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ABSTRACT 

DEVELOPMENT OF VEGETATION MAPPING WITH DEEP CONVOLUTIONAL 

NEURAL NETWORK 

SAE-HAN SUH 

2018 

The Precision Agriculture plays a crucial part in the agricultural industry about improving 

the decision-making process. It aims to optimally allocate the resources to maintain the 

sustainable productivity of farmland and reduce the use of chemical compounds. [17] 

However, the on-site inspection of vegetations often falls to researchers’ trained eye and 

experience, when it deals with the identification of the non-crop vegetations. Deep 

Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual 

classification. Although CNN outperforms the other traditional classifiers, such as Support 

Vector Machine, it is still in question whether CNN can be deployable in an industrial 

environment. In this paper, I conducted a study on the feasibility of CNN for Vegetation 

Mapping on lawn inspection for weeds. I want to study the possibility of expanding the 

concept to the on-site, near real-time, crop site inspections, by evaluating the generated 

results. 



１ 

1. INTRODUCTION

Precision Agriculture is expected to provide farmers with a decision support system to 

improve productivity at a reduced manual effort. With the increased occurrence of the food 

crisis, the combination of deep learning with this domain has gained much attention. 

Identification or classification of plants is still a challenging task because of the lack of 

appropriate datasets and the identification difficulty from early stage figure of plants. 

Therefore, the current trend is favorable to CNN which does not need manually-crafted 

features. It is likely to apply the findings from a specific CNN model to the other datasets, 

rendering the former more robust. [7] 

The recent successes of the Convolutional Neural Networks in object detection have 

been revolutionizing the Computer Vision; the success of the AlexNet at the ImageNet 

Large Scale Visual Recognition Competition 2012 [19] proved that the neural network 

could outperform any classifiers in this field. [7] Though the recent advances in the 

Computer Vision are promising, we cannot deny the fact that the current, state-of-the-art 

models become increasingly complex and time-consuming. In various industrial & 

commercial scenarios, engineers and developers often face a demand for a system suited 

for a tighter time/spatial budget than the research environment. [26] 

Current CNN-based model is generally trained with the vast dataset called ImageNet. 

At least, each image is annotated with one of its 1000+ classes. [10] In the Precision 

Agriculture, however, input images are often unannotated. Data source also varies 

significantly from the satellite imagery to the one from an onboard camera fitted in an 

Unmanned Aerial Vehicle (UAV) or any human-crewed vehicle. The overall resolution, 
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number of imagery and the features per pixel are dependent upon the capability of the 

onboard camera. One must consider these variables if he/she wishes to apply a CNN-based 

classification method to one of the Precision Agriculture fields. [11] 

The current state-of-the-art CNN models are usually trained with computing devices fit 

for intensive computations. The first CNN that won the ImageNet Large Scale Visual 

Recognition Challenge 2012, AlexNet, is written with Nvidia®  CUDA to run with 

Graphical Processing Unit; without such a device, the training of a CNN is practically 

infeasible. Since the embedded computing environment places tight restrictions on its 

system resource and power management, I assume that many of these state-of-the-art 

networks or models could fail to be trained or fitted in such an environment. Given a set of 

different resolution factors and an embedded computing environment, I study the 

feasibility of applying the CNN to the vegetation classification based on these observations. 

 

I first study the effect of the layers on the performance of a classifier. The deep learning 

shows that it is useful in detecting and classifying the objects in a given dataset, but such a 

model would require considerable computational power. Hence, I would like to find 

empirically a number of layers in a network which would not impair the classifier with a 

reasonable classification result as the current state-of-the-art model. Second, I study the 

feasibility of classification on the images with the reduced resolution and the upsampled 

images. I will try to find a minimum image resolution that could guarantee the right 

classification with an acceptable score. 
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2. MATERIAL AND METHODS 
 

2.1 Convolutional Neural Network 
 

Convolutional Neural Network, CNN, is the current state-of-the-art object detection 

and the imagery classification system. The traditional approach to the imagery 

classification is divided into two steps. First, it extracts a set of features, carefully crafted 

by human experts. Second, by using the extracted features, the experts choose to use one 

of the classification systems. The first step is difficult because the accuracy of the 

classifier depends on the design of the feature extractor. Thus, a large amount of pattern 

recognition in image classification is only used to describe and compare different sets of 

features for a task. [21] However, the need for an appropriate feature extractor is that the 

learning techniques used by the classifier have been limited to low dimensional space 

with easily separable classes. [21] [22] With the availability of a large volume datasets 

and its differing characteristics, the classifier and learning techniques cannot rely on the 

‘learned’ feature vectors, but on the dataset itself. 

 

 

Figure 1. Illustration of a traditional system design for pattern 

 

The biological researches in the 1950s initially inspire CNN. The CNN is modeled 

after the organization of the visual cortex of animal and tries to ‘learn’ features by 

adjusting the hyperparameters in the network during its training. Its independence from 



４ 

 

the manually crafted features gives a major advantage to the CNN over the other 

classification systems, such as Support Vector Machine (SVM), Bayesian Classifier, and 

so forth. The training and use of CNN have been primarily enabled by the availability of 

modern hardware with relatively low-cost, the corresponding hardware application 

programming interface (API) (e.g., Nvidia®  CUDA) and libraries. (e.g., Berkeley 

Artificial Intelligence Research Lab’s Caffe, Google® TensorFlow) Before the AlexNet’s 

superior performance (15.3 % error rate vs. (second place) 26.2 % error rate) [20] shown 

at ImageNet Large Scale Visual Recognition Competition 2012, CNN has had many 

applications in the image and video recognition, natural language processing, and so on.  

In the 1990s, AT&T's neural research group developed a weaving neural network for 

check reading, and several Optical Character Recognition (OCR) and handwriting 

recognition systems designed by Microsoft were based on the CNN itself. [23] 
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Figure 2. Diagram of a single layer, Perceptron 

Note that the characteristic function can be any activation function, such as Sigmoid or 

ReLU (Rectified Linear Unit), and A can be a set of elements satisfying a specific condition. 

 

Three architectural components are integrated into the CNN: local receptive fields, 

shared weights and spatial/temporal sub-sampling. [21] These are the key components to 

ensure the learning of a neural network as well as some degree of shift, scale, and distortion 

invariance of the network. The authors of [21] assert that the sequential use of local 

receptive field and subsampling is inspired by the Perceptron. In 1957, Frank Rosenblatt 

constructed Perceptron to simulate the neuronal response to a random input. The 

conception was nearly simultaneous to work by Hubel and Wiesel in the 1960s to 

determine how the mammalian visual cortex works. The authors of [23] assert that CNN is 

specifically designed to capture three properties of the visual cortex: 
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1. The visual cortex is arranged in a spatial map; it possesses a two-dimensional 

structure, mirroring the structure of the image in the retina. 

2. Visual cortex incorporates many ‘simple’ cells. A single cell’s main activity 

can be characterized by a linear function of the image in a small, spatially 

localized receptive field. 

3. Visual cortex also incorporates many ‘complex’ cells.  A complex cell’s 

activity is nearly identical to the simple one, but there’s one significant 

difference; their activity is invariant to the position of the feature. [23] 

 

These particularities are the key features the CNN aims to capture for emulating the 

visual cortex. Although the CNN differs from the biological neural network, one cannot 

deny that it has played a crucial role in the history of deep learning. The CNN is a 

successful application of insights gained through brain research on machine-learning 

applications. [23] Here’s the simplified illustration of the CNN: 

 

Figure 3. Illustration of a Convolutional Neural Network Design 

 

VGG-16 (Visual Geometry Group) is one of the well-known CNN architectures, 

due to its simplicity in its construction. The network has 16 convolutional layers, in total, 
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and is divided into five blocks. Unlike the AlexNet (the winner of the ILSVRC 2012), it 

uses a series of convolutional layers with the small receptive field (3 × 3), instead of a 

single convolutional layer with the bigger field (7 × 7). The use of multiple non-linear 

convolutional layers in each block enables the network to learn discriminative features 

more easily. [19] As a result, the resulting architecture attains less number of parameters, 

which renders it easy to optimize than its predecessors (e.g., AlexNet) 

 

 

Figure 4. Illustration of a Network-In-Network (NIN) between two convolutional layers 

(blue cubes) 

 

Note that the cube-like structure (green) means the receptive field. Between the receptive 

field and the next convolutional layer, there exists a ‘micro’ network (multi-layer 

perceptron) instead of a linear layer 
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In the history of CNN, VGG network architecture (especially VGG-16 and VGG-

19) is also one of the first networks which incorporated some ideas of the Network-In-

Network (NIN) structure into the design of the convolutional neural network. [19] [25] The 

authors of [25] argued that the neural network suffers from its low generalization capability 

since the shallow ‘softmax’ has the poor level for abstraction and the fully-connected layer 

on top of the network architecture tends to show overfitting. Moreover, the fully-connected 

layers are heavily dependent upon the regularization. Taken this observation into 

consideration, the authors of the VGG network architecture incorporated additional 

convolutional layers. This increases the non-linearity of the resulting network’s decision 

capability without jeopardizing the receptive fields of convolutional layers.  

 

 

 

Figure 5. VGG-16 Architecture 

 

VGG network architecture (especially VGG-16) shows that the depth of a neural 

network plays a critical role in discriminating the features and classifying the images. 
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Beginning with the VGG network architecture, the researchers’ main focus is shifting 

towards building deeper neural networks.  

 

In 2015, Kaiming He et al. [2] [26] discovered that more the layers are stacked, the more 

the network suffers from the degradation issue. The degradation is a counter-intuitive 

phenomenon where both the training and test error rates increase when the number of 

layers in the CNN increases. This holds true even if there is a change of dataset, 

according to the authors of [2]. As the depth of a neural network is increased, so is the 

computational burden. Among numerous architectures of the CNN, ResNet (Residual 

Network) framework is an effort to overcome the training issues. Unlike other 

architectures, ResNet framework contains the ‘skip connection,’ which will be explained 

later in this paper. This feature renders the network easier to optimize than the traditional 

CNN framework.  
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Figure 6. Basic Residual unit for ResNet Framework [2] 

 

Kaiming He et al. described the concept of the ResNet framework as follows: 

suppose that the input and output of a neural network are of the same dimensions. Assume 

that there exists a certain function ℋ(𝑥), mapping to be approximated by a certain subset1 

of a neural network. (This is also the main hypothesis of a deep learning) Denote the set of 

inputs to the first layers by x. If one hypothesizes2 that a set of nonlinear layers in a network 

is able to approximate functions in an asymptotical manner, then it implies that to 

approximate their residual functions in the similar manner is also possible: 

 

ℋ(𝑥) − 𝑥 

                                                                 
1 The authors of [2] assume that this subset of a neural network needs not to be a proper subset of the neural network. 
2 To the best of our knowledge, it is still an open problem. 
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Kaiming He et al. argues that rather than expecting a set of stacked layers to 

approximate ℋ(𝑥), it is recommended to design a neural network to approximate a residual 

function 

 

ℱ(𝑥) ∶= ℋ(𝑥) − 𝑥 

  

Then, the function to be approximated becomes ℱ(𝑥) + 𝑥 . The authors of [2] 

concluded that “although both forms should be able to asymptotically approximate the 

desired functions (as hypothesized), the ease of learning might be different.”.  

 

In 2016, the developers of the original ResNet [6] improved their ‘skip connection’ 

design. In short, Kaiming He et al. pointed out that it is best to avoid the information of the 

shortcut; otherwise (e.g., performing a multiplication on the information from the skip 

connection), it would render the optimization of the network and even the backpropagation 

extremely difficult. So, the authors of the ResNet framework modified their ResNet 

building block to include the batch normalization and activation layers. This is called ‘pre-

activation’; with this modification, the original authors of the ResNet framework surpassed 

the upper bound of the number of convolutional layers to 1000 layers.  

 

The ResNet framework has another strength regarding the computation and related 

complexity. Kaiming He et al. also pointed out that, whereas the original ResNet-34 

model’s depth is more profound than the one for the VGG-16 model, the former has one-
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sixth of the computational complexity of the latter. [2] This renders both the VGG and the 

ResNet framework suitable for our study. I chose the ResNet framework for another basis 

of the study since several authors report that ResNet converges faster than the other 

network frameworks and is less likely to suffer from overfitting. 

 

2.2 Precision Agriculture 
 

Precision Agriculture (PA) is a relatively new concept of farming management. Its 

research aims to develop a support system in the decision-making process, by using the 

site-specific crop knowledge (SSCM), so that it can enable the farmers to optimize outputs 

on given inputs. At the same time, it can also preserve the resources of a farm. [18] 

 

The inconsistent, excessive application of chemical substances has amounted to a 

series of undesirable consequences. They vary from nutrient imbalance, unforeseen 

damage (e.g., pesticide resistance) to reduced productivity. [17] A few kinds of literature 

indicate that PA can contribute to various objectives such as the longevity of certain 

farmland to the long-term sustainability of agricultural production. These studies confirm 

that PA could reduce the environmental influence of chemical substances, such as 

pesticides and fertilizer. PA aims to apply these substances to the area which needs the 

most attention. This targeted, localized, Just-In-Time (JIT) approach of the PA can be 

beneficial for the environment. 

 

PA requires a mean to gather the necessary information on a specific farm. 

Traditionally, this could be done by Global Positioning System (GPS) and satellite 
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imageries, operated by public or private entities such as the United States Geological 

Survey (USGS). As of 2018, farmers can operate the Unmanned Aerial Vehicle (UAV), or 

drone, in a relatively inexpensive manner to gather the spatial variability of a farm. Then, 

they can analyze the fertility of their farm based on gathered intelligence. 

 

2.3 Data Augmentation 
 

The increase in computation power and steady flux of data collected from various 

sources have enabled the Convolution Neural Network to bear the state-of-the-art 

classification results. Although this trend seems to continue in natural language processing, 

and image and video classification, an important issue arises overfitting. It is mainly due 

to the relative scarcity of data corresponding to the label or the relatively small size of a 

dataset. Overfitting usually occurs during the training of a CNN with a small dataset. It 

prevents the CNN's capability to generalize on previously unlabeled data. Data 

Augmentation (DA) is a potential solution to most of the situations similar to our 

description.  

 

DA is aimed to ‘inflate’ the volume of the training set, but keep the volume of the test 

set unchanged. A CNN trained with such an augmented dataset would be less likely to 

‘change its opinion’ in case of change of the two variables above. [9] There exist principally 

two types of transformation: geometric transformations and photometric ones. The formers 

aim to increase the training set, by performing the geometry altering an image. This renders 

the CNN invariant to certain affine transformations. Examples are horizontal/vertical 
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flipping, cropping, and rotation. The photometric ones aim to achieve the same goal, by 

transforming the colors and the brightness of an image. 

 

In principle, the DA is a rather inexpensive scheme to prevent overfitting and enhance 

the performance of a classifier, regarding its generalization capability. This class does not 

change for quite a few variants, and input can easily be transformed thanks to many 

geometric operations.  
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3. RESULTS AND DISCUSSION 

3.1 Dataset Preparation 

 

In this study, the input dataset is a set of photos taken personally around Brookings, 

SD, the USA during the April - May 2018 with one single iPhone 6. Each taken photo is 

cropped for various classes, a subset of plants typically on the lawns. I resized every image 

whose resolution is higher than 224 x 224-pixel size, a typical input dimension of our neural 

networks.  

 

The dataset consists of 5,326 images of five classes specified below. For this paper, 

the dataset was randomly split into the training dataset and the test dataset by a 7:3 ratio. 

The class weight is set to mitigate the imbalanced number of samples in each class. I did 

take precaution in organizing the dataset since the classifier’s performance is mainly 

dependent upon the quality of the dataset [4][8]. Each photo was taken at a 1m from the 

ground, to simulate the pseudo-horizontal point of shooting from the UAV or the camera 

attached to the tractor. 
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(a)  (b)  (c)  

 

(d)   (e)  

Figure 7. Sample images of the dataset: 

a) Clover b) Dandelion c) Grass d) Prostrate Knotweed e) Slender Speedwell 

 

Various data augmentation techniques were used: horizontal/vertical flipping, 

zooming, rescaling, and rotations {0°, 90°, 180°, 270°}. This series of techniques was 

reported to render the CNN less variant to various geometric transformations. 

 

3.2 Training of a CNN 
 

As discussed above, I used the ResNet framework to train a network. The following 

structures are used to evaluate the effectiveness of a classifier: ResNet-18, ResNet-34, 

and ResNet-50 as well as our ResNet-derived architectures. VGG-16 is selected for 

comparison with the ResNet framework. Our objective is to determine an optimal number 

of layers, given an individual neural network and the characteristics of the dataset.  
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There is no need to train a complex neural network if the one with lesser complexity 

performs as good as the former within the acceptable margin of error. Moreover, the 

number of hyperparameters increase proportionally to the depth of a network. Thus a 

danger of overfitting arises. 

 

I conducted the training on the following setting: Intel® i7-7700k @ 4.20 GHz, 32 Gb 

Ram, a single Nvidia® GTX 1080, Ubuntu 16.04 LTS, Keras 2.0 API with TensorFlow 

3.5 as the backend. Each training took about 35-40 minutes to be completed. For the 

training of each CNN model, the learning rate was set to 0.0001, decay rate to 0.0. The 

epoch was set to 50. The mini-batch size was set to 32 because the available GPU was 

limited to one single card. The Adam optimizer was used to minimize the loss values; it 

keeps the local structure in a low dimensional space. Since the modified ResNet-based 

and VGG-based networks do not have a set of pretrained weights with ImageNet, I 

limited our focus to the CNN with randomly initialized weights. Additionally, I trained 

each network 5 times and computed the average Top-1 accuracy on the test set. 

  

The network architectures I trained additionally are derived from the ResNet architecture, 

namely ResNet-10 and ResNet-14, composed of exactly one convolutional layer (one 

bottleneck block for ResNet-14). From VGG-16, I derived the VGG-Mi, VGG-MRi, 

VGG-Bi, and VGG-FBi. The configuration will be found later in this paper. As 

previously stated, the primary objective for training various network architectures is that I 
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would like to find the smallest number of weight layers that does not degrade the 

classification result on our dataset. 
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3.3 Analysis of the Results 
 

3.3.1 On the number of layers 

 

 

 

 

 # Parameters # Convolutional Layers 

ResNet-10 4,913,413 10 

ResNet-14  8,039,813 14 

ResNet-18 11,189,893 18 

ResNet-34 21,309,189 34 

ResNet-50 23,582,597 50 

 

Table 1. Estimate on the number of parameters of ResNet-derived architectures 
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 Top-1 Accuracy 

(Train set) 

Top-1 Accuracy3 

(Test set) 

ResNet-10 92.66% 87.88% 

ResNet-14 92.56% 84.73% 

ResNet-18 92.94% 87.09% 

ResNet-34 93.13% 95.13% 

ResNet-50 92.83% 87.85% 

 

Table 2. Top-1 Accuracy of models based on various ResNet framework-based 

architectures 

 

 

 

 

 

                                                                 
3 Top-1 Accuracy is equivalent to the ratio that the classifier’s prediction matches the ground truth. I will use this notation throughout this paper. 
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Table 3 shows that the ResNet-derived networks, namely ResNet-10 and ResNet-14, 

achieved a comparable training result to our baseline model ResNet-34. However, the 

result also shows that the classifier does not benefit from the increase of depth of a neural 

network, with our dataset. It also shows that our ResNet-derived networks could retain 

the accuracy up to 87.88%. I hypothesize that the state-of-the-art CNN networks, 

including the ResNet networks, are meant to classify the vast amount of ImageNet dataset 

with more than 1000+ classes. Thus, this characteristic might result in such a stagnant 

series of results with our dataset. There is a possibility that the accuracy could be 

ameliorated if the pre-trained ImageNet weights were available to these networks. 

However, as discussed before, such sets of weights are not available with the 

implementations of our choice. 
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 # Parameters # Layers 

VGG-M1 

(w/o FC layers) 

17,477 1 

VGG-B1 

(w/o FC layers) 

17,477 1 

VGG-B2 

(w/o FC layers) 

107,103 2 

VGG-M1 29,652,741 3 

VGG-M2 42,571,653 4 

VGG-MR0 123,477,125 7 

VGG-MR2 123,661,637 9 

VGG-16 134,281,029 16 

 

Table 3. Estimate on the number of parameters of VGG-derived architectures 
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Top-1 Accuracy 

(Train set) 

Top-1 Accuracy 

(Test set) 

VGG-M1 

(w/o FC layers) 

71.52% 68.45% 

VGG-B1 

(w/o FC layers) 

82.59% 77.03% 

VGG-B2 

(w/o FC layers) 

86.52% 81.27% 

VGG-M1 83.33% 76.91% 

VGG-M2 90.03% 85.87% 

VGG-MR0 90.1% 86.6% 

VGG-MR2 89.49% 87.94% 

VGG-16 93.00% 88.14% 

 

Table 4. Top-1 Accuracy of models based on various VGG framework-based architectures 
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I modified, in a similar way, the VGG-16 neural networks as follows: 

• VGG-Mi (i = 1, 2) denotes the VGG-like network with no convolutional layer 

except the i-th and its preceding block(s). Each block consists of only one 

convolutional layer and retains its max pooling layer.  

• The VGG-MRi denotes the VGG-like network with a reduced number of 

convolutional layers to 1 except the i-th block and its preceding block(s) 

• The VGG-Bi denotes the VGG-like network with an ONLY convolutional i-th 

block and its preceding block(s). Each block consists of an ONLY one 

convolutional layer. 

 

a) The study shows, in an empirical way, that reducing the number of convolutional 

layers by 2 (in some cases, up to 4) in the VGG-16 network could retain the 

accuracy more or equal to 85%. The existence of the max-pooling layers in the 

configuration could improve a bit the performance of the classifier, but not in a 

substantial way. (Compare the VGG-B2 and VGG-FB2) 

 

b) Table 4 shows that the number of convolutional layers could matter regarding 

classification, more than its number in each block in the VGG network. 

 

I could not find out the conclusive difference in performance between the model with 

fully-connected layers and the model without them since its existence often exhausted the 

resource of the testing environment. However, I found out the difference of two models 

above regarding the resulting model size; the model containing the fully-connected layers 
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is, at worst, ten times bigger than the one without the layers. I believe that it is due to the 

additional weights a fully-connected layer contains. 

 

3.3.2 On the images with a modified resolution 

 

The more we try to map a large area with the aid of a UAV or a satellite, the larger 

the scale of the image becomes. Hence, the volume of information in one pixel becomes 

disproportionally smaller. Therefore, I conducted several studies when applying the 

downsampling and upsampling the images. For this purpose, I reduced all the resolution of 

the train and validation datasets to 224 x 224, the standard spatial dimension of each 

network. Then, I modified the resolution of the resulted validation dataset, specified in the 

following table. 
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 Train crop size Test crop size Top-1 Acc % 

(Test) 

ResNet-10 224 x 224 28 x 28 67.27% 

ResNet-10 224 x 224 56 x 56 80.49% 

ResNet-10 224 x 224 112 x 112 81.45% 

ResNet-10 224 x 224 224 x 224 87.88% 

ResNet-10 224 x 224 320 x 320 88.13% 

ResNet-10 224 x 224 480 x 480 90.45% 

ResNet-14 224 x 224 28 x 28 64.01% 

ResNet-14 224 x 224 56 x 56 80.35% 

ResNet-14 224 x 224 112 x 112 79.18% 

ResNet-14 224 x 224 224 x 224 84.74% 

ResNet-14 224 x 224 320 x 320 88.85% 

ResNet-14 224 x 224 480 x 480 91.14% 

ResNet-34 224 x 224 224 x 224 95.13% 

 

Table 5. Top-1 Accuracy of models based on ResNet-10 and ResNet-14, with different test 

cropping size 
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The study shows the ResNet-derived networks managed to achieve a comparable 

result even if the input dimension is reduced. This shows that the generalization capabilities 

of the ResNet framework would not be impaired by the reduced number of residual blocks. 

 

However, if the spatial dimension of the inputs is more than 50% smaller than the 

CNN’s input dimension, it shows that the classification performance is dropped by 15%. 

If the resolution of the input is equal to one-tenth of the input dimension, the accuracy is 

sharply decreased to 64%. Table 6 shows a similar result to support our previous claim.  

 

It is interesting that, with lesser number of convolutional layers, our VGG-derived 

networks, VGG-MR0 and VGG-MR2, produce marginally better Top-1 Accuracy results 

(5 – 13%) than our ResNet-derived networks, ResNet-10 and ResNet-14.  However, one 

must take also into consideration that the ResNet-derived networks have significantly 

lower numbers of parameter than the numbers of VGG-derived networks; ResNet-derived 

networks have less than the one-tenth number of parameters than the VGG-derived 

networks. 
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Train crop 

size 

Test crop 

size 

Top-1 Acc % 

(Test) 

VGG-MR0 224 x 224 28 x 28 77.75% 

VGG-MR0 224 x 224 56 x 56 81.96% 

VGG-MR0 224 x 224 112 x 112 77.75% 

VGG-MR0 224 x 224 224 x 224 86.6% 

VGG-MR0 224 x 224 320 x 320 88.63% 

VGG-MR0 224 x 224 480 x 480 88.48% 

VGG-MR2 224 x 224 28 x 28 72.4% 

VGG-MR2 224 x 224 56 x 56 82.34% 

VGG-MR2 224 x 224 112 x 112 81.11% 

VGG-MR2 224 x 224 224 x 224 87.94% 

VGG-MR2 224 x 224 320 x 320 88.32% 

VGG-MR2 224 x 224 480 x 480 88.54% 

VGG-16 224 x 224 224 x 224 88.14% 

 

Table 6. Top-1 Accuracy of models based on VGG based networks, with different test 

cropping size 



２９ 

 

Using regularization techniques (e.g., Dropout layer) could yield a better classification 

accuracy to our derived networks, but that could be left for our future study. However, the 

objective of this study is to observe if the CNN-based classifier with fewer layers can 

maintain the comparable classification accuracy. Table 6 shows that there is a marginal 

decrease in classification accuracy if the overall resolution of the test dataset decreases 

from the original resolution to its downsampled resolution. The Top-1 Accuracy for both 

of our derived networks (VGG-MR0 and VGG-MR2) decreases by 6 ~ 9% (5%) if our 

input image’s resolution is reduced to 112 x 112 (56 x 56) pixels. If the input is further 

reduced to 28 x 28 pixels (12.5 % of the original resolution), the accuracy plummets by 10 

~ 15%.  

4. CONCLUSIONS 

 

Striking an appropriate balance between the size of a neural network and the 

characteristics of a dataset is critical. Using our dataset, I have shown that a simpler 

artificial neural network derived from the current state-of-the-art CNN framework could 

achieve a satisfiable classification result with marginally reduced accuracy. If one can 

afford a specific loss of accuracy for the sake of the feasibility, I believe that one could 

produce a vegetation map with a larger area, using a similar approach. Primarily, I find it 

somewhat surprised that a CNN could handle the downsampled images this well (6-10% 

performance drop), based just on the original input size. (224 × 224 pixels) The 

performance of derived networks remains to be seen, i.e., verifying a similar performance 

can be achievable with different datasets. Still, in that scenario, the experimental results 

imply that this could be applied for on-site inspection of farmland. Although it would 
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require a computer equipped with a decent GPU to train such a model, I hope that our 

modified models could fit any embedded device thanks to the reduced model size.  

 

For the future work, I will apply our findings from this study to imageries containing the 

much larger area. I will also work with various CNN frameworks to validate empirically 

that our approach is feasible with most of the frameworks currently available. 
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