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ABSTRACT  

LOCALIZATION OF MICROCALCIFICATION ON THE MAMMOGRAM USING 

DEEP CONVOLUTIONAL NEURAL NETWORK  

JIEUN JHANG 

2018 

     Breast cancer is the most common cancer in women worldwide, and the mammogram 

is the most widely used screening technique for breast cancer. To make a diagnosis in the 

early stage of breast cancer, the appearance of masses and microcalcifications on the 

mammogram are two crucial indicators. Notably, the early detection of malignant 

microcalcifications can facilitate the diagnosis and the treatment of breast cancer at the 

appropriate time. Making an accurate evaluation on microcalcifications is a time-

consuming and challenging task for the radiologists due to the small size and the low 

contrast of microcalcification. Compared to the background and mammogram image 

with noises, it is tough to be discriminated. Computer-Aided Detection (CADe) have 

been deployed to support radiologists. However, most of current CADe systems need to 

have hand-crafted image features to be implemented. For improvement in the 

conventional approach, Convolutional Neural Network (CNN) with no hand-crafted 

image feature is used in this thesis. CNN with Class Activation Map (CAM) is deployed 

to implement the microcalcification detection in mammograms. GoogLeNet architecture 

with nine inception modules and one CAM layer is used to improve the localization 

capability of GoogLeNet in microcalcification detection while maintaining the local 

information. The network is trained and tested with Curated Breast Imaging Subset of 

Digital Database for Screening Mammography dataset (CBIS-DDSM). This approach 
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demonstrates that the localization ability of CAM for abnormal microcalcification 

regions on the mammogram can be improved by restoring the last two inception 

modules that were removed in the paper [1] [16]. For the CAM, CAM layer is inserted in 

the position of the second auxiliary layer that was used in the original GoogLeNet [17] 

for training. This allowed us to use the intermediate feature at the same location from [1] 

[16] for localization while maintaining the depth of the GoogLeNet [17].  

The experimental result shows that this method achieved about 225.15% better 

result at localizing microcalcification in mammograms than the existing method.     
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1 INTRODUCTION 

  According to the World Health Organization (WHO), cancer is one of the 

leading causes of death and breast cancer is the most common cancer in women 

worldwide [2].  

Anatomically, the breast is composed primarily of fatty tissue with epithelium, 

ducts, and lobules connected with nutritional function. 

Breast cancer is caused by excessive proliferation of these epithelial cells 

mainly in ducts and lobules; this proliferation usually causes lesions that can be detected 

and diagnosed by mammography. Without mammography, the probability of early 

detection is around only 5%. [11] 

Mammography is the breast screening technology that the most commonly used 

in the world. Accurate abnormality detection plays a crucial role in mammography 

diagnoses. Early detection of cancer can be a critical factor in the future survival rate of 

cancer patients. [3] [4]. 

Moreover, mammography is universally recognized as the primary screening 

and diagnostic test that can be performed quickly and is the only test method for 

microcalcification detection, which may be one of the critical early findings of breast 

cancer [5].  A challenging issue is that it is often difficult and time-consuming for the 

radiologist to perform an accurate assessment of microcalcifications because of the small 

size and low contrast of microcalcification compare to the background of the 

mammogram [6] [7]. Thus, computer-aided detection (CADe) have been introduced in 

mammography [8] [9]. 
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Until recently, the performance of the CADe system was dependent upon hand-

created features, designed and generated by radiologists. These features provide a 

platform which is task-specific and requires prior knowledge of experts, but they are 

highly biased towards how humans think and work [10]. 

 Since the first introduction of artificial intelligence (AI) into the field of 

computer science, the research has seen the transition from rule-based or problem-based 

solutions to deep learning [11] [12] [13] [14]. 

 Deep learning allows us to optimally exploit the ever-increasing amounts of 

data and reduce human bias. Its method is to extract information directly from training 

samples, rather than the extracted features from the domain expert. Many pattern 

recognition tasks have proven that the system is already reaching or leading to human 

performance [15]. 

In this thesis, based on the result from [1], the goal is aimed to improve the 

localization ability of CNN to detect suspicious microcalcification region in 

mammograms using Class Activation Mapping (CAM). Using transfer learning, 

ImageNet pre-trained GoogLeNet is adapted as CNN architecture, and it is fine-tuned 

with cropped patches from CBIS-DDSM for mass, calcification, normal tissues and 

background. All the patches are resized into 224×224pixel size before being fed to train 

the CNN. Since the size of CBIS-DDSM dataset is too small to train the deep CNN, data 

augmentation is conducted to expand the volume of the dataset. One is elastic distortion, 

and another is image translation with cropping.  

The CAM is used to detect the microcalcification region. Bolei Zhou et al. [16] 

adapted the CAM into GoogLeNet by removing the last two inception modules and 
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connect CAM convolution layer with global average pooling after it. By doing this, they 

maintain the local information from intermediate features with weight map generated 

after fully connected layer to implement the localization. 

Due to the removal of the last two inception modules, the overall network loses 

its depth. Therefore, the network architecture is modified not to lose the depth while 

retaining the localization ability. The CAM layer is connected to full nine inception size 

GoogLeNet at the position of its second auxiliary layer. In this structure, the network can 

maintain the original depth of the GoogLeNet. The authors of GoogleNet claimed in the 

paper [17] that the auxiliary layer compensates for the disappearance of gradients during 

training. The CAM in this architecture then is expected to prevent the vanishing gradient 

problem while maintaining its localization capability, and it is assumed that it will enable 

localization to be more accurate as a deep structure than the CAM GoogLeNet from 

[16].  

In the final step, full-size mammograms are used as input to evaluate the 

modified GoogLeNet and the GoogLeNet from the reference [1] [16]. Each 

microcalcification localization displayed as a heatmap. Intersection over union (IoU) and 

the Intersection over Detection (IoD) will be deployed as evaluation methods. 
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2 RELATED WORK 

2.1. MAMMOGRAPHY 

Breast cancer is one of the major health problems in dealing with primary care. 

Mammography, Breast Ultrasonography, and Fine Needle Aspiration biopsy have been 

used to diagnose breast cancer. Digital mammography, Breast Magnetic Resonance 

Imaging (Breast MRI), Breast Computed Tomography scan (Breast CT), Positron 

Emission Tomography scan (PET), and early diagnosis using a Single-Photon Emission 

Computerized Tomography scan (SPECT) have been introduced. Among them, 

mammography is a primary test for screening and diagnosis, and its effect is universally 

recognized [14][18]. Mammography is the primary screening and diagnostic test that can 

be performed very easily and is the only test method for visualizing microcalcification, 

which can be one of the critical early findings of breast cancer. [5]. Microcalcifications of 

the breast are commonly found in mammography and are especially common after 

menopause [35]. Microcalcification is usually benign which means non-cancerous, but 

certain types of microcalcification or certain patterns of microcalcification may indicate 

precancerous changes in tissue or the breast cancer. [27] [28]. There are many 

controversies over the effects of mammography. A false-positive result leads to an 

unnecessary biopsy, an increase in the mental anxiety of the examinee, and a relatively 

high false-negative rate of mammography for young women and dense breasts [21] [24]. 

In this thesis, I report that I have studied using only mammography images with the 

problems and the limitations of mammography mentioned above. 

In the most cases, mammograms consist of two views of the breast, the 

craniocaudal (CC) view and the mediolateral oblique (MLO) view which are the standard 
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views for screening mammography. The CC view refers to the view from the head 

towards the breast in the vertical direction, and the MLO view refers to the view that tilt 

the breast about 45 degrees [20]. Figure 1 shows a mammogram of the same breast taken 

from MLO and CC views. Images are taken from CBIS-DDSM [19]. Red area indicates 

the same region of interest for the lesion with microcalcification.  

 

Figure 1: Mammography with two views on the left chest of the same patient. 

Mammography is known to be less sensitive if the patient is young and if breast 

density is dense. [21] However, mammography is still the most representative primary 

breast cancer screening method. 
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2.2. CBIS-DDSM 

In mammography, most researches are evaluated with private dataset due to the 

sensitivity for the privacy of medical data. With lack of a standard evaluation dataset 

available to the public, most of the published research results are difficult to replicate.  

Digital Database for Screening Mammography (DDSM) [22] and 

Mammographic Image Analysis Society (MIAS) database [23] were the most commonly 

used public dataset. DDSM was the most extensive public mammography database 

which collects more than 2500 mammographic images from Wake Forest University 

School of Medicine, Massachusetts General Hospital, Sacred Heart Hospital, and 

Washington University of St Louis School of Medicine. In each case, the region of 

interest (ROI) for microcalcification and mass is annotated with descriptions about mass 

shape, mass margin, calcification type, calcification distribution, and breast density [19]. 

In 2017, Lee et al. [19] released a curated, standardized version of the DDSM for the 

evaluation of CADe systems in mammography, CBIS-DDMS. The database contains 

753 calcification cases and 891 mass cases. ROI cropping patches are included in each 

case with each view with full-size mammography and the resulting ROI mask image. 

Figure 2 shows full mammograms with its ROI patches. Images are taken from CBIS-

DDSM [19]. The blue rectangles on left images are the ground truth bounding boxes that 

indicate the ROI mask area from CBIS-DDSM. 
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Figure 2. Example of CBIS-DDSM mammography images(left) and ROI patches(right) 

 

2.3. COMPUTER-AIDED DETECTIONS 

Microcalcifications are one of the most crucial early symptom appearances on 

mammograms [35]. Their diameter is mostly less than 1mm and constructed with small 

deposits of calcium that appear as bright little spots on mammograms [25] [26] [27] [36]. 

Pal et al. [28] introduced a multilevel system that detects microcalcifications using 

neural networks in mammography. The authors located the candidate calcification area, 

configured the network output to remove thin, slender structures and used local density 

for final classification. Wang et al. [29] applied Stacked Autoencoder (STA) constructed 
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with two convolutional layers after image segmentation to classify the malignancy of 

microcalcifications and masses. 15 segmented image features used for 

microcalcifications and 26 for masses. Then they combined all 41 features for 

classification. Tabar et al. [30] used a learning approach to extract local features for the 

shape of microcalcifications and then selected the most prominent features for use in the 

classifier.  

Mass detection algorithms first detect suspicious regions in a mammogram and 

then classify the malignancy. Petrick et al. [10] used Laplacian Gaussian for edge 

detection and contrast-emphasis filters using adaptive weights to discriminate the 

potential mass. Morphological features were extracted to classify normal and mass ROI. 

Cascio et al. [31] first used the edge-based approach to refine the boundaries of the ROI 

and then computed the geometric features. Neural networks have been trained to 

distinguish between mass and normal areas. 

Previous classifiers mainly used shallow neural networks as classifiers and used 

hand-crafted features when performing computer-aided detection, but in recent years, 

many studies have been done by applying deep learning into CADe.  
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2.4. DEEP CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 

2.4.1 CONVOLUTIONAL NEURAL NETWORK 

Convolutional neural network (CNN) is a neural network, specialized for 

processing a grid-like topology data such as the image, which is a 2-dimensional grid of 

pixels. 

Convolution is a linear operation on two functions with some variable 𝑡. 

Convolution is to reverse and shift one of the functions 𝑓 and 𝜔, and then to integrate the 

result of the multiplication with the other function: 

s(𝑥) = (𝑓 ∗ 𝜔)(𝑥) 

s(𝑥) = ∫ 𝑓(𝑡)𝜔(𝑥 − 𝑡)𝑑𝑡
∞

−∞

 

in which, 𝑓(𝑥) is the output of the function 𝑓, and 𝜔(𝑡) is a weighting function 

for convolution in CNN. Convolution is defined for all functions defined by the above 

integral function for any purposes. [38] 

 

Figure 3. Illustration of the spatial property of kernel in convolution layer 
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In convolutional neural networks, 𝑓(𝑥) is referred to as the input, 𝜔(𝑡) is 

referred to as the kernel and the output s(𝑥) is referred to as the feature map. The input is 

usually a multidimensional array data (e.g., an image), and the kernel is a 

multidimensional array of parameters that are intended to converge with the learning 

algorithm. Figure 3 shows this spatial property of convolution layer. 

The following three ideas improve the learning algorithm of CNN: Sparse 

interaction, parameter sharing, equivariant representations [38]. 

Even if the input could consist of thousands of pixels, we intentionally keep the 

network’s kernel small. The resulting network not only ‘sees’ the relevant features such 

as an edge, but also lessen the required computation and ameliorate statistical efficiency. 

This is the advantage and the attribute of sparse interaction or connectivity from CNN. 

The parameter sharing scheme allows CNN to control and reduce the number of 

parameters. If each convolution layer uses a different weight for each neuron location at 

all depth, the number of parameters is very high. Rather than using this enormous number 

of parameters, take the advantage from the simple assumption that if one feature is useful 

for computation at some spatial location, it should be useful to compute at another 

location. In other words, the neurons of each depth slice use the same weights and bias by 

limiting the number of neurons at each depth slice (2-dimensional slice used in 2-

dimensional image processing). During backpropagation, every neuron in the input 

volume computes the gradients for its weights, and then the gradients are summed over 

each depth slice. Finally, it updates only one set of weights per depth slice. The forward 

pass of the convolution layer can be computed as the convolution of the weights of the 
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neurons with input volume at each depth slice. Therefore, we name the set of weights as a 

filter (or kernel). 

A function h is said to be equivariant to a function g if h and g satisfy the following 

property: 

ℎ(𝑔(𝑥)) = 𝑔(ℎ(𝑥)) 

Let h denotes the function that shifts every pixel to the right and g the function that 

modifies the brightness of a pixel at coordinates (𝑥, 𝑦). The parameter sharing enables us 

to say that if we applied h to the convolution and we applied the convolution to the result 

of h, both computations are equal. In other words, if we move an object in a specific 

image, its representation does not change. This is particularly interesting in dealing with 

images, since the equivalence renders CNN invariant to the horizontal/vertical 

translation. This is the reason that CNN is said to possess a property called ‘equivariant 

representation’. 

The pooling operation renders the network invariant, in a certain way, to small 

translations of the input. Provided that the underlying assumption is correct, this 

characteristic gives the network another tool for the statistical efficiency. 

 

Figure 4. Illustration of Pooling Operation 
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Figure 4 illustrates how a max pooling (with filter size 2 × 2 and stride 2) works. The 

operation aims to get the maximum pixel value, ‘pool’ the value and the resulting image’s 

resolution’s 50% reduced. 

2.4.2 DEEP LEARNING 

The primary function of deep learning aims to approximate a function 𝑦 =

𝑓(𝑥: 𝜃), where the function maps an input x to a label y and 𝜃 = ⋃ 𝜃𝑖 is a collection of 

parameters 𝜃𝑖 in a neural network. The main difference of the deep learning lies in the 

assumption that f is to be approximated by a set of  𝑓(𝑖) functions: 

𝑓(𝑥) ≈ 𝑓(𝑛)°𝑓(𝑛−1)° …  °𝑓(2)°𝑓(1)(𝑥) 

, where º is the composition operator. In this case,  𝑓(1), 𝑓(2), …, 𝑓(𝑛) denote respectively 

the i-th (1 ≤ 𝑖 ≤ 𝑛) layer of a neural network and the overall length of a network, 

denoted by n, is the depth of a neural network. During the training of a neural network, 

we adjust the set of parameters to approximate 𝑓(𝑥), in a numerical fashion. 

2.4.3 GOOGLENET 

ImageNet [33] is one of the most extensive, public datasets in image recognition 

work and plays a significant role in object classification and detection. The project now 

consists of more than 14 million images, categorized as more than 20,000 classes, with 

objects in the middle of the image that classify the class. This effort for labeling a 

massive amount of data has played a crucial role in the revolution in deep learning. Each 
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year, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is held to select 

the best performing architecture and training strategies of the year [34]. 

Szegedy et al. [17] introduced a deeper CNN, GoogLeNet to ILSVRC-2014 and 

winning the competition. Instead of sequential stacking of layers, this network used 

parallel structure in the architecture using the inception modules. 

Inception module is an amalgam of a series of the convolutional filters of 

different sizes; it concatenates different size filters and dimensions into a single new filter 

to obtain features of different scales [37]. In addition, 1 × 1 convolution is appropriately 

used to reduce the dimension and solve the problem of increasing the computation 

amount when the network is deepened [26]. Each inception unit in GoogLeNet consists 

of six convolution layers and one pooling layer. GoogLeNet used Global Average Pooling 

(GAP) at the final convolutional layer. When the network identifies all the discriminating 

areas of an image, using average pooling rather than maximum pooling is more profitable 

in terms of feature loss. 

 

Figure 5. Illustration of an inception module with concatenation layer used in GoogLeNet 
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During the training period, only the following two inception modules after Class 

Activation Mapping modules are fine-tuned. Training is done with CBIS - DDSM dataset 

whose batch size of 16. Each of network iterated 200 epochs with Imagenet pre-trained 

weights. If the average accuracy for the 50 most recent deployments reaches 99.5%, each 

network will stop from further training. The learning rate set to 1e-4 for the initial state. 

Each architecture is trained and saved five times, and the average localization result of 

five models is deployed for the robustness of evaluation 

2.5. CLASS ACTIVATION MAP 

Class Activation Mapping (CAM) is a technology that uses a specific class of 

CNN to identify regions of an image [16]. The CAM can identify image areas associated 

with a given class and reuse the classifiers for localization. It shows that CNN has the 

built-in, detection capability. If CNN classifies the input image with a high degree of 

accuracy, it can be considered that the classifier has learned to filter for the class. 

Conversely, by navigating back to the location where the weights of the filter are active, 

they will indicate the location where the class is in that image.   

For a given image, let 𝑓𝑖(𝑥, 𝑦) represent the activation of unit i in the last 

convolutional layer at a spatial location (𝑥, 𝑦). Then, for unit 𝑘, the result of performing 

global average pooling, 𝐹𝑘 is s 

∑ 𝑓𝑘(𝑥, 𝑦)𝑥,𝑦 . 

Therefore, for a given class 𝑐, the input to the softmax, 𝑆𝑐, is ∑ 𝑤𝑖
𝑐𝐹𝑖𝑖  where 𝑤𝑖

𝑐 

is the weights corresponding to class 𝑐 for unit i. Essentially, 𝑤𝑖
𝑐 indicates the importance 

of 𝐹𝑖 for class 𝑐. 
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𝑆𝑐 = ∑ 𝑤𝑘
𝑐

𝑘

∑ 𝑓𝑘(𝑥, 𝑦)

𝑥,𝑦

=  ∑ ∑ 𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)

𝑘𝑥,𝑦

 

Let ω𝑖 (𝑖 =  1, 2, . . . , 𝑛) denote weights at the output layer and  𝑓𝑖(𝑥, 𝑦) (i =

 1, 2, . . . , 𝑛) the output of the last convolutional layer, computed by the activation 

mapping 𝑓𝑖, at the spatial location of certain pixel coordinates (𝑥, 𝑦). Denote the set of 

classes by 𝐶. Then, CAM can be represented as follows: 

CAM =  ∑ ∑ 𝜔𝑖
𝑐𝑓𝑖

𝑛

𝑖=1𝑐∈𝐶

(𝑥, 𝑦) 

The resulting CAM is then displayed for visualization and further verification 

purpose. The authors of [16] claimed that the CNN could learn the importance of the 

regions by projecting back the weights onto convolutional feature maps. 

Xi et al. [1] trained the neural network using image patches from CBIS-DDSM 

and tested its localization capability on full mammograms with Class Activation Map. 

They cut out the last two inception modules from GoogLeNet and connect CAM 

convolutional layer with Global Average Pooling layer (GAP layer) right after it. Global 

Averaging Pooling is a pooling that performs an entire input volume as a target and 

generates the average value of the entire input volume as output. 
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Figure 6. Illustration of Global Average Pooling applied on a RGB image 

During Class Activation Mapping, the point at which the largest pooling occurs 

in the network is the GAP layer at the last CAM convolution layer. It may maintain local 

information from intermediate filters, but it loses too much information at a time. 

Moreover, because the authors of [1] truncate the last two modules, the depth of the 

network becomes shallower than the original network. 

In order to maintain the depth of the network without compromising the 

functionality of GAP (Global Average Pooling), which plays a crucial role in CAM, the 

CAM layer is connected to full nine inception size GoogLeNet at the position of its 

auxiliary layer. 
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3. METHODOLOGY 

3.1. PREPROCESSING 

Prior to training the machine, since all CBIS-DDSM data are compressed in 

Digital Imaging and Communications in Medicine (DICOM) format, only mammography 

images of each patient are extracted as Portable Network Graphics (PNG) files. The 

DICOM format is an industry-wide, standard format that contains medical imaging data 

as well as a series of interdependent information entities [27]. Each entity contains data 

that includes specific aspects of the actual process (e.g., the process of image acquisition, 

printing) and related physical objects (e.g., patient information, characteristic of the 

lesion, image format). [32] 

Since each mammogram in the dataset can have a wide range of image intensities, 

mammogram preprocessing is paramount. The intensity of each mammogram can vary 

greatly depending on the X-ray machine used, the density of the patient's breast tissue, 

the institution that took the mammograms, and various other peripheral factors. 

Therefore, normalization on the entire dataset serves each feature to have a similar 

intensity range in order to obtain the stable gradients. This normalization is implemented 

by subtracting the mean value of the entire data set for each image. Figure 7 shows the 

raw ROI image patches and normalized image patches for microcalcification of CBIS-

DDSM dataset.  In the case of microcalcifications, many mammograms contain a certain 

amount of mass, also. To distinguish these two abnormalities, two classes of mass and 

microcalcification are labeled using the CBIS-DDSM training set. These two classes are 

used in the reference model for their binary classification scheme [1]. 
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Figure 7. Raw image patches (left) and normalized image patches (right) 

In addition to mass and microcalcification, two classes of normal tissue and 

background were added to allow the network to learn more specific localization. Table 1 

shows the quantitative composition of image patches from CBIS-DDSM with four 

classes. 

Class Training Testing Overall 

Microcalcification 1546 326 1872 

Mass 1318 378 1696 

Normal tissue 1502 380 1882 

Background 1444 352 1796 

Table 1. Size of training and testing image patches 
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3.2. DATA AUGMENTATION 

To avoid the overfitting during training, several data augmentation is applied to 

cropped images from CBIS-DDSM such as elastic augmentation and image translation. 

Elastic distortion is a method developed by Microsoft® for effective training 

data generation. It is patented by Microsoft. This method produces a displacement vector 

in various directions and produces a more complex form of augmented data through it. 

However, elastic deformation has been discarded because it was found that it 

deformed the image features of mass and calcification too much. Particularly in the case 

of microcalcification, due to its small size (the diameter of microcalcification is mostly 

less than 1 mm), the features may change too much even with very weak elastic 

distortion magnitude. Even for the case of mass, since the outline of mass is one of the 

crucial factors to determine the malignancy of mass on mammography, elastic distortion 

is not a proper way to augment data. Figure 8 and Figure 9 show the sample images that 

show the effect of elastic distortion for mass and calcification features.  

 

Figure 8. The raw microcalcification image patch (left), image with 2-magnitude elastic 

distortion(middle), image with 4-magnitude elastic distortion(right) 
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Figure 9. The raw mass image patch(left), image with 2-magnitude elastic 

distortion(middle), image with 4-magnitude elastic distortion(right) 

For the machine to learn all the image properties in the kernel window, image 

translation is conducted.  

Image translation is adapted to allow the network to learn the images with a 

lesion in various directions besides the image where the object is located at the center of 

the image patch. For this purpose, CBIS-DDSM full-size mammography images and 

corresponding mask images used to create ROI locations for entire training data, 

resulting in new image patches with ROIs in the northwest, northeast, southeast, and 

southwest side of each image. The sample image patches of microcalcification for image 

translation with cropping are shown in Figure 10. 

Moreover, due to the vast size difference exists in image patches of CBIS-

DDSM, for image patches that the image size is less than 224 pixels ×  224 pixels, I 

created the larger image patches containing the surrounding area by loosening the ROI 

boundaries. 

Additional normal tissue and background image patches are added to the 

training data to maintain the data ratio of each class. The number of training dataset after 

data augmentation are listed in table 2. 
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Figure 10. Illustration of image tranclastion with cropping; augmented microcalcification 

image patches 

 

Class Training Testing Overall 

Microcalcification 7872 326 8198 

Mass 6636 378 7014 

Normal tissue 7510 380 7890 

Background 7220 352 7572 

Table 2. Size of training and testing image patches after data augmentation 
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3.3. NETWORK ARCHITECTURE 

The training is conducted on the following setting: Intel® i7-3700 @ 3.40 GHz, 

24 Gb Ram, a single Nvidia® GTX 1080, Ubuntu 16.04 and Caffe framework. Each 

training takes about 60-80 minutes to be completed. For training, the learning rate set to 

1e-4 and the weight decay rate set to 0.0005. For both reference and modified model, the 

iteration for training is set to 200 epochs. If the average accuracy for the 50 most recent 

deployments reaches 99.5%, each network will stop from further training. These settings 

are identical to the experimental conditions of the reference model, which allowed me to 

simulate the reference model in an identical environment. All the results and models are 

examined 5 times to get the statistic robustness. The entire preprocessed image patches 

are resized to 224x224 pixels for training, and the entire full-size mammography images 

are resized to 3000x3000 pixels for testing. However, since the testing image is vast, 

Global Average Pooling (GAP) loses too much information to maintain local information 

in the intermediate feature with the referenced CNN model [1] [16].  

 

Figure 11. Reference model of GoogLeNet cutted out for Class Activation Mapping 
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In my methodology, the 187x187 pixel sized 1024 features are flattened into 1x1 size at 

once with test images. To overcome this issue, removed 2 inception modules are 

connected after Class Activation Mapping (CAM) occurred. CAM then inserted in the 

way that the auxiliary layer of GoogLeNet was inserted. 

 

Figure 12. Illustration of modified GoogLeNet with Class Activation Map 

The authors of Google Net claimed in the paper [17] that the auxiliary layer compensates 

for the disappearance of gradients during training. With this modified network 

architecture, the class activation map is expected to play this role with its localization 

capability, and it is assumed that the following two inception modules will enable 
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localization to be more accurate as a deep structure. The threshold value for the bounding 

box is set to 0.9. This means that the boundary is selected by the position of the most 

active weight of the top 10%. The modified map is constructed with nine inception 

modules.  

Type 
Patch 

size/stride 
Output size 

Output of convolution layers in the inception module 

#1x1 

(1x1) 

#3x3 

reduce 

(1x1) 

#3x3 

(3x3) 

#5x5 

reduce 

(1x1) 

#5x5 

(5x5) 
pooling 

Convolution 7 × 7/2 112 × 112 × 64       

Max pooling 3 × 3/2 56 × 56 × 64       

Convolution 3 × 3/1 56 × 56 × 192  64 192    

Max pooling 3 × 3/2 28 × 28 × 192       

Inception 1  28 × 28 × 256 64 96 128 16 32 32 

Inception 2  28 × 28 × 480 128 128 192 32 96 64 

Max pooling 3 × 3/2 14 × 14 × 480       

Inception 3  14 × 14 × 512 192 96 208 16 48 64 

Inception 4  14 × 14 × 512 160 112 224 24 64 64 

Inception 5  14 × 14 × 512 128 128 256 24 64 64 

Inception 6  14 × 14 × 528 112 144 288 32 64 64 

Inception 7  14 × 14 × 832 256 160 320 32 128 128 

CAM 

convolution 
3 × 3/1 1 × 1 × 1024 

      

Global 

Average 

Pooling 

187 × 187/2 1 × 1 × 1024 

      

Linear  1 × 1 × 1024       

Softmax  1 × 1 × 4       

Max pooling 3 × 3/2 7 × 7 × 832       

Inception 8  7 × 7 × 832 256 160 320 32 128 128 

Inception 9  7 × 7 × 1024 384 192 384 48 128 128 

Global 

Average 

Pooling 

7 × 7/1 1 × 1 × 1024 

      

Dropout 

(40%) 
 1 × 1 × 1024 

      

Linear  1 × 1 × 4       

Softmax  1 × 1 × 4       

Table 3.Modified GoogLeNet structure on 224x224 training patches 

  



25  

4. RESULTS AND EVALUATION 

Evaluation of localization is done by the Intersection over Union (IoU). This 

metric computes the ratio of the intersection of two bounding boxes over the union, one 

given by the classifier and the other the ground truth. The more its value is close to 1, the 

more accurate the classifier is. Given two bounding boxes A and B, we have: 

IoU(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

, where |∙| denotes the area bounded by the box.  

The bounding box will cover the  

Model Average IoU for microcalcification detection 

Modified GoogLeNet with CAM 0.146 

Reference GoogLeNet with 

CAM 
0.136 

Table 4. IoU results for reference GoogLeNet and Modified GoogLeNet 

As shown in Table 4, the average IoU value is very low for both the main 

reference network and the modified network, although the value of the modified network 

shows slightly better results. The reason for this low IoU value is because the ROI 

ground truth for CBIS-DDSM is sometimes too large and too roughly held. Lee et al. 

claims [19] that the ROI annotations for DDSM anomalies are provided to indicate the 

general location of the lesion, but not the accurate location. Therefore, many researchers 

need to implement a segmentation algorithm for accurate feature extraction with domain 
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experts. Direct comparison of the performance of methods or replicate previous results 

are not possible. This issue reduced the average of IoU value from the modified model 

which try to achieve more precise localization. Figure 13 shows the example of roughly 

held ROI masks. As you can see, some of the masks are very large enough to cover the 

outer part of the breast, and others are huge enough to cover the entire breast. 

 

 

Figure 13. Example of mammograms with roughly held ROI masks 
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Since the IoU value is not the best way to evaluate localization with these 

roughly measured ground truths, this thesis focuses on the most strongly activated 

regions among all the ROI candidates that estimated by the network. 

The intersection between ground truth areas and detected areas are divided by 

the areas of detection.  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝐼𝑜𝐷) (⋃ 𝑅𝑖

𝑚

𝑖=1

, ⋃ 𝐺𝑗

𝑛

𝑗=1

 ) = ∑
| ∑ 𝑅𝑖

𝑚
𝑖=1 ∩ 𝐺𝑗|

| ∑ 𝑅𝑖
𝑚
𝑖=1 |

𝑛

𝑗=1

 

, where | ∙ | denotes the area bounded by the box, 𝑛 is the number of ROI 

candidate bounding boxes with a threshold, 𝑅𝑖is the area of each 𝑛 ROI candidates, 𝑚 is 

the number of all the ground truth bounding boxes and 𝐺𝑗 is each ground truth bounding 

box area. 

The more its value is close to 1, the more detection areas intersect with the 

ground truth. In other words, the more its value is close to 0, the more the occurrence of 

the false positive detection increases. The network fails to detect the ROI area when the 

intersection over detection value reached 0. 

Model Average IoD for microcalcification detection 

Modified GoogLeNet with CAM 0.367 

Reference GoogLeNet with CAM 0.163 

Table 5. The intersection of detection results for reference GoogLeNet and Modified 

GoogLeNet 
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Figure 14. Full mammogram for microcalcification (first column), localization heatmap 

from reference model (second column), localization heatmap for the modified model 

(third column) and corresponding ROI mask images (last column) 
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Figure 14 shows the results of microcalcification localization from the 

referenced model and the modified model. The first column of Figure 14 shows the 

original mammograms from CBIS-DDSM, resized to 3000 × 3000 pixel size. The 

second column is the images of the localization results of the reference model converted 

into the heatmap images, and the third column shows the localization results of the 

modified model as the heatmap images. The closer the color of the heatmap is blue, the 

more weights are not activated, and the closer the heatmap color is red, the more weights 

are activated. Thus, the area marked in red indicates the location of the specified class 

object. Finally, the last column is the mask images from CBIS-DDSM corresponds to 

each image from the first column. As you can see, a large number of false positive areas 

are detected in the reference model. However, in the resulting heatmap of the modified 

model, it performs more elaborate localization, which intersects to the ground truth 

region with much less false positive alarms. 
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5. CONCLUSION 

Due to the absence of the supervision of experts for image segmentation, this 

thesis could not yield highly sophisticated evaluation results. However, the inspection of 

visual images and various numerical indicators (e.g., IoU and IoD) confirmed that the 

modified model has a better localization ability for microcalcification than the existing 

GoogleNet with CAM. The evaluation results are generally lower than the average of 

image localization (≥ 50%), which is considered a general threshold, but it can be easily 

improved if more sophisticated ROI ranges can be obtained under the supervision of the 

domain expert as described above. In numerical terms, the modified model showed about 

225.15% better localization result than the reference model for an average of Intersection 

of Detection value for the entire testing data, and about 7.4% better in the average of the 

Intersection of Union value.  

Computer-Aided Detection (CADe) have been deployed to support radiologists 

for mammography diagnosis. However, most of current CADe systems need to have 

hand-crafted image features that generated from domain experts. In this thesis, no hand-

crafted image features were used. CNN with Class Activation Map (CAM) shows that the 

localization of microcalcification can be implemented with much less human effort. 

These results show that a network which can localize the sophisticated area of 

microcalcifications can be implemented to support the radiologists. 
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