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ABSTRACT 

ENGINEERING OF TWO-COLOR ATP-BINDING CASSETTE BIOSENSOR 

PROTEINS FOR DISCOVERY OF NOVEL SUBSTRATES AND MODULATORS 

BREMANSU OSA-ANDDREWS 

2018 

ATP-binding cassette (ABC) transporter proteins are a vast, ubiquitous superfamily of 

proteins most of which unlock the energy from ATP-binding and hydrolysis to influx or 

efflux a wide spectrum of structurally dissimilar substrates across cell membranes. All 

eukaryotic ABC transporters including P-gp and MRP1 only exist as efflux pumps whose 

prominent expression in cells is associated with multidrug resistance of antiretrovirals, 

antiepileptics, antimalarials and anticancer agents. P-gp and MRP1 reduce the 

bioavailability and efficacy of chemotherapeutic drugs by actively pumping out these 

drugs, thereby, leading to poor clinical outcomes during chemotherapy. Due to their 

clinical importance, profiling of the interaction of MRP1 and P-gp with therapeutic drugs 

is pertinent. Here, we developed an innovative two-colorMRP1 and P-gp biosensors by 

fusing the transporter with green fluorescent (GFP) and red fluorescent (RFP) proteins. 

These biosensors exhibit large dynamic FRET changes in response to movements of the 

transporter upon substrate-binding and is useful for high throughput screening for 

potential modulators. Following a steady-state FRET screening, the two-colorMRP1 

biosensor identified 10-anticancer drug-hits of 40, and the two-color P-gp detected 6 hits 

of 50 antitumor drugs, which are ligands and potential substrates of their respective 

transporters. In the absence of a single known high throughput screening for detection of 
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drug-ABC transporter interaction, our coupled ensemble FRET model is transformative 

as it holds promise for fluorescent plate reader-based high throughput screening for 

substrates and ligands of these transporters. Future projects will focus on vesicular 

transport-coupled LC-MS/MS assay to verify the ABC transporter-substrate status of the 

anticancer drug-hits discovered in the present study.  
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 CHAPTER 1  

       INTRODUCTION 

Scope 

The general goal and significance of the present study is to develop an ATP-

binding cassette (ABC) transporter protein biosensor, suitable for the profiling of 

substrates and ligands using fluorescence spectroscopy. This section opens by exploring 

the literature regarding membrane proteins and transport proteins in general and their 

significant role in the movement of solutes in and out of cells. The mode of transport by 

the proteins as well as the source of energy utilized, if needed for the transport process. 

Of interest in this segment of the present treatise is the ubiquity of ABC transporter 

proteins in all phyla; bacteria, archaea bacteria and eukaryotes. The section then looks at 

the types of ABC transporters in prokaryotes and eukaryotes. The general structural 

organization of ABC transporter proteins are described in detail as it is core to the 

methodological strategy for the current project. The distribution, physiological functions 

and implications of the transport activity of ABC transporter proteins are expounded 

next. The significance of ABC transporter proteins regulating multidrug resistance 

(MDR) and the clinical correlation this has on health and diseases are delved into as it 

relates to the current project. The section then makes an argument for the significance of 

the current project by explaining the need for profiling of drug-ABC protein interactions. 

Next, the methodological tools which have been employed for the identification of 

substrates of key ABC transporter proteins, P-glycoprotein and Multidrug resistance 

protein-1 (MRP1) are described. The section then describes the literature regarding 

fluorescence spectroscopy, the key tool for Fluorescence based procedures in the present 
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project. This chapter concludes by providing a relevant rationale for carrying out the 

present work and the potential adaptation of the methods and our work and utilization of 

our findings of by members within the ABC transporter field and beyond. 

 

Membrane transport proteins 

Membrane transport proteins are primarily responsible for translocating materials 

across cell membranes down or against an electrochemical gradient. Three major 

membrane transport proteins exist in nature including channel proteins, secondary active 

transporters and primary active transporters which includes ATP-binding cassette (ABC) 

transporter proteins. Channel proteins are involved in an energy-independent facilitated 

diffusion down a concentration gradient, of solutes across cell membranes, while 

secondary active transporters mediate the uniport, symport and antiport of substances, 

harnessing stored ion-gradient energy [1, 2]. The source of energy, if used by transport 

proteins is the key feature which dichotomizes the kind of transport proteins they are. 

Primary active transporters, like ABC transporter proteins couple transport to ATP 

hydrolysis by unlocking the energy from the hydrolytic reaction to power transport of 

solutes across the phospholipid bilayer. On the other hand, two types of membrane 

proteins are attached to the lipid bilayer with varying degrees of strength; Peripheral 

membrane proteins attach loosely to the bilayer and integral membrane proteins are 

permanently associated with the cell membrane (Figure 1.1). ABC transporter proteins 

are a classical integral, transmembrane protein core [3].  
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Figure 1.1 Schematic presentation of biological membranes. 

Phospholipid bilayer creates a hydrophobic transmembrane core and hydrophilic extracellular 

portions and intracellular divisions. Peripheral membrane proteins are loosely attached, and 

integral membrane proteins are tightly connected and spans the hydrophobic core [3]. 

 

ATP-binding cassette transporter proteins 

Adenosine triphosphate (ATP) -binding cassette (ABC) transporter proteins are a 

ubiquitous superfamily of integral membrane proteins characterized by multimembrane 

spanning domains and cytoplasmic subtended ATP-binding [4]. Majority of the members 

of the ABC transporter proteins actively utilize the energy from an of ATP-dependent 

hydrolysis to shuttle a broad spectrum of molecules across biological membranes [5]. The 

diversity of substrates translocated by ABC transporters span solutes, anions, amino 

acids, sugars, vitamins and many other structurally unrelated molecules. ABC 

transporters are evolutionarily conserved proteins which are found in all phyla, spanning 
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prokaryotes, archaea-bacteria and eukaryotes. In prokaryotes, some ABC proteins are 

known as importers where they function to uptake nutrients into the cell, while others, 

exporters, efflux molecules out of cells [6]. Eukaryotic ABC transporters are exclusively 

exporters. 

 

Bacterial ABC transporters 

 ABC importers are one of the two types of bacteria ABC transporters. They 

mainly regulated the influx of a wide variety of essential nutrients needed for bacterial 

survival. The nutrient needs of prokaryotes are diverse and quantitively disparate and 

require efficient supervision [7]. Carbon and nitrogen sources are required in large 

amounts whereas only trace quantities of transition metals can be accommodated by 

bacterial cells. Efficient regulation of the uptake of these nutrients which widely includes 

peptides, amino acids, saccharides, vitamins, ions, organic and inorganic substances, in 

just the right amounts are essential to the functions of ABC importers [2]. The uptake-

role played by ABC importers is classically vital for the survival of pathogenic bacteria in 

the nutrient-scarce environment of host mammalian organism. Animal infection models 

have been used to show that mutations in zinc, iron, magnesium-uptaking ABC importers 

impacts negatively on the virulence of the bacteria. This has been shown particularly in 

pathogens such as vibrio cholerae and salmonella enterica strains. In addition, bacterial 

ABC importers are involved in cell to cell communication, osmoregulation and 

internalization of signaling molecules [8, 9]. 
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 Bacterial ABC exporters are similar systems as found in eukaryotes. They 

mediate efflux transport of a host of structurally dissimilar drugs and toxins from the 

bacterial cell. ABC exporters in bacteria confer multidrug resistance (MDR) to several 

antibiotics by pumping these drugs out of cells. The LmrA transporter found in 

Lactobacillus lactis is a classic example of MDR conferring efflux pump in prokaryotes 

[10]. ABC exporters also participate in the secretion of certain proteins particularly the 

sec independent type I protein secretion system [11]. Bacterial ATP-dependent exporters 

are also involved in lipid translocation, biosynthesis of lipopolysaccharides and delivery 

of precursors for protein glycosylation as shown in Campylobacter jejenum (Pg1K) and 

Escherichia coli (MsbA) [12, 13]. 

 

Eukaryotic ABC transporters 

Eukaryotic ABC transporters lack the importing and cellular-uptake activity of 

bacterial transporters, with only efflux function. ABC transporters in eukaryotes mediate 

the efflux of solutes and ligands from the interior to the exterior of the cell or to the 

interior of organelles. Some ABC transporters such as multidrug resistance protein 1 

(MRP1) are exclusively eukaryotic without any discovery yet made in prokaryotes. Not 

all eukaryotic ABC transporters are classical efflux pumps. The cystic fibrosis 

transmembrane conductance regulator (CFTR, ABCC7) and sulfonyl urea receptor (SUR 

or ABCC8) which are associated with cystic fibrosis and diabetes, are ATP-reactive 

protein channels but do not directly transport drugs [14-16]. At least three clinical MDR-

mediating human ABC transporters have been characterized; P-glycoprotein, MRP1 and 

Breast cancer resistance protein (BCRP) [17, 18]. These human transporters have been 
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found to be are prominently expressed in tumor cells have been found to extrude a broad 

spectrum of hydrophobic substrates including anticancer agents. The scope of the current 

work remains within exploring the development of methods for identification of 

substrates of human ABC transporters. 

 

Structural organization of ABC transporter proteins 

ATP-binding cassette transporter proteins belong to the largest superfamily of all 

transporter proteins. All ABC transporter proteins share a similar architecture. They 

consist of four domains, two membrane-spanning domains (MSD1 and MSD2) and two 

nucleotide binding domains (NBD1 and NBD2) [2, 14]. Some ABC proteins have an 

extra N-terminal membrane spanning domain (MSD0) but the utility of this domain is yet 

unclear. In most eukaryotes, all four domains are in a single polypeptide chain. Each 

MSD consists of α-helices which span the lipid bilayer membrane multiple times. The 

two MSDs combine to form the substrate translocation pathway. The NBDs extend into 

the cytoplasm where they bind and hydrolyze ATP during catalytic activity. In 

eukaryotes, the MSDs and the NBDs are connected by cytoplasmic loops unlike in 

bacterial ABC importers where they are separate polypeptides [19]. The MSDs and the 

NBDs in eukaryotes fuse together at the core creating the substrate binding pocket which 

consists of amino acids that recognize a great diversity of structurally unrelated 

compounds and ligands. In prokaryotic exporters, one MSD and one NBD fuse to form a 

half-transporter which needs to dimerize with the other half prior to functional catalytic 

activity by the transporter.  
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The NBDs are the most evolutionarily conserved region in the ABC superfamily 

as they all bind to a common nucleotide. This is pertinently due to the presence of three 

short motifs in the primary sequence of the NBDs; Walker A motif consisting of 

GXXGXGKS/T, X may be variable and walker B motif, hhhhD, where h represents 

hydrophobic amino acid and motif C (signature C) which is the most conserved sequence 

of all ABC transporters (Figure 1.2) [6]. Walker A is involved with binding of the β-γ 

phosphates of ATP to the Gly loop o γ-phosphate linker. The highly hydrophobic walker 

B is responsible for Mg2+, a needed metal ion for ATP hydrolysis. Motif C is called the 

signature sequence since it is useful in putative discovery of new ABC proteins [20]. 

These walker A and B motifs of the primary sequence of the NBDs is generally what the 

‘AB’ of ABC proteins refers to. In contrast, primary sequence and structural composition 

of the MSDs are uniquely varied and this reflects the broad substrate diversity of ABC 

transporters [21, 22].  

Studies conducted on mouse P-gp and bovine MRP1 reveal two conformations 

the NBDs of ABC transporters prior to and during a catalytic activity; the substrate-

deficient open and substrate-bound closed conformations [23, 24]. It is thought that the 

binding of the substrate brings the NBDs, whose affinity for ATP increases come into 

proximity. Functional characterization of bovine MRP1 shows that substrate binding 

pulls the NBDs to 0.2 Ǻ closer (Figure 1.3) to each other prior to nucleotide binding [23]. 

This process elicits conformational changes in the MSDs which create space for the 

substrate to be pumped out through the substrate translocation pathway. This alternating 

switch in conformations between the open and close, reflects the rationale for the cloning 

strategy employed in the present study.  
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Figure 1.2 Structure of the NBD of a typical ABC transporter.                                                                                

Primary and secondary structure of HisP. α-helices are represented as rod-shapes and the arrows 

stand for β-sheets. The conserved motifs Walker A, B and motif C (the signature sequence) are 

underlined. The γ-phosphate linker is shown as purple dotted lines [20]. 
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Figure 1.3 Structure of bovine MRP1 

The structure shows LCT4- recognition and binding in the binding pocket of the transporter. On 

the left are the ligand-free tertiary structures (top is PDB tertiary structure, bottom is a schematic 

structure) in the open conformation of the NBDs. On the right are the LTC4-bound closed 

conformation in both PDB structure (top) and schematic (bottom) [23]. The predominantly 

yellow molecule in the binding pocket is the LTC4. The NBDs shift 0.02 nm closer to each other 

following substrate binding. 
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Catalytic mechanism of ABC proteins 

  Following extensive studies of the structure of P-gp, the ATP-switch model has 

been postulated [4]. The ATP-switch model employs the possible substrate-loving ‘open’ 

state, the low substrate affinity-closed conformations of the NBDs and ATP hydrolysis to 

interpret the catalytic mechanism of transport [25]. In the absence of a substrate, the 

NBDs are thought to distant from each other, but they come into proximity once a 

substrate binds to the active site. This open and closed conformations of the NBDs have 

been corroborated from recent studies on cryoelectron-microscopic structure and 

substrate affinity of the bovine MRP1. In the bovine MRP1 study, they found that the 

NBD-pair moves 0.02 nm closer in the presence of leukotriene C4 (LTC4) [23]. ABC 

proteins enact their function essentially by switching between the two conformational 

NBD-states.  

The detailed steps which describe the transport mechanism of ABC proteins are 

expounded as follows, starting from the substrate-loving ‘open’ stance; substrate binding, 

closure of NBDs, ATP binding, substrate evacuation, ATP hydrolysis open conformation 

regained. Substrate-binding at the active site orchestrates conformational changes in 

association with cytoplasmic loops to gives rise to increased affinity of the NBD1 for the 

ATP-molecule. Of note in the mechanism is that in the open NBD conformation, the 

MSDs are also in a cytosolic-facing open conformation which makes the substrate-

binding site accessible by molecules. Binding of ATP elicits a closing-movement of the 

NBDs toward each other, a pull strong enough to rearrange the MSDs to outward-facing 

stance. This open stance of the NBDs in conjunction with proximal NBDs forms the 

substrate-translocation pathway through which the substrate is eventually pumped out. 
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The substrate-dependent closed-proximity of the NBDs is thought to be a reversible 

transient state which reduces the affinity of the transporter for the substrate and hence, 

substrate evacuation. One key element in the mechanism is the inevitable ATP hydrolysis 

which destabilizes the closed conformation of the NBDs provides the energy required 

from release of adenosine diphosphate (ADP) and phosphate (Pi) to actively pump out 

the substrate. 

The occurrence of hydrophilic amino acid sequence in the upper half of the 

binding pocket and hydrophobic groups in the lower half is responsible for the substrate 

promiscuity [26]. Consequently, several chemically dissimilar ligands have been 

discovered as substrates of important ABC proteins (figure 5). In the present study, the 

ATP-switch movement of the NBDs was harnessed to design and attach fluorophores to 

them for FRET-based analysis to identify potential substrates of ABC transporters. 

 

Physiological functions of ABC transporter proteins 

Generally, there are three classes of ABC proteins and which class a protein 

belongs to, defines their functionality. Class-2 ABC proteins, which do not mediate ATP-

hydrolytic transport of solutes contain nucleotide binding domains but lack the membrane 

spanning domains and are associated with biological processes such as DNA repair 

instead of transport [27]. However, class-1 and class-3 ABC proteins are usually 

transporters involved in transport of ligands across plasma membranes through ATP-

dependent hydrolysis [20]. A few ABC transporters are not transporters in particular, 

even though they stimulate ATP hydrolytic process to allow the passage of ions. CFTR, a 
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Cl- channel is the one of the commonest ion channels which regulates movement of 

chloride ions. Sulfonylurea receptors (SUR) are ABC proteins which regulate potassium 

channels in an ATP-dependent process [28]. Some classic ABC transporters such as P-gp, 

in addition to mediating translocation of solutes, also regulate chloride channels [29].  

Most ABC transporters mediate the evacuation of endogenous molecules and 

xenobiotics from the inside to extracellular spaces across plasma membranes. ABC 

transporter proteins demonstrate a high degree of substrate diversity, being responsible 

for the efflux of a wide variety of structurally unrelated compounds as shown in figure 5. 

These ABC transporters are involved in several physiological functions such as tissue 

defense against exogenous insults and maintenance of balance between antioxidant and 

free radical concentrations (the MRPs) detoxification (P-gp), absorptive and secretory 

activities (ABCBs and MRPs), antigen presentations (ABCB2 and ABCB3) and lipid 

metabolism (ABCA1 and ABCGs) [26, 30, 31]. Substances transported by ABC proteins 

include amino acids, lipids, hydrophobic compounds, metals ions, saccharides, and a host 

of others. The mode of transport of many solutes is through conjugation with glutathione 

(GSH) such as estradiol glucuronide or to sulphate such as estrone sulfate, E2SO4 [24].  

GSH is the most abundant non-protein thiol in the cell, mediating the thiol-redox status of 

cellular processes. Therefore, efflux of glucuronide conjugates in both the oxidized and 

reduced forms of glutathione (Gamma-Glu-Cys-Gly), indicates ABC transporters are 

involved in the regulation of other physiological and pathophysiological processes 

glutathione is associated with [32]. Figure 1.4 shows a schematic diagram of the singular 

export of LTC4 as well as the co-export of vincristine from cells.  
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ABC proteins are vital in several biological process so mutations in their genes 

lead to genetic diseases such as cystic fibrosis, bile defects, cholesterol transport 

disorders and neuro-degenerative diseases [33]. These modes of transport are particularly 

characteristic of multidrug resistance associated protein-1. The tissue distribution of 

many ABC transporters depicts their role in tissue defense and protection. There are fifty 

known human ABC transporters out of which fourteen are known to be associated with 

diseases [4]. The ABC transporters P-gp, MRP1 and BCRP play a key role in the 

efficacy, disposition and toxicity of therapeutic agents[32, 34-37]. Figure 1.5 displays the 

vast spectrum of substrates exported by ABC transporters. 

 

Figure 1.4 ATP-dependent ABCC/MRP transport model depiction. 

The ABC transporter effluxes LTC4 out of the cell (right). The co-transport of vincristine and 

GSH by the transporter is being depicted on the left. 
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Figure 1.5 Substrate diversity of ABC transporters.  

The transporters pump out a vast number of structurally unrelated endogenous and exogenous 

compounds.  

 

Absorption, Distribution, Metabolism and Excretion (ADME) 

Absorption of ingested drugs is a key pharmacokinetic index of cells lining the 

small intestines. In the apical and the basolateral sides of the lumen of the small intestines 

are lined both influx transporters and efflux pumps, notably MRP1, P-gp and BCRP. 

Digested food from the gut is absorbed from the lumen of the small intestines through 

tight junctions into the blood to be carried through-out the body [31, 38-40]. Animal 

studies have shown the importance of ABC transporters in the absorption of nutrients 

from food and administered drugs. The prominent expression of these ABC transporters 

at this brush border membrane suggest they can pump out drugs back out into the lumen 
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of the small intestines, affecting the bioavailability of these drugs. This underscores the 

pharmacokinetic significance of ABC transporters in restricting the extent of absorption 

of drugs. Of the three aforementioned ABC transporters which govern absorption, MRP1 

is the most well studied for that specific physiological function [4, 25, 41]. 

Drug distribution is critical for their effectiveness as they need to be shuttled 

precisely from the location of administration to target tissues. The prime target tissue for 

many therapeutic drugs is the brain and this makes the blood brain barrier (BBB) An 

important site. Contrary to earlier notion that lipophilicity is all that was required for 

drugs to traverse the BBB, many hydrophobic drugs have been found to display impaired 

BBB penetration [4, 42]. It is now thought that ABC transporters and their export 

activities could be blamed for poor BBB permeability of drugs. These findings 

underscore the importance of ABC proteins, particularly MRP1, MRP2, BCRP and P-gp 

in protecting delicate tissues such as those of the central nervous system (CNS). 

Drug metabolism is generally impacted by drug absorption and distribution. The 

less the amount of drugs accumulated in cells, the less will be metabolized. Drug 

excretion occurs in the kidneys and liver which are notable for detoxification [43, 44]. 

Hepatocytes for instance are lined in the sinusoidal (basolateral) and the canaliculi 

(apical) side with influx and efflux transporters [45]. Hepatocytes containing canalicular 

lined efflux pumps such as P-gp abstract and transport drugs from circulation and channel 

them into the bile to be excreted. The integrity of these ABC transporter and the 

efficiency of this process influences the extent of drug excretion. These can significantly 

impact on drug toxicity as well. P-gp is noted for transport of cationic drugs and drug 
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metabolites while MRP2 and BCRP transport conjugate anionic drugs such as conjugate 

glutathione [4]. 

 

The multidrug resistance phenotype 

The extreme substrate variety of ABC transporter also inadvertently renders them 

susceptible to a phenomenon known as multidrug resistance. Multidrug resistance is 

generally characterized by over expression of ABC proteins, excessive pumping out of 

therapeutic drugs and desensitization of pharmacological products in their target cells. 

The primary etiology of ABC transporters-mediated is prominently expressed 

transporters constantly pumping out therapeutic drugs, reducing accumulation and 

efficacy of such drugs. Three ABC transporters highly expressed in the liver, the gut and 

kidneys are major players in the multidrug resistance phenotypes since they govern the 

bioavailability of administered therapeutic agents [4]; P-gp, MRP1 and BCRP. These 

ABC proteins are structurally suited to interact with and pump out a host of structurally 

diverse drugs including antimalarials, antiretrovirals and anticancer agents. The substrate 

diversity of these ABC transporters is the lead cause of the multidrug resistance 

phenotype in which cells overexpressing these proteins become desensitized to the effect 

of many drugs simultaneously. The first multidrug resistant implicated ABC transporter 

is P-glycoprotein (P-gp) [46]. P-gp is widely distributed in the apical surfaces of the 

epithelial cells including the epithelial lining of the colon, pancreatic ducts, small 

intestines, adrenal glands, proximal tubules the kidneys, where excretory roles are heavily 

demanding. The scope of this project focuses mainly on P-gp and MRP1. Multidrug 

resistance mediated by these ABC transporters are a major set-back in chemotherapy and 
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this underscores the significance of discovering substrates of these ABC transporters. 

Screening of anticancer agents for their interaction with ABC transporters in a timely 

manner could inform withdrawal of such drugs before they reach the clinical trials stages. 

The present project seeks to provide methodological alternatives to identification of 

substrates of ABC transporters MRP1 and P-gp through high throughput FRET 

screening.  

 

Methodologies for evaluation of drug-ABC transporters interactions 

Electron pragmatic resonance, X-Ray crystallography, cryogenic electron 

microscopy, double electron-electron resonance spectroscopy, and fluorescence lifetime 

imaging microscopy (FLIM) have been used to elucidate the structural dynamics and 

functional significance of MRP1 and P-gp  [47-51]. The limitations and inaccessibility of 

most of these sophisticated techniques, for structure-function investigation cannot be 

overlooked. The need for more readily available, accessible and less-expensive tools to 

characterize ABC transporter proteins is crucial. Fluorescence resonance energy transfer 

(FRET) is rising in prominence and fluorometer-based steady state fluorescence 

spectroscopy is not only economical but also holds promise for investigation of MRP1.   

 

Fluorescence resonance energy transfer  

Fluorescence spectroscopy is a fast increasing technology which has been 

harnessed for the understanding of the structure-function relationship of ABC 

transporters [52]. When molecules absorb photons, they become excited and upon 
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deexcitation, they release the photon of a specific wavelength. In the presence of a stable 

molecule in the ground state within 100 nm of the excited molecule, the deexcitation 

energy is not emitted but rather transferred to the second molecule which becomes 

excited. The molecule which becomes excited first is known as the fluorescent donor 

while the second molecule which absorbs the released photon is known as the fluorescent 

acceptor. The inter-fluorophore distance is the distance between the fluorescent donor-

acceptor pair where the transfer efficiency is 0.5. It has been shown that the inter-

fluorophore distance has a sigmoidal relationship with the transfer efficiency achieved. It 

is estimated that the shorter the inter-fluorophore distance, the closer the proximity 

between the fluorescent couple and concomitantly, the higher the transfer efficiency of 

the donor fluorophore. The mechanism of excitation, transfer and emission of energy can 

be harnessed to study the movement of proteins with in the presence of ligands. These 

can shed light on the mechanism, structure and function of specific proteins such as ABC 

transporters. FRET has been used to show dynamic structural changes of ABC 

transporters (P-glycoprotein) using recombinant mutants and labelled fluorophores [52]. 

Engineering a molecular ligation of fluorescent proteins with MRP1 and coupling it with 

FRET spectroscopy has also recently emerged from our group. 
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Figure 1.6 Schematic diagram showing the basic principle of fluorescence resonance energy 

transfer (FRET). If an acceptor molecule in the ground state is within less than 10 nm distance 

from the donor molecule, the acceptor can be excited by the energy transferred from the donor 

upon de-excitation. 

 

The rationale for the present study  

A few years ago, our laboratory group produced a recombinant MRP1 biosensor 

which consisted of intra-sequence cloned green and C-terminal red protein fluorophores 

(green and red fluorescent proteins). This two-colorMRP1 biosensor reports dynamic 

ligand-induced FRET changes as a measure of structural movements of the NBDs. 

Additionally, the biosensor was a reporter of eight drug-hits which interact with MRP1, 

following a screening of pool of NIH drug-like compounds [24]. In the dynamic FRET 

change experiments, epifluorescence microscopy was used to image the activities and the 

recombinant protein within a cell-based matrix. Fluorescence lifetime plate reader 
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technology was employed for the screening protocols to evaluate the interaction of the 

MRP1 biosensor with several compounds in a cell-based assay. Despite the reasonable 

data generated from epifluorescence microscopy and Fluorescence lifetime projects, the 

notion that the use of cells as matrix for both experiments may have slightly 

compromised the purity and integrity of the fluorescence activities. Moreover, the 

epifluorescence and Fluorescence lifetime technologies are sophisticated and usually 

require special expertise to operate.  

  In the present study, our primary goals were to expand the two-color biosensor 

FRET-coupled model by further seeking a FRET biosensor which is more FRET 

sensitive than the precious two-colorMRP1. We engineered six MRP1 biosensors and 

evaluated their FRET sensitivity in the presence of known ligands of MRP1 with the 

anticipation of finding a more potent FRET biosensor. In the framework that movement 

of the NBDs is related to substrate binding and catalytic activities of most ABC 

transporters, we fused green fluorescence proteins and red fluorescence proteins to the 

NBD-1 and NBD-2 of the transporter. The six constructs differ in the position where the 

GFP protein was inserted on the NBD of the transporter. In the presence of a known 

substrate at the binding pocket of the transporter, it is expected that the NBDs will draw 

closer together which could elicit changes trackable by fluorescent energy transfer 

technology. During the primer design and the cloning process, extreme care was taken 

evade the highly conserved sequences of the NBDs. 

Given that P-gp is a more important and well-characterized ABC transporter than 

MRP1, we developed a FRET sensitive P-gp biosensor, useful for profiling drug 

interaction with the lipid bilayer embedded protein. The mandate by the Food and Drug 
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Administration of the United States of America to evaluate all drugs for their interaction 

with P-gp provides rational for developing a potent P-gp biosensor which could hold 

promise for high throughput screening of drugs. Using a similar cloning strategy as with 

MRP1, six clones were engineered by altering the positions of the NBD-located GFP 

insertion sites. 

 

 

Figure 1.7 Tertiary structure of ABCC1 transporter. Showing where the green and red 

fluorescent proteins were attached on the NBDs which indicate low and high FRET signal 

structures. The left structure is the substrate-free open conformation and the right one is the 

LTC4-bound structure. The proximal movement of the NBDs when the substrate binds, is 

captured by the movement of the fluorescent pair attached to them which then translates into a 

FRET signal. 
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 CHAPTER 2 

DEVELOPMENT OF NOVEL INTRAMOLECULAR FRET-BASED MRP1 

BIOSENSORS TO IDENTIFY NEW SUBSTRATES AND MODULATORS. 

 

Abstract 

Multidrug resistance protein 1 (MRP1) can efflux a wide variety of molecules including 

toxic chemicals, drugs and their derivatives out of cells. Substrates of MRP1 include anti-

cancer agents, antibiotics, anti-virals, anti-HIV and many other drugs. To identify novel 

substrates and modulators of MRP1 by exploiting intramolecular FRET, we genetically 

engineered 6 different two-color MRP1 proteins by changing GFP insertion sites while 

keeping the RFP at the C-terminal of MRP1. Four of six recombinant proteins showed 

normal expression, localization and transport activity. We quantified intramolecular 

FRET using ensemble fluorescence spectroscopy in response to binding of known 

substrate or ATP alone, substrate/ATP and trapping of the transporter in closed 

conformation by vanadate. Recombinant MRP1 proteins GR-881, GR-888 and GR-905 

exhibited reproducible and higher FRET changes under all tested conditions and are very 

promising to be used as MRP1 biosensor. Furthermore, we used GR-881 to screen 40 

novel anticancer drugs and identified 10 hits that potentially directly interact with MRP1 

and could be substrates or modulators. Profiling of drug libraries for interaction with 

MRP1 can provide very useful information to improve the efficacy and reduce the 

toxicity of various therapies.  
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Introduction 

ATP-binding cassette (ABC) membrane proteins are a large superfamily of 

proteins consisting of seven subfamilies (A to G), which mediate the ATP-dependent 

transport of diverse solutes including lipids, peptides, heavy metals, ions, and a wide 

variety of endogenous and exogenous compounds and their metabolites across biological 

membranes [1–7]. Ubiquitously found in all phyla, ABC transporters are unidirectional 

importers or exporters in bacteria, but only exporters in eukaryotes [8, 9]. When 

overexpressed in tumors, ABC proteins such as P-glycoprotein (P-gp/ABCB1), multidrug 

drug resistance protein 1 (MRP1/ABCC1), and breast cancer resistance protein 

(BCRP/ABCG2) are implicated in poor patient response to chemotherapy. These ABC 

transporters function in an ATP-dependent manner and efflux their substrate drugs out of 

cells, negatively impacting the efficacy of those drugs. MRP1 can also efflux a 

remarkable variety of xenobiotics and organic anions from endogenous sources, which 

are mostly conjugated to glutathione, glucuronide, or sulfate [10, 11]. 

The prototypical functional ABC transporter is composed of four domains, two 

membrane spanning domains (MSDs), each containing six transmembrane (TM) α-

helices, and two nucleotide-binding domains (NBDs) that are cytosolic [12–14]. The 

structure of MRP1 and several “C” subfamily members contains five domains. The two 

membrane-spanning domains (MSD1 and MSD2) [15, 16] are intertwined to form the 

substrate-binding site/s and the substrate translocation pathway, and an additional MSD 

(MSD0) at the amino-terminus of the protein, whose specific biological function is 

poorly understood [9, 17, 18]. When bound with ATP and substrate, the two cytosolic 
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NBDs dimerize in a head-to-tail orientation. The energy required to translocate the 

substrates is generated by the binding and hydrolysis of ATP [20–22]. 

Overexpression of MRP1 was reported to confer multidrug resistance in acute 

leukemia, prostate cancer, breast cancer, and neuroblastoma by actively pumping out 

anti-cancer agents, thereby preventing the accumulation of anti-cancer drugs, eventually 

causing poor chemotherapeutic outcomes [10, 23–25]. In addition to anti-cancer agents, 

MRP1 can reduce the efficacy of a wide variety of drugs commonly used for various 

metabolic diseases and neurological disorders, as well as antivirals, antimalarials, 

antibiotics, antidepressants, and anti-human immunodeficiency virus (HIV) drugs [1, 26, 

27]. The strategic distribution of human MRP1 at “pharmacological sanctuary sites” such 

as the blood–brain and blood–testis barriers, indicates the chemoprotective and tissue-

defensive roles of the protein [10]. Consequently, MRP1 plays an important role in the 

absorption and disposition of a remarkably diverse set of substrates across different 

organs and physiological barriers [28]. The critical role MRP1 plays in health and disease 

is further corroborated by its involvement in biochemical processes such as redox 

homeostasis, cellular processes such as hormone secretion, and the etiology of 

neurodegenerative, immunological, and cardiovascular pathologies [29–36]. 

Generally, drug development involves painstaking steps which include basic 

research, in vitro drug screening, in vivo experimentation, preclinical stage, stage 1 to 

stage 4 clinical trials, expending billions of dollars before the drug can be accessible to 

the population [37]. However, a significant percentage of drugs fail in the clinical trials 

due to a lack of efficacy and toxicity issues, costing billions of dollars. Profiling drug–

transporter interactions may allow discarding undesirable compounds at the very early 
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stage to reduce economic burden and may avoid potential drug–drug or food–drug 

interactions. Furthermore, profiling drug interactions with MRP1 can identify drugs that 

are at high or low risk of developing multidrug resistance, as well as discovery of novel 

inhibitors useful for clinical chemotherapy, especially in cancers where MRP1 is 

overexpressed and contributes to multidrug resistance.  

To investigate the structural changes of MRP1 during transport activity in live 

cells, we previously engineered a two-color MRP1 construct by inserting green 

fluorescent protein (GFP) and red fluorescent protein (TagRFP) at the C-terminus of 

NBD1 and NBD2, respectively (Figure 1A), and quantified intramolecular fluorescence 

resonance energy transfer (FRET) changes as an index of NBD conformational changes 

[27]. We also used the two-color MRP1 to detect substrate/inhibitor/activator candidates 

and identified eight compounds that directly interact and induce a conformational change 

in the structure of MRP1 after screening of the National Institutes of Health (NIH) 

Clinical Collection (NCC; a library of 446 drug-like compounds) [27]. Six of the eight 

hits were later found to directly interact with MRP1 [38], while further work is needed to 

verify the interaction of the remaining two hits. These findings validated the utility of the 

intramolecular FRET-based approach using two-color MRP1 to identify compounds that 

directly interact with MRP1. Our claim that substrate binding results in conformational 

changes in the NBDs and brings them closer was further supported by recent high-

resolution structures of bovine MRP1 in apo and substrate-bound states (Figure 2C).  

However, based on our ongoing work and our expert knowledge of MRP1 

substrate specificity, we expected many more hits from screening 446 NIH drug-like 

compounds. We strongly felt that many potential compounds that directly interact with 
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MRP1 were missed out in this screening due to high noise-to-signal ratio. In our proof-

of-concept study, we used a highly specialized fluorescence lifetime microplate reader for 

high-throughput drug screening, which is not yet commercially available through an 

established manufacturer. In addition, the FRET change signal upon ligand interaction 

was not sufficiently high to perform screening with a more commonly used fluorescence 

intensity microplate reader or a fluorometer. In order to make this innovative and 

potentially transformative technology more readily accessible, economical, and 

commercially more attractive, we decided to create a more efficient two-color MRP1 

construct, which can produce a bigger FRET change signal upon interaction with the 

substrate. Therefore, our objective in this study was to engineer several new two-color 

MRP1 recombinant proteins by altering the GFP insertion site and to identify the most 

efficient FRET reporter of NBD conformational changes in MRP1.  
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Materials and methods 

Chemicals 

Nucleotides, doxorubicin, anti-GFP antibody, benzamidine, poly-D-lysine, 

saponin, and 2-mercaptoethanol were purchased from Sigma Aldrich (St. Louis, MO, 

USA). Estradiol glucuronide (E217βG) and sodium orthovanadate were obtained from 

Santa Cruz (Dallas, TX, USA). MK571 was received from Cayman Chemicals (Ann 

Arbor, MI, USA). Restriction enzymes were purchased from New England Biolabs (New 

England, MA, USA) and phosphate-buffered saline (PBS) was purchased from Thermo 

Scientific (Sunnyvale, CA, USA). 

 

Engineering two-colorMRP1 constructs  

All the genetically engineered two-color MRP1 proteins have a pTagRFP-N 

vector as a backbone. To engineer the GR-638 construct, firstly, a C-terminal 2.6-kb 

insert fragment of MRP1 which encodes amino acids 639–1531 (stop codon removed) 

was generated by polymerase chain reaction (PCR) using the following primers: forward, 

5’ GTA CCG CGG GGG GGC ACG AAC AGC ATC ACC G 3’; reverse, 5’ GTA ACC 

GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G 3’. It was cloned in frame with 

TagRFP (underlined sequence is the designed restriction site). Secondly, a 0.7-kb insert 

fragment which codes for GFP was amplified using the following primers: forward, 5’ 

GTA GTC GAC ATG GTG AGCAAG GGC GAG GAG 3’; reverse, 5’ GTA CCG CGG 

CTT GTA CAG CTC GTC CAT GCC 3’. It was fused to the construct. In the third step, 

an N-terminal 2-kb fragment of MRP1, which codes for amino acids 1–638, was 
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amplified with the following primers: forward, 5’ GTA GAG CTC ATG GCG CTC CGG 

GGC TTC TGC AG 3’; reverse, 5’ CTA GTC GAC GCC GTC TTT GAC AGG CCG 

TCG CTC 3’. It was inserted in frame with GFP to generate the final construct. The GFP 

sequence in the final two-color recombinant protein construct was separated from the N-

terminus and C-terminus of MRP1 via amino-acid linkers, valine–aspartate and proline–

arginine, respectively. With the stop codon of MRP1 eliminated, the C-terminal end of 

the protein was ligated to TagRFP, separated by a linker made of five amino acids—

threonine, glycine, leucine, alanine, and threonine.  

The schematic diagram of the six engineered two-color MRP1s is shown in Figure 

2.1A. A similar cloning strategy was employed to engineer five other constructs 

distinguishable by the variants of GFP insertion sites. Accordingly, constructs GR-648, 

GR-859, GR-881, GR-888, and GR-905 were cloned by inserting GFP after amino-acid 

residues 648, 859, 881, 888, and 905, respectively, in the MRP1 protein. The primer 

sequences of GFP, as well as those of N-terminal and C-terminal MRP1 fragments, are 

shown in table 2.1. A schematic diagram of two-color MRP1, showing the distinctive 

GFP insertion sites, is shown in Figure 2.1B. A tertiary structure representation of bovine 

MRP1 in open (substrate-free) and closed (substrate-bound) conformations is shown in 

Figure 2.1C.  
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Figure 2.1. Schematic of two-color MRP1 structures. A- Schematic diagram of two-color 

MRP1 construct showing C-terminal TagRFP and an intra-sequence GFP. B- Predicted secondary 

structure of two-color MRP1 showing the three membrane spanning domains (MSD0, MSD1 and 

MSD2), the two cytoplasmic nucleotide binding domains (NBD1, NBD2) and the GFP insertion 

sites for engineering the constructs. The numbers 638, 648, 860, 881, 888 and 905 represent the 

amino acid residue number of the wild-type MRP1 after which GFP is inserted. TagRFP is fused 
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to the C-terminal of MRP1. C- Structure of bovine MRP1 in the apo (left, PDB code: 5UJ9) and 

substrate bound (right, PDB code: 5UJA) condition. 

 

Table 2.1 Primer used to clone two-color MRP1 constructs 

Primer Names Sequences (5’           3’) 

MRP11–638 forward GTA GAG CTC ATG GCG CTC CGG GGC TTC TGC AG 

MRP11–638 reverse CTA GTC GAC ATT CCT CAC GGT GAT GCT GTT CGT GCC C 

MRP1639–1531 forward GTA CCG CGG GCC ACA TTC ACC TGG GCC AGG AGC 

MRP1639–1531 reverse  GTA ACC GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G 

MRP11–648 forward GTA GAG CTC ATG GCG CTC CGG GGC TTC TGC AG 

MRP11–648 reverse CTA GTC GAC ATT CCT CAC GGT GAT GCT GTT CGT GCC C 

MRP1649–1531 forward GTA CCG CGG GCC ACA TTC ACC TGG GCC AGG AGC  

MRP1649–1531 reverse  GTA ACC GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G  

MRP11–859 forward GTA GAG CTC ATG GCG CTC CGG GGC TTC TGC AG 

MRP11–859 reverse CTA GTC GAC GTC TCG AGC CAG CAG CTC CTG GTA GG  

MRP1860–1531 forward GTA CCG CGG GGC GCC TTC GCT GAG TTC CTG  

MRP1860–1531 reverse  GTA ACC GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G  

MRP11–881 forward GTA GAG CTC ATG GCG CTC CGG GGC TTC TGC AG 

MRP11–881 reverse CTA GTC GAC GTT CTC CTC TGC ATC CTG CTC CTG C  

MRP1882–1531 forward GTA CCG CGG GGG GTC ACG GGC GTC AGC GGT  

MRP1882–1531 reverse  GTA ACC GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G 

MRP11–888 forward GTA GAG CTC ATG GCG CTC CGG GGC TTC TGC AG 

MRP11–888 reverse CTA GTC GAC ACC GCT GAC GCC CGT GAC CCC GT 

MRP1889–1531 forward GTA CCG CGG CCA GGG AAG GAA GCA AAG CAA ATG GAG 
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MRP1889–1531 reverse  GTA ACC GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G  

MRP11–905 forward GTA GAG CTC ATG GCG CTC CGG GGC TTC TGC AG 

MRP11–905 reverse CTA GTC GAC ACT GTC CGT CAC CAG CAT GCC ATT CTC C 

MRP1906–1531 forward GTA CCG CGG GCA GGG AAG CAA CTG CAG AGA CAG C 

MRP1906–1531 reverse  GTA ACC GGT CT CAC CAA GCC GGC GTC TTT GGC CAT G  

GFP-forward GTA GTC GAC ATG GTG AGC AAG GGC GAG GAG CTG 

GFP-reverse CTA CCG CGG CTT GTA CAG CTC GTC CAT GCC GAG AG  

 

Cell lines and cell culture 

The HEK293T (human embryonic kidney) cell line was generously donated by 

Dr. Adam Hoppe (South Dakota State University, Brookings, SD, USA). Dulbecco’s 

modified Eagle medium (DMEM) (GE Healthcare, Marlborough, MA, USA) enriched 

with 10% fetal bovine serum (FBS) was used to grow the HEK293 cell lines. Cell lines 

were grown in a humidified incubator maintained at 5% CO2 and 37 °C. This incubation 

condition was retained in all subsequent cell culture procedures.  

 

Preparation of MRP1-enriched membrane vesicles   

Membrane vesicles were prepared based on the method described by Leo et al. 

(1996) with minor alterations. Thawed frozen cell pellets from −80 °C were resuspended 

in homogenization buffer (250 mM sucrose, 50 mM Tris-HCl, and 0.25 mM CaCl2) 

supplemented with 1× protease inhibitor cocktail (enriched with 1mM 

ethylenediaminetetraacetic acid (EDTA)). Cell suspension was pressurized to 450 psi in a 

pre-cooled nitrogen bomb chamber for 5 min to disrupt the plasma membrane. Exploded 
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cell lysates were then centrifuged at 500× g at 4 °C for 10 min. The supernatant was 

collected into clean pre-cooled high-speed ultracentrifuge tubes, while the cell pellets 

were re-suspended in homogenization buffer and re-centrifuged to pool the second 

supernatant. The entire supernatant retrieved was layered over 35% (w/w) sucrose 

complemented with 10 mM Tris-HCl and 1 mM EDTA (pH 7.4) and centrifuged at 

25,000 rpm at 4 °C using a Beckman SW28 swinging bucket rotor in the Beckman 

Optima LE-80K ultracentrifuge (Beckman Coulter, Brea, CA, USA) for 1 h 10 min. 

About 8 mL of the opaque interface was recovered in low-sucrose buffer (25 mM sucrose 

and 10 mM Tris-HCl; pH 7.4) and centrifuged again for 35 min at 25,000 rpm at 4 °C. 

The supernatant was discarded, while the pellets were resuspended and washed in 1 mL 

of transport buffer (50 mM Tris-HCl and 250 mM sucrose; pH 7.4) by ultracentrifugation 

at 55,000 rpm for 20 min using the mini-ultra rotor in the Beckman TL-100 

ultracentrifuge. The plasma membrane pellets were resuspended in transport buffer and 

passed through a 27-gauge needle 20 times for vesicle formation. All centrifuges and 

rotors were pre-cooled to 4 °C at least 1 h prior to respective centrifugations. The quick-

start Bradford Protein Assay kit (BioRad, Hercules, CA, USA) was used to measure 

protein concentration.  

 

Two-color MRP1 expressing stable cell lines 

Stable cell lines expressing two-color MRP1 constructs were prepared by 

transfecting the two-color MRP1 expression plasmids into HEK293T cells using 

jetPRIME mammalian transfection reagent (Polyplus-transfection SA, Illkrich, France) 

following the manufacturer’s guidelines. Cultures were incubated for 24 h before 
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replacing the complete DMEM with medium containing 400 µg/mL Geneticin (G418). 

After two weeks of maintaining cells, the G418 concertation was doubled to 800 µg/mL. 

Using flow cytometry, cells expressing both GFP and RFP were sorted from non-

expressing cells, and consequently maintained under a lower G418 selection 

concentration of 200 µg/mL. 

 

Immunoblot analysis 

Lysates of HEK293 cells transfected with two-color and wild-type MRP1 

expression vectors were prepared in Halt Protease Inhibitor Cocktail (ThermoFisher 

Scientific, Waltham, MA, USA) supplemented with radioimmunoprecipitation assay 

(RIPA) buffer. Pierce bicinchoninic acid (BCA) Protein Assay was the method of choice 

for protein concentration determination. Prior to an hour-long room-temperature 

membrane blocking, protein electrophoresis (20 µg of protein) was performed on 7.5% 

Mini-PROTEAN® TGX™ gels and placed onto an Immobilon® polyvinylidene fluoride 

(PVDF) membrane (EMD Millipore). After blocking, membranes were incubated at 4 °C 

overnight using monoclonal anti-MRP1 antibody (IU5C1), or anti-α-tubulin antibody or 

anti-GFP at 1:250 and 1:5000 dilutions, respectively. Incubation with a secondary 

antibody was done for an hour at room temperature with horseradish peroxidase-

conjugated goat anti-mouse immunoglobulin G (IgG; H+L) and target proteins were 

detected using enhanced chemiluminescence substrate (PerkinElmer) and the OMEGA 

LUM G imaging system (Aplegen, Pleasanton, CA, USA). 
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Detection of MRP1 localization  

HEK293T cells were plated and incubated in a humidified 5% CO2-supplemented 

incubator at 37 °C for 24 h before being transfected with the six two-color MRP1 

plasmids using jetPRIME transfection reagent (Polyplus-transfection SA, Illkrich, 

France), following the manufacturer’s protocol. After 48 h of incubation, cells were 

imaged with a 63× oil objective confocal microscope (TILL Photonics GmbH, 

Gräfelfing, Germany). GFP and RFP were excited at 470 nm and 561 nm, respectively. 

Emissions of GFP and RFP were correspondingly achieved at 496–530 nm and 573–637. 

All images were processed with the ImageJ software (NIH). 

 

Doxorubicin accumulation assay 

HEK293T cells were plated at 3 × 105 cells/well in 2 mL of complete medium on 

a coverslip coated with poly-D-lysine in a six-well plate and incubated in a humidified 

incubator (5% CO2, 37 °C). After 24 h, the HEK293T cells were transiently transfected 

with the six different two-color MRP1 constructs in separate wells using jetPRIME 

mammalian transfection reagent and incubated as previously for 48 h prior to doxorubicin 

treatment for 1 h. Images were taken using a confocal microscope equipped with a 63× 

oil immersion objective and a 1.35 numeral aperture capacity (TILL Photonics GmbH, 

Gräfelfing, Germany). GFP and Doxorubicin were excited at 470 nm wavelength using 

Ar laser illumination, with emission bands of 480–530 nm for GFP and 570–605nm for 

doxorubicin. RFP was excited at 561 nm with an emission band of 573–637 nm. All 

images were processed with ImageJ (NIH). 
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Ensemble fluorescence spectroscopy 

HEK-293 cells stably expressing GFP–MRP1 or two-color MRP1 were used to 

prepare membrane vesicles. Steady-state ensemble fluorimetry was used to determine apo 

and ligand-induced FRET efficiency with minor modifications in the experimental 

conditions described previously [39]. Briefly, 10 µg of MRP1-enriched membrane 

vesicles in Tris sucrose buffer (250 mM Tris and 50 mM sucrose; pH 7.4) were kept for 2 

min at 37 °C. Membrane vesicles were then incubated with 10 µM of test compounds for 

10 min at 37 °C in a water bath prior to FRET measurements. Fluorescence spectroscopy 

was carried out in a 50-uL quartz glass cuvette with the Fluorimeter model FL3-11. GFP 

was excited at 465 nm. Emission for GFP was recorded at 480–650 nm with 3 s of 

integration time. Excitation and emission slit widths of 5 nm were used in all 

measurements. Firstly, an emission scan of the GFP–MRP1 sample (donor only) was 

collected while monitoring average donor emission peak. Emission scans were collected 

for various two-color MRP1 constructs under different experimental conditions (apo or in 

the presence of a ligand or test compound) while monitoring donor quenching, and the 

average donor emission peaks were recorded. The emission scan was collected every 3 s 

with an interval of 5 nm for a total of 10 min.  

To calculate FRET efficiency, the relative fluorescence intensity of the donor in the 

presence and absence of the acceptor was measured. The ratio of the average donor 

emission peak intensity in the two-color MRP1 sample to the average donor emission 

peak intensity in the GFP-MRP1 sample was subtracted from 1 to obtain the transfer 

efficiency of apo and compound-induced conditions, as shown in Equation (1) [40]. 
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Transfer efficiencies of compound-induced samples were normalized with that of the apo 

condition to obtain the percent change in FRET.  

(1 − IDA/ID) × 100, (1) 

where ID and IDA represent the intensities (counts per second, cps) of the donor and 

acceptor fluorophores, respectively. 

 

Table 2.2 Parameters for steady state fluorometry  

Construct       Donor  Acceptor   Excitation      Emission        Excitation          Emission 

                                                         slit                slit              wavelength        wavelength 

                        nm                nm                  nm                      nm 

GFP-MRP1    GFP         -                 5                   5                    465       480-650 

GR-638          GFP      RFP           5        5                 465                   480-650 

GR-881         GFP       RFP          5        5              465                    480-650 

GR-888         GFP       RFP              5        5            465                    480-650 

GR-905         GFP       RFP             5        5                    465                    480-650 

 

Anticancer drug-screening using fluorescence spectroscopy-based FRET approach 

To validate the two-color MRP1/FRET model as a viable tool for the discovery of 

potential modulators of the transporter, 40 anti-cancer drugs were screened using the 
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most sensitive biosensor. Two-color GR-881 was selected as the lead biosensor based on 

pre-screening results and was, therefore, used for the screening of the 40 clinically tested 

anti-cancer agents (Appendix A). Firstly, 10 µg of membrane vesicles purified from 

HEK293/GR-881 were preincubated for 2 min and combined with 10 µM of each of the 

40 anti-cancer agents in separate reactions using Tris–sucrose buffer (TSB) as the buffer 

medium. Prior to FRET measurements with Fluorimeter model FL3-11, the reaction was 

incubated for 10 min at 37 °C. JNJ-38877605 was used as a negative control for the 

experiments. Experiments were repeated three times independently, and the percent 

FRET change was measured and reported as previously described. 
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Results and discussion 

Genetic engineering and expression of two-color MRP1 recombinant proteins 

We previously engineered a two-color MRP1 recombinant protein that could be 

utilized for high-throughput screening of drug libraries to discover unknown activators, 

inhibitors, or transportable substrates of MRP1 [27]. In order to make this innovative 

approach more robust and readily accessible, we decided to create new two-color MRP1 

constructs, which are more sensitive to substrate interaction. To test if altering the 

position of the GFP insertion resulted in enhanced FRET sensitivity, we generated six 

additional two-color MRP1 constructs by inserting the GFP tag at different sites within 

the MRP1 coding sequence, while keeping the RFP at the end of MRP1 (Figure 2B). 

Different GFP insertion sites were chosen using our knowledge of ABC transporter 

structure–function relationships, guided by the homology models of MRP1 and sequence 

alignments with related transporters. The other major consideration in the design was to 

avoid regions critical for the expression and function of MRP1. We chose two sites in the 

loop region preceding NBD1 and four sites for GFP insertion in the loop region 

connecting NBD1 to TM12. These regions are predicted to be very flexible and dynamic. 

Based on available structural information for MRP1 and related ABC drug transporters, 

the fused GFP and RFP tags are expected not to disrupt the binding of various substrates 

to the binding site/s formed by the MSDs.  

MRP1 expression was checked by immunoblot analysis using cell lysates of 

HEK293 cells transfected with complementary DNA (cDNA) expression vectors 

encoding wild-type or two-color MRP1, loading 10 µg of whole-cell lysate per lane. The 

six newly created two-color MRP1 recombinant proteins were GR-638, GR-648, GR-
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859, GR-881, GR-888, and GR-905. GR-873 two-color MRP1 was the construct made in 

our previous proof-of-concept study. Tagging MRP1 with GFP and RFP is reflected by 

GR, and numbers in the name indicate the GFP insertion site. For instance, in GR-638, 

GFP is inserted after residue 638 of the wild-type MRP1 sequence. Two-color MRP1 

proteins were detected using anti-GFP antibody, and the immunoblot results indicated the 

expected molecular mass of ~250 kDa for all new two-color MRP1 recombinant proteins, 

similar to the previously characterized protein GR-873, an indication of the collective 

sizes of the GFP (27 kDa), TagRFP (27 kDa), and the 190-kDa wild-type MRP1 (Figure 

2.2). We demonstrated earlier that the GR-873 expression level and activity are same as 

wild-type MRP1 (WT-MRP1) protein. Based on immunoblot analysis, expression levels 

of GR-638, GR-881, GR-888, and GR-905 were normal and similar to GR-873, and, as 

expected, WT-MRP1 was not detected with anti-GFP antibody. However, the expression 

levels were moderately reduced for GR-859 and dramatically reduced for GR-648. The 

insertion of GFP after residue 859 or 648 of MRP1 likely interfered with the proper 

folding of MRP1 because both insertion sites were closest to NBD1, which is a highly 

conserved domain in the ABC family of transporters. 
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Figure 2.2 Two-color MRP1 immunoblots. Immunoblots of whole-cell lysates (10 μg) 

containing wild type (WT-MRP1) and 6 two-color MRP1 constructs. Detection was by rabbit 

polyclonal anti-GFP antibody (1:5000 dilution, overnight at 4 °C) and mouse monoclonal Anti-α-

tubulin (1:8000 dilution, overnight at 4 °C). 

 

Localization and transport activity of two-color MRP1 proteins in live cells 

Fluorescent protein tags like GFP or RFP are usually fused at the amino-terminal or 

carboxyl-terminal, and do not often cause protein folding and trafficking issues. 

However, insertion of GFP within the coding sequence of MRP1 could potentially cause 

problems with the correct folding and trafficking of MRP1. Although all the two-color 

MRP1 recombinant proteins showed the expected size, we wanted to make sure that both 

fluorophores (GFP and RFP) matured properly and that the recombinant MRP1 proteins 

were folded, trafficked, and localized properly at the plasma membrane of cells. HEK293 

cells were transfected with cDNA expression vectors encoding different two-color MRP1 

proteins, and confocal microscopy was used to visualize the localization and expression 



45 

 

levels of recombinant MRP1 proteins. Confocal images in Figure 2.3 showed that all 

two-color MRP1 recombinant proteins except GR-648 localized properly at the plasma 

membrane. In addition, upon acquiring images using the GFP and RFP channel, and 

analyzing the merged images, it was obvious that both fluorophores matured properly. 

However, insertion of GFP in the GR-648 recombinant protein was not tolerated and 

induced misfolding and processing defects, leading to reduced levels of the recombinant 

protein, as well as intracellular retention; therefore, this construct was not included in 

further investigation. The GR-859 recombinant protein showed partial mislocalization 

and intracellular retention that can be attributed to the moderately reduced levels 

observed in the Western blots, but the recombinant protein was predominantly localized 

at the plasma membrane.  

To determine if the engineered two-color MRP1 recombinant proteins were 

functional, their transport activities were evaluated in live cells by measuring 

accumulation of the fluorescent anti-cancer drug, doxorubicin, a well-known substrate of 

MRP1 [41,42]. HEK293 cells were transfected with cDNA expression vectors encoding 

different two-color MRP1 proteins, and confocal microscopy was used to visualize the 

accumulation of doxorubicin (Dox) inside the cells. Images were captured for GFP, RFP, 

and Dox, and images were merged for analysis. Transiently transfected cells are expected 

to have a mixed population of cells, whereby some cells that pick up the vector DNA will 

express two-color MRP1 while untransfected cells will not at the plasma membrane. 

HEK293 cells are known to express extremely low or negligible levels of endogenous 

MRP1. Confocal microscopy of transiently transfected HEK293 cells showed high 

doxorubicin accumulation in the nucleus of untransfected cells, but doxorubicin 
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fluorescence was very low or negligible in cells expressing either GR-638, GR-881, GR-

888, or GR-905 (Figure 2.4). These results demonstrate that recombinant MRP1 proteins 

GR-638, GR-881, GR-888, and GR-905 were functionally active. In contrast, HEK293 

cells transfected with GR-859 showed high doxorubicin accumulation in the nucleus, 

indicating that this recombinant protein was not functional, despite having the expected 

size and proper localization at the plasma membrane. Consequently, GR-859 was not 

included in further studies. 



47 

 

 

Figure 2.3. Localization and expression of two-color MRP1. HEK-293 cells were plated on 

glass-bottom chambered coverslips as described in Materials and Methods. Fluorescent images 

were taken using a confocal microscope equipped with a 63× oil-immersion objective. GFP and 
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TagRFP were excited at 470 nm and 561 nm respectively. Emission was accomplished at 480-

530 nm for GFP and 580-669 nm for RFP respectively. 

 

 

Figure 2.4. Doxorubicin (Dox) accumulation assay. HEK293T cells were transiently 

transfected with 6 different two-color MRP1 constructs and incubated for 48 hours after which 

doxorubicin treatment was done. Images were taken using a confocal microscope equipped with 

63× objective. GFP and Dox were excited at 470 nm wavelength using Ar laser, with emission 

bands of 480-530 nm for GFP and 573-637 nm for Dox. RFP was excited at 561 nm and its 
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emission was collected at 580-669 nm. Data was collected from all three different channels, GFP, 

RFP and Dox.  

 

Substrate-free FRET efficiencies of the two-color MRP1 proteins  

FRET is a very useful tool to detect biochemical interactions, such as protein–

protein interactions and protein–DNA interactions, and to study protein structural 

dynamics [27,43–49]. The efficiency of this nonradiative energy transfer is inversely 

proportional to the sixth power of the distance between donor and acceptor fluorophores, 

which makes the FRET approach extremely powerful for detecting conformational 

changes within a protein. Figure 2.5A shows a graphical representation of the relationship 

between FRET efficiency and the distance between the donor and acceptor fluorophores. 

Our goal was to create a two-color MRP1 biosensor that produces a high FRET 

efficiency change upon substrate interaction. If the intramolecular FRET efficiency of the 

apo (FRET in the absence of substrate) two-color MRP1 is too low, then the FRET 

biosensor protein would not be very sensitive reporter to small distance changes in the 

structure of the protein (representing the bottom part of the curve in Figure 2.5A). 

Similarly, if the intramolecular FRET efficiency of the apo two-color MRP1 is too high, 

then the FRET biosensor protein would also not be very sensitive to small distance 

changes in the structure of the protein (representing the top part of the curve in Figure 

2.5A). A two-color MRP1 protein that exhibits an intramolecular FRET efficiency in the 

range of approximately 30–70% is desirable, because the curve is the steepest in that 

region; correspondingly, a small structural change upon substrate binding can result in a 

higher FRET change from the basal level [50]. 
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Previously, we engineered a two-color MRP1 protein (GR-873) that reported 

substrate-induced intramolecular FRET change as a function of structural changes in the 

nucleotide domains of MRP1 [27]. To determine the basal intramolecular FRET 

efficiencies of the new two-color MRP1 proteins, we employed steady-state fluorescence 

spectroscopy using a fluorometer. To keep the protein in its native environment, 

membrane vesicles isolated from HEK293 cells stably expressing different two-color 

MRP1 proteins were used for the FRET experiments. As shown in Figure 2.5B, 

fluorescence intensity of the donor (GFP) was highest for the GFP-MRP1 construct 

(donor-only construct with no RFP). The fluorescence intensity of GFP decreased to 

varying degrees in the different two-color MRP1 recombinant proteins due to donor 

quenching in the presence of the acceptor, RFP. The shorter the inter-fluorophore 

distance between the inserted GFP and the terminal RFP, the higher the apo FRET 

efficiency of the construct. The calculated intramolecular FRET efficiency (%) for GR-

638, GR-881, GR-888, and GR-905 was 10.5 ± 1.5%, 66.0 ± 1.0%, 72 ± 1.0%, and 83.5 

± 1.5%, respectively (Figure 2.5C). This indicates that the distance between GFP and 

RFP is shortest in GR-905 and longest in GR-638. The intramolecular FRET efficiency 

(%) for apo GR-873 was previously reported to be ~16%. Based on these data, GR-881, 

GR-888, and GR-905 appear very promising in terms of reporting higher FRET 

efficiency changes upon interaction with substrate. 
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Figure 2.5. Variable ligand-free (Apo) FRET efficiencies of the two-color MRP1 

constructs.  

A- Graphical representation of the influence of inter-fluorophore distance on transfer efficiency. 

The more proximal the fluorophores, the higher the FRET efficiency. The higher the apo FRET, 

the higher the change in transfer efficiency until a certain threshold is reached. B- Fluorescence 
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spectra of different two-color MRP1 proteins (GFP-MRP1 used as donor control). C-Ligand-free 

FRET efficiency of different two-color MRP1 proteins. Membrane vesicles were prepared from 

HEK-293 cells stably expressing different two-color MRP1 proteins (GR-638, GR-881, GR-888, 

GR-905). 20 µg of each two-color protein in Tris sucrose buffer was prepared and measured for 

ligand-free FRET with Fluorimeter model FL3-11 using 465 nm excitation wavelength for GFP 

and 480-650 nm emission wavelength range for both GFP and RFP. Experiments were done in 

duplicates and in some cases between different membrane vesicle preparation batches. Intensities 

of the two-color MRP1 constructs were normalized to the donor GFP-MRP1. FRET efficiency 

was calculated using the equation 1.0. 

 

Evaluation of two-color MRP1 proteins as FRET-based biosensors  

To determine the capacity of the engineered two-color MRP1 proteins as biosensors and 

reporters of conformational changes in the NBDs upon substrate binding, we measured 

ligand-dependent structural changes of the MRP1 protein through steady-state FRET 

spectroscopy using the fluorometer. Membrane vesicles isolated from HEK293 cells 

stably expressing different two-color MRP1 proteins were used for the FRET 

experiments. In the presence of E217βG (a well-known physiological substrate of MRP1) 

[51–53], the average FRET efficiency changes observed for GR-638, GR-881, GR-888, 

and GR-905 were 0.5, 3.35, 2.25, and 2.5%, respectively (Figure 2.6). These results are in 

agreement with earlier findings that reported conformational changes in the NBDs upon 

interaction with substrate alone [30,39]. Different two-color MRP1 proteins also showed 

a range of FRET efficiency changes in the presence of ATP alone or E217βG + ATP. 

With the exception of GR-638, all the two-color MRP1 proteins produced higher FRET 
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efficiency changes in the presence of E217βG + ATP compared with either E217βG or 

ATP alone. This is expected because the presence of both E217βG and ATP should shift 

the equilibrium toward the closed conformation of the transporter. In addition, all two-

color MRP1 proteins produced the highest FRET efficiency change when the transporter 

was trapped in the closed conformation (E217βG + ATP + vanadate) and this is 

consistent with the vanadate-locking phenomenon reported for other ABC transporters 

[54,39]. It is important to note that our previously engineered GR-873 was not able to 

show detectable FRET change in the presence of E217βG alone, whereas GR-881, GR-

888, and GR-905 exhibited significant FRET efficiency changes in the presence of 

E217βG alone. As shown in Figure 2.6, the three two-color MRP1 proteins (GR-881, 

GR-888, and GR-905) consistently produced higher FRET efficiency changes in various 

tested conditions, while the highest FRET efficiency change was observed with GR-881 

upon interaction with the substrate alone. 
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Figure 2.6. Ligand-dependent intramolecular FRET measurements. A- Ligand-dependent 

FRET changes of GR-638 protein. B- Ligand-dependent FRET changes of GR-881 protein. C- 

Ligand-dependent FRET changes of GR-888 protein. D- Ligand-dependent FRET changes of 

GR-905 protein. 20 µg of protein in tris sucrose buffer was prepared and incubated with 5 µM of 

E217βG and/or 4mM/5 mM ATP/MgCl2 and 1 mM sodium vanadate for 10 minutes prior to 

FRET Measurements using Fluorimeter model FL3-11. GFP excitation was done at 465 nm and 
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RFP at 530 nm. Emissions for GFP and RFP were collected at 480-650 nm. Experiments were 

done in duplicates and in some cases between different membrane vesicle preparation batches. 

 

Identification of Anti-cancer drugs that interact with MRP1 

 To further validate the two-color MRP1 protein model as a potent biosensor 

system, and two-color MRP1-coupled steady-state fluorescence spectroscopy as a viable 

tool for the drug screening to identify novel substrates, inhibitors, or activators of MRP1, 

we screened 40-novel clinically tested anti-cancer drugs. GR-881 was chosen for this 

screening because it was found to be most sensitive to substrate binding. Membrane 

vesicles isolated from HEK293 cells stably expressing the GR-881 MRP1 biosensor were 

used in the fluorescence spectroscopy-based FRET experiments. We screened the 40-

drug library at least two independent times for their interaction with the GR-881 MRP1 

biosensor. Results from a single screening are presented in Figure 2.7A. Ten drugs, 

whose chemical structures are shown in figure 2.8, were identified which increased FRET 

and produced high and consistent FRET changes in three independent experiments 

(Figure 2.7B). Means of the FRET efficiency changes observed for the identified hits 

were as follows: PF-04217903 (1.75%), GDC-0879 (3%), BI-2536 (2.75%), triciribine 

(2.85%), TW-37 (3.5%), axitinib (3.8%), MK-2206 (5.1%), linsitinib (9.25%), lapatinib 

ditosylate (9%), and cediranib (11.75%) (Figure 2.7B). Epigallocatechin gallate (EGCG), 

a known substrate of MRP1 and one of eight compounds previously identified in the 

FRET-based screening, was used as a positive control and produced a mean value of 

3.5% FRET efficiency change. JNJ-38877605, an anti-cancer drug which does not 
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interact with MRP1, was used as a negative control, and no detectable FRET efficiency 

change was observed in this case.  

In the present study, using our newly engineered GR-881 MRP1 biosensor, we 

identified 10 compounds that are suggested to directly interact with and induce a 

conformational change in the structure of MRP1 after screening only 40 anti-cancer 

drugs. The identified compounds from this screen could be substrates, inhibitors, 

activators, or molecules that simply interact with MRP1 to stimulate transport of a 

substrate or bind with the transporter for unknown reasons or could be a false hit due to 

non-specific interaction with MRP1. Preliminary data in a related ongoing project suggest 

that three of these 10 hits (triciribine, MK-2206, and cediranib) interact with MRP1, and 

we plan on conducting a detailed investigation for all 10 hits to understand and confirm 

the biochemical nature of their interaction with MRP1. Our results indicate that the GR-

881 MRP1 biosensor is a very powerful tool for identifying drugs and compounds that 

interact with MRP1.  
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Figure 2.7 Anticancer drug screening with two-color GR-881. A- Change in FRET efficiency 

(%) for the 40 anticancer drugs from one trial. B- Ten anticancer compound-hits showed 

consistently reproducible FRET changes with GR-881. FRET measurements were performed 

using Fluorimeter model FL3-11. Donor excitation occurred at 465 nm and emission was 
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collected within the 480-650 nm range. GFP quenching observed. The criteria for selecting the 

ten hits was drugs which recorded reproducible FRET changes in independent screens. The data 

is represented as mean ± SEM from three independent experiments. 

 

 

 

Figure 2.8 Chemical structures of the ten-drug hits. 
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Conclusion 

We previously engineered a two-color MRP1 protein and demonstrated the proof of 

concept of measuring intramolecular FRET efficiency as an index of protein 

conformational changes upon ligand binding. When this recombinant protein was used in 

screening a library of 446 drug-like compounds, we identified eight hit compounds (~2% 

of total compounds screened). In the present study, we engineered six additional two-

color MRP1 recombinant proteins and, after detailed characterization, identified three 

two-color MRP1 proteins (GR-881, GR-888, and GR-905), which report improved 

substrate-induced intermolecular FRET changes as a function of structural changes of the 

protein. The two-color MRP1 biosensor GR-881 was used to screen 40 anti-cancer drugs 

and was able to identify 10 drugs as hits (25% of total compounds screened). The newly 

engineered GR-881 has an apo FRET of 66% as compared to 16% apo FRET for the 

previous construct. Based on Figure 2.5A, GR-881 falls in the middle region of the 

sigmoidal curve and is expected to produce a higher FRET signal upon a certain 

structural change. In addition, we think the use of MRP1-enriched membrane vesicles as 

an experimental matrix instead of cells reduces the complexity of reaction matrices and 

avoids nonspecific noise, thereby enhancing the overall intramolecular FRET sensitivity 

in the steady-state fluorescence spectroscopy-based approach.  

Traditionally, researchers focused on functional-based approaches to identify 

modulators of ABC transporter proteins. For MRP1, the membrane-vesicle-based in vitro 

radiolabeled E217βG uptake assay is commonly used to identify modulators [55,19]. 

However, MRP1 and other drug transporters are expected to have multiple distinct 

substrate-binding sites. A functional assay based on quantifying transport is unable to 
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detect substrates that bind to a different site and fail to compete with the test substrate. 

Currently, there is no established high-throughput assay available to identify substrates of 

MRP1. The idea of the intramolecular FRET-based MRP1 biosensor approach to 

identifying substrates and modulators is highly innovative and transformative. This 

approach could potentially be applied to other efflux transporters, and especially to ABC 

proteins with no known substrate or functional assay. In addition to the discovery of 

novel substrates and modulators, the two-color MRP1 biosensor protein could be used for 

single-molecule FRET-based studies to understand the structural dynamics of MRP1 in 

the native membrane environment. Future projects will focus on the development of a 

vesicular transport coupled LC–MS/MS assay to verify the MRP1 substrate status of the 

hits. We also plan on developing a two-color MRP1 fluorescent plate-reader-based high-

throughput screening assay to identify more novel substrates of MRP1. 
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 CHAPTER 3 

ENGINEERING OF TWO-COLOR P-GLYCOPROTEIN BIOSENSOR FOR 

FLUORESCENCE-BASED PROFILING OF DRUG INTERACTION. 

 

Abstract 

P-glycoprotein, a member of the ABC transporter proteins, mediates the efflux-

translocation a diverse array of dissimilar solutes across plasma membranes and by an 

ATP-dependent hydrolysis. The involvement of the lipid bilayer-located P-gp in tissue 

defense, efficacy/toxicity of drugs and clinical MDR of antiretrovirals, anti-malignancies 

and antiparasitic provides a rationale for investigating structure, function and ligands of 

the transporter. Our group previously developed a two-color MRP1 biosensor by fusing 

Green fluorescence protein and red fluorescent proteins with the transporter. The MRP1 

biosensor detects FRET changes as an index of small movements in the domains of the 

protein including the NBDs using epifluorescence microscopy. Here, we expanded the 

two-color FRET model by engineering a set of six P-gp biosensors to determine which 

one responds most sensitively to dynamic FRET changes. We observed that two-color P-

gp, GR-678, localizes precisely in the plasma membrane, extracellularly exports 

doxorubicin and is inhibited by verapamil. Consequently GR-678 was selected as the lead 

biosensor for steady state FRET measurements using fluorometer model H-11, an 

affordable and readily accessible instrument. Our results show that GR-678 displays 

etoposide-induced percent FRET change which increases upon inclusion of ATP, 

suggesting normal FRET response. In addition, we observed the highest percent FRET 

change in the presence of etoposide/ATP/sodium orthovanadate. This result suggests that 
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GR-678 reports vanadate trapping of hydrolytic reactions in the ADP-bound condition 

which is consistent with earlier reports. GR-678 also identified six hits drugs following a 

50-drug screening of NIH anticancer library. Overall, we have developed for the first 

time, a FRET sensitive two-color P-gp biosensor which is useful for discovery of novel 

ligands of P-gp and holds promise for high throughput profiling of direct drug-P-gp 

interactions using a more economical ensemble FRET approach. 

 

Key words: Two-color P-gp, ATP-binding cassette proteins, Multidrug resistance, 

Fluorescence resonance energy transfer, Two-color MRP1, Biosensor, membrane 

vesicles. 
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Introduction 

Adenosine triphosphate (ATP) binding cassette transporters (ABC) are a large 

superfamily of proteins, many of which harness energy from ATP hydrolysis to 

overcome a concentration gradient and translocate a variety of structurally unrelated 

exogenous compounds from the cell [1-3]. ABC transporter genes are found in all life 

forms; eukaryotes, prokaryotes, and algae encoding channel proteins, importers or 

exporters [4, 5]. ABC transporters are generally composed of transmembrane domains 

and intracellularly located nucleotide binding domains which are responsible for the 

ATP-dependent extrusion of solutes from cells [6, 7]. One of the most important and 

well-studied ABC transporters is ABCB1, also known as permeability or 

phosphoglycoprotein (P-gp or P-glycoprotein). 

The secondary structure of the P-gp is characterized by a pair of homologues 

divides, each consisting of six-transmembrane helical-domain and a cytoplasmic 

subtended nucleotide binding domain. These 12 helixes combine to form the pore which 

contains an array of evolutionarily conserved sequences responsible for substrate 

recognition of a diverse range of ligands [2, 8]. The extracellular side of the pore is 

prominently hydrophobic while polar and charged amino acids characterize the 

cytosolically-facing portion [2, 9]. The P-gp structure is conformationally malleability 

which allows for multiple structural movements of its domains. This aids P-gp to discern 

stereoisomeric compounds while concurrently providing multiple binding sites for many 

substrates with extensive diversity. Studies of the crystal structure of mouse P-gp  reveal 

two conformational states of the protein; the high-substrate affinity open conformation in 

which the NBSs are apart and the substrate-bound closed conformation [10, 11].  
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P-glycoprotein is pertinently expressed by immunologically active tissues and 

organs because of the extreme diversity of their substrate recognition and translocation 

activity [4] of the transporter. P-gp is remarkably distributed in the canaliculi of the liver 

and the lumen of the small intestines where they avert the cytotoxicity of orally ingested 

drugs by extracellularly pumping out these drugs. Physiologically, the 1280 amino acid-

long P-gp is involved with immune responses at crucial sanctuary sites such as the blood-

placenta, blood-cerebrospinal fluid and blood-testis barriers and this underscores the 

importance of the protein in tissue defense [12]. Permeability glycoprotein also plays a 

key role in physiological processes required for normal brain and spinal functions such as 

lipid homeostasis within the central nervous system [13, 14]. Furthermore, fetal drug 

toxicity, neurological damage and several fold increase in drug influx have been reported 

in animals naturally deficient in the abcb1 gene or which lack the gene by genetic 

modification [15, 16]. 

Multidrug resistance (MDR) is responsible for over 90% of poor patient outcomes 

during chemotherapy of metastatic tumors and is a key drawback in cancer healthcare 

[17-19]. The170 kD P-gp is a major player in the clinical MDR phenotype. 

Overexpression of P-gp in tumor and brain cells, causes significant impairment in 

therapies targeting the brain, including antiepileptics, antiretrovirals and 

chemotherapeutics because the protein actively excludes these drugs from the cells [20, 

21]. P-gp-mediated MDR is reported to be responsible for non-responsiveness of drugs 

targeting sarcoma, acute myeloid leukemia, neuroblastoma in children, and its prominent 

expression is prognostic of approximately 40% failure in epilepsy treatment [22-24]. 
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Given that P-gp governs pharmacokinetic indices such as absorption, distribution, 

metabolism, excretion (ADME) [4], mediates drug efficacy/toxicity, and is implicated in 

clinical and anticancer MDR, profiling of the interaction of drugs with P-gp is 

imperative. Besides, some known ligands and high-affinity substrates (cysteinyl 

leukotriene and doxorubicin) of P-gp overlap with those of other ABC transporters and 

this could pose hindrances to P-gp investigation. This further justifies the development of 

methodological approaches and strategies to detect direct interaction of the transporter 

with P-gp-exclusive ligands. A few years ago, the Food and Drugs Administration (FDA) 

authorized the profiling of all drugs in clinical trials for their interaction with P-gp. This 

mandate warrants the exploration of more tools and experimental approaches to 

characterize ligands and modulators of P-gp.  

Recently, our group engineered a two-color multidrug resistance protein 1 

(MRP1) by fusing green and red fluorescence proteins (GFP and RFP) to the protein [11]. 

The recombinant transporter reported dynamic fluorescence resonance energy transfer 

changes (FRET) changes as an index of structural movements of MRP1 using live-cell 

based epifluorescence microscopy. The two-color clone further identified 8 hits following 

high throughput screening of an NIH library of clinically tested drugs using Fluorescence 

lifetime technology (FLIM). This two-color FRET model unlocked opportunities for high 

throughput screening of ligands of not only MRP1 but also other ABC transporters. 

Unfortunately, epifluorescence microscopy and FLIM technologies are advanced, 

uncommon and sophisticated and require highly-skilled expertise to operate.  

Here, we present a more economical and applicable two-color based-steady state 

FRET approach to expand the two-color FRET model to P-gp, a more clinically 
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important ABC transporter than MRP1. The goal of the present study was to engineer six 

two-color P-gp biosensors by altering the position of GFP on the transporter to determine 

which clone is the most FRET-sensitive biosensor using membrane vesicle-based steady 

state FRET approach. The lead two-color P-gp biosensor, responded normally to dynamic 

FRET changes and detected 6-hits from a 50-compound screening of anticancer library of 

drugs. We anticipate that this lead FRET biosensor of the six will be a useful reporter in 

high throughput profiling of P-gp-substrate interactions. 
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Methods and materials  

Chemicals 

Nucleotides, doxorubicin, anti-GFP antibody, benzamidine, poly-D-lysine, saponin and 

2-mercaptoethanol were purchased from Sigma Aldrich (St. Louis, MO). E217βG and 

sodium orthovanadate were from Santa Cruz (Dallas, Texas).  

 

Primer design and molecular cloning 

The interest of our group in the two-color ATP-binding cassette transporter 

proteins (ABC) model began with the engineering of a two-color multidrug resistance 

associated protein-1 (MRP1) by ligating a green fluorescence protein (GFP) and red 

fluorescence protein with MRP1. Essentially, the two-color MRP1 is composed of a GFP 

protein sandwiched between two fragments of the MRP1 protein, upstream at N-terminal 

and downstream, at C-terminal to which TagRFP is fused. Following the success of this 

two-color MRP1, here, we expand the two-color biosensor innovation to include the most 

important ABC transporter, P-glycoprotein, by cloning six two-color ABCB1 (1280 

amino acids) vectors. The first clone to be engineered was two-color GR-642. The 

cloning process was initiated by using the original two-color MRP1 clone from our 

previous study [11] as the backbone vector. The N-terminal 2 kb fragment of GR-873 

which codes for amino acids 1-873 was remove using the appropriate restriction 

endonucleases, Sac I and Sal I. Then, by using the primers (forward, 5’ GTA GAG CTC 

A TGGATCTTGAAGGGGA CCGCAATGG AGGA GC 3’ and reverse, 5’ GTA GTC 

GAC AT C AGCTGCATTTT CTAA TTCAACTTCATTTCCTG 3’, restriction sites 
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underlined) and through polymerase chain reaction (PCR), the N-terminal ~1.9 kb section 

of the 3.8 kb long P-gp protein, encoding 1-642 amino acids was generated and ligated 

in-frame into open ends of GR-873. Therefore, the GR-873 protein at this intermediary 

stage consisted of the N-terminal of P-gp and the C-terminal portion of MRP1.  Next, the 

remnant C-terminal 2.6 kb segment of MRP1 in the intermediary GR-873 is excised 

using the Sac II and Age I restriction enzymes. This detached C-terminal MRP1 fragment 

was replaced through ligation with a PCR-produced C-terminal ~1.9 kb fragment of P-gp 

encoding 643-1280 amino acids (stop codons removed), using the primers (Forward, 5’ 

GTA CCG CGG GAA T CCAAAAGTGA AATTGA TGC CTTGGAAATGT C 3’ and 

reverse, 5’ GTA GTC GAC A T C AGCTGCATTTT CTAA TTCAACTTCATTTCCTG 

3’, restriction sites underlined). The final product is a recombinant 2- color P-gp protein, 

GR-642 in which the GFP protein is inserted at amino acid residue -642 connected to the 

Val-Asp and Pro-Arg linkers at the N-terminus and C-terminus respectively. The NBDs 

are predicted to make ligand-induced movements during catalytic activity, and hence 

their selection as sites for the attachment of the two fluorophores during genetic 

modification of the transporter. The whole process was repeated altering the GFP 

insertion sites on the NBD1 to produce the other five P-gp constructs namely; GR-647, 

GR-653, GR-662, GR-671, GR-678 as shown in the schematic diagram of the secondary 

structure of two-color P-gp in figure 3.1A. Table 3.1 summarizes the primers designed 

for the polymerization reactions of the P-gp gene. All regions of evolutionary importance 

the P-gp protein were cautiously avoided during the design of the two-color P-gp 

strategy. Figure 3.1B shows the tertiary structure of P-gp in the open and closed 
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conformations and FRET changes are expected to occur in the presence of ligands. All 

lyophilized primers were obtained from Europhins, Lancaster, PA. 

 

 

Figure 3.1. Schematic representations of the structure of P-gp. A. Schematic of the secondary 

structure of two-color P-gp showing the different GFP insertion sites at amino acid residues -647, 

-653, -662, -671, -678 which resulted in different constructs namely, GR-647, GR-653, GR-662, 

GR-671, GR-678. B. Tertiary structure of the P-gp depicted in the open (left) and closed (right) 

conformations of the NBDs. (PDB code: )  
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Preparation of stable cell lines 

Transient transfection of the six two-color P-gp constructs into 293T cells was 

performed with jetPRIME (Polyplus-transfection SA, Illkrich, France) mammalian 

transfection reagent and following the manufacturers’ protocol. The cells were allowed to 

grow for 24-hours before being rid of complete DMEM to prepare them for 

aminoglycoside antibiotic treatment. The removed complete DMEM was replaced with 

400 µg/ml of geneticin- G418, for antibiotic selection of recombinant gene-expressing 

cells. Cultures were incubated for a fortnight prior to doubling the G418 concentration to 

800 µg/ml. Flow activated cell sorting was performed to select cells expressing both GFP 

and RFP from non-expressing ones. After flow cytometry, the GFP and RFP expressing 

cells were maintained under 200 µg/ml geneticin. 

 

Western blot analysis of two-color P-gp 

293T cells were transfected with the different two-color P-gp plasmids in a 2:1 

ration with jetPRIME transfection reagent. Halt Protease inhibitor (ThermoFisher 

Scientific, Waltham, MA) and RIPA buffer (ThermoFisher Scientific) were used in 

combination to prepare protein lysates of the cells. Protein concentration was determined 

using BCA protein assay (ThermoFisher scientific). After the protein assay, 20 µg of the 

protein lysates was used to perform SDS-PAGE electrophoresis before an hour-long 

membrane-blocking step was accomplished on 7.5% Mini-PROTEAN® TGX™ gels 

(BioRad, Hercules, CA) and transferred onto an Immobilon® PVDF membranes (EMD 

Millipore). Four degrees centigrade incubation of membranes was conducted with 
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primary antibodies, polyclonal anti-GFP or mouse monoclonal anti α-tubulin (Sigma 

Aldrich, St. Louis, MO) at dilutions of 1:5000 and 1:250 respectively. Membranes were 

incubated with horseradish peroxidase goat anti-mouse secondary antibody (IgG, 

ThermoFisher scientific) for one hour prior to detection of proteins with OMEGA Lum G 

using chemiluminescence substrate (PerkinElmer, Waltham, MA). Wild type pTC-P-gp 

(TransOmic Technologies Inc, Huntsville, AL) and non-transfected 293T cells were used 

as controls. 

 

Membrane localization and doxorubicin transport activity 

Firstly, 293T cells transfected with vectors containing different two-color P-gp 

plasmids using jetPRIME transfection reagent (Polyplus-transfection SA, Illkrich, 

France) were plated on cover glass in 25 mm 6-welll plates. The plated cells were then 

incubated at 370 C for 48-hours in humidified 5% CO2 incubator. After 2-days, images 

were taken using a confocal microscope equipped with a 63× oil-immersion objective 

(TILL Photonics GmbH, Gräfelfing, Germany. GFP was excited at 470 nm and emitted 

within the 496 nm-530 nm range, while RFP was excited at 561 nm with emission bands 

of 573-637 nm. 

 Two-color P-gp-expressing 293T cells were plated on poly-D-lysin-coated 6-well 

plates containing cover slips at 3 x 105 cells/well and incubated for 48-hours under 

similar conditions as described above. At the inception of drug treatment, complete 

DMEM was removed and replaced with a medium containing 10 µM Doxorubicin in 

0.2% DMSO and incubated for 2-hours prior to imaging with the confocal microscope. 
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Doxorubicin was excited at 470 nm and emitted at 570-605 nm. GFP and RFP 

wavelengths were maintained as before.  

 

Effect of verapamil on two-color Pgp-dependent doxorubicin transport 

To ascertain if a known P-gp inhibitor will foil the efflux-transport of 

doxorubicin, 1 ml of 25 µM of verapamil was added to the 293T/two-color P-gp cells and 

removed after 30 minutes. DMEM medium containing another 25 µM of verapamil or 

DMSO were added to the 293T/two-color P-gp cells, in combination with 10 µM 

doxorubicin and incubated for 2 hours. The confocal microscope was used to observe the 

effect of verapamil on the ATP-dependent translocation of doxorubicin by the two-color 

P-gp biosensors. Experiments were performed concurrently with the doxorubicin-only 

treatment accumulation assay. 

 

Preparation of membrane vesicles 

Preparation of vesicular plasma membranes was performed using the method 

described previously by [25] with modification. Frozen two-color P-gp expressing cells 

dissolved in phosphate buffer saline were briefly thawed and dissolved in a hypotonic 

homogenizing buffer (250 mM sucrose, 50 mM Tris-HCl, 0.25 mM CaCl2, pH 7.4) 

containing 1x protease inhibitor tablets (supplemented with 1 mM EDTA, Santa Cruz 

Biotechnology, Santa Cruze, CA). To disrupt the plasma membranes, cells were 

subjected to 450 psi pressure in a nitrogen chamber on ice for 5 min, prior to 

centrifugation at speed and temperature of 500 x g and 40 C for 10 minutes (Sorvall 
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legend X1R centrifuge, ThermoFisher). The supernatant was pooled, and the cell pellets 

were re-dissolved in the 10 ml homogenizing buffer for a second round of 10-minute 

centrifugation. The collected supernatant was layered over high sucrose buffer (35% 

W/W sucrose, 10 mM Tris-HCl, and mM EDTA; pH 7.4) and ultra-centrifuged at 25000 

rpm, 4 °C for 1 hour using a pre-cooled Beckman SW28 swinging bucket rotor in the 

Beckman Optima LE-80K ultracentrifuge (Beckman Coulter, Brea, CA). The plasma 

membrane portion which settled within the middle portion of the centrifuge tubes were 

carefully pipetted out and dissolved in low sucrose buffer (25 mM sucrose, 10 mM Tris-

HCl, and mM EDTA; pH 7.4) for a second cycle of ultracentrifugation as before, only 

this time for 45 minutes. The plasma membrane pellets were salvaged and resuspended in 

1 ml of Tris sucrose buffer (TSB) (250 mM sucrose, 50 mM Tris-HCl, pH 7.4), prior to a 

4 0C, 20-minute ultracentrifugation at 55000 rpm in the Beckman TL-100 ultracentrifuge 

(Beckman Coulter, Brea, CA). A 27-gauge syringe was used to create membrane vesicles 

by passing the resulting pellets through it for about 20 cycles.  

 

Fluorescence resonance energy transfer measurements 

Membrane vesicle isolated from 293T cells prominently expressing the only 

functional two-color P-gp biosensor, GR-678 was used for fluorescence spectroscopy 

experiments. The Fluorimeter model FL3-11 (HORIBA Edison, New Jersey) was used to 

acquire all FRET measurements. First, two reactions were set up; the compound mix tube 

and the membrane vesicle tube. The compound mix reaction consisted of Tris sucrose 

buffer (TSB) (250 mM sucrose, 50 mM Tris-HCl, pH 7.4), 20 or 50 uM-compound under 

investigation and/or 4 mM/5 mM ATP/MgCl2. 20 µg of membrane vesicles and the 
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compound reaction were separately pre-incubated at 37 0C for 5- minutes prior to ligand-

binding initiation. After pre-incubation, the compound reaction was mixed with the 

membrane vesicles and further incubated for 10 minutes at 37 0C to allow respective 

ligands to bind to the protein. Ligand-free condition in which no ligands, except TSB was 

included in the compound mix was prepared as control reaction and was also mixed with 

membrane vesicle. Since the two-color P-gp clones contained both GFP and RFP, a 

previously cloned GFP protein was used as the donor-only condition. The donor-only, 

prepared in the same way as the two-color vesicles, was collected into a 50 µL quartz 

cuvette, inserted in the FL3-11 model fluorometer and excited at 465 nm. Emission for 

the donor was monitored at 480nm to 650 nm using an integration time of 3s which 

yielded a specific intensity of the donor emission. Next, the cuvette was rinsed with 

buffer and the two-color P-gp ligand-free condition was loaded and measured for the 

GFP intensity. The intensity of the GFP in the ligand-free condition was normalized with 

the intensity of the GFP in the donor-only condition to generate a FRET efficiency for the 

apo condition of GR-678 using equation 1. The compound condition of two-color GR-

678 was then measured while monitoring donor-quenching. The normalized donor (GFP) 

intensity of the ligand-free condition was subtracted from the normalized donor intensity 

of the ligand-induced condition to generate the percent (%) change in FRET the two-

color biosensor. 

    (1 – I DA/ ID) * 100                                                          (1) 

Where ID is donor intensity in the donor-only condition (counts per second, cps) and I 

DA is the donor intensity in the donor-acceptor or two-color condition.  
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Anti-cancer drug screening   

A set of 50 anticancer library of compounds were screened using fluorescence 

spectroscopy as described above and the two-color GR-678 as the sole biosensor reporter. 

There were 50 compound conditions in this case with each compound repeated twice. As 

before, normalizing the apo condition FRET efficiency with the ligand-induced condition 

transfer efficiency results in the percent change in FRET efficiency. In each case of the 

duplicate FRET measurements, 20 µM of compounds and 20 µg of GR-678/293T 

membrane vesicles were used. 
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Results and discussion 

P-glycoprotein ATP-dependently exports a broad spectrum of hydrophobic 

substrates against concentration gradient across plasma membranes. Consequently, 

predominant expression of P-gp is responsible for the acquisition of the MDR phenotype 

by a plethora of infectious diseases and tumor cells; a major obstacle in chemotherapy [7, 

26] . Clinical MDR is characterized by the desensitization of cells to the effect of drugs 

due to energetic transport-efflux of these drugs out of cells by certain ABC transporter 

proteins, most prominently, P-gp [7]. A widely used anticancer agent and a notable 

substrate of P-gp, doxorubicin has recently been found to be more potent against 

hepatocellular carcinoma when used in combination with sorafenib [27]. Sorafenib was 

reported to significantly decrease the mRNA expression of P-gp [28]. The need to 

circumvent tumor MDR by withdrawal/discontinuation of culprit-anticancer agents or by 

combination-therapy with inhibitors, provide justification for identification of anticancer 

substrates of P-gp. The clinical importance of P-glycoprotein and the mandate by the 

FDA for profiling of drug interactions with P-gp have created opportunities for expansion 

in method developments targeted at novel P-gp ligand/substrate discovery.  

Here, we present for the first time a recombinant two-color human P-gp biosensor 

which reports intramolecular FRET changes as a measure of structural changes in the 

transporter. This novel P-gp biosensor also identified six anti-cancer drugs which have 

direct interaction with the transporter, following a screening of 50 drug library of 

anticancer agents using steady state FRET. This P-gp biosensor model draws on the 

methodology and success of the two-color MRP1 biosensor our group recently 

engineered. The two-color MRP1 which demonstrates fluorescence sensitivity as a 
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function of conformational movements, was cloned by joining GFP and RFP proteins 

intra-sequence with the protein. 

 

Expression and transport activity of two-color P-gp 

Molecular cloning was employed to engineer six two-color human P-gp 

constructs. The constructs were genetically modified by sandwiching GFP protein in 

between two halves of the P-gp protein with TagRFP attached downstream of the C-

terminal. To determine if the two-color P-gp proteins are immunologically active, we 

used anti-GFP antibodies to carry out immunoblot assay. Our results in figure 3.2 show 

that all six two-color P-gp constructs were expressed at ~210 kD size but only GR-

678/293T showed an intense band. Combining the weighs of the ~170 kD permeability 

glycoprotein [3] with the ~27 kD weights each of  GFP and RFP proteins, justifies the 

detection of the two-color P-gp via GFP at ~210 kD. The other five clones showed 

waning bands, suggesting an impairment in expression level of those two-color P-gp 

constructs. Regardless, the presence of faint or intense bands indicate the presence of the 

GFP cloned into the two-color P-gp constructs. The non-transfected parental 293T cells 

and the wild-type pPCT-Pgp/293T lanes were empty, an indication of the absence of 

GFP. The anti-α-tubulin antibody used detected the presence of α-tubulin, an endogenous 

housekeeping globular protein which validates the results of our immunoblot assay. 

 To determine if genetically modifying human P-gp by incorporating a fluorescent 

pair intra-sequence compromises the membrane localization and functionality of the P-

gp, we transiently transfected 293T cells with the two-color P-gp plasmids. Using 
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confocal microscopy, we observed the plasma membrane trafficking of the two-color P-

gp. Our results in figure 3.3 show that the localization of GR-643, GR-647, GR-652, GR-

662, and GR-671 are smudged at the plasma membrane but GR-678 appear to traffic 

normally to the plasma membrane. This result is consistent with the blotting data from 

figure 3.2 which show GR-678 as the only properly expressed protein with an intense 

band. Our observations suggest that of the six dual-color P-gp recombinant clones, only 

GR-678 is precisely expressed and localized in the lipid-bilayer. The inserted GFP appear 

to be in undesired locations which do not support appropriate trafficking and/or 

maturation of the other constructs.  

Doxorubicin accumulation assay was conducted on all six clones to investigate 

the functional activity of the biosensors. Doxorubicin is a commonly used 

chemotherapeutic drug for combating non-Hodgkin and Hodgkin lymphoma, acute 

lymphoblastic leukemia, breast cancer, ovarian carcinoma, bone carcinoma and a host of 

other malignancies [27]. The fluorescent doxorubicin doubles as a promiscuous substrate 

of P-gp and other ABC transporters and well-suited for testing transport activity of two-

color P-gp. Our results in figure 3.4 showed doxorubicin was absent from 293T cell 

populations transfected with GR-678 but remained inside the nuclei of untransfected 

cells, after 2 hours of 10 µM doxorubicin treatment. However, there was hardly any two-

color P-gp transfected cells detected in plasma membrane of the 293T cells supposed to 

expressing the other two-color constructs, nor was doxorubicin extruded out of the cells. 

These results suggest that GR-678 is a functional protein and shows no negative effects 

of molecular cloning. Our results also confirm the observation of impaired membrane 
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localization and concomitantly non-functionality of all the other recombinant proteins 

except GR-678.   

Extensively characterized as an inhibitor of P-gp, verapamil has been shown to 

increase the area under the plasma drug concentration versus time curve (AUC) of 

doxorubicin when both drugs were administered to rodents [29, 30]. To unequivocally 

corroborate the functional activity of the two-color P-gp clones especially GR-678, we 

further explored the effect of 25 µM of verapamil on the doxorubicin efflux by the 

genetically modified transporters. We observed that in the presence of verapamil, two-

color GR-678 failed to efflux doxorubicin as the drug remained in the nuclei of 293T 

cells expressing the two-color protein as shown in figure 3.5. This result is consistent 

with established report of inhibition of the extrusion of doxorubicin by verapamil [29] 

[31] and further enforces our notion that GR-678 is a normally functional transporter. 

Following the results of western blot, localization and functional experiments, only the 

purportedly functional GR-678 was selected as lead biosensor in all downstream FRET 

procedures. 
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Figure 3.2. Western blot of two-color P-gp constructs. Ten (10) μg of whole cell lysates of 

non-transfected 293T, wild type 293T/pTCP-P-gp, and all six 293T/two-color P-gp were 

prepared. SDS-PAGE electrophoresis was performed after which antibody detection was done by 

rabbit polyclonal anti-GFP antibody (1:5000 dilution, overnight at 4 °C). The endogenous 

control, alpha tubulin was detected by mouse monoclonal anti-α-tubulin (1:8000 dilution, 

overnight at 4 °C). 
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Figure 3.3. Localization of two-color P-gp in 293T cells. 293T cells were plated on cover glass 

and transfected with vectors containing different two-color P-gp constructs (GR-642, GR-647, 

GR-653, GR-662, GR-671 and GR-678). After 48- hours, images were taken with confocal 

microscope equipped with a 63× oil-immersion objective. GFP and tagRFP were excited at 470 

nm and 561 nm, respectively. GFP and RFP emissions were achieved at 495-530 nm and 573-637 

nm respectively. 
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Figure 3.4. Doxorubicin transport activity by two-color P-gp biosensors. 293T ells were 

transiently transfected with the two-color plasmids, GR-642, GR-653, GR-662, GR-671 and GR-

678 and incubated for 48 hours. At the inception of compound treatment, DMEM medium was 

pipetted out and replaced with 1 ml medium containing 10 µM doxorubicin for 2 hours prior to 

imaging with the confocal microscope.  
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Figure 3.5. Effect of verapamil (vera) on doxorubicin efflux by two-color P-gp. To determine 

the effect of verapamil on doxorubicin transport by two-color P-gp, 293T cells were transfected 

with the two-color P-gp vectors and incubated for 48 hours. Next, the total transfection medium 

was removed and replaced with a medium consisting of 25 µM verapamil for 30 minutes. This 

medium was also pipetted out and discarded to be replaced by another medium made up of 25 

µM verapamil or DMSO and 10 µM Doxorubicin and incubated again for 2 hours. The 

concentration of DMSO was kept at 0.2%. confocal microscope equipped with 63× objective was 

used to take images. GFP and Dox were excited at wavelength of 470 nm using Ar laser. RFP 

was excited at a wavelength of 561 nm. The emission band of 496-530 nm was used for GFP, 

573-637 nm for RFP and 570-605 nm for Dox.  
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Two-color P-gp responds normally to dynamic FRET changes 

FRET spectroscopy is a prominent technique for exploring structural movements 

of macromolecules which provide useful insights into structure-function mechanisms. We 

performed FRET spectroscopy to determine the ligand-induced structural dynamics of 

purified membrane vesicles of 293T/GR-678. Two-color P-pg, GR-678 was FRET-tested 

with ATP alone, etoposide alone, and sodium orthovanadate in the presence and absence 

of the nucleotide, ATP/ MgCl2. The DNA synthesis-targeting anticancer medication, 

etoposide, used to treat testicular cancer, lung cancer and neuroblastoma 

(ncbi.gov/etoposide 2004) is also a known P-gp substrate [32], It is expected that 

etoposide will induce proximity of the NBDs leading to increased percentage change in 

FRET efficiency relative to the ligand-free condition. FRET of the GFP donor was 

measured and normalized to the FRET of the ligand- free two-color P-gp. Our results 

show a ~1.5% increase in FRET efficiency for etoposide-induced two-color GR-678 

compared with the ligand-free apo FRET. Upon the inclusion of ATP/MgCl2, there was a 

further increase of ~1.5% change in the FRET efficiency of GR-678 representing a total 

of ~2.5% when normalized with the apo FRET. To verify the vanadate trapping reportage 

of the two-color GR-678, FRET was measured in the presence of sodium orthovanadate 

alone and etoposide/ATP/sodium orthovanadate. Our results show about ~1% increase in 

FRET of GR-678 in the presence of sodium orthovanadate alone while a high FRET 

change (~4%) was displayed in the presence of etoposide/ATP/sodium orthovanadate 

normalized with the apo FRET. These observations are consistent with the previously 

reported dynamic FRET response by P-gp [3] using P-gp mutants labelled with Alexa 

488 (donor) and Atto 610 (acceptor).  
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It has been established that sodium orthovanadate or beryllium fluoride, when 

introduced into an ATP-catalyzed reaction, replaces inorganic phosphate to stabilize the 

ADP-bound hydrolytic stage [33, 34]. This phenomenon, referred to as vanadate-

trapping, represses the ATPase catalysis and sustains the closed conformational state of 

the NBDs. This scenario is in tandem with our results shown in figure 6 as we observed 

the highest percent FRET change upon addition of ATP/sodium orthovanadate to the 

etoposide-induced GR-678 membrane vesicle reaction. JNJ which failed to demonstrate 

any signal in experiments from a previous study [35] by our group involving fluorescence 

spectroscopy, ligand transport and flow cytometry, was included as negative control. JNJ 

was unresponsive to dynamic FRET changes as shown in figure 3.6. 



90 

 

 

Figure 3.6. Normal FRET responses of two-color P-gp, GR-678. A. Spectral representation of 

the FRET responses of GR-678 in the presence of well-established ligands of P-gp. B. Histogram 

depiction of the ligand-induced FRET changes of GR-678 in the presence and absence of 

nucleotide, ATP/MgCl2. 20 µg of 273T cell-line membrane vesicles overexpressing two-color P-

gp GR-678 were reacted with 20 µM etoposide, 4 mM ATP, 50 µM vanadate and 20 µM JNJ. 
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The % FRET efficiencies of ligand-induced conditions were normalized with the ligand-free 

condition to generate % FRET changes.  

 

Two-color P-gp biosensor, GR-678 identifies six ligands in anticancer screening 

P-gp mediated MDR is a major hindrance to therapy for various malignancies 

predominantly because chemotherapeutic drugs are frequently pumped out of tumor cells 

overexpressing the transporter. Here, using the two-color P-gp, GR-678 as the functional 

biosensor reporter, we screened 50 anticancer drugs from a pool of a clinically tested 

library. FRET efficiency from ligand-free GR-678 was subtracted from the drug-induced 

transfer efficiencies to obtain the percent FRET changes recorded for each drug as shown 

in figure 3.7A which represents data from one of two independent trials conducted. Six 

anticancer hit-drugs which displayed consistent percent FRET changes between the two 

independent screening experiments were identified as hits as shown in figure 3.7B. They 

are, the EGFR-inhibiting axitinib [36], the aurora kinase-inhibitor AT9283 [37], the 

survivin-targeting YM155, the Sirtuin 1-activating SRT1720 [38], the ZEB-1 gene-

targeting mocetinostat and the B-cell lymphoma 2 (Bcl-2)-obstructing TW-37. Notably, 

all the hit drugs whose chemical structures are also presented in figure 3.8, are still at 

different stages of clinical trials. Interestingly, all the anti-malignancy hit-drugs displayed 

a higher FRET signal compared to the etoposide-induced (positive control) FRET 

change, indicating they have stronger interaction with the phosphor-glycoprotein 

transporter than does etoposide. Axitinib showed ~3%, AT9283 and mocetinostat showed 

~4%, YM155 and SRT1720 showed about ~6 and TW showed the highest FRET change 

(~7%) compared to apo FRET. TW-37 is a small molecule inhibitor of the Bcl-2 family 
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of proteins. Interestingly, combination therapy with TW-37 and verapamil, a P-gp 

inhibitor has been reported to reverse paclitaxel resistance in esophageal carcinoma [39]. 

This, together with the observation that TW-37 is a ligand of P-gp from the present study 

may provide clues the drug needs to be a subject of investigation for precise interaction 

with the transporter protein. The hit drugs are at best ligands or potential modulators of P-

gp and further investigation is recommended to ascertain their actual interactive indices 

with the transporter. Our group is currently developing a vesicular transport assay-based 

LC-MS/MS method to unambiguously confirm the six hit drugs as substrates or 

otherwise of P-gp.  
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Figure 3.7 Screening of anticancer-library of drugs with two-color P-gp GR-678. 20 µg of 

isolated 293T/GR-678 membrane vesicles were added to 20 µM of each compound to initiate 

FRET signal reactions and incubated for 10 minutes at 370 C. The % FRET efficiencies 

calculated for the drugs were normalized with the transfer efficiency of the ligand-free apo FRET 

to obtain the percent changes in FRET for all drugs. A. Summarizes one independent screening 

experiment of the 50 anticancer compounds using two-color P-gp GR-678 through fluorescence 
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spectroscopy. B. Percent FRET changes of the six anticancer drug-hits identified by GR-678 

using ensemble FRET spectroscopy. FRET changes of the six hits were higher than of the 

positive control, etoposide, a known substrate of P-gp. JNJ was included as a negative control 

anticancer drug as it showed consistent non-responsiveness to functional and FRET changes in 

previous experiments. 

 

 

Figure 3.8. Chemical structures of the six chemotherapeutic drugs detected as hits.  

The hits were detected following steady state FRET screening of NIH clinically tested 

compounds. All drugs are currently under clinical trials. Axitinib targets. 
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Conclusion 

Overall, we report for the first time the development of a two-color P-gp (GR-

678) biosensor which does not only demonstrate intramolecular FRET capabilities as a 

function of structural changes in the transporter but also useful for identifying ligands of 

P-gp. We have optimized and improved the initial two-color MRP1 model by using 

membrane vesicles based steady state fluorescence. The two-color GR-678 P-gp 

biosensor could be a vital tool for high throughput screening of drugs which directly 

interact with the transporter using plate reader spectroscopy. Our two-color P-gp 

biosensor-based ensemble FRET assay provides an eminent alternative for research 

entities investigating compounds which interact directly with P-gp. Considering the 

affordability and accessibility of the fluorometer model H-11, our two-color P-gp 

ensemble FRET method offers a powerful and readily available substitute to more 

sophisticated FRET technologies in investigating the structure-function of P-gp. Research 

groups interested in developing biosensor models and bioengineering technologies should 

benefit from the two-color P-gp model presented here. Future expansion of our two-color 

model will include strategic site-directed mutagenesis to enhance FRET capability of the 

recombinant P-gp biosensor.   
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Table 3.1 Primer used to clone two-color P-gp constructs 

Primer Names Sequences (5’           3’) 

Pgp1–642 forward GTA GAG CTCA TGGATCTTGAAGGGGACCGCAATGGAGGA GC 

Pgp 1–642 reverse GTA GTC GACA T C AGCTGCATTTT CTAA TTCAACTTCATTTCCTG  

Pgp 643–1280 forward GTA CCG CGG GAATCCAAAAGTGA AATTGATGCCTTGGAAATGT C 

Pgp 643–1280 reverse  GTA ACC GGT CTCTGGCGCTTTGTTCCAGCCTGGACACTG  

Pgp 1–647 forward GTA GAG CTCA TGGATCTTGAAGGGGACCGCAATGGAGGA GC  

Pgp 1–647 reverse GTA GTC GAC TT CACTT TTGGA TTCAT CAG CTGCATTTTCA  

Pgp 648–1280 forward GTA CCG CGG ATTGATGCC TTGGAAATGT CTTCAAATGA TTCAAG  

M Pgp 648–1280 reverse  GTA ACC GGT CTCTGGCGCTTTGTTCCAGCCTGGACACTG  

Pgp 1–653 forward GTA GAG CTCA T GGATCTTGAAG G GGA CCGCAATGGAGGA GC 

Pgp 1–653 reverse GTA GTC GAC CATTTCCAAGGCATCAATTTCACTTTTGGATTCAT 

Pgp 654–1280 forward GTA CCG CGG T CTT CAAATGA TTCAAGAT CCA GT CTAATAA GAAA 

Pgp 654–1280 reverse  GTA ACC GGT CTCTGGCGCTTTGTTCCAGCCTGGACACTG  

Pgp 1–662 forward GTA GAG CTCA TGGATCTTG AAGGGGACCGCAATGGAGGA GC 

Pgp 1–662 reverse GTA GTC GAC CATTTCCAA GGCATCAATTTCACTTTTGGATTCAT 

Pgp 663–1280 forward GTA CCG CGG T CTTCAAAT GA TTCAAGAT CCAGTCT AA TAA GAAA 

Pgp 663–1280 reverse  GTA ACC GGT CTCTGGCG CTT TGTTCCAGCCTGGACACTG  

Pgp 1–671 forward GTA GAG CTCA TGGATCTTGAAGGGGACCGCAATGGAGGA GC 

Pgp 1–671 reverse GTA GTC GAC ACTCCTACGAGTTGATCTTTTTCTTATTAGACTGG 

Pgp 672–1280 forward GTA CCG CGG GTCC GTG GATCACAAGC CCAAGA C AGA AAGCTTAG 

Pgp 672–1280 reverse  GTA ACC GGT CTCTG GCGCTTTGTTCCAGCCTGGACACTG  

Pgp 1–678 forward GTA GAG CTCA TGGATCTTGAAGGGGACCGCAATGGAGGA GC  

Pgp 1–678 reverse GTA GTC GAC T TGGGCTTGTGATCCACGGACACTCCTACGAGTTG  

Pgp 679–1280 forward GTA CCG CGG GACAGA AAGCTTAGTA CCAAAGAGGC TCTGGATGA 
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Pgp 679–1280 reverse  GTA ACC GGT CTCTGGCGCTTTGTTCCAGCCTGGACACTG  

GFP-forward GTA GTC GAC ATG GTG AGC AAG GGC GAG GAG CTG 

GFP-reverse CTA CCG CGG CTT GTA CAG CTC GTC CAT GCC GAG AG  
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 CHAPTER 4 

RELEVANT CONTRIBUTIONS 

Scope 

This chapter catalogues relevant contributions which the current project made to the 

general goals of our research group. These are side projects which impact other scholarly 

activities in our research group. The projects described in this section are categorized into 

three. One of the projects relates to discovery of twelve clinically tested anticancer drugs 

from a high throughput screening using high-content imaging. The second project relates 

to determination of the effects of vitamin D analogues on MRP1 transcript. The third 

project concerns the discovery of eighteen inhibitors of MRP1 which were identified 

predominantly using doxorubicin as a fluorescent substrate probe. Firstly, we expound 

the use of two-color multidrug resistance associated protein-1 (MRP1) engineered in our 

lab to show that MRP1 inhibitor hits discovered by our lab directly interact with the 

transporter. The fluorescence resonance energy transfer technique was used to evaluate 

the interaction of the twelve hits with the two-color recombinant biosensor. Next, we 

show how reverse transcriptase-quantity polymerase chain reaction (qPCR or RT-PCR) 

was used to determine the effect of vitamin D analogues, calcitriol and calcipotriol on the 

mRNA of MRP1. The qPCR experiments were carried out to support or contradict the 

data obtained from western blot in which the effects of the calcitriol and calcipotriol on 

the MRP1 protein were investigated. In the third and final project, eighteen MRP1 

inhibitor hits following high content screening with doxorubicin of anticancer library of 

compounds. These hits had been further evaluated as MRP1 inhibitors with flow 

cytometry, doxorubicin accumulation assay via confocal microscopy and shown reversal 
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of cytotoxicity. We designed a project to determine the effects of the eighteen-test 

compound-hits on the mRNA of MRP1. We also assessed the interactivity of the drug 

hits with MRP1 by using the purified membrane vesicles expressing GR-888 biosensor, 

engineered in the current project in a fluorescent spectroscopy approach.  
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Two-color MRP1 biosensor-based FRET detects direct interaction of twelve MRP1 

inhibitors with the transporter. 

 

Introduction  

Recently, our research group developed a high content method for identification of novel 

inhibitors of multidrug resistance associated protein-1 (MRP1). The high content method 

discovered twelve inhibitor hits of MRP1 following screening of clinically tested 

anticancer library of drugs. The initial high throughput screening which found the hits 

used calcein green as the fluorescent MRP1 substrate reporter. Interestingly, of the twelve 

potent inhibitors, two (cyclosporin A and rapamycin) are well-established inhibitors of 

MRP1 and ten are novel; tipifarnib, AZD1208, deforolimus, everolimus, temsirolimus, 

HS-173, YM201636, ESI-09, TAK-733, and CX-6258 [1]. Next, the hits were validated 

as true MRP1 inhibitors using several different functional assays.  

First, doxorubicin accumulation assay was performed in the presence of the 

inhibitor-hits to determine if the hit-drugs would obstruct the efflux-extrusion of 

doxorubicin by MRP1 using HEK cells overexpressing GFP-MRP1, a 1-color 

recombinant MRP1 engineered by our group. Using confocal microscopy for imaging, 

the assay proved the inhibitor hits impeded the normal function of MRP1 by ensuring the 

accumulation of doxorubicin in the nuclei of the cells. The potency of the small 

molecules as inhibitor-hits of MRP1 was further confirmed by flow cytometry, vesicular 

transport using radiolabeled (E217βG and LTC4) of MRP1 as reporter. In both assays, 

the twelve hits showed as potent inhibitors of the transporter under investigation, MRP1. 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tipifarnib


104 

 

While reviewers found the study well-researched with appropriate techniques and assays 

to report our findings, they cited one concern. All assays reported showed the twelve hits 

are true hits of MRP1 but failed to show the drugs had direct interaction the transporter. 

On the other hand, it is established that in all the three major types of inhibition, 

competitive, noncompetitive, and uncompetitive, one thing is mutual. Competitive 

inhibition occurs when the inhibitor shares a similar chemical structure with the substrate 

and competes for the same active site with the substrate. In this case the inhibitor binds 

only to the free enzyme (figure 1). In noncompetitive inhibition, the inhibitor does not 

resemble the substrate structurally and binds to both the enzyme and the enzyme-

substrate complex. However, the inhibitor in uncompetitive inhibition only binds to the 

enzyme-substrate complex and does not share structural similarities with the substrate 

(Figure 4.1)[2]. In all three instances of enzyme-inhibition, the common theme is that the 

inhibitor must directly bind to the enzyme to be able to enact its inhibitory efficacy on it. 

This may have been the rationale behind the request to demonstrate that the twelve MRP1 

inhibitor-hits directly interacts with the transporter. ABC transporters are ATPases 

(enzymes which hydrolyze ATP) and they thrive on catalytic hydrolysis to perform their 

efflux functions [3-5]. It is expected that ABC transporters submit to the general rule of 

direct interaction of inhibitors with enzymes. 

In the present project, we designed a strategy to address the reviewers’ comments. 

The two-color MRP1 biosensor engineered by our group and coupled with fluorescence 

spectroscopy displays dynamic FRET changes in the presence of ligands of the reporter. 

This is an indication that the two-color biosensor is useful for detection of direct 

interaction with MRP1. To address the concern posed by reviewers, we used the one of 
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the FRET sensitive two-color MRP1 biosensors engineered by our research group to 

evaluate the interaction of the twelve hits with MRP1. 

 

 

Figure 4.1. Schematic diagram of the types of enzymatic inhibition.  

In competitive inhibition, the inhibitor shares similar structural characteristics with the substrate 

and competes with the substrate for the same active site. In non-competitive inhibition, the 

inhibitor is structurally dissimilar from the substrate and binds to the enzyme at a site different 

from where the substrate binds. Like non-competitive inhibitor, in uncompetitive inhibition, the 

inhibitor doesn’t resemble the substrate but here, the inhibitor binds only to the enzyme-substrate 

complex [10].  
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Methodology: Steady state fluorescence spectroscopy 

Previously, a two-color MRP1 biosensor had been genetically engineered in our lab by 

fusing a green fluorescent protein (GFP) and a red fluorescent protein (RFP) to the 

transporter. This genetically modified two-color MRP1 reported ligand-induced steady-

state fluorescence resonance energy transfer (FRET) change [6]. Membrane vesicles of 

GFP-MRP1 (donor control containing only GFP without RFP) and two-color MRP1 

(acceptor) were purified from human embryonic kidney (HEK-293) cells stably 

expressing either proteins. Steady-state fluorimetry was employed for ligand-free (apo) 

and ligand-induced FRET analysis using experimental conditions described by [7] with 

modification. Membrane vesicles (10 µg) in Tris sucrose buffer (250 mM Tris, 50 mM 

sucrose, pH 7.4) was prepared and pre-incubated for 10 minutes at 370 C. Membrane 

vesicles were then incubated with 10 µM of test compounds for 10 minutes at 370 C in a 

water bath prior to FRET measurements. Ensemble fluorescence spectroscopy was 

carried out in a 50 µL quartz glass cuvette using the Fluorimeter model FL3-11 

(HORIBA Edison, New Jersey). GFP excitation was observed at 480 nm and RFP, at 530 

nm. Emission for both GFP and RFP with integration time of 3 seconds was recorded at 

480-650 nm. One emission scan of the donor only (GFP-MRP1 sample) was first 

collected while monitoring average donor emission peak. Another emission scan was 

collected in the apo condition (ligand-free two-color MRP1); donor quenching was 

monitored, and the average donor emission peak was recorded. The test compound 

conditions were similarly scanned, and donor quenching monitored. Each emission scan 

was collected at an interval of 5 nm every 3 seconds for a total of 10 minutes. Two 

independent experiments were performed in technical triplicates. 
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Results and Discussion  

The relative fluorescence of the donor in the presence and absence of the acceptor 

was used to analyze data. The ratio of the average donor emission peak intensity (in 

counts per second, cps) in the donor-acceptor sample (two-color MRP1) to the average 

donor emission peak intensity in the donor only control (GFP-MRP1)) was subtracted 

from one to obtain the transfer efficiency of apo and compound-induced conditions. 

Transfer efficiencies of compound-induced samples were normalized with that of the apo 

condition to obtain the percent change in FRET. The standard deviation of triplicates was 

calculated for each test compound condition and the results, presented as mean ± SEM.  

FRET spectroscopy was performed to investigate test compound-induced changes 

in FRET efficiency of MRP1. The concept of donor quenching in FRET analysis, as 

reported by Lakowicz in 1999 [8] is an established method for calculating the transfer 

efficiency of an ensemble. The ratio of average donor intensity (cps) in the two-color 

MRP1 (apo or test compound induced) samples to donor intensity in the GFP-MRP1 

sample deducted from unity represents the transfer efficiency of the specific two-color 

MRP1. Percent change in FRET efficiency was calculated by subtracting the transfer 

efficiency of apo condition from transfer efficiency of test compound conditions. MK-

571, a widely known MRP1 inhibitor showed an 8% increase in FRET efficiency relative 

to the apo condition. JNJ, which in previous functional assays conducted by our group 

failed to show inhibitory activities against MRP1 from doxorubicin efflux, showed no 

change in FRET efficiency. All test compounds showed increase in FRET efficiency in 

comparison to the apo condition. Tipifarnib showed the smallest FRET change (2.4%) 

and Deforolimus, the largest FRET change (9.67%) (Figure 4.2).  
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All twelve test compounds demonstrate varying degrees of compound-induced 

intramolecular FRET changes in two-color MRP1 through fluorescent spectroscopy, 

suggesting they all directly interact with the MRP1. A known MRP1 inhibitor, MK-571 

used as a positive control showed similar trend of FRET change as the test compounds 

confirms the finding they are candidate-inhibitors of MRP1. Having failed previous 

inhibitor test assay, negative control JNJ showed no change in FRET efficiency, 

indicating the validity of the steady state FRET assay.  

 

Figure 4.2. Compound induced conformational changes in MRP1. Membrane vesicles were 

prepared from stable HEK293/GFP-MRP1 and HEK293/two-color MRP1 cells. Membrane 

vesicles (10 µg) were incubated with 10 µM of each test compound for 20 minutes at 37 °C prior 

fluorescence spectroscopy using Fluorimeter model FL3-11. GFP excitation was accomplished at 

480 nm and RFP was excited at 530 nm. Emission for both GFP and RFP with integration time of 

3 seconds was recorded at 480-650 nm. GFP excitation was observed at 480 nm and RFP, at 530 

nm. Emission for both GFP and RFP was collected at 480-650 nm with 3-seconds integration 

time. Data is represented from two independent experiments in triplicates. MK571 and JNJ- 

26854165 were used as positive and negative controls, respectively. To calculate the change in 
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FRET efficiency for test compound conditions, the basal apo FTRET efficiency was subtracted 

from the compound-induced FRET efficiencies and results are presented as Mean ± SEM [1]. 
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The effects of calcitriol and calcipotriol on mRNA levels of MRP1 

Introduction  

Our research group previously cloned a two-color MRP1 which reports changes in 

intramolecular FRET as a function of structural conformations of the protein. The 

recombinant protein also identified eight potential substrate hits of MRP1 during a high 

throughput screening of National Institute of Health library of drugs [6]. The compounds 

included antioxidants such as EGCG and hyperoxide, vitamin D analogue, calcitriol and 

calcipotriol, anti-inflammatory mesalamine, antibiotic, meropenem, antiparasitic 

nitazoxanide and antipsychotic droperidol. The results from the wide screening was not 

conclusive about the substrate or inhibitor status of the eight hit compounds. The 

compounds were at best considered ligands or potential modulators of MRP1. This left 

room for further characterization of the hit drugs for their specific interactive index with 

MRP1. To do this, functional assays were performed to determine if the hit drugs 

inhibited MRP1 efflux of doxorubicin and calcein in H69AR/MRP1 and HEK/MRP1 cell 

lines. The results showed that of the eight, only the vitamin D analogues, calcitriol and 

calcipotriol demonstrated inhibitory activity towards MRP1 [9] (Tan et al, 2018). 

Vesicular transport assay using tritium-labelled substrate of MRP1 confirmed the strong 

inhibition of MRP1 by calcitriol and calcipotriol. Following the new find that these 

vitamin D metabolites are strong inhibitors of MRP1, we sought to understand the effect 

of these drugs on the mRNA and protein expression of MRP1. The rationale for this 

research is that an inhibitor of MRP1 which also depresses the expression of the MRP1 

transcript could be a more potent inhibitor than one which increases the expression 

significantly. The methods which follow, were designed and executed in response to 
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reviewers who raised the query about the effect of calcitriol and calcipotriol on MRP1 

mRNA and protein expression. Only data from the mRNA expression experiments are 

shown here as it has direct correlation with the broader perspective covered by the current 

project. 
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Methodology: RNA Isolation and real-time RT-PCR analysis 

Approximately 106 cultured MRP1-over-expressing HEK and AR cells treated with either 

DMSO, 1 µM or 10 µM calcitriol, or 1 µM or 10 µM calipotriol were pelleted by 

centrifugation and stored for RNA isolation. Cultured parental HEK and H69 were 

included in experiments as MRP1-non-expressing negative controls. Total RNA was 

isolated from the cells using the Ambion TRIzol plus RNA purification kit (Thermo 

Fisher Scientific, USA). To rid the freshly prepared total RNA of possible DNA 

contamination, DNase1 enzyme treatment was performed using the Turbo DNA-free kit 

(Life technologies, U.S.A.). The concentration and integrity of RNA was determined 

using the 260/280 ratios generated by a Nano-drop U.V. spectrophotometer. cDNA 

synthesis was done with the recombinant M-MuLV-based ProtoScript II First strand 

cDNA synthesis kit (New England Biolabs Inc., MA, U.S.A.) using 1µg of the total RNA 

as starting material. Gene-specific primers were designed using the Primer3 software via 

Pubmed and synthesized by Europhins U.S.A. Table 1 shows the list of primers 

sequences and their corresponding amplicon lengths. Numbers inserted in parenthesis in 

columns three and four of table 1 represent region in gene template where primers anneal 

to. The syber green dye-based Luna universal qPCR master mix (New England Biolabs 

Inc., MA, U.S.A.) was used to perform quantitative PCR analysis. Total reaction-mix of 

20 µL was prepared consisting of 2 µL of cDNA (20 ng/ µL), 10 µL of Luna universal 

qPCR master mix (New England Biolabs Inc., MA, U.S.A.), 1 µL of primer mix and 

made up to maximum volume with 7 µL of Nuclease-free water. The Quantstudio3 Real-

time system (Thermo Fisher Scientific) was used for the qPCR analysis. The three-step 

PCR conditions used are as follows chronologically: 950 C denaturation for 1.2 minute, 
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45 cycles of (annealing at 600 C for 20 seconds, extension at 720 C for 30s), and 

denaturation for 10 seconds. This was followed by melting curve stage from 600 C to 950 

C for 20 seconds while scanning for fluorescence. Relative quantitation was performed 

using the 2 -∆∆Ct method and data was normalized against housekeeping genes, β-actin 

and ubiquitin conjugating enzyme (UbCE) of respective samples. The relative messenger 

RNA (mRNA) expression level was calculated as a percentage of the both reference 

genes. After qPCR, 0.9% agarose gel electrophoresis was used to verify lengths of 

amplicons.   
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Results and Discussion  

The effect of calcitriol and calcipotriol at concentrations of 1 µM and 10 µM on the 

MRP1 transcript in H69AR/MRP1 and HEK/MRP1 cells were evaluated through RT-

PCR. The average cycle threshold (Ct) values of target protein, MRP1 after qPCR were 

normalized with those of endogenous controls ubiquitin conjugating enzyme and β-actin. 

1 µM of calcitriol and calcipotriol did not significantly affect the transcription of MRP1 

either in HEK/MRP1 or H69AR/MRP1 cell lines. The results showed however, that in 

HEK/MRP1 cells at 10 µM, calcitriol slightly increased the relative expression of MRP1 

transcript by 1.5-fold, while 10 µM calcipotriol displayed the same expression fold as the 

DMSO control reaction. In H69AR/MRP1 cells however, the transcript expression of 

MRP1 in the presence of calcitriol dwindled significantly by 0.5-fold while calcipotriol 

had a 1.6-fold expression on mRNA of the protein (figure 3). DMSO showed no effect on 

the mRNA of MRP1 or on the endogenous controls in both HEK and AR cells. The 

parental H69 and HEK cells showed the least amount of mRNA expression which is 

consistent with normal MRP1 expression of cells which have not been prior induced to 

overexpress the protein. The two metabolites of vitamin D, calcitriol and calcipotriol also 

did not have any effect on the expression of the mRNA of the housekeeping genes, 

ubiquitin conjugating enzyme and beta-actin. Our results suggest that calcipotriol does 

not significantly influence the mRNA expression of MRP1, whereas calcitriol 

significantly reduced the expression of the MRP1 transcript only in AR/MRP1 cells. This 

observation could be because of cell specific effect and may not be considered that 

calcipotriol generally causes a decline in MRP1 expression. These results of qPCR 
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experiments are consistent with the western blotting quantification data (not shown in the 

present document). 

 

 

Figure 4.3 Relative expression of MRP1 mRNA in the presence of calcitriol and calcipotriol.  

A. HEK and H69AR cells were treated with 10 µM of calcitriol and calcipotriol. Calcitriol 

significantly reduces the mRNA expression of MRP1 in H69AR cells but has no effect on HEK 
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cells. Calcipotriol on the other hand has no significant influence on the MRP1 transcript. B. HEK 

and H69AR cells were treated with 1µM of calcitriol and calcipotriol. At 1µM, none of the drugs 

had any significant effect on the MRP1 transcript. All cycle threshold values were normalized to 

those of the housekeeping genes used as endogenous controls. The test compounds results were 

normalized with the DMSO results [9]. 

 

Table 4.1 Primer sequences and amplicon lengths 

Gene Genbank 

number 

Forward primer  Reverse primer Amplicon 

length 

MRP1 NM_004996.

3 

AGGACACGTCGGAACAA

GTC 

(915-934) 

GGAAGTAGGGCCCAAAGG

TC 

(1151-1132) 

237 

β-Actin NM_001101 CATGTACGTTGCTATCC

AGGC 

(393-413) 

CTCCTTAATGTCACGCACG

AT 

(642-622) 

250 

Ubiquiti

n CE 

NM_001282

161.1 

ATGCGGGACTTCAAGAG

GAG 

(273-292) 

AAAATGACCGCGTTCCACA

C 

(360-341) 

88 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_001101
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Detection of direct interaction of the eighteen doxorubicin hits with MRP1 

 

Introduction 

Following a mass screening of clinically tested anticancer compounds using high content 

microscope, eighteen drugs were discovered as preliminary inhibitor-hits of MRP1. 

These compound-hits were confirmed as true using quantitative approaches, the flow 

cytometry and other qualitative means, confocal microscopy. ABC transporters like 

MRP1 are ATPases which utilize ATP hydrolysis to transport a host of structurally 

divergent substrates. Apart from substrates which interact with ABC proteins including 

MRP1, compounds which inhibit their function must also associate with the protein one 

way or another. Being ATPases, MRP1 acts like enzymes and as inhibitors must interact 

with the enzymes they impede, inhibitors of MRP1 must operate in a similar fashion. 

Discovery of the eighteen compounds as inhibitors of MRP1 using a myriad of well-

established functional assays does not complete the story of the study. It was imperative 

to prove that the eighteen compounds directly interact with MRP1. To validate that the 

eighteen compounds directly interact with MRP1, we designed a membrane vesicle-based 

fluorescent spectroscopy screen of the drug hits using two-color GR-888, developed in 

the present study, as the probe. 
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Methods 

The methods used to accomplish the evaluation of the interaction of the eighteen 

compound hits with MRP1 are outlined in (25) without any modifications. Isolated two-

color GR-888-expressing membrane vesicles were prepared and reacted with test 

compounds at 370 C FRET measurements using the fluorometer. FRET was measured in 

the presence and absence of test drugs and the difference of FRET efficiency between 

these two conditions was calculated as percent FRET efficiency change. Each trial was 

repeated three times and the triplicate results were combined as reporter as mean ± SEM 
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Results and discussion 

Fluorescent spectroscopy was used to evaluate the direct interaction between the 

eighteen inhibitors discovered with MRP1. In the presence of an inhibitor, movement of 

the NBDs on which are located the intramolecularly inserted fluorescent-pair, GFP and 

RFP. The dynamism of the NBDs is detected as a fluorescent signal and interpreted as 

FRET efficiency which is subtracted from the basal FRET condition to generate values of 

FRET efficiency change. Two-color GR-888 displayed different degrees of percent 

FRET efficiency changes in the presence of the eighteen doxorubicin hits as shown in 

figure 4.4. Our results suggest that all eighteen compounds directly interact with MRP1 

with altering degrees of strength. Notably, eleven of the drugs show higher percent FRET 

efficiency changes (~7-9%) compared with the FRET change of MK-571 (~5%), a 

known MRP1 inhibitor used here as a positive control. JNJ, which usually shows no 

signal in previous functional assays, displayed almost no FRET change, validating our 

results. 

 We have developed a two-color ABC transporter biosensor based-FRET 

technique which constitutes a standard routine protocol in the detection of direct 

interaction of inhibitors and substrates with ABC proteins. Our method developed can be 

mirrored by researchers interested in understanding the mechanism of interaction 

between diverse types of proteins particularly receptor proteins and their ligands. 

Fundamental questions of receptor-ligand associations could be answered by 

incorporating our FRET-based approach. 
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Figure 4.4. FRET analysis of eighteen anticancer compounds. 20 µM of each compound was 

added to 10 µg of two-color MRP1 GR-888 expressing HEK membrane vesicles and incubated at 

370C. GFP emission and quenching was translated to FRET efficiency. Excitation and emission 

for GFP were 465 nm and 480-530 nm respectively. 
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Effect of eighteen doxorubicin inhibitor–hits on MRP1 transcript 

Introduction  

The eighteen compounds identified through a variety of functional assays as inhibitors of 

MRP1 were further evaluated for their effects on the transcription of the MRP1 gene. 

Determination of how a drug influences mRNA expression requires the use of 

quantitative PCR. The rationale for performing qPCR is that a MRP1 inhibitor which 

additionally impedes the expression of MRP1 mRNA is more desired as a potent 

inhibitor than drugs which inhibit only function of MRP1 but not its expression.  

 

Method 

Methods used for conducting qPCR including primer design, RNA isolation, cDNA 

synthesis are the same as described previously. HEK cells overexpressing MRP1 were 

treated with 1 µM of each drug and lysates were prepared which were divided into two 

for RT-PCR and western blot purposes. 

 

Results and discussion 

Our results show that only 5 of the eighteen drugs at 1 µM significantly increased MRP1 

mRNA expression by 2-fold or more. The ability of these five drugs to prominently 

improve the mRNA expression of MRP1 could work against their inhibitory properties. 

These results need to be substantiated with further experiments. The rest of the drugs did 

not significantly affect mRNA expression as they showed slightly above or below 1-fold. 
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Notably, Sarcatinib showed a 0.5-fold decrease of mRNA expression of MRP1. These 

results are consistent with western blotting data (not shown here) which evaluated the 

effect of the same drugs on the protein expression of MRP1. Our results suggest that 

Sarcatinib may be the most potent inhibitor overall due to its ability to not only affect the 

protein function but also dwindle the transcript of MRP1 gene. Further downstream tests 

may be necessary to confirm these findings. 

 

 

Figure 4.5 effect of test compounds on the mRNA transcript of MRP1.  
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 CHAPTER 5 

FINAL DISCUSSIONS 

MRP1 and P-gp are two of the most important ABC transporters which play a 

significant role in the disposition and efflux-translocation of a variety of compounds and 

therapeutic agents in an ATP-dependent hydrolysis, while mediating tissue defense of 

sanctuary sites such as the blood-testis barrier, as shown through mice studies [1-5]. The 

prominent expression of MRP1, P-gp along with BCRP in leukemias, breast cancer and 

other tumors confers multidrug resistance (MDR) to anticancer agents, leading to poor 

patient outcomes during chemotherapy [1, 6]. Therefore, profiling of the interaction of 

these important transporters with pharmacological agents is imperative but the absence of 

a high-throughput assay for the identification of substrates of these ABC proteins remains 

an impediment to extensive drug screening. In our previous study, we developed a two-

color MRP1 biosensor which reports intramolecular FRET efficiency as a measure of 

conformational changes in the presence of E217βG and other ligands. This recombinant 

reporter (GR-873) also identified eight compounds including the antibiotic nitazoxanide 

and the flavonoid EGCG, through a high throughput screening of a library of clinically 

tested drugs using Fluorescence lifetime technology.  

In the present study, to enhance the sensitivity of the 2-color-FRET model and expand it 

to other ABC transporters, we cloned a set of six two-color MRP1 and P-gp proteins by 

altering the locations of the GFP on the transporters. The strategic goal of the study was 

to investigate which of the two-color constructs through steady state FRET, would 

exhibit better FRET sensitivity than GR-873. We employed the most FRET-sensitive 

two-color biosensor in fluorescence spectroscopy to identify novel modulators/ligands of 
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MRP1 and P-gp. Here, we report that two-color MRP1(GR-881)- and to some extent, 

GR-888 and GR-905 and two-color P-gp GR-678, is more FRET sensitivity than GR-873 

and hold promise for high throughput screening and identification of novel substrates of 

the two most important ABC transporter proteins. 

Molecular cloning is a robust technique which has over the years, enhanced 

investigation of several biological processes and has led to an immense understanding of 

the genetic basis of several diseases [7]. However, genetically modifying membrane 

proteins could compromise their functionality and proper localization in the plasma 

membrane. In the present study, using molecular cloning, we engineered the 27 kD GFP 

and the similarly 27 kDa TagRFP into the MPR1 and P-gp proteins and verified some of 

the recombinant proteins properly localize in the plasma membrane. We have shown that 

one P-gp and four MRP1 and constructs localize in the plasma membrane which 

contradict earlier suggestions of intracellular localization of MRP1 [8]. Doxorubicin, a 

common chemotherapeutic drug with a broad-spectrum efficacy against solid tumors 

such as small cell lung cancer, leukemias and breast cancer [9, 10] is also a fluorescent 

substrate of MRP1. Our engineered two-color MRP1 biosensors (except GR-859) and 

two-color P-gp, GR-678, evacuate doxorubicin, suggesting these clones are as functional 

as the wild-type transporters. Our data essentially supports a widely reported 

phenomenon that clinical MDR mediating ABC efflux pumps such as MRP1, P-gp and 

BCRP extrude doxorubicin out of the cell, diminishing the intracellular concentration of 

the drug [11-13]. Furthermore, two-color P-gp GR-678 mediated export of doxorubicin 

was inhibited verapamil, a well-known P-gp inhibitor, confirming the functionality and 

utility of our engineered clone. 
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The utilization of Fluorescence resonance energy transfer (FRET) in 

understanding the structure and mechanism of biomolecules and bioprocesses has gained 

prominence over the years [14-19]. Generally, the relationship between FRET efficiency 

and the distance between the two fluorescent protein pair is characterized by a sigmoidal 

curve [20]. This curve is steepest at its midpoint ~0.5 or 50% and provides insights that a 

reporter which functions within the 40-60% region is anticipated to exhibit large ligand-

induced FRET changes [21]. This phenomenon forms the bedrock of the present study to 

find a new two-color biosensor from the set of four with an apo FRET efficiency closer to 

or slightly above ~50%. The two-color MRP1 (GR-873) from our previous study showed 

a ligand-free FRET of ~17% [11] using the cell-based epifluorescence microscopy assay. 

However, two-color MRP1 biosensor GR-881 and two-color P-gp, GR-678 with basal 

FRETs of ~63% and ~70% respectively, close to our desired range were anticipated to 

demonstrate larger and more consistent compound-dependent FRET change than GR-873 

in downstream experiments. These clones were consequently chosen as lead biosensors 

for subsequent FRET testing. We speculate that the use of membrane vesicles, other than 

live cells, provided a purer matrix which significantly compensated for the sub-sensitivity 

of the fluorometer and consequently better FRET signal was shown in the present study. 

Interestingly, for MRP1, we observed that the more proximal the inserted GFP in the 

NBD1 is to the TagRFP in the NBD2 position, the higher the ligand-free transfer 

efficiency of the two-color proteins. Our data is consistent with the already known notion 

of sigmoidal relationship between inter-fluorophore distance and FRET efficiency [21]. 

We, however do not rule out the fact that FRET efficiency is not only influenced by 
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positional dynamics of the protein pair but also by their orientational fluorophore 

dynamics [14]. 

 Estradiol-D-17β-Glucuronide (E217βG), a conjugated metabolite of the 

endogenous estradiol, is a widely known substrate of MRP1 [22-24]. E217βG-alone 

induced a stronger FRET signal in two-color MRP1, GR-881 and GR-888 and etoposide-

induced FRET change in GR-678 was appreciable; these indicate we have developed a 

more powerful tool than GR-873 [11], useful for identifying substrates of MRP1. 

Vanadate trapping is a process where sodium orthovanadate prolongs ATP-hydrolytic 

signal in the ADP condition [25], a phenomenon which was confirmed in a-2012 FRET 

study of P-gp mutants [26]. The highest FRET change was displayed upon inclusion of 

E217βG + ATP + vanadate to two-color MRP1 or etoposide + ATP + vanadate while 

vadadate-alone barely showed any FRET signal. These observations are consistent with 

the vanadate trapping model earlier reported. Our data does not only indicate that the 

two-color MRP1 biosensors portray vanadate-locking of ATP but also suggest that the 

recombinant biosensors also demonstrate normal FRET responses to known ligands.  

 To further validate the two-color ABC transporter model, MRP1 GR-881 two-

color P-gp GR-678 were selected as lead biosensors and used for steady-state FRET 

screening of 40 to 50 anticancer drugs. In the MRP1 screening, ten drugs were identified 

based on their reproducible display of FRET changes consistent with or higher than 

FRET changes of the positive control EGCG, were determined as hits and ligands of 

MRP1. Notably, none of the 10-compound hits were discovered as hits from a recent 

study by our group, which identified 12 calcein green-probed inhibitors of MRP1 from a 

high throughput screening of the same anticancer drug-pool using high content high and 
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confirmed by vesicular transport and flow cytometry among tools [27]. We propose that 

these 10-hits could be ligands or possibly potential substrates of MRP1. The insulin 

receptor inhibitor, Linsitinib is the only drug of the ten still under clinical trials. In a 

recent study of the effect of anticancer agents including linsinitib, rapamycin and JNJ-

38877605, linsinitib did not inhibit cell proliferation [28]. It is however unclear if MRP1 

mediated MDR was partly responsible for this observation and further tests are therefore 

warranted. On the other hand, the P-gp screening of 50-anticancer agents yielded 6-drug 

hits. Interestingly two drugs, TW-37 and Axitinib were found as common hits from the 

MRP1 and P-gp screenings. This suggests an earlier notion that some ABC transporters 

particularly MRP1, BCRP and P-gp share common ligands, substrates and inhibitors. 

 The two-color MRP1 (GR-881) and P-gp (GR-678) are improvement of the 

original two-color MRP1 GR-873 are better suited for profiling of pharmacological 

interactions with the transporters. GR-881 identified 10 out of 40 drugs as hits while P-gp 

detected 6 out of 50 drugs as hits. These represent 25% and 12% respective FRET 

sensitivities of the recombinant biosensors. Considering that the earlier two-color 

biosensor (GR-873) detected 8 out of 446 drugs screened with fluorescence lifetime plate 

reader, representing just 1.8% detectability, we think the ABC biosensors developed 

under this current project are more powerful and reliable tools for drug profiling to 

identify substrates.  
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Conclusion 

Overall, we have engineered and validated two-color biosensors GR-881 (MRP1) and 

GR-678 (P-gp), which reports improved intermolecular FRET changes as a function of 

structural changes in response to interactions with substrates or ligands. GR-881 

biosensor has further identified ten of forty and GR-678 biosensor, six out of fifty 

clinically tested anticancer agents as potential ligands of the respective transporters. 

These biosensors and hold promise for use in high throughput screening for detection of 

drug-ABC transporter interactions and identification of substrates of the proteins.  

By using isolated membrane vesicles and a steady state fluorimeter-based approach, we 

have not only improved the initial two-color MRP1 model but also made it an economical 

and a more accessible tool for profiling of direct interaction of ligands with MRP1. The 

original two-color MRP1 GR-873 biosensor was coupled with epifluorescence 

microscopy and fluorescence lifetime plate reader in cell-based assays. Here we have 

harnessed the purity and less complexity of membrane vesicle matrix coupled with the 

appreciable sensitivity of the steady state fluorometer to economize the two-color model 

without compromising quality.  

Based on the FDA mandate to test all therapeutic drugs bound for clinical trials to be 

tested for their interaction with P-gp, there are several approaches being incorporated for 

such testing in most pharmaceutical industries. Most approaches use the vectoral, 

monolayer transport assay using the human epithelial colorectal adenocarcinoma (Caco-

https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Epithelium
https://en.wikipedia.org/wiki/Colon_(anatomy)
https://en.wikipedia.org/wiki/Adenocarcinoma
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2) or the Madin-Darby Canine Kidney (MDCK) cell lines. These approaches are 

laborious and time-consuming. We anticipate that our two-color ABC transporter coupled 

steady state FRET will find great alterative the pharmaceutical industries interested in 

characterizing substrates of P-gp and MRP1.  

Researchers studying biosensors of ABC proteins and other biological processes will 

benefit from our two-color FRET model by incorporating our strategy. LC-MS/MS 

method for eight compounds has been development with promising results with pure 

molecules. Future projects will focus on development a vesicular transport coupled LC-

MS/MS assay to verify the substrate-status of the hits. We also plan to develop a two-

color MRP1 fluorescent plate reader-based high throughput screening assay to identify 

more novel substrates of MRP1.  
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Future direction 

Vesicular transport-coupled LC-MS/MS method development for identification of 

substrates of ABC transporters 

Following the discovery of eight potential substrate-hits for MRP1 from our 

previous study, 10-hits of MRP1 from the present study and 6 P-gp ligands also from the 

present study, it was imperative to confirm the true status of the interaction of these hits 

with their transporters. All drugs discovered are at best potential modulators of their 

transporters without a strong claim that they are substrates. We planned out to develop a 

standard protocol which combines transport and an analytical technique to analyze the 

transported drugs. After unsuccessful trials with high performance liquid chromatography 

(HPLC) mainly due to coelution of analytes with ATP, we resorted to LC-MS/MS as the 

analytical tool. The HPLC-coupled ultraviolet light (UV) analysis could not detect the 

signal in the presence of drugs or was not sensitive enough. The diagram in figure 5.1 

represents a calibration curve generated from measurement of pure E217βG. First, we 

placed our attention on the 8 MRP1 hits from our previous study [11]. We developed LC-

MS/MS methods for the 8 compounds which showed desired signal peaks at the expected 

elution times. We achieved good standard calibration curves following analysis of the 8-

drugs in their pure states. Figure 2 shows calibration curves for pure EGCG and 

calcipotriol as well as graph of peak area and elution times.  
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In the future, there are two anticipated tracks for this project. First is the use of 

membrane vesicle-based transport assay followed by analysis of the transported drugs 

using the established LC-MS/MS methods. The alternative technique is a cell-based 

transport assay prior to analysis with LC-MS/MS method. These approaches will be 

useful to determine the actual mode of interaction of drug-hits discovered in our lab with 

ABC transporters, MRP1 and P-gp and others under study. The future perspectives could 

also shed more light on the mechanisms of interactions. These are potentially powerful 

tools to unequivocally determine substrates of the ABC transporters under investigation. 

 

 

Figure 5.1 Data showing the standard calibration curve of different E217βG using HPLC.  

Mobile phases of 80:20 ethanol and water were used as mobile solvents and wavelength of 246 

nm was used to detect test compound, E217βG. 
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Figure 5.2 LC-MS/MS analysis of standards and calibration of pure calcipotriol and 

EGCG. Method development for compounds to detect potential substrates of MRP1 following 

vesicular transport assay and LC-MS/MS analysis. A. Peak height versus elution time of pure 

calcipotriol at different concentrations. B. Standard calibration curves of pure calcipotriol. Mobile 

phase A: 0.1% Ammonium hydroxide, Mobile phase B: 100% methanol for calcipotriol in a 

buffer medium of 80:20 methanol/NH4OH. Parent molecular ion mass of 411 in multiple reaction 
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monitoring (MRM) transitions of 395.3 and 343.2 for product ions upon fragmentation. 

Electrospray ionization was employed with negative polarity. Flow rate used was 1.0 ml/min. C. 

EGCG peak height against elution time at variable concentrations. D. Calibration curves EGCG 

standard concentrations. For EGCG, the following LC-MS/MS experimental conditions were 

employed: Mobile phase A: water/0.1% formic acid, mobile phase B: 100% Acetonitrile/0.1% 

formic acid at a flow rate of 0.6 ml/min. Negative ionization was used with single reaction 

monitoring parameter masses of 457 to 169 product ion for EGCG. 80:20 of mobile phase A and 

B was used infusion buffer. 
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Appendix A 

List of the 50 anticancer drugs FRET-screened with GR-881 and GR-678 

ABT-263 (Navitoclax) Entinostat (MS-275 SNDX-275) 

Afatinib (BIBW2992) SB 431542 

PD0325901 SU11274 

Trichostatin A (TSA) KU-55933 

BMS-599626 (AC480) LY294002 

AUY922 (NVP-AUY922) XL147 

Brivanib (BMS-540215) Saracatinib (AZD0530) 

PF-04217903 Dovitinib (TKI-258) 

BI 2536 Lenalidomide (Revlimid) 

TW-37 Sunitinib Malate (Sutent) 

Mocetinostat (MGCD0103) Elesclomol 

SRT1720 GDC-0941 

YM155 MK-2206 2HCl 

MLN8237 (Alisertib) Linsitinib (OSI-906) 

AT9283 GDC-0879 

Andarine (GTX-007) Triciribine (Triciribine phosphate) 

AZD6244 (Selumetinib) Axitinib 

CI-1040 (PD184352) Cediranib (AZD2171) 

Motesanib Diphosphate (AMG-706) Lapatinib Ditosylate (Tykerb) 

Tandutinib (MLN518) STF-62247 
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ABT-888 (Veliparib) Nutlin-3 

Bosutinib (SKI-606) SB 216763 

Imatinib Mesylate Refametinib (RDEA119 Bay 86-9766) 

Sorafenib (Nexavar) Rucaparib (AG-014699   PF-01367338) 

VX-680 (MK-0457  Tozasertib) JNJ-38877605 
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