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ABSTRACT 

DEVELOPMENT OF POLYLACTIC ACID (PLA)-BASED NANOCOMPOSITE 

FILMS FOR SMART FOOD PACKAGING APPLICATIONS 

ZEYAD ALBAHR 

                                                                  2018 

Most of current food packaging resources are non-renewable and non- 

biodegradable. The use of these materials has resulted in serious environmental issues. In 

recent years, the recognition of waste disposal problems and their impacts on the 

environment has risen the demand for packaging manufactured from renewable materials. 

However, there are some limitations of using biopolymers for food packaging 

applications. These limitations include unreliable mechanical and barrier properties. 

These issues may be addressed by combining biopolymers and nanotechnologies. 

Nanotechnologies are expected to improve the performance of biopolymer-based 

packaging materials for food packaging applications.  

Cellulose nanocrystals (CNC) has shown a potential to be implemented as filler to 

reinforce synthetic polymer for food packaging applications, equating its unique 

attributes of biodegradability high surface area. In this work, the aim is to develop a 

friendly environmental nanocomposite film based on combination of polylactic acid 

(PLA) and CNC for food packaging applications using a solvent casting method. The 

main problem that restricts the utilization of nanocellulose as a reinforcing filler with 

hydrophobic polymers is their tendency to aggregate in the polymer matrix.	Thus, a 

homogenization process was applied to the mixture in order to obtain an even dispersion 

of CNC in the PLA matrix. Three various internal mixtures at CNC content were used to 
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prepare the nanocomposite films, which are 1,3,5 wt%. The prepared nanocomposite 

films were subjected to morphological analysis, tensile strength, water vapor, and 

moisture uptake tests. These tests were conducted to test CNC impact on the barrier and 

mechanical properties of the PLA matrix. The results of scanning electron microscope 

(SEM) images showed an appropriate dispersion of CNC at low concentration 1% and 

3%, while aggregations of CNC were observed in the PLA matrix for the film containing 

5%CNC. The tensile strength of the nanocomposite films significantly improved only 

with the film containing 3% of CNC by 40% compared to the control sample. The water 

vapor test conducted on the prepared films reviled an improvement of water vapor 

behavior of the film containing 3%CNC and 5%CNC by 20% and 42% respectively.	The 

water uptake test reviled that the water sensitivity of the nanocomposite films increased 

with the presence of CNC at different contents (1%,3% 5%) in the PLA matrix. The 

obtained results from this study indicated that the prepared nanocomposite films 

presented relatively reliable tensile strength and water permeability compared to the pure 

PLA film. The improvement of the water permeability and the tensile strength showed a 

potential of the prepared nanocomposite films to be utilized in food packaging 

applications. However, further studies on the nanocomposite films properties required to 

confirm that.   
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CHAPTER 1: INTRODUCTION 

1.1 Background  

Plastics, glass, and metal are the conventional packaging resources used as food 

packaging materials. These materials are non-biodegradable and nonrenewable. 

However, an increase consciousness of waste disposal problems and their effects on the 

environment has risen the demand for packaging manufactured from renewable materials. 

Recently, this awareness has resulted in the development of biodegradable packaging 

materials, such as edible films and coatings covering certain disposable products (Tang et 

al., 2006; Tharanathan et al., 2003). Several biodegradable materials such as cellulose 

and starch are increasingly used in innovative packaging methods. These methods include 

using starches to make edible and biodegradable films for food packaging as well as 

implementing cellulose as filler to reinforce synthetic plastics (Tang et al., 2012).   

According to Rhim’s et al. (2013), Food packaging are accounted for 40% of the 

use of plastics. Almost 20% of them are used in disposable products for food packaging 

applications such as bottles, sheets, and cups. Food packaging has become an important 

topic with global effort to reduce disposal wastes. From 1988 to 2005, there was an 

increase of solid waste by 37%, and the packaging contributed to the total solid wastes at 

31.2% (Imran et al., 2010).   

Revising conventional packaging practices requires materials that not only are 

biodegradable but that also both provide protection and prolong shelf-life of foods. 

Biopolymers such as cellulose and starch have shown potential in food packaging 

applications due to useful characteristics such as acting as reliable mechanical and water 
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barriers. Biopolymers are also ideal because they can be combined with other synthetic 

polymers or with additives such as antioxidants resulting in superior protection and 

greater overall functionality. However, in comparison with conventional materials, 

biopolymers’ performance is still inferior, and therefore biopolymers often do not fulfill 

the minimum requirements of food packaging. In order to extend biopolymers’ industrial 

applicability, multiple issues with biopolymer-based packaging must be addressed. These 

concerns include biopolymers’ degradation rates under different conditions, release of 

harmful compounds into packaged food, and potential for growth of unwanted microbes 

(Rhim et al., 2013).   

In the efforts to improve the properties of biopolymers, various nanotechnologies 

have been used in food packaging. Biopolymers that incorporate nanoparticles, such as 

cellulose nanocrystals, have received considerable attention as promising packaging 

materials. These biopolymers called by bio-nanocomposites as they described in Rhim’s 

et al. (2013) review of smart packaging.   

Nanocomposites exhibit many advantages. These advantages include acting as 

durable mechanical and gas or moisture barriers. They can also present more benefits 

such as sufficient biodegradability, low density, and adequate transparency. These 

properties are all desirable in food packaging (Dufresne, 2013). Such improved properties 

are attributed to the even dispersion of the nanoscale fillers incorporated into the 

polymer’s matrix (Rhim and Perry, 2007). 

Among all the types of nanocomposites, cellulose nanocomposites are considered 

to be promising candidates for packaging applications. The characteristics of these 

cellulose nanocomposites rely on two factors: the origin of the nanocellulose, and the 
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interaction between the nanocellulose and the matrix of the polymer (Azizi Samir et al., 

2005).  

Nanocellulose can be obtained by two methods: a mechanical method, and a 

chemical method. The nanocellulose obtained by the mechanical method is referred to as 

cellulose nanofibers (CNF), while the nanocellulose obtained through acid hydrolysis is 

called cellulose nanocrystals (CNC) (Azeredo et al., 2017).   

Some authors have successfully prepared CNC through acid hydrolysis of 

cellulose microfibers, describing their morphology as rod-like nanocrystals. Their size 

and dimension mainly depend on the origin and the production process of the CNC. CNC 

presents a high aspect ratio varying from 10 (for cotton) to 67 (for tunicin) (Dufresne, 

2013). The high aspect ratio of CNC is an important factor when they are used as 

reinforcing fillers (Dufresne, 2013). Recently, the use of CNC as filler in biopolymer 

matrices has increased. Much research has evaluated the effect of their reinforcement. 

The effects of CNC on the mechanical properties of different materials, especially tensile 

strength, are predominantly studied (Azeredo et al., 2017; Dufresne, 2013). CNC presents 

improved mechanical properties such as a tensile modulus of around 130 GPa and a 

tensile strength of 10 GPa (Dufresne, 2013) 

1.2 Hypothesis  
 

        Blending and homogenizing cellulose nanocrystal in PLA matrix would be forming 

a new nanocomposite that would have properties of sufficient mechanical strength and 

thermal and moisture vapor permeability, and easy to be degraded and appropriate for use 

in food packaging. 
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1.3 Objective  
 

The research goal is to develop a biodegradable environmental friendly 

nanocomposite film by blending and homogenizing CNC in PLA matrix using a 

solvent casting method. To achieve this goal, these objectives will be accomplished in 

this research.   

Objective 1: fabricate biopolymer- based (e.g. PLA) nanocomposite films by blending 

and homogenizing CNC in PLA matrix using solvent casting method 

Objective 2: investigate the impact of CNC content on the tensile strength of the 

prepared films and moisture barrier properties.  

Objective 3: evaluate the possibility of using the nanocomposite films in smart food 

packaging application 

1.4 Literature Review   
 
1.4.1 Food Packaging Definition 
 

  Packaging is crucial to maintain the quality of food. It can maintain the benefits of 

food processing, enabling food products to travel long distances during distribution by 

providing protection for foods from external stimuli such as light, oxygen, and moisture 

(Marsh and Bugusu, 2007; Risch, 2009). Food packaging materials have three main 

functions: protecting and storing food and providing information about the product to 

consumers. Today, packaging materials that involve nanotechnology can provide better 

passive and active protection of foods (Risch, 2009). An example of passive protection is 

when the packaging provides an excellent barrier to protect food from deteriorating. On 
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the other hand, active packaging involves ensuring a certain interaction between 

packaging materials and food to extend shelf life (Risch, 2009). 

Conventional materials used in food packaging such as, glass, plastic, have been 

used to meet the goals of food packaging, but these materials have increased 

environmental issues and disposal management problem. Therefore, there have been 

increased effort to develop new packaging materials to enhance the food packaging and 

also provide choice and convenience to the consumers. Figure 1 shows the general 

requirement of food packaging (Rhim et al., 2013).   

 

Figure 1.1 General requirement of food packaging material (Rhim et al., 2013). 
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1.4.2 Food Packaging Roles  

Food packaging’s main roles are to store food safely, to protect packaged food 

from external factors, and to reduce food waste. Moreover, the packaging should also 

provide the consumers with the necessary information about the food product such as 

nutritional and ingredients information, cooking instructions, and price. In addition to the 

main role, there are other (secondary) functions of the food packaging, which are 

traceability, convenience, and tamper indication (Marsh and Bugusu, 2007).        

1.4.2.1 Protection  

Proper food packaging can maintain the safety and quality of various food 

products. Packaging materials should protect packaged food from three types of external 

influences which are biological, chemical, and physical in order to prevent the 

deterioration of food, increase shelf- life, and enhance food quality (Marsh and Bugusu, 

2007).      

Physical protection of packaged foods during distribution is necessary to ensure 

the quality of food since it encounters with many external mechanical damages such as 

shock and vibration. Paperboard and corrugated materials have good physical barrier 

properties, resisting the impacts and cursing damages, thereby they are used widely as 

packaging container and sometimes as packaging materials for instance fruit and eggs. 

using of the appropriate material in food packaging for physical protection not only 

protect the product but also the consumer. For example, the replacement of glass by 

plastic for soda products has decreased the danger from the broken glass container. 

(Marsh and Bugusu, 2007).         
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Food constituents can be affected when they exposure to environmental 

influences such as oxygen, moisture, and light. Therefore, a packaging materials with 

good barrier properties is important to protect food from compositional changes. Glass 

and metal provide good barrier properties against environmental influences, but since 

they used with other materials in packaging application, which might allow some 

permeability. For example, plastic lids used in metal cans to allow sealing and filling, 

which they might allow some level of permeability to some gases or vapor (Marsh and 

Bugusu, 2007).        

1.4.2.2 Food Waste Reduction  

Inappropriate food processing and packaging lead to food spoilage and as a result 

large amount of food is discarded, and consequently increasing the amount of food waste, 

which leads to environmental problems. Large amount of food waste has been reported in 

many countries where about 50% of the wastes are fruit. Increasing the shelf – life of 

foods by proper packaging can contribute to reduce food waste (Marsh and Bugusu, 

2007).   

1.4.3 Active Packaging.    

One of the major reasons of deterioration of the packaged food is post- process 

contamination that caused by the use of inappropriate packaging materials or handling the 

food after processing. Recently, active packaging or smart packaging has applied in food 

packaging to reduce the deterioration of food that caused by microbial growth. Active 

packaging is a post- process protection system that requires certain interaction of food 

packaging and food. It can be in a form of films or coating, example the use of 

antimicrobial packaging films (Gandhi and Chikindas, 2007).  
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As it is mentioned above in food packaging role section, packaging materials can 

provide an active protection for packaged foods. One form of that, is smart or active 

packaging system. It is defined as a smart or intelligent packaging system that require an 

interaction between the packaged material and food or food surrounding atmosphere in 

order to maintain the quality and hence increase shelf –life of foods (Labuza and Breene, 

1989).  

Smart packaging is not just related to protecting food from the external 

environment by providing good barrier properties to the packaged food, but it also 

provides other important functions, maintaining food quality. Furthermore, Smart 

packaging can reduce the risk of the development of the pathogen, and provide the 

efficient control of surface contamination, which can be useful for foods with high water 

activity such as fish to control the microbial growth on the surface of these foods. 

(Scannell et al., 2000; Millette et al., 2007).    

1.4.4 Active Packaging Concepts  

1.4.4.1 Oxygen Scavengers 

Potential microbial growth in food packages results from the occurrence of high 

levels of oxygen trapped within the packaging. These oxygen levels may also cause 

changes in color of the product, nutritional deterioration of packaged foods, and an 

overall decrease in the food’s shelf-life (Hogan and Kerry 2008). Therefore, controlling 

and monitoring oxygen levels inside food packages can lower the rate of food spoilage. 

Including oxygen absorbing in food packaging is a viable technique for controlling 

oxygen levels in food packaging. Controlling oxygen levels in packaging often improves 
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the quality and extends the shelf life of food products (Figure 1.2) (Ozdemir and Floros, 

2004).   

  1.4.4.2 Moisture Control  

Additionally, controlling for high levels of moisture within food packaging is 

important in reducing the water activity and thus limit microbial growth (Vermeiren et 

al., 1999). Moisture development in food packages can occur for different reasons such 

condensation and temperature fluctuation. Water accumulation inside food packaging 

leads to bacteria and mold growth, decreasing product quality and reducing the shelf life 

of foods (Ozdemir and Floros, 2004). 

1.4.4.3 Antimicrobial Packaging 

Active or smart packaging such as antimicrobial packaging interacts with the 

packaged food to discourage microbial growth (Appendini and Hotchkiss, 2002). 

Antimicrobial packaging material can be categorized into two categories:  material that 

contains antimicrobial agents that migrate to the surface of the food, and material that 

contains antimicrobial agents bound to the surface of a film inside the package (Han 

2003). Standard antimicrobial multi-layer active films consist of four layers: the outer 

layer, barrier layer, matrix layer, and control layer (Figure 1.3). Antimicrobial packaging, 

whether using multi-layer films or coating the inside of the packaging, can be used in 

order to control the growth of undesired microorganisms on foods (Labuza and Breene, 

1989).  

 

   



10	
	

 

Figure 1.2 A structure of typical oxygen absorbing multi- layer film (Ozdemir and Floros, 

2004).   

Figure 1.3 A structure of typical antimicrobial multi- layer active film (Ozdemir and 

Floros, 2004).     
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1.4.5 Bio-based Packaging Materials    

Bio-based packaging materials are sourced from renewable and biodegradable 

materials are being utilized in food packaging applications. However, the two terms “bio-

based” and “biodegradability” are distinct, not synonymous—biodegradable packaging 

materials can usually decompose naturally under certain conditions whereas bio-based 

packaging materials are not necessarily biodegradable despite initially being derived from 

biodegradable materials (Weber et al., 2002).  

1.4.5.1 Biopolymers   

Rhim’s et al. (2013) categorized biopolymers into three categories. These categories 

are based on the origin and the process condition as shown in Figure (1.4) (Rhim et al., 

2013).  

• Natural polymers—examples include cellulose, alginate, chitosan, and agar;   

• Synthetic biodegradable polymers—examples include poly(l-lactide) (PLA), 

poly(glycolic acid) (PGA), and poly(vinyl alcohol) (PVA); 

• Biopolymers produced by the fermentation of microbes—examples include 

pullulan and curdlan (Rhim et al., 2013).       

1.4.5.1 Bio-nanocomposites    

 Bio-nanocomposites, a new type of material consisting of a polymer matrix 

incorporated with nanoparticles (ranging from 1–100 nm), are currently being 

considering as a promising innovation to improve the mechanical and barrier properties 

of biodegradable packaging. Rhim et al. (2013) expect that using nanocomposites will 

improve the mechanical, barrier, and thermal properties in food packaging (Rhim et al., 

2013). For example, cellulose nanofibers (CNF) have been utilized as reinforcing filler to 
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improve the mechanical properties of mango puree film such as glass transition 

temperature water vapor permeability (Azeredo et al., 2009).  

 

Figure 1.4 A Classification of biopolymers (Rhim et al., 2013).   
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1.4.6 Cellulose and Nanocellulose Structure     

 Despite its origin, cellulose is a linear homopolymer, consisting of repeating D-

glucopyranose units linked by β (1,4) linkages, which form a cellobiose unit.This unit 

composes of two units of anhydroglucose, and every second anhydroglucose rotates 180 

degrees with regard to adjoining units in order to form an oxygen covalent bond through 

dehydration as it is shown in Figure 1.5 (Li et al., 2015).  

 

     Figure 1.5 Cellobiose unit. (Li et al., 2015).                                                 

Hydroxyl group is the function group of the cellulose chains. Their interaction 

between each other stabilizes the cellulose chains. Three hydroxyl groups attach to each 

glucopyranose unit, and they contribute to form hydrogen bonds, which determine the 

physical characteristics such as strength and rigidity of the cellulose chain (Li et al., 

2015).  

The cellulose chains, shown in Figure 1.6, pack together to form highly ordered 

crystalline structures (microfibrils). However, disorder to these microfibrils occur to form 

two different regions: amorphous (disorder region) and crystalline (highly ordered 

region). As cellulose polymers aggregate in a liner structure, the interaction between 
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hydroxyl groups form hydrogen bonds, stabilizing these polymers together. (Li et al., 

2015). 

 

Figure 1.6. Idealized cellulose fiber structure. A where this alone is cellulose nanocrystals 

structure (CNCs); B is amorphous region (disorder regain); C is inter-fibrillar tie chains; 

D is voids (Li et al., 2015).                                                

Nanocellulose is a term of cellulose fibers possess at least one dimension in 

nanometer. There are two methods to obtain nanocellulsoe. The first method is 

mechanical treatment, and the second is acid hydrolyses. In the acid hydrolyses, the 

separation of cellulose nanocrystals (nanowhiskers) is the product of the difference of 

solubility of the two regions (amorphous and ordered regions) in the cellulose chain. 

(Habibi et al., 2010).    

1.4.7 Potential Application of Nano-cellulose in Food Packaging.   

1.4.7.1 Reinforcement   

 As it is mentioned above that biopolymers present poor mechanical and barrier 

properties because of their hydrophilic nature. Recently, there has been an interest in 

using cellulose nanoscale materials such as CNC and CNF as a filler for reinforcing 

biopolymer films for food packaging applications. This interest comes from their 

beneficial characteristics such as biodegradability, low cost, and rather high aspect ratio. 

This high aspect ratio of cellulose material fillers is an important factor in enhancing the 
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mechanical properties of nanocomposite films. Authors Cho and Park. (2011) and Khan 

et al. (2012) reported that the tensile strength of their cellulose nanocomposite films 

improved with the addition of CNC compared to the control samples (Rhim and Perry, 

2007). 

1.4.7.2 Coating and Edible films  

Cellulose is a hydrophilic polymer, and thus usually shows poor compatibility 

with hydrophobic synthetic polymers and also poor thermoplastic properties. This limits 

the use of nanocellulose, especially cellulose nanocrystals, in nanocomposite fabrication 

by the extrusion method (Li et al., 2015). However, according to Li et al. (2015), CNC is 

easy to disperse in water, and thus it can be used as water-based coating for food 

packaging applications. This can be useful to improve the barrier properties of packaging 

materials.  

1.4.7.3 Antimicrobial Nanocomposites Films   

  Antimicrobial nanocomposite films have received increased attention to be 

employed for food packaging. These films have antimicrobial activity, aiding to control 

the growth of unwanted spoilage microorganisms. Antimicrobial nanocomposite films 

possess desired characteristics for food packaging applications such as structural 

integrity, antimicrobial properties, and barrier properties, attributing to the incorporation 

of both nanoparticle fillers and natural antimicrobial agents in the film matrix (Rhim and 

Perry, 2007). 

1.4.8 Preparation of Cellulose Nanocrystals suspensions     
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Under acid hydrolysis conditions, the amorphous regions of the cellulose chain 

are responsible for the separation of cellulose microfibers into monocrystals (Azizi Samir 

et al., 2005).  In the cellulose chain, amorphous regions are surrounded and embedded 

within cellulose microfiber. The disruption of the amorphous region results in the release 

of cellulose microcrystalline because of the difference in kinetic energy between 

amorphous regions and crystalline domains. The generated substances are stable and 

physiological inert (Mazeau, K., 2003) 

Azizi Samir et al. (2005) in his review of cellulosic whiskers, referred to cellulose 

nanocrystals by using the term cellulose microcrystalline and descried them as substances 

that occur naturally and have stiff rod-like or long straight crystals shape. The dimension 

of these substances can be vary depending on the origin of cellulose microfibers and 

process conditions (Azizi Samir et al.,2005).  Many authors have reported the 

characteristics of cellulose nanocrystals suspensions from different natural sources such 

as beet pulp, cotton, and sugar. To study the characteristics of the cellulose nanocrystals 

suspensions, different techniques have been used such as transmission electron 

micrographs (TEM), small angle scatter (Azizi Samir et al., 2005). Terech et al. (1999) in 

their study of determining the dimensions of cellulose nanocrystals, prepared from 

marine animals, they used small angle scatter to determine the average of the cellulose 

nanocrystals dimensions (Azizi Samir et al., 2005).   

1.4.8.1 Cellulose Nanocrystals Suspensions Stability    

Microcrystalline cellulose or (CNC) suspensions stability, prepared by acid 

hydrolysis, depends on the solvent used in the hydrolysis procedure as well as resulted 
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cellulose suspensions’ surface charge, dimension, and size. (Azizi Samir et al., 2005). 

Dong et al. (1998) studied the effect of acid hydrolysis conditions and ultrasound 

treatment on the morphology of cellulose whiskers suspensions from cotton fibers. They 

found that there was an increased in the surface charge of the obtained cellulose whiskers 

suspensions (Azizi Samir et al., 2005).  

According to Azizi Samir et al. (2005), the CNC suspensions prepared by sulfuric 

acid is more stable than those prepared by hydrochloric acid, and this is ascribed to the 

fact that sulfuric acid prepared CNC have negative surface charge, while hydrochloric 

acid prepared CNC do not present a charge (Azizi Samir et al., 2005).  

CNC does not dissolve in common solvents, but it forms colloidal suspensions in 

polar solvents such as water (Azizi Samir et al., 2005). CNC suspensions are stable in 

high polarity solvents. However, surface chemical modification or coating of whiskers 

suspensions surface can generate stable suspensions in low polarity solvents (Azizi Samir 

et al., 2005). Goussé et al. (2002) prepared stable CNC suspensions by partial silylation 

of their surface. Moreover, Araki et al. (2001) successfully prepared stable CNC 

suspensions by using carboxylation-amidation procedure. Also Heux et al. (2000) 

observed how that the use of surfactant leads to stable cellulose whiskers suspensions 

(Samir et al., 2005).  

De Souza Lima and Borsali. (2002) studied the dynamic, the static, and properties 

of CNC suspensions from tunicate, prepared by acid hydrolysis, using light scatter 

techniques. They observed several scattering peaks and explained them as electrostatic 

interactions between the suspension particles, which produces the structure order of these 

suspensions (Azizi Samir et al., 2005). However, these electrostatic interactions gradually 
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disappeared after the addition of salt to suspensions. This indicated that CNC suspensions 

stability and order depend on the electrostatic interaction between CNC suspensions 

particles (Azizi Samir et al., 2005)   

1.4.8.2 Nanocrystals Suspensions Birefringent  

    CNC aqueous suspensions, resulted from acid hydrolysis treatment, present the 

character of birefringent. This property caused by two origins in cellulose: The structural 

anisotropy produced from cellulose, and flow anisotropy as a result of cellulose 

alignment (Azizi Samir et al., 2005). This alignment of CNC has been studied by Ebeling 

et al. (1999). They found that it is shear- rate dependent alignment and reversible. At low 

shear rate, microcrystals align randomly in planer domains, but when the shear exceeded, 

they are broken to form cellulose whiskers suspensions alignment (Azizi Samir et al., 

2005). 

1.4.9 The Properties of Cellulose Nanocrystals (CNC) Composites    

1.4.9.1 Mechanical Properties  

Recently, the impact of CNC as a filler on the mechanical performance, tensile 

strength and modules properties of synthetic polymers has been studied more extensively. 

Favier et al. (1995) explained that the improvement of the mechanical properties of the 

composite film reinforces with CNC results from the percolation effect by CNC. CNC 

can create stiffness and strength effect in the polymer matrix by hydrogen bonds 

interactions (Favier et al., 1995). The increase of tensile and modules of nanocomposite 

films is restricted by the agglomeration of CNC. Additionally, they reported the optimum 

amount, which was 5 wt% (Huq et al., 2012; Khan et al., 2012).  
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Helbert et al. (1996), reported Young’s modulus increased significantly of poly(S-

co-BuA) film, reinforced with 30% of cellulose whiskers in comparison with the control 

sample. They explained that this improvement occurred because of the stiffness strength 

effect by CNC hydrogen bonds interactions.    

Sung et al. (2017), They prepared successfully PLA/CNC composites for food 

packaging use by twin-screw extruder. Poly lactic acid (PLA) film reinforced with 

different contents of CNC (1%,3%, and5%). They reported that the nanocomposite films 

contain 1% and 3% of CNC had superior barrier and mechanical properties in 

comparison with the control sample.  

These examples show that implement of cellulose, especially CNC, as a filler can 

improve biopolymers performance however, the reinforcement effect depends on the 

properties of CNC.  

Since the cellulose nanocrystals dimensions and properties depend on cellulose 

fibers origin as well as the processing conditions. Azeredo et al. (2012) in their study, 

they evaluated CNC effect, obtained from coconut and cotton, on the mechanical 

performance of alginate-acerola puree films. The results of their study suggested that 

both coconut cellulose whiskers and cotton cellulose whiskers have the same impact on 

the mechanical properties of the prepared films although coconut cellulose whiskers 

received to one or multi- stage belching. Also they highlighted the role of the chemical 

nature of the filler substances (hydrophilic or hydrophobic) in improving the mechanical 

properties. High compatibility between polymer matrix and CNC leads to better 

adhesion, and thus to maximize the mechanical properties of the nanocomposite (Azeredo 

et al., 2012).  
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Achieving an appropriate dispersion of CNC in polymer matrix mainly depends 

on the formulation of an adequate percolation network in the matrix, but the strong 

interactions between the CNC substances may restrict that because of their tendency of 

aggregations (Dufresne, 2010).	Many methods and techniques have been used in order to 

overcome this problem. One of the possible techniques that can improve the dispersion of 

CNC in polymer matrix is the use of surfactants. For example, using surfactants increases 

the compatibility between a hydrophobic polymer matrix, such as PLA, and a hydrophilic 

filler such as CNC. The surfactant hydrophilic tail dissolves into the cellulose and the 

hydrophobic tail dissolves into the hydrophobic matrix, preventing aggregations of 

cellulose nanoparticles by steric stabilization (Hubbe et al., 2008).  

Bondeson and Oksman. (2007) reported in their study that they used an anionic 

surfactant in order to enhance CNC dispersion in PLA matrix. CNC dispersion improved 

as the surfactant content increases. Accordingly, the prepared nanocomposite films 

presented superior mechanical performance compared to the pure PLA films though 

degradation on the PLA matrix was observed.  

An alternative method to enhance the dispersion of CNC in polymer matrix is 

covalent linking. De Mesquita et al. (2012), successfully prepared CNC/chitosan bio 

nanocomposites through covalent linkage. CNC were functionalized with methyl adipoyl 

chloride. The results of the mechanical properties test showed an increase of the films 

tensile strength from 45 to 110 MPa, and also young’s modules from 1.35GPa to 

3.75GPa with the addition of 60% of CNC.  

1.4.9.2 Barrier Properties  
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Additionally, CNC potential to improve water barrier of biopolymers have been 

studied. Many authors have in their studies highlighted the improved barrier properties of 

variety of biopolymers with the addition of CNC at different contents. This improvement 

was ascribed to their small dimensions and large surface volume ratio, which leads to 

change the properties of the polymer matrix.  

Water sensitivity and water vapor permeability are important properties for 

hydrophilic polymers when they are used in food packaging applications. Water 

sensitivity of a polymer is defined as the tendency of the polymer to form its own 

structure when it is affected by water. However, WVP refers to the move of water 

molecules throughout the polymer. CNC effect on these two properties was reported by 

many authors used different tests such as water solubility and water uptake (Azeredo et 

al. 2017).  

Dhar et al. (2015) studied the effect of CNC obtained from bamboo 

(Bambusabalcooa) on the migration and barrier properties of poly (3-hydroxybutyrate) 

(PHB) polymer. They found that the PHB/ CNC films with the optimum CNC content, 

which was 2wt%, showed a significant decrease in the oxygen transmission rate by 65%. 

Also properties such as solubility and diffusivity of the film improved with the addition 

of CNC up to 2%. The improvement of the barrier properties resulted from the effect of 

tortuous of the CNC in the polymer matrix.  

Azeredo et al. (2012), developed an edible film based on combination of fruit 

purees (acerola puree) and polysaccharides (alginate). The film incorporated with 

cellulose whiskers at different contents. Water vapor permeability of the film showed a 
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significant improvement compared with unfilled films. This improvement was ascribed to 

the tortuosity effect of cellulose nanoparticles.   

Additionally, the effect of CNC on the water resistance of different hydrophilic 

biopolymers has been reported by some authors Khan et al. (2012) and Dufresne et al. 

(2000). 

1.4.10 Summery 

Cellulose nanocomposites are promising candidates to revise non-renewable and 

non- biodegradable packaging materials due to their particular properties such as 

biodegradability and low cost. In addition to their basic properties, they are highly 

available and present reliable barrier and mechanical properties. Including active 

packaging is highly desirable in food packaging industry to maintain the quality and to 

extend shelf life of packaged foods. The use of biopolymers incorporated with 

nanocellulose as a packaging material could expend active packaging applications in food 

packaging industry.   
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CHAPTER 2: Study on Mechanical and Barrier Properties of Polylactic Acid Films 
Combined with Cellulose Nanocrystals  

2.1 Introduction  

Revising conventional packaging practices requires materials that not only are 

biodegradable but that also both provide protection and prolong the shelf-life of foods. 

Biopolymers such as cellulose and starch have shown potential in food packaging 

applications due to useful characteristics such as acting as reliable mechanical and water 

barriers. Biopolymers are also ideal because they can be blended with other synthetic 

polymers or with additives such as antioxidants or antimicrobial agents, resulting in 

superior protection and greater overall functionality. However, in comparison with 

conventional materials, biopolymers’ performance is still inferior, and therefore 

biopolymers often do not meet the minimum requirements of food packaging. In order to 

extend biopolymers’ industrial applicability, multiple issues with biopolymer-based 

packaging must be addressed. These concerns include biopolymers’ degradation rates 

under different conditions, release of harmful compounds into packaged food, and 

potential for growth of unwanted microbes (Rhim et al., 2013).    

Nanocomposites exhibit many advantages. These advantages include acting as 

durable mechanical and gas or moisture barriers. They can also present more benefits 

such as sufficient biodegradability, low density, and adequate transparency. These 

properties are all desirable in food packaging (Dufresne, 2013). Such improved properties 

are attributed to the even dispersion of the nanoscale fillers incorporated into the 

polymer’s matrix (Rhim and Perry, 2007). 
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Among all the types of nanocomposites, cellulose nanocomposites are considered 

to be promising candidates for packaging applications. The properties of these cellulose 

nanocomposites depend on two factors: the origin of the nanocellulose, and the 

interaction between the nanocellulose and the polymer matrix (Azizi Samir et al., 2005).  

Some authors have successfully prepared CNCs through acid hydrolysis of 

cellulose microfibers, describing their morphology as rod-like nanocrystals. Their size 

and dimension mainly depend on the origin and the production process of the CNC. CNC 

present a high aspect ratio varying from 10 (for cotton) to 67 (for tunicin) (Dufresne, 

2013). The high aspect ratio of CNC is an important factor when they are used as 

reinforcing fillers (Dufresne, 2013). Recently, there has been an increased interest in 

using CNC as filler in biopolymer matrices. Much research has evaluated the effect of 

their reinforcement. The effect of CNC on the mechanical properties of different 

materials, especially tensile strength, are predominantly studied (Azeredo et al., 2017; 

Dufresne, 2013). CNC present improved mechanical properties such as a tensile modulus 

of around 130 GPa and a tensile strength of 10 GPa (Dufresne, 2013) 

Poly lactic acid (PLA) is a linear thermo- plastic polyester, sourced from natural 

biopolymers such as starch. PLA exhibits a good biodegradability as well as it is easy to 

process. Thus, it has used in many applications and obtained the attention in number of 

applications and research (Sung et al., 2017). 

This study aims to develop environmental friendly nanocomposite films based on 

combination of PLA and CNC for smart packaging applications via a solvent casting 

method. The objectives of this work are to fabricate biopolymer- based (e.g.PLA) 

nanocomposite films by blending and homogenizing CNC in PLA matrix via a solvent 
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casting process. The properties of the nanocomposite films will be characterized and the 

effect of CNC contents on the properties of nanocomposite films will be also investigated 

as well in order to evaluate the potential of the produced nanocomposite films for smart 

packaging application. 

2.2 Materials and Methods   

2.2.1 Materials    

Nanocellulose was purchased from the Process Development Center (PDC) at 

University of Maine, 5737 Jenness Hall, Orono, Maine, ME 04469. The properties of this 

CNC is shown in table 1. polylactic acid (PLA) was purchased from the Solutions of 

Consequences LLC, Grand Rapids, Michigan, MI 49505. The properties of this PLA is 

shown in table 2.  

Table 2.1 The properties of CNC 

Names Dimension Density CNC contents 

Cellulose 

nanocrystal 

5-20 nm in diameter   

150-20 nm in length 

1.0 g/cm3 

aqueous gel  

 11.5-12.5 wt.% of 

solid in aqueous gel  

 

Table 2.2 The properties of PLA  

Names Pellet size  Density 

Poly lactic acid  3.6 mm in diameter  1.2 g/cm3 
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The equipment used in this study include Omni Mixer Homogenizer, stainless 

steel dishes, desiccator, Dew point hygrometer, stable micro system texture analyser 

(model TA-HD plus).  

2.2.2 Experimental Design  

Based on our review of Khan et al. (2013) Work, the result of their study 

suggested that mechanical and barrier properties of thermoplastic biodegradable 

polymers improved with the addition of cellulose nanocrystals up to 5%. Accordingly, we 

decided to design our experiment based on a one-factor-at-a-time experiment design. 

Since in this work we want to evaluate the effect of different CNC contents on the 

mechanical and the barrier properties of PLA film matrix, we selected CNC contents as 

the factor with three levels (1%,3%, and 5%). Table 2.3 illustrates the experiment design 

and the conditions of films preparation:   

Table 2.3 Synthesis conditions of CNC/PLA Films 
CNC 0 wt. % 1 wt. % 3% wt. % 5 wt. % 

PLA  4g 4g 4g 4g 

Thickness ~ 0.16mm ~ 0.16 𝑚𝑚 ~ 0.16mm ~ 0.16𝑚m 

Temperat
ure 

Room 
temperature 

 

Room 
temperature 

 

Room 
temperature 

 

Room 
temperature 

 

Mixing 
Time 

          45min               45min         45min        45min 

Homogeni
zation 
Time  

          15min                15min         15min        15min 

Drying 
Time  

         24h                24h         24h        24h 
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As control, pure PLA and cellulose nanocomposite films will also be prepared 
respectively for comparison 

2.2.3 Preparation of Polylactic Acid (PLA)/Cellulose Nanocrystals (CNC) Films  

For the preparation of the films, we used the procedure reported by Hossain et al. 

(2012) with some modifications. Pure PLA films and PLA/CNC nanocomposite films 

were prepared using a solvent cast method. The procedure of this process is shown as 

Figure 2.1. 4g of PLA was dissolved in 100 ml of chloroform under continuous stirring 

until the PLA completely dissolved. The desired amount of CNC (1%, 3%,5%) was 

suspended in 10 ml of distilled water and then added to the PLA solution. After that, the 

two solutions were mixed for 45 minutes and then homogenized for 15 minutes. 

Afterwards, the homogenized solution was poured into stainless steel dishes and allowed 

to evaporated at room temperature for 24 h.   

 

      Figure 2.1. flowchart of casting process for fabrication of nanocomposite films 

2.2.4 Examine Morphology of (PLA)/ (CNC) Films  

In order to analyze prepared films morphology, scanning electron microscope 

(SEM) was utilized. Four samples of each film, pure PLA films, and nanocomposite films 

with 1%,3%,5% of CNC, prepared and dried at 100°C for 18. Then, they were stored at 

temperature of 22°C and relative humidity of 30% RH for three days before the test.  

2.2.5 Sample Preparation of Tensile Strength Test  

 

PLA Dissolving Homogenization Casting 

CNC Solution

Drying Film 
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Strip-shape samples (the thickness is individually controlled) were prepared of the 

films (see figure 2.2). The samples were stored at 60% RH three days before the test. The 

dimensions of strips of film samples is shown in table 2.4 

Table 2.4 The dimensions of strips of film samples 
Film Length(cm) Width(cm) Thickness(mm) 

PLA 6 1.5 0.14 

PLA/CNC 1% 6 1.5 0.14 

PLA/CNC 3% 6 1.5 0.16 

PLA/CNC 5% 6 1.5 0.18 

 

 

Figure 2.2 Strip-shape samples of, PLA/1%CNC, PLA/3 %CNC, and PLA/5%CNC 

nanocomposite films prepared for the tensile strength test 

 

 

1% 3% 5% 

Strips of film samples  



29	
	

 2.2.6 Determine Tensile Strength of the Nanocomposite Films  

Tensile strength test was carried out in triplicate. The tensile strength of the films 

was measured at 25°C and 35% RH via a stable micro system texture analyser (model 

TA-HD plus). A load cell of 1 kN is applied. The length of the gauge was almost 20 mm. 

A crosshead speed of 2 mm/min was used (see figure 2.3).  

 

Figure 2.3 The equipment for tensile strength test  

2.2.7 Sample Preparation of Water Uptake Test     

 Samples of 10mm in length and ~10 mm in width was prepared and dried at 100 

°C for almost 18 h. Then they were weighted (M0) (see Figure 2.4).   

 

 A strip of film samples 
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Figure 2.4 Samples of 10mm in length and ~10 mm in width of PLA/ 3% CNC and PLA/ 

5% CNC nanocomposite films after dried at 100°C for 18 h.   

2.2.8 Water Uptake Test   

The moisture uptake test of films was evaluating through measuring the changes 

in the moisture uptake behavior of the films. The samples were placed inside a desiccator 

at room temperature and relative humidity of 95% (see figure 2.5). The samples are 

removed at different time intervals (t) and weighed (Mt) until reaching the equilibrium 

weight (M). The moisture uptake was calculated as follows in Eq. 1: 

                            MU = 100% *(Mt-Mo)/Mo   (1)  
 

PLA + 3% CNC 

PLA + 5% CNC 
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Figure 2.5 Samples of pure PLA films and PLA/3% CNC films inside the desiccator at 

95% RH and room temperature.  

2.2.9 Sample Preparation of Water Vapor Permeability  

The prepared films were cut into circle shapes (23 mm in diameter), and then they 

were glued on the top of a glass cup filled with 20 mL of distilled water. The headspace 

of the cup is 23 mm in diameter, and the samples are glued using hot silicon. 

2.2.10 Water Vapor Permeability Test    

film samples  
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Water vapor permeability (WVP) and water vapor transmission rate (WVTR) of the 

films were determined using a modification of the standard ASTM E 96. The whole 

ensemble was weighed, and then they were placed inside a desiccator at temperature of 

22°C and relative humidity of 60%. The desiccator was attached to a pump to vacuum the 

air inside the desiccator (see figure 2.6). The samples were weighed at regular intervals 

during nine days and the WVTR is calculated according to the Eq. 2:  

 
                                 WVTR = (Δm/Δt)/A (2) 

Δm is the mass change (in grams), t is the time change (in days), and A is 

the area of the sample (in 𝑚"). The WVP is calculated by the following equation:  

 

                                WVP = WVTR*(L/ΔP) (3)  

L is the sample thickness (in meters), and P is the difference of pressure 

across the two sides of the film (in kPa). 

 

Figure 2.6 Water vapor permeability test system 

Vacuum	Pump	
desiccant	

Desiccator		

Sample	
bottles	
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2.2.11 Statistical Analysis  

The impact of the different content of CNC (1,3,5 wt%) on mechanical and 

barrier properties of the PLA/CNC composite films were analyzed by Microsoft excel 

with the analysis of variance (ANOVA) and the significant differences in mean by 

RStudio (Version 0.99.491) with the Tukey’s test at the interval of confidence of 95%.  

2.3 Results and Discussion    

2.3.1 Films Transparency  

From a naked eye examination of the prepared films, the transparency of the pure 

PLA film and the nanocomposite films were not the same as shown in Figure 2.7. At low 

concentration of CNC (1% and 3%), the film containing 1%CNC was more transparent 

than the film containing 3% CNC. However, the two films’ transparency were close to 

the pure PLA film. This indicated an even dispersion of CNC in the polymer matrix. 

However, at high concentration of CNC, the film had a granular structure, which might 

have been a result of the poor dispersion of CNC in the PLA matrix 

 

PLA + 
0% CNC 

PLA + 
1% CNC 

PLA + 
3% CNC 

PLA + 
5% CNC 

a b c d 
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Figure 2.7 Transparency property of the prepared films (a) Pure PLA film, (b) PLA/1% 

CNC film (c) PLA/3%CNC film, (d) PLA/5% CNC film 

2.3.2 Morphology of Polylactic Acid (PLA)/Cellulose Nanocrystals (CNC) Films 

Since we want to understand changes in the films’ mechanical and barrier 

performance, we examined the morphology of films via transmission electron 

microscopy (SEM). The results of SEM of the pure PLA films and the nanocomposites 

films with 1%, 3%, and 5% of CNC are presented in Figure 2.8. SEM images showed 

that the surface of nanocomposite films changed when the concentration of CNC 

increased. For the pure PLA film, the surface was rough and rigid, while the surface of 

films with CNC content up to 3% was relatively smoother than the pure PLA. For the 

films containing 1% and 3% of CNC, SEM images did not show any agglomerations of 

CNC in the surface of the polymer matrix, which indicated that filler substances were 

homogeneously dispersed. This might have occurred because of the processing route of 

films’ preparation (Lee et al., 2013). However, for the nanocomposite films with high 

CNC content (5%), the presence of agglomerations of CNC in the surface of the PLA 

matrix was observed. These agglomerations in the surface of PLA matrix are due to the 

cellulose hydrophilic nature, that induces strong interactions between the cellulose 

nanoparticles by hydrogen bonds, leading to agglomerations in the polymer surface 

(Tserki et al., 2006).  
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Figure 2.8 (a) SEM image of the surface of pure PLA film, (b) SEM image of the surface 

of PLA/CNC 1% film (c) SEM image of the surface of PLA/CNC 3% film, (d) SEM 

image of the surface of PLA/CNC 5% film 

2.3.3 Tensile Strength Test   

The obtained results of tensile strength test conducted on the pure PAL film and 

the nanocomposite films with different content of CNC (1%,3%,5%) are presented in 

table 2.5. Also the comparison of the ultimate strength point of the films are presented in 

Figure 2.6.  For the pure PLA film, the yielded TS value (ultimate strength point) was 

1.96 (g-force/cm2). In the case of the film containing 3% of CNC, the TS increased 

significantly by 49% in comparison with the pure PLA film value. 

A B

C D
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However, in the case of the films which contains 1% and 5% of CNC, no significant 

increase in the TS was observed. This suggested that the film containing 3% of CNC was 

more ductile than the other films. Generally, the improvement of the mechanical 

performance of nanocomposite films results from different factors: compatibility between 

the polymer matrix and the filler, aspect ratios of the filler, and the orientations of the 

filler. However, in this work, we can hypothesize that the improvement of the tensile 

strength of the nanocomposite films caused by the stiffness effect of CNC that 

homogeneously dispersed in the PLA matrix (Favier et al., 1995). On the other hand, the 

decrease of the TS value of the film containing 5% CNC may have occurred because of 

the aggregation of CNC in PLA matrix. Authors Haafiz et al. (2013) and Pereira et al. 

(2014) reported similar results of the tensile strength of their cellulose nanocomposites. 

Haafiz et al. (2013) observed how that the poor compatibility between polymer matrix 

and CNC resulted in decrease in the tensile strength.  
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Table 2.5 Tensile strength test output  
 

Film 
Yield point 

(g-force/cm2) 
Ultimate strength point  

(g-force/cm2) 
Fracture 

(g-force/cm2) 

PLA 1529.33 ± 45 1961.36 ± 52 1763.53 ± 36 

PLA/ 1% CNC 1624.26 ± 93 2118.2 ± 1914.03 ± 22 

PLA/3% CNC 2318.06 ± 123 2936.266	 ± 115 2690.23 ± 42 

PLA/5% CNC 1451.9 ± 99 1761.033 ± 243 1547.46 ± 130 

	

	

Figure 2.9. Tensile strength values of pure PLA and the nanocomposites films	
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2.3.4 Water Uptake Test  

PLA is a recyclable biopolymer with water solubility resistance and 

hydrophilicity nature (Sung et al., 2017), ultimately making it a good candidate to be 

used in food packaging applications. The incorporation of reinforcing nanoparticles into 

PAL matrix might affect its moisture absorption behavior, and thus the moisture uptake 

test was tested in order to investigate CNC effect on the hydrophilicity nature of PLA, 

and also to determine the maximum absorbed amount of water by the pure PLA and the 

nanocomposites films.   

The curves of water uptake percentage of the pure PLA and the nanocomposite 

films are presented in Figure 2.10. In the Figure, there are two zones; The first zone is 

where the water uptake rapidly increased, linear trend, and the second zone where the 

water uptake gradually decreased until it settled. For the pure PLA film, the water uptake 

percentage reached over 2.5%, and this value matches the values that reported by Liu et 

al. (2018). An increased of moisture uptake percentage was observed when CNC content 

increased from 1% to 5% in comparison with the pure PLA film value. The samples 

containing 1%CNC, 3%CNC, and 5%CNC yielded moisture uptake percentage of 5%, 

7%, and 10% respectively. This increase is attributed to the CNC hydrophilic nature, 

incorporated into the PLA matrix (de Rodriguez et al., 2006).    
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Figure 2.10 Water uptake percentages of pure PLA films and nanocomposite films for 5 

days at 95% RH 

2.3.5 Water Vapor Permeability Test 

Water vapor permeability of the pure PLA film and the nanocomposite films 

contain different contents of CNC (1%, 3%, 5%) investigated with the assumptions that 

the thickness of sample films is the same, and the difference of water vapor pressure on 

both sides of the film is very small. Figure 2.15 shows the obtained values of WVP of the 

pure PLA film and the nanocomposite films with various content of CNC (1%,3%,5%). 

For the film containing 1%CNC, WVP significantly decreased by 20% compared to the 

control sample. In the case of the films containing 3% and 5% of CNC, WVP 

significantly decreased by 20% and 42% respectively. In the figure, we can see that there 

is a sharp decrease in WVP of the film containing 1% in day three, which might have 

been resulted from a systematic error or an error of the measurement at that day.  
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Sung et al. (2017) and Fortunati et al. (2012). reported Similar results of their 

cellulose nanocomposites. This reduction of WVP can be explained that the incorporation 

of CNC into the matrix of PLA films is thought to cause the increase of the tortuous path, 

leading water molecules to move in a low rate (Khan et al., 2013). On the other hand, for 

the films containing 5% of CNC, there was no significant decrease of the WVP observed 

in compression with the film containing 3% of CNC. This behavior of nanocomposite 

films contains high cellulose nanoparticles reported in a previous study by (Sanchez-

Garcia et al., 2008). They reported that the WVP of the PLA/cellulose microfiber 

composite reduced with the samples containing 1% cellulose microfiber while no 

improvement in WVP observed for the sample containing 4%, and 5% of cellulose 

microfiber. This behavior indicated that the agglomerations of CNC have influence on 

their uniform dispersion. This behavior led to low tortuosity path and less efficient water 

barrier properties (Sanchez-Garcia et al., 2008). This conclusion is in accordance with the 

morphology images of the nanocomposite film with 5% CNC and other films in this 

study.  

The yielded values of the WVP of the nanocomposite films and the pure PLA film 

in this study are bigger than the reported values in the mentioned studies above. This 

disagreement in values could be related to the difference in processing conditions. In our 

study, we measured the weight loss of distilled water with the assumptions that the 

thickness of all the films are the same, and the pressure difference across the film is 

negligible, while in their study they measured the weight gain of cells contain anhydrous 

calcium chloride at 25 C and RH of 50%. Generally, the WVP and (WVRT) mainly rely 

on the chemical nature (hydrophilic or hydrophobic) of the filler, process conditions, final 
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arrangement of the nanocomposite with the added filler substances, and also the presence 

of voids and cracks on the films (Vásconez et al., 2009).     

	

	

	

	

	

	

	

	

	

	

Figure 2.15 Water uptake percentages of pure PLA films and nanocomposite films for 5 

days at 95% RH 

Figure 2.11 Water vapor permeability of pure PLA and the nanocomposite films 
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CHAPTER3: CONCLUSIONS AND FUTURE WORK  

3.1 Conclusion  

PLA/ CNC nanocomposite films were successfully prepared through the solvent 

casting method with various internal mixers at CNC content 1,3,5 wt%. The impact of 

CNC on barrier, optical, and mechanical properties were investigated in this work as 

well as the morphology of the prepared films. To evaluate the effect of CNC 

statistically on the tensile strength, water vapor permeability, and water uptake of the 

nanocomposite films, ANOVA procedure was used. To determine significant 

differences in mean, Tukey’s test was used.   

The morphology images of the nanocomposites films showed that CNC were 

evenly dispersed in the films containing 1% and 3%, while aggregations of CNC were 

observed in the PLA matrix for the film containing 5%. The tensile strength improved 

significantly only with the film contain 3% of CNC by 49%. A Significant decrease 

in the tensile strength of the film containing 5% of CNC compared to the PLA film, 

indicated that the aggregations of CNC in the PLA matrix disturbed the reinforcing 

effect of CNC on the films’ mechanical properties. The result of the water 

permeability test conducted on the prepared films revealed that WVP of the films 

containing 3% and 5% of CNC improved significantly by 20% and 42% respectively.  

However, the presence of the CNC in PLA matrix at different contents 1,3,5 wt% had 

significant influence on films’ water sensitivity. The water uptake test conducted on 

the prepared films showed that with the addition of CNC, the water uptake 

percentages increased. Generally, biopolymers show relatively inferior mechanical 

and barrier properties, which limits their use in food packaging applications. The 
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obtained results in this study suggest that the PLA/CNC composite films have 

potential to be utilized in food packaging applications. 

3.2 Future Work  

In this study, the tensile strength, water uptake, and water vapor permeability 

properties of the PLA/CNC nanocomposite films significantly improved with the 

addition of CNC up to 3%, which indicated that the aggregations of the cellulose 

nanoparticles in PLA matrix disturbed the effect of CNC on the mechanical and the 

barrier properties. For future work, surface modification of cellulose nanocrystals 

(CNC) may improve their dispersion and consequently improving barrier and 

mechanical properties of the nanocomposites films.   

In addition, the biodegradability of the nanocomposites films should be 

investigated at different temperatures to ensure packaged foods quality and safety 

when they are utilized in food packaging applications.    
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APPENDIX A 

 ANOVA test results of the tensile strength test of pure PLA film and the 
nanocomposite films  

 

   

 

 

 

 

 

 
 
Anova: Single Factor    
     
SUMMAR
Y     

Groups Count Sum Average Variance 

PLA 3 
5884.

1 1961.366667 
2801.49333

3 
PLA/CNC 
1%     3 

6354.
6 2118.2 50.11 

PLA/CNC 
3%     3 

8808.
8 2936.266667 

13306.9033
3 

PLA/CNC 
5%     3 

5283.
1 1761.033333 

59290.4133
3 

     
ANOVA       
Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 

2394850.97
7 3 

798283.658
9 

42.3218070
7 

2.96494E
-05 

4.06618055
1 

Within 
Groups 150897.84 8 18862.23    
       

Total 
2545748.81

7 11         
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APPENDIX A 

Tukey’s test results for the tensile strength test of pure PLA film and the 
nanocomposite films 

$statistics 

      Mean       CV  MSerror      HSD 

  2194.217 6.259174 18862.23 359.1038 

$parameters 

  Df ntr StudentizedRange alpha  test    name.t 

   8   4          4.52881  0.05 Tukey test$Film 

$means 

                            test$TS            std             r    Min      Max 

PLA                   1961.367     52.929135       3 1920.3    2021.1 

PLA/CNC 1%    2118.200   7.078842         3   2113.2    2126.3 

PLA/CNC 3%     2936.267   115.355552    3   2842.0    3064.9 

PLA/CNC 5%     1761.033   243.496229   3   1553.1    2028.9 

$comparison 

NULL 

$groups 

         trt                 means       M 

1 PLA/CNC 3%   2936.26      a 

2 PLA/CNC 1% 2118.20        b 

3 PLA                  1961.36        b 

4 PLA/CNC 5% 1761.03        b  
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APPENDIX B 

ANOVA test result for the water uptake of pure PLA film and the nanocomposite 

films 

Anova:	Single	Factor	 	     
       
SUMMAR
Y	 	      
Groups	 Count	 Sum	 Average	 Variance	 	  

PLA	 3	
7.581

3	 2.5271	 0.08356453	 	  
PLA/CN
C 1%    	 3	

15.44
4	 5.148	 0.020287	 	  

PLA/CN
C 3%    	 3	

21.10
9	

7.03633333
3	

0.03988033
3	 	  

PLA/CN
C 5%    	 3	

31.90
6	

10.6353333
3	

0.13037733
3	 	  

       
       
ANOVA	 	      
Source	of	
Variation	 SS	 df	 MS	 F	 P-value	 F	crit	
Between	
Groups	

104.681385
6	 3	

34.8937951
9	

509.195541
2	

1.80907
E-09	

4.06618055
1	

Within	
Groups	

0.54821839
3	 8	

0.06852729
9	 	   

       

Total	
105.229603

9	 11	 		 		 		 		
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APPENDIX B 

Tukey’s test result for the water uptake of pure PLA film and the nanocomposite 
films 

$statistics 

      Mean       CV   MSerror       HSD 

  6.336692 4.131134 0.0685273 0.6844713 

$parameters 

  Df ntr StudentizedRange alpha  test     name.t 

   8   4          4.52881  0.05 Tukey test3$Film 

$means 

  test3$Water       std     r    Min    Max 

1    2.527100 0.2890753  3   2.257  2.832 

2    5.148000 0.1424324  3   5.021  5.302 

3    7.036333 0.1997006  3   6.842  7.241 

4   10.635333 0.3610780  3  10.254 10.972 

$comparison 

NULL 

$groups 

  trt                        means         M 

1   PLA/CNC 5%   10.6           a 

2   PLA/CNC 3%   7.0             b 

3   PLA/CNC 1%    5.1            c 

4  PLA                      2.5            d  
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APPENDIX C  

 ANOVA test results for water vapor permeability test of pure PLA film and the 
nanocomposite films   

 

  

 

 

 

 

 

Anova:	Single	Factor	 	     
       
SUMMA
RY	 	      
Groups	 Count	 Sum	 Average	 Variance	 	  

PLA	 2	
112.18

1	 56.0905	
7.5178908

8	 	  
PLA/CN
C 1%    	 2	

89.997
3	 44.99865	

0.9896838
05	 	  

PLA/CN
C 3%    	 2	

65.903
7	 32.95185	

1.3952851
25	 	  

PLA/CN
C 5%    	 2	

58.890
1	 29.44505	

6.9941740
05	 	  

       
       
ANOVA	 	      
Source	of	
Variation	 SS	 df	 MS	 F	 P-value	 F	crit	
Between	
Groups	

883.87188
77	 3	

294.62396
26	

69.745723
61	

0.0006556
34	

6.5913821
16	

Within	
Groups	

16.897033
82	 4	

4.2242584
54	 	   

       

Total	
900.76892

15	 7	 		 		 		 		
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        APPENDIX C 

  Tukey’s test result for the water vapor permeability of pure PLA films and the 
nanocomposites films 

$statistics 

      Mean       CV  MSerror      HSD 

  40.86779 5.067167 4.288374 8.430085 

$parameters 

  Df ntr StudentizedRange alpha  test    name.t 

   4   4         5.757058  0.05 Tukey test$Film 

 

$means 

                         test$WVP      std      r      Min       Max 

    PLA              56.09050 2.741877  2   54.1517  58.0293 

PLA/CNC 1%  44.98375 1.116309  2   44.1944 45.7731 

PLA/CNC 3%  32.95185 1.181222  2   32.1166 33.7871 

PLA/CNC 5%  29.44505 2.644650  2   27.5750  31.3151 

$comparison 

NULL 

$groups 

          trt              means      M 

1 PLA                    56.0          a 

2 PLA/CNC 1%    44.9         b 

3 PLA/CNC 3%    32.9         c 

4 PLA/CNC 5%  29.4        c 


	Development of Polylactic Acid (PLA)-Based Nanocomposite Films for Smart Food Packaging Applications
	Recommended Citation

	Microsoft Word - Albahr,Zeyad.docx

