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Abstract 

 

 

 

Evaluation of Stream Assessment Protocols for the Evaluation of Habitat in Intermittent 

Headwater Streams 

Eric J. Rasmussen 

2009 

 

 EPA and state water resource agencies are now placing greater emphasis on 

monitoring and managing headwater streams. Two EPA stream protocols are available 

for headwater stream assessment but little effort has been made to compare these two 

methods or their resulting habitat quality index scores. The objectives of this effort were 

to 1) compare data types of the two protocols; 2) compare how the two protocols assess 

intermittent streams using habitat quality index (HQI) scores; and 3) compare stream 

characteristic emphases (geomorphology, riparia, substrate, in-stream cover for biota and 

hydrology) between the two protocols and their effect on overall HQI scores. This study 

was conducted within the Northern Glaciated Plains Ecoregion (NGP) of South Dakota. 

Forty reference sites were chosen using EPA’s Analytical Tools Interface for Landscape 

Assessments (ATtILA). Twenty more sites were chosen to validate the reference sites 

condition. Ten of the validation sites were selected at random and the other ten were 

targeted sites selected through consultation with state officials. All sites were field 

validated using the “North Carolina Division of Water Quality’s Identification Methods 

for the origins of Intermittent and Perennial Streams” and the “Riparian, Channel, and 
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Environmental Inventory for small streams in the agricultural landscape.” Habitat 

assessments of 60 total streams occurred monthly (April-August) during the summer of 

2008 following EPA’s “Western Pilot Study: Field Operations Manual for Wadeable 

Streams” and “Field Operations Manual for Assessing the Hydrologic Permanence and 

Ecological Condition of Headwater Streams.” Headwater streams in the NGP can be 

summarized as low gradient (  = 0.02%) streams showing little incision ( = 0.4 m). 

Channel dimensions were variable (CV = 1306.1 width/depth ratio) with flat banks (  = 

27.4ºC) and homogenous thalwegs ( CV = 48.9 %). Substrates consisted of  mostly 

soft/small sediments with  herbaceous vegetation as the most frequently occurring in-

stream cover for biota. With the exception of the Prairie Coteau Escarpment Ecoregion 

(46l), riparian trees were rare. Peck’s protocol had 51 measurements with a mixture of 

ratio (n = 14), interval (n = 2), ordinal (n = 23) and nominal (n = 12) data types. Fritz’s 

protocol had 15 measurements yielding mostly ratio (n = 10) data types, and a few 

interval (n = 2) and nominal data (n = 3). Substrate type was assessed differently by the 

two protocols. Organic substrates occurred with a frequency of 65% using Peck’s 

protocol, while the substrate class “sand/silt/clay” occurred most frequently (89%) using 

Fritz’s protocol. HQI scores for both protocols were compared using a sign test and a 

Wilcoxon Rank Sum test, revealing that they were different (p < 0.01). Reference HQI 

scores generated from Fritz metrics ( = 71%) were higher (p < 0.01) than Peck’s HQI’s 

( = 63%). Riparian metrics composed 51% of Peck’s measurements and 7% of Fritz’s 

measurements but Peck’s riparian HQI’s scored lower (p < 0.01) than Fritz’s riparian 

HQI’s. Hydrologic metrics composed 36% of Fritz’s protocol and 4% of Peck’s protocol 
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and still the HQI’s compared favorably between the two protocols. Evaluation of stream 

assessments within either protocol revealed high variability in stream characteristics 

within the NGP ecoregion. Stream habitat scores exhibited greater similarity within level 

IV EPA ecoregions than between ecoregions. This supports that regionalization by level 

IV ecoregions may be necessary to account for regional differences in landscape features. 

The use of more measurements for Peck’s protocol increased the ability to detect the 

influence of human management practices. However, some metrics were similar within 

Peck’s protocol, leading to high redundancy. Fritz’s protocol contained fewer metrics 

with less focus on riparian metrics, reducing the sensitivity of this protocol to human 

management practices. Data types also differed between and within the two protocols, 

complicating integration and analysis. Peck’s protocol included a large number of ordinal 

and nominal measurements, which require training and consistency to remain unbiased. 

Thus, Peck’s assessments were more subjective, adding another source of disparity 

between protocol assessments. Substrate was the only parameter measured by both 

protocols, but assessments differed due to the use of different substrate classes and a 

different cross-sectional methodology. Results of HQI differences provide evidence that 

the two protocols do not respond similarly to physical habitat changes. This can be 

attributed to the divergence in stream characteristics emphasized by the two protocols. 

Differences in metric emphasis reflect a focus on hydrologic permanence by the Fritz 

protocol and riparian metrics by the Peck protocol. Riparian condition reflect the 

influence of human activities more successfully based on HQI scores than hydrologic 

condition. This helps to explain differences seen in HQI scores and provides incentive for 
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the continued use of riparian metrics in stream habitat assessments. A new combined 

habitat metric set is proposed which places more balance between riparian and hydrologic 

stream characteristics.  
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1.  Introduction 

A.  Water Quality  

i. Monitoring 

Monitoring of water resources increased after concerns for the nation’s water 

quality led to the Clean Water Act (CWA) in 1972 (PL 95-217). One of the CWA’s 

objectives was to evaluate and protect the ecological integrity of aquatic ecosystems. 

Ecological integrity is a combination of three components: chemical, physical, and 

biological (U.S. EPA 2002). The degradation of one component affects the integrity of 

the entire system. As a first step toward meeting the CWA’s objectives, states assigned 

beneficial uses to all water bodies. Criteria were then developed in support of each 

assigned use and when combined for all uses constitute legislated water quality standards. 

Water quality monitoring is intended to evaluate support of assigned beneficial uses. 

Results of these monitoring efforts lead toward reporting requirements for each state to 

(1) describe the current status of all water bodies (305b Report); and (2) list water bodies 

failing to support assigned uses (303d List). For impaired water bodies, total maximum 

daily loads (TMDL), which will support beneficial uses, are estimated, and management 

prescriptions are written to reduce contaminant loadings below TMDL levels (U.S. EPA 

1991). In this process the impaired water body goes through an assessment phase, a 

conservation implementation phase, and a post-implementation assessment phase.  

State monitoring is valuable because water resources change in response to 

disturbance over time (U.S. EPA 2002). However, monitoring must incorporate more 

than just water chemistry to evaluate changes in ecological integrity. Human activities 
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also influence physical habitat and biological communities (Karr 1990). Due to limited 

resources, it is difficult for most states to assess the three components of ecological 

integrity for the thousands of water bodies found in each state. Consequently states are 

continually trying to develop quick and efficient assessment methods that are 

scientifically defensible, efficient, and which cover more streams (Fritz et al. 2006; Peck 

et al. 2006; Peterson 1992; Plafkin et al. 1989; Rankin 1989).  

 

ii. Status 

Mankind is very dependent on flowing water for agriculture, industry, recreation, 

and  domestic needs (Allan and Flecker 1993). A survey of the nation’s wadeable streams 

taken in 2004-2005 revealed that only 28% of the nation’s stream miles were in good 

condition while 42% were in poor condition (U.S. EPA 2006) (Figure 1).  

 

U.S. Wadeable Streams Condition 2004-2005

42%

25%

28%

5%

Poor
Fair
Good
Not Assessed

 

Figure 1  Wadeable stream condition across the conterminous United States (U.S. EPA 2006). 
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Nitrogen, phosphorous, sediment loading, and riparian disturbance were listed as the 

leading causes of stress to these streams (U.S. EPA 2006). After dividing the U.S. into 

three regions, the West was shown to have the most stream miles in good condition, the 

Plains and Lowlands were fair, and the Eastern Highlands had the most stream miles in 

poor condition (U.S. EPA 2006). The Eastern Highlands also support the greatest human 

population of the three regions.  

Human encroachment is the ultimate cause of impairment. Humans have changed 

the ecology of streams (Cross et al. 1985; Rabeni 1996) through major habitat alterations 

including channelization, culvert installation, habitat destruction, pollution, mining, and 

urban/suburban sprawl (Dodds et al. 2004; Ohio EPA 2003).  

Within the prairie ecoregions, streams have changed dramatically since European 

settlement (Matthews 1988). Most of this impact has been observed in headwaters. As 

early as the 1850’s, journals described the effects of settlement on intermittent streams 

and how their change was much more apparent than that in larger rivers (Matthews 

1988). This can be related to the shrinking grassland ecosystems of North America in 

which many intermittent streams are located (Dodds et al. 2004). These grasslands once 

covered an enormous expanse of land, but are now endangered because of conversion to 

cropland and pasture (Sampson and Knopf 1994).  

South Dakota is one of many states experiencing losses of prairie to agriculture 

and development, resulting in impaired aquatic ecosystems. Between the years 2000 - 

2007, approximately 7,904 miles of the 9,289 perennial rivers and streams in South 

Dakota were monitored (SD DENR 2008). Fifty one percent of the assessed stream miles 
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were impaired (SD DENR 2008). Most of this impairment was a result of total suspended 

solids and fecal coliform contamination (SD DENR 2008). South Dakota also has 85,841 

intermittent stream miles (SD DENR 2008), nearly 9 times the length of perennial 

streams. None of these intermittent streams were assessed due to the lack of baseline 

information and limited funding.  

 

B.  Intermittent Streams 

i. Definition 

The USDA and USDI (1994) define an intermittent stream as having a discernible 

channel which shows evidence of annual deposition or scour, but which does not carry 

flow year round. These streams are normally found in the headwaters, but in more arid 

regions, even larger streams and rivers can be intermittent. Thus, headwater stream orders 

can vary regionally (Strahler 1952).  

 

ii. Hydrology 

Hydrology is the main factor determining whether a stream is intermittent or 

perennial. Stanley and Fisher (1992) define intermittent flow has having three phases: 1) 

drying, in which flow relinquishes, 2) dryness, no surface water, and 3) rewetting, which 

can happen slowly or quickly. This general flow pattern is based on seasonal climate 

patterns (Matthews 1988) and has a discriminating effect on the type of habitat, 

invertebrates and primary producers within them (Dodds et al. 2004).  
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Since stream flow is the determining characteristic for intermittent streams, it is 

critical to the biological integrity of these systems (Poff and Ward 1989; Poff et al. 1997) 

(Figure 2). Differences between intermittent and perennial flow regimes allow for 

different processes to play greater roles on ecological condition. With intermittent flow, 

abiotic processes, mainly flow regime, have a greater impact on ecological condition than 

does perennial flow (Poff and Ward 1989). The flow regime directly and indirectly 

impacts important structural attributes (e.g. channel dimensions, habitat type), 

physicochemical attributes (e.g. dissolved oxygen, pH), and biotic communities (e.g. 

physiological characteristics, life history characteristics), which impact ecological 

condition (Dodds et al. 2004; Poff and Ward 1989; Poff et al. 1997). In perennial 

systems, flow is more stable to allow biotic processes (e.g. competition, predation) more 

control than abiotic processes (Poff and Ward 1989).  In these systems, riparian areas 

provide nutrients, physical habitat structure provides cover, and biotic processes like 

nutrient cycling have a more direct effect on ecological condition than the flow regime 

alone. Researchers have even broken intermittent flow regimes down further to say that 

the dry phase plays a greater role in determining the ecological condition by its 

discrimination of the flora and fauna than the flooding phase (Poff and Ward 1989; 

Stanley and Fisher 1992). Flooding has a greater effect on biotic community processes by 

providing nutrients, which are less influential in intermittent streams anyway because the 

unstable environment limits the biotic community presence (Poff and Ward 1989).  
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Figure 2  Diagram showing how the flow regime and its five components contribute to the ecological 
integrity of stream systems (Poff et al. 1997). This diagram was modeled after Karr (1991). 

 

iii. Microbial Communities 

Most prairie intermittent streams are autotrophic (Zale et al. 1989) with primary 

production by algal autotrophs (Dodds et al. 2004). “Algae are the trophic base of these 

systems” (Zale et al. 1989). “This is possible because often light isn’t restricted from 

reaching the stream bottom providing the energy needed for organic decomposition” (Hill 

and Gardner 1987; Stagliano and Whiles 2002). This differs from forested intermittent 

streams because of varying amounts of canopy cover and leaf litter inputs (Wiley et al. 

1990).  

Due to autotrophic conditions and dry periods, intermittent streams have slower 

decomposition rates and export than perennial streams (Zale et al. 1989). When 

decomposition does take place, microbial and fungal communities play a larger role in 

Flow Regime 
Magnitude 
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Quality 
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decomposition than do macroinvertebrates (Smith 1982) because they are better adapted 

to the harsh environment of intermittent streams.  

 

iv. Macroinvertebrates 

Macroinvertebrates are an important life form in intermittent streams and they aid 

in the biological functionality of these systems (Allan and Flecker 1993; Zale et al. 1989). 

They support the nutrient cycling of streams (Vannote et al. 1980; Zale et al. 1989) and 

can be used as indicators of water quality due to their vulnerability to degradation of their 

environment (Zale et al. 1989).  

Macroinvertebrates that persist in intermittent streams are adapted to its harsh 

environment (Resh et al. 1988). Most macroinvertebrates found in intermittent streams 

reproduce quickly (Zale et al. 1989). They are generally univoltine and emerge in the 

spring before the drying phase (Ward 1992; Zale et al. 1989). In order to survive the 

variable hydrology of intermittent streams, many organisms use pools and moist areas to 

survive dry periods (Dodds et al. 2004; Zale et al. 1989). Diapausing in sediment during 

the dry periods is not an uncommon adaptation in intermittent streams (Fritz and Dodds 

2002). After a flooding event, invertebrate populations recover mostly by oviposition 

from aerial insects (Stehr and Branson 1938). 
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v. Vegetation 

The plant life within intermittent streams consists mostly of algae because algae 

are adapted to withstand the harsh environment created by intermittent flow regimes 

(Zale et al. 1989). Algae are autotrophic enabling them to colonize quickly after dry 

periods, and some species are structurally adapted to withstand scouring by flood events 

(Alan and Castillo 2007; Power and Stuart 1987). Aquatic submerged macrophytes are 

less adapted to extremes of intermittent flow regimes. Unstable sediments, turbidity, and 

high flows caused by floods followed by dry phases make macrophyte colonization 

difficult (Zale et al. 1989). However, submerged aquatic vegetation is very proficient in 

establishing along intermittent streams especially where pools occur (Zale et al. 1989). 

 

vi. Importance 

Intermittent streams are ecologically important because they link the surrounding 

terrestrial catchment to downstream water bodies (Dodds 1997; Gomi et al. 2002; Rabeni 

1999).  They compose the bulk of drainage basins into which all water flows from the 

surrounding landscape, thus having a direct effect on downstream water quality (Gomi et 

al. 2002). These systems provide sediment, water, nutrients, and organic matter to 

downstream reaches. For example, a study by Dodds and Oakes (2006) showed that land 

use in an entire watershed, including streams which were dry most of the year, affected 

the water quality downstream. This is evidence that the management of intermittent 

streams may have more of an effect on water quality than management of perennial 

streams alone.  
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Intermittent streams, especially those located in prairie regions, have been a long 

neglected aspect in the study of ecology (Ward 1992). This is troubling considering that 

the majority of prairie stream stretches are of intermittent flow (Dodds 1997; Dodds et al. 

2004). Prairie streams show mostly intermittent flow because they occur in arid and semi-

arid landscapes (Dodds et al. 2004). In contrast, woody ecosystems have a much greater 

runoff, which makes woody streams more perennial (Dodds et al. 2004). Overall, Dodds 

(1997) found that grasslands in the U.S. have about as much runoff as forests because 

they cover a larger land area. Yet, forested streams still receive more attention from 

scientists than prairie streams (Dodds 1997).  

In recent years, agencies such as the Ohio EPA and the North Carolina Division 

of Water Quality have focused more intensively on the importance of intermittent 

streams. These and other agencies are researching the benefits intermittent streams 

provide and finding that management of them may be more effective on water quality 

than management of perennial streams alone. Such benefits include:  sediment control, 

nutrient control, flood control, wildlife habitat corridors, water and food supply, support 

of aquatic communities, and dissipation of energy flow (Naiman and Decamps 1997; 

Ohio EPA 2003; Reid and Ziemer 2005).  All of these benefits improve the habitat and 

water quality that exist downstream (Peterson et al. 2001; Dodds et al. 2004).  
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C.  Riparian Area Influence  

i. Riparian Zone 

The vegetation that grows adjacent to the stream constitutes the riparian habitat. 

This vegetation consists mostly of colonists adapted to hydric soils (Gregory et al. 1991). 

Due to frequent disturbances from hydrology, these areas are greater in plant species 

diversity then their upslope counterparts (Gregory et al. 1991).  

Gregory et al. (1991) state that, “Riparian zones are the interfaces between 

terrestrial and aquatic ecosystems.” The structure and function of this habitat is very 

important for the health and quality of the stream. Riparian habitat protects water quality, 

stream morphology, and provides habitat to a large variety of organisms (Ekness and 

Randhir 2007; Zale et al. 2005). Dodds and Oakes (2006) found that riparian cover had a 

great effect on water quality regulation over an entire watershed. The riparian zone is the 

only feature between the stream channels and all the organic and inorganic materials that 

are filtered down through the valleys.  

 

ii. Nutrient and Sediment Regulation 

A major function of riparian zones is as a buffer for nutrients that drain into the 

stream. Dissolved nutrients enter streams from terrestrial surroundings through 

groundwater (Gregory et al. 1991). Roots of riparian vegetation intercept these nutrients, 

which decreases the load entering the stream (Gregory et al. 1991). Less disturbed 

vegetation absorbs more nutrients (Dodds et al. 1996), whereas, cultivated land has no 

way of holding nutrients (Loehr 1974). Studies have shown that removal of riparian 
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habitat in forests increased nutrient export downstream (Likens et al. 1970; Hedin et al. 

1995). Vegetation not only buffers nutrients, but it also affects the sources of carbon and 

energy flow (Vannote et al. 1980) and the movement of dissolved ions and other particles 

that come from the surrounding watershed (Meybeck 1993).   

Along with buffering nutrients, riparian vegetation reduces sediment input, which 

can otherwise have a detrimental effect on the biota within the stream (Ward 1992). This 

is accomplished through root networks that hold soil together, and stems that reduce 

erosive action of flooding waters (Abt et al. 1994). Increases in sediment can fill 

interstitial places in the substrate, which removes the habitat of some invertebrate species 

(Zale et al. 1989). 

 

iii. Nutrient Inputs 

Riparian habitat provides detritus material that serves as the food base for 

intermittent streams (Gregory et al. 1991; Zale et al. 2005). The quantity and composition 

of detritus material is regulated by the riparian zone (Gregory et al. 1991) and influences 

the invertebrate community structure (Cummins 1974; Cummins et al. 1989). In most 

prairie streams, the headwaters lack a canopy (Gray and Johnson 1988; Matthews 1988; 

Wiley et al. 1990) leaving grasses and shrubs as the food base. However, some prairie 

streams run through small gallery forests such as those in the Prairie Coteau Escarpment 

Ecoregion of South Dakota (Rasmussen et al. 2008). In these streams, riparian areas 

produce woody debris, which creates variability in stream habitat and geomorphology 

(Gregory et al. 1991). Woody debris, along with other riparian characteristics, also 
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support retention of nutrients. Obstacles provided by woody debris and vegetation detain 

valuable nutrients that otherwise would be carried downstream before organisms can 

utilize them (Bilby 1981; Gregory et al. 1991). Channelization and other human induced 

stream modifications remove these retention devices and allow nutrient export 

downstream (Gregory et al. 1991). 

 

iv. Terrestrial Wildlife 

Riparian habitat is critical for wildlife because it “provides water, plant biomass, 

diversity of microhabitats, and migratory corridors” (Thomas et al. 1979). Corridors 

provide dispersal not only for wildlife but also for plants (Gregory et al. 1991). 

Headwaters were found to have a higher concentration of riparian habitat for most 

vertebrates then downstream reaches (Eckness and Randhir 2007). 

 

v. Temperature 

“Vegetation buffers temperature extremes” (Ward 1992), which has an effect on 

the biotic communities within the stream. This is controlled by canopy cover that can 

reduce or increase the amount of solar radiation entering the channel depending of 

canopy presence (Barton et al. 1985).   
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D. Protocols 

 Before the 1980’s, states used only physical and chemical data to report surface 

water quality for their biennial 305b reports (Heakin et al. 2006). Though the method had 

good intentions, it did not provide the data needed to evaluate biotic integrity. In 1991, 

the U.S. Environmental Monitoring and Assessment Program (EMAP) initiated efforts to 

provide a standard set of protocols for collection of national scale monitoring data (Blair 

2001). In 2000, EMAP-West was initiated to assess the condition and trends in aquatic 

ecosystems among the western states including South Dakota. EMAP-West focused 

primarily on wadeable streams. EMAP also developed methodology to support collection 

of physical, chemical, and biological data (Hughes 1993). 

Through various projects during the early years of EMAP, the first sets of 

protocols were developed for assessing wadeable streams. The purpose of these protocols 

was to: “(1) Document the procedures used in the collection of field data and various 

types of samples for the various research studies; and (2) provide these procedures for use 

by other groups implementing stream monitoring programs (Lazorchak et al. 1998).”  

The most recent EMAP protocol produced by EPA is the Western Pilot Study: 

Field Operations Manual for Wadeable Streams (Peck et al. 2006). The objective of this 

protocol is to efficiently assess and monitor the status, trends, and integrity of streams 

and rivers and thereby assist in meeting the goals of the Clean Water Act. The assessment 

methods described by Peck et al. (2006) were designed primarily for wadeable, perennial 

streams, but can be adjusted for use on headwater, intermittent streams. One section 

within this protocol focuses on physical habitat characterization. Physical habitat includes 
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those attributes that influence aquatic communities within streams (Lazorchak et al. 

1998). The parameters within this section were developed by Kaufmann (1993). He 

identified seven general physical habitat attributes important in influencing stream 

ecology: channel dimensions, channel gradient, channel substrate size and type, habitat 

complexity and cover, anthropogenic alterations, and channel-riparian interactions 

(Kaufmann 1993). Each measurement within these seven attributes can be directly or 

indirectly altered by anthropogenic activities. 

In recent years, research has confirmed their importance of intermittent streams to 

the biological integrity and water quality of the nation’s rivers and streams. With these 

advancements, Fritz et al. (2006) developed protocols specifically intended for use on 

headwater, intermittent streams. This protocol, “Field Operations Manual for Assessing 

the Hydrologic Permanence and Ecological Condition of Headwater Streams” (Fritz et al. 

2006), was designed to meet the same goals and objectives for stream assessment as that 

of Peck et al. (2006), but differs in design and the parameters measured. Both manuals 

measure water chemistry and biological communities, but they differ in the 

measurements for physical habitat characterization (Table 19). Peck et al. (2006) includes 

riparian habitat characterization whereas Fritz et al. (2006) does not. Fritz et al. (2006) 

includes hydrologic permanence measurements but Peck et al. (2006) does not. The 

metrics that aren’t included within Fritz et al. (2006) but are included in Peck et al. 

(2001) include:  riparian vegetation structure, in-stream cover for fish, algae, and aquatic 

macrophytes, human influences, legacy trees, and invasive alien plants. No formal 

comparison of habitat scores from these two protocols has been completed. 
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2. Research Objectives  

 

EPA supports two sets of stream assessment protocols that can be used by 

managers and agencies for characterizing intermittent streams. The key differences 

between them are physical habitat measurements. One protocol uses riparian habitat 

measurements while the other uses hydrologic permanence measurements. Both riparian 

habitat (Gregory et al. 1991; Dodds and Oaks 2006; Naiman and Decamps 1997) and 

hydrologic permanence (Dodds et al. 2004; Poff and Ward 1989; Poff et al. 1997) are 

known to influence stream condition. The objective of this study is to investigate 

differences between the physical habitat characterization sections of Peck et al. (2006) 

and Fritz et al. (2006) by: 1) comparing data types of the two protocols; 2) comparing 

how the two protocols assess intermittent streams using habitat quality index (HQI) 

scores; and 3) comparing stream characteristic emphases between the two protocols and 

their effect on overall HQI scores.  
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3. Methods and Materials 

 

A. Study Area 

This study was conducted within the Northern Glaciated Plains (NGP) level III 

ecoregion of South Dakota (Figure 3). This ecoregion is characterized by its glaciated 

landscape of flat to gently rolling hills (Bryce et al. 1998). The NGP has many temporary 

and seasonal wetlands. The climate is sub-humid with precipitation ranging from 

approximately 406-559 mm. The natural vegetation of the region is composed of mixed 

tall and short grass prairie, but much of the landscape has been tilled for agriculture. 

Small grains, hay, and pastureland are the main land uses in the ecoregion. 

 

Figure 3  Study area map showing the Northern Glaciated Plains Ecoregion boundary in gray with 
labeled level IV ecoregion boundaries. 
 

South Dakota Counties 
 
Northern Glaciated Plains Ecoregion 
 
Level IV Ecoregions 
     46c – Glacial Lakes Basins 

     46i – Drift Plains 
     46k – Prairie Coteau 

     46l – Prairie Coteau Escarpment 

     46m – Big Sioux Basin 
     46n – James River Lowland 

     46o – Minnesota River Prairie 
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Within the NGP ecoregion are seven level IV ecoregions (Figure 3) that further 

differentiate physiography, climate and land-use (Table 1).  

 
Table 1  Table listing the seven level IV ecoregions within the NGP and their physiographic 
characteristics (Bryce et al. 1998). 

Level IV Ecoregion 
Area 

(Km
2
)* 

Local Relief 

(m)* 
Geography 

Glacial Lakes Basins 9,283 0 – 9  Level glacial lake floors 

Drift Plains 40,427 0 – 61  
Flat with occasional “washboard” 

undulations 

Prairie Coteau 13,543 15 – 46 

Platform of hummocky, rolling 

terrain raised above surrounding 

drift plains  

Prairie Coteau 

Escarpment 
1,075 76 – 183 

Steep escarpment with broken 

topography from incised perennial 

and intermittent streams 

Big Sioux Basin 3,986 6 – 61 Rolling, erosional landscape 

James River 

Lowland 
23,898 3 – 46 

Level to slightly rolling plain 

composed of glacial drift 

Minnesota River 

Prairie 
2,139 50 – 30 Level to gently rolling plain 

* Area and elevation measurements include portions of North Dakota in which the ecoregions fall   
within.  
 

B. Site Selection 

Selection of the candidate stream reaches began with a total population of 2,849 

headwater stream watersheds delineated within the National Hydrography Dataset 

(NHD+)(USGS 2010). Streams included in this population all met the following criteria: 

 Strahler stream order = 1 based on a 1:100,000 scale NHD+ map 

 Stream is located within ≤ 10 km
2
 watershed 

 Seasonal loss of connected surface water and progressive drying along 

channel during most years 
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 Stream is contained within a defined channel with stream bed and bank 

features 

 Stream is not a lake outlet 

EPA’s Analytical Tools Interface for Landscape Assessments (ATtILA) was used 

to score all watersheds based upon landscape characteristics, riparian characteristics, 

human stressors, and physical characteristics (U.S. EPA 2001). Fifteen Geographic 

Information System (GIS) coverage (Table 2) along with four basic metrics were used to 

rank the condition of targeted intermittent streams.  

 

Table 2  GIS coverage’s and metrics used by ATtILA to develop disturbance scores. 
ArcView Coverage ATtILA Characteristic Group 

National Land Cover Data 2001 Human Stressors 

Ecoregion Boundaries Landscape Characteristics 

National Elevation Dataset Physical Characteristics 

2000 U.S. Census Block Dataset Riparian Characteristics 

South Dakota DOT Road Coverage  

NHD+ Flowline  

Superfund Sites  

Feedlot Point Coverage  

PRISM and NHD+ Precipitation Data  
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All streams were scored 0-100 with those scoring near zero being of high quality and 

those scoring near 100 in the poorest condition. After the NHD+ processing and ATtILA 

analysis, the total number of candidate reference streams were much more than could be 

sampled, so a probability-based selection method was used to select at random 40 streams 

from the candidate reference population. These streams were taken from the 15
th

 

percentile of the high quality ATtILA scores in each of the level IV ecoregions of the 

Northern Glaciated Plains. These stream reaches were representative of their respective 

region and comprised the reference sampling sites (Figure 4). 

 

C. Test Sites 

 In order to validate the reference site condition, twenty test sites were selected 

from the total NHD+ population discussed earlier (Figure 4). These twenty sites were 

selected independently of the candidate reference sites. Ten sites were selected at 

random, and the other ten were targeted sites selected through consultation with state 

officials. Water resource managers identified five targeted sites believed to be in 

excellent condition and five sites believed to be in poor condition. Judgments were based 

upon historical data and working knowledge of the study area.  
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Figure 4  Study area maps showing the locations of the 60 study sites categorized by site types.  
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D. Field Validation 

Field validation of the 60 sample sites was completed in the summer of 2007 to 

verify intermittency and quality of the stream. Each site was visited by a field crew for 

visual validation. Field crews used the North Carolina Division of Water Quality’s 

Identification Methods for the Origins of Intermittent and Perennial streams (NC 

Division of Water Quality 2005) and the Riparian, Channel, and Environmental 

Inventory for Small Streams in the Agricultural Landscape (Petersen 1992). The 

intermittency identification protocol uses geomorphologic, hydrologic, and biologic 

stream features, which can distinguish between ephemeral, intermittent, and perennial 

streams (NC Division of Water Quality 2005). Each indicator was scored and compared 

to a weighted scale of defined criteria for intermittent flow. The RCE uses physical and 

biological condition of small streams to assess stream quality (Petersen 1992). Each 

metric is scored and totaled on a scale, then classed as excellent, very good, good, fair, or 

poor. Both protocols were modified to address the variable hydrologic condition in which 

the streams were assessed. Both protocols had biological metrics that couldn’t be 

evaluated for those channels which were dry. Those indicators were eliminated in both 

protocols and index scores were recalculated. This allowed us to fairly compare flowing 

channels visited early with dry channels visited late in the summer. The data from these 

protocols were used to validate that the streams fell within the criteria for use within the 

study. Fifteen candidate streams were eliminated from the study using these two 

protocols.  
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E. Sampling 

 All 60 streams were sampled once per month from April to August 2008. 

Sampling protocols followed the habitat characterization sections provided by EPA’s 

standard protocols (Fritz et al. 2006 and Peck et al. 2006). The physical attributes that 

were measured included: channel dimensions, channel gradient, channel substrate, habitat 

complexity and cover, riparian vegetation cover and structure, anthropogenic alterations, 

channel-riparian interaction, and hydrologic permanence. A total of 66 habitat metrics 

from both protocols were evaluated monthly from each stream from April to August.  

 Habitat metrics were assessed along stream reach lengths of approximately 40 

times average wetted width (Peck et. al 2006). Riparian measurements (i.e. vegetation 

structure, alien plants) were measured using visualized 10 X 10 m plots at the upstream, 

middle, and downstream portions of the sample reach. In-stream cover for biota (i.e. 

macrophyte coverage, algae coverage), hydrologic permanence (i.e. substrate moisture, 

depth to groundwater), and bank measurements (angle, height, undercut) were measured 

within the channel at the upstream, middle and downstream reach locations. Wetted 

widths, cross-sectional substrate, and habitat classes were measured at 11 transects 

distributed evenly along the reach. Large woody debris tallies, thalweg depths, and modal 

sediment size were measured at 21 transects spaced evenly along the sample reach. 

Sinuosity and slope were taken using the entire reach length. 
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F. Analyses 

Data were summarized for each of the 60 reaches for each month sampled. There 

were four data types recorded: interval, ratio, ordinal, and nominal. Summaries of these 

data types were accomplished in two ways. The interval and ratio data were quantitative 

measurements allowing for calculations of within reach averages for the individual 

measurements at each site. The nominal and ordinal data measurements were qualitative. 

These measurements were summarized by calculating a within reach frequency of 

occurrence for each reach. The frequency of occurrence was based on the number of 

times a category was observed out of the total number of possible observations.  

Reference habitat quality index (HQI) scores for each of the 60 sites were developed 

for each protocol. Two forms of HQI scoring methods were constructed to account for 

the type of data collected. Unlike other methods, interval and ratio data were measured in 

a quantitative manner rather then being placed into discrete categories given 

predetermined index scores (i.e. RCE, Peterson 1992; RBP, Barbour et al. 1999). In order 

to avoid using these discrete categories, reference habitat values of test sites were 

compared to reference sites.  

Reference sites were sorted for each measurement by Level IV Ecoregion and by the 

month in which the measurement was taken. Ecoregions were assessed separately at the 

Level IV scale because of natural differences in physical habitat components among the 

Level IV regions (Rasmussen et al. 2008). Reference sites represent a distribution of 

possible conditions that might be expected to occur in the absence of significant human 

influences (Stoddard et al. 2006). Each condition or value resulting from a measurement 
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within a reference population will show variability from both sample error and 

naturalness in both space and time (Stoddard et al. 2006). A distribution of reference site 

values for each measurement within each ecoregion was generated. This reference 

distribution provided the basis for scoring test sites (Frappier and Eckert 2007). 

For each distribution of values, a median was calculated to represent the central-

tendency of the data (Figure 5). The median value of the reference value distribution was 

used for test site comparison. A 95% confidence interval (CI) around the median 

reference value was calculated using methods as described by Conover (1980) (Figure 5). 

Within the 95% CI, benchmarks were set for scoring purposes. Benchmarks were created 

by splitting each tail of the 95% CI into thirds. The ranges of these benchmarks took into 

account any non-normal distributions of the data as a result of using median as the central 

tendency value. This helped to maintain the representativeness of the distribution. Each 

benchmark range was assigned a score. “Choosing a scoring system is a balance between 

providing as much resolution as possible while recognizing that there is limited 

knowledge about the relationship between a change in the indicator and environmental 

effects” (Ladson et al. 1999).  The benchmark range closest to the median received a 

score of 6. The next two benchmarks in descending order received scores of 4 and 2, 

respectively. Any value that fell outside the 95% CI received a score of 0. By using this 

scoring system, resolution was provided by weighting the scores based on how far they 

deviated from the median reference value while maintaining the variability in condition 

that naturally occurs. This method also allowed for statistical significance (α = 0.05). 
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Depending on the parameter being measured, it was predetermined whether the 

parameter would be scored with a one-tail, or two-tailed 95% CI. If a parameter was 

determined to have a positive biological impact through either high or low values on 

either side of the median value, then the measurement was treated as a two-tailed index. 

If a parameter was determined to have a positive biological impact through only low 

values or only high values, then the measurement was treated as a one-tail index and 

scored accordingly.  

At this point, test site values were able to be compared to the reference distribution of 

values based on the deviation from the reference median. A score for that measurement 

was then assigned to the test site. This method is similar to a study that used Euclidean 

distance to compare reference sites to test sites (Frappier and Eckert 2007). The concept 

behind both methods is that as deviation from reference increases, index scores decrease 

(Frappier and Eckert 2007). A test value with a deviation greater than the 95% CI around 

the median for reference values would then fall outside of expected natural variation for 

reference conditions and therefore be considered degraded (Frappier and Eckert 2007).  
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Figure 5  This is a hypothetical representation of a non-normal distribution. The median line 
represents the central tendency of the data. The shaded areas represent 95% confidence intervals 
around the median. Each vertical line represents the benchmarks and the scores which were assigned 
to them. Notice that the bench mark ranges vary between the two tails of the 95% CI. 
 

Ordinal and nominal data were qualitative measurements that were placed into 

discrete categories in the field. A similar approach was used to score these data types. 

First, reference sites were sorted for each measurement by Level IV Ecoregion and by the 

month in which the site was visited. For each ecoregion, a frequency distribution of 

categorical variable occurrence was calculated for the reference sites by combining all 

five months of data (Figure 6). The same was done for each individual site within each 

ecoregion. These distributions were used to compare test sites to reference sites in order 

to detect degradation. The discriminatory power of the categorical variables between test 

sites and reference sites was measured using a Chi-square analysis (Hall et al. 2002). 
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Each test site response distribution was compared to the reference site distribution 

using a Chi-square analysis (Conover 1980). The resulting p-values from each test were 

used to determine the scores for each individual site. Benchmarks of alpha equal to 0.01, 

0.10, and 0.50 were used for scoring purposes. These benchmarks were chosen due to the 

great variability of stream characteristics that can be found at the scale in which the 

assessments were taken. By broadening the benchmarks, more discriminatory power was 

gained from the test. Any Chi-square test resulting in a p-value less then 0.01 received a 

score of 0. Any p-value less then 0.10 but greater then 0.01 received a 2. Any p-value less 

then 0.50 but greater then 0.10 received a 4, and any p-value greater then 0.50 received a 

score of 6. By using this scoring system, resolution was provided by weighting the scores 

based on how close the test site distributions matched the reference site distributions. 

This method also allows for statistical significance at multiple alpha levels. 
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Figure 6 This is a hypothetical representation of a reference distribution and test site distribution of 
categorical variable occurrence.  These two distributions would then be compared using a Chi-
square analysis. The scale below the distributions show how the resulting p-value would be used to 
score the measurement. 
 

Total HQI scores were then developed on a scale of 0-100% by summing individual 

metric scores from each protocol and dividing that score by the total possible score each 

protocol could receive. Reference streams were scored closest to 100% and impaired 

streams were closest to 0%. Once the final scores for each site were calculated, a Sign 

Test and a Wilcoxon Rank Sum Test (Analytical Software 2008) was used to compare the 

HQI scores between the two sets of protocols.  
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For the final analysis, the scores from each protocol were regressed on the scores 

from ATtILA, RCE, and chemical measurements (Analytical Software 2008) to test how 

the two protocols assessed streams on a gradient of condition. 
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4. Results 

A. Habitat Characterization 

i. Channel Geomorphology 

All seven ecoregions were low in gradient (Table 3) with glides (water moving 

slowly, with a smooth, unbroken surface [Kaufmann 2006]) composing the dominant 

channel unit habitat class (Table 5). Ecoregion 46l contained the greatest variety of in-

channel unit classes (Table 5). Pools were rare, occurring most frequently in Ecoregion 

46i (Table 5).  When pools occurred in all the ecoregions, they were shallow (Table 3) 

trench pools formed by unseen fluvial processes (Table 5). Ecoregion 46n contained the 

shallowest pools on average (Table 3;   = 16.2) while Ecoregion 46c contained the 

deepest (Table 3;   = 33.1). With characteristic shallow pools (Table 3) and glides 

(Table 3), the streams for all ecoregions contained fairly homogenous thalwegs (Table 3). 

Ecoregion 46c stream depths varied little (CV = 20.3 %), while those of Ecoregion 46i 

had the greatest depth variation (CV = 77.4 %). Bars in the channels were rare for all the 

ecoregions with the greatest frequency in Ecoregion 46l (FOC = 11.1%; Table 4). 

Streams of Ecoregions 46c and 46o contained no bars (Table 4). When bars were present 

in the channels they were < 1 meter in width on average (Table 3) with Ecoregion 46l 

having the largest average bar widths (  = 0.4 m). Backwater and side channels were 

also rare for all ecoregions (Table 4). Ecoregion 46o had the widest and shallowest 

channel dimensions on average (Bankfull width/depth   = 40.3 ), and Ecoregion 46i was 

the most uniform (Bankfull width/depth   =12.9 ; Table 3). Streams of all ecoregions 

showed little incision and contained flat banks with few undercuts (Tables 3 and 4). 
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Ecoregion 46c contained no undercuts and the flattest average bank angle (  = 10.5 º ) 

while Ecoregion 46i had the highest frequency of undercut occurrences (20.1%) and the 

steepest banks (  = 42.4º; Tables 3 and 4). Stream valleys were wide with Ecoregion 46i 

having the narrowest valley widths (  = 43.3 m; Table 3).  Despite having large valley 

widths, Ecoregion 46l streams had the narrowest average flood prone area (   = 8.7; 

Table 3). All seven ecoregions contained some sort of constraining feature within their 

valleys with Ecoregion 46l having the greatest portion of it’s streams constrained (  = 

61.4%; Table 3). Sinuosity was similar among all seven ecoregions with those of 

Ecoregion 46c containing the least amount of sinuosity on average despite containing the 

largest average valley widths (  = 1015.6 m) and largest average flood prone area (  = 

185.4 m; Table 3). 
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Table 3 Descriptive statistics for channel geomorphology measurements from both protocols 
categorized by level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Mean 0.00 0.03 0.02 0.03 0.02 0.03 0.02

SD 0.00 0.02 0.03 0.01 0.02 0.02 0.03

Variance 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Minimum 0.00 0.01 0.01 0.01 0.00 0.00 0.00

Median 0.00 0.03 0.01 0.04 0.02 0.02 0.00

Maximum 0.01 0.08 0.13 0.07 0.06 0.13 0.08

Mean 33.1 20.6 29.0 22.5 23.9 16.2 26.9

SD 21.7 22.5 21.9 17.5 16.9 26.5 28.4

Variance 469.3 507.8 477.5 305.9 285.0 700.9 808.6

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 36.0 15.0 24.5 24.0 24.0 7.0 22.0

Maximum 80.0 74.0 130.0 86.0 52.0 124.0 88.0

Mean 24.1 7.2 15.8 8.5 14.1 7.6 14.5

SD 19.5 12.4 16.2 8.2 13.0 14.2 20.2

Variance 381.9 154.3 260.9 66.6 169.6 201.3 407.5

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 22.0 0.0 11.0 7.5 12.0 2.0 6.0

Maximum 80.0 74.0 130.0 86.0 52.0 124.0 88.0

Mean 20.3 77.4 52.2 52.0 44.5 45.1 42.6

SD 14.1 80.0 53.5 37.1 61.6 74.1 44.9

Variance 198.7 6396.4 2863.3 1376.9 3793.6 5492.7 2018.7

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 18.9 64.8 36.7 52.4 29.7 25.8 34.1

Maximum 46.4 226.4 268.7 177.9 317.3 458.3 135.8

Mean 0.0 0.0 0.2 0.4 0.0 0.1 0.0

SD 0.0 0.6 1.2 2.0 0.3 1.2 0.0

Variance 0.0 0.4 1.5 3.9 0.1 1.3 0.0

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Maximum 0.0 10.0 13.0 20.0 6.0 30.0 0.0

Mean 29.6 12.9 22.7 23.0 20.7 19.6 40.3

SD 20.0 10.3 33.3 57.1 13.8 13.8 44.8

Variance 400.7 105.7 1108.8 3260.0 191.7 189.9 2010.0

Minimum 13.8 1.0 0.6 1.3 1.0 1.9 1.7

Median 22.8 12.1 8.6 8.5 18.1 16.0 23.0

Maximum 123.3 45.0 233.3 320.0 86.1 91.5 180.0

Mean 0.3 0.4 0.4 0.4 0.4 0.4 0.3

SD 0.2 0.2 0.6 0.3 0.3 0.3 0.2

Variance 0.0 0.0 0.3 0.1 0.1 0.1 0.0

Minimum 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.3 0.4 0.3 0.4 0.3 0.4 0.2

Maximum 0.8 0.9 6.9 1.2 1.2 1.6 0.8

Level IV EcoregionsDescriptive 

Statistics

Bar Width (m)

Bankful Width/

Depth Ratio (m)

Incised 

Height (m)

Slope (%)

Max Pool 

Depth (cm)

Thalweg 

Depth (cm)

Thalweg 

Heterogeneity 

(CV)
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Table 3 cont. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Mean 11.0 42.4 34.1 39.2 19.9 18.7 24.3

SD 7.0 48.1 36.3 33.4 27.3 28.6 40.2

Variance 49.1 2310.1 1319.9 1117.1 744.1 815.5 1617.8

Minimum 0.0 2.0 0.0 0.0 0.0 1.0 0.0

Median 10.0 18.5 20.0 30.0 10.0 10.0 10.0

Maximum 35.0 150.0 250.0 230.0 155.0 270.0 230.0

Mean 0.0 0.1 0.2 0.3 0.2 0.3 0.2

SD 0.0 0.0 0.1 0.2 0.2 0.3 0.1

Variance 0.0 0.0 0.0 0.0 0.1 0.1 0.0

Minimum 0.0 0.1 0.1 0.1 0.0 0.1 0.1

Median 0.0 0.2 0.2 0.2 0.1 0.2 0.2

Maximum 0.0 0.2 0.5 0.7 0.8 0.8 0.3

Mean 1015.6 43.3 112.6 227.0 484.1 352.3 566.7

SD 760.7 22.4 125.0 73211.0 573.3 518.4 311.6

Variance 578611.0 503.6 15622.0 535978.0 328698.0 268730.0 116667.0

Minimum 50.0 10.0 5.0 5.0 10.0 5.0 200.0

Median 1609.3 50.0 100.0 30.0 200.0 75.0 500.0

Maximum 1609.3 75.0 500.0 3218.7 1650.0 1609.3 1000.0

Mean 185.4 11.8 23.2 8.7 29.8 14.0 21.1

SD 222.1 11.7 28.6 6.4 50.6 17.6 26.1

Variance 29325.0 137.3 818.1 41.5 2555.8 308.7 680.3

Minimum 7.5 0.3 0.5 2.9 0.2 0.3 2.5

Median 16.0 8.7 12.3 6.3 12.5 8.3 10.8

Maximum 500.0 80.0 200.0 10.0 400.0 100.0 100.0

Mean 16.7 37.5 61.4 49.9 35.4 54.4 8.3

SD 24.4 33.0 41.1 29.8 40.7 47.9 6.5

Variance 595.2 1087.0 1686.3 885.2 1654.7 2299.0 41.7

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 25.0 75.0 50.0 25.0 100.0 10.0

Maximum 50.0 100.0 100.0 100.0 100.0 100.0 15.0

Mean 0.0 0.2 0.2 0.2 0.1 0.1 0.1

SD 0.0 0.1 0.2 0.1 0.2 0.1 0.2

Variance 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.1 0.1 0.2 0.1 0.1 0.0

Maximum 0.0 0.3 1.0 0.4 1.1 0.6 0.4

Level IV EcoregionsDescriptive 

Statistics

Sinuosity

Bank 

Angle (º)

Valley 

Width (m)

Bank 

Undercut (m)

Flood Prone 

Area Width (m)

Constraint (%)
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Table 4 Frequency of occurrence (%) for channel geomorphology structures analyzed by level IV 
ecorgion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Bar 0.0 0.4 3.0 11.1 0.3 3.5 0.0

Undercut 0.0 20.1 3.3 4.2 4.0 1.4 4.4

Side Channel 0.0 0.4 2.9 3.6 2.2 2.9 1.2

Backwater 0.6 0.4 1.6 7.5 5.9 0.5 0.6

Geomorphology

Strucutures

Level IV Ecoregions

Presence

(FOC%)

 

 
Table 5 Frequency of occurrence (%) for channel unit categories and pool forming categories 
analyzed by level IV ecoregion. 

Parameter Categories 46c 46i 46k 46l 46m 46n 46o

Pool Plunge 0.0 0.0 0.4 0.5 0.0 0.0 2.4

Trench Pool 4.8 18.9 9.2 7.3 9.3 9.5 6.1

Lateral Scour Pool 0.6 0.0 0.0 1.8 0.0 0.1 0.0

Backwater Pool 0.0 0.0 0.0 1.6 0.0 0.0 0.0

Impoundment Pool 0.0 0.0 0.6 2.5 0.0 0.3 0.0

Glide 87.9 25.0 71.3 52.0 65.7 46.7 51.5

Riffle 0.0 1.5 3.5 12.3 0.3 1.5 0.6

Dry Channel 6.7 54.5 14.9 21.8 23.9 41.9 36.4

No Pool 94.5 81.1 89.7 86.6 89.9 90.3 87.9

LWD 0.0 0.0 0.0 3.9 0.0 0.0 0.0

Rootwad 0.0 0.0 0.3 1.1 0.2 0.0 1.2

Boulder 0.0 0.0 1.0 2.3 0.0 0.0 1.8

Unknown 5.5 18.9 9.0 6.1 9.1 9.7 6.1

Level IV Ecoregions

Channel

Unit Code

(FOC%)

Pool Form

Code

(FOC%)

 

 

ii. Riparian Zones 

With the exception of Ecoregion 46l, (FOC = 72.3%), the occurrence of canopy 

coverage was sparse among the level IV ecoregions (Table 7). When canopies occurred, 

they were dominantly deciduous (Table 7). Within these deciduous canopy layers, big 

trees were the dominant canopy coverage for Ecoregion 46l while small trees were the 

dominant canopy coverage for Ecoregions 46n and 46o (Table 7). Canopy that actually 

covered the stream channel was sparse with Ecoregion 46l ( = 63.0%) exhibiting the 

greatest stream channel coverage (Table 6). Understory layers were more frequent than 

canopy layers and were dominated by very heavy non-woody herbs, grasses, and forbs, 
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and sparse to very heavy woody shrubs and saplings coverage (Table 8). Ecoregion 46l 

had a different understory structure with woody shrubs and saplings as the dominant 

vegetation cover and sparse non-woody herbs, grasses, and forbs coverage (Table 8). 

Ground cover was dominated by non-woody herbs, grasses and forbs (Table 9). Barren, 

bare dirt and duff ground cover was sparse to moderate, and streams in Ecoregion 46l had 

the greatest coverage (Table 9).  

 

Table 6 Descriptive statistics analyzed by level IV ecoregion using non-standard channel canopy 
coverage measurements (%) with a densiometer. 

Paremeter 46c 46i 46k 46l 46m 46n 46o

Mean 0.0 8.1 8.8 63.0 3.5 17.0 20.9

SD 0.0 25.2 26.1 45.3 18.1 33.1 39.0

Variance 0.0 634.8 683.6 2049.3 328.0 1095.7 1520.8

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 94.1 0.0 0.0 0.0

Maximum 0.0 100.0 100.0 100.0 100.0 100.0 100.0

Canopy 

Cover

(%)

Level IV EcoregionsDescriptive

Statistics

 

 
Table 7 Frequency of occurrence (%) for canopy vegetation types and coverage categories analyzed 
by level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Deciduous 0.0 0.0 8.1 72.3 0.0 15.5 24.4

Coniferous 0.0 0.0 0.0 0.0 0.0 4.2 0.0

Broadleaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mixed 0.0 0.0 0.0 0.0 0.0 3.9 0.0

None 100.0 100.0 91.9 27.3 100.0 76.4 75.6

Absent (0%) 100.0 100.0 93.3 39.9 100.0 89.4 85.6

Sparse (<10%) 0.0 0.0 1.2 6.3 0.0 5.1 2.2

Moderate (10-40%) 0.0 0.0 0.7 11.8 0.0 0.2 2.2

Heavy (40-75%) 0.0 0.0 1.0 6.3 0.0 1.2 6.7

Very Heavy (>75%) 0.0 0.0 3.8 35.3 0.0 4.2 3.3

Absent (0%) 100.0 100.0 92.6 42.9 100.0 79.9 73.3

Sparse (<10%) 0.0 0.0 2.9 11.3 0.0 0.5 1.1

Moderate (10-40%) 0.0 0.0 1.7 11.3 0.0 0.0 2.2

Heavy (40-75%) 0.0 0.0 0.7 12.2 0.0 2.3 8.9

Very Heavy (>75%) 0.0 0.0 2.1 21.8 0.0 17.4 14.4

Canopy Vegetation Type

(<5 m high)

(FOC%)

Big Tree

(Trunk >0.03 m DBH)

(FOC%)

Small Tree

(Trunk <0.03 m DBH)

(FOC%)

Vegetation Type/ 

Coverage Categories

Level IV Ecoregions
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Table 8 Frequency of occurrence (%) for understory vegetation types and coverage categories 
analyzed by level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Deciduous 11.1 39.6 21.7 80.3 1.5 8.6 33.3

Coniferous 0.0 0.0 0.0 0.0 0.0 5.3 0.0

Broadleaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mixed 0.0 0.0 0.0 0.0 0.0 12.0 0.0

None 88.9 60.4 78.3 18.9 98.5 74.1 66.7

Absent (0%) 88.9 60.4 77.6 18.5 99.4 74.3 66.7

Sparse (<10%) 0.0 5.6 8.3 4.2 0.3 6.0 3.3

Moderate (10-40%) 0.0 9.7 4.8 12.6 0.0 4.6 8.9

Heavy (40-75%) 2.2 24.3 3.8 16.4 0.0 7.4 16.7

Very Heavy (>75%) 8.9 0.0 5.5 47.9 0.3 7.6 4.4

Absent (0%) 2.2 13.2 15.2 33.6 28.4 23.4 20.0

Sparse (<10%) 2.2 0.0 2.6 22.7 5.6 5.3 4.4

Moderate (10-40%) 6.7 2.1 6.9 12.6 4.6 2.8 4.4

Heavy (40-75%) 0.0 31.9 8.1 12.6 3.4 8.8 20.0

Very Heavy (>75%) 88.9 52.8 67.1 17.6 58.0 59.7 51.1

Woody Shrubs & Saplings

(FOC%)

Non-Woody Herbs, Grasses, & 

Forbs

(FOC%)

Understory Vegetation Type 

(0.5 to 5 m high)

(FOC%)

Vegetation Type/ 

Coverage Categories

Level IV Ecoregions

 

 

Table 9 Frequency of occurrence (%) for ground cover vegetation types and coverage categories 
analyzed by level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Deciduous 11.1 41.0 22.6 81.9 0.0 6.7 28.9

Coniferous 0.0 0.0 0.0 0.0 0.0 3.7 0.0

Broadleaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mixed 0.0 0.0 0.0 0.0 0.0 11.1 0.0

None 88.9 59.0 77.4 17.2 100.0 78.5 71.1

Absent (0%) 0.0 0.0 1.4 0.0 0.6 0.7 0.0

Sparse (<10%) 0.0 0.0 0.2 13.0 0.6 3.5 0.0

Moderate (10-40%) 0.0 0.0 1.7 12.6 0.0 5.8 2.2

Heavy (40-75%) 2.2 2.1 5.5 23.9 3.1 11.3 3.3

Very Heavy (>75%) 97.8 97.9 91.2 50.0 95.7 78.7 94.4

Absent (0%) 93.3 97.9 87.4 29.4 96.3 69.4 95.6

Sparse (<10%) 0.0 2.1 5.2 23.9 2.2 9.3 3.3

Moderate (10-40%) 4.4 0.0 4.8 20.6 0.9 6.9 0.0

Heavy (40-75%) 2.2 0.0 1.7 9.2 0.0 10.4 0.0

Very Heavy (>75%) 0.0 0.0 1.0 16.0 0.6 3.9 1.1

Barren, Bare Dirt

or Duff Ground Cover

(FOC%)

Ground Cover Vegetation Type

(<0.5 m high)

(FOC%)

Non-woody Herbs, Grasses, & 

Forbs

(FOC%)

Vegetation Type/ 

Coverage Categories

Level IV Ecoregions

 

 

Legacy trees were sparse among the ecoregions (Table 10) and varied in their 

average distances from the stream, with Ecoregion 46c legacy trees being located the 

farthest from the channel (  = 69.3 m; Table 10). Legacy trees were deciduous with 

high frequencies of poplar/cotton wood within Ecoregions 46c and 46k, high frequencies 

of willow within Ecoregion 46m and  high frequencies of “other” groups in Ecoregions 
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46i, 46l, 46n and 46o (Table 10). Larger trees occurred in Ecoregions 46k (0.3-0.75 m 

DBH = 46.3%; 15-30 m height = 51.2%) and 46l (0.3-0.75 m DBH = 83.8%; 15-30 m 

height = 74.3%) and smaller trees occurred in Ecoregions 46i (0-0.01 m DBH = 75.9%; 

5.0-15 m height = 58.6%) 46m (0.1-0.3 m DBH = 66.7%; 5.0-15 m height = 75.0%) and 

46o (0.1-0.3 m DBH = 66.7%; 5-15 m height = 100%; Table 10). 

 

Table 10  Frequency of occurrence (%) for legacy tree presence, size and type categories, and 
descriptive statistics for distance from wetted margin analyzed by level IV ecoregion. 

Parameter Categories 46c 46i 46k 46l 46m 46n 46o

Legacy Tree (FOC%) Presence 5.8 7.8 22.0 29.2 3.3 27.6 4.2

Mean 69.3 35.0 28.8 8.6 41.7 22.5 5.8

SD 40.8 19.5 24.9 6.2 12.3 20.0 6.8

Variance 1660.7 378.6 622.2 37.8 151.5 401.5 46.0

Minimum 50.0 0.0 0.0 2.0 25.0 0.0 0.0

Median 50.0 50.0 25.0 7.0 50.0 20.0 2.0

Maximum 150.0 60.0 100.0 40.0 50.0 70.0 20.0

0-0.1 0.0 75.9 12.2 0.0 0.0 1.0 0.0

0.1-0.3 28.6 24.1 35.4 16.2 66.7 33.3 66.7

0.3-0.75 71.4 0.0 46.3 83.8 33.3 65.7 33.3

0.75-2.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0

<5 0.0 41.4 6.1 0.0 0.0 3.0 0.0

5.0-15 85.7 58.6 42.7 20.0 75.0 60.6 100.0

15-30 14.3 0.0 51.2 74.3 25.0 36.4 0.0

>30 0.0 0.0 0.0 5.7 0.0 0.0 0.0

Deciduous 100.0 100.0 93.9 100.0 100.0 88.9 100.0

Coniferous 0.0 0.0 0.0 0.0 0.0 11.1 0.0

Broadleaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Evergreen 0.0 0.0 6.1 0.0 0.0 0.0 0.0

Ash 0.0 0.0 0.0 11.4 0.0 26.3 0.0

Oak 0.0 0.0 0.0 25.7 0.0 1.0 0.0

Poplar/Cottonwood 71.4 0.0 34.1 8.6 33.3 0.0 0.0

Willow 14.3 13.8 20.7 0.0 66.7 20.2 0.0

Unknown/Other Deciduous 14.3 86.2 32.9 54.3 0.0 44.4 100.0

Cedar/Cypress/Sequoia 0.0 0.0 0.0 0.0 0.0 8.1 0.0

Juniper 0.0 0.0 6.1 0.0 0.0 0.0 0.0

Snag 0.0 0.0 4.9 0.0 0.0 0.0 0.0

Level IV Ecoregions

Taxanomic Category

(FOC%)

Distance from 

Wetted Margin (m)

DBH (m)

(FOC%)

Height (m) 

(FOC%)

Type

(FOC%)
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Among the ecoregions, riparian human influences were dominated by 

pasture/range/hayfields occurring mostly on the banks (Table 11). Row crops occurred 

most often in Ecoregions 46o and 46c at >10m from bank and the least in Ecoregion 46k 

(Table 11). Ecoregion 46l had the least occurrences of human disturbances while 

Ecoregion 46n had high occurrences (Table 11). 
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Table 11 Frequency of occurrence (%) for distance categories of different human influences  
analyzed by level IV ecoregion. 

Parameters 46c 46i 46k 46l 46m 46n 46o

Absent 67.8 83.3 88.1 99.6 87.0 91.0 91.1

>10 m 30.0 11.1 4.5 0.4 13.0 2.3 2.2

Within 10 m 1.1 0.0 0.0 0.0 0.0 0.0 0.0

On Bank 1.1 5.6 7.4 0.0 0.0 6.7 6.7

Absent 100.0 97.2 95.2 100.0 96.9 94.7 100.0

>10 m 0.0 2.8 4.8 0.0 3.1 4.9 0.0

Within 10 m 0.0 0.0 0.0 0.0 0.0 0.0 0.0

On Bank 0.0 0.0 0.0 0.0 0.0 0.5 0.0

Absent 100.0 100.0 99.5 100.0 100.0 100.0 100.0

>10 m 0.0 0.0 0.5 0.0 0.0 0.0 0.0

Within 10 m 0.0 0.0 0.0 0.0 0.0 0.0 0.0

On Bank 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Absent 86.7 100.0 78.1 100.0 96.3 75.7 91.1

>10 m 13.3 0.0 21.9 0.0 3.7 15.5 8.9

Within 10 m 0.0 0.0 0.0 0.0 0.0 6.5 0.0

On Bank 0.0 0.0 0.0 0.0 0.0 2.3 0.0

Absent 100.0 100.0 98.1 100.0 100.0 98.8 100.0

>10 m 0.0 0.0 1.9 0.0 0.0 0.2 0.0

Within 10 m 0.0 0.0 0.0 0.0 0.0 0.9 0.0

On Bank 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Absent 92.2 99.3 97.1 99.2 95.1 91.4 100.0

>10 m 7.8 0.0 1.7 0.8 2.2 6.3 0.0

Within 10 m 0.0 0.7 1.2 0.0 1.2 1.9 0.0

On Bank 0.0 0.0 0.0 0.0 1.5 0.5 0.0

Absent 100.0 100.0 100.0 100.0 98.8 100.0 100.0

>10 m 0.0 0.0 0.0 0.0 1.2 0.0 0.0

Within 10 m 0.0 0.0 0.0 0.0 0.0 0.0 0.0

On Bank 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Absent 60.0 84.7 96.4 83.8 90.7 84.5 53.3

>10 m 34.4 11.1 3.6 3.3 8.0 5.1 30.0

Within 10 m 5.6 0.0 0.0 0.0 1.2 6.7 16.7

On Bank 0.0 4.2 0.0 12.9 0.0 3.7 0.0

Absent 18.9 8.3 7.1 15.8 0.0 19.9 33.3

>10 m 3.3 16.7 0.0 0.0 0.0 0.5 0.0

Within 10 m 4.4 0.0 2.9 0.0 0.0 3.2 0.0

On Bank 73.3 75.0 90.0 84.2 100.0 76.4 66.7

Level IV EcoregionsDistance

Categories

Wall/Dike/Riprap/Dam

(FOC%)

Buildings

(FOC%)

Pavement/Cleared Lot

(FOC%)

Road/Railroad

(FOC%)

Pasture/Range/Hayfield

(FOC%)

Pipes

(FOC%)

Landfill/Trash

(FOC%)

Park/Lawn

(FOC%)

Row Crops

(FOC%)
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Ecoregion 46l sites had the lowest alien plant occurrences while Ecoregion 46o 

had the most (Table 12). Ecoregion 46n had the greatest variety of alien species. 

Ecoregion 46o had the highest frequency of canada thistle, leafy spurge and common 

burdock occurrences. 46n had the greatest cheat grass occurrence and 46m had the 

greatest musk thistle occurrence.  

 

Table 12 Frequency of occurrence (%) of different alien plant species analyzed by level IV ecoregion. 

Alien Plants (FOC%) 46c 46i 46k 46l 46m 46n 46o

Canada Thistle 22.2 16.7 23.3 15.0 16.0 21.3 26.7

Leafy Spurge 0.0 0.0 4.3 0.0 0.6 5.1 6.7

Common Burdock 0.0 0.0 0.0 0.0 0.0 0.9 4.4

Cheat Grass 4.4 1.4 0.0 0.0 0.0 15.3 0.0

Musk Thistle 0.0 2.8 3.8 0.0 14.8 1.9 0.0

None 73.4 79.1 68.6 85.0 68.6 44.5 37.8

Level IV Ecoregions

 

 

iii. Stream Substrate 

Soft/small sediment was present at 96-100% of the transects for all ecoregions 

(Table 13). Using Peck’s cross-sectional substrate method, substrate class “other” was the 

most frequently occurring substrate followed by silt/clay/muck for all ecoregions (Table 

13). Ecoregion 46l had the highest frequency of larger substrates such as boulders, 

cobble, coarse gravel, and fine gravel (Table 13). Using Fritz’s modal sediment size 

method, substrate class sand, silt and clay was the most frequently occurring category for 

all ecoregions (Table 13). Ecoregion 46l again had higher occurrences for the larger 

substrates than the other ecoregions (Table 13). Ecoregion 46m had the lowest average 

percent embeddedness (  = 29%) and Ecoregion 46n had the highest (  = 74%) (Table 

14). 
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Table 13 Frequency of occurrence (%) for soft/small sediment and substrate size classes analyzed by 
level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Soft/Small Sediment 

(FOC%)

Presence 100.0 100.0 98.0 96.0 99.0 100.0 100.0

Smooth Bedrock (>4000 mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rough Bedrock (>4000 mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Boulder (250-4000 mm) 0.1 0.4 1.7 6.5 0.2 0.2 1.1

Cobble (64-250 mm) 0.0 0.8 1.7 8.0 0.4 0.2 0.4

Coarse Gravel (16-64 mm) 0.0 0.5 1.2 7.2 0.6 0.3 3.2

Fine Gravel (2-16 mm) 0.0 0.5 2.4 8.8 0.5 1.1 0.4

Sand (0.6-2 mm) 0.0 0.8 4.9 14.2 0.8 7.5 0.6

Silt/Clay/Muck (<0.6 mm) 10.1 28.2 16.7 32.0 12.0 29.4 22.7

Hardpan 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Wood 0.0 0.1 0.4 1.4 0.0 0.2 0.0

Other 89.8 68.6 71.0 21.6 85.6 61.1 71.6

Bedrock/Hardpan (>512 mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Boulder (256-512 mm) 0.0 0.0 0.9 3.2 0.0 0.0 0.3

Large cobble (128-256 mm) 0.0 0.4 1.0 1.8 0.0 0.0 0.0

Small cobble (64-128 mm) 0.0 0.0 0.5 5.0 0.0 0.1 0.0

Large pebble (32-64 mm) 0.0 0.2 0.5 5.7 0.1 0.0 0.6

Small pebble (16-32 mm) 0.0 0.0 1.4 6.2 0.2 0.1 1.3

Coarse gravel (8-16 mm) 0.0 0.4 2.4 7.6 1.2 0.3 2.5

Medium gravel (4-8 mm) 0.0 1.4 1.9 6.4 0.3 0.4 1.9

Fine gravel (2-4 mm) 0.0 0.8 4.3 10.4 0.9 0.3 1.0

Sand, silt, and clay (≤2 mm) 100.0 96.8 87.0 53.6 97.4 98.9 92.4

Substrate 

Cross-Sectional

(FOC%)

Modal Sediment Size 

(FOC%)

Level IV EcoregionsSubstrate

Categories

 

Table 14  Descriptive statistics analyzed by level IV ecoregion for estimated substrate percent 
embeddedness. 

Parameter Descriptive 46c 46i 46k 46l 46m 46n 46o

Mean 48.2 66.2 49.8 69.2 29.3 74.1 59.0

SD 50.0 47.0 49.2 42.4 45.3 43.6 48.7

Variance 2497.1 2210.6 2424.5 1800.2 2051.1 1901.5 2373.3

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 100.0 50.0 100.0 0.0 100.0 100.0

Maximum 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Embeddedness (%)

Level IV Ecoregions

 

 

iv. In-stream Cover and Biota 

Coarse organic debris occurred at over 94% of the transects for all seven 

ecoregions (Table 15). Overhanging vegetation was the most frequently occurring cover 

class followed by brush/small woody debris (Table 15). Filamentous algae cover 

occurred frequently in Ecoregion 46k, but was very sparse in Ecoregion 46o. Macrophyte 

coverage was heavy in Ecoregion 46c but sparse in Ecoregion 46l, whereas live trees or 

roots were heavy in Ecoregion 46l and sparse in Ecoregion 46c (Table 15). Big woody 
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debris was sparse for all ecoregions with the exception of Ecoregion 46l. Large woody 

debris counts were low among the ecoregions. Ecoregion 46l had the highest average 

LWD counts (   = 0.2 counts/transect) while debris was absent from Ecoregions 46i, 

46m and 46o (Table 16). 

 

Table 15 Frequency of occurrence (%) for coarse organic debris presence and in-stream cover 
categories analyzed by level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Coarse Organic Debris

(FOC%)

Presence 100.0 100.0 99.0 94.0 96.0 96.0 99.0

Absent 57.8 48.6 45.2 55.8 63.6 61.6 75.6

Sparse 26.7 22.2 19.0 29.2 19.8 19.4 2.2

Moderate 0.0 11.1 12.4 8.3 6.2 10.2 4.4

Heavy 0.0 11.1 8.1 5.8 7.4 4.6 8.9

Very Heavy 15.6 6.9 14.3 0.8 3.1 4.2 8.9

Absent 2.2 52.8 48.1 80.8 53.7 60.2 60.0

Sparse 31.1 29.2 20.5 10.0 19.8 19.0 26.7

Moderate 0.0 5.6 15.7 1.7 5.6 9.3 2.2

Heavy 6.7 2.8 9.5 3.3 6.2 7.4 11.1

Very Heavy 60.0 9.7 5.2 4.2 14.8 4.2 0.0

Absent 97.8 100.0 90.5 58.3 100.0 87.5 100.0

Sparse 2.2 0.0 3.8 26.7 0.0 9.7 0.0

Moderate 0.0 0.0 3.8 6.7 0.0 2.8 0.0

Heavy 0.0 0.0 0.5 6.7 0.0 0.0 0.0

Very Heavy 0.0 0.0 0.5 1.7 0.0 0.0 0.0

Absent 24.4 4.2 5.2 9.2 10.5 5.1 15.6

Sparse 35.6 8.3 10.5 34.2 3.1 22.7 13.3

Moderate 8.9 20.8 22.9 38.3 8.6 19.9 4.4

Heavy 8.9 31.9 24.8 17.5 25.9 14.4 2.2

Very Heavy 22.2 34.7 35.7 0.8 51.9 38.0 64.4

Absent 95.6 86.1 83.8 39.2 93.8 89.4 88.9

Sparse 0.0 5.6 5.7 35.0 2.5 5.6 8.9

Moderate 0.0 8.3 9.0 24.2 3.7 3.7 2.2

Heavy 4.4 0.0 0.5 1.7 0.0 1.4 0.0

Very Heavy 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Absent 0.0 4.2 13.3 49.2 18.5 9.3 26.7

Sparse 2.2 15.3 16.2 24.2 6.8 33.3 4.4

Moderate 11.1 20.8 9.0 11.7 8.6 12.0 15.6

Heavy 20.0 23.6 17.1 8.3 17.3 12.5 8.9

Very Heavy 66.7 36.1 43.3 6.7 48.8 32.9 44.4

Level IV EcoregionsCoverage

Categories

Live Trees or Roots

(FOC%)

Overhanging Vegetation

(≤1 m of surface)

(FOC%)

Filamentous Algae

(FOC%)

Macrophyte

(FOC%)

Big Woody Debris

(>0.3 m)

(FOC%)

Brush/Small 

Woody Debris

(<0.3 m)

(FOC%)
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Table 16 Descriptive statistics analyzed by level IV ecoregion for LWD counts. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Mean 0.0 0.0 0.0 0.2 0.0 0.0 0.0

SD 0.0 0.0 0.1 0.2 0.0 0.1 0.0

Variance 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Maximum 0.0 0.0 0.3 0.8 0.0 0.4 0.0

Large Woody Debris

(≥0.1 m diameter & ≥1.5 

m length)

Level IV EcoregionsDescriptive

Statistics

 

 

v. Stream Hydrology 

Some sites (15%) flowed throughout the sample period. The other 85% showed 

some sort of drying or dry phase during the sampling season. Ecoregion 46l streams had 

the highest average velocity (   = 0.06 m/s) and the highest frequency of erosional 

habitat (Tables 17 and 18). On average, stream sites contained little water based on the 

small thalweg width/depth ratios (Table 17). Ecoregion 46i contained the least amount of 

water with an average thalweg width/depth ratio of 0.1, average depth to groundwater of 

7.3 cm below ground and an average substrate moisture of 55.6% (Tables 18 and 19). 
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Table 17 Descriptive statistics analyzed by level IV ecoregion for hydrologic permanence 
measurements. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Mean 0.00 0.02 0.05 0.06 0.03 0.04 0.05

SD 0.01 0.05 0.10 0.16 0.07 0.08 0.09

Variance 0.0001 0.002 0.01 0.03 0.01 0.01 0.01

Minimum -0.03 -0.05 -0.05 -0.06 -0.06 -0.15 -0.02

Median 0.00 0.00 0.00 0.01 0.00 0.01 0.00

Maximum 0.05 0.18 0.75 2.13 0.56 0.45 0.40

Mean 0.3 0.1 0.4 0.2 0.2 0.2 0.2

SD 0.2 0.2 2.3 0.5 0.3 0.5 0.2

Variance 0.0 0.1 5.2 0.3 0.1 0.2 0.1

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.3 0.0 0.1 0.1 0.2 0.1 0.1

Maximum 1.4 3.2 60.8 8.0 3.4 7.2 1.2

Mean 25.2 -7.3 12.9 9.6 12.9 1.5 3.1

SD 25.4 38.9 20.9 6.6 21.9 33.7 40.8

Variance 644.1 1512.2 437.1 43.8 477.8 1138.6 1664.1

Minimum -78.0 -87.0 -87.0 0.0 -64.0 -82.0 -86.0

Median 24.0 6.0 11.0 9.0 14.0 4.0 9.5

Maximum 80.0 54.0 106.0 32.0 50.0 124.0 70.0

Mean 87.2 55.6 88.3 86.3 81.0 62.7 68.7

SD 29.0 42.2 26.5 29.8 32.0 40.1 37.7

Variance 843.7 1782.3 699.7 889.6 1026.8 1607.2 1422.9

Minimum 19.2 2.2 17.6 13.6 11.4 2.1 11.7

Median 100.0 24.1 100.0 100.0 100.0 100.0 100.0

Maximum 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Level IV EcoregionsDescriptive 

Statistics

Velocity (m/s)

Thalweg Width/Depth Ratio (cm)

Depth to Groundwater (cm)

Substrate Moisture (%)

  

 

Table 18 Frequency of occurrence (%) for habitat types analyzed by level IV ecoregion. 

Parameter 46c 46i 46k 46l 46m 46n 46o

Erosional 0.0 5.0 21.4 33.2 18.8 24.3 14.2

Depositional 100.0 95.0 78.6 66.8 81.2 75.7 85.8

Habitat 

Type

Level IV EcoregionsHabitat

Categories
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B. Protocol Metric Comparison 

An analysis of the two protocols revealed differences in their measurements 

(Table 19). There were 51 measurements composing the physical habitat section of 

Peck’s protocol and only 15 measurements from Fritz. There were 44 measurements 

included in Peck but not in Fritz, and only 8 measurements included in Fritz that were not 

included in Peck. One measurement, substrate size, was measured in both protocols using 

different methods. This caused different results for substrate size characterizations. 

Peck’s protocol uses a cross-sectional method (Peck et al. 2006) whereas Fritz uses a 

modal particle size method (Fritz et al. 2006). Each method has its own substrate size 

classes. Substrate size class “other” (i.e. leaves, macrophytes, filamentous algae) was the 

most frequently occurring class using Peck’s protocol (Table 20). There was also a higher 

frequency of larger substrate size class occurrences using Peck’s protocol. Substrate size 

class “sand, silt, and clay” was the most frequently occurring using Fritz’s protocol.  
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Table 19  A comparison of substrate size class characterization methods using frequency of size class 
occurrence for all 60 sampled streams. Cross-sectional substrate is used by Peck and modal sediment 
size is used by Fritz. 
 
PECK FRITZ

Cross-Sectional Substrate FOC% Modal Sediment Size FOC%

Boulder (250-4000 mm) 1.5 Boulder (256-512 mm) 0.7

Cobble (64-250 mm) 1.7 Large Cobble (128-256 mm) 0.5

Coarse Gravel (16-64 mm) 1.7 Small Cobble (64-128 mm) 0.8

Fine Gravel (2-16 mm) 2.2 Large Pebble (32-64 mm) 1.0

Sand (0.6-2 mm) 5.2 Small Pebble (16-32 mm) 1.3

Silt/Clay/Muck (<0.6 mm) 22.0 Coarse Gravel (8-16 mm) 2.1

Hardpan 0.0 Medium Gravel (4-8 mm) 1.7

Wood 0.3 Fine Gravel (2-4 mm) 2.8

Other 65.3 Sand, Silt, and Clay (≤2 mm) 89.0  

 

An analysis of the two protocols also revealed differences in their data 

characteristics (Table 19).  Peck utilizes mostly qualitative data while Fritz utilizes 

mostly quantitative data to assess habitat condition (Figure 7). Peck’s measurements 

yielded various data types: ratio (n = 14), interval (n = 2), ordinal (n = 23), and nominal 

(n = 12). Fritz’s measurements differed by yielding mostly ratio (n = 10) data types with 

2 measurements using interval data and 3 using nominal data.  



 

 

48 

0%

10%

20%

30%

40%

50%

60%

70%

Nominal Ordinal Interval Ratio

Data Type

%
 M

ea
su

re
m

en
ts

Peck (n = 51) Fritz (n = 15)
 

Figure 7  Bar graph showing the percent of the total measurements that fall within each data type for 
each protocol. 
 

D. HQI Scores 

Reference HQI scores generated from Fritz metrics (  = 71%) were consistently 

higher then Peck’s HQI’s (  = 63%)(Table 21).  A sign test comparing the reference 

HQI scores for the two protocols yielded 34 negative differences and 6 positive 

differences (p < 0.01).  A Wilcoxon Rank Sum Test supported the sign test revealing 

reference HQI scores were consistently higher using Fritz versus Peck (p < 0.01) (Figure 

8).  

 
Table 20 Summary statistics  of total reference HQI scores for Peck and Fritz protocols. 
Protocol Mean SD Variance Minimum Median Maximum

Peck (%) 63.0 10.3 105.0 42.0 65.0 81.0

Fritz (%) 71.0 10.3 106.9 51.0 69.0 93.0  
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Figure 8 Box and whisker plot of total reference HQI scores for each protocol. 

 

Peck’s protocol had 12 metrics in the channel geomorphologic class which 

accounted for 24% of the total HQI score (Figure 9); whereas Fritz’s protocol had only 6 

metrics in this class accounting for 43% of the total HQI score. There were 25 metrics 

within the riparian-zone class which accounted for 51% of Peck’s total HQI score (Figure 

9), compared to only 1 metric in this class for Fritz accounting for 7% of the total HQI 

score. Within the substrate class, Peck’s protocol had 3 metrics accounting for 6% of the 

total HQI score (Figure 9); whereas, Fritz’s protocol had only1 metric accounting for 7% 

of the total HQI score. There were 7 metrics within the in-stream cover and biota class 

which accounted for 14% of  Peck’s total HQI score (Figure 9), compared to only 1 

metric in this class for Fritz accounting for 7% of the total HQI score. Within the 

hydrologic category, Peck’s protocol had only 2 metrics, accounting for 4% of the total 
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HQI score; whereas, Fritz’s protocol had 5 metrics, accounting for 36% of the total HQI 

score. Specific metrics within each stream characteristic categories are listed in Table 22. 
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Figure 9 Bar graph showing the percent each stream characteristic category contributed to the total 
HQI scores for each protocol. 
 

Channel geomorphology (p<0.26), in-stream cover and biota (p<0.20), and 

hydrology (p<0.44) categories scored no differently for reference streams between the 

two protocols (Figure 10). However, riparian (p<0.01) and substrate categories (p <0.01) 

scored significantly lower for reference streams using Peck’s protocol (Figure 10). Fritz’s 

protocol also appears to generate greater variation than Peck’s protocol for substrate and 

in-stream cover classes.  



 

 

51 



 

 

52 

 

Figure 10 Box and whisker plots of total HQI scores for each stream characteristic category 
calculated for each protocol. Variable labels are defined as: geo = channel geomorphology, rip = 
riparian zone, sub = substrate, incover = in-stream cover, hyd = hydrology, 1 = Peck, and 2 = Fritz.    

 

 Targeted good, targeted bad, and randomly selected site HQI scores for both 

protocols were compared to ATtILA generated watershed condition scores and RCE 

generated reach scale condition scores (Figures 11 and 12).  Peck’s HQI scores decreased 

as watershed condition (ATtILA) decreased, however the slope is not significant (p < 

0.25, R
2
 = 0.07; Figure 11). Fritz’s HQI scores increased slightly as watershed condition 

decreased; however, the slope was also not significant (p < 0.73, R
2
 = 0.01; Figure 11).  
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Figure 11  Scatter plot with trend line comparing targeted good, targeted bad, and randomly selected 
site HQI scores for each protocol over ATtILA generated watershed condition scores.  
 

Peck’s HQI scores increased as Petersen RCE scores increased, however the slope was 

not significant (p < 0.12, R
2
 = 0.13; Figure 12). In contrast, Fritz’s HQI scores decreased 

slightly with increasing Petersen RCE values; however, this slope was also not significant 

(p < 0.59, R
2
 = 0.02; Figure 12).  
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Figure 12  Scatter plot with trend line comparing targeted good, targeted bad, and randomly selected 
site HQI scores for each protocol over RCE generated reach scale condition scores. 

 

 Randomly selected HQI scores for Peck and Fritz were compared to the following 

water quality parameters using linear regression: total kjeldahl nitrogen, nitrate, 

ammonia, total phosphorus, fecal coliform, chloride, turbidity, dissolved oxygen, 

conductivity, pH, total suspended solids, total dissolved solids, and water temperature. 

There were no significant correlations between the two protocols’ HQI scores and the 

water quality parameters.  
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Discussion 

 

A. Level IV Ecoregion Characterization 

Analysis of stream assessments revealed higher variability in stream 

characteristics within the NGP ecoregion. These physical differences between streams 

can be explained by the NGP’s defining landscape characteristics (Omernik 1987; Bryce 

et al. 1998).  When grouped by Level IV ecoregion, stream characteristics show greater 

similarity. Measurements did not distinguish all of the ecoregions from one another. 

However, measurements were able to distinguish one or two ecoregions from the group. 

For example, season long average depth to ground water was positive (above ground) for 

all ecoregions except for the Drift Plains (46i) ecoregion which averaged 7.3 cm below 

ground. The Prairie Coteau Escarpment (46l), in particular, seemed to be distinguished 

more often than the other ecoregions. This ecoregion is defined by its much steeper 

stream gradient (Bryce et al. 1998) causing it to have significantly different 

characteristics from the other ecoregions. These observations tend to support suggestions 

that some ecoregions are more homogeneous while others exhibit greater within-region 

heterogeneity (Omernik 1987; Troelstrup and Perry 1990).  

Physical measurements are key components used by agencies to set stream 

management goals (Plafkin et. al. 1989; Rheinhardt et al. 1999; Wang et al. 1996). For 

example, the Prairie Coteau Escarpment (46l) is characterized as having a riparian 

canopy layer, whereas streams of the Prairie Coteau (46k) generally do not. Even though 

a riparian canopy layer is considered beneficial for a stream (Gregory et al. 1991; 



 

 

56 

Vannote et al. 1980), the lack of a canopy layer in Prairie Coteau (46k) streams does not 

mean they are degraded (Wiley et al. 1990). Therefore, depending on ecoregion size and 

variability among its defining characteristics, agencies may find it necessary to develop 

baseline data and management goals by level IV ecoregion. Research by Bryce and 

Clarke (1996) supports that regionalization at the state level (level IV) provides the scale 

at which streams should be characterized.  

 

B. Metric Comparison 

Peck’s protocol has more habitat characterization metrics then does Fritz’s, 

increasing the ability to detect habitat degradation. However, some metrics in Peck’s 

protocol overlapped. For example, “large woody debris counts” and “in-stream big 

woody debris abundance” both measured woody organic matter. “Legacy tree” and 

“canopy riparian vegetation cover” both assessed the influence of large riparian trees. 

Streams that contained riparian areas comprised of tall grass rather than trees gave similar 

results for “riparian canopy cover” and “in-stream grass coverage” measurements. Such 

measurements risk being redundant, and can overemphasize a certain habitat 

characteristic and thus bias HQI scores (Stauffer and Goldstein 1997). Fritz’s protocol 

had a smaller number of measurements in the habitat characterization section. With a 

smaller number of measurements, there could be degraded habitat features which are 

missed. This can lead to exceedingly lenient assessments causing a stream to seem less 

degraded than it really is.  
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A second observation was the presence of measurements unique to each protocol. 

Fritz, with only 15 measurements, contained eight that were not included in Peck’s 

protocol. These unique measurements assessed hydrologic permanence. The unique 

measurements in Peck’s protocol assessed mostly riparian and in-stream cover areas. 

These differences reveal divergence between the two protocols’ indicators of degradation 

for the resource they were designed to assess.  

Substrate was the only parameter measured by both protocols, but using different 

methodology. Peck measures substrate using 21 cross-sectional transects divided into five 

cross-sectional observation points. At each of the 105 observation points used to assess 

the reach, a substrate is randomly picked and sized using Table 23.  

 

Table 21 Substrate size class coding for Peck’s protocol (Kaufmann 1998). 
Code Size Class Size Rane (mm) Description

RS Bedrock (Smooth) >4000 Smooth surface rock bigger than a car

RR Bedrock (Rough) <4000 Rough surface rock bigger than a car

HP Hardpan Firm, consolidated fine substrate

BL Boulders >250 to 4000 Basketball to car size

CB Cobbles >64 to 250 Tennis ball to basket ball size

GC Gravel (Coarse) >16 to 64 Marble to tennis ball size

GF Gravel (Fine) >2 to 16 Ladybug to marble size

SA Sand >0.06 to 2 Smaller than ladybug size, but visible as particles - 

gritty between fingers

FN Fines <0.06 Silt Clay Muck (not gritty between fingers)

WD Wood Regardless of Size Wood

OT Other Regardless of Size Herbaceous material  
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Fritz measures substrate using modal sediment size (Fritz et al. 2006). This method 

employs a 0.25 m
2
 frame placed at the thalweg in 31 equally spaced locations. The modal 

particle size (particle size with the greatest occurrence) within the frame is visually 

assessed and a representative particle of that modal size is picked up and classified using 

Table 24.   

 

Table 22 Substrate size class coding for Fritz’s protocol (Fritz et al. 2006). 
Class Size Range (mm) Phi (Φ)

Sand, silt, and clay ≤2 ≥0

Fine gravel >2 to 4 -1 to -2

Medium Gravel >4 to 8 -2 to -3

Coarse gravel >8 to 16 -3 to -4

Small pebble >16 to 32 -4 to -5

Large pebble >32 to 64 -5 to -6 

Small cobble >64 to 128 -6 to -7

Large cobble >128 to 256 -7 to -8

Boulder >256 to 512 -8 to -9

Bedrock and hardpan >512 ≤-9  

 

The two methods resulted in contrasting substrate assessments. The discrepancy 

between the dominant substrate size classes for our study streams are a result of 

differences in the size class categories used by the two methods. Fritz’s protocol did not 

have an “other” category, so if vegetation was present in the stream bed, the substrate at 

the base of the vegetation was used for classification. This caused a high frequency of 

“sand, silt, and clay” observations. Data showing high frequencies of “sand, silt, and clay 

would indicate high sediment loads and stream bed aggradation, leading an observer to 

determine that the stream is impaired (Sennatt et al. 2006; Wood and Armitage 1997). On 

the other hand, Peck’s protocol may determine a stream is high in herbaceous material, 
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acting as a sediment trap, leading an observer to determine the stream is non-impaired 

(Abt et al. 1994). 

The other discrepancy regarding substrate assessments lies in the methodology.  

Peck’s protocol captures both the lateral and longitudinal variability that exists in streams 

(Sennatt et al. 2006) by taking measurements at multiple cross-sectional transects along a 

stream reach (Peck et al. 2006). This method may be less discriminating to larger 

substrates. Fritz’s method fails to capture lateral variability as it only measures a 

particular channel unit, the thalweg, causing potential bias (Sennatt et al. 2006). The 

particle size with the greatest occurrence is used as the sample in Fritz’s method. If a 

larger particle falls within the 0.25 m
2
 frame, but does not occur frequently, then it is not 

recorded. This may cause the method to be biased towards smaller particles (Kondolf and 

Li 1992). Kondolf and Li (1992) found that visual estimates similar to Fritz’s method 

tend to overemphasize the frequency of smaller particles when the deposit consists of 

mainly smaller particles such as fine gravel.  

Both methods are similar in that they can lead to visual classification error based 

on experience level in which an observer incorrectly assigns a particle to the wrong size 

class (Faustini and Kaufmann 2007; Kondolf and Li 1992). 

 

C. Data Comparison 

The two protocols generate different data types, which complicates integration 

and analysis. Peck’s protocol utilizes mostly qualitative data while Fritz’s protocol 

utilizes mostly quantitative data. Measurements that give quantitative results (ratio, 
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interval) are preferred when possible but can be very time consuming to collect in the 

field (Somerville and Pruitt 2004). Often these measurements are replaced by qualitative 

measurements (nominal and ordinal) to conserve time, but they are usually subjective. 

Proper training is required for both methods to reduce errors in accuracy and precision 

(Roper and Scarnecchia 1995).  

Thirty seven of the 51 measurements that compose Peck’s physical habitat 

assessment required some sort of cover or distance estimation. Cover and distance 

estimations are visually based and subjective (Somerville and Pruitt 2004). Subjective 

quantitative measurements included such measurements as bankfull width, height, and 

substrate embeddedness. All of these require formal training and experience for 

consistent and accurate assessment (Roper and Scarnecchia 1995; Wang et al. 1996). 

The other 30 measurements within Peck’s protocol yielded nominal and ordinal 

data. Nominal measurements, i.e. soft/small sediment, side channel, and backwater, 

required the observer to mark presence or absence. These measurements can result in 

variability among observers who may have different perceptions of  parameter 

appearance and when to consider it present. Other nominal measurements, such as 

channel unit codes or pool form codes, are difficult for an observer to classify without 

training and experience. Ordinal measurements, such as riparian vegetation cover, require 

an estimate of percent cover by visually grouping vegetation layers into cover classes (i.e. 

<10% sparse, 10-40% moderate) (Peck et al. 2006).  Other ordinal measurements, such as 

human influences, require the observer to estimate the distance of certain human 

influences from the stream and place them into one of four categories (Not present, 
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>10m, Within 10m, On bank). Such influences can easily be perceived differently from 

one observer to the next. 

Fritz’s protocol yielded less subjective data because the metrics involved counting 

or measuring habitat features directly (i.e. sinuosity, substrate moisture). Of the 15 

measurements that comprose Fritz’s physical habitat assessment, five required some level 

of judgment or estimation. Among the five included bankfull width, height and flood 

prone area width. Although these three measurements were quantitative (ratio), judgment 

was required to determine exactly where the features were located relative to the stream. 

The other two subjective measurements in Fritz’s protocol were modal sediment size and 

habitat type. These two measurements were qualitative (nominal), requiring the observer 

to visually place parameters into specific characterization categories.  

Stauffer and Goldstein (1997) found that subjectivity between three qualitative 

habitat indices may have explained some of the differences in their stream assessments. 

Certain measurements may require more training than others to reduce bias (Roper and 

Scarnecchia 1995) whereas other measurements can lead to differences between 

observers (Wang et al. 1996). Differing levels of subjectivity between the two protocols 

may help to explain the difference in assessments.  

 

D. HQI Comparison 

The third objective of this study was to compare HQI scores generated from the 

two EPA accepted stream protocols. Analysis showed that Peck’s protocol scored streams 

consistently lower then Fritz’s protocol.  These results provide evidence that the two 
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protocols do not respond to physical habitat changes similarly. Peck’s protocol also 

appears to better discriminate habitat differences among sites.  

The main cause for these differences in HQI scores is the divergence in stream 

characteristics emphasized by the protocols. Peck’s protocol emphasizes riparian 

measurements while Fritz emphasizes hydrology and channel geomorphology 

measurements. A similar study comparing three different qualitative habitat indices also 

found major differences in stream scores as a result of different weights among metric 

classes among protocols (Stauffer and Goldstein 1997).  

Differences in metric emphases between the two protocols reflect a focus on 

hydrologic permanence in intermittent channels. Peck’s protocol generally was designed 

for wadeable perennial streams (Peck et al. 2006); however, it can be adjusted for 

intermittent, headwater streams. Perennial streams flow year round, placing greater 

emphasis on riparian attributes in determining stream condition (Poff and Ward 1989). 

Thus riparian characteristics are viewed as a critical set of driving factors influencing 

ecological integrity within perennial streams for aquatic organisms (Naiman and 

Decamps 1997; Rankin 1995). Riparian condition can directly reflect the influence of 

human activities, which then are included in the HQI scores. Peck’s protocol tends to 

overemphasize riparian attributes at the expense of other stream characteristics. Riparian 

zone HQI scores were significantly lower for Peck than for Fritz and contributed 51% of 

the total scores for Peck. Stauffer and Goldstein (1997) also found that when comparing 

three qualitative habitat indices, overemphasized habitat features may diminish the 

influence of other metrics, thus causing total scores to be misleading.  
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Fritz’s protocol was designed for intermittent streams in which hydrologic 

variability may be viewed as the key factor influencing biotic communities (Fritz et al. 

2006). Hydrologic variability is important because it controls the physical and chemical 

conditions in these streams and thus biotic communities (Boulton 2003; Dodds 2004). 

Any human activity that affects the hydrologic variability would be expected to 

negatively impact the condition of the stream (Boulton 2003) therefore lowering HQI 

scores. However, in this study, no lowering of total HQI scores due to hydrology or 

channel geomorphology was observed.  

One explanation could be that there was no apparent degradation regarding these 

two stream characteristics. It could also mean that these measurements have difficulty 

exposing degradation at the spatial scale in which the measurements were taken. 

Hydrological regime is an important determinant of ecosystem structure and function at 

the catchment scale (Petts 1994). However, the measurements for this parameter were 

taken at a reach scale. As a result, these measurements may not reflect human influences 

at a larger catchment scale 

A final hypothesis explaining Fritz’s higher HQI scores is underrepresentation of 

land use and riparian metrics. With the small size of headwater, intermittent streams, 

there is a close interaction between the stream and its adjacent riparia (Dodds 1997; Gomi 

et al. 2002). This close interaction would potentially influence the HQI scores and may 

not have been detected using the Fritz protocol due to the paucity of riparian metrics. 

Neither protocol had a significant relationship with GIS-based watershed 

condition scores or RCE scores. HQI’s generated from both protocols agreed well when 
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ATtILA and RCE scores were in the good range, but diverged when both watershed 

condition and RCE scores indicated poor condition. Fritz’s protocol seemed to score sites 

higher with decreasing watershed condition. Similar results were found when the two 

protocols were compared to RCE scores. The trends suggest that at the low end (i.e., in 

“poor” habitats) the protocols did not compare well. At the high end (i.e., “good” 

habitats) the protocols were comparable. Once again, as watershed condition decreased, 

Fritz’s HQI scores increased whereas Peck’s HQI scores decreased. Stauffer and 

Goldstein (1997) also found that between three different habitat indices, protocols 

compared better in good condition habitats but did not compare well in poor condition 

habitats. With more measurements, Peck’s protocol may have the ability to detect more 

disturbances along a condition gradient whereas Fritz’s may be lacking the necessary 

measurements (i.e. riparia) to detect the same disturbances.  
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Management Implications 

 

Results call for a standardization of monitoring protocols for headwater stream 

assessments. Some guidelines should be followed in developing or modifying a protocol. 

First, habitat assessment procedures (i.e. sample reach designation, transect placement) 

need to be adjusted based on stream type (Montgomery and MacDonald 2002). Results 

showed that 15% of the 60 streams sampled contained perennial flow for the entire 

sampling season. The other 85% of the streams showed some sort of drying or dry phase 

during the sampling season. A standardized protocol should allow for the variability of 

stream flow conditions found within the Northern Glaciated Plains Ecoregion.  

Existing EPA headwater assessment protocols define sample reaches as some 

multiple (e.g. 40x) of average wetted width (Fritz et al. 2006; Peck et al. 2006).Timing of 

reach designation creates variability in reach lengths under existing procedures. Average 

wetted widths may exceed 200 meters under high water conditions to 0 meters through 

seasonal drying. Oversampling or under-sampling may result from high to low ranging 

sample reach lengths. Average bankfull width may be used as an alternative to establish 

reach lengths because it is unlikely to change as streams go through seasonal flooding 

and drying phases.  

Existing EPA headwater protocols (Fritz et al. 2006; Peck et al. 2006) evaluate 

channel habitat (e.g. thalweg depth, substrate size, wetted width) from multiple transect 

points distributed evenly along the sample reach. Peck uses 11 transects each with 10 or 

15 sub-transects distributed evenly along the sample reach while Fritz uses 30 evenly 
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distributed transects. Under existing procedures, short reach lengths result in overlapping 

observation areas and double-counted measurement entities. By reducing sample reach 

transects to 11 equally spaced transects, each with one sub-transect, oversampling will be 

avoided. 

Finally, existing EPA headwater protocols (Peck et al. 2006) evaluate riparian 

habitat (e.g. riparian vegetation structure, canopy cover, human influences) using 

visualized 10 X 10 meter plots at eleven transects. Short reach lengths in small, 

intermittent channels may result in considerable overlap from one plot to the next, again 

leading to double-sampling of measured entities. Overlap in measurements can be 

avoided by reducing riparian measurements to downstream, middle and upstream plots. 

Second, an ideal protocol should contain measurements that are independent and 

not redundant (Stauffer and Goldstein 1997). Redundancy can place greater weight (bias) 

on one attribute class. Greater balance in metric classes might be achieved by selectively 

removing metrics not applicable to a region or unable to discriminate among sites. 

Resulting HQI scores would then reflect equal weighting among metric classes. 

Suggested modifications include the removal of “in-stream cover for biota of big 

woody debris” and retaining “large woody debris counts.” Soft/small sediment 

occurrence should be eliminated but substrate particles size class characterization across 

transects should be retained. Coarse organic debris (COD) occurrence could be replaced 

by “in-stream cover for biota of brush/small woody debris”, and habitat type designations 

(erosional/depositional) could be replaced by channel and pool form unit codes. A final 
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suggestion includes the removal of legacy tree in prairie streams due to low frequencies 

of trees in the study region. 

Stream assessment measurements should be based upon quantitative data, not 

qualitative judgments (Smiley et al. 2009; Stauffer and Goldstein 1997).” Variability in 

subjective measurements can lead to inconsistencies between observers from visit to visit. 

Training is necessary to help reduce these inconsistencies. When standardizing a 

protocol, efforts should be made to choose quantitative measurements over qualitative 

measurements when possible.  

Suggested modifications include the replacement of both Fritz’s and Peck’s 

substrate characterization methods with a Wolman pebble count (Asmus et al. 2009). 

This method provides a quantitative measurement that can characterize substrate with 

minimal bias towards non-dominant substrates (Asmus et al. 2009). There are many 

variations to the Wolman pebble count, sampling location, particles selection, and sample 

size should be taken into consideration when choosing a modified technique (Bunte et al. 

2009).  

Another suggestion includes replacing visual estimation of riparian vegetation 

structure with a Robel pole measurement (Robel et al.1970). This method provides a 

quantitative measure of vegetation structure and land use impacts by taking 4 measures of 

visual obstruction at a standard distance (4 m) and height (1 m) (Higgins et al. 2005). 

A final suggestion is to replace overhanging vegetative cover from the in-stream 

cover for biota measurements with a direct measure of overhanging vegetation (Platts et 

al. 1989). This method involves taking a direct measure of vegetation <0.5 meters above 
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the water surface from the stream bank to the farthest point that the vegetation covers the 

water column. 

Metrics should be scored against reference site values within level IV ecoregions. 

This would further stratify larger scale LIII ecoregion variability and increase the 

accuracy.  

Table 25 provides a list of proposed stream habitat measurements that could be 

used to assess headwater streams. Measurements were taken from both Fritz et al. (2006) 

and Peck et al. (2006) protocols and include suggested measurements discussed earlier.  
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Future Research 

 

 Monitoring and management efforts to address water quality issues continue to 

focus heavily on perennial streams, yet our understanding of stream hydrology and 

upstream-downstream connections suggests that headwaters play a critical role in 

downstream ecology and water quality. This research demonstrates the need for a 

standard and balanced assessment methodology for headwater streams and differences in 

stream habitat conditions among Level IV ecoregions of eastern South Dakota. However, 

results indicate the need for further collection of regional baseline data if we are to move 

our monitoring and management efforts into the headwaters. Contemporary 

environmental issues such as irrigation, drainage modification, riparian management, 

production of biofuels and global climate change and their effects on headwaters remain 

largely unknown. These issues may have important implications regarding the way we 

continue to monitor and assess headwaters. With so many issues yet to address, it is clear 

that we have only just begun to understand our headwater streams. 
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