
South Dakota State University South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional

Repository and Information Exchange Repository and Information Exchange

Electronic Theses and Dissertations

2018

Service Integration Design Patterns in Microservices Service Integration Design Patterns in Microservices

Meng Wang
South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Wang, Meng, "Service Integration Design Patterns in Microservices" (2018). Electronic Theses and
Dissertations. 2944.
https://openprairie.sdstate.edu/etd/2944

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F2944&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=openprairie.sdstate.edu%2Fetd%2F2944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/2944?utm_source=openprairie.sdstate.edu%2Fetd%2F2944&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu

SERVICE INTEGRATION DESIGN PATTERNS IN MICROSERVICES

BY

MENG WANG

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Computer Science

South Dakota State University

2018

iii

ACKNOWLEDGMENTS

I always believe that your choices define your life. Life is like a program that

includes a lot of selection statements, but no looping statements or rerun functionality.

Making a decision each time means the beginning of the next new journey. As I look

back, one of the most impressive choices is that I started to pursue a computer science

master’s degree at South Dakota State University. The university was an entirely new

place for me three years ago, so was the computer science major. And I do enjoy this

journey of life. The quietness of Brookings makes me feel peaceful, and the rigor of

computer science program reshapes my mind. What’s more, I have got lots of help from

the professors, friends and my family during the trip.

I would like to express my deepest thanks and sincere appreciation to Dr. Yi Liu

for her patient guidance in my study. Dr. Liu gave me the valuable opportunity to

participate in her project, providing a large number of research resources and various

academic activities. Working for the project offers a basis and direction for my thesis and

has enabled me to improve myself in practice. Besides, Dr. Liu is also a good friend who

always cares about my life especially when I got pregnant. Without Dr. Liu’s help, I

would have not studied as smoothly as I am doing now.

My gratitude also goes to my friends. Thank you for talking to me and helping me

exclude the anxiety whenever learning difficulties or setbacks in life. Thank you for

encouraging and cheering me when seeing I obtain the success.

iv

Finally, I am indebted to my family. My husband has been taking care of me by

my side, accompanying me, and supporting me. My baby in my tummy has been growing

up healthily although I pushed hard and was anxious sometimes. My parents have been

encouraging and bringing me confidence.

I am so lucky that my choices make me grow up. I appreciate everybody who has

helped me. The warmth you bring to me is the most precious treasure that I will ever

cherish.

v

CONTENTS

LIST OF FIGURES ... viii

ABSTRACT .. x

Chapter 1 Introduction .. 1

1.1 Introduction ... 1

1.2 Motivation ... 2

1.3 Objectives ... 2

1.4 Thesis organization ... 3

Chapter 2 Background .. 4

2.1 EPIDEMIA System ... 4

2.2 Microservices .. 8

2.3 Cloud computing & Amazon Elastic Compute Cloud 10

2.4 Related Work .. 12

2.4.1 Design patterns for microservices on Microsoft Azure [15] 12

2.4.2 Microservices design patterns [22] .. 15

Chapter 3 Service Integration Design Patterns ... 18

3.1 Synchronous messaging design pattern .. 19

3.1.1 Problem .. 19

3.1.2 Context ... 19

vi

3.1.3 Solution .. 19

3.1.4 Example implementation ... 20

3.1.5 Consequences ... 21

3.2 Asynchronous messaging design pattern .. 22

3.2.1 Problem .. 22

3.2.2 Context ... 22

3.2.3 Solution .. 22

3.2.4 Example implementation ... 23

3.2.5 Consequences ... 24

3.3 Hybrid messaging design pattern .. 24

3.3.1 Problem .. 24

3.3.2 Context ... 24

3.3.3 Solution .. 24

3.3.4 Example implementation ... 26

3.3.5 Consequences ... 28

3.4 Guidelines ... 29

Chapter 4 Case Study .. 32

4.1 EPIDEMIA overview.. 32

4.2 Microservices with Spring Boot ... 33

4.3 Applying the design patterns .. 34

vii

4.3.1 The design pattern for each request ... 34

4.3.2 The recipe file settings ... 38

4.3.3 The design pattern implementation .. 40

4.3.4 Deployment in Amazon EC2 ... 41

Chapter 5 Evaluation... 42

5.1 Addressing the challenge of services integration .. 42

5.2 Simple and flexible patterns.. 44

5.3 General guidelines .. 45

5.4 Easily modifying the relationships.. 45

5.5 Related work ... 46

5.5.1 Design patterns for microservices on Microsoft Azure [15] 46

5.5.2 Microservice design patterns [22] .. 46

Chapter 6 Conclusion .. 48

6.1 Conclusion .. 48

6.2 Future Work .. 49

References ... 50

viii

LIST OF FIGURES

Figure 1 The top-level Architecture of EPIDEMIA ... 4

Figure 2 The high-level architecture of the public health interface 5

Figure 3 Screenshot of the Upload page ... 6

Figure 4 The high-level architecture of EASTWeb [7] .. 6

Figure 5 The high-level architecture of the data integration subsystem 7

Figure 6 Monolith and Microservices .. 9

Figure 7 Implementation of the design patterns in microservice architecture 15

Figure 8 Synchronous messaging design pattern .. 20

Figure 9 Method “callWithBlock” in java .. 21

Figure 10 Asynchronous messaging design pattern.. 23

Figure 11 Method “callWithoutBlock” in java ... 23

Figure 12 Hybrid messaging design pattern ... 25

Figure 13 Adding “level” and “parent” attributes in the pattern 26

Figure 14 Method “hybrid” in Java .. 26

Figure 15 Method “parseByLevel” in Java ... 27

Figure 16 Method “callByParent” in Java .. 28

Figure 17 Example of XML recipe configuration file .. 30

Figure 18 The workflow of fulfilling a request .. 32

Figure 19 Screenshot of Spring Initializr .. 33

Figure 20 Service integration for epidemiological data upload 34

Figure 21 Service integration for environmental data update 35

Figure 22 Service integration for data update ... 35

ix

Figure 23 Service integration for data integration .. 36

Figure 24 Service integration for report generation .. 37

Figure 25 XML recipe file for EPIDEMIA system .. 38

Figure 26 Method “locateRequest” in Java .. 39

Figure 27 Method “fetch” in Java ... 40

Figure 28 EPIDEMIA system in microservices on Amazon EC2 41

Figure 29 The user interface of EPIDEMIA system in microservice 43

Figure 30 The response after running request “Upload Epidemiological Data” .. 44

x

ABSTRACT

SERVICE INTEGRATION DESIGN PATTERNS IN MICROSERVICES

MENG WANG

2018

“Microservices” is a new term in software architecture that was defined in 2014

[1]. It is a method to build a software application with a set of small services. Each

service has its process to serve a single purpose and communicates with other services

through lightweight mechanisms. Because of a great deal of independently distributed

services, it is a challenge to integrate the loose services fully. Too many trivial

relationships can be messed up easily during deployment. Also, it is hard to modify the

relationships if the services are updated as the source codes need to be re-edited and

tested.

The microservices architecture is attracting much attention recently. More and

more software-developers are producing continuous applications and microservices

deliveries [2]. There is a need to develop a mechanism to better integrate the scattered

services during the application delivery process.

The thesis proposes three general design patterns to integrate services in

microservices architecture. These patterns are classified by the inter-service

communication mechanisms and described with specific problems, contexts, solutions,

example implementations and consequences. Besides, the informative guidelines are

provided to make these patterns apply in different applications quickly.

xi

The service integration design patterns help compose services and facilitate the

process of building applications in microservices. All the patterns are helpful tools to

address the service integration issues in microservices. Each approach is simple and

flexible to apply generally. The structures can be easily modified through these

approaches.

1

Chapter 1 Introduction

1.1 Introduction

“Microservices” is a new term in software architecture and has attracted more and

more advocates recently, such as Amazon, Netflix, The Guardian, the UK Government

Digital Service, realestate.com.au, Forward and comparethemarket.com and so on [1]. A

microservices system contains a set of independent services and each service delivers a

single business capability to support high cohesion and loose coupling. The microservices

architecture is characterized by modularity, fine-grained service, and simple

communication mechanisms and brings the benefits of flexible development, painless

evolution, and elastic scalability. However, it also comes with multiple issues in

integration due to the independently distributed services. Simple point-to-point

connections between services may become a pitfall as too many trivial relationships can

be messed up easily during deployment. In addition, after the relationships are built, it is

hard to make changes in the structure as the source codes are required to modified and

tested. These issues bring us to the question: how do we fully integrate the loose

collection of components once we have split the whole system into a bunch of

microservices?

Service integration is a challenge in microservices architecture. There could be a

large number of services in a system and a service may be reused within different scopes

which will intensify the complexity of the services composition. Thus, the goal of this

thesis is to introduce general integration design patterns to facilitate the process of

application building. The thesis presents three integrating services approaches according

to the basic inter-service communication styles. By applying the design patterns, the

2

distributed autonomous microservices are organized together in a particular integration

framework to cleanly offer all the functionalities in a system.

1.2 Motivation

As Gartner predicted, the hyper-converged integrated systems would capture a

rapidly expanding market in the next few years and produce continuous applications and

microservice deliveries [2]. More and more software developers will use microservices

architecture in the development and have to search for solutions to better integrate the

scattered services during the application delivery process.

The thesis proposes three general design patterns with simple classifications.

These patterns provide straightforward and flexible solutions regarding the service

integration problem. By applying the patterns to specific contexts, the components of an

application can be wholly organized and contribute to implementing all the

functionalities.

1.3 Objectives

This thesis aims to introduce microservices integration approaches to help

organize services during building application process.

The objectives of the thesis are:

1. To address the service integration issues in microservices by applying

classified integration design patterns.

2. To apply the integration design patterns in applications simply and

flexibly.

3. To modify the structures easily through the integration approaches.

3

1.4 Thesis organization

The thesis focuses on introducing the service integration approaches. Chapter 2

gives an overview of microservices architecture, EPIDEMIA system and Amazon Web

Service (AWS), and reviews others works related to microservices integration. Chapter 3

introduces the integration design patterns, describes the problem, context, solution,

implementation, and consequences in each pattern, and provides the guidelines for

applying the integration mechanism. Chapter 4 presents the process of using the design

patterns to EPIDEMIA system as the case study. Chapter 5 evaluates the integration

approaches by moving EPIDEMIA system to microservices with the proposed design

patterns and compares our work with others’ related work. Chapter 6 concludes the thesis

and discusses other directions for future work.

4

Chapter 2 Background

This chapter overviews the EPIDEMIA system that is used as the case study in

the thesis, introduces microservices with its concept, key characteristics, and benefits,

depicts cloud computing and Amazon Elastic Compute Cloud (Amazon EC2), and

reviews the related literature on microservices integration.

2.1 EPIDEMIA System

The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for

Integrated Assessment (EPIDEMIA) is a malaria information system [5]. It integrates

weekly malaria surveillance data and remote sensing environmental data to support

malaria detection and forecasting in the Amhara region of Ethiopia. The EPIDEMIA

system is built upon a collection of standalone subsystems including public health

interface, remote sensing data processing, data integration, modeling, and reporting

subsystems, which were developed separately in fulfilling specific objectives. The top-

level architecture is shown in Figure 1.

Figure 1 The top-level Architecture of EPIDEMIA

5

1. Public health interface

The public health interface was designed and implemented as the EPIDEMIA

project website [6] sitting on a Linux web server. The architecture of the public health

interface is shown in Figure 2. Given access to the website, the users can upload, query

and download surveillance data, and view the interactive and static visualizing

epidemiological and environmental data.

Figure 3 displays the upload page of the EPIDEMIA project website. The public

health users can upload the disease surveillance data in the format given on the webpage.

The submitted surveillance data are inserted into the corresponding epidemiological table

in the EPIDEMIA database after being cleaned by the epidemiological data processing

component in the data integration subsystem.

Figure 2 The high-level architecture of the public health interface

6

Figure 3 Screenshot of the Upload page

2. Remote sensing data processing subsystem

The remote sensing data processing subsystem is the EASTWeb system [7, 8].

The datasets used in the EPIDEMIA system are IMERG and IMERG RT rainfall

products from GES DISC and MODIS MCD43A4 reflectance, MCD 43A2 quality, and

MOD11A2 land surface temperature products from the LP DAAC. Utilizing the

components shown in Figure 4, EASTWeb automatically downloads these datasets from

the online archives repository, processes them and stores the generated statistical

summaries into PostgreSQL database on the Windows Server where the EASTWeb

system is running.

Figure 4 The high-level architecture of EASTWeb [7]

7

3. Data integration subsystem

The data integration subsystem is composed of three components: the

Epidemiological Data Processing Component, the Environmental Data Transfer

Component, and the Data Unification Component to integrate the epidemiological and

the environmental datasets. The high-level architecture of the data integration subsystem

is given in Figure 5.

Figure 5 The high-level architecture of the data integration subsystem

The Environmental Data Transfer component ships the summarized

environmental data generated from the remote sensing data processing subsystem on a

Windows server to the Linux web server and stores the data in the MySQL database

along with the summarized epidemiological data. A shell script is written to transfer the

environmental data. The users need to log in to the Linux web server and enter a

command to invoke the shell script to transfer the summarized environmental data.

8

The Data Unification component is developed using several R packages. It plays

a vital role in temporally harmonizing the epidemiological and environmental datasets

into a unified dataset when the modeling subsystem requests the dataset.

4. Modeling subsystem

Two models, an early detection model and an early warning model, were

developed in the modeling subsystem. The early detection model uses surveillance data

from July 2012 to identify seasonal patterns and longer-term trends of increasing or

decreasing malaria incidence [5]. The early warning model is used to forecast malaria

risk in future weeks based on recent short-term trends and environmental anomalies that

influence mosquito populations and transmission dynamics [5].

Both models were implemented in R on a local machine via RStudio, a free and

open-source IDE for R [9]. The modeling subsystem invokes the data unification

component in the data integration subsystem for a unified dataset and uses it in the

detection and warning models. The model outputs are saved as R data files.

5. Reporting subsystem

The reporting subsystem converts the model outputs from the modeling

subsystem to an RNW file, from which PDF reports are generated using knitr [10], an

engine for dynamic report generation with R. The generated reports are saved in the

Linux web server.

2.2 Microservices

Martin Fowler defined the term “Microservices” in 2014 [1] as a method to build

a software application with a set of small services. Each service has its process to serve a

9

single purpose and communicates with other services through application programming

interfaces (API) [1]. There are three key characteristics in microservices.

1. Modularity

The microservices architecture contains a suite of independent modules in a

system. Each module, also called a microservice, encapsulates its domain logic and

contributes to the whole functionalities of a system, unlike the monolith which puts all

the functionalities in a single process [1]. Figure 6 compares a monolithic system with a

microservices system. The modularity improves the flexibility of the development and

the deployment of each service flexible and increases the comprehensibility of the system.

Figure 6 Monolith and Microservices

2. Fine-grained service

As the name “Microservices” suggests, the size of each service should be

comparatively small. If a service serves more than one purposes, it should be broken

down into smaller units according to the purposes. Each service should focus on a single

10

business capability to support low coupling in the system. The independent fine-grained

services bring a low cost of system maintenance and evolution in the future.

3. Simple communication mechanism

The microservices architecture focuses on lightweight communication mechanism

instead of hiding complexities in the communications. HTTP request-response with

resource API’s and lightweight messaging are commonly used in microservices to

provide “dumb pipes” [1]. This distinct characteristic makes microservices different from

service oriented architecture (SOA). SOA commonly implements its communication

structure with Enterprise Service Bus (ESB), which is a centralized service bus and

promotes a high-level protocol communication [3]. The ESB may bottleneck integration

and limit elasticity. Simple communication approach enables changes in services without

modifying the central service communication bus and offers the system better scalability

[4].

2.3 Cloud computing & Amazon Elastic Compute Cloud

 Cloud computing

Cloud computing is a model that provides the configurable information

technology (IT) sources to consumers in an on-demand self-service manner through the

internet rapidly [11]. The IT sources include computing power, storage capacity,

bandwidth, Domain Name System (DNS), etc.

There are five common characteristics in cloud computing as explained below.

1. Large-scale distributed servers. The cloud providers generally have large-scale cloud

services platforms. Most of the famous enterprises own millions of servers such as

11

Google, Amazon, IBM, Microsoft and so on. Building upon these distributed servers,

the cloud platforms provide vast computing power.

2. Virtualized data center. By using cloud computing, the customers move their

emphasis from burdensome work on hardware purchase and maintenance to the

application deployment that really matters. After choosing and registering accounts in

a cloud service platform, the users can log in the cloud platform to purchase and

configure the required services like database service, storage service, etc. These

services work as virtualized data centers that can be managed through your PC or

mobile devices over the network anywhere at any time. With the virtualized data

centers, the developers can implement and deploy their applications easily.

3. Reliability and elasticity. In general, the cloud service platforms adopt data replica

fault-tolerant, computing node isomorphism and interchangeable and other methods

to support high reliability [12]. Moreover, the capabilities can be provisioned and

released elastically to scale up and down according to your demand [11].

4. Pay on the demand. The consumers can purchase the services as their demand or

usage. For example, Amazon Web Service offers the “Pay-as-you-go” mode allowing

you to pay base on the changing needs. The cost is comparatively low and reasonable

as the computing time and provisioned storage mainly determines it.

5. Security. The well-known cloud providers have their professional teams to protect the

data’s security and reduce the risk of data leakage. Besides, the critical identity and

access management provide customers confidence in safety.

Cloud computing has three service models: Software as a Service (SaaS),

Infrastructure as a Service (IaaS), and Platform as a Service (PaaS) [11].

12

SaaS provides applications to consumers through a standard interface such as web

browser directly. Google Docs is the application belonging to SaaS. The providers are

responsible for the layers underlying the cloud infrastructure [11].

IaaS lets customers purchase the cloud infrastructure to manage the operating

system and deploy their applications, for example, AWS Elastic Compute Service.

PaaS is similar to IaaS, but the users only deploy the applications by the operating

system and environments that are managed and controlled by the cloud providers. AWS

Elastic Beanstalk is an example of PaaS.

 Amazon Elastic Compute Cloud (Amazon EC2)

Amazon EC2 is a web service that allows users to rent the cloud servers to deploy

their applications easily and rapidly. EC2 adopts open source Kernel-based Virtual

Machine (KVM) hypervisor technology for virtualizing compute infrastructure [13]. Each

virtual machine, also knowns as an instance, runs small, large, extra-large virtual private

servers and supports both Windows and Linux operating systems. Amazon EC2 passes

multiple benefits such as elastic web-scale computing, completely controlled instances by

consumers, flexible cloud hosting services, integrated cloud services, reliable

environment, cloud security, inexpensive cost and easily start [14].

2.4 Related Work

2.4.1 Design patterns for microservices on Microsoft Azure [15]

The AzureCAT patterns & practices team presented nine design patterns that can

be especially applied to microservices. Each pattern is described with the problem,

13

context, solution, issues and considerations, and when to use the pattern [15]. These

patterns are summarized as below.

 Ambassador pattern.

By creating helper services to send requests and give a response, it works as a

proxy between the application and remote services. The pattern is helpful when building

a common set of client connectivity tasks or supporting the connection in a legacy

application [16].

 Anti-Corruption Layer pattern.

The layer isolates different subsystems and translates the communications among

subsystems that don’t have uniform semantics [17]. It acts as a façade that integrates the

legacy and new systems.

 Backends for Frontends pattern.

It creates separate backend services for each type of user interface, such as

desktop backend service, mobile backend service, etc [15]. These simpler, finer, faster

backends bring flexibility in functionality backend integration.

 Bulkhead pattern.

The pattern splits service instances into different pools based on consumer load

and availability requirements [18]. By isolating resources and services, the pattern

protects the system against defeated by a service failure.

 Gateway Aggregation pattern.

14

To avoid chatty communication between the client and the services, the pattern

uses a gateway to receive the client requests and dispatch them to the corresponding

backend services, then combines and gives the responses [19].

 Gateway Offloading pattern.

It offloads some responsibilities from the services to a gateway proxy, such as

certificate management, monitoring, protocol translation [20].

 Gateway Routing pattern.

It places a gateway with a single endpoint between the consumer and services.

The gateway is responsible for routing requests from the consumer to appropriate

services.

 Sidecar pattern.

It integrates part of the services in the application into a separate process or a

container that works as an attached sidecar [21]. The sidecar pattern makes the

application more extensibility by adding multiple components and technologies.

 Strangler pattern.

It describes a process to replace the legacy services with new services inch by

inch and finally, a new system is built up entirely.

15

Figure 7 Implementation of the design patterns in microservice architecture

All of these patterns are used to solve small and fine issues in differing

composition situations. They could be applied together to integrate the services as shown

in Figure 7 [15].

2.4.2 Microservices design patterns [22]

Arun Gupta [22] introduces six design patterns to compose services.

 Aggregator microservice design pattern.

There are two aggregate strategies in this pattern. One is that the aggregator is a

single interface that aggregates different services together and can invoke all the services

to fulfill a particular request. The other strategy is that the aggregator works as a high-

level composite microservice. Instead of aggregating the microservices themselves, the

aggregator collects data from each service and applies business logic to the services [22].

16

 Proxy microservice design pattern.

It is similar to the aggregator microservice design pattern. The difference is that

there is no microservice aggregation but microservice delegation in the pattern. The

proxy can be either dump to delegate the request only or smart to do the data

transformation between the services and requests.

 Chained microservice design pattern.

All the related services are invoked one by one to complete the request in the

pattern. Each service will give a response to the calling service to add its business value.

 Branch microservice design pattern.

The pattern extends the aggregator microservice design pattern and the chained

microservice design pattern. The request is sent to one service which acts like an

aggregator invokes one or more chained services.

 Shared data microservice design pattern.

Although microservice favors a separate database for each service to preserve its

independence, there may be a shared database between high coupling services according

to the specific business needs in microservice. Different from the branch microservice

design pattern, the shared data microservice design pattern adds a shared database.

 Asynchronous messaging microservice design pattern.

Base on the branch microservice design pattern, this pattern applies asynchronous

messaging communication technique like pub/sub messaging. It integrates services with

reduced coupling between services.

17

All of these patterns are prevalent and useful, providing multiple integration

approaches from varying perspectives when designing and implementing microservices.

18

Chapter 3 Service Integration Design Patterns

This chapter presents general service integration design patterns to speed building

applications up in microservices. The design patterns are synchronous messaging design

pattern, asynchronous messaging design pattern and hybrid messaging design pattern.

Each pattern provides a detailed solution and example implementation towards a certain

problem and context. In addition, the guidelines of applying these patterns to implement

microservices are demonstrated.

The novel service integration design patterns have distinctive features. First, the

classify criteria are innovative and make the approaches apply generally. These design

patterns are proposed based on the inter-service communication mechanisms,

synchronous and asynchronous. The communication is synchronous if a request requires

a response from the service and is blocked while waiting for the response [23]. The

communication is asynchronous if a request is not blocked while waiting for the response

if there is any [23]. Some requests can be completed through either synchronous

messaging or asynchronous messaging, and the others may need a combination of these

two messaging approaches. The synchronous and asynchronous messaging are basic

communication methods in microserivces. Therefore, the design patterns can be applied

in different applications widely. Second, the solutions presented in the patterns are

evolved from the current prevalent design patterns summarized by Arun Gupta. For

example, the synchronous messaging design pattern is improved by the chained

microservice design pattern [22] via discarding the features of separate databases and

two-way communications between services, but adding the feature of single-way

19

communications to reduce coupling. Third, the example implementation of each pattern

and the guidelines to apply the patterns make the approaches complete and unique.

3.1 Synchronous messaging design pattern

Synchronous messaging design pattern is a variation of the chained microservice

design pattern [22]. One difference is that each service can have either its own database

or a shared database if there is any. The other is that the services communication is one-

way instead of two-way. It can be applied when services are interacting via synchronous

messaging.

3.1.1 Problem

A set of services are required to add their values by executing the business logics

inside, and a service instance will be blocked until it is triggered.

3.1.2 Context

After sending a request, the client is expecting a response from the called service.

To complete the request command, more than one services are waiting in a queue to

execute. The client will not activate the next service until receiving a response.

3.1.3 Solution

Suppose we have three services, Service A, B, C to execute by the request. As

shown in Figure 8, the external request is sent to service A and is waiting for a response.

Service B is blocked until Service A is completed, and Service C starts to execute when

Service B communicates with Service C after running. Since the data are updated at

different stages and will not be messed up by applying the services functionalities, the

databases of the services can be isolated or shared.

20

Figure 8 Synchronous messaging design pattern

3.1.4 Example implementation

Figure 9 shows the method “callWithBlock” implemented in Java. It blocks other

remained services in the list while executing a service via a block file. The block file will

be held during the execution of the service.

21

Figure 9 Method “callWithBlock” in java

3.1.5 Consequences

The synchronous messaging design pattern ensures the services communicating

through synchronous messaging. However, the total response time is a concern especially

when the waiting queue is composed of many services. Moreover, the cascading failures

of the system may occur if one service fails.

/**

*** DESCRIPTION : <call a service and block others > ***

*** INPUT ARGS : <services> ***

*** OUTPUT ARGS : <None> ***

*** IN/OUT ARGS : <None> ***

*** RETURN : <None> ***

**/

public void callWithBlock (List<String> services) throws

Exception {

// No services is invoked

 if (services.isEmpty()) {

 return;

 }

// call first service

 invoke(services.get(0));

 String lockFile;

 Path path;

 boolean exists;

 for (int i = 1; i<services.size(); i++) {

// put the name and path of the lockFile to check

 lockFile = ".\\"+services.get(i-1)+".lock";

 path = FileSystems.getDefault().getPath

 (System.getProperty("user.dir"), lockFile);

 exists = Files.exists(path, new LinkOption[]

 {LinkOption.NOFOLLOW_LINKS});

 // if lockFile exists then wait

 while (exists) {

 Thread.sleep(3000);

 exists = Files.exists(path, new LinkOption[]

 {LinkOption.NOFOLLOW_LINKS});

 }

 // invoke next service when the lockFile is deleted

 invoke(services.get(i));

 }

}

22

3.2 Asynchronous messaging design pattern

Asynchronous messaging design pattern is applied in asynchronous messaging

that doesn’t block the client while waiting for a response.

3.2.1 Problem

The thread of the request will not be blocked after it calls a service to run. The

client may invoke another service without getting any response.

3.2.2 Context

The client sends a request to a service, and the response is not necessarily needed.

Other services may be invoked by the request as well without any block.

3.2.3 Solution

An external request goes through a set of services before receiving a response as

shown in Figure 10. No service is prevented while running other services. In this pattern,

all of the services will not share their databases to avoid messing up data. When a request

is received, the invoked services will update their data respectively if they have.

23

Figure 10 Asynchronous messaging design pattern

3.2.4 Example implementation

Figure 11 Method “callWithoutBlock” in java

/**

*** DESCRIPTION : <call a service without blocking others > ***

*** INPUT ARGS : <services> ***

*** OUTPUT ARGS : <None> ***

*** IN/OUT ARGS : <None> ***

*** RETURN : <None> ***

**/

public void callWithoutBlock (List<String> services) throws

Exception {

// No services is invoked

 if (services.isEmpty()) {

 return;

 }

// invoke all related services

 for (int i = 0; i<services.size(); i++) {

 invoke(services.get(i));

 }

}

24

3.2.5 Consequences

The asynchronous messaging design pattern is quite powerful and well

understood. It minimizes the interaction between the services. Even if one service fails,

other services will not be affected.

3.3 Hybrid messaging design pattern

To realize a business need, a combination of synchronous and asynchronous

messaging is typically required. The hybrid messaging design pattern provides a solution

by assembling the synchronous messaging design pattern and asynchronous messaging

design pattern.

3.3.1 Problem

A part of the interested services is postponed to execute, while others are free to

implement.

3.3.2 Context

The contexts can be various as the interactions strategies can be organized

randomly. Take this context as an example, the client publishes a request message,

multiple services receive the request and start to apply the business logic. At the same

time, a set of other services are waiting in a queue for one service completion.

3.3.3 Solution

Based on the example context above, the pattern allows Service A and Service B

to invoke by the external request simultaneously before getting a response, which is

applying asynchronous messaging, and Service C and Service D are blocked while

25

Service A running in which the synchronous messaging works. A service can have more

than one “parents” that make the service suspend.

Figure 12 Hybrid messaging design pattern

26

3.3.4 Example implementation

Figure 13 Adding “level” and “parent” attributes in the pattern

To ensure the services invoked in the correct order, we add the attributes “level”

and “parent” in each service as shown in Figure 13.

Figure 14 Method “hybrid” in Java

/**

*** DESCRIPTION : <parse the services in a hybrid pattern > ***

*** INPUT ARGS : <request> ***

*** OUTPUT ARGS : <None> ***

*** IN/OUT ARGS : <None> ***

*** RETURN : <None> ***

**/

public void hybrid(Element request){

 // step 1: grab the level list

 NodeList levelList = request.getElementsByTagName("level");

 // step 2: parse all the levels

 for (int i = 0; i<levelList.getLength(); i++) {

 Node levelNode = levelList.item(i);

 if (levelNode.getNodeType() == Node.ELEMENT_NODE) {

 Element level = (Element) levelNode;

 // parse by level

 parseByLevel(level);

 }

 }

}

27

Figure 15 Method “parseByLevel” in Java

/***

*** DESCRIPTION : <parse the services in a level > ***

*** INPUT ARGS : <level> ***

*** OUTPUT ARGS : <None> ***

*** IN/OUT ARGS : <None> ***

*** RETURN : <None> ***

***/

public void parseByLevel(Element level) throws Exception {

 // step 1: fetch all the services in the level

 NodeList serviceList = level.getChildNodes();

 List<String> services = new ArrayList<>();

 // step 2: parse all the services

 for (int i=0; i<serviceList.getLength(); i++) {

 Node n = serviceList.item(i);

 if (n.getNodeType() == Node.ELEMENT_NODE) {

 // fetch the parent nodes of a service

 if (n.getNodeName().equals("parent")) {

 services.add(n.getTextContent());

 // fetch the service itself

 }else {

 services.add(n.getTextContent());

 callByParent(services);

 services.clear();

 }

 }

 }

}

28

Figure 16 Method “callByParent” in Java

3.3.5 Consequences

The hybrid messaging design pattern provides flexibility to enable different

interaction styles to work together. It can be widely applied to a complicated system. The

drawbacks are the same as those in the synchronous messaging design pattern: risk of

cascading failure and long response time.

/***

*** DESCRIPTION : <call the service by checking its parents > ***

*** INPUT ARGS : < services > ***

*** OUTPUT ARGS : <None> ***

*** IN/OUT ARGS : <None> ***

*** RETURN : <None> ***

***/

public void callByParent(List<String> services) throws Exception {

 // if the service has no parent

 if (services.size() == 1) {

 invoke(services.get(0));

 // if the service has parent(s)

 }else {

 int i;

 String lockFile;

 Path path;

 boolean exists;

 // check the parents' status

 for (i = 0; i<services.size()-1; i++) {

 // put name and path of the parents' lockFile

 lockFile = ".\\"+services.get(i)+".lock";

 path = FileSystems.getDefault().getPath

 (System.getProperty("user.dir"), lockFile);

exists = Files.exists(path, new LinkOption[]

 {LinkOption.NOFOLLOW_LINKS});

 while (exists) {

 Thread.sleep(1000);

 exists = Files.exists(path, new LinkOption[]

 {LinkOption.NOFOLLOW_LINKS});

 };

 }

 // invoke the service

 invoke(services.get(i));

 }

}

29

3.4 Guidelines

Below are the guidelines for applications following and applying the integration

design patterns in microservices.

1. Establish the microservices with well-defined APIs.

Before integrating the services with the design patterns, the system must be

broken down into independent services with well-defined APIs. Splitting up the

monolithic system according to the business capabilities is the typical decomposition

approach in microservices. API works as the communication protocol between the

service and its consumers. The most prevalent two protocols are HTTP request-response

APIs and lightweight messaging APIs [1].

 2. Identify the design pattern applied to each event.

Various events are handled in an application. For each event, there are two steps

to identify the design pattern. Step 1: To determine all the associated services for an event

according to the functionality of each component. Step 2: To identify the inter-service

communication mechanism among the associated services. If the request is blocked while

waiting for a response then the communication is synchronous. If a request is free to call

other services no matter receiving a response or not then asynchronous messaging is

applied. If both of above situations happen during different phases then it is hybrid

messaging.

3. Set the recipe configuration file.

The recipe configuration file is an event menu that aims to choreograph the

services. It contains all the titles of the requests that may occur, the services with specific

30

performed orders, and the pattern that the event belongs to. The formats of the

configuration file should be human readable and text-based such as XML and JSON. For

example, Figure 17 shows the XML configuration file for the patterns in Figure 8, Figure

10 and Figure 12.

Figure 17 Example of XML recipe configuration file

<?xml version="1.0" encoding="UTF-8"?>

 <RequestMenu>

 <request>

 <title>figure_8_request</title>

 <pattern>synchronous</pattern>

 <microservice>service_A</microservice>

<microservice>service_B</microservice>

<microservice>service_C</microservice>

 </request>

 <request>

 <title>figure_10_request</title>

 <pattern>asynchronous</pattern>

 <microservice>service_A</microservice>

<microservice>service_B</microservice>

<microservice>service_C</microservice>

 </request>

 <request>

 <title>figure_12_request</title>

 <pattern>hybrid</pattern>

<level id="0">

 <microservice>service_A</microservice>

 <microservice>service_B</microservice>

 </level>

 <level id="1">

 <parent>service_A</parent>

 <microservice>service_C</microservice>

 </level>

 <level id="2">

 <parent>service_C</parent>

 <microservice>service_D</microservice>

 </level>

 </request>

</RequestMenu>

31

The syntax of the above XML recipe configuration file is specified in Table 1.

Table 1 The syntax description of the XML recipe configuration

Tag Name Syntax Description

<request> The event to handle by the application.

<title> The name of an event.

<pattern> The type of the design pattern applied to the event. It can be

synchronous, asynchronous, or hybrid.

<microservice> The service’s name.

<level> The execution order. It has an attribute “id” that starts with 0

and increments by one each time.

<parent> The predecessor of a microservice.

4. Implement the design patterns to perform the request.

Before implementing the design patterns, there is a need to parse the recipe

configuration file in the application. Figure 18 specifies the workflow of fulfilling a

request.

32

Figure 18 The workflow of fulfilling a request

Chapter 4 Case Study

This chapter demonstrates the process of applying the design patterns proposed in

Chapter 3 to the EPIDEMIA system. The EPIDEMIA system is migrating to

microservice architecture and facing the challenge of integrating the distributed services.

4.1 EPIDEMIA overview

The EPIDEMIA system consists of five subsystems, which are public health

interface, remote sensing data processing (EASTWeb), data integration, modeling, and

reporting subsystems. Each subsystem serves one single business capability. Public

health interface is developed to update the epidemiological data; EASTWeb is

implemented to update the environmental data; data integration is designed to integrate

the epidemiological data and the environmental data; and modeling subsystem runs

detection and warning models in R to forecast the malaria outbreak, reporting subsystem

generates the PDF forecasting report. Therefore, every subsystem can be wrapped up as

an independent microservice. Below are five autonomous services in the EPIDEMIA

system:

1. New epidemiological data service

33

2. New environmental data service

3. Data integration service

4. Forecasting service

5. Report service

4.2 Microservices with Spring Boot

Spring Boot [24] evolves from Spring framework [25] and provides a convention-

over-configuration solution for creating stand-alone, production-grade Spring based

Applications that you can "just run" [24]. Rather than define a boilerplate configuration, a

simple Spring Boot framework uses a file named “pom.xml” to import all the needed

packages. Figure 19 demonstrates Spring Initializr (http://start.spring.io/) that offers a

robust tool to bootstrap the Spring Boot project swiftly.

Figure 19 Screenshot of Spring Initializr

Due to the features of automatical configuration and directly dependencies

embedding, Spring Boot is chosen to build the five services in the EPIDEMIA system.

http://start.spring.io/

34

4.3 Applying the design patterns

4.3.1 The design pattern for each request

According to the end users’ requirements, there are five events to handle in the

EPIDEMIA system.

1. The users upload the epidemiological data to the system.

The new epidemiological data are uploaded through the public health interface.

Only the new epidemiological data service is called in responding the request. Since no

thread is blocked when running the service, the asynchronous messaging design pattern

can be applied to the request as shown in Figure 20.

Figure 20 Service integration for epidemiological data upload

2. The users update the environmental data.

EASTWeb is a stand-alone application and is responsible for updating

environmental data. The new environmental data service is the component that works for

the request. Thus, the asynchronous messaging design pattern is utilized to the request

(Figure 21).

35

Figure 21 Service integration for environmental data update

3. The users update data in the system.

The request contains two tasks, epidemiological data upload and environmental

data update. Both of the new epidemiological data service and the new environmental

data service are needed to add outputs to the request, and each service has its own

database. Asynchronous messaging is the right option here as shown in Figure 22 because

the request is not blocked while waiting for the response from a service.

Figure 22 Service integration for data update

4. The users integrate the new environmental data with epidemiological data.

The request has a desire to activate the new environmental data service and the

data integration service. The new environmental data service is invoked to update the

36

environmental data first. The request is held until receiving the response from the service.

Then, the request enables to run the data integration service. The synchronous messaging

design pattern is applied to the request as shown in Figure 23.

Figure 23 Service integration for data integration

5. The users generate the forecasting report.

All of the services are required to generate the forecasting report. Firstly, the

request is sent to the new epidemiological data service and the new environmental data

service via asynchronous messaging. Secondly, after the two services give responses to

the client, the data integration service is executing in which the client will be blocked.

Thirdly, the forecasting service is running after data integration service completes. At last,

the report service generates the PDF report after forecasting service is over. Both of the

synchronous and asynchronous messaging are utilized, so the hybrid design pattern is

suitable in this case (Figure 24).

37

Figure 24 Service integration for report generation

38

4.3.2 The recipe file settings

Figure 25 XML recipe file for EPIDEMIA system

<?xml version="1.0" encoding="UTF-8"?>

<RequestMenu>

 <request>

 <Title>epidata_update</Title>

 <pattern>asynchronous</pattern>

 <microservice>epidata</microservice>

 </request>

 <request>

 <Title>envdata_update</Title>

 <pattern>asynchronous</pattern>

 <microservice>eastweb</microservice>

 </request>

 <request>

 <Title>data_update</Title>

 <pattern>asynchronous</pattern>

 <microservice>epidata</microservice>

 <microservice>eastweb</microservice>

 </request>

 <request>

 <Title>data_integration</Title>

 <pattern>synchronous</pattern>

 <microservice>eastweb</microservice>

 <microservice>dataInt</microservice>

 </request>

 <request>

 <Title>report_generation</Title>

 <pattern>hybrid</pattern>

 <level id="0">

 <microservice>eastweb</microservice>

 <microservice>epidata</microservice>

 </level>

 <level id="1">

 <parent>eastweb</parent>

 <parent>epidata</parent>

<microservice>dataInt</microservice>

 </level>

 <level id="2">

 <parent>dataInt</parent>

 <microservice>forecast</microservice>

 </level>

 <level id="3">

 <parent>forecast</parent>

 <microservice>report</microservice>

 </level>

 </request>

</RequestMenu>

39

The recipe file presented in Figure 25 configures the types of design patterns and

the services with defined execution order for all the events in EPIDEMIA system. It is

written base on the integration solutions displayed in Figure 20, 21, 22, 23, and 24.

Figure 26 Method “locateRequest” in Java

/**

*** DESCRIPTION : <parse the recipe to locate the request >

*** INPUT ARGS : <requestName>

*** OUTPUT ARGS : <None>

*** IN/OUT ARGS : <None>

*** RETURN : <String>

**/

public String locateRequest(String requestName) {

 try {

 // give the recipe file name

 File recipeFile = new File("recipe.xml");

 DocumentBuilderFactory dbFactory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder =

 dbFactory.newDocumentBuilder();

 // parse the xml file

 Document doc = dBuilder.parse(recipeFile);

 doc.getDocumentElement().normalize();

 // retrieve the request element

 NodeList requestList =

 doc.getElementsByTagName("request");

 for (int i = 0; i < requestList.getLength(); i++) {

 Node nNode = requestList.item(i);

 if (nNode.getNodeType() == Node.ELEMENT_NODE) {

 Element request = (Element) nNode;

 //fetch the title from a request

 String title = request.getElementsByTagName

("Title").item(0).getTextContent();

 // locate the title that is in line with request name

 if (title.equals(requestName)) {

 sendRequest(request);

 break;

 }

 }

 }

 return "Your request is processed.";

 } catch (Exception e) {

 e.printStackTrace();

 return "Error";

 }

}

40

4.3.3 The design pattern implementation

Before implementing the design pattern, it is necessary to parse the recipe

configuration file as stated in Figure 18. First, the recipe configuration file is read to

detect the title that is line with the request name, the example method is given in Figure

26. Next, the patterns and services in the request element are fetched, the example

method “fetch” is described in Figure 27. At last, the design pattern implementation is

called in the “fetch” method.

Figure 27 Method “fetch” in Java

/**

*** DESCRIPTION : <fetch patterns, services from the request***

*** and implement the design pattern> ***

*** INPUT ARGS : <requestName>

*** OUTPUT ARGS : <None>

*** IN/OUT ARGS : <None>

*** RETURN : <None>

**/

public void fetch(Element request) throws Exception {

 String pattern = request.getElementsByTagName("pattern")

.item(0).getTextContent();

 if (pattern.equals("synchronous")) {

 NodeList msList = request.getElementsByTagName

("microservice");

 List<String> services = new ArrayList<>();

 for (int i = 0; i<msList.getLength(); i++) {

 String service = msList.item(i).getTextContent();

 services.add(service); }

 // implement the synchronous messaging design pattern

 callWithBlock(services);

 }else if(pattern.equals("asynchronous")) {

 NodeList msList = request.getElementsByTagName

("microservice");

 List<String> services = new ArrayList<>();

 for (int i = 0; i<msList.getLength(); i++) {

 String service = msList.item(i).getTextContent();

 services.add(service); }

 // implement the asynchronous messaging design pattern

 callWithoutBlock(services);

 }else if(pattern.equals("hybrid")) {

 // implement the hybrid messaging design pattern

 hybrid(request);

 }

}

41

4.3.4 Deployment in Amazon EC2

Amazon EC2 is adopted to deploy the EPIDEMIA system in microservices.

Amazon EC2 provides sorts of instance types with varying combinations of CPU,

memory, storage and networking capacity [26]. For example, M5 instances are the latest

generation of General Purpose Instances [26]. The M5 instance is utilized to set up the

EPIDEMIA system.

To run EASTWeb application, the hardware requires at least four cores available

in CPU, up to 0.5GB memory, and at least 100GB of free space. Based on the

requirements, the instance, m5.xlarge offering 4 vCPU, 16GB of memory, EBS instance

memory and up to 3500 Mbps network bandwidth is launched to deploy the EPIDEMIA

system. Additionally, 200GB of EBS volume is created and attached to the instance to

make the EPIDEMIA system work well. Figure 28 depicts the EPIDEMIA system in

microservices architecture on AWS EC2.

Figure 28 EPIDEMIA system in microservices on Amazon EC2

42

Chapter 5 Evaluation

This chapter evaluates the service integration design patterns. The three general

design patterns are proposed to promote the process of service composition. The chapter

shows the evaluation of the design patterns by applying them in the case study. In

addition, the comparison of our work with others’ work is illustrated at the end of the

chapter.

5.1 Addressing the challenge of services integration

To verify the feasibility of the proposed design patterns, there is a need to apply

the patterns to a case study. The goal of the thesis is to facilitate services composition in

microservices. The EPIDEMIA system is built upon a collection of independent

subsystems and still requires manual operations on executing the subsystems due to the

lack of integration. Therefore, the EPIDEMIA system is suitable to apply the service

integration design patterns.

The five subsystems of EPIDEMIA were developed separately in fulfilling

specific objectives in different stages over the past ten years. Before being incorporated

into EPIDEMIA, each subsystem was independently developed and operated. For

example, the EASTWeb subsystem was originally developed in 2013 and then upgraded

in 2015 for automatically downloading earth observation datasets, processing them and

generating statistical summaries for a given area and time period [8]. Moreover, as a

standalone application since it was developed, EASTWeb has its own user interfaces and

performs independently. The other four subsystems, public health interface, data

integration, modeling, and reporting are in similar situations. The data transferring and

interactions among the subsystems still require the user’s interference. Therefore, how to

43

successfully integrate the loose collection of the subsystems is a big challenge in

EPIDEMIA project.

Figure 29 The user interface of EPIDEMIA system in microservice

In order to address the challenge, we wrap up the five subsystems as five services

at first so that the subsystems are able to talk with each other through the APIs. The

services are composed together by applying corresponding design patterns according to

the inter-service messaging styles required in different events. For instance, all of the five

services are integrated together via the hybrid messaging design pattern to fulfill the

report generation request (Figure 24). To send a request, the users only need to click the

button “Run” on the user interface as shown in Figure 29. After all the services complete

its implementation successfully, the client will receive the response like “Your request is

processed” in Figure 30. Otherwise, the error message will be displayed. As a result, the

44

challenge of the loose services integration in EPIDEMIA system has been addressed

through the design patterns.

Figure 30 The response after running request “Upload Epidemiological Data”

5.2 Simple and flexible patterns

The service integration design patterns are considered simple and flexible to apply

in applications.

 Simplicity

The more informative an approach is, the simpler it is applied. To make users

easier to select an appropriate design pattern, each pattern is described with a particular

problem and context. Also, the example diagrams are given in the approaches to make

clients understand the patterns better. The example implementation of each approach is

45

presented to make users apply the approach simply. The consequences let users gain

further insight into the pros and cons of each design pattern.

 Flexibility

The approaches can be applied to different applications with multiple requests.

There is no limitation to apply the design patterns to integrate services as long as the

applications are built upon microservices architecture. Additionally, the three design

patterns can handle different events in an application because the patterns are clarified

with basic inter-service messaging mechanisms that are applied commonly. Like the

EPIDEMIA system, all of the events find a suitable solution in the approaches.

5.3 General guidelines

In Chapter 3, the guidelines for applying the design patterns are provided. The

guidelines are general for systems facing the issue of service integration to follow. On

one hand, the guidelines are composed of a steps list acting like an assembly line and

each step contains a concise instruction. By following each step in the list, an application

can achieve the goal of successful service integration. On the other hand, multiple styles

of APIs are supported as long as the services can interact with the APIs, and varying

formats of the recipe configuration file are acceptable if they are easy to understand and

parse in the system.

5.4 Easily modifying the relationships

The microservices architecture is comprised of many independent units. It is

common that a new unit is plugged in or a unit is deleted if there is a need. When the

services are updated, the relationships among the services may be modified which could

46

be difficult as developers need to edit and test the source codes in the system. However,

the recipe configuration file can help relieve the heavy lift of modifying relationships.

The structure of the services can be re-built easily through editing the <request> element

in the recipe configuration file. For instance, if a new service, prevention data service, is

added to the EPIDEMIA system. The request of updating data is required to invoke the

new service via asynchronous messaging. The changes can be quickly made by adding a

<microservice> tag with the new service’s name in the data_update request (Figure 25).

Thus, the recipe configuration file is a helpful tool to modify the relationships easily.

5.5 Related work

5.5.1 Design patterns for microservices on Microsoft Azure [15]

Nine new design patterns are posted on Microsoft Azure to help relieve the

challenges brought by microservices architecture. Each approach provides a solution

towards a minor detailed integration problem when building an application. To entirely

establish a system in microservices, it is necessary to utilize most of these patterns

together (Figure 7). Different from the nine refined design patterns, the thesis proposes

three general design patterns to integrate services fully. The communication structure

among the services can be built with a single design pattern when the messaging

mechanism criteria are met.

5.5.2 Microservice design patterns [22]

The author, Arun Gupta presents six microservice design patterns to compose

services. These patterns provide multiple integration approaches from varying

perspectives. Unlike the design patterns in our research, there are no clear clarified

criteria among these patterns. The proxy microservice design pattern is a variation of the

47

aggregator pattern, the branch microservice design pattern extends the aggregator design

pattern, the shared data microservice design pattern develops branch design pattern [22].

Moreover, the author briefly introduces the patterns without comprehensive descriptions.

The design patterns proposed in the thesis have clear and simple clarified criteria: inter-

service messaging mechanisms, so they are easy to distinguish and follow. Besides, each

pattern is elaborated with a specific problem, context, solution, example implementation,

and consequences.

48

Chapter 6 Conclusion

The service integration design patterns illustrated in the thesis can solve the

challenges of microservices integration. This chapter summarizes the study and discusses

the possible future work.

6.1 Conclusion

The service integration design patterns aim to help compose services during the

process of building applications in microservices. By categorizing with the inter-service

interaction mechanisms, three design patterns are proposed in this study. The benefits of

the design patterns are summarized below.

1. The design patterns are helpful tools for applications facing trivial services

integration issues like the EPIDEMIA system. After applying the approaches to

the EPIDEMIA, all of its subsystems are entirely integrated to implement

multiple requests.

2. Each design pattern is described with a corresponding problem, context,

solution, example implementation, and consequences to make the approach

informative.

3. The approaches are flexible to apply to different applications as long as they

are established on microservices architecture.

4. The listed descriptive steps in the guidelines make the approaches general and

easy to follow.

5. The recipe configuration file is helpful to modify the microservices structure.

49

6.2 Future Work

This thesis mainly focuses on service integration in microservices. Future work

would explore more service integration mechanisms and strategies of choosing the

service deployment platform. The following directions could be studied:

1. To consider more clarified criteria and develop more design patterns to

integrate services. The study develops three design patterns according to the

inter-service interaction styles. It could be interesting to try different

integration methods based on new criteria. It could also be meaningful to

develop new approaches to handle complicated events in which the services

are invoked in loops or recursions.

2. To develop approaches of selecting an appropriate microservices deployment

platform. In our case study, we choose to adopt Amazon EC2 as our

deployment environment. There are various platforms ranging from IaaS

model to PaaS model. We could test more platforms and summarize the

experiences to choose the right deployment platform to reduce the complexity

of microservices deployment.

50

References

[1] James Lewis, and Martin Fowler, “Microservices: a definition of this new

architectural term”, https://martinfowler.com/articles/microservices.html, March 2014.

[2] “Gartner Says Hyperconverged Integrated Systems Will Be Mainstream in Five

Years”, https://www.gartner.com/newsroom/id/3308017, May 2016.

[3] Enterprise service bus. https://en.wikipedia.org/wiki/Enterprise_service_bus

[4] Cerny, Tomas, Michael J. Donahoo, and Jiri Pechanec. "Disambiguation and

comparison of soa, microservices and self-contained systems." In Proceedings of the

International Conference on Research in Adaptive and Convergent Systems, pp. 228-235.

ACM, 2017.

[5] C. L. Merkord, Y. Liu, A. Mihretie, T. Gebrehiwot, W. Awoke, E. Bayabil, G. M.

Henebry, G. T. Kassa, M. Lake and M. C. Wimberly. 2017. Integrating malaria

surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA

system. Malaria journal 16, no. 1 (2017): 89. DOI: 10.1186/s12936-017-1735-x.

[6] Environmental monitoring incorporating disease and environmental monitoring for

integrated assessment (EPIDEMIA) Project Website. https://epidemia.sdstate.edu/.

[7] Y. Liu, M. D. Devos, M. Abdul-Rahim, J. Hu, and M. C. Wimberly. 2016. EASTWeb

framework - a plug-in framework for constructing geospatial health applications. In 2016

IEEE International Conference on Electro-Information Technology (EIT).

https://martinfowler.com/articles/microservices
https://www.gartner.com/newsroom/id/3308017
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://epidemia.sdstate.edu/

51

[8] Y. Liu, J. Hu, I. Snell-Feikema, M. S. VanBemmel, A. Lamsal, M. C. Wimberly.

2015. Software to Facilitate Remote Sensing Data Access for Disease Early Warning

Systems. Environmental Modeling and Software. Vol. 74, p. 247-257.

[9] J. S. Racine. RStudio: A Platform‐Independent IDE for R and Sweave. Journal of

Applied Econometrics 27, no. 1 (2012): 167-172.

[10] Y. Xie. Dynamic Documents with R and knitr. Vol. 29. CRC Press, 2015.

[11] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing." (2011).

[12] Shao, Liangshan, Jinguang Sun, and Xiaowei Hui, eds. Fuzzy Systems, Knowledge

Discovery and Natural Computation Symposium: FSKDNC 2013. DEStech Publications,

Inc, 2013.

[13] David Clinton. “AWS just announced a move from Xen towards KVM. So what is

KVM?” https://medium.com/@dbclin/aws-just-announced-a-move-from-xen-towards-

kvm-so-what-is-kvm-2091f123991

[14] “Amazon EC2”, https://aws.amazon.com/ec2/?nc2=h_m1

[15] Mike Wasson Lead Content Developer, AzureCAT patterns & practices. “Design

patterns for microservices”, https://azure.microsoft.com/en-us/blog/design-patterns-for-

microservices/

[16] Masashi Narumoto, Mike Wasson. “Ambassador pattern”,

https://docs.microsoft.com/en-us/azure/architecture/patterns/ambassador

[17] Masashi Narumoto, Nate Loftsgard, Mike Wasson. “Anti-Corruption Layer pattern”,

https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer

https://medium.com/@dbclin/aws-just-announced-a-move-from-xen-towards-kvm-so-what-is-kvm-2091f123991
https://medium.com/@dbclin/aws-just-announced-a-move-from-xen-towards-kvm-so-what-is-kvm-2091f123991
https://aws.amazon.com/ec2/?nc2=h_m1
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://docs.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer

52

[18] Masashi Narumoto, Sam Ferree, Mike Wasson. “Bulkhead pattern”,

https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead

[19] Masashi Narumoto, Mike Wasson. “Gateway Aggregation pattern”,

https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation

[20] Masashi Narumoto, Mike Wasson. “Gateway Offloading pattern”,

https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading

[21] Masashi Narumoto, Mike Wasson. “Sidecar pattern”, https://docs.microsoft.com/en-

us/azure/architecture/patterns/sidecar

[22] Arun Gupta. “Microservice Design Patterns.” http://blog.arungupta.me/microservice

-design-patterns/

[23] Chris Richardson, and Floyd Smith. “Microservices from design to deployment.” ©

NGINX, Inc. 2016.

[24] “Spring Boot”. http://spring.io/projects/spring-boot

[25] “Spring”. https://spring.io/

[26] “Amazon EC2 Instance Types”. https://aws.amazon.com/ec2/instance-types/

https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
http://spring.io/projects/spring-boot
https://aws.amazon.com/ec2/instance-types/

	Service Integration Design Patterns in Microservices
	Recommended Citation

	tmp.1544472480.pdf.nomIq

