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ABSTRACT 

DEVELOPMENT OF TEXTURE WEIGHTED FUZZY C-MEANS ALGORITHM FOR 

3D BRAIN MRI SEGMENTATION 

JI YOUNG LEE 

2018 

 

The segmentation of human brain Magnetic Resonance Image is an essential 

component in the computer-aided medical image processing research. Brain is one of the 

fields that are attracted to Magnetic Resonance Image segmentation because of its 

importance to human. Many algorithms have been developed over decades for brain 

Magnetic Resonance Image segmentation for diagnosing diseases, such as tumors, 

Alzheimer, and Schizophrenia. Fuzzy C-Means algorithm is one of the practical 

algorithms for brain Magnetic Resonance Image segmentation. However, Intensity Non-

Uniformity problem in brain Magnetic Resonance Image is still challenging to existing 

Fuzzy C-Means algorithm.  

In this paper, we propose the Texture weighted Fuzzy C-Means algorithm 

performed with Local Binary Patterns on Three Orthogonal Planes. By incorporating 

texture constraints, Texture weighted Fuzzy C-Means could take into account more 

global image information. The proposed algorithm is divided into following stages: 

Volume of Interest is extracted by 3D skull stripping in the pre-processing stage. The 

initial Fuzzy C-Means clustering and Local Binary Patterns on Three Orthogonal Planes 

feature extraction are performed to extract and classify each cluster’s features. At the last 

stage, Fuzzy C-Means with texture constraints refines the result of initial Fuzzy C-Means.  



 xi 

The proposed algorithm has been implemented to evaluate the performance of 

segmentation result with Dice’s coefficient and Tanimoto coefficient compared with the 

ground truth. The results show that the proposed algorithm has the better segmentation 

accuracy than existing Fuzzy C-Means models for brain Magnetic Resonance Image.  
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INTRODUCTION 

 

Magnetic Resonance Imaging is one of the most popular non-invasive imaging 

techniques for human brain [1]. Segmentation of brain Magnetic Resonance Image (MRI) 

is useful for clinical purposes according to the characteristics of each part [1-6]. The 

segmentation has been performed for three types of tissues: cerebrospinal fluid (CSF), 

gray matter (GM), and white matter (WM). The segmented MRI helps medical experts in 

diagnosing various diseases such as tumors, Alzheimer, and Schizophrenia [7]. 

Various segmentation methods have been suggested for brain MRI segmentation 

due to its complicated structure and absence of a well-defined boundary between 

different tissues [8] such as edge detection [10], region growing [11], classification 

method [12], and clustering method [1][9]. Fuzzy C-Means (FCM) clustering is one of 

the most popular clustering methods because of its robust characteristics for segmentation 

[9,13]. It assigns each pixel to one of the pre-defined classes according to the similarities 

to the clusters. Ahmed et al. [15] and many researchers introduced various spatial FCM 

methods that consider not only the pixel itself but also its neighboring pixels [15,17-21]. 

However, spatial FCM methods still suffer from Intensity Non-Uniformity (INU) 

problem in brain MRI because FCM easily falls into local minima [22]. In this paper, we 

propose the Texture weighted Fuzzy C-Means (TFCM) which considers not only 

intensities of local neighbors but also texture patterns of them. It makes use of Local 

Binary Patterns on Three Orthogonal Planes (LBP-TOP) feature to represent texture 

information of each pixel and neighboring region and embed the information into the 

objective function of FCM. 
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The rest of this paper is organized as follows: BACKGROUND section briefly 

introduces fundamental of related algorithms; RELATED WORK section briefly reviews 

related methodologies and applications; MATERIAL AND METHODS section describes 

the proposed algorithm; RESULT AND ANALYSIS presents the evaluated results; 

CONCLUSION shows the conclusions.  
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BACKGROUND 

 

Fuzzy C-Means Clustering Algorithm 

 

Clustering is an unsupervised technique which analyzes and finds the hidden 

patterns from the raw and unlabeled data. Clustering partitions the data into groups (or 

clusters) based on some measurements for similarities and shared characteristics among 

the data. So, the data in the same clusters have similar characteristics after clustering, 

while the data in the different clusters have rare characteristics. 

FCM clustering algorithm is developed by Dunn [37]. In image processing, FCM 

assigns each pixel (or voxel) to one of the pre-defined classes according to the similarities 

to the clusters. Different from K-Means clustering algorithm, one of the most famous 

clustering algorithms, FCM allows one piece of data to belong to two or more clusters 

which is called the soft clustering, while K-Means allows the data to belong to only one 

clusters which is called the hard clustering.  

FCM aim to minimize the objective function which is called cost function in 

machine learning. The objective function of FCM is consist of two parts, membership 

function and similarity between measured data and center of the cluster. 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗 , 𝑣𝑖)

𝐶

𝑖=1

𝑁

𝑗=1

 (1) 

 

where 𝑁 indicates the number of pixels in the whole image, 𝐶 indicates the number of 

clusters, 𝑢𝑖𝑗 represents the membership function of the jth pixel to respect cluster i, m 
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indicates the fuzzification factor that controls the effect of fuzziness, and 𝑑2(. ) represents 

the Euclidian distance between the measured data 𝑥𝑗 and the cluster center 𝑣𝑖.  

The membership function 𝑢𝑖𝑗 refers to the probability that each pixel (or voxel) is 

belongs to each cluster. The range of the membership function is 0 to 1. Thus, 𝑢𝑖𝑗 satisfy 

the constraints ∑ 𝑢𝑖𝑗
𝐶
𝑖=1 = 1 for ∀𝑗 1 ≤ 𝑗 ≤ 𝑁. To minimize the objective function, 

taking the derivative of Equation 1 respect to membership function  𝑢𝑖𝑗. Then, 𝑢𝑖𝑗 is 

obtained as 

𝑢𝑖𝑗 =
1

∑ (
𝑑(𝑥𝑗 , 𝑣𝑖)
𝑑(𝑥𝑗 , 𝑣𝑘

)
2/(𝑚−1)

𝐶
𝑘=1

 
(2) 

 

Euclidian distance is typically used to represent the similarity between measured 

data and center of the cluster as Equation 3. 

𝑑2(𝑥𝑗 , 𝑣𝑖) = ‖𝑥𝑗 − 𝑣𝑖‖
2
 (3) 

 

Figure 1 shows the updating progress of membership function during the FCM 

iteration with Iris flower dataset provided from MATLAB library [38]. This is a 

multivariate dataset which consists of 150 observations with 3 species; Iris setosa, Iris 

virginica, and Iris versicolor with 4 features; sepal length, sepal width, petal length, and 

petal width. The graph plotted the membership function of the data for each cluster 1 to 3 

with different colors. Figure 1 (a) shows the randomly initialized membership function. 

Through Figure 1 (b) to (c), membership functions of the data are being gradually 

rearranged to the end. 
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Figure 1. Membership function of FCM with Iris dataset. a) iteration = 1, b) iteration = 6, 

and c) iteration = 32. 
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For example, the membership function of data 1 at 1st iteration is 

𝑋 = [
0.4138 0.1519 0.4344

⋮ ⋮ ⋮
] 

 

At 6th iteration, the membership function of data 1 is  

𝑋 = [
0.0349 0.0030 0.9621

⋮ ⋮ ⋮
] 

 

At 32nd iteration, the membership function of data 1 is  

𝑋 = [
0.0023 0.0011 0.9966

⋮ ⋮ ⋮
] 

 

The data 1 is clustered to 3rd cluster, since the highest membership value for each cluster 

of data 1 is 0.9966 for 3rd cluster. 

 

Similar to membership function, taking the derivative of Equation 1 respect to cluster 

center  𝑣𝑖, then we obtained 

𝑣𝑖 =
∑ (𝑢𝑖𝑗)

𝑚
𝑥𝑗

𝑁
𝑗=1

∑ (𝑢𝑖𝑗)
𝑚𝑁

𝑗=1

 (4) 

 

Equation 2 and 4 are the two necessary conditions for 𝐽𝑚 to be at its local 

optimization. Every iteration, FCM update the membership function and the cluster 

center based on Equation 2 and 4, respectively, and calculate the new objective function 

based on Equation 1 to aim to minimize it.  
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Figure 2. Cluster center of FCM with Iris dataset. a) iteration = 1, b) iteration = 6, and c) 

iteration = 32. 
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Figure 2 shows the updating progress of cluster center during the FCM iteration 

with Iris flower dataset. The graph scattered the data based on sepal length and sepal 

width in centimeters unit.  The bold number from 1 to 3 indicates the cluster center of 

each 1st to 3rd cluster. Figure 2 (a) shows the randomly initialized cluster centers. Through 

Figure 2 (b) to (c), we can visually notice that cluster centers are being gradually 

relocated to the end. 

 

 

Local Binary Pattern Feature Extraction Operator 

 

Ojala et al. [27,28] introduced Local Binary Pattern (LBP), which is a very simple 

and efficient discriminative texture descriptor to extract texture patterns from the image 

[29]. The LBP operator in [28] was defined as 

𝐿𝐵𝑃 = ∑ 𝑠𝑖𝑔𝑛(𝑣𝑝 − 𝑣𝑐)2𝑃

𝑃−1

𝑝=0

 

𝑠𝑖𝑔𝑛(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 

(5) 

 

where 𝑃 is the total number of neighboring pixels, 𝑣𝑐  and 𝑣𝑝 are the intensity values of 

the center pixel and its neighborhood pixels respectively.  
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Figure 3. Encoding process of LBP operator. 

 

Figure 3 shows the example of how LBP value is encoded. Pixel with 27 intensity value 

threshold neighbor pixels within 3x3 window and multiply power of 2 matrix. The final 

encoding LBP value is 195. The LBP value is used as a bin of histogram that count the 

number of pixels who have the LBP value. 

 

 

Figure 4. Examples of 2D encoded patterns by histogram bins when 𝑃 = 8. 
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Each unique LBP value is used as a minimal unit of texture representation and refers to 

the value of the x-axis of the histogram. Figure 4 shows the labeled pixels with computed 

LBP value. For example, LBP value (or bin number of histogram) 193, 7, 28, or 112 

indicates edges. These computed LBP values would be used as a texture descriptor for 

the pixels (or voxels) within the image.  
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RELATED WORK 

 

FCM is a soft clustering method based on fuzzy set theory [1,9,14,16]. It performs 

similar with K-Means algorithm but allows each pixel to belong to multiple classes 

according to a certain membership value [1]. Local minima is one of the well-known 

drawbacks of FCM method [22]. To deal with the problem, various spatial FCM methods 

have been proposed. 

Ahmed et al. [15] introduced the first spatial FCM method FCM_S by modifying 

the objective function to compensate intensity inhomogeneity. In this method, each pixel 

in a whole image was labeled with considering its immediate neighborhood. However, 

FCM_S is sensitive to noise and time-consuming. Chen et al. [17] proposed FCM_S1 and 

FCM_S2 based on FCM_S by applying mean filter and median filter in advance 

respectively. They also simplified the neighborhood term of the objective function of 

FCM_S. FCM_S1 and FCM_S2 improved the immunity to Gaussian noise and impulse 

noise. However, they are still weak to salt and pepper noise. Szilágyi et al. [18] proposed 

EnFCM with the reconstructed image prior to segmentation. Linear weighted sum 

method performed clustering the image based on the gray-level histogram instead of 

pixels in an image. Time complexity was greatly reduced with this algorithm, but it 

requires prior knowledge for choosing major parameters and only works on gray-level 

images. Cai et al. [19] proposed FGFCM by incorporating local spatial and gray 

information. They enhanced the flexibility to select the spatial term control parameter, 

but still dependent on another parameter selection. Krinidis et al. [20] proposed FLICM 

with a new fuzzy factor, which does not require pre-processing. It is a parameter 
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determination free algorithm, but FLICM is time-consuming for large-scale image since 

it requires several iteration steps on the same window. With previous work, we proposed 

TFCM algorithm. The proposed algorithm suggested a global and accurate model by 

incorporating texture terms to intensity distance. 
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MATERIAL AND METHODS 

 

In this section, our proposed algorithm and its preliminary are introduced. Figure 

5 shows the overview of the proposed algorithm. The algorithm firstly pre-processes the 

original image for Volume of Interest (VOI) extraction using 3D Skull Stripping. Then, 

the feature extraction and classification are performed using LBP-TOP and initial FCM. 

The classified texture information of each White Matter, Gray Matter, and Cerebrospinal 

Fluid cluster are used as texture constraints of final TFCM segmentation algortihm. 

 

 

Figure 5. Overview of the methodology. 

 

 

3D Skull Stripping 

 

In order to reduce the effect of background noise and time complexity, extra-

cranial tissues were removed from the input image before segmentation. To extract the 

VOI region, several pre-processing techniques such as thresholding, morphological 

operation [24], and skull stripping algorithm were performed. In this paper, we used 
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3DSkullStrip by Smith et al. [23,25,26] as a skull stripping method to extract the VOI 

region. 

 

 

Figure 6. VOI extraction using 3D Skull Stripping: (a), (c) Original image. (b), (d) VOI 

extracted image. 

 

 

Initial Fuzzy C-Means 

 

The conventional Fuzzy C-Means algorithm was performed to classify the 

features from each type of tissue such as WM, GM, CSF, and background. Segmentation 

refinement was performed with the proposed algorithm introduced in following sections 

after extracting classified features. 
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Feature Extraction 

 

Zhao et al. [30] proposed LBP for spatiotemporal data by concatenating LBP on 

three orthogonal planes, i.e., the xy-, xt-, and yt-planes. We applied LBP-TOP to brain 

volume image as in [23], we also used z-dimension instead of t-dimension. In the 

proposed algorithm, a histogram of each plane was summed up rather than concatenated 

to exaggerate the distribution of the encoding values. The modified histogram could 

obtain more distinct features since brain volume image has similar texture patterns in xy-, 

xz-, and yz-planes. 

The LBP operator in (5) could not distinguish each tissue since the key factor to 

classify the brain volume is the intensity values. The proposed algorithm modified LBP-

TOP by incorporating texture patterns and intensity values to specify the estimating 

intensity range of tissues. The equation (5) is modified as 

𝐿𝐵𝑃 = ∑ 𝑠𝑖𝑔𝑛(𝑣𝑝 − 𝑣𝑐)2𝑃

𝑃−1

𝑝=0

𝐿𝑐 

𝑠𝑖𝑔𝑛(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 

(6) 

 

where 𝐿𝑐 denotes the initially extracted class index by Fuzzy C-Means. Figure 6 shows 

the derived normalized histogram of each cluster after feature classification. The x-axis 

of the histogram represents the LBP value obtained from (6), and the y-axis represents 

the probability of occurrence. The extracted features are classified into 4 clusters by using 
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initial FCM as described in previous section. The normalized encoding value is used as a 

texture membership probability of each voxel to each cluster. 

 

 

Figure 6. Extracted LBP-TOP histogram of each tissue: 1 is background, 2 is 

cerebrospinal fluid, 3 is gray matter, and 4 is white matter. 
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3D Fuzzy C-Means with Texture Constraints 

 

Preliminaries 

 

Various Fuzzy C-Means improved invariants algorithms have been developed by 

many researchers as we researched in related work section. Many researchers have 

studied to enhance the models’ performance in 2 ways: Segmentation accuracy and 

speed. The very first model of modification to the conventional FCM to improve the 

segmentation accuracy was proposed by Ahmed et al. [15] which is called FCM_S by 

introducing neighbor term to the original objective function. The introduced neighbor 

term allows the influence of its immediate neighboring pixels when labeling the pixel. 

This term regularizes the intensities within the neighborhood window so that can get the 

piecewise homogeneous labeling solution. The objective function of conventional FCM 

(1) is modified as 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘
m‖𝑥𝑘 − 𝑣𝑖‖

2 +

𝑁

𝑘=1

𝑐

𝑖=1

𝛼

𝑁𝑅
∑ ∑ 𝑢𝑖𝑘

m ∑ ‖𝑥𝑟 − 𝑣𝑖‖
2

𝑟∈𝑁𝑘

𝑁

𝑘=1

𝑐

𝑖=1

 (7) 

 

where 𝑐 is the number of cluster, 𝑁 is the number of pixels in image, 𝑥𝑘 is the intensity 

value of the kth pixel, 𝑣𝑖 represents the center value of the ith cluster, 𝑢𝑖𝑘 represents the 

fuzzy membership of the kth pixel to respect cluster i,  𝑁𝑅  is its cardinality, 𝑥𝑟 represents 

the neighbor of 𝑥𝑘, and 𝑁𝑘 represents the set of neighbor within a window around 𝑥𝑘. 

The parameter 𝑚 is a weighting exponent on each fuzzy membership that determines the 
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amount of fuzziness of the resulting classification. The parameter 𝛼 is used to control the 

effect of the neighbor term. 

By the definition, each sample point 𝑥𝑘 satisfies the constraint that ∑ 𝑢𝑖𝑘 = 1𝑐
𝑖=1 . 

Two necessary conditions for 𝐽𝑚 to be at its local optimization will be obtained as 

𝑢𝑖𝑘 =
(‖𝑥𝑘 − 𝑣𝑖‖

2 +
𝛼

𝑁𝑅
∑ ‖𝑥𝑟 − 𝑣𝑖‖

2
𝑟∈𝑁𝑘

)
−1/(𝑚−1)

∑ (‖𝑥𝑘 − 𝑣𝑗‖
2

+
𝛼

𝑁𝑅
∑ ‖𝑥𝑟 − 𝑣𝑗‖

2
𝑟∈𝑁𝑘

)
−1/(𝑚−1)

𝑐
𝑗=1

 (8) 

  

𝑣𝑖 =
∑ 𝑢𝑖𝑘

𝑚(𝑥𝑘 +
𝛼

𝑁𝑅
∑ 𝑥𝑟𝑟∈𝑁𝑘

)𝑁
𝑘=1

(1 + 𝛼) ∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

 (9) 

 

But there was a trade-off that FCM_S improved the segmentation accuracy compared to 

conventional FCM model but resulted with the high computational cost since every pixel 

has to compute the neighborhood influence when labeling the pixel. 

Szilágyi et al. [18] proposed a modified spatial FCM algorithm EnFCM by 

speeding up the segmentation process for the gray-level image. In order to accelerate the 

time performance of previous spatial FCM methods, a linearly-weighted sum image is 

formed in advance from the original image. The local neighbor average image is obtained 

in terms of 

𝜉𝑘 =
1

1 + 𝛼
(𝑥𝑘 +

𝛼

𝑁𝑅
∑ 𝑥𝑗

𝑗∈𝑁𝑘

) (10) 
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where 𝜉𝑘 denotes the gray value of the kth pixel of image 𝜉, 𝑥𝑘 is the intensity value of 

the kth pixel, 𝑁𝑅  is the cardinality, 𝑁𝑘 represents the set of neighbors within a window 

around 𝑥𝑘, and 𝑥𝑗 represents the neighbors of 𝑥𝑘. The parameter 𝛼 is used to control the 

effect of the neighbor term. EnFCM is performed on the gray-level histogram of the 

generated image 𝜉. The objective function of the EnFCM is defined as 

𝐽𝑠 = ∑ ∑ 𝛾𝑙𝑢𝑖𝑙
𝑚(𝜉𝑙 − 𝑣𝑖)

2

𝑞

𝑙=1

𝑐

𝑖=1

 (11) 

 

where 𝑢𝑖𝑙 represents the fuzzy membership of gray value 𝑙 with respect to cluster i and 𝑣𝑖 

represents the center value of the ith cluster. The parameter 𝑚 is a weighting exponent on 

each fuzzy membership that determines the amount of fuzziness of the resulting 

classification. 𝑐 denotes the total number of cluster and q denotes the number of the gray-

levels of the given image, and N is the number of pixels in an image. 𝛾𝑙  is the number of 

the pixels having the gray value equal to l where 𝑙 = 1, … , 𝑞. So, one of the constraints of 

l is defined as 

∑ 𝛾𝑙

𝑞

𝑙=1

= 𝑁 (12) 

 

By the definition, each pixel 𝑥𝑘 satisfies the constraint that ∑ 𝑢𝑖𝑘 = 1𝑐
𝑖=1  for any l. Two 

necessary conditions for 𝐽𝑠 to be at its local optimization will be obtained as 

𝑢𝑖𝑙 =
(𝜉𝑙 − 𝑣𝑖)

−2/(𝑚−1)

∑ (𝜉𝑙 − 𝑣𝑗)𝑐
𝑗=1

−2/(𝑚−1)
 (13) 
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𝑣𝑖 =
∑ 𝛾𝑙𝑢𝑖𝑙

𝑚𝜉𝑙
𝑞
𝑙=1

∑ 𝛾𝑙𝑢𝑖𝑙
𝑚𝑞

𝑙=1

 (14) 

 

 

 

Texture weighted Fuzzy C-Means 

 

We designed the clustering process of TFCM with extracted texture in (6) as 𝑡𝑖𝑘 

for kth voxel to cluster 𝑖. The texture membership probability 𝑡𝑖𝑘 for all k is computed in 

advance as described in previous section. Initially, we designed the TFCM based on 

FCM_S on the purpose of improving the accuracy. The objective function is modified as  

𝐽𝑡1 = ∑ ∑ 𝑢𝑖𝑘
m‖𝑥𝑘 − 𝑣𝑖‖

2 +

𝑁

𝑘=1

𝑐

𝑖=1

𝛼 ∑ ∑(𝛽𝑢𝑖𝑘 + (1 − 𝛽)𝑡𝑖𝑘)𝑚‖𝑥𝑘̅̅ ̅ − 𝑣𝑖‖
2

𝑁

𝑘=1

𝑐

𝑖=1

 (15) 

 

where 𝑡𝑖𝑘 represents the texture membership of the kth voxel to ith cluster, parameter 𝛽 

controls the effect of the intensity features and texture features. 

The constrained optimization will be solved using one Lagrange multiplier as 

𝐹𝑚 = ∑ ∑(𝑢𝑖𝑘
m‖𝑥𝑘 − 𝑣𝑖‖

2

𝑁

𝑘=1

+ 𝛼(𝛽𝑢𝑖𝑘 + (1 − 𝛽)𝑡𝑖𝑘)𝑚‖𝑥𝑘̅̅ ̅ − 𝑣𝑖‖
2

𝑐

𝑖=1

) 

+𝜆(1 − ∑(𝛽𝑢𝑖𝑗 + (1 − 𝛽)𝑡𝑖𝑗)

𝑐

𝑗=1

) 

(16) 
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Taking the derivative of 𝐹𝑚 with respect to 𝑢𝑖𝑘 and setting the result to zero, we have, for 

𝑚 > 1 

𝑑𝐹𝑚

𝑑𝑢𝑖𝑘
= (

𝛽𝜆

𝑚‖𝑥𝑘 − 𝑣𝑖‖2 + 𝛼𝛽‖𝑥𝑘̅̅ ̅ − 𝑣𝑖‖2
)

1/(𝑚−1)

 (17) 

 

By constraints ∑ 𝑢𝑖𝑘 = 1𝑐
𝑖=1  for all k, we obtained 

𝜆 =
𝑚

𝛽 (∑ (‖𝑥𝑘 − 𝑣𝑖‖
2 + 𝛼𝛽‖𝑥𝑘̅̅ ̅ − 𝑣𝑖‖

2)−
1

𝑚−1𝑐
𝑗=1 )

𝑚−1 
(18) 

 

Substituting into equation #, the zero-gradient condition for the membership function can 

be written as 

𝑢𝑖𝑘 =
(‖𝑥𝑘 − 𝑣𝑖‖

2 + 𝛼𝛽‖𝑥𝑘̅̅ ̅ − 𝑣𝑖‖
2)−1/(𝑚−1)

∑ (‖𝑥𝑘 − 𝑣𝑗‖
2

+ 𝛼𝛽‖𝑥𝑘̅̅ ̅ − 𝑣𝑗‖
2

)
−1/(𝑚−1)

𝑐
𝑗=1

 (19) 

 

Similarly, cluster center is obtained as 

𝑣𝑖 =
∑ (𝑢𝑖𝑘

𝑚(𝑥𝑘 + 𝛼𝛽𝑥𝑘̅̅ ̅)) + 𝛼(1 − 𝛽)𝑡𝑖𝑘
𝑚𝑥𝑘̅̅ ̅ 𝑁

𝑘=1

∑ ((1 + 𝛼𝛽)𝑢𝑖𝑘
𝑚 + 𝛼(1 − 𝛽)𝑡𝑖𝑘

𝑚)𝑁
𝑘=1

 (20) 

 

But the time complexity of the proposed algorithm was too high, so we redesigned the 

objective function based on EnFCM. The revised objective function is defined as 



 22 

𝐽𝑡 = ∑ ∑ 𝛾𝑙(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)
𝑚(𝜉𝑙 − 𝑣𝑖)

2

𝑞

𝑙=1

𝑐

𝑖=1

 (21) 

 

Similar with (15), 𝑡𝑖𝑘 represents the texture membership of the kth voxel to ith cluster. 

The parameter 𝛽 controls the effect of the intensity distance features and texture features. 

The constrained optimization was solved using one Lagrange multiplier as 

𝐹𝑡 = ∑ ∑[𝛾𝑙(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)𝑚(𝜉𝑙 − 𝑣𝑖)
2]  

𝑞

𝑙=1

𝑐

𝑖=1

+ ∑ 𝜆𝑙 (1 − ∑(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)

𝑐

𝑖=1

)

𝑞

𝑙=1

 

(22) 

 

Taking the derivative of 𝐹𝑡 with respect to 𝑢𝑖𝑙 and setting the result to zero for 𝑚 > 1, we 

have  

𝑑𝐹𝑡

𝑑𝑢𝑖𝑙
= 𝑚𝛽𝛾𝑙(𝜉𝑙 − 𝑣𝑖)

2(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)𝑚−1 − 𝛽𝜆𝑙 = 0 (23) 

 

For 𝑢𝑖𝑙, we obtained 

𝑢𝑖𝑙 =
1

𝛽
[(

𝜆𝑙

𝑚𝛾𝑙(𝜉𝑙 − 𝑣𝑖)
2

)
1/(𝑚−1)

− (1 − 𝛽)𝑡𝑖𝑙] (24) 

 

By constraints ∑ [𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙] = 1𝑐
𝑖=1  for all 𝑙 > 0, we obtained 
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𝜆𝑙 = (∑ (𝑚𝛾𝑙(𝜉𝑙 − 𝑣𝑗)
2

)
1/(𝑚−1)

𝑐

𝑗=1

)

𝑚−1

 (25) 

 

Substituting into (24), the zero-gradient condition for the 𝑢𝑖𝑙  can be written as 

𝑢𝑖𝑙 =
1

𝛽
∑ (

𝜉𝑙 − 𝑣𝑗

𝜉𝑙 − 𝑣𝑖
)

2/(𝑚−1)𝑐

𝑗=1

−
1 − 𝛽

𝛽
𝑡𝑖𝑙 (26) 

 

Similarly, taking the derivative of 𝐹𝑡 with respect to 𝑣𝑖, we have 

𝑑𝐹𝑡

𝑑𝑣𝑖
= −2 ∑ 𝛾𝑙(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)

𝑚(𝜉𝑙 − 𝑣𝑖)

𝑞

𝑙=1

= 0 (27) 

Then, the cluster center is defined as 

𝑣𝑖 =
∑ 𝛾𝑙(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)𝑚𝜉𝑙

𝑞
𝑙=1

∑ 𝛾𝑙(𝛽𝑢𝑖𝑙 + (1 − 𝛽)𝑡𝑖𝑙)𝑚𝑞
𝑙=1

 (28) 

 

 Through the iteration, TFCM aim to minimize the its objective function (21) by 

revising the membership functions and cluster centers with pre-defined texture and 

intensity information of each voxel based on (26) and (28), respectively. 

The pseudo code of the proposed TFCM algorithm is as follows: 
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Algorithm 1 TFCM  

Step 1: Set the cluster number c, maximum iteration number 𝐼, 

error rate 𝜀, fuzziness parameter m, cardinality 𝑁𝑅 , and 

the term control parameter 𝛼 and 𝛽. 

Step 2: Extract features of each cluster from an original image 

and set 𝑡. 

Step 3: Classify the extracted features into c clusters. 

Step 4: Form the new local neighbor average image 𝜉 (10) and 

its histogram. 

Step 5: Randomly initialize the fuzzy membership matrix as 𝑈0 

(26) and objective function matrix as 𝐽𝑡
0 (21). 

Step 6: Set the loop counter 𝑖 to zero. 

Step 7: Update the cluster centers (28). 

Step 8: Update the fuzzy membership matrix 𝑈𝑖+1 at counter 𝑖 

(26). 

Step 9: Update the objective function 𝐽𝑡
𝑖+1 at counter 𝑖 (21). 

Step 10: If 𝐽𝑡
𝑖+1 − 𝐽𝑡

𝑖𝑖 < 𝜀 or loop counter met I then stop, 

otherwise set 𝑖 = 𝑖 + 1 and then go to Step 7. 
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RESULT AND ANALYSIS 

 

In this section, the proposed algorithm was applied to 20 anatomical models of 

normal brain MR image volumes provided by the BrainWeb database with ground truths 

[31-33]. The provided dataset is a set of T1-weighted simulated data with these specific 

parameters: SFLASH (spoiled FLASH) sequence with TR (repetition time)=22ms, TE 

(echo time)=9.2ms, flip angle=30 degree and 1 mm isotropic voxel size with a resolution 

of 256×256×181 per volume [34,35]. 

The number of clusters was set as 4 – background, CSF, GM, and WM. The 

number of maximum iteration number was set as 100, error threshold as 1 × 10−5, 

fuzziness parameter as 2, and parameter 𝛼 was set to 4.2 as same as previous methods. 

For 3D window, the cardinality was set to 6: ±1-pixel volume distance in each x-, y-, and 

z-axis. The texture and intensity constraints control parameter 𝛽 was set to 0.8 which was 

found empirically. Figure 7 shows the 2D sliced images for the VOI extracted and 

segmented image volume. 
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Figure 7. T1-weighted normal brain MRI from BrainWeb database: (a), (c), and (e) VOI 

extracted original Image. (b), (d), and (f) segmented Image. 
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To quantitatively evaluate the performance of TFCM, Dice’s Coefficient (DC) 

[36] and Tanimoto Coefficient (TC) [7] were used and compared with several FCM 

applicants. We have programmed the operation results of the models other than the model 

of [7], and the operation results of the [7] are referred to the author 's paper. 

The DC and TC are defined by  

𝐷𝐶(𝑀𝑆, 𝐺𝑇) =
2|𝑀𝑆 ∩ 𝐺𝑇|

|𝑀𝑆| + |𝐺𝑇|
 (16) 

𝑇𝐶(𝑀𝑆, 𝐺𝑇) =
|𝑀𝑆 ∩ 𝐺𝑇|

|𝑀𝑆 ∪ 𝐺𝑇|
 (17) 

 

where |. | denotes the number of pixels included in the region, MS and GT are the regions 

segmented by the method and by the ground truth, respectively. Both DC and TC metrics 

indicates higher segmentation accuracy when the value reaches 1. Our model was written 

with the image processing library in MATLAB, tested on 2.8GHz Intel Core i7 with 

16GB 2133 MHz LPDDR3 memory, and compared with published Fuzzy C-Means 

methods on brain MRI segmentation. 

 

Table 1. Comparison of DC and TC for BrainWeb dataset. 

Methods DC TC 

FCM [14]  0.7230 0.6142 

FCM_S [15] 0.7823 0.6142 

FCM_S1 [17]  0.8909 0.7882 

FCM_S2 [17]  0.9327 0.8743 

EnFCM [18]  0.9152 0.8235 
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FGFCM [19]  0.9243 0.8620 

FLICM [20]  0.9021 0.7781 

BCSFCM [7] 0.9504 0.8872 

TFCM 0.9543 0.9322 

 

Table 1 shows the evaluated performance of TFCM and other algorithms. The 

results show the proposed algorithm has a noticeable improvement in TC with the well-

classified intersection between segmented model and ground truth. These results suggest 

that the proposed algorithm is highly accurate in TC even though there was not a 

significant improvement in DC. We would continue this study to improve the 

segmentation accuracy for both coefficients in the near future.  
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CONCLUSION 

 

Accurate brain MRI segmentation is the important components for its clinical 

purpose [1-8]. In this paper, texture weighted TFCM method is proposed. The 

experimental result shows that TFCM is meaningful to segment brain structures by 

reducing the effect of INU from the brain MRI by incorporating texture constraints with 

intensity feature distances. With this result, the proposed algorithm shows the feasibility 

to be used for clinical evaluation of diseases in the brain such as brain tumors, Alzheimer, 

and Schizophrenia. We tested and evaluated the result with normal brain datasets in this 

paper, but we would like to expand our study with the lesion brain datasets for future. 
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