated using contour 

maps.                                            

S = 
∇𝐸

𝐿
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 Where ∇𝐸 = Change in elevation. 

               L = Hydrologic flow length. 

3.1.4 Land cover and use:  

Runoff generated in a grass surface has less velocity compared to bare soil due to more 

hydraulically resistance or roughness. Most frequently, the Rational method is used for 

watersheds within 24 acres it uses land cover coefficient as runoff coefficient ‘C’ (McCuen, 

2005).  The soil conservation service (1986) has developed another coefficient based on 

soil type, antecedent soil moisture and land use i.e. curve number (CN) (McCuen, 2005).  

3.1.5 Surface Roughness (n): 

Surface roughness is the unevenness of texture, it is more important in hydrological design. 

Manning’s roughness coefficient is the most widely used roughness index (Henderson and 

wooding, 1964, Yen & Chow, 1983 and Woalhiser and Liggetts, 1967). In this study, the 

Manning's roughness is ranging from 0.02 to 0.41.  

3.2 Mathematical model for overland flow travel time using kinematic wave theory: 

The total shear stress on the fluid can be estimated by using conservation of 

momentum principle for uniform and steady flow conditions is as follows (Whipple, 2004). 

                                               𝜏 =  𝜌𝑔𝑅𝑆  

By assuming 𝑆 =  𝑆0, R ≈ ℎ for wide rectangular channels 

                                        Therefore,  𝜏 =  𝜌𝑔ℎ𝑆0              

Where 𝜏 = Total shear stress (
𝑁

𝑚2), 𝜌 = Density of water  (
𝐾𝑔

𝑚3) = 1000, g = 

Acceleration due to gravity (
𝑚

𝑠2
) = 9.81, 𝑅 = Hydraulic mean radius (𝑚), S = Friction slope, 

(
𝑚

𝑚
), 𝑆0 = Bed slope, (

𝑚

𝑚
) and h = Overland flow depth (𝑚).   
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Most of the watershed modeling and estimation of overland flow velocity is 

assumed as the turbulent flow, even though the flow is under laminar flow conditions. 

Under steady and laminar flow conditions the surface flow velocity is nearly proportional 

to slope rather than the square root of the slope. Grismer developed laminar mean flow 

velocity equation which is represented as (Grismer, 2016). 

             𝑢𝑚 = (
𝜌𝑔ℎ2

3𝜇
) 𝑆𝑖𝑛𝜃 ≃ (0.7524𝜌𝑔ℎ2/3𝜇)𝑆0

0.983
                         (1) 

Based on best fitting power curve 𝑆𝑖𝑛𝜃 is represented as 𝑆0
0.983

 and 0.7524 value 

came from converting 𝑆𝑖𝑛𝜃 to 𝑆0
0.983

.  

Where 𝜇= Dynamic viscosity (
 𝑁 𝑠

𝑚2 ) and 𝑢𝑚 = Overland flow mean velocity (
𝑚

𝑠
)    

But in equation (1) we are missing roughness parameter, required to introduce 

roughness parameter into equation (1). 

 i.e. 𝜏 = 𝐾 𝑢𝑚
2   where ( 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝐾) =  

1.5𝜌

𝑅𝑒
) (Baptist et al. 2007) 

um =  √
𝜌𝑔ℎ𝑆0

𝐾
 = 𝐶𝑣 √ℎ𝑆0  

Therefore,     
𝜌𝑔ℎ

3𝜇
=

𝐶𝑣
2

2𝑢𝑚
                                                                                                      (2)  

Substitute equation (2) is equation (1) to modify Grismer’s laminar mean velocity 

equation 

𝑢𝑚= 0.6133𝐶𝑣√ℎ 𝑆0
0.983                                                                                    (3)  

Now travel time could be estimated using equation (3) 

Travel time (𝑇𝑡) =  
𝐿

60∗ 𝑢𝑚
  (Since dividing with 60 to convert seconds to minutes)                                                                               

𝑇𝑡 =
0.026L

𝐶𝑣√ℎ𝑆0
0.983
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Where flow depth, h, is an unknown parameter, as per kinematic wave theory, flow 

depth is the product of rainfall excess intensity, if absorption losses are considered, or 

rainfall intensity if no absorption losses are considered, and travel time (Miller, 1984).  

                            ℎ(𝑚) =  
𝑖 𝑇𝑡

60
      (Since 60 is to convert minute to hour) 

                    i.e.    ℎ(𝑚) =  
𝑖 𝑇𝑡

60
        

                           ℎ(𝑚) =  
𝑖

60
 

𝐿

60∗𝑢𝑚
 

                            ℎ(𝑚) = (
𝑖 𝐿

2207.88 𝐶𝑣 √𝑆0
0.983

)
2

3                                                (4)   

Therefore, final travel time equation for overland flow is  

                           𝑇𝑡 =  
0.3385 𝐿2/3

𝐶𝑣
2/3 𝑖1/3 𝑆0

0.324                                                         (5)  

Where 𝐶𝑣 in equation (5) is estimated using Petryk and Bosmajian (1975) equation 

and verified by Baptist (2007) 

                             𝐶𝑣 =  √(
1

1

𝐶𝑏
2+

𝐶𝑑𝑁𝑑ℎ

2𝑔

)   

Where 𝐶𝑣 = Chezy’s vegetation resistance coefficient (
√𝑚

𝑠
), 𝐶𝑏 = Chezy’s bed resistance 

coefficient (
√𝑚

𝑠
) ≈ √

8𝑔

𝑓𝑏
, i = Rainfall excess intensity (

𝑚

ℎ𝑟
), L = Flow length (𝑚), 𝑇𝑡= Travel 

time (minutes), N = Number of stems per square meter (𝑚−2), D = Stem diameter 

(𝑚),  𝑓𝑏 = Darcy’s bed resistance coefficient and it can be estimated using 

experimentation, 𝑓𝑣 =  Darcy’s vegetation resistance coefficient and 𝐶𝑑= Drag coefficient 

for laminar flow.   
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To estimate flow depth in equation (4), we need to know 𝐶𝑣 which is unknown 

parameter, so by considering 𝐶𝑣 ≈ √
8𝑔

𝑓𝑣
 (Baptist et al. 2007) flow depth equation can be 

written as. 

                                          ℎ ≈  
𝑖2/3 𝐿2/3 𝑓𝑣

1/3

 725.94 𝑆0
0.3276  

3.3 Estimation of Rainfall excess intensity based on curve number (CN): 

As per SCS curve number method runoff depth can be estimated as  

Runoff discharge (𝑞
(

𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
)
) = 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑖𝑚𝑒
=  

𝐴
(𝑚2)

ℎ(𝑚)

𝑇𝑡(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

  

By substituting ( ℎ(𝑚)= 
𝑖𝑇𝑡

60
 ) in runoff discharge (q) equation 

          𝑞
(

𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
)

=  
𝐴

(𝑚2)
𝑖(𝑚/ℎ𝑟)

60
   

Rainfall excess intensity (𝑖(
𝑚

ℎ𝑟
)) =  

60∗𝑞
(

𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
)

𝐴(𝑚2)

                          (6)    

In equation (6) runoff discharge is unknown parameter, to estimate that as per 

conceptual model 

Runoff discharge (𝑞
(

𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
)
) = precipitation discharge – losses discharge 

               𝑞
(

𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
)
           = 

𝐴
(𝑚2)

𝑖𝑡𝑜𝑡𝑎𝑙
(

𝑚
ℎ𝑟

)

60
 - 

(𝐹+𝐼𝑎)(𝑚) 𝐴(𝑚2)

 𝑡(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
                  (7)                             

According to the SCS developed rainfall-runoff relationship as Initial and 

continuous absorption losses are equal to the difference between precipitation and runoff 

generated (McCuen, 2005).  

𝐹 + 𝐼𝑎 = 𝑃 − 𝑄 = 𝑃 −   
(𝑃− 𝐼𝑎)2

(𝑃− 𝐼𝑎)+𝑆𝑟
 (Since 𝑄 =  

(𝑃− 𝐼𝑎)2

(𝑃− 𝐼𝑎)+𝑆𝑟
 stated in the literature 

review)  
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 Where 𝑆𝑟 can be estimated as 𝑆𝑟 =  
1000

𝐶𝑁
− 10 , 𝐼𝑎 = 0.2𝑆𝑟  

Hence by substituting equation (7) in to equation (6) an equation to estimate rainfall 

excess intensity results.             

Therefore, Rainfall excess intensity (𝑖(
𝑚

ℎ𝑟
)) =  𝑖𝑡𝑜𝑡𝑎𝑙

(
𝑚
ℎ𝑟

)
− 

60∗(𝐹+𝐼𝑎)(𝑚)

𝑡(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
   

Where t = Rainfall duration (minutes), q = Runoff discharge (
𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
), A = Flow 

area but assumed as watershed area for non-channelized flows (𝑚2), 𝑖𝑡𝑜𝑡𝑎𝑙 = Total rainfall 

intensity (
𝑚

ℎ𝑟
) and CN = Curve number. 

3.4 Mathematical model for Darcy’s vegetation resistance based on stem density and 

diameter is as follows: 

Total shear stress (𝜏𝑡) =  𝜏𝑏 + 𝜏𝑉 

Where 𝜏𝑏 = Bed shear stress (
𝑁

𝑚2),  𝜏𝑣 = Vegetation shear stress (
𝑁

𝑚2).   

          𝜌𝑔𝑅𝑆0 = 𝜌𝑔ℎ𝑆0 =  𝜌𝑔
𝑢𝑚

2

𝐶𝑏
2 + 

𝜌𝐶𝑑𝑁𝐷ℎ𝑢𝑚
2

2
  

                   ℎ𝑆𝑜 =  𝑢𝑚
2[

1

𝐶𝑏
2 +

𝐶𝑑𝑁𝐷ℎ

2𝑔
] 

    ⸫  𝑢𝑚
2 =  

ℎ𝑆0

[
1

𝐶𝑏
2+ 

𝐶𝑑𝑁𝐷ℎ

2𝑔
]
                                                                                          (8)              

Substituting  Darcy’s vegetation resistance (𝑓𝑣) =  
8𝑔𝑅𝑆0

𝑢𝑚
2 =  

8𝑔ℎ𝑆0

𝑢𝑚
2   (Gilley et al. 1992) 

                                 𝑓𝑣 = 8𝑔[
1

𝐶𝑏
2 +  

𝐶𝑑𝑁𝐷ℎ

2𝑔
] 

                                  𝑓𝑣 = 8𝑔 [
𝑓𝑏

8𝑔
+  

𝐶𝑑𝑁𝐷ℎ

2𝑔
] 

 By taking Least count multiple of 8𝑔 

                      𝑓𝑣 =  𝑓𝑏+4𝐶𝑑𝑁𝐷ℎ                                                                          (9)        
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3.5 Model Verification: 

The flow length and slope are arbitrary values in table 3.1 and 3.2. Curve number 

is based on soil type and vegetation type. The number of stems per square meter and stem 

diameter is selected based on Gilley et al. (1994). The number of stems per square meter 

and stem diameter of Bermuda grass is defined as an average value due to the lack of data 

for a dense, medium and poor condition.  

Table 3.1 Theoretical inputs for estimating excess rainfall intensity, flow depth and travel 

time 

Land cover Flow length (meters) Slope (%) Curve number Manning's roughness (n) no. of Stems per sq.m Stem diameter(meter)

Bare soil 30.48 8 94 0.02 0 0

Corn 30.48 8 89 0.05 6.56 0.0029

Bermuda grass 30.48 8 85 0.41 1640 0.001700001  

Table 3.2 Theoretical inputs for developed Chezy’s and Darcy’s – Weisbach vegetation 

roughness coefficient tables 

Type I (25-yr precipitation) (m/hr) flow length (m) drag coefficient (Cd) No. of stems per m (N) Avg stem dia (D) in (m)

Gravel bed 0.00424628 30.48 2.075 0 0

Corn 0.00424628 30.48 2.075 6.56 0.0029

Soyabeans 0.00424628 30.48 2.075 29.5 0.00086

Wheat 0.00424628 30.48 2.075 197 0.00071

Sorghum 0.00424628 30.48 2.075 23 0.0034

Sunflower 0.00424628 30.48 2.075 6.56 0.00152

Cotton 0.00424628 30.48 2.075 13.1 0.0031

Bermuda grass 0.003272253 30.48 2.075 1640 0.001700001  

3.6 Assumptions: 

• Rainfall occurred over the entire basin; otherwise, individual travel time estimation 

required a summing up of all individual travel times to obtain final travel time. 

Uniform rainfall resulted in excess intensity. 
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• Runoff area is assumed to be the whole watershed area.  

• Friction slope is equal to the bed slope. 

• Flow is perpendicular to the crops. 

• Pressure forces and acceleration were not considered. 

• Soil is in dry condition before storm event. 

• Results were developed based on rainfall’s excess intensity and length as constants 

for different crops due to lack of Curve Number (CN) data for different crops.       
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Travel time:  

Figure 4.1, 4.2 and 4.3 illustrates overland flow travel time results generated based on 

theoretical inputs and design storm intensities from Intensity-Duration-Frequency curves 

for return periods of 2-yr, 5-yr, 10-yr, 25-yr for 24-year storm event. The flow retardance 

factor values are 0.1 for bare soil, 0.2 for corn and 0.8 for Bermuda grass. The increase in 

rainfall excess intensity leads to decrease in travel time. From the obtained results, the 

values obtained using the Henderson and Wooding equation have the highest travel time 

compared to other equations in bare and vegetated conditions. The difference in travel time 

between Henderson and Wooding equation and the Ganti and Burckhard equation is 

increasing with vegetation stems per square meter. Hence Kirpich – Pennsylvania, Kirpich 

– Tennessee, and Hathway-Kerby are giving same travel time value for any precipitation.  

 

           Figure 4.1 Overland flow travel time at Bare soil condition 
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                  Figure 4.2 Overland flow travel time at corn crop condition 

 

                Figure 4.3 Overland flow travel time at Bermuda grass condition 

4.2 Reynolds number: 

Reynolds number is the only parameter which defines flow condition in fluid mechanics. 

In this study, overland flow was assumed to be laminar in order to develop the travel time 

equation. The results observed from theoretical inputs for bare soil, Corn and Bermuda 

grass conditions for all equations except the Kirpich-Pennsylvania equation indicate the 
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flow is in laminar condition with 𝑅𝑒 < 500. Kirpich is developed travel time equation 

empirically based on six data points which are very insufficient to obtain the accurate 

result. There is no roughness parameter is considered in Kirpich equation to estimate travel 

time, hence it gives the same value for any type of land cover. In Figure 4.4 Reynolds 

number decreases with increase in vegetation density hence travel time increases. 

 

   Figure 4.4 Overland flow Reynolds number based on vegetation type at 8% slope 

4.3 Flow depth:   

Flow depth is a significant parameter in estimating overland flow travel time, but it is 

highly complicated to measure in overland flow. There is no known equation to estimate 

overland flow depth in literature without knowing overland travel time. Hence a theoretical 

equation is developed based on laminar flow conditions which are applicable for both bare 

and vegetation condition using kinematic wave theory. Figure 4.5 shows flow depth is 

increasing with precipitation depth at same land cover. Flow depth is greater in bare soil 
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compared to Corn and Bermuda grass condition because infiltration rate is higher in 

vegetation condition compared to bare soil.  

 

Figure 4.5 Overland flow depth based on stem density per square meter at 8% slope.       

4.4 Roughness coefficients: 

Assumptions made in order to calculate roughness coefficients are as follows. 

• Darcy’s friction factor at no vegetation condition (𝑓𝑏) and Chezy’s roughness 

coefficients at no vegetation condition (𝐶𝑏) values are assumed to be constant with 

respect to slope for concrete, asphalt and bare soil surfaces. 

• ‘𝑓𝑏’ values for bare soil are selected from Gilley et al. (1992) at perpendicular flow 

condition. Table 4.1 and 4.2 for Selected crops are developed based on 𝑓𝑣 =

 𝑓𝑏+4𝐶𝑑𝑁𝐷ℎ  and ‘𝐶𝑣’ under non-submerged vegetation condition by Baptist et al. 

2007. Flow is assumed to be perpendicular to the crops. 

• Drag coefficient is chosen based on the average value of Reynold’s number for the 

laminar flow condition results of Xiao-guang Liu and Yu-hong Zeng (2016).    
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Variation of roughness coefficient is as follows. 

Figure 4.7 represents ‘𝑓𝑣’ decreases with increase in slope due to increase in mean 

velocity of flow. 

Figure 4.6 represents ‘𝑓𝑣′ increases with increase in crop residue. 

Figure 4.8 represents ‘𝐶𝑣’ increases with Increase in slope.  

Figure 4.9 represents ‘𝐶𝑣′ decreases with increase in crop residue. 

Literature review includes experimentally determined ‘𝑓𝑣’ values for selected crops 

at a particular slope (Gilley et al. 1994). Gilley et al. (1992) developed ‘𝑓𝑏’ values 

for different crop residues at bare soil condition. In this study, the ‘𝑓𝑣’ table is 

extended to different slopes with different crop residues for selected crops based on 

theoretically developed ‘𝑓𝑣’ equation. The range of values for 𝑓𝑣 are from 0.049 to 

6.37 and 𝐶𝑣 is from 3.5 to 39.62.  

            

           Figure 4.6 Darcy’s vegetation roughness values for corn based on crop residue 
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      Figure 4.7 Darcy’s vegetation roughness values for corn based on slope 

 

      Figure 4.8 Chezy’s vegetation roughness values based on slope 
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      Figure 4.9 Chezy’s vegetation roughness values based on crop residue 
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Table 4.1 Darcy’s – Weisbach vegetation roughness coefficient table for selected crops 

based on 𝑓𝑏 in Gilley et.al, 1992   

At slope 0.005 4% C.R 16% C.R 32% C.R 56% C.R 80% C.R

fv fv fv fv fv

Concrete 0.049993 0.1999701 0.499924 2.3496407 3.099526

Asphalt 0.06999 0.2799581 0.699894 3.289497 4.3393365

Bare soil (Gravel) 0.1 0.4 1 4.7 6.2

Corn 0.103127 0.4051258 1.006834 4.7112199 6.2121913

Soyabeans 0.103259 0.4053399 1.007119 4.7116883 6.2127003

Wheat 0.111001 0.4174777 1.023306 4.7381583 6.2414847

Sorghum 0.107385 0.4118944 1.01586 4.7259996 6.2282591

Bermuda grass (Representing pasture) 0.150516 0.4740357 1.097957 4.8616453 6.3760874

Sun flower 0.103758 0.4051949 1.006932 4.7113809 6.2123662

Cotton 0.102998 0.4041478 1.005534 4.7090876 6.2098739

At slope 0.01 fv fv fv fv fv

Concrete 0.049993 0.1999701 0.499924 2.3496407 3.099526

Asphalt 0.06999 0.2799581 0.699894 3.289497 4.3393365

Bare soil (Gravel) 0.1 0.4 1 4.7 6.2

Corn 0.102477 0.4040671 1.005422 4.7089045 6.2096749

Soyabeans 0.102582 0.404237 1.005649 4.7092762 6.2100788

Wheat 0.108679 0.4138565 1.018478 4.7302774 6.2329115

Sorghum 0.105836 0.4094336 1.012579 4.7206318 6.2224223

Bermuda grass (Representing pasture) 0.13906 0.458095 1.077257 4.8281193 6.3394958

Sun flower 0.102513 0.4041255 1.0055 4.7090322 6.2098137

Cotton 0.102001 0.4032937 1.004391 4.7072123 6.207836

At slope 0.02 fv fv fv fv fv

Concrete 0.049993 0.1999701 0.499924 2.3496407 3.099526

Asphalt 0.06999 0.2799581 0.699894 3.289497 4.3393365

Bare soil (Gravel) 0.1 0.4 1 4.7 6.2

Corn 0.10196 0.4032273 1.004303 4.7070671 6.2076782

Soyabeans 0.102043 0.4033621 1.004482 4.707362 6.2079987

Wheat 0.106828 0.4109889 1.014653 4.7240256 6.2261125

Sorghum 0.104604 0.4074834 1.009978 4.7163729 6.2177923

Bermuda grass (Representing pasture) 0.130336 0.4456896 1.06101 4.8015784 6.3105511

Sun flower 0.101989 0.4032736 1.004364 4.7071684 6.2077883

Cotton 0.101585 0.4026137 1.003484 4.7057241 6.2062189

At slope 0.04 fv fv fv fv fv

Concrete 0.04999251 0.19997006 0.49992441 2.34964069 3.09952605

Asphalt 0.06998952 0.27995808 0.69989417 3.28949696 4.33933647

Bare soil (Gravel) 0.1 0.4 1 4.7 6.2

Corn 0.10155244 0.40256102 1.00341425 4.70560883 6.20609367

Soyabeans 0.10161779 0.40266795 1.00355682 4.7058429 6.20634801

Wheat 0.10538143 0.40871627 1.01162184 4.71906564 6.22071961

Sorghum 0.10363583 0.40593695 1.00791554 4.71299357 6.21411898

Bermuda grass (Representing pasture) 0.12454483 0.43599922 1.04822848 4.78055482 6.28763946

Sun flower 0.10157489 0.40259777 1.00346324 4.70568927 6.20618107

Cotton 0.10125543 0.40207417 1.00276517 4.70454304 6.20493564

At slope 0.08 fv fv fv fv fv

Concrete 0.04999251 0.19997006 0.49992441 2.34964069 3.09952605

Asphalt 0.06998952 0.27995808 0.69989417 3.28949696 4.33933647

Bare soil (Gravel) 0.1 0.4 1 4.7 6.2

Corn 0.10122997 0.40203238 1.00270946 4.70445154 6.20483623

Soyabeans 0.10128166 0.40211723 1.00282258 4.70463731 6.20503807

Wheat 0.10424678 0.40691459 1.0092192 4.71513023 6.21644144

Sorghum 0.10287421 0.40471054 1.00628023 4.710312 6.21120452

Bermuda grass (Representing pasture) 0.11910247 0.42933839 1.03912663 4.7638893 6.26949332

Sun flower 0.10124773 0.40206154 1.00274833 4.70451538 6.20490559

Cotton 0.10099499 0.40164607 1.00219443 4.70360569 6.20391721  
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Table 4.2 Chezy’s vegetation resistance coefficient table based on Baptist et al. 2007 

At slope 0.005 4% C.R 16% C.R 32% C.R 56% C.R 80% C.R

Type Cv Cv Cv Cv Cv

Concrete 39.62114 19.8106 12.5293 5.77935 5.0319

Asphalt 33.48598 16.743 10.5892 4.88444 4.25273

Bare soil (Gravel) 28.01638 14.0082 8.85956 4.08661 3.55808

Corn 27.59068 13.9231 8.83026 4.08178 3.55459

Soyabeans 27.57316 13.9195 8.82904 4.08158 3.55445

Wheat 26.61268 13.7223 8.76067 4.07026 3.54624

Sorghum 27.04661 13.8123 8.79195 4.07545 3.55

Bermuda grass (Representing pasture) 22.83634 12.8678 8.45509 4.01842 3.50861

Sun flower 27.58386 13.9218 8.82984 4.08172 3.55454

Cotton 27.67021 13.9392 8.83582 4.0827 3.55525

At slope 0.01 4% C.R 16% C.R 32% C.R 56% C.R 80% C.R

Type Cv Cv Cv Cv Cv

Concrete 39.62114 19.8106 12.5293 5.77935 5.0319

Asphalt 33.48598 16.743 10.5892 4.88444 4.25273

Bare soil (Gravel) 28.01638 14.0082 8.85956 4.08661 3.55808

Corn 27.67762 13.9406 8.83629 4.08278 3.55531

Soyabeans 27.66363 13.9377 8.83532 4.08262 3.5552

Wheat 26.89246 13.7805 8.78092 4.07362 3.54868

Sorghum 27.24203 13.8523 8.80583 4.07775 3.55167

Bermuda grass (Representing pasture) 23.75914 13.0898 8.53594 4.03233 3.51872

Sun flower 27.67281 13.9396 8.83596 4.08272 3.55527

Cotton 27.74145 13.9534 8.84071 4.08351 3.55584

At slope 0.02 4% C.R 16% C.R 32% C.R 56% C.R 80% C.R

Type Cv Cv Cv Cv Cv

Concrete 39.62114 19.8106 12.5293 5.77935 5.0319

Asphalt 33.48598 16.743 10.5892 4.88444 4.25273

Bare soil (Gravel) 28.01638 14.0082 8.85956 4.08661 3.55808

Corn 27.74695 13.9545 8.84108 4.08357 3.55588

Soyabeans 27.7358 13.9522 8.84031 4.08344 3.55579

Wheat 27.11816 13.827 8.79705 4.0763 3.55062

Sorghum 27.39886 13.8843 8.81687 4.07957 3.55299

Bermuda grass (Representing pasture) 24.54089 13.2707 8.60105 4.04343 3.52678

Sun flower 27.74311 13.9537 8.84082 4.08353 3.55585

Cotton 27.7978 13.9646 8.84459 4.08415 3.5563

At slope 0.04 4% C.R 16% C.R 32% C.R 56% C.R 80% C.R

Type Cv Cv Cv Cv Cv

Concrete 39.62114 19.8106 12.5293 5.77935 5.0319

Asphalt 33.48598 16.743 10.5892 4.88444 4.25273

Bare soil (Gravel) 28.01638 14.0082 8.85956 4.08661 3.55808

Corn 27.80218 13.9655 8.84489 4.0842 3.55634

Soyabeans 27.7933 13.9637 8.84428 4.0841 3.55626

Wheat 27.29953 13.8641 8.80989 4.07842 3.55215

Sorghum 27.5244 13.9097 8.82565 4.08102 3.55404

Bermuda grass (Representing pasture) 25.18884 13.4174 8.65334 4.05227 3.5332

Sun flower 27.79912 13.9649 8.84468 4.08416 3.55631

Cotton 27.84266 13.9736 8.84767 4.08465 3.55667

At Slope 0.08 4% C.R 16% C.R 32% C.R 56% C.R 80% C.R

Type Cv Cv Cv Cv Cv

Concrete 39.6211434 19.81057 12.529315 5.779347 5.031898

Asphalt 33.485978 16.74299 10.589204 4.88444 4.25273

Bare soil (Gravel) 28.0163792 14.00819 8.859557 4.086609 3.558084

Corn 27.846143 13.9743 8.8479125 4.084693 3.556697

Soyabeans 27.8390774 13.97289 8.8474271 4.084613 3.556639

Wheat 27.444909 13.8936 8.8200955 4.080107 3.553376

Sorghum 27.6247142 13.92991 8.8326261 4.082175 3.554873

Bermuda grass (Representing pasture) 25.7322417 13.53545 8.6951658 4.059318 3.538311

Sun flower 27.8437145 13.97382 8.8477457 4.084666 3.556677

Cotton 27.8783533 13.98073 8.8501229 4.085057 3.55696     
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4.5 Experimental Validation: 

The Ganti and Burckhard equation is tested based on experimentally published data 

by H. Madi et.al (2013). The drag coefficient value is assumed to be 2.075 based on the 

assumption of laminar flow condition and bed slope fixed at 30. The 𝐶𝑏 value is taken as 

28.016 and rainfall intensity is 73 
𝑚𝑚

ℎ𝑟
(i.e. 2.87402 

𝑖𝑛

ℎ𝑟
). There is an increase in stem density 

leads to a decrease in mean velocity. 𝐶𝑣 decreased by 19.51% from bare soil to 2500 stems 

per square meter condition, which is shown in Figure 4.12. From the Figure 4.11, Ganti 

and Burckhard equation and Yen and Chow’s (1983) is giving less than 50% deviation 

from the actual value.  Ganti and Burckhard equation has an average of 38% difference in 

travel time compared to experimental data, Henderson and Wooding’s equation is 

60.086%, Yen & Chow is 22.1%, Kirpich-Pennsylvania equation is 96.08% and Kirpich – 

Tennessee equation is 83.25%. Travel time equations developed using MVE shows an 

identical trend but the Ganti and Burckhard equation using 𝐶𝑣 shows in increases with an 

increase in stem density, which is shown in Figure.4.10. The decrease in travel time values 

based on MVE shown in Figure.4.10 is due to variation in selecting the range of n values 

by H. Madi et.al (2013) but in Ganti and Burckhard equation the travel time trend shows 

increasing because of replacing n with 𝐶𝑣. 

Table 4.3 Experimental validation inputs 

Length(m) Slope Rainfall intensity (m/hr) Number of stems/(m^2) Sem diameter (m) Measured Flow depth (m) n

2 0.0524 0.073000108 0 0.004 0.000537 0.0158

2 0.0524 0.073000108 126 0.004 0.00068 0.0245

2 0.0524 0.073000108 203 0.004 0.000722 0.0278

2 0.0524 0.073000108 461 0.004 0.000721 0.027

2 0.0524 0.073000108 2500 0.004 0.00086 0.0379  
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   Figure 4.10 Model verification based on experimentally published results 

 
 

 

Figure 4.11 Variation in theoretically estimated and experimentally measured travel times  
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Figure 4.11 Effect of stem density in Chezy’s vegetation resistance coefficient 
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CHAPTER 5: CONCLUSION 

The higher and lower estimation of travel time depends on selection of roughness 

parameter and its range of value. It is highly complex to replicate exact practical 

phenomenon in hydrology through any mathematical equation or experimental setup but 

at the end of the day better approximation in results matters for design purpose. From the 

Figure 4.4 overland flow shows it’s mostly in laminar at bare soil and vegetation condition 

with slope of 8% during design storm intensities. The difference in estimated travel times 

based on Manning’s velocity equation and Ganti and Burckhard equation is gradually 

increasing with stem density. Selecting any roughness coefficient value from the standard 

tables is going to give approximate result only when it is developed based on stem density. 

Standard tables of ‘𝑓𝑣’ and ‘𝐶𝑣’ for selected crops are developed based on 𝑓𝑣 =

 𝑓𝑏+4𝐶𝑑𝑁𝐷ℎ  in the present study for 25-yr design storm event. ‘𝑓𝑣’ value increased with 

increase the crop residue and decreased with increase in slope. ‘𝑓𝑣’ is a significant 

parameter in estimating flow depth, that flow depth is used to estimate ‘𝐶𝑣’ which is main 

roughness parameter in travel time equation. So, the crop residue in watershed increases 

then ‘𝑓𝑣’ increases which leads to decrease in ‘𝐶𝑣’ hence travel time increases. The Ganti 

and Burckhard equation is validated based on published experimental data by Madi, 

Mouzai and Bouhadef then compared obtained results with experimentally measured travel 

time data and make a conclusion that mean flow velocity is reducing with increase in stem 

density resulting increase in overland flow travel time. Yen & Chow equation gives 

constant result for different rainfall intensities at same land cover which is not 

recommendable. The Ganti and Burckhard equation is based on stem density with 

homogeneous plants per square meter under rigid vegetation condition. Non-homogeneous 



33 

 

plants stem density condition can be achieved partially by considering average value of 

plant cross-section.  
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CHAPTER 6: FUTURE RESEARCH 

In order to obtain much more mathematical accuracy, dynamic wave equation for 

overland flow travel time should be developed for non-homogeneous plants per square 

meter under the flexible vegetation condition.   
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