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ABSTRACT 

A QUANTITATIVE ENVIRONMENTAL ASSESSMENT OF INCORPORATING 

TORREFACTION INTO FARMING ENTERPRISES IN EASTERN SOUTH DAKOTA 

DINESH FUYAL 

2018 

The use of renewable energy sources has been increasing in the recent years due 

to population growth and environmental concerns. Biomass is a promising energy source 

that can be used to produce biofuels or torrefied pellets. Torrefied biomass may be used 

in power plants, industrial and residential heating, feedstocks for gasification, air and 

water filtrating, and soil amendment. The interest of torrefied pellets as energy sources 

for various applications has been increased in the recent years due to the concerns about 

energy security and environmental issues. This study focuses on the economic and 

environmental assessment of agricultural feedstocks like corn stover, wheat straw, and 

soybean residues capable of producing torrefied pellets in the Eastern & Central South 

Dakota, Brookings. The techno-economic and environmental analysis of these feedstocks 

is required to understand the supply chain. GaBi ts – Life Cycle Assessment software, 

version 6.115 was used to analyze the potential environmental impacts of crop residues 

from the viewpoint of farmers and torrefaction facility. This study recommends farmers 

to follow corn-soybean rotation to have both the economic and environmental benefits. 

This study also shows that, when done responsibly, residue-based torrefaction reduce 

dependence on coal. Also, one of the significant findings from this LCA study is that 

crop residues are beneficial to crop grains in terms of global warming potential but have 

higher environmental emissions in terms of acidification and eutrophication potential. 
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Chapter 1 INTRODUCTION 

The primary focus of this chapter is to provide the benefits of renewable energy 

sources, especially biomass in terms of economic and environmental perspectives. 

Biomass can produce various energy products such as bioethanol, biodiesel, bio-oil and 

torrefied pellets. These energy products can be used as a fuel for automobile or cofiring 

with coal in power plants, which reduces the dependency on non-renewable energy 

sources (coal, petroleum, and natural gas). 

1.1 Problem Statement 
With regard to increasing population and reduction in the availability of non-

renewable energy sources (like coal), biomass, a locally available renewable source, has a 

good scope to fulfill the energy demand. Renewable energy accounted for 10% of total 

primary energy consumption and 15% of electricity generation here in the United States 

in 2016 [1]. Renewable energy sources are gaining attention due to the uncertainty of 

non-renewable energy sources. For example, corn-derived ethanol accounts for about 

10% of U.S. gasoline consumption. Biomass currently provides 2% of America’s 

electricity and 1% of the fuel used in cars and trucks [2]. In addition to the many benefits 

common to any renewable energy use, biomass is particularly attractive since these 

energy resources could be used as a renewable source of liquid transportation fuel. This 

helps to reduce the oil imports in the US. Biomass also has a huge potential to provide 

heat and power to industry and serves as a feedstock to make a wide range of chemicals 

and materials or bioproducts [3]. 

Agricultural residue has a significant potential for energy production processes, 

however, most of them remain untapped. The agricultural residues like corn stover, wheat 
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straw, and soybean residues can be used to produce bio-based energy products i.e. 

torrefied pellets, bio-ethanol, biodiesel, etc. The market for such renewable energy 

resources has been growing in the last decade due to people’s concerns about clean 

energy and public policy to reduce the carbon dioxide emissions. Coal combustion is 

recognized as the main source of the anthropogenic carbon emission. Biomass being 

carbon neutral could replace coal in existing power plants to provide energy while 

reducing carbon emissions at affordable cost [4]. Therefore, to meet the increasing 

demand on energy, we need to focus on the sustainable energy practices by reducing the 

use of fossil fuels. 

 1.2 Life Cycle Assessment 
Life Cycle Assessment (LCA), as defined by the ISO standards, is the compiling 

and evaluation of the inputs and outputs and the potential environmental impacts of a 

product system during its lifetime [5]. The ISO 14040 standard introduces LCA and has 

applicable definitions and background information, while the ISO 14044 describes the 

process of conducting an LCA [6].  LCA is a study about the potential environmental 

impacts throughout a product’s life cycle starting from the raw materials to the 

production of products or the final delivery of waste. In other words, life cycle 

assessment is the process of analyzing the potential environmental impacts of a product, 

service, or a system, which helps to identify the hotspots and focuses on the 

sustainability. LCA is fast becoming a useful tool for product designers and production 

managers. Until now, LCA has been mostly used by experts because of the complex 

nature of the analysis [7]. LCA can be used for quite different purposes: for bottleneck 

identification and product innovation in industry, for marketing and information of 

consumers, for strategic planning within companies and for policy planning [8]. Thus, 



3 

 

LCA gives an answer of how a certain product can be produced with minimum 

environmental impact.  

This study uses LCA to evaluate the environmental emissions and energy use of 

these agricultural residues, which have the potential to produce torrefied pellets. This 

study intends to look at the life cycle assessment of crop production and torrefaction 

process from the farmers and torrefaction facility perspective. The market for torrefied 

biomass is promising due to the focus on cleaner energy. Torrefied pellets has thus a 

potential for alternative fuel source which are produced mostly from the woody biomass 

or crop residues. According to Shen et al., the inputs and boundaries of LCA vary with 

different feedstocks, such as forestry wood, agricultural residues, and fast-growing grass. 

The GHG emissions also vary with different feedstocks and depend on burning 

technologies at different plant scales [9].  

Some of the few considerations that the business companies can consider while 

performing LCA-activities are summarized below as: 

• Amongst the several instruments used for an environmental assessment of 

products and services, the company should choose the tool that offer the most 

opportunity for them. 

• LCA is a prominent tool, but very likely it has to be streamlined to the respective 

purposes.  

• The environmental situation is always complex. So, LCA confronts you with a 

consideration of the life cycle impacts of your products across environmental 

media. 



4 

 

• LCA contributes to a better understanding of environmental complexity; it designs 

situations, but it does not solve them. 

• LCA might play different roles among the product development chain [8]. 

However, LCA studies has few limitations which are given below: 

• LCA does not typically address the economic and social aspects of a product. 

• The nature of choices and assumptions made in LCA may be subjective. 

• Models are limited by their assumptions and may not be available for all potential 

impacts/applications. 

• The accuracy of LCA studies may be limited by accessibility or availability of 

relevant data, or data quality [10]. 

1.2.1 Agricultural Life Cycle Assessment 

Field residues are the biomass left in the field after the harvest. These residues can 

be utilized as an energy carrier product. The crop residues that are considered for this 

study are corn stover, wheat straw, and soybean residues. This study focuses on the life 

cycle assessment (LCA) of the torrefaction process using these agricultural residues. The 

study of LCA of crop production includes all the phases from the soil preparation to the 

harvest. After the harvest of the corresponding crops, we have the residues left in the 

field, which can be sustainably removed at an appropriate percentage. Studies concluded 

that about one-third to one half of corn stover in cornfields can be sustainably removed 

without causing erosion or deteriorating soil quality [11]. Therefore, agricultural LCA 

focuses on the dynamics of sustainable agriculture. Sinha (2009) defined sustainable 

agriculture as the “successful management of resources for agriculture to satisfy the 

changing human requirements whilst maintaining or enhancing the quality of 
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environment and conserving natural resources”. This practice of sustainable agriculture 

integrates three main goals: environmental health, economic profitability, and social 

equity [12].   

Agricultural life cycle assessments (LCAs) are becoming increasingly important 

with the growth of biofuels such as biodiesel, ethanol, and bio-based products like 

biopolymers that have been driven by U.S. policies to reduce the dependency on fossil 

fuel [13]. Apart, agricultural practices and yields are closely linked to climate and soil 

conditions, cropping intensity, input prices and cultural habits, all parameters that are 

highly variable and dependent on regional specificities [14]. 

Corn production emits greenhouse gases emissions from upstream operations like 

fertilizer production and crop chemicals production. The N in corn stover and in fertilizer 

emits N2O. Nitrogen, phosphorus, and potassium nutrients are removed with the harvest 

of corn stover, but we can assume the nutrient lost from corn stover removal can be 

balanced later with the use of fertilizers. In addition to this, when land is used to produce 

biofuel feedstock, a direct impact includes changes in below ground and above ground 

carbon content. These land use change cause soil organic carbon (SOC) content to either 

decrease or increase, depending on the identity of the crop. For example, if the land is 

converted from cropland-pasture to cornfield, SOC will decrease and carbon will be 

released into the atmosphere [15].   

1.2.2 GaBi LCA Software 

GaBi is derived from the German word Ganzeheitliche Bilanz, which means 

‘holistic balance’. Developed by PE International, a sustainability software and 

consulting company in Stuttgart, Germany, GaBi ts is the established standard software 

for the study of Life Cycle Assessment (LCA). GaBi software has its own databases and 
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external databases e.g. Ecoinvent, USLCI, etc. This software calculates results using 

sequential modeling. GaBi also includes an i-report feature to produce reports with 

results. GaBi provides the tools to manage large datasets, model product life cycle 

systems, calculate energy and mass balances and interpret the results of the life cycle 

balances [16]. 

GaBi evaluates the environmental impacts of a product system based on a plan. 

The plan consists of various relevant processes and flows. Flows represent the inputs and 

outputs associated with the processes. Flows are denoted by means of mass, energy, and 

costs with their numeric value. Flow contain the information that tells GaBi to what 

extent one unit of this flow contribute to different environmental impact categories: these 

are called classification and characterization factors. 

 

1.3 Torrefaction 
Torrefaction, also known as mild or slow pyrolysis, is a thermo-chemical process 

in an oxygen-deprived environment used to enhance the quality of biomass. The word 

torrefaction originates from the French word torréfaction, typically of coffee beans 

where the air is heated at low temperatures [17]. This process reduces the mass of wood 

by 20-30% resulting in a denser higher-valued product which can be transported more 

economically than the traditional wooden chips [18]. 

Torrefaction can simply be defined as a slow pyrolysis of lignocellulosic biomass 

at a temperature range of 250-300°C for 10-30 minutes in an inert environment. 

Torrefaction technology has been gaining its popularity in the biomass industry as it 

provides a robust product, produces lower greenhouse gas emissions and could be 
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flexible with the feedstocks. It removes moisture and low weight volatile components and 

depolymerizes the long polysaccharide chains, which produces a hydrophobic solid 

product and an increased energy density and grindability [19]. 

 

            When the organic biomass is subjected to higher temperatures, the moisture 

content will be driven off (approximately above 200°C) making this hydrophobic and 

thermal decomposition take place thereby changing the physical and chemical properties. 

On the other hand, volatiles will remain in the biomass when efficient torrefaction is 

done. Thus, torrefaction starts with moisture evaporation, followed by partial 

devolatilization. Part of the biomass volatilizes forming a torrefaction gas, that can be 

used for combustion and the heat is used for biomass drying and heating of the 

torrefaction process [20]. Volatiles include condensable like acetic acid, methanol, 

furfural, and water, and permanent gases like carbon dioxide, carbon monoxide, methane, 

hydrogen, etc. [21].   

 Torrefaction is generally done with woody biomass, but we can also use agri-

residues like corn stover, wheat straw, rice husk, bagasse, sawdust, peanut husk, etc. 

According to Uslu et al., the use of untreated biomass creates problems due to its 

susceptibility to microbial degradation, heterogeneous composition and high bulk volume 

which complicate process control and logistics management [22]. There are several key 

questions concerned with the torrefaction industry like which biomass is sustainable, 

which biomass yields higher heating value, etc. Also, there are few challenges regarding 

the local and governmental policy. The benefits of torrefaction are its: 

• Increased energy density and energy performance (calorific value); 

• Improved combustion performance; 
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• Viability as a co-fire fuel to burn with coal; 

• Reduced transportation cost of biomass per BTU, as it is done near the point of 

harvesting; 

• Ability to produce high-grade solid biofuels from woody biomass or agro-

residues; 

• Capability in forming superior briquettes and pellets; 

• Decreased sensitivity to degradation due to hydrophobic nature; 

• Increased grindability for efficient co-firing (reduced fibrous and tenacious nature 

of biomass); 

• Improved product quality with higher efficiency; 

• Production of torrefied powder that meets the smooth fluidization regime for 

feeding (gasifier and pulverized coal boiler); 

• Superior handling, milling, and co-firing capabilities compared to other biofuels. 

 Due to numerous benefits of the torrefaction process, different organizations, 

mainly from Europe and North American regions are extensively working on research 

and development of commercial torrefaction units and checking the technical and 

economic viability of overall systems [4]. The torrefaction process is rapidly gaining 

popularity because it reduces the volume of the biomass along with a reduction in 

moisture and chlorine, which significantly improves the grinding properties [23]. 

Torrefaction can be incorporated in a bio-renewables production chain to significantly 

reduce the cost of biomass feedstock storage, transportation, and downstream processing 

through the enhancement of biomass hydrophobicity, resistance to microbial degradation, 
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energy density, homogeneity, brittleness, and chemical characteristics important for 

thermochemical downstream processing [24]. 

1.4 Carbon footprint and Global Warming Potential 
Carbon trust, an industry focused on carbon management and reduction, defines 

carbon footprint as the total set of greenhouse gas emissions caused directly and 

indirectly by an [individual, event, organization, product] expressed as CO2e [25]. When 

one product with a lower C footprint replaces another with a larger C footprint, and thus 

the larger C footprint is not used, then an avoided C input to the atmosphere is claimed, 

this is called a negative C footprint contribution: termed displacement. For example, 

when torrefied pellets are used as an energy source in power generation applications as a 

replacement of coal, then the net carbon footprint is the difference of the C footprint 

effect from torrefied pellets and coal which is claimed to be negative. 

Global Warming Potential (GWP) is a relative measure of how much heat a 

greenhouse gas can trap within the atmosphere. They are measured over a lifespan of 20, 

100 or 500 years. GWP is measured relative to carbon dioxide whose GWP is one [26]. 

Intergovernmental Panel on Climate Change has defined GWP as an index measuring the 

radiative forcing following an emission of a unit mass of a given substance, accumulated 

over a chosen time horizon, relative to that of the reference substance, carbon dioxide 

(CO2) [27]. 

1.5 Socio-Economic Impacts 
Biomass energy has the potential to supply a significant portion of America’s 

energy needs, revitalize rural economies, increase energy independence and reduce 

pollution. If we can build a new torrefaction process in the surrounding locality of a 

community, it helps to create employment opportunities for the local people with their 
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skill development. Also, the farmers can have an additional source of revenue by selling 

the agricultural residues to the torrefaction facility. In addition, switching to torrefaction 

plant will have more environmental benefits than using the coal-fired power plant. So, the 

crop residues based torrefaction facility has the potential to provide substantial economic 

benefits to the local economy.  

The socio-economic aspects of a locally established torrefaction plant from the 

viewpoint of various stakeholders are shown below in tabular form. 

Table 1-1 Socio-Economic benefits of Torrefaction Facility 

Farmer  Torrefaction 

Facility 

Community 

• Effective harvesting 

and managed logistics 

• Productivity 

• Profit-oriented 

• Reduced soil erosion 

• Increased Biodiversity 

• Focus on Green 

Innovation 

• Protect the environment 

• Food security 

• Household Income 

 

• Clean Energy Business 

• Production of torrefied 

pellets emphasizes green 

technology 

• Energy Efficient process 

• Creation of local jobs 

• Energy Security 

• Protection of 

environment by focusing 

on renewable energy 

usage 

• Effective use of field 

residues 

 

• Air quality issues & 

regulations 

• Reduced deforestation 

• Food security 

• Household Income 
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1.6 Economic Analysis of Crop Production 
The economic study of three major agricultural crops namely corn, wheat, and 

soybean discuss the inputs and outputs that are associated with the crop production. The 

inputs can be figured out as the expenses, which may be the direct expenses, fixed 

expenses, or overhead expenses. The harvested yield is the output, which is sold to make 

money. There are several factors that affect the economic analysis of these agricultural 

crops like geographical location, year of production, the climate of the specific location, 

commodity prices and costs associated with the production.  

The major costs associated with crop farming are seed costs, fertilizer costs, 

machinery costs, labor, and management costs and land cost. Jack B. Davis, South 

Dakota State University (SDSU) extension crops business management field specialist, in 

his article [28] mentioned that for the year 2015, the four corn production costs plus cash 

rent were 92% of total costs on cash rented corn farmland. The costs incurred with the 

crops production decreased $9 for seed, $21 for fertilizer, $4 for machinery, and $8 for 

labor and management in between 2014 and 2015. Meanwhile, the rent costs decreased 

by $17 per acre. In this regard, farmers are facing low to negative margins and will be 

working for lower costs for 2017 [28]. 

Seasonality is an important aspect for crop production because it is cheaper to let 

Mother Nature provide many of the inputs for agricultural production-solar energy, 

water, carbon dioxide, temperature control, and essential nutrients from natural soils. 

However, the government should build a proper irrigation and drainage system, which 

will increase the yield.  
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Corn uses fertilizer intensively which accounts for around 46 percent of U.S. 

fertilizer consumption in 2010. Across all crops, the most frequent response to higher fuel 

prices was to reduce the number of field operations such as tillage, cultivation, or nutrient 

and pesticide applications that use fuel to run machinery [29]. Inputs like seed, fertilizers, 

herbicides, fuels, and oil, etc. are directly concerned with the production and can be 

controlled by the farmer. However, there is a threshold to most inputs where added input 

use does not increase corn yield. Also, the producers should be sure to include the 

opportunity cost of the land while doing the economic analysis of the crops [30]. 

1.7 Aims and Objectives of the Study 
The primary objective of this study is to analyze the environmental emissions of 

three prominent agricultural crop residues from the crop cultivation to the torrefaction 

process. This study focuses on the environmental sustainability of crops, which can be 

used as an energy source using the torrefaction process. Therefore, the main goal is to 

develop a life cycle assessment model using GaBi software. 

The specific objectives of this work are listed as below: 

1. To compare the environmental impact among corn stover, wheat straw, and 

soybean residues in terms of global warming potential, acidification potential, 

eutrophication potential, and emissions to air, water, or soil . 

2. To analyze the environmental profile of torrefaction process using crop residues 

from plant owner perspectives.  

3. To study the economic analysis of corn, wheat, and soybean production for South 

Dakota locality.  

4. To find the effect of allocation in the agricultural life cycle analysis.  
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Therefore, this study emphasizes on the green design of agro-biomass capable of 

producing torrefied pellets. 

 

1.8 Organization of the thesis 

The first chapter gives an overview of renewable energy and sustainable 

development. Here, life cycle assessment is used as a tool to analyze the quantitative 

sustainability. This chapter talks about the agricultural life cycle assessment, a tool that 

assesses the environmental impacts related to agricultural crop production. Moreover, this 

chapter presents the reader with the economic costs incurred for the crops (like corn, 

wheat, and soybean) and the socio-economic impacts that the torrefaction process 

provides for farmers, factory owners and community users. Finally, this is followed by 

aims and objectives of this study.  

The second chapter is the literature review, which details past studies about life 

cycle analysis and economic analysis of corn, wheat, and soybean. This chapter develops 

a conceptual framework to understand the torrefaction and life cycle assessment process.  

Chapter 3 is dedicated to the methodological framework for the life cycle 

assessment of the studied system and the comparative analysis for the selected crop 

residues.  

The fourth chapter is the results and discussion section, which explains all the 

results from the life cycle assessment models. This chapter answers why and how the 

LCA results help the concerned stakeholders. This chapter presents the evaluation of the 
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environmental consequences of the torrefaction plant system fed with crop residues i.e. 

corn stover, wheat straw, and soybean residues.  

The fifth chapter is the conclusion, which highlights the major findings of the 

research and future recommendations. This chapter gives a useful perspective to 

stakeholders in their decision making.  
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Chapter 2 Literature Review 
There has been an increasing focus in agricultural LCAs to see how these crop 

production affects the environment. This chapter presents the past works that were done 

in the field of agricultural LCA. Section 2.1 presents an overview of the historical 

development of torrefaction. Section 2.2 talks about the agricultural biomass and explains 

the applications of agricultural residues. Section 2.3 elaborates the several types of 

bioenergy conversion process and describes torrefaction in depth. Similarly, section 2.4 

focuses on the environmental concerns related with the conversion of corn stover to 

torrefied pellets. Section 2.5 emphasizes on environmental sustainability tool, life cycle 

assessment. Section 2.6 and 2.7 discusses the biomass technology that are prevalent in the 

developing and developed countries. Moreover, section 2.8 discusses about the market 

trends of torrefaction in the global perspective. Similarly, section 2.9 is dedicated to the 

torrefaction companies prevalent in the European and North American scenario. Section 

2.10 contains an analysis of the LCA studies on various agricultural crops. 

2.1 Historical overview of Torrefaction 
People used biomass as a source of food for a long time. Approximately 50% of 

the world’s biomass is used by humans for food plus lumber and pulp and medicines, as 

well as support for all other animals and microbes in the ecosystem [31]. Later, people 

began to think about the energy applications of biomass. After the industrial revolution 

and more specifically after the oil crisis, people thought of using biomass as an 

alternative energy source. Various thermal-chemical processes like combustion, 

gasification, pyrolysis, and torrefaction were employed to extract the energy from the 
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several types of biomass (e.g., woody biomass, agricultural residues, and municipal 

wastes).  

A pilot plant for biomass torrefaction was engineered and built in France by the 

company Pechiney in the mid-1980s, though the torrefied biomass served the purpose of 

a reducing agent in an aluminum production process and not for energy reasons. 

However, the plant, with a production capacity of roughly 12,000 tons per annum (t/a), 

worked well in terms of the technology but still was demounted due to economic aspects 

in the early 1990s [20]. 

2.2 Agricultural Biomass 
The term biomass refers to non-fossilized and biodegradable organic material 

originating from plants, animals, and microorganisms. The biomass includes products, 

byproducts, residues and waste from agriculture, forestry, and related industries as well 

as the non-fossilized and biodegradable organic fractions of industrial and municipal 

solid wastes [32].  

Biomass is organic matter that can be used to make high-value chemicals, 

biofuels, recyclable products, animal bedding, pellets, and other products. Biomass is the 

stored form of solar energy with the photosynthesis process. While biomass emits ��� 

during its use phase, it absorbs ��� during the growth phase, so biomass can be taken as 

��� neutral. One common example of biomass is corn stover. Corn stover is composed 

of 38-40% cellulose, 28% hemicellulose, 7-21% lignin, and 3-7% ash, on average [33] 

[34]. Crop residues, including straw, stalk, husk, shell, peel and bagasse, generally have 

low sulfur and nitrogen content, so they are very suitable for use as feedstocks in the 

bioenergy supply chain [35].  
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A wide range of biomass sources such as annual energy crops (e.g., corn, wheat, 

and soybean), perennial energy crops (e.g., switchgrass, miscanthus, and willow), and 

agricultural residues (e.g., rice and wheat straw, and corn stover), can be utilized for 

production of gaseous, liquid and solid biofuels, which can both help reduce fossil fuel 

consumption and greenhouse gas (GHG) emissions [36].  

2.2.1 Agricultural Residues 
Agricultural residues are straws, stover, and other plant components remaining in 

the field after the harvest of a crop. They play a role in maintaining soil health and 

preventing erosion [37] [38]. Crop residues are also the desirable feedstocks for 

bioenergy applications because of their low cost, immediate availability, and relatively 

concentrated location in the major grain growing regions [39]. The primary advantage of 

using such biomass resource for power generation reside in the chemical-physical 

characteristics, the consistency in terms of quantity, the distribution almost ubiquitous, 

and finally, the fact that their production does not threaten the world’s food supply [40]. 

The agricultural residues that can be used as a biomass feedstock can generate revenue 

for the farmers. Moreover, crop residues protect the soil and control erosion from water 

and wind, retain soil moisture, increase or maintain soil organic matter, and finally 

improve crop yields [41]. Otherwise, they are left in the farm or burnt, which may cause 

environmental pollution. Thus, from the community perspective, establishment of locally 

available torrefaction facility will minimize greenhouse gas emissions. Moreover, the 

factory owner can receive the locally available feedstock at a cheaper price. 

The characteristics and benefits of agricultural residues capable of torrefaction are 

listed below as: 
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• Agricultural residues are homogenous in nature. 

• They increase the energy density, and energy performance. 

• They improve combustion performance, so superior briquettes and pellets can be 

formed. 

• They can be used as a co-fire fuel to burn with coal. 

• They help to reduce the transportation cost of biomass per BTU as torrefaction is 

done near the point of harvesting. 

 While agricultural residues are the cheapest and abundantly available resources, 

they do come with some drawbacks. The low-bulk density of agricultural residues brings 

difficulty with transportation and storage. Typical bulk density of agricultural biomass 

and woody biomass is 60–80 and 200–400 kgm-3, respectively [42]. The bulk density of 

biomass can be increased by forming pellets or briquettes, which results in a final 

compact density of 600–1,200 kgm-3 [43]. Another concern is that when the agricultural 

residues are removed from the field, the nutrients that have been removed have to be 

replaced with fertilizers. So, various types of NPK fertilizers are in use. Moreover, 

another concern may be the crop seasonality due to which there will not be steady supply 

of crop residues throughout the year.  

2.3 Bioenergy Conversion Process 
There are mainly four types of thermal biomass conversion technology, namely 

combustion, gasification, pyrolysis and torrefaction. Combustion means 100% oxidation 

of all the organic contents of the fuel using air/oxygen, while gasification means partial 

combustion where 15-30% of the oxygen is added in relation to what would be needed 

for 100% oxidation. In pyrolysis, we only heat but without adding air and thereby 
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gaseous components of the organic material are evaporated and later condensed as liquid 

hydrocarbons. Torrefaction occurs when you do partial pyrolysis but only to remove 

some of the gaseous components, where the purpose is not to produce liquid 

hydrocarbons but to make a compact residue that can replace coal in coal-fired plants.  

2.3.1 Torrefaction 

Torrefaction is a thermal pretreatment process to upgrade the properties of 

lignocellulosic biomass to a high quality ‘‘energy and carbon carrier,’’ which can be 

effectively used to substitute for fossil fuels [44] [45]. Torrefaction is based on the 

removal of oxygen from biomass, which aims to produce a fuel with increased energy 

density by decomposing the reactive hemicellulose fraction [46]. A typical mass and 

energy balance for woody biomass torrefaction is that 70% of the mass is retained as a 

solid product, containing 90% of the initial energy content [20]. The other 30% of the 

mass is converted into torrefaction gas, which contains only 10% of the energy of the 

biomass. Torrefaction gas can be utilized as a beneficial energy source (utility fuel) in 

torrefaction in order to improve the overall process efficiency [47] [48]. 

Torrefaction also has a major potential, as the product is compact and easy to 

transport long distances in an economical way. The heating value may be up to 25 MJ/kg 

dry substance, which is in the same range as coal. Another advantage is that the pellets or 

briquettes produced from torrefied biomass can be used in normal coal mills without 

having to modify the grinding equipment normally used for the coal. This makes it easy 

to start using biomass as a complement to coal on a large scale [49]. 

According to Adams et al. [50], torrefied pellets (TP) offer reduced fossil fuel 

consumption and greenhouse gas emissions compared to conventional wood pellets (WP) 
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when low-drying energy is assumed, although an increased amount of land is required. 

Under a high drying energy scenario, TP displayed similar results to WP. Data for 

particulate matter formation were more uncertain but showed similar impacts for both TP 

and WP. The flow diagram below shows the working principle of torrefaction starting 

from the raw biomass (Figure 1). 

 

Figure 2-1 Working of torrefaction using crop residues as the feedstocks 

2.3.1.1 Applications of Torrefaction Plant 

The major applications of torrefied biomass are gasification, co-firing with coal at 

pulverized-coal-fired power plants, and combustion in pellet burners. The firing and co-

firing of biomass in a pulverized coal-fired power plants is expected to increase in the 

coming years. Torrefaction may prove to be a suitable way of upgrading biomass for such 

an application. The torrefied biomass will tend to be in pellet form for transport and 

storage purposes [51]. During the torrefaction process, the tenacious fibre structure of the 

original biomass is largely destroyed through the breakdown of hemicellulose and to a 

lesser degree of cellulose molecules, which makes them brittle and easy to grind [52]. 

Apart from these, in the iron and steel industry, even full replacement of pulverized-coal 

injection with torrefied biomass injection (150-200kg/t hot metal) could be possible. 

Torrefied biomass can completely replace coal in a pulverized-coal boiler without a 

decrease in boiler efficiency. Moreover, replacement of traditional lime-kiln fuels in the 



21 

 

pulp and paper industry is possible [53]. Also, the non-metallic mineral industry is 

willing to use torrefied biomass. 

There is a large potential to substitute coal in blast furnaces. The key issues with 

torrefied material in a blast furnace are the alkali content and composition as well as the 

high volatile matter content. The steel industry is mainly interested in carbonized 

biomass, and the application of torrefied biomass seems limited [54].  Power sector along 

with industry can lead in torrefied biomass’s use. Research has proven torrefied biomass 

as effective for power-plants applications.  

Torrefaction is generally done with woody biomass. But, we can also use agri-

residues like rice husk, bagasse, saw dust, peanut husk, etc. According to Uslu et al. [22], 

the use of untreated biomass creates problems due to its susceptibility to microbial 

degradation, heterogeneous composition, and high bulk volume which complicate 

process control and logistics management.  

2.3.1.2 Benefits of having torrefaction plant 

 

Employment opportunity: There will be lots of job available in the local communities 

via biomass industry. Firstly, it will motivate the local farmers to produce more crops so 

that the feedstocks could be sold to the torrefaction plant. There will be effective 

management of biomass processing in the field. Moreover, the processed agricultural 

biomass should be transported to collection centers for storage. Finally, these biomasses 

are transported to the plant, which is used as raw material in a torrefaction plant. Besides, 

the torrefaction plant need skilled/unskilled manpower for its operation.  
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Field residues management: Biomass which are left in the field may decay or usually 

burnt which causes respiratory problems. However, biomass when left could be the field 

residues for the next crops. In this regard, farmers gained an idea of utilizing the crop 

residues by selling them (for example, at a harvest rate of 50%-75%) to the locally 

available torrefaction plant.  

Environmental Benefits: Biomass is the raw materials for torrefaction companies. Since 

biomass is carbon neutral, so it reduces the greenhouse gas emissions. The governmental 

policy also drives the energy usage of a nation. Nowadays, many countries are focusing 

on renewable energy sources due to the environmental and health concerns. For example, 

in Argentina, the legislation has imposed the use of biofuels in blend with fossil fuels (5-

10%) in transport fuels [55].  

2.3.1.3 End Products from Torrefaction 

The primary products produced are solid product of a brown/dark color, 

condensable liquid (mostly liquid) and non-condensable gases-CO2, CO, and little 

amount of methane. The volatiles can be subdivided into condensable and non-

condensable compounds. Condensable compounds are mainly water and organic acids, 

while non-condensable consist mainly of carbon monoxide and carbon dioxide [56]. 

Based on the applied torrefaction conditions, torrefied biomass is colored brown to dark-

brown and approaches the properties of coal [20]. These torrefied biomass can be used 

for gasification and combustion purposes.  

2.3.1.4 Limitations and Gap in Torrefaction 

Though various researches based on woody biomass had been done in 

torrefaction, still optimization of torrefaction has not been completely achieved, which 

needs to be done for the commercial development of torrefaction technologies. For crop 
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residues there is still a challenge as it ignites easily, has a low bulk density, and has long 

fibers. 

One of the challenges is to see the laboratory experiment in the commercial 

applications. The efficiency of the plant may not be proportional when the plant size gets 

increased. The model and prototype torrefactor should be experimentally made in many 

sizes to see the nature and efficiency of torrefied biomass. Currently, various researches 

on torrefaction based on agricultural residues put a promising hope though there are 

various obstacles that need to be studied for the better performance like the various 

varieties of agricultural residues, moisture content, etc.  

2.4 Corn Stover to Torrefied Pellets 
The goal of this LCA study is to quantify the energy and GHG impacts associated 

with the production of corn stover for torrefaction process in SD. The LCA is designed 

for a cornfield with soils, agro eco-system management, and climatic conditions typical 

of SD, USA. System boundaries were from cradle to gate and include all the process 

from corn stover feedstock production to the torrefaction process. Apart, the corn grain is 

also in use to produce the biofuels which might cause the scarcity of food for the growing 

population. In this regard, the corn stover can be used as an alternative source for 

feedstocks to the biofuel industry. The possible uses of corn stover are: animal feed, 

animal bedding, fuel for a boiler furnace, composite products such as fiberboard, pulp 

and paper, chemicals, and liquid fuels [57].  

For the corn stover to torrefaction process, the crop production and torrefaction 

process produce direct GHG emissions. Regarding corn production, N2O emissions from 

the nitrification and denitrification of nitrogen fertilizers, production of fertilizers and 
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fossil fuel usage in machinery equipment are the major sources of GHG emissions [15]. 

Apart, GHG emissions from torrefaction are due to the primary energy source used for 

torrefaction process including the transportation process. Total GHG emissions from corn 

stover production and transport of stover to the ethanol facility are 320-488 kg CO2e t-1 

dry stover under 15% stover collection, with SOC loss, N2O emissions, and stover 

harvest contributing the most to the total impact [58]. 

2.5 Life Cycle Assessment 

LCA has been used by US and European companies to reduce the products’ 

environmental burdens while improving their financial bottom lines. From the survey of 

LCA practitioners carried out in 2006, LCA has been used to support business strategy 

(18%) and R&D (18%), product or process design (15%), education (13%) and for 

labeling or product declarations (11%) [59]. Thus, the goal of an LCA study is to report 

as carefully as possible the environmental emissions (air, water and solid waste), raw 

material, and energy requirements at the boundaries of the system [7].  

There has been an increasing focus on how various crops like corn, wheat, 

soybean, etc. affect the environment. Besides very few studies, most LCAs found a 

significant net reduction in GHG emissions and fossil energy consumption when 

bioenergy replaces fossil energy [60]. Cherubini& Strømman, 2011 predicts that the 

future LCA studies will focus on reducing the uncertainties of the current key open 

issues, e.g. inclusion in the assessment of indirect land use change effects and their 

amortization over time, estimation of bioenergy impacts on biodiversity, better 

determination of fertilizer induced N emissions, and others [60]. 
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Land use change effects, manufacture of additional fertilizers (required to 

maintain crop yields), and supply of raw materials play the biggest role in the final GHG 

balance. When agricultural residues are used as feedstocks, best management practices 

and harvest rates need to be carefully established. In fact, rotation, tillage, fertilization 

management, soil properties and climate can play an important role in the determination 

of the amount of crop residue that can be removed minimizing soil carbon losses [61]. 

LCA deals mostly with the global warming potential, which is the consequences 

of greenhouse gases (GHGs) production. Some GHGs have a stronger warming effect 

than CO2 such as methane with a global warming potential of 25 kg of CO2 equivalent 

and nitrous oxide with a global warming potential of 298 kg of CO2 equivalent. The 

major greenhouse gases that are accounted for the agricultural LCA are: carbon dioxide, 

methane, and nitrous oxide. Nitrous oxide is released naturally from soils and water 

bodies as part of the microbial processes of nitrification and de-nitrification. The two 

major man-made sources are from agriculture (application of fertilizers to soils and 

subsequent leaching to water bodies) and the manufacture of acids and nylon. It is also 

released from power stations and road transport (particularly since the introduction of 

catalytic convertors) [62]. 

2.6 Biomass technology in developing countries 
Biomass is a major energy source in most of developing countries used for 

cooking and heating purposes. Due to the unfamiliarity with torrefaction technology and 

high costs, briquetting techniques is being mostly used in developing countries. The main 

concern with the briquetting techniques was the smell emanating from the briquettes and 
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the amount of smoke during cooking. While, torrefaction reduce the unpleasant smell and 

excessive smoke in briquettes.  

Among the briquetting techniques, screw press, piston press, and reciprocating 

type are being used mostly. For reciprocating type, the biomass is pressed in a die by a 

reciprocating ram at an extremely high pressure. In a screw extruder press, the biomass is 

extruded continuously by a screw through a heated taper die. In a piston press the wear of 

the contact parts e.g., the ram and die are less compared to the wear of the screw and die 

in a screw extruder press. In terms of briquette quality and production procedure, screw 

press is definitely superior to the piston press technology [63]. 

People in Rwanda used car engine oil to heat up their biomass. The developed 

torrefaction technology consists of a thermic fluid system comprising of circulating 

pump, oil storage tank, furnace, piping, fittings, and instruments. Most countries in sub-

Saharan Africa are using their briquetting machines. Most of these machines have been 

grounded due to high maintenance costs and lack of spare parts [64]. 

Huge quantity of agro-residues and wastes can be obtained from farming every 

year. Polak and his team estimated that 1 billion tons of waste is suitable for torrefaction. 

But Polak mentioned in an interview his vision of designing the torrefaction plants that 

cost as little as $25,000 [65]. And, with the good incentives and legislations, we can 

expect the rural villages may go for torrefied biomass depending on the legislations. 

2.7 Torrefaction system in developing and developed nations 
To produce the torrefied biomass, a wide variety of technologies have been 

proposed and developed. The reactors used may be horizontal, vertical, moving bed, 

rotating screws while one developer uses microwaves to heat the biomass [54]. 



27 

 

Torrefaction performance depends on the heat integration design and the reactor 

technology. Mostly, the torrefaction developers use the basic design where the volatiles 

are combusted in an afterburner and the flue gas is injected to heat the pre-drying process 

and the torrefaction process. Higher moisture content will increase the residence time of 

torrefaction.  

European torrefaction developers, suppliers and utilities are leading the 

torrefaction development, with three commercial demonstration plants starting up in the 

start of 2011 while North American torrefaction initiatives are still in pilot scale phase 

[66]. Currently in Sweden, biomass contributes about 128TWh, a fifth of total energy 

supply [67]. The biomass for energy usage is mainly by-products and residues (e.g. 

sawdust and bark) flow in industrial and agricultural industry [68]. There are a number of 

innovative technologies in development of torrefaction with thermal fluids of 

CNFBiofuels (US) and torrefaction combined with washing in the Torwash process of 

ECN [66]. It seems that most of the project plans of North American torrefaction 

developers are still in technical and financing phase of realizing commercial plant.  

In developing nations, people prefer to use briquetting machines as it is cost 

friendly and simple to use. Regarding the system development in the developed nation, 

the activities in torrefaction are laboratory-scale torrefactor, experimental combustion 

facility, R&D torrefaction pilot project and finally the few commercial torrefactor set up 

so far. 

2.8 Commercialization details and Market Trends about Torrefaction 

Torrefaction is now in the commercial phase due to the realization of cleaner 

fuels. There is huge market of torrefied biomass as it can be used in industrial heating, 
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residential purposes, large- scale power generation, etc. Recently, the market of 

torrefaction is taken mostly by utilities, which are focusing on renewable energy source 

in a cost-effective way. Co-firing biomass helps to meet the world’s renewable energy 

targets by making coal-fired plants cleaner without replacing them. The demand of 

torrefied biomass is being increased than the current production scale. So, the technology 

and production method need to be scaled up with its optimization.  

Despite the favorable properties of torrefied biomass on lab and pilot scale, there 

are some business and technical challenges that needs to be taken into consideration to 

develop torrefaction on a business scale. Besides the technological development, product 

standardization and large-scale product validation are required for the commercialization 

of torrefaction. Moreover, there are some uncertainties regarding the storage, transport, 

milling, and combustion of torrefied biomass. Thus, the market of torrefied biomass 

depends on whether the running torrefaction plants in operation will be able to produce 

the product that fulfills the expectations [66].  

Large number of R&D works has been conducted in the technological 

advancement of torrefaction during the last few years. There are large number of different 

reactor and system technologies that has been developed and tested. With increasing 

energy demands and concerns on clean energy, the governments, policy makers are 

inclined towards renewable energy. Thus, various industries are focusing on the 

commercialization of torrefied bimass so as to replace coal.  

According to Dahlquist, 2013, of all the 60+ claimed torrefaction initiatives and 

of all large-scale plants(15+) has been scheduled for start-up during 2010 and 2011, quite 

few are erected and hardly any has yet reached full stable industrial production and 
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commercial status. Most suppliers tend to exaggerate their capacities and underestimate 

time and efforts needed. Torrefaction has to be done intelligently, cost-effectively and 

thoroughly for commercialization progress and success. The material produced should be 

completely homogenous in terms of torrefaction degree and preferably dark brown (not 

overtorrefied) for a sufficient yield and to facilitate densification. Nevertheless, a few 

initiatives are hopefully paving the way for the torrefaction industry. There are four 

torrefaction demonstration plants up and running in Europe like Stramproy Green 

(Netherlands), Amel (Belgium), Topell Energy and RWE Innogy GmbH (Duiven, 

Netherlands) and Torr-Coal Group (Belgium). And at least 7 more demonstration plants 

are scheduled for startup during 2012/13. Some North american initiatives with 

torrefaction processes are: Agri-Tech Producers, Integro Earth Fuels, River Basin 

Energy, Torrsys and Wyssmont. Moreover, most developers are also operating pilot-plant 

processes based on their preferred technology [49]. 

It seems that the market price of torrefied biomass depends on the cost price as 

well as the result of negotiation between supply and demand. Only when significant 

commercial production starts up and trade volume increase will the true market value of 

torrefied pellets or briquettes be established. Moreover, the quality control and quality 

assurance standards will have to be introduced for the proper tracing of materials and 

products [54]. 

2.9 Torrefaction initiatives 
Given below is the list of torrefaction industries with their location, established 

date, capacity, and the technology they employed.  
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Table 2-1 Details of torrefaction industries 

Torrefaction developer Initiation 
date 

Location  Production 
capacity(t/a) 

Technology 

Topell Energy B. V. 
(NL) 

2010 Duiven, Netherlands 60,000 Torbed 

Stramproy Green 
Investment B.V. 

2010 Steenwjik, 
Netherlands 

45,000 Oscillating belt 
conveyor 

4Energy Invest 2010 Amel, Belgium 38,000  
Torr-Coal B.V. 2010 Dilsen-

Stokkem,belgium 
35,000 Rotary Drum 

Thermya(FR) 2011 San Sebastaian, 
Spain 

20,000 Moving Bed 

FoxCoal B.V. 2012 Winschoten, 
Netherlands 

35,000 Screw Conveyor 

BioLake B.V. 2010 Eastren europe 5,000-
10,000 

Screw Conveyor 

EBES AG(AT) 2011 Frohnleiten, Austria 10,000 Rotary drum 
Atomsclear SA 2010 Latvia, New 

Zaealand, US 
50,000 Rotary Drum 

Bio Energy 
Development North AB 

2011/2012 Örnsköldsvik, 
Sewden 

25,000-
30,000 

Rotary Drum 

Rotawave, Ltd. 2011 Terrace British 
Columbia(CA) 

110,000 Microwave 
reactor 

Integro earth fuels, LLC 2007 Roxboro, NC, USA 50,000 TorboDryer 
Agri-Tech Producers 
LLC 

2010 Kusters Zima 
Corporation, SC, 
USA 

 Belt reactor 

Torrefaction Systems 
Inc. (US) 

2013    

New Earth Renewable 
Energy Fuels, Inc. 
(US/WA) 

   Fixed bed 

Zilkha Biomass Energy 2010 Crockett, Texas, 
USA 

40,000  

WPAC(CA) 2011  35,000  
 

2.10 LCA Studies on agricultural crops 
Agriculture has several aspects that need to be considered. The agricultural LCA 

studies the effects on water bodies due to the fertilizer runoff, global warming potential 

due to the combustion of gasoline and diesel, eutrophication, etc. For this, the efficient 

LCA databases and calculation procedures are required. However, some of the 

agricultural processes that are difficult to control are nutrient leaching, erosion, N2O 

emissions, etc. Thus, LCA provides good insights into the behavior of the systems. 
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 Agrarian systems belong to the most complex production systems due to the 

determinant influence of environmental conditions which varies with time and space at a 

high spatial heterogeneity of site conditions [25].  Some of the key features of 

agricultural model in GaBi ts are listed below:  

• This is a mixed balance model with different implicit mapped compartments and a 

simplified time resolution. 

• This is a flexibly usable model.  

• It is also highly parameterized and is provided with many background processes. 

• And finally, it is applicable for any agrarian and plantation product of the world 

[25]. 

One of the research studies conducted in the Netherlands concludes that co-firing 

and transportation stages contribute the most regarding three environmental impacts 

namely global warming, acidification, and photochemical oxidation potentials. This study 

shows that torrefied biomass co-firing chain can be considered the best option when 

Dutch biomass is utilized. The reduction is approximately 12% for global warming, 7% 

for acidification and 5% concerning photochemical oxidation potentials [69].  Moreover, 

Perez et al. [70] demonstrated that cofiring coal with biomass is a very attractive 

alternative to reduce environmental impacts associated to electricity generation in Chile. 
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Chapter 3 Methodology 
A variety of biomass can be used as a raw material for torrefaction production, 

e.g., agricultural residues, forest residues, municipal wastes, etc. This study focuses on 

the potentiality of the agricultural residues as the feedstocks for the torrefaction 

companies. This chapter explains the methodological approach, which discusses the life 

cycle assessment of crop production and crop residues based torrefaction as well as 

techno-economic analysis of corn, wheat, and soybean production. The environmental 

assessment framework puts LCA in context and describes how this tool can be used for 

the environmental assessment of crop production and crop residue based torrefaction. 

Thus, this third chapter is the methodological section that focuses on the LCA procedures 

based on the ISO framework (ISO 14040 and ISO 14044 standards). 

3.1 Life Cycle Assessment Framework 
This research study adopts the principles and guidelines of ISO 14044:2006 as per 

the International Organization for Standardization. ISO 14044:2006 specifies 

requirements and provides guidelines for life cycle assessment (LCA), which includes 

definition of the goal and scope of the LCA, the life cycle inventory analysis (LCI) phase, 

the life cycle impact assessment (LCIA) phase, the life cycle interpretation phase, 

reporting and critical review of the LCA, limitations of the LCA, relationship between 

the LCA phases, and conditions for use of value choices and optional elements [71]. 

This research methodology arises various key questions. Will the torrefaction 

process cause scarcity of crop residues? Will this process cause an impact on 

ecosystems? What may be the emissions from the torrefaction process? It is obvious that 

the energy requirement is increasing due to the population growth. So, people are 
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focusing on renewable energy sources to fulfill the demand on energy. In this regard, 

torrefied pellets may be a sustainable alternative to replace coal. Since coal is one of the 

greatest CO2 emitting fuels, so we need to reduce the use of coal by replacing it with 

biomass (partially) in the long-run. For this, the sustainable alternative may be the 

torrefied wood, torrefied pellets, low emissions biomass or cofiring any one of these with 

coal.  

LCA is a suitable tool to study the sustainability of the environment, where we 

can study the potential impacts from the agricultural activities. As recommended by ISO, 

LCA study can be carried out in four steps: 

1. Goal & Scope Definition 

2. Life Cycle Inventory Analysis (LCI) 

3. Life Cycle Impact Assessment (LCIA) 

4. Life Cycle Interpretation 

The relationship between the four stages of LCA is shown in Figure 3-1: 
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Figure 3-1 LCA phases 

 

Figure 3-1 shows that LCA is an iterative process, which denotes that the changes 

made in one phase of LCA will affect the other phases. LCA is an important decision-

making tool for the various stakeholders such as factory owners/managers, farmers, 

community members, businesspeople, etc. There are various requirements for a 

successful LCA study. The goal and scope of the LCA study should be clearly defined 

with correct boundaries and assumptions. The LCA analyst should look at all the aspects 

of production. Therefore, a prominent level of technical knowledge is needed. The data 

taken should be from reliable sources, so it can properly address the developed model. 

3.2 The Agricultural LCA Model 
Agricultural LCA is often complex because in addition to the main product, there 

are usually coproducts, so that appropriate environmental impacts need to be assigned to 
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each product, a process known as allocation. There may also be by-products or waste and 

emissions to the environment, for example nitrate (NO3) to water and nitrous oxide (N2O) 

to the air [72]. 

This study focuses on the life cycle assessment of torrefaction process using 

agricultural feedstocks, which finally help to find the environmental hotspots. The LCA 

was performed based on the ISO 14044 using GaBi ts software. The data for inputs, 

outputs, and emissions involves numerous issues. The database used in the life cycle 

modeling of these projects were taken from the U.S. Life Cycle Inventory Database [73], 

which were accessed with the help of life cycle assessment software, GaBi ts. GaBi 

databases are the third-party life cycle databases. Moreover, the energy datasets that were 

considered for the upstream and downstream processes in the crop production projects 

were validated from the background analysis of the energy data for the life cycle database 

[74]. Since most of the database is based on European and North-American scenarios, 

this study looks upon the most relevant data for each process involved and try to reflect 

the actual scenario of our location, South Dakota. The agricultural costs that were 

considered include electricity cost, fertilizers costs, lime (quicklime) costs, fuel costs, 

transportation costs, etc. 

The simple layout of the cradle-to-gate approach used in our agrarian system is shown in 

Figure 3-2: 
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Figure 3-2 Cradle-to-gate system boundary 

Figure 3-2 is the simplified block diagram, which shows the cradle-to-gate system 

boundary starting from the raw materials to the production of torrefied pellets. In this 

study, the end use of torrefied pellet is not considered.  

3.2.1 Goal & Scope definition 

This is the key step, which articulates the objectives of the LCA study. Thus, the 

goal and scope need to be clearly defined. Assumptions made during the study should be 

clearly stated. Similarly, the system boundary and functional unit should be clearly 

mentioned. The goal of LCA shall include motivations for the study, intended 

applications and audiences, initial data quality requirements, and type of critical review 

[75]. Moreover, the scope should be well defined to make sure that the breadth, depth, 

and detail of the study are compatible and sufficient to address the stated goal [8]. Since 

LCA is an iterative process, the goal and scope can be redefined depending upon the 

LCA modeling.  
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The goal of this study is to analyze the ‘cradle-to-gate’ LCA approach of the 

agricultural crops and torrefaction process. The stakeholders associated are the feedstock 

producers, torrefaction plant owners, and the community members. The site selected for 

the LCA study was Brookings, South Dakota.  

3.2.1.1 Assumptions 

The distance from the field to the torrefaction plant was taken as 100km. The 

baled residues were transported using GLO: Truck of 7.5-12 tons of gross weight with a 

payload capacity of 5 tons. The thermal energy needed for torrefaction process was 

provided from natural gas. Land use change was not included in this LCA study due to 

the lack of data. TRACI methodology was employed for the environmental impacts 

assessment. 

3.2.1.2 System Boundaries 

This describes the unit processes that have been included and excluded in the LCA 

study. The crops taken for the LCA analysis are corn, wheat, and soybean. These crops 

are the main crops produced in the Midwest region of USA. There are four main options 

to define system boundaries for an LCA study. 

1. Cradle-to-Grave: It includes the LCA from raw material to disposal phase. Thus, it 

helps to address the potential environmental impacts of a product or a service from 

the initial phase to the end of life stage. 

2. Cradle-to-Gate: It includes the environmental assessment from raw materials to 

production phase. Therefore, it is used to assess the environmental impact of the 

production of a product in a factory gate (no use or end-life considerations). 

Practitioners have historically handled the complexity of LCI and LCA studies by 

developing “cradle-to-gate” subsystems that are complete and self-standing. For 



38 

 

example, the life-cycle steps from iron ore mining through steel wire manufacture 

represent the cradle-to-gate segment for the manufacture of steel wire [7]. 

3. Gate-to-Grave: This emphasizes the LCA from production to the disposal stage. 

4. Gate-to-Gate: This covers the LCA study through the production phase only (“gate 

of the factory”). Here, we consider taking products and raw materials from the 

entrance gate of a manufacturing plant to the finished product leaving the shipping 

gate (only onsite emissions).  

After harvest, the crop residues like corn stover is collected and transported to the 

torrefaction facility. The farm equipment production systems are excluded from the 

system boundary because of their small contribution to the overall impact [76].  

Transportation of biomass to the torrefaction facility is being included in this system. 

Environmental impacts associated with the physical and human capital (i.e. the 

production and maintenance of building infrastructures and vehicles, labor, and 

associated resources) were not included in the model. Moreover, the use phase 

(combustion of torrefied pellets) is not included as the system boundary ends with the 

production of torrefied pellets.  

The ISO 14044 standard details the choice of a system boundary for LCA studies 

[6].  
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Figure 3-3 System Boundaries  

 3.2.1.3 Functional Unit 

The function of the studied system is to produce the agricultural crop residues and 

use these residues for torrefied pellets production. So, the functional unit considered in 

this study is the amount of agricultural residues that come from the harvest of agricultural 

crops, i.e. corn, wheat, and soybean. For the comparative study, the functional units 

chosen should be equivalent. The functional unit is yield produced for most of the 

agricultural LCAs [77]. 

3.2.1.4 Allocation  

            Allocation is the process of dividing the environmental impacts from the 

processes based on the main products and coproducts. This is a key step in agricultural 

life cycle assessment. In this study, crop residues comprise the main products since these 

crop residues were used to produce torrefied pellets. The allocation procedure was 
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performed based on the weight of the products. Analysis was done with and without 

allocation as shown in the figure 3-5 and figure 3-4 respectively.  

 

Figure 3-4 No allocation in between grains and residues 

 

 

Figure 3-5 Allocation of crop residues based on dry weight 

 

 3.2.2 Life Cycle Inventory 

The main purpose of the life cycle inventory (LCI) is to identify and quantify the 

energy, water and material usage, and environmental releases (e.g. air emissions, solid 

waste disposal, and wastewater discharges). LCI analysis involves data collection and 

calculation procedures to quantify relevant inputs and outputs of a product system [50]. 

There are precise guidelines (SETAC 1993, ISO 14041 1998) for LCA practitioners 

about how to make key decisions related to the definition of the system and their 

boundaries, the definition of the functional units, the data collection and calculation 

procedures, particularly for what energy accounting and allocation rules are concerned 

[78]. 

The numerous ways for data sources that could be employed were direct 

measurement, literature review, interview, LCI databases such as USLCI, Ecoinvent, etc. 

After collecting all the process data, the LCI table is created for the convenience to reflect 
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the inputs and outputs that are used for the LCA modeling. This is a crucial phase in the 

LCA study. Thus, to keep the consistency in the LCI, the data collection has been done 

from the USLCI databases for all the studied crops. Moreover, data for the crop harvest 

rate and thermal energy were obtained from the relevant literature. 

3.2.3 Life Cycle Impact Assessment (LCIA) 

LCIA assigns the results of the life cycle inventory to impact categories, which 

are classes being different environmental issues of concern. LCIA has three mandatory 

phases (ISO 14042-2000): selection of impact categories, category indicators and 

characterization models, assignment of LCI results (classification) and calculation of 

category indicator results [78]. The inputs and outputs are first assigned to impact 

categories and their potential impacts are quantified as per the characterization factors 

[6]. 

In the LCIA models, such as TRACI or CML, two main approaches are used to 

classify and characterize environmental impacts: the problem-oriented approach (mid-

point) and the damage-oriented approach (end-point). The problem-oriented approach 

classifies flows as belonging to environmental impact categories to which they 

contribute. TRACI adopts problem-oriented approach and is developed by U.S. 

Environmental Protection Agency (EPA) and is primarily used in the US [6]. Thus, 

TRACI method was selected to study the impact categories like global warming potential 

(kg CO2 eq.), acidification potential (kg H+ moles eq.) and eutrophication potential (kg N 

eq.). The choice for these impact categories is goal dependent.  

TRACI 2.1 was selected as it is currently the only impact assessment 

methodology framework which incorporates US average conditions to establish 
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characterization factors [79]. LCIA results are relative expressions only and do not 

predict actual impacts, the exceeding of thresholds, safety margins, or risks [80].  

Impact Categories: 

Some of the frequently used impact categories, their respective units and 

consequences are shown in the Table 3-1.  

Table 3-1 Impact categories used in LCA 

Impact categories Units Consequence 

Global warming potential 
(GWP) 

CO2 eq. (kg) Global Warming 

Acidification Potential 
(AP) 

H+ mole eq. 
SO2 eq. (kg) 

Acid Rain/Forest Decline 

Eutrophication Potential 
(EP) 

Kg N eq. 
PO4 eq. (kg) 

Over fertilization of soil or water 

Ozone Layer Depletion 
(OLD) 

CFC 11 eq. (kg) 
R11 eq. (kg) 

Thinning of ozone layer in the 
upper atmosphere 

Photochemical Ozone 
Creation Potential 
(Summer Smog) 

ethene eq. (kg) Ozone formation in the lower 
atmosphere 

 

 

3.2.4 Interpretation 

This is the final stage, where the inventory analysis and the impact assessment are 

compiled into results. This is the phase, where the LCA practitioners can look upon the 

study’s accuracy, limitations, uncertainty, etc. The LCA results are acceptable for the 

designed system by its cope and boundaries. GaBi provides the balance button, which 

helps to calculate the LCA results and lists all the inputs and outputs from the life cycle 



43 

 

analysis. Various analysis like scenario analysis, sensitivity analysis, Monte Carlo 

simulation, and parameter variation can be done from the parameter explorer in GaBi.  

While, in this study, we focus on the comparative assessment of three crops i.e. 

corn, wheat, and soybean and draw a conclusion based on impact categories like global 

warming potential, acidification potential, and eutrophication potential. Also, we looked 

upon the torrefaction process, which uses crop residues as the raw materials and 

processed into the torrefied pellets. The results from the LCA model were discussed in 

the results and discussion section in depth.  

3.3 LCA Modeling 
This study was performed using LCA software, GaBi, which incorporated the 

USLCI databases, Ecoinvent databases, and databases from the various literature review. 

GaBi ts educational version was used for this study. To understand the working 

phenomenon within GaBi, the user should be familiar with few terminologies such as: 

project, plans, processes, flows, quantities, etc. The project can be first defined and 

activated in GaBi. For each of these projects, new plans were generated. A life cycle 

assessment model was generated in the plan window. The plan consists of various 

processes which were linked to relevant flow parameters by giving input and output 

parameters.  

GaBi checks for input and output matches between the two adjacent processes. 

Afterwards, the flow can be properly defined between the different processes. The USLCI 

database was used for this modeling and calculation. After the model was developed in 

GaBi, the balance button was used to see the environmental impact assessment. GaBi 

shows the results for different assessment methods like ILCD recommendations, LCIA-
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CML 2001 (Nov 10), LCIA-TRACI, LCIA and ReCiPe. LCIA-TRACI was chosen for this 

study since this methodology has been widely used in the US. 

In this study, the LCA has been employed to evaluate the environmental impacts 

of torrefied pellets and crop residues (corn stover, wheat straw, and soybean residues) 

from the viewpoint of farmer and torrefaction plant owner. Here, life cycle analysis was 

performed to analyze the results in terms of emissions to air, water, soil, etc.  

Below are the strategic ways to tackle the research method.  

• Choose the potential biomass 

• Define the process 

• Use LCA Modeling 

• Interpret Results 

 The torrefied pellets discussed here are made using the crop residues. The amount 

of grain produced, and crop residues are different based on the crop that were harvested. 

Table 3-2 shows the quantitative relationship between the amount of crop grains and crop 

residues.  

Table 3-2 Quantitative relationship between grains and crop residues 

Grains to crop residues Ratio (by mass) 

Corn grains to corn stover 1:1 

Wheat grains to wheat straw 1:1.3 

Soybean grains to soybean residues 1:2.1 
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            The first section illustrates the LCA conducted on torrefaction using crop residues 

i.e. corn stover, wheat straw, and soybean residues. Similarly, the second section 

describes the LCA of three major agricultural crops namely corn, wheat, and soybean. 

Moreover, the mass and energy balance of torrefaction process is shown in Figure 3-6. 

 

Figure 3-6 Mass and Energy balance of torrefaction process 

Fig 3-6 provides a typical mass and energy balance for biomass torrefaction. 

Here, 70 % of the mass is retained as torrefied biomass, which contains 90% of the raw 

biomass energy content [47]. Another important concern with the torrefied biomass 

production is that the torrefaction gas is recirculated, which lowers the fuel requirement 

for drying and torrefaction processes.  

The projects that were created in GaBi are described below in detail. 

3.3.1 Corn Stover Torrefaction: SD 

The goal of this study is to assess the environmental impacts of corn stover grown 

in SD that can be used to produce torrefied pellets. Corn stover appears to be a promising 

source of biomass for biofuel production, since it does not directly compete with food 
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and is grown in large quantities during corn production [81].  The function of this study is 

to analyze the environmental impacts from the torrefaction process using corn stover. 

Thus, the functional unit is the quantity of agricultural residues produced from an acre of 

land (considering harvest rate of 50%). They were set to meet erosion tolerances with a 

maximum of 50% stover removal. It is reasonable to consider that, in many instances, the 

stover removal rates used in this study would be acceptable and keep erosion within the 

tolerable limits [82]. The system boundary considered here is cradle-to gate. The data 

inventory required for the various processes and input/output parameters were taken from 

the available literature and USLCI databases. Various processes were defined and 

connected by the flow parameters, which is illustrated below in Figure 3-7.  

 

Figure 3-7 LCA model for torrefaction 

The LCA modeling was developed in GaBi ts. Since the study was conducted for 

Brookings, SD, so the yield of crops was taken for this region. A yield of 160 bushels 

(4064kg) of corn grain was assumed. Also, the harvested percentage of corn stover was 

assumed to be 50%. The ratio of corn grain produced and harvested corn stover was taken 

1:1. The reference quantity used was mass. A GLO truck with a payload capacity of 5t 

was used for the transportation process, which consumed 8.57 kg of diesel. The trucking 

distance was taken to be 100km. The thermal energy required for torrefaction is taken as 
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2250 KJ/kg of biomass [83]. Natural gas was taken as the thermal source of energy for 

the drying and torrefaction processes. Moreover, the mass of torrefied pellets was 70% of 

the original biomass. Therefore, the mass of the volatiles coming out of the torrefaction 

process will be 30% of the original biomass.  

Fig 3-7 shows the LCA modeling for the crop residues to torrefied biomass 

production process. The life cycle of this crop residues to torrefied biomass is divided 

into three stages. 

1. Crop Production 

2. Transportation 

3. Torrefaction 

3.3.2 Wheat Straw Torrefaction: SD 

The goal of this study is to assess the environmental impacts of wheat straw 

grown in SD that can be used to produce torrefied pellets. The function of this study is to 

analyze the environmental impacts from the torrefaction process using wheat straw. Thus, 

the functional unit is the quantity of agri-residues produced from an acre of land. Cradle-

to gate system boundary was used for this analysis. The data inventory required for the 

various processes and input/output parameters was taken from the available literature, 

USLCI databases and GaBi databases.  

A yield of 60 bushels (1632kg) of wheat grain was assumed. This is the amount of 

wheat grain production in Brookings, SD. The ratio of wheat grain produced, and 

harvested wheat straw was taken as 1:1.3. The harvest rate used for wheat straw was 66% 

[84]. The reference quantity used was mass. A GLO truck with a payload capacity of 5t 

was used for the transportation process, which consumed 5.91 kg of diesel for the 
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transportation distance of 100km. The thermal energy consumption required for 

torrefaction of wheat straw is taken to be 2250KJ per kg of wheat straw [83]. 

3.3.3 Soybean Residues Torrefaction: SD 

The goal of this study is to analyze the environmental impacts of soybean residues 

that can be used to produce torrefied pellets. The function of this study is to analyze the 

environmental impacts from torrefaction process using soybean residues. Thus, the 

functional unit is the amount of soybean residues that can be harvested from one acre of 

land. The harvest rate used for the soybean residues was 40% [84]. Cradle-to gate system 

boundary was used for this analysis. The data inventory needed for the various processes 

and input/output parameters were taken from USLCI databases, GaBi databases, and 

literature review. The thermal energy was provided with the natural gas which consumed 

2250 kJ per kg of raw biomass utilized [83].  

Similarly, the three other LCA models for crop production that were developed in 

GaBi are described below with the help of block diagram as shown in Figure 3-8. 
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Figure 3-8 Inputs and Outputs from the agrarian system 

The LCA modeling of the agrarian system is a complex network making up of all 

the upstream operations associated with the nitrogen fertilizer production, lime 

production, fuel combusted, electricity, etc. Inputs for nitrogen fertilizer production at 

plant is modeled, as shown in Figure 3-9. 

 

 

Figure 3-9 Unit processes for nitrogen fertilizer production at plant 

 

Similarly, lime (quicklime) production process is modeled as shown in Figure 3-10. 
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Figure 3-10 Unit processes for lime production at plant 

 

3.3.4 Corn Production 

Corn production includes various processes such as use of machinery 

equipment’s, combustion of fuel (diesel, gasoline, liquefied petroleum gas, and natural 

gas), application of fertilizers and lime, etc. The developed LCA model consists of most 

of the upstream processes associated with the processes. All the associated processes 

were developed for the US scenario. The LCI table for the corn production is shown in 

Table 3-3.  
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Table 3-3 Life cycle inventory table for corn production 

Flow Quantity Amount Unit 

Electricity [Electric power] Energy (net 
calorific value) 

0.022 MJ 

Lime quicklime (lumpy) [Minerals] Mass 0.0152 kg 

US: Diesel, combusted in industrial 
equipment [Products and Intermediates] 

Volume 3.4301E-6 �3  

US: Gasoline, combusted in equipment 
[Products and Intermediates] 

Volume 9.405E-7 �3 

US: Liquefied petroleum gas, combusted 
in industrial boiler [Products and 
Intermediates] 

Volume 2.4363E-6 �3 

US: Natural gas, combusted in industrial 
boiler [Products and Intermediates] 

Volume 0.0015254 �3 

US: Nitrogen fertilizer, production mix, at 
plant [Products and Intermediates] 

Mass 0.00844 kg 

US: Transport, single unit truck, diesel 
powered [Products and Intermediates] 

kgkm 8.26 kgkm 

US: Transport, train, diesel powered 
[Products and Intermediates] 

kgkm 22 kgkm 

US: Corn, at field [Products and 
Intermediates] 

Mass 0.5 kg 

US: Corn stover, at field [Products and 
Intermediates] 

Mass 0.5 kg 

 

 Table 3-3 shows the inputs and outputs of the corn production. The valuable 

inputs taken for the corn production were the fuel combusted (e.g., diesel, gasoline, 

natural gas, and liquefied petroleum gas), nitrogen fertilizers, quicklime, electricity, 

truck, etc. This inventory table was developed for 0.5kg of corn grain production, which 

produced 0.5kg of corn stover.  

3.3.5 Wheat Production 

Wheat production also consists of various upstream processes like the 

manufacture of fertilizers and lime, electricity production, transportation, etc. Similarly, it 

includes the downstream operations such as application of fertilizers, use of machinery 

equipment’s, etc. This LCA model looks up for most of the significant agricultural 
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processes. All the processes modeled were considered for the US scenario. Table 3-4 

shows the LCI table that was used for the modeling of the wheat production. 

Table 3-4 Life cycle inventory table for wheat production 

Flow Quantity Amount Unit 

Lime quicklime (lumpy) [Minerals] Mass 0.0187 kg 

US: Diesel, combusted in industrial 
equipment [Products and Intermediates] 

Volume 1.7177E-5 �3  

US: Gasoline, combusted in equipment 
[Products and Intermediates] 

Volume 3.9038E-6 �3 

US: Nitrogen fertilizer, production mix, at 
plant [Products and Intermediates] 

Mass 0.0285 kg 

US: Transport, single unit truck, diesel 
powered [Products and Intermediates] 

kgkm 20.4 kgkm 

US: Transport, train, diesel powered 
[Products and Intermediates] 

kgkm 54.3 kgkm 

US: Wheat grains, at field [Products and 
Intermediates] 

Mass 1.0 kg 

US: Wheat straw, at field [Products and 
Intermediates] 

Mass 1.3 kg 

 

 

 As per the table 3-4, the inputs that were used for the wheat production were 

quicklime, diesel, gasoline, nitrogen fertilizers, diesel powered truck, diesel powered 

train, etc. The valuable outputs were the wheat grains and the wheat straw. From the 

inventory table, we can see that 1 kg of wheat grain production results 1.3 kg of wheat 

straw.  

 3.3.6 Soybean Production 

As discussed for corn and wheat, soybean production also includes the similar 

processes for the growth and cultivation. Lime contributes significantly (17% of the total 

emissions) to NOx emissions in soy production and therefore they are considered in 
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bioproduct LCA [13]. Table 3-5 shows the valuable inputs and outputs for the soybean 

production. 

 

Table 3-5 Life cycle inventory table for soybean production 

Flow Quantity Amount Unit 

Electricity [Electric power] Energy (net 
calorific value) 

0.0191 MJ 

Lime quicklime (lumpy) 
[Minerals] 

Mass 0.0836 kg 

US: Diesel, combusted in 
industrial equipment [Products and 
Intermediates] 

Volume 1.7056E-5 �� 

US: Gasoline, combusted in 
equipment [Products and 
Intermediates] 

Volume 7.9593E-6 �� 

US: Liquefied petroleum gas, 
combusted in industrial boiler 
[Products and Intermediates] 

Volume 7.1023E-7 �� 

US: Natural gas, combusted in 
industrial boiler [Products and 
Intermediates] 

Volume 0.00050205 �� 

US: Nitrogen fertilizer, production 
mix, at plant [Products and 
Intermediates] 

Mass 0.0011415 kg 

US: Transport, single unit truck, 
diesel powered [Products and 
Intermediates] 

Kgkm 17.4 kgkm 

US: Transport, train, diesel 
powered [Products and 
Intermediates] 

Kgkm 46.4 kgkm 

US: Soybean grains, at field 
[Products and Intermediates] 

Mass 1.0 kg 

US: Soybean residues, at field 
[Products and Intermediates] 

Mass 2.1 kg 

 

This inventory table shows the inputs and outputs associated with the soybean 

production which produces 1 kg of soybean grains and 2.1 kg of soybean residues.  
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Chapter 4 Results and Discussion 
 

This chapter explains the main findings of the research study, which answers the 

key questions formulated in the aims and objectives section of the chapter 1. Section 4.1 

identifies the main expenses related with the crop production and describes the economic 

analysis of crops. Similarly, section 4.2 and 4.3 are dedicated in summarizing the 

environmental impacts of crop production and crop residues based torrefaction. Section 

4.4 shows the environmental assessment of the crop rotation namely corn, wheat, and 

soybean. Section 4.5 discusses the implications of harvesting crop residues for 

torrefaction. Moreover, section 4.6 gives the idea about the farming practices for corn, 

wheat, and soybean in SD locality. Finally, section 4.7 talks about the validation of the 

used LCA method and the results. Thus, LCA framework has been developed as a means 

of decision-making for the concerned stakeholders.  

4.1 Economic Analysis of Corn, Wheat and Soybean production 
The economic analysis of these major agricultural crops was done in Excel sheet. 

The location selected for the study was Eastern and Central SD, Brookings. Judging from 

the past years’ studies, the production yield was assumed to be medium (may be high, 

medium, or low). One acre of land served as the basis for this economic analysis. Table 

4-1 shows the expenses associated with the crops production, income generated, and 

profit with and without considering the land cost. 

Table 4-1 Economic analysis of corn, wheat, and soybean 

 Corn Soybean Wheat 

(Winter) 

Number of bushels 

produced  

160 45 60 
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Cost/bushels $ 3.10 $ 9.10 $ 4.30 

Income $ 496 $ 409.5 $258 

Seed $ 81 $ 54 $ 13 

Fertilizer $ 71 $ 28 $ 65 

Pesticides $ 26 $ 30 $ 16 

Crop Insurance $ 22 $ 19 $ 17 

Fuel & Oil $ 22 $ 21 $ 14 

Repairs $ 30 $ 16 $ 13 

Custom Hire   $ 38 

Drying $ 22   

Operating Interest $ 10 $ 6 $ 6 

Machinery 

(Ownership Costs) 

$ 56 $ 56 $ 35 

Management Costs $ 41 $ 41 $ 41 

Total expenses 

before land charge 

$ 381 $ 271 $258 

Land Cost $ 193 $ 193 $ 193 

Without accounting 

land cost 

Profit = $ 115 Profit = $ 138.50  

With Land Cost Loss = $ 78 Loss= $ 54.50 Loss = $ 193 

 

The yields for corn, wheat, and soybean were considered 160 bushels, 60 bushels 

and 45 bushels, respectively for an acre of land. Various expenses related to the 

agricultural production, such as the cost of seed, fertilizers used, pesticides, fuel and oil, 

drying, repairs, custom hire, operating interest and machinery costs, were also part of the 

analysis.  Finally, the profit from the crop production was calculated with and without 

considering of land cost. Thus, we can say that soybean is more profitable than corn and 
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wheat. Also, the cost for an acre of land was assumed to be $193. However, while 

accounting for the land cost, there seems to have been a loss for each crop’s production. 

In such cases, the farmers need to reduce the agricultural expenses and adopt scientific 

farming techniques for better yields to make greater profits. 

Bar graph that portrays the economic analysis of corn, soybean, and wheat 

production for an acre of land in Eastern & Central South Dakota, Brookings are shown 

below. 

 

Figure 4-1 Economic Analysis of Corn for an acre of land 
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Figure 4-2 Economic Analysis of Soybean for an acre of land 

  

Figure 4-3 Economic Analysis of Wheat for an acre of land 
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4.2 Environmental assessment of Torrefaction using crop residues (No 

Allocation) 

4.2.1. Results for Corn Stover Torrefaction: SD  

The goal of this project is to access the environmental impacts of corn stover 

grown in SD that can be used to produce torrefied pellets. The corn stover taken for this 

analysis was 2030 kg. This is the amount of corn stover harvested from an acre of land 

with a harvest rate of 50%. The LCIA preview results for the CML 2001- Nov. 2010, 

Global Warming Air (GWP 100 years), including biogenic carbon is shown in table 4-2. 

CML 2001 is an impact assessment method, which restricts the quantitative modeling to 

early stages in the cause-effect chain to limit uncertainties. This is based on midpoint 

categories e.g. climate change, ecotoxicity, etc. [85].  

 

Table 4-2 LCIA preview results for corn stover torrefaction 

Processes Global Warming Air, including 

biogenic carbon 

Corn production -747.7 % 

Trucking (5t payload capacity) 7.5% 

Diesel mix at refinery 1.1% 

Thermal energy from natural gas 91.4% 

 

 The table 4-2 shows that the natural gas combustion for the torrefaction has the 

highest global warming potential while transportation has the lower effect (for the 100km 
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distance from the feedstock producer to the torrefaction facility). But, we can see that the 

global warming potential from the corn production is negative which implies the 

greenhouse gases savings eventually.  

 

Figure 4-4 shows the resources consumed and emissions to various compartments 

by the corn stover torrefaction. 

 

Figure 4-4 Resources consumption and emissions from Corn Stover Torrefaction 

 

The above figure shows that there is higher emission to water bodies than to air. 

Moreover, the resources consumed (e.g., energy resources and material resources) for this 

corn stover integrated torrefaction process is higher than the emissions to air, water, and 

soil. 

Diagram:Corn Stover Torrefaction_ SD (Copy)_No Allocation - Inputs/Outputs
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The resources consumed are higher for the corn production process than torrefaction and 

transportation process.  

 

Figure 4-5 shows the Global Warming Potential (GWP) graph for the corn stover 

torrefaction. GWP is expressed in kg of CO2 equivalent. Similarly, Figure 4-6 and Figure 

4-7 show the Acidification Potential (AP) and Eutrophication Potential (EP), 

respectively. AP and EP are expressed in terms of kg of H+ moles equivalent and kg of N 

equivalent.  

  

Figure 4-5 Global Warming Potential graph for the corn stover torrefaction 
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Figure 4-6 Acidification Potential graph for corn stover torrefaction 

 

  

Figure 4-7 Eutrophication Potential from corn stover torrefaction 
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sequestered carbon in the corn. EP graph shows that it has an effect for the corn 

production only because we use fertilizers during crop production.  

4.2.2. Results for Wheat Straw Torrefaction: SD  

The feedstocks taken for this study were wheat straw harvested from an acre of 

land. The mass of wheat straw considered was 1401 kg. This model includes wheat 

production process followed by transportation of wheat straw and the torrefaction 

process. These are energy-intensive processes that produce emissions to air, water, and 

soil. The LCIA preview results for the CML 2001- Nov. 2010, Global Warming Air 

(GWP 100 years), including biogenic carbon is shown in table 4-3.  

 

 

Table 4-3 LCIA preview results for wheat straw torrefaction based on CML 

Processes Global Warming Air, including 

biogenic carbon 

Wheat production -542.2 % 

Trucking (5t payload capacity) 7.5% 

Diesel mix at refinery 1.1% 

Thermal energy from natural gas 91.4% 

 

 Table 4-3 shows that wheat production has a positive environmental impact since 

the global warming potential value is negative. Similarly, the thermal energy production 

from natural gas has significant contribution to the greenhouse emissions in the 
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environment. Figure 4-8 shows the resources and emissions from the wheat straw 

torrefaction. 

 

 

Figure 4-8 Resources and Emissions from wheat straw torrefaction 

 

Similarly, Figure 4-9, Figure 4-10, and Figure 4-11 show the graph for global 

warming potential, acidification potential and eutrophication potential, respectively. 
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Figure 4-9 GWP form the wheat straw torrefaction 

 

Figure 4-10 AP form wheat straw torrefaction 
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Figure 4-11 EP from wheat straw torrefaction 
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shown in table 4-4.  
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Table 4-4 LCIA preview results for soybean residues torrefaction 

Processes Global Warming Air, including 

biogenic carbon 

Wheat production -219.6 % 

Trucking (5t payload capacity) 7.6% 

Diesel mix at refinery 1.1% 

Thermal energy from natural gas 91.4% 

 

Figure 4-12 shows the resources consumption and emissions produced from the 

soybean residues based torrefaction to air, water, and soil. 
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Figure 4-12 Emissions form soybean residues torrefaction 

 

Figure 4-12 shows that there is higher effect on the water bodies than air and soil. 

This is due to the use of fertilizers and agro-chemicals associated with the soybean 

production. Similarly, figure 4-13, 4-14, and 4-15 show the global warming potential, 

acidification potential, and eutrophication potential for soybean residues based 

torrefaction, respectively. 

Diagram:Soybean Residues Torrefaction_ SD (Copy)_No Allocation  - Inputs/Outputs

Soybean Residues Torrefaction: SD (Copy)_No Allocation

M
a
s
s
 [
kg

]
26,000

25,000

24,000

23,000

22,000

21,000

20,000

19,000

18,000

17,000

16,000

15,000

14,000

13,000

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Resources

Deposited goods

Emissions to air

Emissions to fresh water

Emissions to sea water

Emissions to agricultural soil

Emissions to industrial soil



68 

 

  

Figure 4-13 GWP for soybean residues based torrefaction 

This graph shows that the transportation of soybean residues from the field to the 

plant has a lower emissions effect than the torrefaction process. However, due to the 

negative value of GWP for soybean production, the net GWP, which is the sum of GWP 

from all the processes, is negative.  

  

Figure 4-14 AP for soybean residues based torrefaction 
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Figure 4-15 EP for soybean residues based torrefaction 

The LCA results based on the TRACI impact assessment method shows that the 
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Table 4-5 Effect of allocation for crop residue based torrefaction 

Crop residue based 
torrefaction 

Without allocation Allocation  

GWP AP EP GWP AP EP 

Corn stover based 
torrefaction  

-1160 243 2.63 -490 132 1.33 

Wheat straw based 
torrefaction 

-791 289 3.09 -369 172 1.76 

Soybean residues 
based torrefaction  

-214 26.4 0.17 -87.1 24.2 0.122 

   

4.3 Environmental Assessment of Crop Production 

4.3.1 Results for Corn Production 

The analysis consisted of three impact categories namely global warming 

potential, acidification potential, and eutrophication potential. To calculate these impact 

categories, TRACI impact assessment model was chosen. The functional unit was 

1000kg of crop residues. Figure 4-16 shows the resources consumption and emission 

from the corn production. 
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Figure 4-16 Resources and emissions from corn production 

Figure 4-16 shows that there are higher emissions to water bodies than to air and 

soil, which might be due to the use of fertilizers and agro-chemicals during crop 

production. Figure 4-17, 4-18, and 4-19 show the graph for global warming potential, 

acidification potential and eutrophication potential, respectively. 
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Figure 4-17 GWP for corn production 

 

Figure 4-18 AP for corn production 
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Figure 4-19 EP for corn production 

The global warming savings from 1000kg of the corn stover was 1220 kg CO2 eq. 

Similarly, the acidification potential for the same 1000kg of the corn stover was 268 H+ 
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production process.  
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Figure 4-20 Resources and Emissions from wheat production 

 

Similarly, Figures 4-21, 4-22, and 4-23 show the graph for the global warming potential, 

acidification potential and eutrophication potential.  
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Figure 4-21 GWP for wheat production 

 

Figure 4-22 AP for wheat production 
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Figure 4-23  EP for wheat production 
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Figure 4-24 Resources and Emissions from soybean production 

 

Figure 4-25, 4-26, and 4-27 show the graph for global warming potential, 

acidification potential, and eutrophication potential, respectively.  

 

Figure 4-25 GWP for soybean production 
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Figure 4-26 AP for soybean production 

 

Figure 4-27 EP for soybean production 
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(AP), and eutrophication potential (EP). The functional unit used for the study was the 

1000 kg of crop residues (corn stover, wheat straw, and soybean residues). The 

environmental analysis was done based upon the cumulative effect of all crops rotation 

by summing up the effect of individual crops’ environmental effects, which also shows 

that the corn-soybean rotation or soybean-soybean rotation is the reliable and reasonable 

choice for the farmers in terms of environmental benefits. As shown in the table 4-6, the 

AP and EP values are lower for soybean-soybean rotation and corn-soybean rotation. 

However, the GWP saving is higher for corn-soybean rotation than the soybean-soybean 

rotation.  

Table 4-6 Environmental assessment of crop rotation (corn, wheat, and soybean) 

Crop rotation GWP (kg CO2 eq.) AP (H+ moles eq.) EP (kg N eq.) 

Corn-corn -2680 448 5.22 

Wheat-wheat -1940 538 6.12 

Soybean-soybean -784 13.32 0.294 

Corn-wheat -2310 493 5.67 

Corn-soybean -1732 230.66 2.757 

Wheat-soybean -1362 275.66 3.207 

 

4.5 Environmental assessment of harvesting crop residues for 

torrefaction 
              Table 4-7 shows the environmental results of harvesting corn stover, wheat 

straw, and soybean residues in terms of GWP, AP and EP. For the 1000 kg of crop 

residues considered for torrefaction, results show that corn stover has higher global 

warming saving with respect to wheat straw and soybean residues. However, soybean 
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residue has the least environmental impacts in terms of acidification and eutrophication 

potential. Thus, table 4-7 gives the implications of harvesting residues for torrefaction.  

Table 4-7 Environmental assessment of harvesting residues for torrefaction 

Crop residue based 
torrefaction 

Allocation  

GWP AP EP 

Corn stover based 
torrefaction  

-490 132 1.33 

Wheat straw based 
torrefaction 

-369 172 1.76 

Soybean residues 
based torrefaction  

-87.1 24.2 0.122 

 

On comparing the three crops in terms of global warming potential (saving), corn 

is better than wheat and soybean. This is because the corn absorbs higher amounts of 

biogenic carbon during its growth phase. The GaBi databases indicates that corn absorbs 

1494 kg of carbon dioxide, wheat absorbs 1161.5 kg of carbon dioxide and soybean 

absorbs 743 kg of carbon dioxide to produce 1000kg of crop residues. The higher amount 

of corn’s biogenic carbon absorption means corn has a higher negative value of global 

warming potential. Thus, we can say that corn is more environmentally friendly than 

wheat and soybean in terms of global warming potential. But in terms of acidification 

potential, soybean has the lowest value while wheat has the highest potential among three 

crops. This shows that soybean has the least impact on the environment. 

Similarly, on comparing the eutrophication potential, soybean has the least value 

whereas wheat has the highest value. The eutrophication potential depends on the amount 

of fertilizer used during the whole plant lifecycle. The amount of nitrogen fertilizer used 
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for 1000kg of corn stover, wheat straw, and soybean residue was found to be 16.9 kg, 

21.9 kg, and 0.55 kg, respectively. For soybean, the amount of fertilizer used is the least 

among the three crops, which results in soybeans having the lowest eutrophication 

potential. The soybean roots help in nitrogen fixation, thereby reducing the amount of 

fertilizer used during the soybean lifecycle. The higher use of fertilizer in wheat straw 

production results in higher eutrophication potential of the wheat straw. 

One of the studies performed in the US concludes that the corn stover has a better 

environmental performance than corn grain as per the global warming potential. This is 

due to lower consumption of agrochemicals and fuel used in the field operations and 

lower nitrogen-related emissions from the soil (N2O, NOx, NO3
-) [82]. N2O emitted from 

the soil is the dominant greenhouse gas, which is associated with nitrogen fertilizer. 

Nitrogen losses from soil (NOx and NO3
-), also associated with nitrogen fertilizer, are the 

primary acidification and eutrophication sources. Planting winter cover crops and 

adapting a no-tillage practice are ways to reduce these nitrogen losses from the soil [82]. 

The acidification of terrestrial systems is mainly caused by compounds derived 

from nitrogen (NOx, NH3) and sulfur (SO2 and SO4), which are common ingredients in 

fertilizer compounds [86]. Also, nitrate in water bodies is responsible for acidification, 

eutrophication, and hypoxia that lead to a loss of biodiversity and natural habitats [87]. 

4.6 Farming practices for corn, wheat, and soybean in South Dakota 
               In this study, the crop harvest rate for corn stover, wheat straw, and soybean 

residues are 50%, 66%, and 40% respectively [84]. So, 50% of corn stover, 34% of wheat 

straw, and 60% of soybean residues will be left in the field. With conservation tillage, it 

conserves soil moisture, especially traditional drier areas in central and western South 
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Dakota, improves soil water infiltration, prevents soil erosion, enhances overall soil 

health, reduces the fuel usage, and consequently lowers the greenhouse gas emissions. 

 Conservation tillage is a method of soil cultivation that leaves the previous year's 

crop residue (such as corn stalks or wheat stubble) on fields before and after planting the 

next crop, to reduce soil erosion and runoff. For this farming practice, at least 30% of the 

soil surface must be covered with residue after planting the next crop.  Some 

conservation tillage leaves 70% residue or more. Conservation tillage methods 

include no-till, strip-till, ridge-till and mulch-till [88].This farming practice helps to 

reduce erosion (water or wind erosion). Even though, most of the soil erosion measures 

are focused on water erosion, however the Dust Bowl, an ecological disaster of 1930s 

taught a lesson for the US farmers to adopt farming practices that can help prevent wind 

erosion as well. The Dust Bowl was a disaster occurred in the Southern Great Plains of 

North America during the 1930s, when the region experienced extreme wind erosion 

[89]. 

For the no-till practice, the soil is left undisturbed from harvest to planting with 

greater than 30% residue remaining after planting, whereas the mulch tillage disturbs the 

entire soil surface and is done prior to and/or during planting with greater than 30% 

residue left after planting [90]. The practice of no-till is being increased from 37% to 

45%, from 2004 to 2013, in the South Dakota planted cropland. Moreover, no-till 

practice appears to go hand-in-hand with diverse crop rotations [90].  

4.7 Life cycle assessment: Validation 
The results of the LCA study depends on various parameters: model setup, 

assumptions, system boundaries, functional unit, allocation procedure, impact assessment 
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methods, etc. In addition, the agricultural LCA study varies with the geographical 

location and the time chosen. In this regard, it is a challenging task to confirm the LCA 

results. Even so, the values and takeaways messages shared by LCA study have a greater 

impact to the concerned stakeholders if it is validated. Validation is defined as “the 

process of ascertaining that the model mimics the real system by comparing the behavior 

of the model to that of the real system in which the system can be observed and altering 

the model to improve its ability to represent the real system" [91]. 

The LCA model should reflect reality as good as possible and necessary. So, 

introducing validation in LCA models offers possibilities for model improvements as 

well as improvements of the quality of decisions supported by LCA models, namely of a 

potential still untapped yet.  
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Chapter 5 Conclusion 
This chapter presents the general findings and draws the main conclusion of this 

study. Also, few recommendations are given for the future studies. 

5.1 Conclusion 
An LCA study was conducted for three major crops production: corn, wheat, and 

soybeans. Two scenarios were focused while creating the LCA models. The first case 

analyzes the environmental impacts of crop production based on the amount of crop 

residues. The second case assess the ‘cradle-to-gate’ system boundary from the 

acquisition of crop residues to the production of torrefied pellets.  

Results show that the environmental performance of crop grains and residues 

depend on the inputs that were used for the crop production. The inputs that were taken 

into consideration for the crop LCA modeling were electricity, fuel, water usage, 

transport, quicklime, fertilizers, agrochemicals, etc. Since corn absorbs larger amount of 

biogenic carbon during its growth phase, it shows larger greenhouse gases saving than 

wheat and soybean. Similarly, wheat has more environmental impact in terms of 

acidification and eutrophication potential. This is due to the higher nitrogen fertilizer 

application rate which also affects the environmental performance of these three crops. 

Nitrogen fertilizer accounts about 20% of the global warming potential (including 

biogenic carbon) for corn, 30% for wheat and 1% for soybean. 

The LCA results that were obtained for the crop residues to torrefied pellets 

process describes the estimate of energy and mass flow and other potential environmental 

impacts. So, while integrating the torrefaction facility, LCA model shows that the 
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transportation has a minimal contribution for the global warming (for the 100km distance 

taken from the feedstock producer to the torrefaction facility). But, it is obvious that 

when the transportation distance increases, the global warming effect also increases 

proportionately. The thermochemical conversion, torrefaction, shows more 

environmental impacts than transportation. However, this impact is less in compared with 

coal. Moreover, this study recommends farmers to follow corn-soybean rotation in SD 

locality for the torrefaction facility. This conclusion has been drawn based upon the 

GWP, AP, and EP values of the crop rotation (corn, wheat, and soybean). 

The economic analysis of corn, wheat, and soybean was also performed for 

medium production range in an acre of land. The location selected was Central and East 

South Dakota, Brookings. Various agricultural expenses like seed, fertilizer, pesticides, 

operating interest, machinery expenses, drying, etc. were considered for the study. The 

results show that, soybean has the highest profitability than corn and wheat. For an acre 

of land with 160 bushels, 45 bushels, and 60 bushels of corn, soybean, and wheat 

production, the farmers gain a profit of $115, $138.50, and $0 respectively. It shows that 

farmers have to minimize the agricultural costs in order to have the profit with wheat 

production (farmers can switch to no-till farming practice). But, while accounting the 

land cost ($193 for an acre of land in Central & East South Dakota), farmers bear losses 

of $78, $54.50, and $193 for the corn, soybean, and wheat production respectively. 

However, farmers can generate extra revenue by selling the crop residues to the nearby 

biofuel facility or torrefaction plant.  

This study also shows that, when done responsibly, residue based torrefaction 

reduce dependence on coal. So, using torrefied pellets over coal has various advantages 
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like reduction in air and water pollution, recycling of atmospheric carbon dioxide, and 

displacement of fossil fuel. One of the significant findings from this LCA study (based on 

mass allocation) is that crop residues are beneficial to crop grains in terms of global 

warming potential but have higher environmental emissions in terms of acidification and 

eutrophication potential . This conclusion was drawn based on GWP, AP, EP, and fossil 

energy usage. To sum up, the LCA results support decision makers in the choice of crop 

residues for torrefaction. 

 

 

5.2 Recommendations 
The recommendations for the future studies are listed below: 

1. It is recommended to account the effects of land use changes in the agricultural 

LCA. 

2. The use phase and end of life of torrefied pellets can be taken into account so as to 

develop the ‘cradle-to-grave’ system boundary. 

3. The cost of field residues was not considered due to the lack of data for all the 

crops. So, further studies can be done for the economic analysis of corn stover, 

wheat straw, and soybean residues, which finally can generate revenues for the 

farmers.  
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Appendices 
Appendix 1:  Wheat production modeling in GaBi LCA software  
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Appendix 2: Corn stover torrefaction (No Allocation) 

 

Appendix 3: Corn stover torrefaction (Allocation) 
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