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ABSTRACT 

EVALUATION OF THE EFFECT OF TACK COAT TYPE, APPLICATION RATE, 

AND SURFACE TYPE ON INTERLAYER SHEAR STRENGTH 

CHAMIKA PRASHAN DHARMARATHNA 

2018 

Tack coat is an asphaltic material applied between asphalt pavement layers. Since 

pavement is a multilayered structure, it is highly important to make proper bond between 

the layers to achieve a monolithic behavior. Hence, inadequate bond due to application of 

inadequate amount of tack coat may lead to poor structural behavior and premature 

failure.  Also, applying excessive amount of tack coat may lead to layer slippage and 

binder migration. Therefore, it is highly important to apply an optimum amount of tack 

coat between layers. Over the past decades several studies have been conducted to 

determine the optimum tack coat application rate, based on tack coat type, surface 

preparation, and temperature. In those studies, different types of tests were used to 

determine the Interlayer Shear Strength (ISS). It was reported that, many factors affect 

the ISS such as tack coat application rate, tack coat type, layer type and texture, 

cleanliness, test temperature, and confinement pressure among other factors. 

In the current study, a Louisiana Interlayer Shear Strength Tester (LISST) device 

was used to measure the ISS values of layered samples.  The test matrix included 2 main 

parts, one to identify the optimum tack coat application rate and the other part to study 

the effect of moisture conditioning on ISS of the samples prepared at optimum 

application rate. The top layer of all of the test samples were prepared in a way to 

simulate a new Hot Mix Asphalt (HMA) overlay. The top HMA layer was compacted on 
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four types of bottom layers, namely new HMA, aged and worn HMA, milled HMA, and 

grooved Portland Cement Concrete (PCC). Three types of tack coats were evaluated: 

CRS-2P, CSS-1h, and SS-h. Tack coats were applied at four rates: 0, 0.140, 0.281, and 

0.702 liters per square meter (L/m2).  

Results indicated that for the tack coat types evaluated in the current study CSS-

1h exhibited the highest ISS values on all the surface types compared to those measured 

for surfaces without any tack coat. Also, on all HMA bottom layer types, CSS-1h showed 

the best performance at lowest application rate. It was observed that, CSS-1h was the 

only tack coat which showed higher ISS compared to no tack coat application. On PCC 

bottom layers, application of the SS-h tack coat resulted in a higher ISS value compared 

to other tack coats. The highest ISS value measured for the interface of PCC and HMA 

was observed when the SS-h tack coat was used.  Generally, the CRS-2P tack coat was 

found to be more effective in improving the ISS at higher application rates while CSS-1h 

was effective when it was applied at a lower application rate. 

The highest ISS value was observed when tack coat was applied on aged and 

worn HMA bottom layers followed by new HMA, milled HMA, and grooved PCC. For 

both new HMA and aged and worn HMA bottom layers, CSS-1h tack coat applied at a 

rate of 0.140 L/m2 showed the best performance. For milled HMA bottom layers CSS-1h 

and SS-h tack coats applied at a rate of 0.140 L/m2 exhibited a higher effectiveness in 

improving the ISS value. For grooved PCC bottom layers all the tested tack coats 

exhibited increased ISS values than samples prepared without applying any tack coat. 

Hence, it is highly important to use any tack coat for an overlay of PCC bottom layer. 
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Moisture conditioning was found to negatively affect the ISS of the samples with 

PCC bottom layer regardless of the tack coat type. However, the ISS values of the 

samples containing tack coats applied at their optimum application rates on other types of 

HMA bottom layer were not found to be negatively affected due to moisture 

conditioning.  
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CHAPTER ONE: INTRODUCTION 

1.1 BACKGROUND 

Tack coat is an asphaltic material applied between an asphalt pavement layer and an 

existing pavement surface (The Asphalt Handbook, 1989). It is a common practice to use 

tack coat before placing a new HMA layer on an existing pavement (Mohammad et al., 

2010). Asphalt emulsions, cutback asphalts, and asphalt binders are being used as tack 

coats. It is highly important to use an adequate amount of tack coat between layers in 

order to obtain a monolithic system so that it can withstand the traffic loading and 

environmental impacts and minimize premature failure (Mohammad et al., 2002). Since 

pavements are multi-layered structures, the bond strength between layers are as important 

as the strength and the stiffness of individual layers (Al-Qadi et al., 2008). Inadequate 

tack coat or no tack result in poor bond between layers and a reduction in the bearing 

capacity and could result in delamination of asphalt layer and premature structural failure 

(Mohammad et al., 2002). Application of tack coat in excessive amounts, however, can 

cause slippage between pavement layers and cause distresses such as rutting or half-moon 

cracking. The highest interlayer bond strength could be achieved by using the appropriate 

type of tack coat at optimum application rate using the proper application method on a 

well-prepared surface (Salinas et al., 2013).  

Interlayer shear strength (ISS) in the interface of pavement layer varies depending on 

the type and the application rate of tack coat, as well as layer surface and characteristics.  

Hence, it is highly imperative to pavement performance to determine the optimum tack 

coat application rate commonly used in a specific area. Generally, selection of the 
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optimum tack coat application rate is carried out based on experiences, empirical 

judgements and handling convenience (Mohammad et al., 2012). Different tests are used 

to evaluate the bond strength of pavement layers where tack coat is applied. Louisiana 

Interface Shear Strength Test (LISST) is one of the effective methods used for evaluating 

of the bond strength due to tack coat between pavement layers (Mohammed et al., 2010). 

Interlayer surface type is a major factor affecting the bond strength of pavement layers 

(Chen et al., 2010). Different types of pavement surfaces such as new Hot Mix Asphalt 

(HMA), aged and worn HMA, milled HMA, and grooved Portland Cement Concrete 

(PCC) require different application rates of tack coat to obtain the adequate interlayer 

bond strength. Type of tack coat and the application rate is also an important factor 

affecting ISS (Chen et., 2010). Temperature is another influential factor that contributes 

to measured bond strength of pavement layers in the presence of tack coat (Bae et al., 

2010, Leng et al., 2008). Apart from that, the practices used for preparation of the 

existing pavement surface, cleaning, tack coat application method, and HMA laying 

procedures significantly affect the bond strength between layers of the pavement (Coleri 

et al., 2017). Another important concern during the construction is the removal of the 

applied tack coat from the pavement surface due to wheel tracking by construction 

equipment.  Hence, a new generation of tack coats, namely trackless tack coats have been 

introduced which can significantly reduce this problem (Bae et al., 2010).  Effect of 

moisture is another parameter which can negatively affect the bond strength between 

pavement layers (Al-Qadi et al., 2008). Al-Qadi et al. have concluded that moisture 

conditioning can negatively affect the interlayer bond strength.  
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In South Dakota, three types of tack coat emulsions, namely CSS-1h, CRS-2P, and 

SS-h are widely used in construction of asphalt pavements. Hence, it is highly important 

to identify the optimum application rate of each tack coat type based on the types of the 

existing pavement surfaces. Since South Dakota has cold and harsh winters, it is 

important to determine the effect of moisture and freeze thaw cycle on effectiveness of 

the abovementioned tack coats.  

1.2 RESEARCH OBJECTIVE 

The main objective of this study was to determine the optimum application rates 

of three types of commonly used tack coats in South Dakota, namely CSS-1h, CRS-2P, 

and SS-h applied on different pavement surface textures. Four types of pavement surface 

textures, namely new HMA, aged and worn HMA, milled HMA, and grooved PCC were 

evaluated. The optimum application rates were determined based on the Interlayer Shear 

Strength (ISS) results obtained from conducting shear tests using a Louisiana Interlayer 

Shear Strength Tester (LISST). Laboratory-prepared samples were used to conduct the 

LISST tests.   

Another important objective was to determine the effect of moisture and freeze-

thaw cycles on ISS values.  For this purpose, after determination of optimum application 

rates of each tack coat type evaluated for each pavement texture, samples prepared with 

optimum application rates using each tack coat for all surface types and were tested after 

moisture conditioning. The ISS values of the moisture-conditioned samples were 

compared with those from testing dry samples.    
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CHAPTER TWO: LITERATURE REVIEW 

2.1 TACK COATS AND THEIR PROPERTIES  

2.1.1 General 

As per the definition given by the American Society for Testing Materials 

(ASTM) tack coat is a thin adhesive layer, providing a solid bond between relatively non-

absorptive old surface and a new asphalt layer (ASTM, 2004). Depending on the 

preparation technique used by the industry, tack coats can be categorized into different 

types as conventional asphalt binders, asphalt emulsions, and cutback asphalt binders. 

Among all the three classes of tack coats, asphalt emulsions have become more popular 

due to less environmental concerns associated with emulsified asphalt, easy applicability, 

and low energy consumption. Cutback asphalt binders are rarely used due to 

environmental concerns. In general, conventional asphalt binder tack coats provide a 

higher shear strength than that of emulsified tack coats (Ozer and Rivera-Perez, 2017).  

In general, an asphalt emulsion consists of an asphalt binder, water, and an 

emulsifying agent. In recent years, there is a trend of using some polymer additives to 

improve tack coats’ properties. Depending on the emulsifying agent, two types of tack 

coats namely, anionic and cationic tack coats are produced. The charge of the 

emulsifying agent is responsible for the charge of the tack coat. Anionic tack coats are 

produced by negatively charged emulsifying agents while the cationic ones are produced 

by positively charged emulsifying agents.  

In the nomenclature of tack coats, the cationic ones are identified with the letter 

“C” (e.g., CSS-1h, CSS-1, CRS-2P, etc.) and ones that lack the letter “C” are the anionic 
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emulsions (e.g., SS-1, SS-1h, SS-h, etc.). The letter “h” in the label of a tack coat denotes 

a hard grade asphalt having a low penetration. In the classification of the tack coat 

emulsion material, number 1 indicates a low viscosity while number 2 means a high 

viscosity material.  A highly viscous material will contribute to producing a strong bond 

(California Department of Transportation, 2009). For example, tack coat emulsion CRS-1 

was shown to have a higher bond strength than CRS-2 emulsion (Panda et al., 2013). 

However, having a highly viscous emulsifying material doesn't always result in a high 

strength bonds in presence of unwanted fine particles (Kulkarni et al., 2005).  

Other than the production technique, tack coats are also categorized based on their 

setting time as Slow Setting (SS), Rapid Setting (RS), and Quick Setting (QS) (California 

Department of Transportation, 2009). Commonly-used slow setting tack coats are SS-1, 

SS-1h, CSS, and CSS-1h. Also, common rapid setting tack coat emulsions are RS-1, RS-

2, CRS-2, PMRS-2, PMRS-2h, PMCRS-2, and PMCRS-2h. Furthermore, ordinary quick 

setting tack coat emulsion are QS-1, QS-1h, CQS-1, and CQS-1h (Harder, 2016). 

Moreover, there are latex-modified (LM) and polymer-modified (PM) tack coat 

emulsions available in the market. Trackless tack coats as another type of modern tack 

coat that eliminates the tracking problem due to construction equipment used in pavement 

construction projects. Trackless tack coats are shown to have several advantages over 

conventional tack coat emulsions (Rorrer et al. 2012). 

Every tack coat emulsion has a certain breaking time and a setting time. The color 

change of the emulsion from brown to black indicates the breaking of a tack coat 

emulsion. Breaking of a tack coat is the separation of the water from the tack coat 

emulsion (Mohammad et al., 2012). Setting time is the time needed for water to entirely 
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evaporate from the emulsion and leave the tack coat as a thin film on the pavement/road 

surface (Mohammad et al., 2012). Yaacob et al. (2014) reported that the weather 

condition including wind speed, solar radiation, temperature, and humidity were factors 

affecting the breaking time of a tack coat. Regardless of the condition and tack coat type, 

low application rate was found to result in a short breaking time. Also, low temperature 

and no solar radiation was found to lead to low workability which highlighted the 

problems associated with the application tack coats at night.  

2.1.2 Effect of Tack Coat Properties on Interlayer Strength 

 Asphalt rheology is the study of flow and deformation of the asphalt materials 

(Attoh-Okine et al., 2016). Since the asphalt binders constitute the adhesive agent present 

in tack coat emulsions, the rheological properties of the asphalt binder present in tack coat 

has a major effect on its properties. Therefore, the rheology is an important parameter to 

consider in characterization of tack coats and their mechanical properties (Marcado and 

Fuentes, 2017). Covey et al. (2017) has suggested the use of non-destructive tests for the 

evaluation of tack coat materials based on their simple rheological properties.  Also, 

correlations were developed between the rheological properties and the interlayer shear 

strength (ISS) values   due to use of tack coat emulsions (i.e., slow-setting grade emulsion, 

CSS-1H, new-engineered emulsions). Covey et al. (2017) concluded that linear 

relationships exist between the rheological properties (i.e., rotational viscosity, penetration, 

softening point) and the ISS values. Karshenas (2015) and Wilson et al. (2016) concluded 

that type of tack coat has a significant effect on interlayer bond strength. 

Mohammad et al. (2012) reported that an increase in viscosity of the tack coat 

emulsion resulted in an increase in tensile strength of tack coat. Also, an increase in the 
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binder’s softening point was found to be correlated to the maximum tensile strength. 

Furthermore, bond strength was found to increase with an increase in the application rate, 

temperature, and viscosity. An increase of temperature caused a reduction of the shear 

strength. Tack coat emulsions with low viscosities exhibited a higher bond strength than 

tack coat emulsions having a high viscosity (Ghaly et al., 2013).  

As conducting the Superpave® binder tests on tack coats is practical and relatively 

simple, the relationship between asphalt binder rheological parameter (G*/sin δ) and ISS 

in different application rates, can be readily used as a parameter for selection of tack coat 

emulsions (Bae et al., 2010). NCHRP report 712 established a relationship between the 

bonding characteristics of tack coats and the rheology of the materials (Mohammad et al., 

2012).  The tack coat having a harder residue has shown a high bond strength than the those 

having a soft bitumen (Destrée and Visscher, 2017).  

Raab et al. (2015) reported aging to improve the interlayer bond strength with and 

without tack coat. However, this improvement was more significant when a tack coat was 

used. Long-term oven aging and site aging both were found to have a similar effect on ISS 

values. Wang et al. (2017) conducted a comprehensive study to investigate the factors 

affecting the tack coat performance. Also, intrinsic factors such as tack coat type, tack coat 

application rate, curing time, aging of the asphalt surface, application condition, the effect 

of temperature, mix type, and surface texture were identified as major factors affecting the 

ISS values. 

Cho et al. (2017) evaluated the possibilities of debonding at the surface of 

interlayers in asphalt pavements using a computational method. A special computer 

software, Layered Visco-Elastic Pavement analysis for Critical Distresses (LVECD), was 
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used to understand the critical stresses that lead for debonding of flexible pavement layers. 

Also, the mechanism that these stresses get affected by the design parameters and 

environment were revealed from this analysis. Further, a prediction model was developed 

for determining interlayer shear bond strength with different tack coats and temperatures 

along with various loading rates and normal confining stresses. The use of LVECD was 

found to be an easy, economically efficient, and quick method for the proper selection of 

tack coat materials. 

2.1.3 Effect of Surface Texture on Interlayer Strength 

Sometimes pavement construction is an entirely new project which allows the tack 

coat to bind to two new HMA surfaces. In asphalt overlay projects, tack coat should bind 

an aged and worn or a milled surface to a new HMA layer. Also, due to its economic 

feasibility, use of the HMA overlay on PCC surfaces is popular. The pavement surface 

texture is known to affect the measured ISS values (Covey et al., 2017). Milled HMA 

surfaces provided the highest ISS values followed by PCC, old HMA, and new HMA 

surfaces (Mohammad et al., 2012, Raposeiras et al., 2013), concluded that bond strength 

was increased when the surface roughness was increased. A strong correlation between the 

surface texture and interlayer shear strength was found to exist (Coleri et al., 2017). 

Milled surface is one of the most common surface types in overlay projects. 

However, the effect of presence of the tack coats on the ISS values in the milled sections 

was found to be insignificant while, it was it was highly significant for non-milled sections 

(Tashman et al., 2008, McGhee and Clark, 2009).  

Raposeiras et al. (2016) reported that the surface macro-texture is one of the 

influential factors affecting the measured ISS values. It was found that the aggregate 
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particles larger than 8 mm have the highest contribution to shear strength when they were 

used at a rate between 40 % and 50%. However, it has been reported in other studies that 

the surface texture is not an influential factor affecting the ISS value (Destrée and Visscher, 

2017). Also, it was reported that surfaces with higher macro-texture values showed high 

potential of absorbing emulsion (Raposeiras et al., 2013).  

In a different study, Ziari et al. (2007) showed that interface condition can affect 

the stresses and strains in the interlayer. Also, it was concluded that absence of tack coat 

in between binder course and base course resulted in a more negative impact on the strain 

level than that measured in between two binder courses. Chen (2009) found that slippage 

crack failure mode in asphalt pavement occurs mainly due to insufficient bonding between 

two layers due to inadequate or poor-quality of tack coat application. 

Chen et al. (2010) evaluated the effect of surface features on interlayer shear 

strength in the presence of a tack coat. The direct shear test was used to evaluate the 

interlayer shear strength with a constant displacement rate of 2.5 mm/min. Cored samples 

from simulated slabs were used for testing. The upper layer and bottom layer of the 

simulated pavement were constructed using three different layer types, namely Dense 

Graded Asphalt concrete (DGAC), gap graded asphalt concrete, open-graded asphalt 

concrete. In addition, three test temperatures (25°C, 35°C, 50°C), two types of tack coats 

(CRS emulsion, MAE emulsion) and four residual application rates (0.06, 0.12, 0.18, 0.24, 

0.3 L/m2) were evaluated. Three parameters namely, K-value (interlayer tangential reaction 

modulus), peak shear, and residual shear were evaluated to find the mechanical behavior 

of tested samples. It was found that both shear strength and K values decreased with an 

increase in mean texture depth (MTD) and film thickness (FT). Out of all the surface types, 
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DGAC-DGAC exhibited the highest shear strength values. Also, it was found that the MTD 

and FT are the main factors affecting shear strength. It was concluded that, the surface 

characteristics and tack coat type are main factors, affecting the optimum application rates. 

In a different study Mohammad et al. (2010) found that the use of milled HMA 

resulted in the highest interlayer shear strength followed by PCC surface, aged HMA 

surface, and new HMA. Tashman et al. (2006) conducted a study on the parameters 

affecting interlayer bond by tack coats in a pavement including few application practices. 

Factors, namely surface treatment type (milled vs. non-milled), curing time, residual 

application rates (0.00, 0.018, 0.048, 0.072 gal/m2), the location of the test (wheel path and 

middle of the lane) were considered in that study. It was concluded that the milled 

pavement sections exhibited a higher shear strength compared to non-milled sections. For 

the milled surfaces, the presence of the tack coat was not an advantage whereas for non-

milled surfaces it improved the interlayer shear strength. Similarly, from the torque bond 

test, it was found that milled surfaces had the highest shear strength. This test also 

confirmed the fact that absence of tack coat could negatively affect the bond strength of 

non-milled sections. The most important finding from the pull-off test was non-milled 

section had a higher pull-off strength value than that of the milled section.  

     The variation of ISS value with time between an HMA overlay and existing 

pavement layer of was evaluated by Das et al. (2017). The layer type, type of tack coat, 

and application rate of the tack coat were considered. Interlayer Shear Strength was 

measured with using Louisiana Interlayer Shear Strength Tester (LISST) test. Short-term 

performance evaluation was carried out after conducting the tests on the cores extracted 

from the pavement shortly after construction.  The SS-1, SS -1h, NTSS-1hM, and CBC-1h 
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were the evaluated tack coats. Results showed that with an increase in service time interface 

bond strength increased regardless of the surface type.  

      In another study, Al-Quadi et al. (2012) showed that for milled surfaces, the 

optimum residual application rate was 0.06 gal/yd2; while for new binder SMA layer, the 

optimum residual application rate was found to be 0.02 gal/yd2. 

2.2 CHARACTERIZATION OF INTERLAYER BOND STRENGTH  

Various types of tests are used to evaluate the interlayer bond strength. These tests 

are used to evaluate the effectiveness of the tack coat in different failure scenarios. 

Interlayer bond strength tests can be listed under three main categories namely, shear 

strength tests, tensile strength tests, and torsion tests (Raposeiras et al., 2013; West et al., 

2005). Some of these tests are conducted in the laboratory while others can be performed 

as in-situ tests. Table 2.1 shows prevailing bond strength evaluation tests used by the 

asphalt industry. Among these tests the direct shear devices are the most commonly used 

method (Zaniewski et al., 2015). A number of test methods used for characterization of the 

tack coats in pavement interlayers are discussed in this section. 
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Table 2.1 Test methods used in the literature for evaluation of interlayer bond strength 

Shear Strength Tensile Strength Torsion Strength 
Louisiana Interlayer Shear 
Strength Test (LISST) 

Layer-Parallel Direct 
Shear (LPDS) 

Torque Bond Test 

Leutner Shear Test Switzerland Pull-Off Test 
 

Louisiana Transportation 
Research Center (LTRC) Direct 
Shear Test 

The ATacker™ Test   

Texas Transportation 
Institute (TTI) Torsional Shear 
Test 

University of 
Texas at El 
Paso (UTEP) Pull - Off Test 

  

Florida Direct Shear 
Test 

    

Virginia Shear Fatigue 
Test 

    

Ancona Shear Testing Research 
and Analysis (ASTRA) Test 

    

Loboratorio de 
Caminos de Barcelona 
Shear Test (LCB) 

    

 

2.2.1 Louisiana Interlayer Shear Strength Tester 

Louisiana Interlayer Shear Strength Tester (LISST) was developed in NCHRP 

Project 9-40 as a direct shear test (Mohammad et al., 2012). This test can be used for 

measuring the interlayer shear strength (Mohammad et al., 2012). The LISST device 

consists of a frame with one stationary and a moving part. The moving element is also 

known as the shearing frame while the fixed part is known as a reaction frame. The LISST 

device can test a cylindrical specimen having a diameter of 150 mm or 100 mm. Total 

specimen thickness must be below 150 mm, and the loading rate should be 2.54 mm (0.1 

in.) per minute. Specimen should be conditioned for 2 hours at the desired temperature 

before testing. The load actuator apply normal pressure up to 206.84 kPa (30 psi) on a 150-
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mm diameter sample. Generally, a loading frame is used to provide the appropriate 

displacement to the shearing frame. The graph for interlayer shear stress vs. axial 

displacement is then developed to identify the ISS value. Figure 2.1 shows the main 

components of a LISST device (Mohammad et al., 2012). 

 

 

Figure 2.1 Components of Louisiana interlayer shear strength tester (Mohammad et al., 
2012) 

2.2.2 Texas Shear Bond Strength Test 

This test has a setup similar to that of LISST. The loading Frame used for 

conducting this test has a capability of applying a vertical load at a controlled 

deformation rate of (5±0.5 mm (0.2 ± 0.02 inch) per minute. The load cell should have a 

working range of 90.7 kg to 2268 kg (200 to 5,000 lbs.) with an accuracy of 1%. The 

sample should be placed inside the environmental chamber to condition at 25±1.1° C 

(77±2° F) for 2 hours before testing.  
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2.2.3 Ancona Shear Testing Research and Analysis Test 

Ancona Shear Testing Research and Analysis (ASTRA) test is another direct shear 

test method used for measuring the interlayer shear strength. An Italian research team 

introduced this test (Canestrari and Santagata, 2004). To conduct ASTRA test a horizontal 

displacements is applied to top layer of the sample (Figure 2.2) while the horizontal 

displacement is increased at a constant rate. Also, a constant vertical load is applied to 

provide confinement. The whole setup is placed inside an environmental chamber while 

testing. Shear resistance is evaluated by measuring the maximum interface shear stress. 

This resistance is used to assess the tack coat’s effectiveness in improving the ISS value.  

The test can be conducted on both field cores as well as laboratory-prepared samples.  

 

Figure 2.2 Ancona shear testing research and analysis test setup with major components 
of the device (Canestrari and Santagata, 2004) 

2.2.4 University of Texas at El Paso Pull-off Test 

UTEP Pull-Off Device (UPOD) was developed at the University of Texas at El 

Paso to evaluate the tensile strength of the interlayers treated with or without any tack coat. 

The UPOD has three pivoted feet and a plate which is used as a support.  A torque a wrench 
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is used to pull the plate up.  The device used for UTEP pull-off test is shown in Figure 2.3 

(Tashman et al., 2006). 

 

Figure 2.3 Main components of University of Texas at El Paso pull-off device (Tashman 
et al., 2006) 

2.3 TACK COAT APPLICATION RATES 

 Tack coats are applied in various application rates according to available 

specifications. Researchers concluded the importance of tack coat application rate and 

tack coat type on pavement distresses (Ozer et al., 2012). Yet, decisions on application 

rates are made based on engineering judgements and are quite empirical and experience 

based. Hence, it is highly important to review typical application rates of different types 

of tack coat materials used in practice. Table 2.2 shows a number of typical application 

rates of tack coats according to the surface type (Tech Brief, 2016). 
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Table 2.2 Common application rates of tack coat as per surface type (Tech Brief, 2016) 

 

2.4 EFFECT OF ENVIRONMENT ON TACK COAT PERFORMANCE 

 Impact of the environment is an important factor that affects the performance of a 

tack coat. Temperature, moisture, freeze-thaw, and solar radiation are the main 

environmental factors affecting the quality of tack coat. The effect of environment on the 

performance of a tack coat has been studied by several researchers and temperature has 

been identified as the most significant factor affecting the interlayer shear strength (Ai et 

al., 2017; West et al., 2005). It was found that an increase in temperature resulted in a 

reduction interlayer shear strength for all surface types (Ai et al. 2017; Al-Qadi et al. 

2012; Amelian and Kim 2017; Chen et al., 2010; Hu et al., 2016; Mohammad et al., 

2012; Zhang 2017).   

Also, Hu et al (2016) reported that at a higher temperature, the tack coats with 

high viscosities showed good shear strengths while low viscosity tack coats showed low 

shear strength values.  It was concluded that the ISS values improved at lower 

temperatures by increasing the tack coat application rate but for higher temperatures, 

such possibility was not observed. Similar findings were reported by Mohammad et al. 

(2002), Recasens et al. (2003), and Canestrari et al. (2005), as well.  In a different study, 
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Bae et al. (2010) found that at testing temperatures higher than 40° C, the bond strength 

of trackless emulsion tack coats were higher than that of CRS-1 tack coat. Graziani et al. 

(2017), conducted research to identify the effect of test temperature and Interlayer 

Deformation Rate (IDR) on ISS of two layered-flexible pavements. A range of 

temperature (5° C to 40° C) was tested along with deformation rates at a range of 1 

mm/min to 50 mm/min for both interlayers with and without any tack coat. Both test 

results revealed that ISS values increased high IDR. It was concluded that this was due to 

the time dependency behavior of bituminous materials.  

  Moisture is another major environmental factor affecting the ISS values. Zhang 

(2017) reported that moisture conditioning reduced the ISS values. Zhao et al. (2017) 

studied the factors affecting the interlayer shear strength between the concrete slab and an 

asphalt overlay. Surface texture, tack coat type, tack coat application rate, moisture 

effect, temperature, and overlay mix type were factors which were considered as 

variables in this research. It was found that most of the tested samples showed no 

statistically significant difference in measured ISS values between the dry and moisture-

conditioned samples. Similarly, Zaniewski et al. (2015) reported that moisture 

conditioning of the samples led to a reduction in bond strength. 

2.5 PRACTICES USED FOR APPLICATION OF TACK COAT IN CONSTRUCTION 

 Zhang (2017) recommended a dry clean surface for applying a tack coat. Mealiff 

et al. (2017) and Raposeiras et al. (2013) reported that the surface cleanliness of a milled 

asphalt surface could affect bond strength between two layers. Similarly, McGee and 

Clark (2009) recommended paying additional care to clean the surface before placing the 

new HMA overlay on a milled HMA surface. However, Mohammad et al. (2012) 
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concluded that a higher ISS value can be achieved with a dusty condition than that in 

clean condition. 

In general, a better compaction is known to result in a higher ISS value (Raab et 

al., 2004). However, with the continuous application of loads, the interlayer bond may 

fail due to fatigue. Diakhate et al. (2006) showed that fatigue failure occurred with 104 to 

105 loading cycles.  Interlayer bond strength is known to be affected by tack coat setting 

time (Zaniewski et al., 2015). However, it was reported that overlay exhibited a better 

tensile bond with the existing pavement layer when it was immediately placed after tack 

coat application compared to that measured 2 hours after application of tack coat 

(Hakimzadeh et al., 2012).  

Amelian and Kim (2017) reported that while breaking time was not different for 

CSS-1 and CFS-1 tack coats, high application rates required a longer braking time. Also, 

the CRS-2P was identified as the material with the shortest braking time while CSS-1h at 

30% dilution was recognized as the material with the longest braking time. CFS-1 and 

CRS-2P at an application rate of 0.72 L/m2 (0.16 gal/yd2) showed best interlayer 

performance while CFS-1 showed the best results at an application rate of 0.36 L/m2 0.08 

(gal/yd2).  

Salinas et al. (2013) reported that the optimum residual application rates for 

milled HMA surface and new HMA surface were found as 0.06 gal/yd2 (0.27 L/m2) and 

0.02 gal/yd2 (0.09 L/m2), respectively. SS-1hP tack coat exhibited a better bond 

compared to that measured for SS-1h. Air blast cleaning technique was found to reduce 

the optimum application rate while maintaining a high ISS value. According to the cost 

analysis, applying a tack coat using spray paver was found to be a cost-effective method. 
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Both application methods evaluated yielded similar ISS values. Hence, for a project with 

a larger scale, SS-1h and SS-1hP were found to be cost-effective when applied using 

spray method. 

2.6 TACK COAT SHEAR FAILURE MODES 

Destrée and Visscher (2017) classified the shear failure modes of the interface 

using a visual assessment method. Failure mode classification is described in Figure 2.4 

and Table 2.3. 

 

Figure 2.4 Different types of the inter layer failure modes (Destrée and Visscher, 2017) 

 

Table 2.3 Interlayer failure mode classification (Destrée and Visscher,2017) 

Classification Visual assessment Mode of failure 

A Within the top layer Cohesion 

B Partly at the interface, partly in the top 
layer 

Mixed 

C At the interface Adhesion 

D Partly in the bottom layer, partly at the 
interface 

Mixed 

E In the bottom layer Cohesion 
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2.7 IMPORTANT RECENT DEVELOPMENTS AND RELEVANT FINDINGS 

 Polymer-modified tack coat material is one of the new types of tack coats used by 

the pavement industry. It was found that the polymer-modified tack coat increased the 

resistance of the asphalt pavement against cracking and rutting at the same time without 

changing the friction and noise (Birgisson et al., 2006; Hakimxadeh et al., 2012). 

However, trackless tack coats have lower resistance to top-down cracking compared to 

CRS-1 (Chen et al., 2012). In a study where three tack coat types, namely styrene–

butadiene–styrene-modified asphalt, emulsified asphalt, and epoxy resin were evaluated 

it was found that epoxy resin has the highest fatigue performance compared to other two 

tack coat types (Li and Yu 2013). In another study, Tran et al. (2013) reported that a 

heavier tack coat performs better than regular tack coat in between Open-Graded Friction 

Course (OFGC) and underlay. 

Hou et al. (2018) evaluated the shear strength, track resistance, pull-off strength, 

and rheological properties for a new Trackless Tack Coat Material (TTCM). The results 

revealed that the TTCM tack coat improved the shear strength by 69% compared to that 

of base asphalt at 20° C and the material became trackless in 1 minute after application. 

There was no report of tire deterioration upon the contact with TTCM at 60° C. Viscosity 

of TTCM was found to increase after cooling material, which led to a better bond 

between layers. The new material exhibited a higher thermal stability compared to base 

asphalt. Recasens et al. (2003) Reported that polymer-modified emulsions exhibited a 

better performance than regular tack coat materials. For fewer air voids, the adhesion was 

found to be higher than the samples with higher air voids.  
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 INTRODUCTION 

This chapter provides an overview of material selection and collection processes, 

procedures used for sample preparation, and test methods. The test matrix included 

testing three types of tack coats on four types of pavement surfaces. Each sample 

consisted of two layers representing an existing pavement surface (bottom layer) and an 

asphalt overlay on top of that (top layer). The tack coat was applied in between the two 

layers. The top layer of the samples was prepared using one type of an asphalt mix with a 

Nominal Maximum Aggregate Size (NMAS) of 12.5 mm while three types of the asphalt 

bottom layers namely, new HMA, aged and worn HMA, and milled HMA were prepared 

using a mix with a NMAS = 19.0 mm and one type of PCC bottom layer which was 

grooved. The main tasks of this project were to: (i) collect two types of asphalt mixes  

commonly used in South Dakota; (ii) collect aggregate and Portland cement  to prepare 

PCC bottom layer samples; (iii) collect tack coats widely  used in South Dakota; ( iv) 

prepare samples consisting of two layers with different tack coats in their interlayers;  (v) 

conduct LISST test and determine the interlayer shear strength of the samples with 

different tack coat type, application rate and surface texture; (vi) determine the optimum 

application rate of each tack coat on all types of surfaces; and (vii) evaluate the effect of 

moisture on the ISS of the samples prepared using optimum tack coat application rate.  A 

test matrix, summarizing the sample surface types, tack coat types, tack coat application 

rates and moisture-conditioning states of the samples tested in a LISST equipment is 

shown in Table 3.1. As shown in Table 3.1, the optimum tack coat application rate 

(OTAR) for each tack coat and surface type was determined by conducting LISST tests in 
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dry condition on samples prepared with each surface type with 3 residual application 

rates, namely 0.140, 0.281, and 0.702 L/m2. After the samples were tested and their ISS 

values were measured, the OTAR values for each tack coat type and surface type were 

determined. Then, samples prepared at their OTAR values were tested to measure their 

ISS values after moisture conditioning 

Table 3.1 Test matrix of the project 

Sample 
Conditioning 

Tack 
Coat 
Type 

Residual 
Tack Coat 

Application 
Rate  

(L/m2) 

Type of the Tested Samples  
Unaged 
HMA 

Aged and 
Worn 
HMA 

Milled 
HMA 

Grooved 
PCC 

Dry 

No 
Tack 
Coat 

0 x x x x 

CSS-1h 

0.140 x x x x 

0.281 x x x x 

0.702 x x x x 

CRS-
2P 

0.140 x x x x 
0.281 x x x x 

0.702 x x x x 

SS-h 

0.140 x x x x 

0.281 x x x x 
0.702 x x x x 

Moisture-
Conditioned 

No 
Tack 
Coat 

0 x x x x 

CSS-1h OTAR x x x x 

CRS-
2P 

OTAR x x x x 

SS-h OTAR x x x x 

*OTAR: Optimum Tack Coat Application Rate 
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3.2 MATERIAL COLLECTION 

3.2.1 Collection of Asphalt Mixes 

Material required to prepare the bottom layer samples with unaged, aged and 

worn, and milled HMA surfaces was collected from a parking lot construction project 

carried out by Bowes Construction Inc. at South Dakota State University (SDSU)’s main 

campus located at Brookings, SD. Since this mix was used to compact bottom layer 

samples, it will be referred to as “BL-HMA” in the current document. This mix consisted 

of 20% Reclaimed Asphalt Pavement (RAP), a PG 58-28 asphalt binder and aggregates 

with Nominal Maximum Aggregate Size (NMAS) of 12.5 mm. The combined aggregate 

structure and particle size distribution is shown in in Figure 3.2. Approximately, 800 kg 

of BL-HMA mix was collected. Figure 3.1 shows a photographic view of the research 

team’s efforts for collection of BL-HMA, on October 19. 2017.  

 

Figure 3.1 Research team collecting BL-HMA mix 
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Asphalt mix required to compact top layer of the samples was collected from “I-

90” interstate resurfacing project from Border States Paving Inc. near Brandon, SD. 

Approximately, 1000 kg mix was collected right after the mix was dumped from the 

truck in front of the paver. Since this mix was used to compact top layer samples, it will 

be referred to as “TL-HMA” in the current document. The TL-HMA mix consisted of a 

PG 64-34 asphalt binder and aggregates with a NMAS = 12.5 mm.  The combined 

aggregate structure and particle size distribution of the TL-HMA is shown in in Figure 

3.2. The collected mix was classified as a Q5 mix, as per South Dakota DOT’s mix 

classification system.  

Figure 3.2 Particle size distribution curves for BL-HMA and TL-HMA mixes 
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3.2.2 Collection of Material for Production of Portland Cement Concrete (PCC)  

Material required to prepare grooved PCC bottom layers, as well as concrete mix 

design sheets used for construction of rigid pavements were collected from GCC ready-

mix plant at Brookings, SD. The concrete mixes produced by GCC are commonly used 

for construction of rigid pavements and other construction projects. The collected 

materials were mixed in the laboratory according to the mix design sheet (Table 3.2) and 

used for preparing cylindrical grooved PCC samples. 

Table 3.2 Mix design for preparing 1665 kg of ready-mix concrete 

Material Unit Quantity 

Cement Kg 247.6 
Fly-ash Kg 43.5 
Rock Kg 790.1 
Sand Kg 514.3 
Water Kg 54.9 
Water-reducing admixture Kg 12.3 
Air entraining agent Kg 1.7 
Total concrete weight Kg 1664.9 

3.2.3 Collection of Tack Coats 

Three types of emulsified tack coats widely used in South Dakota, namely, CSS-

1h, CRS-2P, and SS-h were evaluated. Both CSS-1h and CRS-2P tack coats were 

collected from Jebro Inc., while the SS-h tack coat was collected from Flint Hills 

Resources, LLC. Effect of each tack coat applied with different application rates on 

interlayer shear strength was compared with that of the samples prepared without 

applying tack coats. Each type of the abovementioned tack coats and their properties 

were discussed in section 2.1.1 of Chapter 2. All of the tack coats were received in 

asphalt laboratory and kept in airtight solid dark containers for further evaluation.  
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3.3 DETERMINATION OF THE PERCENT RESIDUE OF TACK COATS 

The percent residue of the tack coats was determined in the laboratory in 

accordance with the ASTM D6934-08 standard test method (ASTM, 2016). For this 

purpose, tack coat emulsion was shaken and then agitated using a wire rod. Two sets of 

beakers and mixing rods were selected and carefully weighed. Then, 50 g of the tack coat 

emulsion was poured in each set of glass beakers containing a mixing rod inside each.  

The beakers, rods and emulsions inside them were kept inside the oven at 163° C for 2 

hours. Then, the contents of the beakers were mixed using the mixing rod and were 

returned and kept inside the oven at 163° C for another hour. Finally, the weight of the 

residue, beaker, and rod for each set apparatus were measured using the scale. Each 

residual weight was obtained by deducting the correspondent beaker and rod weights 

from the total weight of beaker, rod and residue and the percent residue was calculated 

accordingly. Average percent residue value of 2 samples was recorded as the percent 

residue of each tack coat. 

3.4 SAMPLE PREPARATION 

Asphalt samples were compacted in the laboratory, using a Superpave® gyratory 

compactor (SGC). Each sample consisted of two layers of cylindrical samples having of 

60 mm thickness and 150 mm diameter, each. Prior to compaction of double-layered 

samples, trial samples were compacted and the required amount of asphalt mix was 

determined to result in target air voids of 7.0% ± 0.5% for each layer after SGC 

compaction.  
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3.4.1 Trial Sample Preparation 

Trial sample preparation was carried out for both TL-HMA and BL-HMA mixes 

to determine the weight of each sample to achieve 7.0% ± 0.5 % air voids. The 7.0% ± 

0.5% air voids represent the field condition and simulates the air voids after construction 

and compaction of an actual pavement. To obtain 7.0% ± 0.5% target air voids, the 

amounts of asphalt mix to achieve theoretical target air voids of 7.0, 7.5, 8.0, 8.5, and 

9.0% were calculated and compacted using a SGC in height mode. Sample height was set 

to 60 mm and a SGC mold with an inner diameter of 150 mm was used. Theoretically, 

each sample has a volume of 6 x π x (15/2)2 = 1060.29 cm3. The volume was multiplied 

by the percent density and the Theoretical Maximum Specific Gravity (Gmm) to obtain the 

trial weight of each sample. The Gmm values indicated in each mix design sheet were 

initially used for calculation of required trail weights (%density x Gmm x volume). 

Calculated trail weights for BL-HMA are shown in Table 3.3. However, the actual Gmm 

was determined by conducting Rice test as per AASHTO T209 test (AASHTO, 2012) 

standard method in the laboratory. The actual air voids of the trial samples were 

calculated based on the measured Gmm value. 

Table 3.3 Calculated trial weights for BL-HMA to obtain theoretical target air voids 

Target Air Voids 
(%) 

Target Density 
(%) 

Weight 
(g) 

7.0 93.0 2420.8 
7.5 92.5 2407.8 
8.0 92.0 2394.8 
8.5 91.5 2381.7 
9.0 91.0 2368.7 

To prepare the cylindrical samples, the SGC molds, chute, trays, and scoops were 

pre-heated at 165° C in an oven. Asphalt mix was heated in the oven at 165° C for 1 hour 
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in a tray as shown in Figure 3.3. After the first 30 minutes asphalt mix was mixed using 

metal scoops. Then, mix was heated for another 20 minutes while mixed in every 10 

minutes to a uniform consistency. The required weight of the heated mix was placed 

inside SGC chute and was returned inside the oven at 165° C and kept for another 10 

minutes. A circular paper disc was placed at the bottom of the pre-heated mold and 

transferred on top of a scale and tared, as shown in Figure3.4. Asphalt mix inside the 

chute was again mixed with using a scoop and was carefully placed inside the mold while 

adjusting the weight. Then desired asphalt mix weight inside the mold was checked for 

the second time. Then the top surface of the asphalt mix inside the mold was leveled 

using a spatula as shown in Figure 3.5. Then, a circular paper disc was placed on top of 

the leveled surface and the lid of the mold was placed on top of it. Mold was then placed 

inside the Superpave® gyratory compactor as shown in Figure 3.6 and compaction 

process was initiated in fixed height mode (60 mm). After compaction was complete, the 

sample was partially extracted and was kept at room temperature for 15 minutes, before 

extraction, as shown in Figure 3.7. Then the sample was transferred to a level surface, as 

shown in Figure 3.8. 

 

Figure 3.3 Heating the asphalt mix inside an oven at 165° C 
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Figure 3.4 Weighing the asphalt mix inside the mold 

 

Figure 3.5 Leveling the surface of asphalt mix inside the mold 
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Figure 3.6 Compaction of sample using Superpave® gyratory compactor 

 

Figure 3.7 Partially-extruded sample 

 

Figure 3.8 Sample after removing from the mold 
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The bulk specific gravity (Gmb) values of the compacted samples were determined 

according to the AASHTO T 166 standard test method (AASHTO, 2016). It was found 

that using 2392.0 g of TL-HMA and 2401.0 g of BL-HMA mixes for compacting 

cylindrical samples having a diameter of 150 mm and a thickness of 60 mm result in 

cylindrical samples of 7.0% ± 0.5% air voids.  

3.4.2 Preparation of Unaged HMA Bottom Layer Samples  

Unaged HMA bottom layer samples were prepared by compacting BL-HMA mix 

using a SGC operated at height mode (h = 60 mm) following the sample preparation 

procedure described in section 3.3.1. Asphalt mix weight of 2401.0 g was used for 

compacting samples to achieve 7.0% ± 0.5% air voids.   

3.4.3 Aged and Worn HMA Bottom Layer Sample 

Unaged HMA bottom layer samples prepared according to procedure described in 

section 3.3.2 were used to prepare the aged and worn bottom layer samples. 

Aforementioned samples were polished and aged to simulate a worn and aged pavement 

surface. A circular 80-grit sand paper mounted on a 125 mm random orbital sander disc 

was used to polish the surface of the sample. The sander was operated at a constant speed 

for 1 minute to evenly polish the surface of the samples. After the first minute surface 

was brushed, and dust was cleaned. Additional care was given to polish the surface 

evenly, and then the sample was polished for another 1 minute. Figure 3.9 shows the 

surfaces of a polished (right) and an unpolished for comparison purpose. Polished 

samples were placed inside the oven at a temperature of 85°C for 120 hours (5 days) for 
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aging. This oven aging represents and aging equivalent to 5 to 7 years of in-service 

oxidative aging of asphalt mix. 

 

Figure 3.9 Unpolished surface on the left and polished surface on the right. 

3.4.4 Milled HMA Bottom Layer Sample  

Milled HMA surfaces were simulated in the laboratory by creating the milling 

pattern on the surface of the HMA sample as described by Zaniewski et al. (2015). 

Unaged HMA bottom layers compacted using BL-HMA mix were used for this purpose. 

The effect of milling was then simulated first by marking a grid pattern on top of the 

sample (Figure 3.10) and then cutting through the marked area using a wet rock saw 

following the method suggested by Zaniewski et al. (2015). Figure 3.11 shows the final 

simulated milled surface. Samples were dried in an oven at 60° C for 24 hours prior to 

application of tack coats. 
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Figure 3.10 Marked milling pattern 

 

Figure 3.11 Simulated milled surface 

3.4.5 PCC Bottom Layer  

PCC bottom layers were prepared first by mixing concrete in the laboratory by 

following the mix design sheet (Table 3.3) using the concrete materials collected from a 

batch plant. Concrete mixing was conducted by using a concrete mixer in the concrete 

lab. A standard cylindrical plastic mold having a diameter of 150 mm was modified to 

have an inner height of 60 mm. Also, the inner diameter of the mold was reduced by 1.5 

mm by inserting 2 layers of plastic strips as mold lining. This practice ensured the 

prepared PCC sample to fit inside the SGC mold. The prepared concrete was poured in 



34 
 

 
 

the mold and a rubber mallet was used to tap around the mold to achieve a honeycomb- 

free well-compacted PCC bottom layer sample. After concrete was poured and 

compacted inside the mold, it was left for 3 hours before creating the groove pattern on 

top of the sample. Grooving was carried out using a device fabricated in the laboratory, 

consisted of nails having a diameter of 2 mm attached to a wooden straight edge having 

spacing of 20 mm. Groove depth was 2 - 4mm. Figure 3.12 shows a grooved PCC bottom 

layer sample. Samples were kept inside the mold overnight and then transferred to 

environmentally-controlled humidity room and kept for 7 days to cure. Samples were 

dried in an oven at 60° C for 24 hours prior to application of tack coats. 

 

Figure 3.12 Grooved PCC bottom layer sample  

3.4.6 Tack Coat Application 

Bottom layer samples (unaged HMA, aged and worn HMA and grooved PCC) 

were kept inside an oven at 54° C for 2 hours before applying tack coat. This period 

simulated a sun-warmed surface of the pavement. A brush was used for application of 

tack coat on the sample surface, as shown in Figure 3.13. For this purpose, the preheated 
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sample was placed on top of the scale and the reading was zeroed. Tack coat emulsion 

kept inside a capped plastic dispenser was shook well before applying it to the bottom 

layer sample. After tack coat was evenly applied, a paint brush was used to spread the 

tack coat material evenly on the bottom layer sample. The weight reading on the scale 

was controlled to achieve three residual application rates, namely 0.140, 0.281, and 0.702 

L/m2. Determination of percent residue of a tack coat is described in Section 3.4. 

Application amount of each tack coat to obtain the residual rates are shown in Table 3.4. 

 

Figure 3.13 Applying tack coat on bottom layer sample 
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Table 3.4 Tack coats residual application amounts 

Tack Coat 
Type  

Residual Application Rate 
(L/m²) 

Percent 
Residue (%) 

Application Weight 
of Tack Coat (g) 

CRS-2P 

0.140 69.2 3.7 

0.281 69.2 7.3 

0.702 69.2 18.2 

CSS-1h 

0.140 60.8 4.1 

0.281 60.8 8.3 

0.702 60.8 20.8 

SS-h 

0.140 63.5 4 

0.281 63.5 7.9 

0.702 63.5 19.9 

3.4.7 Tack Coat Breaking Time 

As described in Chapter 2 tack coat breaking time is known as the time needed for 

a tack coat to change the color from brown to black. Breaking time of each tack coat in 

laboratory depends on the properties of the tack coat, application rate, ventilation, and the 

surface type (Yaacob et al., 2014). Visual inspection of color change was performed to 

determine the breaking time of each tack coat in different application rates. Breaking time 

of each tack coats on different surfaces are shown in Table 3.5. 
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Table 3.5 Breaking times of tack coats in different application rates 

Tack 
Coat 
Type  

Residual 
Application 
Rate (L/m²) 

Breaking Time (Hours) 

New 
HMA 

Aged and 
Worn 
HMA 

Milled HMA Grooved PCC 

CRS-2P 
  
  

0.140 0.5 0.5 0.5 0.5 
0.281 0.5 0.5 0.5 1.0 
0.702 1.0 1.0 1.0 3.0 

CSS-1h 
  
  

0.140 0.5 0.5 0.5 0.5 
0.281 0.5 0.5 0.5 1.0 
0.702 1.0 1.0 1.0 3.0 

SS-h 
  
  

0.140 0.5 0.5 0.5 0.5 
0.281 0.5 0.5 0.5 1.0 
0.702 1.0 1.0 1.0 3.0 

 

3.4.8 Top layer compaction 

Top layer of the samples were prepared by heating and compacting the TL-HMA 

mix using a SGC, as described in section 3.3.1.  Prior to compaction of the top layer, tack 

coat applied on the bottom layer sample (if any) was let to break on applied surface. 

Then, the bottom layer sample was carefully placed inside the heated SGC mold and 

pushed all the way down in the mold. Then, the mold was placed on top of the scale and 

scale reading was noted. Asphalt mix with the weight determined in section 3.1.1 was 

placed inside the mold using a chute. Surface of the loose mix was leveled and a paper 

disc and top lid of the mold were carefully placed to cover the loose mix. The mold was 

transferred inside the SGC and the asphalt mix was compacted. The SGC was operated in 

gyration mode with the number of gyrations set to 42.  The number of gyrations required 

to compact a double-layer sample having a height of 120 mm and air vids of 7.0 ± 0.5% 

was pre-determined after compaction of trial samples. 
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3.4.9 Moisture Conditioning of the Compacted Samples 

 To study the effect of moisture on interlayer shear strength of different tack coat 

types, a number of samples were tested after moisture conditioning. For this purpose, a 

modified version of the standard moisture conditioning procedure as described in 

AASHTO T283-02 standard test method (AASHTO, 2014) was used. The specimen was 

first vacuum-saturated by placing it inside the vacuum flask at 1.9-9.7 psi (13-67 kPa) 

absolute pressure (10-26 in Hg partial pressure) for 8 minutes. Water level inside the 

container was adjusted to cover the full height of the specimen. Then, vacuum was 

released, and sample was kept inside the water for another 7 minutes before drying its 

surface using a damp towel.  Then, it was wrapped and sealed using cling wrap. Wrapped 

sample along with 10 cc of water were placed inside another plastic bag and sealed after 

removing the excess air inside the bag. Sealed sample was then placed inside a freezer at 

-18° C for 16 hours. Then, the sample placed inside a water bath at 25° C, after removing 

the plastic wrap from the sample. Temperature of the water bath was continuously 

monitored and maintained at 25° C. Sample was kept inside the water bath for 4 hours. 

Then, the abovementioned freezing-thaw process was repeated for another cycle.  After 

completing the second freeze-thaw cycle the sample was ready for conducting the LISST 

test. 

3.5 LISST TEST 

The Interlayer Shear Strength (ISS) values of the double-layered samples were 

determined using a Louisiana Interlayer Shear Strength Tester (LISST). Test was 

conducted as per the proposed standard method of test for determining the interlayer 

shear strength of asphalt pavement layers described in NCHRP report 712 (Mohammad et 
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al., 2012) under AASHTO TP114 (AASHTO, 2017). The LISST device was fixed in a 

loading frame from Material Testing System (MTS). Laboratory-prepared double-layered 

samples were cured for 14 days and tested at 25°C. In order to ensure the sample’s shear 

failure occurs at the interlayer, the boundary of two layers was marked. The marked area 

was adjusted to locate right in the middle of the gap between moving and stationary jaws 

of the LISST equipment. Laboratory setup of the LISST device fixed inside a MTS 

loading frame, and a close-up view of the LISST device and the actuator are shown in 

Figures 3.14 and 3.15, respectively. As shown in Figures 3.14 and 3.15, the load was 

applied loading frame’s actuator in vertical direction to the moving jaw of the LISST at a 

rate of 0.1 inches per minute. The load and axial displacement readings were recorded 

using a data acquisition system.  Test was concluded and the procedure was stopped after 

the shear failure of the interlayer as shown Figure 3.16. After the failure, specimens were 

removed from the LISST device and were visually assessed to identify their failure 

modes using the interface failure classification introduced by Destrée and Visscher 

(2017). Details of the failure mode classification used in this study are described in 

Section 2.7.  

 

Figure 3.14 Test set-up of LISST test 
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Figure 3.15 Conducting LISST test 

 

Figure 3.16 Failed sample 

  



41 
 

 
 

CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1 TRIAL SAMPLES 

Trial samples were prepared to in order to achieve 7.0±0.5% air voids in 

cylindrical samples. After preparing the trial samples, the bulk specific gravity values of 

(Gmb) of the SGC-compacted were determined as per AASHTO T 166 (AASHTO, 2015) 

standard test method. Air voids were calculated based on the Gmb and Gmm values for 

mixes.  The volumetric parameters of the samples prepared using TL-HMA and BL-

HMA are presented in Table 4.1 and Table 4.2, respectively. Also, variation of the 

calculated air voids with compaction weight for TL-HMA and BL-HMA are graphically 

presented in Figure 4.1 and Figure 4.2, respectively. A linear trend line was added to each 

figure and the regression equation for each mix are also displayed on Figure 4.1 and 

Figure 4.2.  The trend line equations were used to determine the weight of the loose mix 

needed to obtain a SGC sample having 7.0 ± 0.5% air voids. The calculated weights of 

the loose TL-HMA and BL-HMA mixes to obtain 7.0 ± 0.5% air voids in compacted 

samples were found to be 2392.0 and 2401.0 g, respectively.  
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Table 4.1 Volumetric test results of trial samples compacted using TL-HMA mix 

Specimen 
ID 

A B C D E F G H 

Wt.* in 
Air (g) 

2419.6 2406.6 2393.8 2381.5 2368.7 2394.5 2394.6 2394.2 

Wt. in 
Water (g) 

1373.4 1361.0 1350.3 1336.7 1327.5 1351.7 1354.5 1350.8 

SSD** (g) 2420.9 2408.6 2395.8 2383.7 2371.1 2397.5 2398.5 2396.7 

Gmm 2.461 2.461 2.461 2.461 2.461 2.461 2.461 2.461 

Gmb 2.31 2.29 2.29 2.27 2.27 2.29 2.29 2.28 

AV***(%) 6.1 6.7 6.9 7.6 7.8 6.9 6.8 7.0 

Note: * Weight of the sample ** Saturated surface dry weight ***Air Voids 

Table 4. 2 Volumetric test results of trial samples compacted using BL-HMA mix 

Specimen 
ID 

A B C D E F G H 

Wt.* in 
Air (g) 

2407.0 2394.0 2381.9 2378.4 2382.4 2369.2 2369.3 2407.0 

Wt. in 
Water (g) 

1370.7 1361.0 1352.1 1353.4 1355.3 1341.3 1344.8 1370.7 

SSD** (g) 2410.9 2397.4 2387.5 2384.8 2389.3 2375.1 2377.1 2410.9 

Gmm 2.488 2.488 2.488 2.488 2.488 2.488 2.488 2.488 

Gmb 2.314 2.31 2.3 2.306 2.304 2.292 2.295 2.314 

AV***(%) 7.0 7.2 7.6 7.3 7.4 7.9 7.8 7.0 
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Figure 4.1 Measured air voids vs. dry weights for TL-HMA mix 

 

Figure 4.2 Measured air voids vs. dry weights for BL-HMA mix 

 

4.2 PERCENT RESIDUE OF TACK COAT EMULSIONS 

The percent residue of tack coat emulsions were determined according to the 

ASTM D6934-08 standard test methods (ASTM, 2016). The test procedure is described 
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in Section 3.4. Percent residue values determined CSS-1h, CRS-2P, and SS-h tack coats 

are summarized in Table 4.3. According to Table 4.3, percent residue of tack coats CSS-

1h, CRS-2P, and SS-h were found to be 60.8, 69.2, and 63.5, respectively. According to 

Table 4.3 standard deviations and coefficient of variations calculated for the percent 

residue values of each tack coats are less than 1% and 5%, respectively, indicating an 

acceptable test repeatability. From the percent residue values, the weight of tack coat 

emulsions needed to achieve 0.140, 0.281, 0.702 L/m2 residue application rates on a 

sample of 150 mm diameter were calculated for all tack coats (CSS-1h, CRS-2P, and SS-

h) and were presented in Table 3.4. 

Table 4.3 Test results for the percent residue of tack coats 

Set 
No. 

Description Tack coat type 
CRS-2P CSS-1h SS-h 

A Weight of Beaker + Rod (g) 310.2 310.3 405.8 
Wight of Beaker + Rod + Residue (g) 344.7 340.7 437.4 
Emulsion weight (g) 50.1 50.1 49.9 
Residue weight (g) 34.5 30.4 31.8 
Residue (%) 69.0 60.8 63.6 

B Weight of Beaker + 
 Rod (g) 

405.7 405.6 310.4 

Wight of Beaker + Rod + Residue (g) 440.4 436.0 342.1 
Emulsion weight (g) 50.1 49.9 50.0 
Residue weight (g) 34.7 30.4 31.7 
Residue (%) 69.4 60.8 63.4  
Average residue percentage (%) 69.2 60.8 63.5  
Standard deviation 0.282 0 0.141  
Coefficient of variation (%) 4.087 0 2.227 

 

4.3 LISST RESULTS 

A typical graph showing the variations of the measured interlayer shear stress vs. 

axial displacements for a LISST test conducted on a test sample is shown in Figure 4.3. 
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From Figure 4.3, it is evident that Interlayer shear stress gradually increased up to a peak 

value, namely Interlayer Shear Stress (ISS), and decreased after the peak point.  Three 

replicate samples of each type of interlayer, tack coat type, and application rate were 

produced and tested and the ISS values were averaged and reported.  

 

Figure 4.3 Typical LISST test results conducted on three replicate samples 

 Important statistical parameters, namely standard deviation and the Coefficient of 

Variation (COV) of the ISS values of three replicas were also reported for each sample 

type.  Other studies conducted on repeatability of the LISST test recommend a maximum 

COV of 15% for measured ISS values (Al-Qadi et al., 2012 and Mohammad et al., 2012). 

In order to increase the accuracy of the results in the current study, three samples were 

tested, if the COV of the measured ISS values was greater than 12% more samples were 
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tested. Interlayer shear strength values, a COV greater than 12% was considered 

maximum COV the current study. After ISS values were determined for all samples, tack 

coat type, application rate, ISS values, mean ISS, and COV and standard deviation of ISS 

were summarized and prepared for further analysis.  

4.4 EFFECT OF TACK COAT TYPE AND APPLICATION RATE ON MEASURED 

INTERLAYER SHEAR STRENGTH VALUES  

Effect of using 3 tack coat types, namely CRS-2P, CSS-1h, and SS-h applied at 

different rates, namely 0.140, 0.281, and 0.702 L/m2 on different pavement surfaces were 

evaluated in this study. Also, samples prepared without application of tack coats were 

tested.   

4.4.1 Samples Prepared with No Tack Coat 

Interlayer shear strength (ISS) values obtained by conducting the LISST test on 

specimens prepared using four different types of bottom layer surfaces, namely new 

HMA, aged and worn HMA, milled HMA, and grooved PCC, without applying any tack 

coat, are shown in Figure 4.4. As shown in Figure 4.4, the highest ISS value for no tack 

coat application was observed in samples prepared using aged and worn HMA bottom 

layer (989.6 kPa), followed by the samples prepared by using new HMA (856.0 kPa), 

milled HMA (819.43 kPa), and grooved PCC (105.7 kPa), respectively.  

Mohammad et al. (2012) reported that laboratory-prepared samples always 

overestimated the ISS values compared to field cores. Specially, when specimens were 

obtained from the projects where the overlay was constructed without applying a tack 

coat, no interlayer shear strength was observed, for all the types of bottom surfaces (new 
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HMA, existing HMA, and PCC) except for milled HMA bottom surface.  However, 

similar to the findings of the current study, Mohammad et al. (2012) reported that that the 

ISS values measured for laboratory-prepared specimens without applying any tack coat 

were, significantly higher than zero.  

 

Figure 4.4 Interlayer shear strength of samples prepared by using different bottom layers 
without any tack coat 

4.4.2 Samples Prepared with CRS-2P Tack Coat 

Figure 4.5 presents the ISS values measured for samples prepared using CRS-2P 

tack coat applied at 0, 0.140, 0.281, and 0.702 L/m2 on new HMA, aged and worn HMA, 

milled HMA, and grooved PCC surfaces. As shown in Figure 4.5, the ISS values 

measured for the samples having new HMA at their bottom layer and containing 0, 0.140, 
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0.281, and 0.702 L/m2 of CRS-2P tack coat in their interlayers, were found to be 856.0, 

628.0, 598.0, and 743.8 kPa, respectively. In other words, the ISS values of the samples 

having new HMA bottom layer and containing 0.140, 0.281, and 0.702 L/m2 of CRS-2P 

tack coat in their interlayers were found to decrease by 27%, 30%, and 13%, respectively, 

compared to that of samples prepared without any tack coat in their interlayer. Similarly, 

the ISS values of the samples having aged and worn HMA bottom layer and containing 

0.140, 0.281, and 0.702 L/m2 of CRS-2P tack coat in their interlayers were found to 

decrease by 38%, 35%, and 7% compared to that of samples prepared without any tack 

coat in their interlayer. Likewise, the ISS values of the samples having milled HMA 

bottom layer and containing 0.140, 0.281, and 0.702 L/m2 of CRS-2P tack coat in their 

interlayers were found to decrease by 6%, 11%, and 22% compared to that of samples 

prepared without any tack coat in their interlayer. All of these observations suggest that 

application of CRS-2P tack coat may result in a reduction in ISS values compared to that 

of samples containing no tack coat having HMA bottom layer with different surface 

textures. This overestimation of the ISS values in laboratory-prepared samples containing 

no tack coat compared to those compacted in the field was also reported by Mohammad 

et al. (2010). Although the application of tack coat was found to reduce the ISS values, 

different trends in ISS variations were observed for samples having new HMA, aged and 

worn HMA, and milled HMA as their bottom layers. In samples having new HMA and 

aged and worn HMA bottom layers, application of 0.140 and 0.281 L/m2 of CRS-2P tack 

coat resulted in a reduction in ISS values. While the ISS values showed an improvement 

with further increasing the application rate (0.702 L/m2). This was attributed to the fact 

that the binding agent was absorbed by the surface at low application rats and emulsifier 
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and/or other ingredients of the tack coat interacted with interlayer, resulting a lubricating 

effect. However further increasing the tack coat application rate made more bonding 

agent available for adhesion even after absorption of a part of it by the sample surfaces.  

A similar observation was also reported by Amelian et al. (2017). It was found that in 

samples with similar surface textures, a higher tack coat application rate results in an 

increased ISS value. Also, it is evident that for samples having aged and worn HMA as 

their bottom layers (on polished textures) the measured ISS values were more sensitive to 

increase of CRS-2P tack coat application rate than that for samples having new HMA 

bottom layers. However, the ISS values were found to show a steady trend of reduction 

with increasing the tack coat application rate when samples with milled HMA bottom 

layer were tested. This is an indication of the effect of the surface type on the ISS values 

measured for HMA samples. Mohammad et al. (2012) reported that, when the surface 

gets filled with any tack coat, surface texture or roughness has less contribution to ISS 

value.  

In contrary, application of CRS-2P on the samples having grooved PCC bottom 

layers was found to effectively increase the ISS values compared to that of the samples 

prepared without any tack coat in their interlayer. From Figure 4.5 it is evident that, the 

ISS values of the samples having grooved PCC bottom layers and containing 0.140, 

0.281, and 0.702 L/m2 of CRS-2P tack coat in their interlayers were found to increase by 

more than 3 times compared to that of samples prepared without any tack coat in their 

interlayer. Also, as shown in Figure 4.5, ISS values were not significantly affected by 

increasing the residual application rate of CRS-2P tack coat on specimens prepared with 

using grooved PCC bottom layers. 
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Figure 4.5 Interlayer shear strength values measured for samples having different bottom 
layers containing CRS-2P tack coat with different application rates 

4.4.3 Samples Prepared with CSS-1h Tack Coat  

Figure 4.6 presents the ISS values measured for samples prepared using CSS-1h 

tack coat applied at 0, 0.140, 0.281, and 0.702 L/m2 on new HMA, aged and worn HMA, 

milled HMA, and grooved PCC surfaces. As shown in Figure 4.6, the ISS values 

measured for the samples having new HMA at their bottom layer and containing 0, 0.140, 

0.281, and 0.702 L/m2 of CSS-1h tack coat in their interlayers, were found to be 856.0, 

865.6, 810.3, and 709.2 kPa, respectively. In other words, the ISS values of the samples 

having new HMA bottom layer and containing 0.140, 0.281, and 0.702 L/m2 of CSS-1h 

tack coat in their interlayers were found to increase by 1% and decrease by 5%, and 17%, 

respectively, compared to that of samples prepared without any tack coat in their 

interlayer. Similarly, the ISS values of the samples having aged and worn HMA bottom 

layer and containing 0.140, 0.281, and 0.702 L/m2 of CSS-1h tack coat in their interlayers 
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were found to increase by 3% and decrease by 8%, and 47%, respectively, compared to 

that of samples prepared without any tack coat in their interlayer. Likewise, the ISS 

values of the samples having milled HMA bottom layer and containing 0.140, 0.281, and 

0.702 L/m2 of CSS-1h tack coat in their interlayers were found to increase by 9%, and 

6%, and decrease by 9%, respectively, compared to that of samples prepared without any 

tack coat in their interlayer. All of these observations suggest that application of CSS-1h 

tack coat at low and intermediate application rates (0.140 and 0.281 L/m2) may result in 

an improvement in ISS values compared to that of samples containing no tack coat 

having HMA bottom layer with different surface textures. However, the ISS values 

showed a decline with further increasing the application rate to a higher value (0.702 

L/m2). This was attributed to the fact that the CSS-1h was a cationic tack coat with a stiff 

base binder which has a less tendency to be absorbed by the surface. Therefore, the base 

binder can be present in interlayer and contribute to adhesion even at low and 

intermediate application rates.  However, further increasing the application rate resulted 

in oversaturation of the interlayer with binder and emulsifier which resulted in lubricating 

effect and a reduced ISS value. This finding is consistent with those reported by 

Mohammad et al. (2012). Also, it is evident that for samples having aged and worn HMA 

as their bottom layers (on polished textures) the measured ISS values were more sensitive 

to excessive application of CSS-1h tack coat than that for samples having new HMA and 

milled HMA as their bottom layers (application of 0.702 L/m2 tack coat resulted in a 47% 

reduction in ISS value compared to that of samples without any tack coat).  

Unlike samples having HMA bottom layers, application of CSS-1h tack coat on 

the samples having grooved PCC bottom layers was found to effectively increase the ISS 
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values compared to that of the samples prepared without any tack coat in their interlayer. 

From Figure 4.6 it is evident that, the ISS values of the samples having grooved PCC 

bottom layers and containing 0.140, 0.281, and 0.702 L/m2 of CSS-1h tack coat in their 

interlayers were found to increase by more than 3.4, 4.6 and 3.8 times compared to that of 

samples prepared without any tack coat in their interlayer. Also, as shown in Figure 4.6, 

the highest ISS value was measured (488.4 kPa) when the CSS-1h tack coat was applied 

on grooved PCC bottom sample at an application rate of 0.281 L/m2.  

 

Figure 4. 6 Interlayer shear strength values measured for samples having different bottom 
layers containing CSS-1h tack coat with different application rates 
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Figure 4.7 presents the ISS values measured for samples prepared using SS-h tack 

coat applied at 0, 0.140, 0.281, and 0.702 L/m2 on new HMA, aged and worn HMA, 

milled HMA, and grooved PCC surfaces. As shown in Figure 4.7, the ISS values 

measured for the samples having new HMA at their bottom layer and containing 0, 0.140, 
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0.281, and 0.702 L/m2 of SS-h tack coat in their interlayers, were found to be 856.0, 

688.4, 808.9, and 768.6 kPa, respectively. In other words, the ISS values of the samples 

having new HMA bottom layer and containing 0.140, 0.281, and 0.702 L/m2 of SS-h tack 

coat in their interlayers were found to decrease by 20%, 5%, and 17%, respectively, 

compared to that of samples prepared without any tack coat in their interlayer. Similarly, 

the ISS values of the samples having aged and worn HMA bottom layer and containing 

0.140, 0.281, and 0.702 L/m2 of SS-h tack coat in their interlayers were found to decrease 

by 18%, 3%, and 3%, respectively, compared to that of samples prepared without any 

tack coat in their interlayer. However, the ISS values of the samples having milled HMA 

bottom layer and containing 0.140, 0.281, and 0.702 L/m2 of SS-h tack coat in their 

interlayers were found to increase by 7%, 6%, and 8%, respectively, compared to that of 

samples milled HMA samples prepared without any tack coat in their interlayer. All of 

these observations suggest that application of SS-h tack coat on new HMA and aged and 

worn HMA surfaces at intermediate and high application rates (0.281 and 0.702 L/m2) 

may result in a better ISS values compared to those of the samples prepared by applying 

tack coats with low application rate (0.140 L/m2). Also, it was found that the application 

of the SS-h tack coat on milled HMA all application rates improved the interlayer shear 

strength compared to samples prepared without any tack coat.  

Unlike samples having HMA bottom layers, application of SS-h tack coat on the 

samples having grooved PCC bottom layers was found to effectively increase the ISS 

values compared to that of the samples prepared without any tack coat in their interlayer. 

From Figure 4.7 it is evident that, the ISS values of the samples having grooved PCC 

bottom layers and containing 0.140, 0.281, and 0.702 L/m2 of SS-h tack coat in their 
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interlayers were found to increase by more than 5.6, 5.4 and 5.5 times compared to that of 

samples prepared without any tack coat in their interlayer. Also, as shown in Figure 4.7, 

the highest ISS value was measured (599.4 kPa) when the SS-h tack coat was applied on 

grooved PCC bottom sample at an application rate of 0.140 L/m2. 

 

Figure 4.7 Interlayer shear strength values measured for samples having different bottom 
layers containing SS-h tack coat with different application rates 
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coat showed the best general performance on all the bottom layer types. Also, on all 

HMA bottom layer types, CSS-1h showed the best performance at the lowest application 

rate (0.140 L/m2). On specimens prepared with using PCC bottom layers, tack coat SS-h 

worked better compared to other tack coats. Highest ISS between PCC and HMA was 

observed when SS-h tack coat was used followed by CSS-1h, and CRS-2P. In general, it 

was observed that CRS-2P gives higher ISS values in higher application rates (0.702 

856.0

989.6

819.4

105.7

688.4

808.9

768.6

816.2

964.2 962.1

877.1 871.1
881.2

599.4
578.7

585.4

0

200

400

600

800

1000

1200

0.000 0.140 0.281 0.702 0.000 0.140 0.281 0.702 0.000 0.140 0.281 0.702 0.000 0.140 0.281 0.702

New HMA Aged and Worn HMA Milled HMA Grooved PCC

In
te

rla
ye

r 
Sh

ea
r 

St
re

ng
th

 (
kN

/m
²)

Application Rate (L/m²)  
Surface Type

No Tack Coat

SS-h Tack Coat



55 
 

 
 

L/m2) while CSS-1h provides a higher ISS value in a lower application rate (0.140 L/m2). 

As a result, it is possible to conclude that CSS-1h tack coat can be successfully used on 

all types of the surfaces.  

Among the tested tack coats both CRS-2P and CSS-1h are cationic tack coats. 

Cationic asphalt emulsions contain positive charges and are more attracted to negatively 

charged surfaces. SS-h is an anionic emulsion which is more attracted to positively 

charged surfaces. It was interesting to see that SS-h tack coat showed higher performance 

on grooved PCC surfaces. Also, both cationic emulsions showed nearly similar 

performances on grooved PCC surface. This was attributed to polar attraction between 

SS-h tack coat emulsion and the surface of the PCC. 

4.5 EFFECT OF BOTTOM LAYER SURFACE TYPE ON MEASURED 

INTERLAYER SHEAR STRENGTH VALUES 

Depending on the type and the texture of the bottom layer sample, the ISS 

between two layers can vary. This is mainly due to friction and interlocking effects 

present in the interlayer and the tack coat absorption.  In this section, a discussion based 

on the effect of the bottom layer type on the ISS values measured for different tack coats 

was presented.  

4.5.1 Samples Prepared using New HMA Bottom Layer 

Figure 4.8 presents the ISS values measured for samples prepared using new 

HMA bottom layer containing no tack coat, CRS-2P, CSS-1h, and SS-h tack coats 

applied at 0.140, 0.281, and 0.702 L/m2. From Figure 4.8 it is evident that, the specimens 

prepared with using new HMA bottom layer with any tack coat exhibited generally a 
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lower ISS value compared to that of the samples prepared without applying any tack coat. 

As shown in Figure 4.8, based on ISS values, on new HMA surfaces CRS-2P a higher 

ISS value (743.8 kPa) in high application rate (0.702 L/m2) while application of CSS-1h 

in low application rate (0.140 L/m2) resulted in a high ISS value (856.6 kPa). Also, 

application of SS-h in a moderate application rate (0.281 L/m2) resulted in high ISS value 

(808.9 kPa). Figure 4.8 shows that the highest ISS values in both types of the specimens 

with CRS-2P and SS-h tack coats were not higher than that of specimens prepared 

without applying any tack coat. Yet, for specimens with CSS-1h tack coat samples 

prepared using the lowest application rate (0.140 L/m2) exhibited a higher ISS value than 

that of specimens prepared without applying any tack coat. Hence, for an asphalt 

pavement to be constructed on new HMA layer, CSS-1h applied at a rate of 0.140 L/m2 

may be recommended.  

According to Figure 4.8, if CRS-2P and SS-h tack coats are to be used, their 

application at high (0.702 L/m2) and medium (0.281 L/m2) rates is recommended, 

respectively.  
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Figure 4.8 Interlayer shear strength values measured for samples having new HMA 
bottom layers containing CRS-2P, CSS-1h, and SS-h tack coats with different application 

rates 
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found to be the most effective tack coat in improving the ISS values compared to the 

specimens prepared without any tack coat. Hence CSS-1h tack coat applied at a rate of 

0.140 L/m2 may be recommended to be used with aged and worn HMA pavement 

surfaces. Comparing Figure 4.8 and Figure 4.9 reveals that, application of tack coat was 

more effective in improving the ISS values in specimens prepared using the aged and 

worn HMA bottom layer than that of the specimens prepared using new HMA bottom 

layer samples. This was attributed to the fact that aged and worn HMA bottom layers 

provide more surface available to bonding agent and than that of the new HMA bottom 

layer, which contributes to a higher ISS value. Similar finding was also reported by 

Mohammad et al. (2010), indicating that average ISS values for specimens prepared with 

aged and worn HMA bottom layers were higher than those measured for the specimens 

prepared using the new HMA bottom layers. 
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Figure 4.9 Interlayer shear strength values measured for samples having aged and worn 
HMA bottom layers containing CRS-2P, CSS-1h, and SS-h tack coats with different 

application rates 
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applied to milled HMA at low application rate (0.140 L/m2) effectively improved the 

interlayer shear strength by 9% and 7%, respectively, compared to that of samples 

without any tack coat. Also, it was observed that different application rates of SS-h tack 

coat did not have a significant effect on ISS values. Hence, one may recommend using 

CSS-1h and SS-h tack coats at 0.140 L/m2 application rate.  

Also, Figure 4.10 shows that the ISS values, in general, decreased with an 

increase in the application rate for samples containing CRS-2P and CSS-1h tack coats. 

Mainly, when the interlayer becomes saturated and excessive amount of tack coat is 

present, tack coat acts as a lubricant, resulting in a reduction in the ISS value. 

Mohammad et al. (2012) reported similar findings.  

 

Figure 4.10 Interlayer shear strength values measured for samples having milled HMA 
bottom layers containing CRS-2P, CSS-1h, and SS-h tack coats with different application 

rates 
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4.5.4 Samples Prepared using Grooved PCC Bottom Layer 

Figure 4.11 presents the ISS values measured for samples prepared using grooved 

PCC bottom layer containing no tack coat, and CRS-2P, CSS-1h, and SS-h tack coats 

applied at 0.140, 0.281, and 0.702 L/m2. According to Figure 4.11, application of all three 

types of tack coats, namely CRS-2P, CSS-1h, and SS-h at any application rate (0.140, 

0.281, and 0.702 L/m2) on grooved PCC bottom layer was found to significantly improve 

the interlayer shear strength of the samples compared to that of the samples without any 

tack coat. According to Figure 4.11 application of CRS-2P, CSS-1h, and SS-h tack coats 

applied at all three rates for on specimens prepared using grooved PCC bottom layers 

increased the average ISS values approximately by approximately, 3.4, 3.9, and 5.6 

times, respectively, compared to that of the specimens prepared without applying any 

tack coat. As shown in Figure 4.11, the measured ISS values were not significantly 

affected by the application rate of the CRS-2P and SS-h tack coats. Also, the highest ISS 

values for samples prepared by applying CRS-2P and SS-h tack coats, were measured 

when they were applied at low application rate (0.140 L/m2). Similar finding was 

reported by Al-Quadi (2008), indicating that the optimum tack coat application rate for 

samples prepared using PCC bottom layers was found to be 0.140 L/m2. Also, from 

Figure 4.11 it was observed that, use of CSS-1h tack coat at application rates of 0.140, 

0.281, and 0.702 L/m2 resulted in an increase in measured ISS values by 3.4, 4.6, and 3.7 

times, respectively, compared to that of samples prepared without any tack coat. This 

indicates that, the measured ISS values are sensitive to application rate when CSS-1h was 

used and the maximum ISS value was observed at an application rate of 0.281 L/m2.   
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Depending on the preparation method of grooved PCC bottom layer samples in 

the laboratory, the surface texture is to some extent different than those of the filed cores. 

Considering the fact that the ISS value of the samples prepared using grooved PCC 

bottom layers without any tack coat are significantly lower than those measured for 

asphalt pavements, application of tack coat on PCC layer is of crucial importance to 

pavement durability and performance.  

 

Figure 4.11 Interlayer shear strength values measured for samples having grooved PCC 
bottom layers containing CRS-2P, CSS-1h, and SS-h tack coats with different application 

rates 
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rate of 0.140 L/m2 was found to result in the best improvement in ISS values.  For 

specimens prepared using milled HMA bottom layers based on the ISS values, both CSS-

1h and SS-h tack coats applied at a rate of 0.140 L/m2 were found to be the most effective 

tack coats in improving the ISS values. All three types of tack coats, namely CRS-2P, 

CSS-1h, and SS-h used on grooved PCC bottom layers at 0.140, 0.281, and 0.140 L/m2 

application rates, respectively, were found to be effective in improving the ISS values. 

Among the evaluated tack coat types for specimens with grooved PCC bottom layers, SS-

h was found to be the most effective one in improving the ISS values.  

4.6 OPTIMUM TACK COAT RESIDUAL APPLICATION RATE 

Tack coats are asphaltic materials applied in larger scales on road surfaces. 

Hence, optimum residual application rate of tack coats should be selected based on the 

lowest application rate which yields the highest ISS values to be economically efficient. 

It should be noted that, in the cases which the difference between two ISS values at 

different application rates was not statistically significant the lower application rate was 

selected as the optimum value.  

A summary of optimum residual application rates for all the tested tack coats on 

all the types of bottom layers is shown in Table 4.4. According to Table 4.4, in general it 

is possible to conclude that CSS-1h is the best type of tack coat to be used on any type of 

bottom surface, as it showed the highest ISS values in the lowest application rate (0.140 

L/m2) for specimens with all types of HMA bottom layers. Also, it showed the highest 

ISS values for specimens prepared using grooved PCC bottom layers at medium 

application rate (0.281 L/m2). Table 4.4 showed that optimum tack coat application rate 

on milled HMA bottom layer is 0.140 L/m2 for all of the tested tack coats. In other words, 
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the surface texture has the dominating effect on the interlayer shear strength. Al-Qadi et 

al. (2012) also, reported that on trafficked and non-trafficked aged HMA bottom layer the 

optimum residual application rate for the tested tack coats is 0.04 L/m2 (low application 

rate).  Also, from Table 4.4 it is evident that the optimum application rates of CSS-1h and 

SS-h tack coats used on the specimens prepared using new HMA, and aged and worn 

HMA bottom layers, were determined as 0.140 and 0.281 L/m2, respectively. Similar 

findings were reported by Mohammad et al. 2012. 

Table 4.4 Optimum tack coat residual application rates used on different bottom layers 

No. Tack Coat 
Type 

New HMA 
bottom layer 
(L/m2) 

Aged and 
worn HMA 
bottom layer 
(L/m2) 

Milled HMA 
bottom layer 
(L/m2) 

Grooved PCC 
bottom layer 
(L/m2) 

1 CRS-2P 0.702 0.702 0.140 0.140 
2 CSS-1h 0.140 0.140 0.140 0.281 
3 SS-h 0.281 0.281 0.140 0.140 

 

4.7 EFFECT OF MOISTURE ON INTERLAYER SHEAR STRENGTH 

As described in Chapter 3 the effect of moisture due to harsh weather conditions 

of the northcentral states was simulated for samples prepared with optimum residual 

application rates and tested using LISST equipment. The ISS values obtained for 

moisture-conditioned samples were compared with those of unconditioned samples 

prepared at optimum application rates. Comparison summary of the ISS values measured 

for conditioned and unconditioned samples prepared at optimum application rates are 

shown in Table 4.5 and Figure 4.12. Interestingly, it was observed that most of the 

moisture-conditioned samples prepared with using HMA bottom layers exhibited higher 

ISS values compared to those tested in dry condition. However, the difference between 
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the ISS values measured for the conditioned and unconditioned samples were not found 

to be significant. Since the samples were tested after vacuum saturation, increase in ISS 

value as a result of moisture conditioning was attributed to the matric suction effect and 

therefore, better interlocking of two asphalt layers. In order to mitigate this issue, it is 

recommended to dry the samples before testing.  This observation recommends that 

moisture did not have a detrimental effect on the interlayer shear strength of the samples 

prepared using HMA bottom layers with optimum tack coat application rates.  Among all 

of the tack coats tested, SS-h tack coat was found to be most effectively capable of 

increasing the ISS values after moisture conditioning.  
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Table 4.5 Moisture conditioned and unconditioned ISS test results comparison  

Bottom 
Layer 
Sample 

Tack 
Coat 
Type 

Optimum 
Residual 
Application 
Rate 

Dry-
Conditioned 
ISS (kPa) 

Moisture-
Conditioned ISS 
(kPa) 

New 
HMA 

No Tack 
Coat 

0.000 856.0 882.7 

CRS-2P 0.702 743.8 571.4 

CSS-1h 0.140 865.6 870.0 

SS-h 0.281 808.9 1018.8 

Aged and 
Worn 
HMA 

No Tack 
Coat 

0.000 989.6 941.5 

CRS-2P 0.702 918.4 954.8 

CSS-1h 0.140 1021.7 1133.1 

SS-h 0.281 964.2 1140.3 

Milled 
HMA 

No Tack 
Coat 

0.000 819.4 910.5 

CRS-2P 0.140 769.5 928.5 

CSS-1h 0.140 892.5 981.5 

SS-h 0.140 877.1 997.0 

Grooved 
PCC 

No Tack 
Coat 

0.000 105.7 77.4 

CRS-2P 0.140 362.1 355.3 

CSS-1h 0.281 488.4 425.4 

SS-h 0.140 599.4 450.6 
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Figure 4.12 ISS test results comparison of moisture conditioned and unconditioned 
samples 

From Figure 4.12 it was observed that, the moisture-conditioned specimens 

prepared at optimum residual tack coat application rate using grooved PCC bottom layers 

exhibited lower ISS values compared to those of unconditioned samples. Similar results 

were reported by Al-Qadi et al. (2008). Also, from Figure 4.12 it was observed that, the 

ISS values of the moisture-conditioned samples with grooved PCC bottom layers 

containing CRS-2P, CSS-1h, and SS-h tack coats applied at their optimum application 

rates were 4.6, 5.5, and 5.8 times higher than that of the samples prepared without any 

tack coat, respectively. This shows that application of tack coat on grooved PCC surfaces 

before construction of an asphalt overlay is of crucial importance to durability and 

longevity of the pavement structure with and without moisture conditioning. 
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 CHAPTER FIVE: CONCLUSION  

5.1 CONCLUSIONS 

The effect of three types of commonly used tack coats in South Dakota, their 

application rate, and existing pavement’s surface type and texture on ISS values of 

laboratory-prepared double-layered specimens was evaluated. Also, optimum tack coat 

application rates for different tack coat types and surface textures were determined. 

Furthermore, the effect of moisture and freeze-thaw cycles on the ISS values was 

investigated. The experimental plan included finding the percent residue of the evaluated 

tack coats, conducting the LISST test on samples prepared using 4 types of bottom layers 

in 4 tack coat application rates, in dry and moisture-conditioned states.  Effect of tack 

coat type and application rate on measured ISS values were evaluated for CRS-2P, CSS-

1h, and SS-h tack coats. Each of these tack coats were applied at 0.140, 0.281, and 0.702 

L/m2 application rates. Also, samples prepared without applying any tack coat were 

tested. Furthermore, effect of surface type was evaluated by preparing samples having 

bottom layer textures namely, new HMA, aged and worn HMA, milled HMA, and 

grooved PCC. The high performer type of tack coat for each type of bottom layer was 

identified after conducting the LISST tests. In addition, the optimum application rate of 

each type of tack coat on different types of bottom layers were also identified. The effect 

of moisture conditioning on ISS values for samples prepared with optimum tack coat 

application rate were also evaluated. Based on the results, discussions, and observations 

made in this study conclusions can be drawn as follows. 

1) In general, application of CRS-2P tack coat may result in a reduction in ISS 

values compared to that of samples containing no tack coat having HMA bottom 
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layer with different surface textures. Yet, for PCC bottom layers CRS-2P could 

increase the ISS value significantly at all application rates.  

2) All of the observations suggested that application of CSS-1h tack coat at low and 

intermediate application rates (0.140 and 0.281 L/m2) may result in an 

improvement in ISS values compared to that of samples containing no tack coat 

having HMA bottom layer with different surface textures. The highest ISS value 

was measured (488.4 kPa) when the CSS-1h tack coat was applied on grooved 

PCC bottom sample at medium application rate of 0.281 L/m2.  

3) Application of SS-h tack coat on new HMA and aged and worn HMA surfaces at 

intermediate and high application rates (0.281 and 0.702 L/m2) showed higher ISS 

values compared to those of the samples prepared by applying tack coats with low 

application rate (0.140 L/m2). For grooved PCC bottom layers lowest application 

rate of SS-h resulted in the highest ISS value. For milled HMA change of 

application rate did not have a significant effect on measured ISS values. 

4) Among all tack coats evaluated in this study, CSS-1h tack coat showed the best 

overall performance on all the bottom layer types. Also, on all HMA bottom layer 

types, CSS-1h showed the best performance at the lowest application rate (0.140 

L/m2). On specimens prepared by using PCC bottom layers, SS-h tack coat 

worked better compared to other tack coats. The highest ISS between PCC and 

HMA was observed when SS-h tack coat was used followed by CSS-1h, and 

CRS-2P. In general, it was observed that CRS-2P resulted in higher ISS values 

when applied at a high rate (0.702 L/m2). However, CSS-1h provided a high ISS 

value at a lower application rate (0.140 L/m2). As a result, it is possible to 
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conclude that CSS-1h tack coat can be successfully used on all types of the 

surfaces. 

5) It is possible to conclude that CSS-1h is the best type of tack coat to be used on 

any type of bottom surface, as it showed the highest ISS values at the lowest 

application rate (0.140 L/m2) for specimens with all types of HMA. Also, it 

showed high ISS values on grooved PCC bottom layers at medium application 

rate (0.281 L/m2). Furthermore, the optimum application rates of CSS-1h and SS-

h tack coats used on the specimens prepared using new HMA, and aged and worn 

HMA bottom layers, were determined as 0.140 and 0.281 L/m2, respectively. 

6) For both new HMA and aged and worn HMA bottom layers, CSS-1h tack coat 

applied at a rate of 0.140 L/m2 worked better than other tack coats. For milled 

HMA bottom layers CSS-1h and SS-h tack coats applied at a rate of 0.140 L/m2 

are more effective option compared to other tested materials. For grooved PCC 

bottom layers all the 3 types of evaluated tack coats (CRS-2P, CSS-1h, and SS-h) 

are effective options when used in their optimum application rates. 

7) Moisture conditioning was not found to have a detrimental effect on the interlayer 

shear strength of the samples prepared using all types of HMA bottom layers with 

optimum tack coat application rates.  Among all of the tack coats tested, SS-h tack 

coat was found to be most effectively capable of increasing the ISS values after 

moisture conditioning. Moisture conditioning showed a negative impact on the 

ISS values measured for the samples prepared with grooved PCC bottom layers.  
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5.2 RECOMMENDATIONS  

The following recommendations were made based on the limitations and the 

scope of the present study. 

1) Since the moisture conditioned samples were tested after vacuum saturation, 

increase in ISS value as a result of moisture conditioning was attributed effect of 

suction resulting in a better interlocking of top and bottom layers.  In order to 

mitigate this issue, it is recommended to dry the samples before testing. 

2) The LISST was conducted only in room temperature. Therefore, it is 

recommended to conduct the LISST at different temperatures to evaluate the 

effect of temperature on ISS values. 

3) The LISST tests were conducted on laboratory-prepared samples. It is 

recommended to conduct additional LISST tests on field-cores prepared using the 

same tack coat types tested in this study. 
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