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ABSTRACT 

ESTIMATING SOIL ORGANIC CARBON IN CULTIVATED SOILS USING SOIL 

TEST DATA, REMOTE SENSING IMAGERY FROM SATELLITES (LANDSAT 8 

AND PLANETSCOPE IMAGERY), AND WEB SOIL SURVEY DATA 

MUHAMMED HALIL KOPARAN 

2019 

Soil organic carbon (SOC) is an important soil parameter of cultivated soils that needs to 

be monitored and mapped regularly to enhance soil health and productivity. SOC levels 

in cultivated areas is difficult to monitor for farmers and is costly to analyze using 

traditional methods. The objective of this study was to estimate surface SOC distribution 

in selected soils of Major Land Resource Areas (MLRA) 102A (Rolling Till Plain, 

Brookings County, SD) and 103 (Central Iowa and Minnesota Till Prairies, Lac qui Parle 

County, MN) using soil sample data, Web Soil Survey (WSS) data, and satellite imagery 

(Landsat 8 and PlanetScope). Different satellite imagery bands and band combinations 

were used to reach more accurate results. The dominant soils in the area are Haplustolls, 

Calciustolls, and Endoaquolls formed in silty sediments, local silty alluvium, and till. 

Sites were selected and soil samples were collected in May 2018 after planting. SOC and 

soil properties were measured at the 0-15 cm depth.  

SOC was mainly affected by soil texture in the studied selected soils. Multiple-

linear regression was used to build SOC prediction models from soil test data. The final 

SOC model (using stepwise regression) is SOCp = 3.98 + (-0.210 pH) + (-0.220 Sand [g 

kg-1]) + (0.040 Sum of Extractable Cation, SOEC [cmolc kg-1]). The Ridge Regression 

(RR) (CV = 0.066, MSE = 0.063)  and Principal Component Regression (PCR) (CV = 
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0.071, MSE = 0.068) were used to deal with multicollinearity and RR was determined to 

be as the best model, with 82.7% of variation in SOC explained by the RR model. 

Landsat 8 and PlanetScope spectral bands and different indices were also used to 

develop SOC prediction models. The stepwise regression analyses revealed that the 

Landsat 8 prediction model had multicollinearity problem. Ridge regression and PCR 

were applied, and RR was chosen as the best model with SOCp = -26.7 + (0.310 BSIL) + 

(-23.2 Band 5L) + (75.8 Band 2L) + (-51.1 Band 3L) + ( -3.05 Band 7L). The RR model 

(CV = 0.24, MSE = 0.22) explained 37.0% of the variation in SOC for Landsat 8. The 

reduced PlanetScope model was SOCp = -25.1 + (2980 Band4P) + (0.327 BSIP). 

Approximately 60.0% of the variation in SOC was explanined by the Ordinary Least 

Square (OLS) (CV = 0.15, MSE = 0.14) model and was free of multicollinearity.   

WSS data showed similar patterns as soil test data for SOC predictions. The best 

model for WSS data was a linear regression, SOCp = 3.37 + (-0.0200 Sand WSS [g kg-1]) 

and 49.0% of the variation in SOC was explained by this model. WSS data were then 

added as variables into the spatial (satellite) estimation models. The Landsat 8 and WSS 

data explained 53.3%, PlanetScope and WSS data explained 68.8% of the SOC variation. 

Based on these results, deciding on the number of soil sampling points, and the 

use of specific variables in the model is very crucial for the model development. 

Estimating SOC by minimizing the number of needed soil sampling points, using satellite 

imagery, and public free sources provides an easy, efficient and cost-effective way to 

monitor SOC levels and identify the best management systems for producers and natural 

resource managers. This project produced accurate SOC prediction models using soil test 

data, satellite imagery and Web Soil Survey data. This SOC estimation model helps 
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farmers, resource managers, and researchers to monitor SOC concentration on the soil 

surface using remote sensing alone, or with WSS data, or with a minimal amount of soil 

test data. 
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CHAPTER 1: Introduction and Literature Review 

Introduction 

Throughout history, Earth has faced many changes in land use and the loss of soil 

organic matter (SOM) caused by climate change (Zribi et al., 2011).  Soil organic matter 

is defined as a composite of plant and animal residue at different chemical and biological 

stages (Schnitzer, 1982). Organic carbon (OC) exists in the SOM components, while 

inorganic carbon (IC) is present in the carbonate (CO3
2-) minerals like lime and dolomite 

(Nelson and Sommers, 1996). Soil organic carbon (SOC) is an important soil health 

property and a critical factor for soil management, crop production, and soil quality 

(Chen et al., 2000). Soil organic carbon determination is typically carried out with direct 

methods which consist of field sampling and applying laboratory analysis for results. 

However, as the technology has advanced and more low cost, time efficient scientific 

approaches have evolved. Indirect methods using Remote Sensing (RS) and Geographic 

Information Systems (GIS) have the potential to replace traditional SOC methods (Post et 

al., 2001). 

Soil Organic Carbon (SOC) and Soil Organic Matter (SOM) 

Soil organic matter has been defined as a key component for crop production for 

many years and research has shown that soil color and soil fertility are related to SOM 

(Zomer et al., 2017). Soil organic matter primarily is derived from plant residue (Allison, 

1973). Soil can be considered as the most crucial, largest, and fragile carbon (C) reservoir 

in the world (Swift, 2001). Soil organic carbon is a valuable soil parameter, which 

impacts the agricultural productivity and contains roughly 75% of Total Carbon (TC) 

pool of terrestrial ecosystem. Soils store more C than vegetation and the atmosphere 
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combined (Elbasiouny et al., 2014). Higher SOC levels enhance essential ecosystem 

functions, soil structure, soil quality, nutrient and water holding capacity, and energy 

supplies for soil microbial fauna (Chung et al., 2008).  Over decades, producers have 

applied fertilizers, and chemicals, employed different management systems, and added 

other inputs to increase plant production and crop yield. However, these improvements 

can cause detrimental problems (e.g., water pollution and degradation of SOM).  

Correspondingly, the use of sustainable management systems is needed to reduce harmful 

environmental effects of some agricultural chemical applications and conventional land 

use (Ludwig et al., 2010). 

 When soil health is considered and evaluated, the decisive role of SOC and SOM 

is obvious. This subject has been studied many times. Increasing SOC levels  improves 

crop production by affecting three main crop yield factors; (1) enhanced plant available 

water holding capacity; (2) increased plant nutrient levels, storage, and availability; and 

(3) improved soil physical properties (Lal, 2006) Crop selection, management techniques, 

tillage, and fertilization are keys to improve SOC content. Soil C levels can be increased 

by applying nitrogen (N) fertilizers, using diverse crop rotation, reduced tillage, and 

limiting crop removal (Havlin et al., 1990). Management techniques impact the effect of 

N application, soil texture, and weather condition on plant growth (Alvarez, 2005). 

Moreover, a study conducted by Studdert (2000) showed that an appropriate crop rotation 

system and conservation tillage system could reduce SOC degradation. 

On the other hand, conventional crop systems, excess fertilization, and 

conventional tillage systems often have adverse effects on SOC levels causing the 

deterioration of  soil physical properties (Hati et al., 2008). Some crop rotation systems 
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like corn ( Zea mays L.) – soybean (Glycine max) do not affect SOC concentration when 

compared to continuous corn cropping (Bronick and Lal, 2005). Tillage systems play a 

vital role in crop production and land use. Long-term conventional tillage system 

naturally decrease SOC content by breaking down aggregates, reducing aggregate 

stability, and increasing soil bulk density(Liu et al., 2014).                                                                                                       

   As a result, studies in environmental simulations, modeling, mapping, and 

predicting agriculture need better quality and cost-effective data. Accordingly, 

inexpensive and time efficient methods and applications are required for soil analysis in 

order to select appropriate management systems and best land use (Gomez et al., 2008).  

Basic Remote Sensing Processes as Imagery 

Soil health characteristics can be reduced due to the significant land use changes 

caused by changes in physical, biological, and chemical properties particularly, SOC. 

There are various major factors that cause SOC depletion due to frequent tillage, 

increased aeration, higher temperatures, etc.  Many tools and techniques have been used 

to analyze the changes in soil characteristics. Geographic information systems (GIS) and 

remote sensing (RS) are constantly improving and becoming more useful for the 

management of agricultural areas, urban areas, and environmentally sensitive areas. 

 Remote sensing can be defined as the science of gaining information of data 

acquired by a device that does not touch any object, field, or phenomenon in the study 

areas (Lillesand et al., 2014). Remote sensing can also be described as Physical Object, 

Sensor Data, Extracted Information, and Applications (Campbell and Wynne, 2011). 

Remote sensing (Image capture) can be performed using satellite and unmanned aircraft 

vehicle (UAV) platforms. In many aspects, satellite and UAV sensors have similarities 
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and differences considering their altitude and stability which cause different image 

properties (Richards and Richards, 1999). Remote sensing data can be obtained in analog 

or digital formats. Data in analog format can be defined as airborne or satellite remote 

sensing platforms which are displayed in paper form. Digital image utilization and 

quality have increased significantly with the development of technology, high-resolution 

displays, and digital image processing software. Recent information extraction and digital 

change detection techniques have simplified image processing (Narumalani et al., 2002).   

Remote Sensing of Soil Properties 

The importance of soil cannot be overstated. Soil is a natural resource covering 

large areas of the Earth’s surface. Soil has many different and vital roles in the 

ecosystems such as energy fluxes and plant and animal productivity to supply human 

needs. Considering and evaluating the importance of soil in our life, monitoring and 

choosing best management practices to protect soil is necessary and crucial for humanity 

survival. Over decades, researchers have been focusing on finding an easy, time-efficient, 

and inexpensive way to map, monitor, and estimate soil use and soil property changes by 

developing RS applications such as usage of the microwave, light detection and ranging 

(LiDAR), multispectral imagery, and spectrometry. LiDAR is a measuring method using 

light in the form of laser to calculate ranges (different distances) to the Earth (Detection, 

2013). 

 Singh (2016) performed a study to review the use of the microwave, optical, 

LiDAR, and hyperspectral remote sensing data for soil mapping. Hyperspectral can be 

characterized as high spectral resolution that comes from hundreds of band channels 

(Melgani and Bruzzone, 2004). The hypothesis was that RS would enable the enhancing 
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of incomplete thematic and spatial coverage of the available soil databases. The approach 

is capable of measuring soil properties like texture, mineralogy, soil moisture, iron, 

salinity, and SOC. Airborne, space-borne, and original measurements utilizing active, 

passive, and optical microwave instruments have been successfully used in sparsely 

vegetated areas. Another study reviewing the utilization of satellite remote sensing for 

mapping of soils demonstrated how infrared, thermal, multispectral, as well as active and 

passive microwave space-borne sensors are effective in the delineation of soil units 

(Dewitte et al., 2012). The sensors are also helpful in the evaluation of key soil properties 

as well as risks to soil functions resulting from changes in soil moisture content, 

salinization, texture, and SOC. 

 Soil moisture at various depths is very beneficial for plant growth. Soil surface 

water content (water held in 0-10cm) is a key property for energy fluxes and hydrological 

process at the soil surface. Predicting soil moisture and the monitoring of soil moisture in 

unvisited areas would provide a cost-effective way to assist farmers in utilizing best 

management practices (BMPs) to protect soil health and enhance soil moisture content. 

Working in known areas and measuring soil moisture content in large areas encourage 

people to use a new methodology like RS. Remote sensing studies of soil moisture 

content started in the early 1980s (Alavipanah et al., 2016). Recently, microwave data 

was found to be the most suitable RS application to estimate soil moisture content. 

However, the accuracy of the microwave data is affected negatively by soil type, 

vegetation type, surface residue, and surface roughness (Cashion et al., 2005).  

Soil salinity can be described as one of the most land degrading processes. Using 

conventional laboratory methods to measure soil salinity is both costly and time-
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consuming. The potential of utilizing RS to monitor soil salinity using satellite imagery 

has been studied. Yong-Ling et al. (2010) found a strong correlation between observed 

soil salinity and estimated soil salinity based on RS. Also, they mentioned that 

monitoring soil salinity using RS in a cost-effective way is possible by using Hyperion 

reflectance data. However, there is a limitation for estimating soil salinity regarding 

multispectral satellite imagery. Low spectral and spatial resolution satellite imagery can 

cause misclassification of bare, course-textured soils as saline soils (Metternicht and 

Zinck, 2003).   In another study to monitor soil salinity, Glowienka et al. (2016) used 

remote sensing and GIS techniques to analyze soil properties in southeast Poland. 

Specifically, the techniques were used to perform a temporal and spatial analysis of the 

soil salinity as well as soil pH. Thorough interpolation procedures were undertaken using 

specialist image analysis software like ArcMap® and ENVI® and these software packages 

allow one to visualize data in the form of raster and vector maps for the spatial 

distribution of the examined soil properties. For the purpose of the analysis of RS data, 

satellite images Landsat 5 Thematic Mapper (TM) was used. In a similar study, Wu et al. 

(1997) used GIS and RS to evaluate the soil properties in Finney County, Kansas. The 

land use and land cover (LULC) map was derived using seasonal Landsat (TM) images. 

Geographic information system techniques helped in the calculation of the soil erodibility 

index, and the accuracy was significantly better than manual calculation. Zhang et al. 

(2008) found that there are strong correlations between the measured soil erodibility 

values and those calculated from soil erodibility estimators. A study by Scudiero et al. 

(2014) demonstrated the usefulness of the multi-year (temporal) Landsat’s surface 

reflectance data as a measure for the characterization of the soil salinity spatial 
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variability. Even more studies have exhibited the importance of RS data in the delineation 

of soil properties such as silt, sand, SOC, and clay content based on interrelationships 

among the reflectance spectra and soil properties (Barnes and Baker, 2000; Thomasson et 

al., 2001; Gomez et al., 2008). 

 Soil texture significantly impacts pedological and ecological process in soil such 

as infiltration, aggregate stability, and soil wind and water erosion. Quantitative soil 

texture maps based on RS tools are beneficial in terms of management, and prediction of 

the specific areas when compared to traditional maps (Scull et al., 2003). The study by 

Apan et al. (2002) concluded that using Bands 2 (visible red) and 8 (Shortwave 

Infrared,SWIR) of Advanced Spaceborne Thermal Emission and Reflectance (ASTER) 

image, and first principal component 1 (converting 9 ASTER bands into a new data set to 

identify the number of endmembers) were beneficial for discriminating soil features like 

soil texture. Moreover, there are some other options for mapping soil texture such as 

hyperspectral data. Hyperspectral remote sensing basically provides more detailed 

spectral data information for each pixel of an image (Ben-Dor et al., 2013). Zribi et al. 

(2012) used TERRASAR-X radar data to measure and predict soil surface texture in a 

semi-arid region and found that soil texture and was correlated to radar images. 

TERRASAR-X is German national synthetic-aperture radar (SAR)-satellite system. 

Basically, this system is able to combine high resolution images for more detailed 

summary analysis for synoptic application (Werninghaus, 2004). 

By combining visuals from a digital elevation model (DEM) for landform 

classification and the ASTER sensor, Saadat et al. (2008) found that spectral RS data  

enhances the likelihood of differentiating topographically homogenous landforms 
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improving the classification. A study by Ehsani and Quiel (2009) also concluded the 

same after using Landsat and Shuttle Radar Topographic Mission DEM to analyze 

landscape elements. Dobos et al. (2001) observed the synthesis of coarse resolution 

Advanced Very High-Resolution Radiometer data and DEM obtained terrains were 

favorable data for the characterization of delineating soil patterns and soil forming 

environments. A digital elevation map is a raster file with elevation data for each pixel 

cell used to create aspects and slope maps of specified areas (Klingebiel et al., 1987).  

Remote Sensing of Soil Organic Carbon 

Geostatistical techniques have been used to map SOC content. The various 

satellite imagery band combinations are used to identify the digital signatures. The 

amount of SOC content in different slopes, soils, and land use categories can be analyzed 

using the GIS and RS techniques. Studies predicting SOC are primarily based on various 

methods, the accuracy of the results, and obtaining the necessary number of soil samples.  

Increasing farm input cost and crop production values, drive producers to seek modern 

technologies in order to enhance their crop yield and land management systems (Seelan 

et al., 2003). This research project  focuses on estimating SOC using RS applications 

such as a spectrometer data, satellite imagery, and drone imagery.  

Soil organic carbon, like many other soil properties, is highly influenced by soil 

type as well as distinct environmental variables. Over the years, the Earth’s surface has 

experienced profound changes in land use and land cover. Activities such as continuous 

cultivation and intensive grazing have disturbed and diminished the SOC, thereby 

impacting global warming and climate change (Kumar, 2013). As such, it is important 

that conservation practices are evaluated for the sake of mitigating climate change 
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impacts as well as enhancing SOC sequestration. Conservation calls for environmental 

modeling, monitoring, and risk assessment. These all rely on accurate and detailed 

information on temporal and spatial variations in soil properties (Forkuor et al., 2017). 

The collection of this information is known as soil mapping, and while various ways of 

doing it exist, GIS and RS have proved to be less time consuming and more cost-effective 

than traditional methods, with comparable results.  

Remote sensing and GIS techniques have proven extremely useful in the 

estimation of SOC. In most cases, remotely sensed data is used jointly with classification, 

kriging, and regression tree analyses to help in the prediction of soil properties of 

unvisited areas. Bhunia et al. (2017) used both spaceborne satellite data and ground 

verification in districts in India to estimate the SOC stock. A multivariate regression 

model was applied to estimate the spatial distribution of SOC using the satellite data 

derived indices. The regression analysis uncovered the relationship between SOC and the 

bare soil index as well as the normalized difference vegetation index (NDVI). A 

significant correlation between the SOC estimated from satellite data and those observed 

through ground verification was found. Ben-Dor and Levin (2000) also demonstrated 

how regression modeling could be used to map SOC. Understanding the need for an 

accurate estimation of SOC, Sarmadian et al. (2014) suggested the Radial Basis 

Functions (RBF) method as an appropriate way of exploring SOC spatial patterns. In a 

similar study Fidencio et al. (2002) concluded that diffuse reflectance spectroscopy in the 

Near-Infrared radiation (NIR) region with data treated by RBF is quick, confidential, and 

clear. 
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Castaldi et al. (2018)  demonstrated a method to estimate SOC from RS data that 

did not require any chemical or physical laboratory analysis. Known as `bottom-up`, the 

method employed both the Airborne Prism Experiment (APEX) hyperspectral airborne 

data and the pan-European topsoil database from the Land Use/Cover Area frame 

statistical survey to develop bare cropland fields’ SOC maps. The SOC content was 

estimated using partial least squares regression models and it was found to be 

satisfactorily accurate. In a similar study, Stevens et al. (2010) used airborne imaging 

spectroscopy to map SOC at a regional level. Specifically, they used hyperspectral 

images that were captured with an AHS-160 sensor. Penalized-spline signal regression 

(PSR), partial least square regression (PLSR), and support vector machine regression 

(SVMR) were three distinct multivariate calibration techniques used to show the 

relationship of reflectance data to surface SOC. PSR was effective in dealing with some 

noisy spectral features. The study took advantage of the ability of spectroscopy to use 

Short-wave Infrared radiation (SWIR) and reflectance in the visible and near-infrared.  

A study by Gomez et al. (2008) compared the predictions of SOC using RS data 

and visible and near-infrared reflectance hyperspectral proximal data. Partial least 

squares regression helped in predicting SOC contents using RS and proximal spectra. The 

study found that the accuracy of the prediction was unaffected by the spectral resolution 

of the RS and proximal data. However, the accuracy of the SOC predictions utilizing the 

Hyperion spectra was lower than the Agrispec data. Agrispec is a commercial sensor that 

measures NIR and SWIR spectra for agricultural RS application and analysis. Hyperion 

spectra can be defined as a high resolution sensor which has 220 spectral bands (from 0.4 

to 2.5 micrometer, µm, or micron) and the spatial resolution is 30m (Griffin et al., 2005). 
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In essence, the study demonstrated a significant potential for the use of hyperspectral 

remote sensing predicting SOC. Bartholomeus et al. (2008) demonstrated how the 

mapping of SOC over large areas could be achieved using spectrally-based indices. 

Regarding the reflectance spectroscopy, the detection of the SOC content was rooted in 

the components of SOC (starch, lignin, and cellulose). In another study, McCarty et al. 

(2010) explored how imaging spectroscopy used to derive a soil C map.   

Effects of Soil Properties on Soil Spectral Feature 

Soil reflectance is a cumulative feature which comes from the different spectral 

signatures of the inharmonious combination of mineral and organic substances of mineral 

soil surfaces (Stoner and Baumgardner, 1981). There are several studies that have 

demonstrated the dependent contribution of soil parameters such as organic matter (OM), 

organic carbon (OC), moisture content, soil texture, structure, and iron concentration on 

spectral reflectance taking place soils Mathews et al., 1973; Karmanov., 1970). 

Soil color becomes darker (higher C values, lower Munsell color values, and 

lower Munsell color chromas) when the soil moisture content changes from dry to moist. 

The reason for becoming darker is explained by changing the environment from air to 

water around the soil particles (Twomey et al., 1986). In this regard, soil reflectance is 

substantially affected by moisture content. Lobell and Asner (2002) mentioned that 

reflected radiance from soil surface represents strong passive signal suitable to satellite. 

In addition, they compared the spectral signature of wet soil and dry soil under SWIR 

radiation, and demonstrated that there is a difference between wet and dry soil 

reflectance, soil reflectance declined while soil moisture increased. Moreover, soil 

moisture content strongly depends on soil texture. Lillesand et al. (2014) mentioned that 
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soils which consist of coarse textures, like sand, are often called “well-drained soil” and 

they do not have ability to hold water in their structural units. Poorly drained soils are 

often fine-textured soils (soils with clay and silt in the name) and are able to hold more 

water. As a consequence, low moisture content results in high reflectance while high 

moisture content results in low reflectance. 

More than 30% of tilled USA cropland is considered as erodible land (Takiff 

Smith, 1991). In order to decrease erosion, farmers started to use no-tillage systems and 

cover crops. Crop residue is an effective way to prevent movement of soil particles by 

water erosion (Daughtry, 2001). Crop residues on the soil surface impact soil reflectance. 

Nagler et al. (2000) mentioned that RS techniques have partial success in estimating plant 

residue cover. The reason for this is that plant residue and soil have a similar patterns in 

terms of spectral signatures in the visible and near-infrared wavelength ranges. Wiegand 

and Richardson (1992) demonstrated that there are limited spectral signature differences 

between soil and plant residue, resulting in great difficulty to distinguish soil and plant 

residue. 

The impact of landscape position on soil reflectance have been acknowledged for 

decades (Stohr and West, 1985). Teillet et al. (1982) mentioned that slopes facing the 

sunlight (eg. SE, S, and SW) collect more sunlight and become brighter than slopes 

facing away from the sunlight (eg.NW, NE, and N). Piekarczyk et al. (2016) concluded 

that high clay and silt contents contribute to creating a rougher soil surface, while high 

sand contents greatly decrease soil surface roughness. Moreover, they found that surface 

roughness reduced spectral reflectance, a measure of tortuosity. The relationship between 

soil surface roughness and spectral features of the soil surface should be developed and 
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calculated in terms of a correction factor in order to use for RS applications for precision 

agriculture.  

The Earth has a stock of elemental iron (Fe), and Fe is the fourth most abundant 

element in the Earth’s crust. The average Fe concentration is 5.1% of the mass, and the 

average ferric (Fe+3) and ferrous (Fe+2) is recorded as 5.3×1023g (Ronov and 

Yaroshevsky, 1969). Because of the indirect role Fe has on the spectral signature of soils, 

it is also important to monitor and estimate Fe concentration. Soileau and McCracken 

(1967) pointed out that free Fe oxides have a strong relationship with soil texture and 

structure. Free Fe oxides have ability of absorbing, high surface energy, and helping soil 

structural cementation due to its electrochemical feature (Zhang et al., 2016). Moreover, 

free Fe oxides can have a cementation effect on soil particles by causing flocculation of 

soil particles. Formless free Fe can coat soil particles with clay films that affect the 

interaction of clay minerals and natural sunlight radiation. As a result, Fe has a strong 

correlation with soil color and soil clay content. In order to discriminate the Fe effect or 

to estimate Fe concentration in the soil, high spectral resolution RS data should be used 

(Ben-Dor et al., 1999). 

There are many important factors that impact soils, soil C levels, and soil health. 

However, the influence of these factors makes this system complicated. For example, 

changes in yield can be the result of changes in soil electrical conductivity, EC (Lund et 

al., 1999). In this regard, RS is a time efficient and cost-effective method to gather data, 

monitor, map, and predict soil properties in a given area. Furthermore, using proper data 

for the aim of the given studies is very crucial in terms of different characteristic of soil 

elements. For instance, some soil properties like soil salinity could require use of 
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hyperspectral and laboratory data  (Yong-Ling et al., 2010). Being aware of constraints 

and limitations of RS data and applications (such as vegetation interference and spectral 

confusion) and how they influence image processing, interpreting data, and analysis 

should be considered (Alavipanah et al., 2016).  

Web Soil Survey (WSS) 

Web Soil Survey (WSS) is the web site that provides soil data and land use 

information managed by the United States Department of Agriculture (USDA) Natural 

Resources Conservation Service (NRCS) in collaboration with National Cooperative Soil 

Survey. Basically, WSS has soil maps and available data for the farmers, producers, 

researches, and land managers (Malo, 2008). The WSS website provides tremendous 

natural resources information for almost all of the United States and its territories. 

Moreover, WSS can provide traditional hardcopy document and spatial data. Web Soil 

Survey is a comprehensive database. Depending on the purpose of use, it can be used to 

create different maps demonstrating the spatial visualization of different soil properties or 

thematic map classes. For instance, soil salinity, taxonomic classification, and surface 

SOM maps, can be created easily using GIS (Beaudette and O’Geen, 2009). Web Soil 

Survey is not only for agricultural activities, it is also very useful for road or engineering 

purposes, land managers, and policymakers. Furthermore, WSS provides an opportunity 

to monitor soil changes for years. In this regard, WSS provides important soil data to 

consider how  production, soil quality, sustainability, land management, and the 

environment interact (Tugel et al., 2005). The SoilWeb app (SWA) is newly designed 

website to gather digital soil information. The program can be accessed online using the 

following link: casoilresource.lawr.ucdavis.edu. The use of this application is available 
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on computers, tablets, iPads, or smartphones. The SWA provides opportunity to obtain 

soil data for a specific area. The soil data that can be obtained from the application 

includes the official soil series description, % sand, % silt, % clay, bulk density, % total 

carbon, % organic carbon, % organic matter, pH, base saturation, CEC, % gypsum, % 

CaCO3 (lime), SAR (sodium adsorption ratio), and so on. Basically, the SWA is a great 

tool to gather soil data and land information in order to select appropriate management 

practices and land-use (Malo, 2016).   

Research Objectives 

The objectives of my research are; 

1. To measure SOC and other selected soil properties in five selected fields and 

develop a model to estimate SOC using selected soil properties. 

2. To develop models to estimate SOC using Landsat 8 Operational Land Imager 

(OLI) and PlanetScope Satellite Imagery. 

3. To develop models to estimate SOC using WSS data and compare to measured 

and model predicted SOC levels. 

4. To develop models that use soil properties, RS, and WSS data to estimate SOC 

levels 
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CHAPTER 2: Materials and Methods 

Study Sites 

The fields selected for this research were located in Brookings County (3 fields), South 

Dakota and Lac qui Parle County (2 fields), Minnesota (see Table 2.1). The climatic 

information about studied fields is given in Table 2.2. The full USDA-NRCS taxonomic 

classification information for the named soil(s) in each soil mapping unit in each field 

used for the study is given in Tables 2.3 to 2.7 and in Figures 2.1 to 2.5. 

Table 2.1 Research field locations 

County Field Latitude*** Longitude*** MLRA+ Field Size ha (a) 

Brookings* A 44°23'17.1"N 96°56'32.5"W 102A 64.8 (160) 

Brookings B 44°27'37.0"N 96°50'35.5"W 102A 66.8 (165) 

Brookings C 44°25'54.2"N 96°51'47.0"W 102A 60.0 (148) 

Lac qui Parle** D 45°04'24.0"N 96°26'28.8"W 103 99.0 (245) 

Lac qui Parle E 45°05'27.6"N 96°26'42.4"W 103 83.0 (205) 

*Brookings – South Dakota,  ** Lac qui Parle – Minnesota, + MLRA – Major Land 

Resource Area  (Stal, U. 1965),*** Latitude and Longitude values represent the center of 

each study field 
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Table 2.2 Climatic information for study fields 

*Precipitation and Temperature (Abatzoglou, 2017), Frost free days = refer to number of days 

between last freezing temperature (0°, 32°F ) in spring and first freezing temperature in fall 

(USDA-NRCS, 2018), ** Snow fall data represents mean of total snowfall  from 2016 to 2018 

was attained from Applied Climate Information System (RCC-ACIS, 2018). 

Soil Sampling 

For this research, grid cell sampling methods were used to determine soil sample 

locations (Wollenhaupt and Wolkowski, 1994). Each field was divided into 2.43 ha (6 

acres) cells and soil samples were collected around the grid cell center. At least 10 soil 

samples were collected within 15m radius of the grid center and mixed (Figure 2.6). Soil 

samples were collected from 0 to 15cm (0-6in) depths using push probe auger in May 

2018 after planting time and before germination. These soil samples were used to analyze 

soil texture, electrical conductivity (EC), pH, SOM, SOC concentration, soil moisture 

levels at time of sampling, sum of extractable cations (SOEC), Magnesium (Mg2+), 

Sodium (Na+), Calcium (Ca2+), Potassium (K+), nitrate nitrogen (NO3
--N), ammonium 

nitrogen (NH4
+-N), and phosphorus as phosphate (PO4

-3). The soil samples were air dried 

to 40OC, ground, sieved (<2mm), and stored in paper bags. 

Location Mean Annual 

Precipitation cm 

(in)* 

Frost Free Days* 

(January- July) 

Mean Annual Air 

Temperature °C 

(°F) * 

Snowfall** 

cm (in) 

Field A 

Brookings County 
68.6 (27.0) 140 6.4 (43.5) 171 (67.3) 

Field B 

Brookings County 
68.6 (27.0) 140 6.4 (43.5) 171 (67.3) 

Field C 

Brookings County 
68.6 (27.0) 140 6.4 (43.5) 171 (67.3) 

Field D 

Lac qui Parle County 
66.0 (26.0) 145 6.9 (44.5) 149 (58.7) 

Field E 

Lac qui Parle County 
66.0 (26.0) 145 6.9 (44.5) 149 (58.7) 
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Table2.3 Taxonomic classification of named soils for each soil mapping unit in field A*  

** Soil map units, map unit names, and soil classification information from Web Soil Survey (USDA-NRCS, 2018).  

*(44°23'17.1"N, 96°56'32.5"W, Brookings County, SD) 

Map 

Unit 
Map Unit Name Major Components Soil Classification for Named Soil Series** Area of 

Interest (%) 

Ba 
Badger silty clay loam, 

0 to 1% slopes 

Badger (90%) 

Minor Components (10%) 
Fine, smectitic, frigid Vertic Argiaquolls 

1.8 

 

Co 

Cubden -Badger silty clay 

loams, coteau, 0 to 2% 

slopes 

Cubden (50%) 

Badger (40%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 

Fine, smectitic, frigid Vertic Argiaquolls 
30.2 

Dn 
Divide loam, 0 to 2% 

slopes 

Divide (85%) 

Minor Components (15%) 

Fine-loamy over sandy or sandy-skeletal, mixed, 

superactive, frigid Aeric Calciaquolls 
2.9 

KrB 

Kranzburg-Brookings 

silty clay loams, 1 to 6% 

slope 

Kranzburg (70%) 

Brookings (20%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Fine-silty, mixed, superactive, frigid Pachic Hapludolls 
6.4 

PbB 
Poinsett-Buse-Waubay 

complex, 1 to 6% slopes 

Poinsett (40%) 

Buse (30%) 

Waubay (20%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Fine-loamy, mixed, superactive, frigid Typic 

Calciudolls 

Fine-silty, mixed, superactive, frigid Pachic Hapludolls 

19.6 

PbC 
Poinsett-Buse -Waubay 

complex, 2 to 9% slopes 

Poinsett (40%) 

Buse (35%) 

Waubay (15%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Fine-loamy, mixed, superactive, frigid Typic 

Calciudolls 

Fine-silty, mixed, superactive, frigid Pachic Hapludolls 

2.8 

PwA 

Poinsett-Waubay silty 

clay loams, 

0 to 2% slopes 

Poinsett (60%) 

Waubay (30%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Fine-silty, mixed, superactive, frigid Pachic Hapludolls 

 

4.4 

PwB 

Poinsett-Waubay silty 

clay loams, 

1 to 6% slopes 

Poinsett (65%) 

Waubay (25%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Calcic Hapludolls 

Fine-silty, mixed, superactive, frigid Pachic Hapludolls 
0.2 

Z182B 
Estelline silt loam, coteau, 

2 to 6% slopes 

Estelline (85%) 

Minor Components (15%) 

Fine-silty over sandy or sandy-skeletal, mixed, 

superactive, frigid Calcic Hapludolls 
31.7 
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Figure 2.1 Spatial distribution of soil samples on field A (44°23'17.1"N, 96, °56'32.5"W, Brookings County, SD). Map Source: Web 

Soil Survey (WSS), USGS, USDA, NRCS (2018). 
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 Table 2.4 Taxonomic classification of named soils for each soil mapping unit in field B* 

Map 

Unit 
Map Unit Name Major Components Soil Classification for Named Soil Series** Area of 

Interest (%) 

BbA 
Barnes clay loam, 

0 to 2% slopes 

Barnes (80%) 

Minor Components (20%)  

Fine-loamy, mixed, superactive, frigid Calcic   

Hapludolls  
2.1 

BbB 
Barnes clay loam, 

2 to 6% slopes 

Barnes (80%) 

Minor Components (20%)   

Fine-loamy, mixed, superactive, frigid Calcic 

Hapludolls  
51.4 

BgC 

Buse-Barnes 

loams, 6 to 9% 

slopes 

Buse (55%) 

Barnes (30%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Typic 

Calciudolls 

Fine-loamy, mixed, superactive, frigid Calcic 

Hapludolls  

0.4 

Hb 

Hamerly-Badger 

complex, 

0 to 2% slopes 

Hamerly (55%) 

Badger (30%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Aeric 

Calciaquolls  

Fine, smectitic, frigid Vertic Argiaquolls 

13.6 

LnB 

Lanona-Swenoda 

sandy loams, 

2 to 6% slopes 

 

Lanona (60%) 

Swenoda (25%) 

Minor Components (15%) 

Coarse-loamy, mixed, superactive, frigid 

Calcic Hapludolls 

Coarse-loamy, mixed, superactive, frigid 

Pachic Hapludolls 

25.8 

SwA 

Swenoda -Lanona 

sandy loams, 

0 to 2% slopes 

 

Swenoda (55%) 

Lanona (35%) 

Minor Components (10%) 

Coarse-loamy, mixed, superactive, frigid 

Pachic Hapludolls 

Coarse-loamy, mixed, superactive, frigid 

Calcic Hapludolls 

6.7 

**Soil map units, map unit names, and soil classification information from Web Soil Survey (USDA-NRCS, 2018). 

 *44°27'37.0"N, 96°50'35.5"W, Brookings County, SD 
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Figure 2.2 Spatial distribution of soil samples on field B (44°27'37.0"N, 96°50'35.5"W, Brookings County, SD), Map Source: Web Soil 

Survey (WSS), USGS, USDA, NRCS (2018). 
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Table 2.5 Taxonomic classification of named soils for each soil mapping unit in field C*  

Map 

Unit 

Map Unit Name Major Components Soil Classification for Named Soil Series** Area of 

Interest (%) 

DsA 

Doland-Svea loams, 

0 to 2% slopes 

 

Doland (55%) 

Svea (25%) 

Minor Components (20%) 

Fine-loamy, mixed, superactive, frigid Calcic 

Hapludolls 

Fine-loamy, mixed, superactive, frigid Pachic 

Hapludolls  

0.2 

EgB 

Egeland-Embden 

complex, 2 to 6% 

slopes 

 

Egeland (60%) 

Embden (30%) 

Minor Components (%10) 

Coarse-loamy, mixed, superactive, frigid 

Calcic Hapludolls 

Coarse-loamy, mixed, superactive, frigid 

Pachic Hapludolls 

47.2 

LnB 

Lanona-Swenoda 

sandy loams, 2 to 6% 

slopes 

 

Lanona (60%) 

Swenoda (25%) 

Minor Components (15%) 

Coarse-loamy, mixed, superactive, frigid 

Calcic Hapludolls 

Coarse-loamy, mixed, superactive, frigid 

Pachic Hapludolls 

5.3 

MaC 

Maddock-Egeland 

sandy loams, 6 to 9% 

slopes 

Maddock (65%) 

Egeland (25%) 

Minor Components (10%) 

Sandy, mixed, frigid Entic Hapludolls 

Coarse-loamy, mixed, superactive, frigid 

Calcic Hapludolls 

3.0 

SrA 
Strayhoss loam, 

0 to 2% slopes 

Strayhoss (85%) 

Minor Components (15%) 

Fine-loamy over sandy or sandy-skeletal, 

mixed, superactive, frigid Calcic Hapludolls 
0.1 

VaA 

Venagro-Svea loams, 

0 to 2%t slopes 

 

Venagro (60%) 

Svea (20%) 

Minor Components (20%) 

Fine-loamy, mixed, frigid Udic Haploborolls 

Fine-loamy, mixed, superactive, frigid Pachic 

Hapludolls  

44.2 

**Soil map units, map unit names, and soil classification information from Web Soil Survey (USDA-NRCS, 2018). 

*(44°25'54.2"N 96°51'47.0"W, Brookings County, SD). 
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Figure 2.3 Spatial distribution of soil samples on field C (44°25'54.2"N, 96°51'47.0"W, Brookings County, SD), Map Source: Web 

Soil Survey (WSS), USGS, USDA, NRCS (2018). 
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Table 2.6 Taxonomic classification of named soils for each soil mapping unit in field D* 

Map Unit Map Unit Name Major Components Soil Classification for Named Soil Series** Area of 

Interest (%) 

51 

La Prairie loam, 

0 to 2% slopes, 

occasionally flooded 

La Prairie (75%) 

Minor Components (25%) 

Fine-loamy, mixed, superactive, frigid Cumulic 

Hapludolls 
2.5 

70 
Svea loam, 

1 to 3% slopes 

Svea (85%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Aquic 

Pachic Hapludolls 
12.6 

127B 

Sverdrup sandy loam, 

2 to 6% slopes 

 

Sverdrup (70%) 

Minor Components (30%) 

Sandy, mixed, superactive frigid Typic 

Hapludolls 
2.6 

141B 

Egeland sandy loam, 

2 to 6% slopes 

 

Egeland (70%) 

Minor Components (30%) 

Coarse-loamy, mixed, superactive, frigid Calcic 

Hapludolls 
1.7 

168B 

Forman clay loam, 

2 to 6% slopes 

 

Forman (75%) 

Minor Components (%25) 

Fine-loamy, mixed, superactive, frigid Calcic 

Argiudolls 
3.7 

184 

Balaton-Hamerly 

complex, 

1 to 4% slopes 

 

Balaton (55%) 

Hamerly (30%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Aquic 

Calciudolls 

Fine-loamy, mixed, superactive, frigid Aeric 

Calciaquolls  

1.4 

220D2 

Langhei-Barnes, 

moderately eroded, 

complex, 

12 to 20% slopes 

 

Langhei (50%) 

Barnes (35%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Typic 

Eutrudepts 

Fine-loamy, mixed, superactive, frigid Calcic 

Hapludolls  

3.2 

284B 

Poinsett-Waubay silty 

clay loams, 

1 to 6% slopes 

 

Poinsett (65%) 

Waubay (25%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Calcic 

Hapludolls 

Fine-silty, mixed, superactive, frigid Pachic 

Hapludolls 

0.2 
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Table 2.6 (continued)  

Map Unit Map Unit Name Major Components Soil Classification for Named Soil Series** 
Area of 

Interest (%) 

 

293B 

 

Swenoda loam, 

2 to 6% slopes 

Swenoda (75%) 

Minor Components (25%) 

Coarse-loamy, mixed, superactive, frigid Pachic 

Hapludolls 
1.5 

418 

Lamoure silty clay loam, 

0 to 2% slopes, 

occasionally flooded 

Lamoure (80%) 

Minor Components (20%) 

Fine-silty, mixed, superactive, calcareous, frigid 

Cumulic Endoaquolls 
10.0 

450 

Rauville silty clay loam, 

0 to 2% slopes, 

frequently flooded 

Rauville (80%) 

Minor Components (20%) 

Fine-silty, mixed, superactive, calcareous, frigid 

Cumulic Endoaquolls 
0.2 

748B 
Hamlet loam, 

1 to 4% slopes 

Hamlet (70%) 

Minor Components (30%) 

Fine-loamy, mixed, superactive, frigid Oxyaquic 

Hapludolls 
16.0 

769A 
Mehurin clay loam, 

0 to 2% slopes 

Mehurin (75%) 

Minor Components (25%) 
Fine, smectitic, frigid Aquic Argiudolls 13.7 

777C2 

Esmond-Sisseton-

Heimdal, complex, 

2 to 12% slopes, 

moderately eroded 

 

Esmond (40%) 

Sisseton (30%) 

Heimdal (15%) 

Minor Components (15%) 

Coarse-loamy, mixed, superactive, frigid Typic 

Calciudolls 

Coarse-loamy, mixed, superactive, frigid Typic 

Eutrudepts 

Coarse-loamy, mixed, superactive, frigid Calcic 

Hapludolls 

5.3 

942C2 

Langhei-Barnes, 

moderately eroded, 

complex, 

6 to 12% slopes 

Langhei (55%) 

Barnes (30%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Typic 

Eutrudepts 

Fine-loamy, mixed, superactive, frigid Calcic 

Hapludolls  

3.6 
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** Soil map units, map unit names, and soil classification information from Web Soil Survey (USDA-NRCS, 2018). 

*(45°04'24.0"N, 96°26'28.8"W, Lac qui Parle County, MN) 

 

Table 2.6 (continued) 

Map Unit Map Unit Name Major Components Soil Classification for Named Soil Series** 
Area of 

Interest (%)  

1233B 

Esmond-Heimdal-

Sisseton complex, 

2 to 6% slopes 

Esmond (40%) 

Heimdal (35%) 

Sisseton (15%) 

Minor Components (10%) 

Coarse-loamy, mixed, superactive, frigid Typic 

Calciudolls 

Coarse-loamy, mixed, superactive, frigid Calcic 

Hapludolls 

8.1 

1938 

Lakepark-Parnell, 

occasionally ponded, 

complex, 

0 to 2% slopes 

 

Lakepark (45%) 

Parnell (25%) 

Minor Components (30%) 

Fine-loamy, mixed, superactive, frigid Cumulic 

Endoaquolls 

Fine, smectitic, frigid Vertic Argiaquolls  

11.9 

J105B 

Arvilla sandy loam, Till 

Prairie, 

2 to 6% slopes 

Arvilla (85%) 

Minor Components (15%) 

Sandy, superactive, mixed, frigid Calcic 

Hapludolls 

 

1.8 
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Figure 2.4 Spatial distribution of soil samples on field D (45°04'24.0"N, 96°26'28.8"W, Lac qui Parle County, MN), Map Source: Web 

Soil Survey (WSS), USGS, USDA, NRCS (2018). 
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Table 2.7 Taxonomic classification of named soils for each soil mapping unit in field E* 

Map 

Unit 
Map Unit Name Major Components Soil Classification for Named Soil Series** 

Area of 

Interest (%) 

34 

Parnell silty clay loam, 

occasionally ponded, 

0 to 1% slopes 

Parnell (65%) 

Minor Components (35%) 
Fine, smectitic, frigid Vertic Argiaquolls 3.5 

47 
Colvin silty clay loam 

0 to 1% slopes 

Colvin (75%) 

Minor Components (25%) 

Fine-silty, mixed, superactive, frigid Typic 

Calciaquolls 
14.6 

70 

Svea loam, 

1 to 3% slopes 

 

Svea (85%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Aquic 

Pachic Hapludolls 
2.2 

127B 

Sverdrup sandy loam, 

2 to 6% slopes 

 

Sverdrup (70%) 

Minor Components (30%) 

Sandy, mixed,superactive, frigid Typic 

Hapludolls 
18.5 

127C 

Sverdrup sandy loam, 

6 to 12% slopes 

 

Sverdrup (70%) 

Minor Components (30%) 

Sandy, mixed,superactive, frigid Typic 

Hapludolls 
2.2 

141B 

Egeland sandy loam, 

2 to 6% slopes 

 

Egeland (70%) 

Minor Components (30%) 

Coarse-loamy, mixed, superactive, frigid 

Calcic Hapludolls 
3.6 

168B 

Forman clay loam, 

2 to 6% slopes 

 

Forman (75%) 

Minor Components (25%) 

Fine-loamy, mixed, superactive, frigid Calcic 

Argiudolls 
0.8 

184 

Balaton-Hamerly 

complex, 

1 to 4% slopes 

 

Balaton (55%) 

Hamerly (30%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Aquic 

Calciudolls 

Fine-loamy, mixed, superactive, frigid Aeric 

Calciaquolls 

2.5 

236 
Vallers clay loam, 

0 to 2% slopes 

Vallers (85%) 

Minor Components (15%) 

Fine-loamy, mixed, superactive, frigid Typic 

Calciaquolls 
8.0 

246 

Marysland loam, 

0 to 2% slopes 

 

Marysland (75%) 

Minor Components (25%) 

Fine-loamy over sandy or sandy-skeletal, 

mixed, superactive, frigid Typic Calciaquolls 
11.1 
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Table 2.7 (continued) 

Map 

Unit 
Map Unit Name Major Components Soil Classification for Named Soil Series** 

Area of 

Interest (%) 

338 
Waubay loam, 

0 to 2% slopes 

Waubay (90%) 

Minor Components (10%) 

Fine-silty, mixed, superactive, frigid Pachic 

Hapludolls 
1.5 

347 
Malachy loam  

0 to 1% slope 

Malachy (75%) 

Minor Components (25%) 

Coarse-loamy, mixed, superactive, frigid 

Aquic Calciudolls 
9.8 

769A 
Mehurin clay loam, 

0 to 2% slopes 

Mehurin (75%) 

Minor Components (25%) 
Fine, smectitic, frigid Aquic Argiudolls 1.9 

902B 
Hokans-Buse complex, 

2 to 6% slopes 

Hokans (55%) 

Buse (23%) 

Minor Components (22%) 

Fine-loamy, mixed, superactive, frigid Calcic 

Hapludolls 

Fine-loamy, mixed, superactive, frigid Typic 

Calciudolls 

2.4 

1938 

Lakepark-Parnell, 

occasionally ponded, 

complex, 

0 to 2% slopes 

Lakepark (45%) 

Parnell (25%) 

Minor Components (30%) 

Fine-loamy, mixed, superactive, frigid 

Cumulic Endoaquolls 

Fine, smectitic, frigid Vertic Argiaquolls 

2.7 

1994 
Embden sandy loam 

0 to 2% slope 

Embden (75%) 

Minor Components (25%) 

Coarse-loamy, mixed, superactive, frigid 

Pachic Hapludolls 
5.7 

J105A 

Arvilla sandy loam, Till 

Prairie, 

0 to 2% slopes 

Arvilla (85%) 

Minor Components (15%) 

Sandy, mixed, superactive, frigid Calcic 

Hapludolls 
3.3 

J105B 

Arvilla sandy loam, Till 

Prairie, 

2 to 6% slopes 

Arvilla (85%) 

Minor Components (15%) 

Sandy, mixed, superactive, frigid Calcic 

Hapludolls 
4.5 

J105C 

Arvilla sandy loam, Till 

Prairie, 

6 to 12% slopes 

Arvilla (75%) 

Minor Components (25%) 

Sandy, mixed, superactive, frigid Calcic 

Hapludolls 
1.2 

**Soil map units, map unit names, and soil classification information from Web Soil Survey (USDA-NRCS, 2018). 

*(45°05'27.6"N 96°26'42.4"W, Lac qui Parle, County, MN).
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Figure 2.5 Spatial distribution of soil samples on field E (45°05'27.6"N 96°26'42.4"W, Lac qui Parle, County, MN), Map Source: Web 

Soil Survey (WSS), USGS, USDA, NRCS (2018) 
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Figure 2.6 Illustration of soil sampling design 

Lab Analysis 

Soil Organic Matter 

Soil organic matter was determined using the loss on ignition method in 

accordance with the SDSU Soil Testing and Plant Analysis Laboratory protocol (SDSU, 

2006). Racks of 10mL crucibles were weighed before the analysis and recorded. Five g of 

< 2mm air-dried crushed soils were placed into each crucible. Check soils were used for 

quality assurance. Soil samples were placed in a furnace (Lindberg Hevi-Duty BPC) at 

100OC for two hours in order to remove all moisture from soil particles. Crucibles were 

removed from the oven and allowed to cool down for 15 min. After cooling crucibles 

were weighed to calculate weight loss. Soil samples were then returned to furnace for 2 

hours and 10 minutes at 400OC. After second heating, samples were removed from the 

furnace and weighed. Equations 2.1 to 2.3 were used to determine SOM. The conversion 

factor was 1.72 to convert from SOM to SOC (Pribyl, 2010).  
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Crucible Weight after 100°C (g) − Empty Crucible Weight (g) = Heated Weight (g) (HT)     [2.1] 

Crucible Weight after 400°C (g) − Empty Crucible Weight (g) = Ignition Weight (g) (IG)   [2.2a] 

HT – IG = Weight loss (g)                                                                                                       [2.2b] 

Weight Loss (g) / Heated Weight (g) (HT) × 100 = % Weight Loss                                       [2.2c] 

a + b (% Weight Loss) = % SOM                                                                                              [2.3] 

Note: The coefficients, a and b in equation 2.3 are calculated by following the SDSU Soil 

Testing and Plant Analysis Laboratory (SDSU, 2006) protocols. Analysis was completed 

as two replicates. 

Crop Residue Measurement  

The crop residue on the land surface was measured using line transect method 

(Shelton et al., 1990). A 30.5m (100ft) tape measure was used for this method. The tape 

measure was laid on the ground diagonally to the row direction. At each 30.5cm (1.0ft) 

marker on same side of the tape I recorded the number of times plant residue was present 

at the designated tape locations. The recorded total number of intersections represent the 

percentage of surface residue. For instance, if 25 out of 100 points intersected with plant 

residue, then the residue on the ground is 25%. 

Moisture Content 

Soil moisture was determined as gravimetric moisture content following SDSU 

Soil Testing and Plant Analysis Laboratory protocol (SDSU, 2006). Soil samples were air 

dried at 40.5OC for at least 5 days to reach air dry soil mass. Soil moisture content was 

calculated by the ratio of the mass lost using equation 2.4. 
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 % soil moisture = [(wet soil wt.) – (dry soil wt.) / (dry soil wt.)] * 100%                                [2.4] 

Particle Size  

Before analyzing soil particle size by hydrometer method, SOM was removed 

from sample using 30% hydrogen peroxide (H2O2) (Malo et al., 2014). Fifty grams of soil 

was weighed in to 1-L Pyrex bottle and placed under the fume hood. Twenty mL of 30% 

H2O2 were added to the 1-L Pyrex bottle and the oxidation reaction was monitored to 

prevent effervescence from exiting the bottle. After reaction subsided, three to five drops 

of acetic acid were added to the 1-L Pyrex bottle in order to break iron related structural 

units (peds) and then the bottle was placed on the hot plate at 300OC. After that 15mL of 

30%H2O2 was added to the 1-L Pyrex bottle. The bottles were monitored, and water 

added to prevent soil from drying out, especially in the bottom part. The H2O2 additions 

continued until there was no further color change of the soil sample (SOM removed from 

the soil). After removing SOM, bottles were placed in a forced air oven to dry at 105 OC 

overnight. 

 After oven drying, samples were removed from the oven and allowed to cool 

down until reaching room temperature in a moisture free container. The samples were 

weighed and 50mL dispersion solution (sodium hexametaphosphate and sodium 

carbonate) was added. The bottles were filled with 425mL DI water, capped, wrapped 

with cloth bag and placed in a reciprocating shaker to shake overnight. Soil samples were 

then transferred to 1-L graduated cylinders. All soil particles were rinsed from the Pyrex 

bottle to the cylinders and filled the cylinders with DI water until the 1 L mark. A 

wooden plunger was used to mix the sample for 60 seconds. As soon as, the samples 

were homogenized, a glass hydrometer was placed into the cylinders to record 40 second 
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reading (after mixing stopped). The solution temperature was measured just prior to 

mixing with plunger or after the 40 sec reading.  After two hours of settling time, second 

hydrometer reading was taken, and the solution temperature was again recorded. Soil 

textural fractions were calculated using the equations 2.5 to 2.14. Soil textural class was 

determined using a soil textural triangle. 

 40 Second Temperature (OC) − 20OC = 40 Second Temperature Difference (OC)                  [2.5] 

40 Second Temperature Difference (OC) × 0.36 g/L-1 = 40 Second Temperature                   [2.6] 

 Correction Factor 

 (Hydrometer Reading – Dispersion correction factor) + 40 Second Temperature Correction   [2.7]              

Factor = Silt and Clay (g) 

Sample weight (g) − Silt and Clay (g) = Sand (g)                                                                      [2.8] 

(Sand (g) / Sample weight (g)) × 100% = % Sand                                                                     [2.9] 

 2-Hour Measured Temperature (OC) − 20 (OC) = 2 Hour Temperature Difference (OC)       [2.10] 

2-Hour Temperature Difference (OC) × 0.36 g/L-1 = 2 Hour Temperature                             [2.11] 

Correction Factor (OC)  

(2-Hour Hydrometer Reading – Dispersion correction factor) − 2 Hour Temperature           [2.12] 

      Correction Factor (OC) = Clay (g) 

(Clay (g) / Sample Weight (g)) × 100% = % Clay                                                                  [2.13] 

100% − % Sand − % Clay = % Silt                                                                                         [2.14] 
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Soil pH and Electrical Conductivity (EC) 

Soil samples from 0-15cm were air dried and grounded. Twenty g of soil was 

placed in a small beaker, 20mL of distilled water was added, and the suspension (the ratio 

of soil: water is 1:1) was stirred by hand for 60 seconds. After 30 minutes, the samples 

were again stirred with a glass rod before reading. Soil pH and EC was measured using 

the same probe all the time. The pH and EC meter were checked and calibrated for each 

set of 25 samples.  

Sum of Extractable Cations 

Sum of Extractable Cations (SOEC) was determined using the summation method 

in accordance with the SDSU Soil Testing and Plant Analysis Laboratory protocol 

(SDSU, 2006). Two g of soil was weighed and 20 mL of extracting solution 1M NH4 OAc 

(ammonium acetate) were added to flask. The samples were then shaken for 5 minutes 

with oscillating shaker. The soil solutions were extracted through Whatman #40 filter 

paper. The samples were analyzed using Atomic Adsorption (AA) unit to determine 

potassium (K+), calcium (Ca2+), magnesium (Mg2+) and sodium (Na+). The centimoles of 

charge per kilogram (cmolc kg-1) of each ion were calculated using equations 2.15 and 

2.16. When the soil pH was lower than 7, the SMP (Lime Requirement Test) pH buffer 

was used to measure exchangeable acidity in the SOEC calculations. For the SMP pH 

buffer test 10 g of soil was placed into plastic beakers and 10 mL of Nanopure water was 

added. The sample was stirred and allowed to sit for 5 minutes. Ten mL of SMP buffer 

was added to soil sample and shaken with oscillating shaker for 10 minutes. Lastly, the 

cmolc kg-1 of exchangeable acidity was calculated using equations 2.16. The pH was 

recorded using same probe. The final SOEC was calculated using equation 2.17 
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Conversion ppm to cmolc, kg-1                                                                                                                                     [2.15] 

 ppm in soil K+ / 390 = K+ cmolc kg-1 

 ppm in soil Ca2+ / 200 = Ca+2 cmolc kg-1 

 ppm in soil Mg2+ / 120 = Mg+2 cmolc kg-1 

 ppm in soil Na+ / 230 = Na+ cmolc kg-1 

cmolc exchangeable acidity /100g =12 (7.0 – SMP buffer pH). When soil pH reading ≥ 7.0, [2.16] 

           the cmolc kg-1 exchangeable acidity = 0 

Estimation of SOEC (cmolc kg-1) is determined by following equation:  

SOEC (cmolc kg-1) = cmolc kg-1 (K+, Na+, Ca2+, Mg2+) + cmolc kg-1 H+                                 [2.17] 

Phosphorous as Phosphate (PO3
4- )  

Total Orthophosphate (P, ortho), a form of inorganic phosphorus, in the sample 

was measured by direct colorimetric analysis procedure (O’Dell, 1993). Two g soil was 

placed in a 125 mL Erlenmeyer flask and 20 mL Ortho-Phosphate Extracting Solution 

(0.03 MNH4F, 0.025 MHCl) was added. Flasks were then placed on reciprocating shaker 

for 15 min and filtered. Ammonium molybdate and antimony potassium tartrate react in 

an acid medium with dilute solutions of phosphorus to form an antimony-phospho-

molybdate complex. This complex is reduced to an intensely blue-colored complex by 

ascorbic acid. The color is proportional to the phosphorus concentration in the solution. 

The solution was analyzed the same day as extracted using Astoria Nutrient Analyzer 

(Astoria-Pacific, Inc. Clackamas, OR). 
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Nitrate - N (NO3
--N) and Ammonium -N (NH4

+-N) 

Ten of g soil was placed in a 125mL Erlenmeyer flask, and 100mL 1.0M KCl was 

added. Flasks were placed on reciprocating shaker for 60 min and the solution filtered 

(Kim et al., 2008). Nitrate (NO3
--N) was determined by reduction to nitrite (NO2

--N) via 

a cadmium reactor, diazotized with sulfanilamide and coupled to N-(1-Napthyl)-

ethylenediamine dihydrochloride to form an azo-chromophore (red-purple in color) and 

measured spectrophotometrically at 520nm, using the Astoria Nutrient Analyzer (Astoria-

Pacific, Inc. Clackamas, OR).  

Ammonium (NH4
+-N) was determined by the phenate method using the same soil 

extraction used for NH3
--N. It is based on the reaction of NH3

--N in alkaline solution with 

phenolate to produce a blue color (indophenol blue) in the presence of a strong oxidizing 

agent, like hypochlorite. The process is accelerated by heating the solution to 37OC and 

measured spectrophotometrically using the Astoria Nutrient Analyzer (Astoria-Pacific, 

Inc. Clackamas, OR).  

Statistical Analysis 

Descriptive statistics were completed using R 3.5.0 (R Core Team, 2018). Pearson 

Correlation Matrix and Simple Linear Regressions were completed in JMP (SAS Institute 

Cary, NC). 

Multiple linear regression (MLR) analysis was conducted in R 3.5.0. The Variance 

Inflation Factor (VIF) was calculated to detect multicollinearity problem. The general 

rule is that VIF values exceeding 4 warrant further examination, while VIF values 

exceeding 10 indicate serious multicollinearity requiring model modifications (Simon, 

2004).  
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The VIF is defined in Equation 2.18 (Simon, 2004): 

𝑉𝐼𝐹 =  
1

1 − 𝑅𝑘
2       

𝑅𝑘
2 is the correlation coefficient between two independent variables, and VIF = Variance 

Inflation Factor. 

Stepwise regression model selection was completed in R 3.5.0. Depending on VIF 

values, Principal Component Regression (PCR) which is the method of combining linear 

regression with principal component analysis (Liu et al., 2003) and Ridge Regression 

(RR) which minimize the sum of square error (Marquardt and Snee, 1975) were applied 

to build SOC prediction model. 

To compare the prediction performance of different models, we presented the 

cross-validation values of the different models. For validation, we followed leave one out 

cross validation. The function estimator is trained on all the data of 150 points except for 

one point and a prediction model applied for that point.  

Spatial Data Acquisition 

 The Operational Land Imager (OLI) on Landsat-8 is the most recent spacecraft 

launched by NASA Earth Observation Center into orbit on February 11, 2013. As 

Landsat-8 was being designed, scientists developed new focal plane technology that 

allows for a new class of enhanced and improved instruments to meet the needs of the 

Landsat community. Landsat 8 Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) images consist of nine spectral bands with a spatial resolution of 30m for 

BandsL 1 to 7 and 9. The resolution for BandL 8 (panchromatic) is 15m. Thermal bandsL 

[2.18] 
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10 and 11 are useful in providing more accurate surface temperatures and are collected at 

100-meter resolution (See Table 2.8). The approximate scene size is 170km north-south 

by 183km east-west (106 mile by 114 miles). 

Table 2.8 Wavelength and spatial resolution of different bands of Landsat 8 (Zanter, 2016). 

The PlanetScope Scene product is a Scaled Top of Atmosphere Radiance (at 

sensor) and sensor corrected product, providing imagery as seen from the spacecraft 

without correction for any geometric distortions inherent in the imaging process. Three 

PlanetScope satellite data images were acquired over the Brookings County, SD and Lac 

qui Parle County, MN in US. The date of acquisition for the imagery was in May 2018. 

The acquisition time was chosen to be cloud free and as close as possible to soil sampling 

time (just after planting in May). This was done to reduce the crop residue effect on soil 

reflectance values. Technical details of the PlanetScope Scene are shown in Table 2.9 

 

Bands Wavelength 

(µm) 

SpatialResolution 

(m) 

BandL 1 - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30 

BandL 2 - Blue 0.452 - 0.512 30 

BandL 3 - Green 0.533 - 0.590 30 

BandL 4 - Red 0.636 - 0.673 30 

BandL 5 - Near Infrared (NIR) 0.851 - 0.879 30 

BandL 6 - Shortwave Infrared (SWIR) 1 1.566 - 1.651 30 

BandL 7 - Shortwave Infrared (SWIR) 2 2.107 - 2.294 30 

BandL 8 - Panchromatic 0.503 - 0.676 15 

BandL 9 - Cirrus 1.363 - 1.384 30 

BandL 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

BandL 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 
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Table 2.9 Wavelength and spatial resolution of different bands of PlanetScope scene (Team, 2017) 

Bands Wavelenght(µm) Spatial Resolution(m) 

BandP 1 (Blue) 0.455-0.515 ~3.0 m  

BandP 2 (Green) 0.500-0.590 ~3.0 m  

BandP 3 (Red) 0.590-0.670 ~3.0 m  

BandP 4 (Near-Infrared) 0.780-0.860 ~3.0 m  

 

Image Processing 

 The study area fields had some residue left on the soil surface depending on each 

farmer`s management system. We had corn and soybean residue in the study areas from 

the previous harvests. The fields were mostly bare and had no living vegetation at the 

time of sampling. To identify and estimate the SOC in the study area indices [the 

normalized difference vegetation index (NDVI), modified soil-adjusted vegetation index 

(MSAVI2), bare soil index (BSI), and Brightness Index (BI)] were considered and have 

proven useful for monitoring vegetation and SOC content   These indices were developed 

to calculate more reliable soil brightness correction factors (Kumar, 2013; Zimmermann 

et al., 2006). In order to prepare the imagery for processing of various indices the Digital 

Number (DN) of the Landsat 8 imagery is converted to radiance at the beginning. Then, 

the DN is converted into spectral reflectance enabling the identification of the spectral 

properties of the pixels of the images. All the image processing was done using ArcGIS 

v10.4.1 (Environmental Systems Research Institute, Inc. Redlands, CA USA, ESRI). 

 In the first stage, DN values were converted into spectral radiance and later to the 

top of atmosphere reflectance. Landsat 8 imagery contains band-wise parameters like the 

band specific multiplicative rescaling factor, additive rescaling factor in the metadata file 

which are used for direct conversion of DN to Top of Atmosphere (TOA) reflectance 
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values (Alipour et al., 2003; Irons et al., 2012). Operational Land Imager bands were 

converted were to TOA spectral radiance using scaling factors from the metadata using 

equation 2.19 (Zanter, 2016). 

Lλ=MLQcal+AL                                                                                              [2.19] 

where: 

Lλ = TOA spectral radiance (Watts/(m2 * srad * μm)), 

ML = Band-specific multiplicative rescaling factor from the metadata 

(RADIANCE_MULT_BAND_x, where x is the band number), 

AL = Band-specific additive rescaling factor from the metadata 

  (RADIANCE_ADD_BAND_x, where x is the band number), and 

Qcal =   Quantized and calibrated standard product pixel values (DN)    

   

The TOA reflectance of the OLI bands were computed using the reflectance 

rescaling factors available from the metadata using equation 2.20 (Zanter, 2016) 

Ρλ
’ = MρQcal + Aρ                                                                                                                 [2.20] 

where: 

ρλ
'= TOA planetary reflectance, without correction for solar angle.   

(Note that ρλ
' does not contain a correction for the sun angle), 

Mρ = Band-specific multiplicative rescaling factor from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number), 

Aρ   = Band-specific additive rescaling factor from the metadata 

(REFLECTANCE_ADD_BAND_x, where x is the band number), and 

Qcal =   Quantized and calibrated standard product pixel values (DN) 
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Top of Atmospheric Reflectance with a correction for the sun angle is (see 

equation 2.21): 

Ρλ= ρλ
’ /sin (θSE)                                                                       [2.21] 

Where; 

 θSE= Local sun elevation angle. The scene center sun elevation angle in degrees is 

provided in the metadata (SUN_ELEVATION). 

 The Normalized Difference Vegetation Index (NDVI) was developed to highlight 

the difference of the spectral responses of vegetation at the red and near infrared bands 

(Deng et al., 2015). NDVI (see equation 2.22) depicts the vegetation condition through 

the ratio of responses in near infrared (BandL 5) and visible bands (BandL 4) of the 

Landsat 8 datasets see Table 2.8 for Landsat 8 bands information). It is expressed as:  

NDVI = (BandL 5- BandL 4) / (BandL 5 + BandL 4)                         [2.22] 

 

The Modified Second Adjusted Vegetation Indices 1 and 2 (MSAVI1, MSAVI2) 

were developed. MSAVI2 (Qi et al., 1994b) was developed to calculate a more reliable 

soil brightness correction factor.  These indices are variants of Soil Adjusted Vegetation 

Index (SAVI), where the factor L is dynamically adjusted explaining how much 

vegetation there is. Modified Soil Adjusted Vegetation Index is expressed in the equation 

2.23 and 2.23a. 

𝑀𝑆𝐴𝑉𝐼1 =
( 𝑁𝐼𝑅 −  𝑅𝑒𝑑 )(1 + 𝐿)

NIR + Red + L
 

 

 

 

[2.23] 
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In MSAVI1 the factor L is described by the following expression and WDVI is 

Weighted Difference Vegetation Index = NIR- aR. 

L = 1- 2×a×NDVI×WDVI                                              [2.23a]  

 

MSAVI2 is an iterated version of MSAVI1, developed by substituting 1 - 

MSAVI(n-1) as the L factor in MSAVI(n), and then inductively solving MSAVI(n) = 

MSAVI(n-1) (Mróz and Sobieraj, 2004). See equation 2.24 

 

𝑀𝑆𝐴𝑉𝐼2 =
2NIR + 1 − √(2NIR + 1)2 − 8(NIR − Red)

2
 

 

 Bare soil index can be defined as the numerical indicator that combines blue, 

green, red and NIR bands to characterize the soil variations.  The BSI is a normalized 

index of the difference sums of two separating bands of the satellite image (for the 

vegetation). Equation (2.25) used for calculating the BSI is given below (Jamalabad, 

2004): 

 

𝐵𝑆𝐼 =
[(𝐵5 + 𝐵3) − (𝐵4 + 𝐵1)]

[(𝐵5 + 𝐵3) + (𝐵4 + 𝐵1)]
× 100 + 100 

 

where, BSI =bare soil index, B1 = Blue Band, B3 = Green Band, B4 =Red Band, and B5 

= Near Infra-Red Band from Landsat 8. The comparison was done using NDVI with the 

bare soil index to estimate the barren areas in the fields. Moreover, The Red and Green 

bands were used for calculating the Brightness Index (BI) for Landsat 8 and PlanetScope 

imagery (see Table 2.10). The BI was used to identify salt affected spots in the study 

areas (Escadafal, 1989). Indices used for this study are shown in Table 2.10. The 

methodology used for spatial data and soil data processing is represented in Figure 2.7. 

[2.24] 

[2.25] 
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SoilWeb Data Acquisition 

Digital soil data was collected from the USDA-NRCS Web Soil Survey (WSS) 

website (websoilsurvey.sc.egov.usda.gov, 2018) and the SoilWeb Application (SWA) 

from the University of California Davis, California Soil Resource Lab 

(casoilresource.lawr.ucdavis.edu/soilweb-apps/, 2018). The websites were used as 

sources for gathering soil special and numerical lab data. First of all, our soil test 

sampling locations were found using the WSS website and the accuracy of locations 

were checked. After that, soil test data for each sampling point lab data was obtained 

using the SoilWeb Application (SWA). The SWA website provides detailed information 

about map units and their components. After the soil map units covers our sampling 

locations were found, specific soil property information (e.g., % sand, % silt, % clay, 

bulk density, % TC, % OC, % OM, pH, base saturation, CEC [cation exchange 

capacity], % gypsum, % CaCO3 [lime], SAR [sodium adsorption ratio], soil series % in 

each map unit and others) was obtained using the Soil Data Explorer function of SWA. 

Table 2.10 Detail of Derived Indices for Landsat 8 and PlanetScope 

NDVI = Normalized Difference Vegetation Index, BSI = Bare Soil Index, MSAVI2 = 

Modified Soil Adjusted Vegetation Index 2, BI = Brightness Index. 

 

The methodology used for spatial data and soil data processing is represented in Figure 2.7 

Index        Definition   Reference 

NDVI NIR −   Red 

NIR +  Red
 

Rouse Jr et al. 

(1974) 

BSI  [(Red +  Green) −   (Red +  Blue)]

[(NIR +  Green)  +  ( Red +  Blue) ]
 ×  100 +  100 

Kumar (2013) 

MSAVI2 2 × NIR + 1 − √(2 × NIR +  1)2  −  8 × ρNIR −  Red)

2
 

Qi et al. (1994) 

BI √ (Red ×   Red) +  ( Green ×  Green)

2
 

(Gholizadeh et al., 

2018) 
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Figure 2.7 Landsat 8 flow chart of methodology for spatial data and soil data processing 
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CHAPTER 3: Results 

 

Descriptive Statistics of the Soil Organic Carbon (SOC) and Soil Test Data 

Pearson correlation and simple linear regression were applied to reveal 

correlations between SOC and other soil properties. The complete Pearson correlation 

matrices and soil test data by fields are given in Appendix A and Appendix E. All data 

were analyzed at the 95% confidence interval (α=0.05; p<0.05). The correlogram 

(Friendly, 2002) for the Pearson correlation matrix between soil test variables is shown in 

Figure 3.1. The linear regressions for SOC with fourteen other soil properties, Clay, Silt, 

Sand, Moisture, NO3
--N, NH4

+-N, pH, EC, SOEC, K+, Ca2+, Mg2+, PO4
3-

 , and Na+ in the 

studied fields are presented in Table 3.1.  

The SOC levels in cultivated areas were significantly affected by soil texture. 

While there is a positive correlation between SOC and silt and clay, there is a negative 

correlation with sand. Regression analyses were performed between SOC and clay, silt 

and sand (see equations [3.1], [3.2], and [3.3], respectively, in Table 3.1. Silt and clay 

have strong relationships with SOC due to texture’s role in SOM turnover. Clay has been 

shown to significantly protect SOM from quick decomposition by improving 

macroaggregate (> 0.25mm) aggregation and SOC adsorption.
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Figure 3.1 Correlogram of the Pearson correlation matrix between soil properties and soil organic carbon (SOC). Blue colder 

tones indicate a negative correlation; red and hotter tones represent a positive correlation between soil test data and SOC. EC = 

electrical conductivity, dS = deciSiemens, SOEC = sum of extractable cations, n (number of observations) = 150. 
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Table 3.1 Linear regression between soil organic carbon (SOC) and soil test data, EC = 

electrical conductivity, SOEC = sum of extractable cations, dS = decisiemens, SOCp = 

predicted soil organic carbon, n (number of observations) = 150. 

 

 

 
Equations Soil Variables RR2² Equation 

Number 
 

SOCp = 0.963 + (0.0563 x Clay)  Clay (g kg-1) 0.64 [3.1] 

 
SOCp = 1.24 + (0.0481 x Silt)  Silt (g kg-1) 0.54 [3.2] 

 
SOCp = 4.05 – (0.0337 x Sand)  Sand (g kg-1) 0.76 [3.3] 

 
SOCp = 0.96 + (0.0879 x Moisture)  Moisture (g kg-1) 0.66 [3.4] 

 
SOCp = 2.12 + (0.0132 x NO3

--N) NO3
--N (mg kg-1) 0.16 [3.5] 

 
SOCp = 2.53 + (0.000300 x NH4

+-N) NH4
+-N (mg kg-1) 0.001 [3.6] 

 
SOCp = 0.730 + (0.283 x pH1:1) pH1:1 0.15 [3.7] 

 
SOCp = 1.72 + (1.37 x EC1:1) EC1:1 (dS m-1) 0.28 [3.8] 

 
SOCp = 1.45 + (0.0582 x SOEC) SOEC (cmolc kg-1) 0.52 [3.9] 

 
SOCp = 2.32 + (0.000900 x K+) K+ (mg kg-1) 0.02 [3.10] 

 
SOCp = 1.67 + (0.000300 x Ca2+) Ca2+( mg kg-1) 0.40 [3.11] 

 
SOCp = 1.52 + (0.00200 x Mg2+) Mg2+( mg kg-1) 0.60 [3.12] 

 
SOCp = 2.47 + (0.00230 x Na+) Na+( mg kg-1) 0.004 [3.13] 

 SOCp = 2.93 – (0.00710 x PO4
3-) PO4

-3
 (mg kg-1) 0.11 [3.14] 
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Silt increases the plant available water holding capacity controlling the climate 

and ecosystem in soil (Burke et al., 1989; Gelaw et al., 2015; Koroleva et al., 2017). The 

determination of coefficient (R2) of the linear regression models is 0.64 (r = 0.80, 

p<0.0001) and 0.54 (r = 0.74, p<0.0001) for clay and silt, respectively. Nearly 64% and 

54% of the variance of SOC distribution can be estimated by clay and silt, respectively. 

The results (see Figure 3.1) also showed that there is a significant relationship between 

SOC and sand content (r=-0.87, p<0.0001). Moreover, the highest 𝑅2 was found between 

sand content and SOC (see equation [3.3] in Table 3.1). Soil moisture also showed a 

statistically positive relationship (see Figure 3.1) with SOC (r = 0.81, p<0.0001). SOC 

levels increased with increasing soil moisture levels in the soils studied. Nearly 66% of 

the variance of SOC can be estimated by this variable (see equation [3.4] in Table 3.1).  

 SOC was positively affected by nitrate nitrogen, NO3
--N (see Figure 3.1) r = 0.40 

and p<0.0001, while there was no significant correlation between SOC and ammonium 

nitrogen NH4
+-N (see Figure 3.1), r = 0.01 and p= 0.9056 (also see Table 3.1 equations 

[3.5] and [3.6]).  Nitrogen fertilization has helped to maintain SOC levels in cultivated 

areas. The source of N is the N that comes from pre-plant or post-plant farmers’ fertilizer 

applications. Studdert (2000) reported that there is a significant difference in SOC levels 

between fertilized and unfertilized crop areas. 

 A positive correlation between SOC and SOEC (r = 0.72, p<0.0001) was observed 

(see Figure 3.1). One half of the variance of the SOC can be explained with this variable 

(see Table 3.1, equation [3.9]). SOC is linearly associated with Magnesium (Mg2+) and 

Calcium (Ca2+) in the soils studied (see Table 3.1, equations [3.11] and [3.12]). Positive 

statistically significant correlations were found between SOC and Mg2+ (r = 0.77, 
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p<0.0001) and Ca2+ (r = 0.63, p<0.0001). There were no significant correlations, or 

regression relationships with Potassium (K+) or Sodium (Na+) (see Figure 3.1 and 

equations [3.10] and [3.13] in Table 3.1). Weak correlations were found between SOC 

and pH, PO4
3-

 and EC (see Figure 3.1, r = 0.39, p<0.0001, r = 0.38, p<0.0001 and r = 

0.53, p<0.0001; respectively). Weak regression relationships between pH, EC, and PO4
3-

 

were found (see Table 3.1 equations [3.7], [3.8], and [3.14], respectively). The 

descriptive statistics obtained for the soil variables examined in the study area are 

presented in Table 3.2a and Table 3.2b.The data presented in Table 3.2 shows the 

relatively wide range of values for the soil properties were studied [ SOC (1.05 to 4.38 g 

kg-1), Sand (10 to 75.6 g kg-1) SOEC (4.5 to 37.5 cmolc kg-1), Clay (8.1 to 48.61 g kg-1), 

Silt (10.9 to 51.1 g kg-1) and Moisture (7.3 to 36.2 g kg-1)].
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Table 3.2a Soil test data descriptive statistics physical properties. EC = electrical conductivity, dS = deciSiemens, 

SOEC = sum of extractable cations, SOC = soil organic carbon, n (number of observations) = 150 

 

 

 

 

 

 

 

 

                       *Std = Standard 

  

Parameters 
SOC 

(g kg-1) 

pH 

(1:1) 

Sand 

(g kg-1) 

SOEC 

(cmolc kg-1) 

Moisture 

(g kg-1) 

EC 

(dS m-1) 

(1:1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

Mean 2.54 6.39 44.8 18.7 18.0 0.60 28.1 27.1 

Std. Error 0.05 0.07 1.3 0.6 0.5 0.02 0.7 0.8 

Median 2.48 6.38 45.3 17.4 16.3 0.55 28.2 25.7 

Std.* Deviation 0.60 0.83 15.7 7.5 5.6 0.23 8.6 9.3 

Kurtosis -0.11 -1.16 -0.2 0.1 0.5 -1.22 -0.7 0.3 

Skewness 0.03 0.07 -0.4 0.7 0.9 0.16 -0.2 0.9 

Range 3.33 3.04 65.6 33.0 29.0 0.85 40.5 40.2 

Minimum 1.05 4.94 10.0 4.5 7.3 0.14 8.1 10.9 

Maximum 4.38 7.98 75.6 37.5 36.2 0.99 48.6 51.1 
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Table 3.2b Soil test data descriptive statistics, chemical properties.  K+ = potassium, Ca2+ = calcium, Mg2+ = magnesium, 

Na+ = sodium, NH4
+-N=ammonium nitrogen, NO3

--N = nitrate nitrogen, and PO4
3-

 = phosphate, n (number of observations) 

= 150. 

 

 

 

 

 

 

 

 

 

               *Std = Standard   

Parameters  
K+ 

(mg kg-1) 

Ca2+ 

(mg kg-1) 

Mg2+ 

(mg kg-1) 

Na+ 

(mg kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
3-

  

(mg kg-1) 

Mean  251 2730 513 33 26 32 55 

Std.* Error  9 98 19 1 2 1 3 

Median  220 2480 446 28 22 27 47 

Std. Deviation  112 120 235 16 18 18 33 

Kurtosis  19 0.2 3.6 4.88 -0.2 0.7 2.7 

Skewness  4 0.8 1.4 2.02 0.8 1.1 1.1 

Range  869 5513 1543 99 82. 89 205 

Minimum  129 607 122 14 5 0 0 

Maximum  998 6120 1664 113 87 89 205 
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Soil Data Multiple Linear Regression: 

This section considers the soil properties data and analyzes their effect on the SOC. The 

results of the global F test are presented in Table 3.3. We tested: 

{
       𝐻0:  𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 𝑎𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑆𝑂𝐶 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝐻𝑎: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 𝑖𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑆𝑂𝐶 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
 

 The observed value for the F-statistic is 74.2 (p <0.0001) and p value is less than 0.05 

which means that there is sufficient evidence to reject 𝐻0 and that at least one regressor 

variable is important in predicting SOC, the response variable. As can be seen from the 

Table 3.3, the coefficients of Sand and pH are significantly different from 0 and these 

independent regressors can be used to predict SOC with high degree of confidence. 

Please note that soil moisture was not used in model development even though significant 

correlations were noted in Figure 3.1 and Table 3.1. This decision was due to extreme 

changes in soil moisture on a daily or weekly basis and thus meaningful SOC predictions 

are less useful using soil moisture. 



61 
 

 

Table 3.3 Model output of SOC prediction using all soil test data. Significant at α = 0.05. 

EC = electrical conductivity, dS = deciSiemens, SOEC = sum of extractable cations, and 

n (number of observations) = 150. 

 

 

 

 

 

 

 

When all parameters where used the value of the 𝑅2 is 0.867 and this means that 

regressor variables explained approximately 86.7 % of SOC variation. However, in linear 

regression model development, 𝑅2  is always increased by adding regressor variables 

even though those variables may not have a statistically significant relationship with the 

response variable. The adjusted  𝑅2is used to compare goodness of the fit for regression 

models. Basically, the adjusted 𝑅2 decreases when  variables do not improve the model 

by an acceptable amount (Miles, 2014). In this study, the adjusted 𝑅2 was expected to be 

close 𝑅2. The adjusted 𝑅2 is 0.855 and was 1.1 percent less than 𝑅2. Mean square error is 

0.053 which is very good when compared to the range of the data studied. Since, there 

are variables in our regression model that are not significant, we reduced the model to 

include only the important variables. We used the stepwise sequential procedure to 

determine the best model (see Table 3.4). 

 

Parameters Estimate Std Error t Ratio Prob>|t| 

Intercept 4.38 0.38 11.49 <0.0001 

EC1:1 (dS m-1) 0.220 0.15 1.48 0.1408 

pH1:1 -0.300 0.056 -5.31 <0.0001 

Sand (g kg-1) -0.0200 0.0037 -6.57 <0.0001 

Clay (g kg-1) -0.0100 0.0073 -1.77 0.0788 

K+ (mg kg-1) -0.00200 0.0017 -1.47 0.1441 

Ca2+ (mg kg-1) -0.00600 0.003 -1.84 0.0682 

Mg2+ (mg kg-1) -0.0100 0.0054 -1.8 0.0735 

Na+ (mg kg-1) -0.000400 0.0033 -0.12 0.9028 

NH4
+-N (mg kg-1) -0.000300 0.0014 -0.25 0.8003 

NO3
--N (mg kg-1) 0.000900 0.0015 0.62 0.5382 

SOEC (cmolc kg-1) 1.24 0.645 1.92 0.0569 

PO4
-3

 (mg kg-1) -0.000200 0.0011 -0.16 0.8748 
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Table 3.4 Ordinary Least Square (OLS) model output of SOCP based on important 

variables. Significant at α = 0.05, SOEC = some of extractable cations, n = 150 (number 

of observations)  

Parameters Estimate Std Error t Ratio Prob>|t| 

Intercept 3.99 0.221 18.1 <0.0001* 

pH1:1  -0.206 0.0541  -3.81 0.0002* 

Sand (g kg-1)  -0.0227 0.0020  -11.3 <0.0001* 

SOEC (cmolc kg-1) 0.0475 0.00740 6.42 <0.0001* 

The value of the 𝑅2 for the reduced model is 0.827 and this means that regressor variables 

can explain approximately 82.7% of variation in response variable, but we know that 𝑅2 

always increases as additional regressor variables are added to the model. So, we calculated 

the adjusted 𝑅2 which is 0.823 and this value was 0.36 percent less than 𝑅2. Mean square 

error is 0.063 which is very good when compared to the range of the data studied. 

Since the regressors are highly correlated, we suspected that there might be 

multicollinearity problem in the data. Multicollinearity is a linear association among the 

regressor variables and exists when two or more regressors have high empirical 

correlation (Farrar et al., 1967; Wold et al., 1984). Multicollinearity problem can appear 

in big data sets. Multicollinearity can be calculated using the Variance Inflation Factor 

(VIF). The convention is that if VIF exceeds 4 , further investigation is needed (Simon, 

2004). The results of the Variance Inflation Factor (VIF) for this study are presented in 

Table 3.5: 
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Table 3.5 Variance Inflation Factor (VIF) results for soil parameters studied, SOEC = 

sum of extractable cations, SOC = soil organic carbon, EC = electrical conductivity, dS = 

deciSiemens, n (number of observations) = 150. 

Full Model Reduced Model 

Parameter VIF* Parameter VIF 

EC1:1 (dS m-1) 3.5 pH1:1 4.7 

pH1:1 6.5 Sand (g kg-1) 2.3 

Sand (g kg-1) 9.2 SOEC (cmolc kg-1) 7.1 

Clay (g kg-1) 11   

K+ (mg kg-1) 96   

Ca2+ (mg kg-1) 42000   

Mg2+ (mg kg-1) 44500   

Na+ (mg kg-1) 8.0   

NH4
+-N (mg kg-1) 2.0   

NO3
--N (mg kg-1) 2.0   

SOEC (cmolc kg-1) 65000   

PO4
3-

 (mg kg-1) 3.310   

*VIF values > 4 indicate possible multicollinearity problems 

     As seen in Table 3.5, there are many variables with the VIF greater than 4. Thus, 

there is a multicollinearity problem in our data set. Multicollinearity can be explained as 

one predictor variable in regression model also can be estimated from other predictors 

(Farrar et al., 1967). It is assumed that the quality of the fit and prediction capability of 

model is not compromised. To avoid multicollinearity problems an alternative is to use a 

biased form of estimation and two common approaches are: Ridge regression (RR), and 

Principle component regression (PCR). Ridge regression and Principal Component 

Analysis (PCA). 

In order to look at the prediction capability of our model, we randomly selected 

five soil samples from each field for validation. In order to measure the error of different 

developed models, we used a cross validation (CV) approach (Shao, 1993).  



64 
 

 

To compare the prediction performance of different models, the cross-validation 

values of the different models developed are given in Table 3.6. 

Table 3.6 Prediction performance of the models, PC = Principal Component, PCs = 

Principle Components used, CV= Cross-Validation, n (number of observations) = 150. 

Model CV  

Regression (Full model) 0.060 

Regression (Reduced model) 0.066 

Ridge Regression (Reduced model, k*= 1.3837) 0.066  

Principal Component Regression (Reduced model, # PCs=2) 0.071 

*k = Ridge parameter. 

Based on the observed cross validation values, the regression full model and ridge 

regression model are very close to the CV values of the reduced model. However, the 

regression model has multicollinearity making that model weak. In this regard, we can 

conclude that the ridge regression is the best model using equation [3.15]: 

SOCp = 3.98 – (0.210 x pH) – (0.220 x Sand g kg-1) + (0.0403 x SOEC cmolc kg-1) [3.15] 

Where; SOCp = predicted soil organic carbon, pH = soil pH, Sand = soil sand content, 

and SOEC = sum of extractable cations. 
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Figure 3.2 The linear relationship between measured and predicted soil organic carbon 

(SOC) from soil test data. 

 

Figure 3.2 shows the results of predicted versus measured SOC using soil test 

data. The approach showed very good agreement between measured SOC and predicted 

SOC with 𝑅2= 82.7 %, p<0.0001 and confidence level was 0.05.  

Relationship Between SOC and Landsat 8 Data 

Soil Line Concept to Indicate Bareness of the Study Areas 

Soil line can be explained as the relationship between the NIR band and the Red 

band of bare soil including the slope and intercept of the relationship (Fox et al., 2004).  

This relationship was first discovered (see equation [3.16])  by Richardson and Wiegand 

(1977) : 

NIR = β1 + β0                                                                                    [3.16] 

SOCmeasured = (1.02 x SOCpredicted) - 0.0867

R² = 0.827

n = 150
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where β1 is the slope of soil line and + β0 is the intercept. Results from test field data are 

shown below (see equation 3.17): 

NIR band = 0.00802 + (1.54 x Red band)                                      [3.17] 

 The 𝑅2 was found as 0.866. The detailed density plot was demonstrated in Figure 3.3. 

Figure 3.3 Soil line representing the observed linear relationship between Band 5 (NIR) 

(0.851 - 0.879 µm) and Band 4 (red band) (0.636 - 0.673 µm) reflectance from Landsat 8 

or image intensity of bare soil in the present study sites. 

The upper part of graph which has high reflectance showed the brighter soil due 

to lack of moisture and increased plant residue impacts. The soil samples in the upper 

part of the graph have coarser textures (more sand) and also these samples had more post-

harvest residue. Koroleva et al. (2017) mentioned that the soil data where the density is 

high in the graph had darker soil color due to high SOM content, more moisture, and less 

crop residue. 

 

NIR Band = 1.54 x Red Band + 0.00802 

R² = 0.866    

n = 150 
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Correlation Between SOC and Spatial Data from Landsat 8 

 

Pearson correlation and simple linear regression were applied to show correlations 

between SOC and spatial data from Landsat 8. All the data was analyzed at the 95% 

confidence interval (α = 0.05; p<0.05). The complete Pearson correlation matrix and 

Landsat 8 data are given in Appendix B and Appendix E. To demonstrate the 

relationships of Landsat 8 bands and spectral indices, the correlogram map between 

variables and SOC was built (Figure 3.4). 

The correlogram map identifies which indices and which spectral bands of 

Landsat 8 (see Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions) were the 

most statistically significant in predicting SOC in the test fields. When the map is 

evaluated, the highest statistical correlations were obtained between MSAVI2L (r = -0.54, 

p<0.0001), BandL 6 (r = -0.54, p<0.0001) and BandL 5 (r = -0.52, p<0.0001). The 

remaining bands and indices were BSIL (r = -0.44, p<0.0001) BandL 7 (r = -0.44, 

p<0.0001), BandL 4 (r = -0.42, p<0.0001), BIL (r = -0.39, p<0.0001), NDVIL (r = -0.39, 

p<0.0001), BandL 3 (r = -0.35, p<0.0001), and BandL 2 (r = -0.24, p=0.0026. The SOC 

prediction equations and R2 for each variable were calculated (see Table 3.7).
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Figure 3.4 Correlogram of the Pearson correlation matrix between soil organic carbon (SOC) and extracted bands from 

Landsat 8 (see Table 2.8 for Landsat 8 band descriptions) and different calculated indices (see Table 2.10). Blue color 

tones indicate negative correlations between SOC and spatial data (the values in the box show correlation coefficients at 

the 0.05 level), BandL = Landsat 8 bands, n (number of observations) = 150. 
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Table 3.7 Linear regressions between SOC and Landsat 8 Spatial Data, SOCp = 

Predicted soil organic carbon, BandL = Landsat 8 bands, BSIL = Bare Soil Index, NDVIL 

= Normalized Difference Vegetation Index, MSAVI2L =Modified Soil-Adjusted 

Vegetation Index, BIL = Brightness Index, n (number of observations) = 150. 

       *  See Table 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 

 

Multiple Linear Regression for Landsat 8 

In this section, we only considered the all spatial information data that was 

obtained from Landsat 8 and analyzed their effect on the SOC.  Results of the global F 

test are presented in Table 3.8. We tested: 

𝐻0:  𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 𝑎𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

𝐻𝑎: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 𝑖𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

The calculated F-statistic was 12.50 and p value was p<0.0001 (less than 0.05) 

and thus rejected the 𝐻0. There is at least one of the regressor variable important in 

predicting SOC. As seen in Table 3.8, the p values of BSIL, BandL 5, BandL 4, MSAVI2L, 

BandL 3, and BIL, BandL 2 are significantly different from 0. 

 

 

Equations Indices and 

Spectral Bands* 

R2 Equation 

Number 

SOCp = 26.0 - 0.242 × BSIL BSIL 0.19 [3.18] 

SOCp = 4.42 - 19.4 × MSAVI2L MSAVI2L 0.29 [3.19] 

SOCp = 4.70 - 9.42 × NDVIL NDVIL 0.15 [3.20] 

SOCP = 4.56 - 30.1 × BIL BIL 0.15 [3.21] 

SOCp = 5.00 - 23.6 × Band 2L Band 2L 0.04 [3.22] 

SOCp = 4.64 - 23.3 × Band 3L Band 3L 0.12 [3.23] 

SOCp = 4.44 - 19.1 × Band 4L Band 4L 0.17 [3.24] 

SOCp = 4.75 - 13.9 × Band 5L Band 5L 0.27 [3.25] 

SOCp = 5.63 - 10.9 × Band 6L Band 6L 0.29 [3.26] 

SOCp = 4.91 - 9.42 × Band 7L Band 7L 0.19 [3.27] 
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Table 3.8 Ordinary Least Square (OLS) model output of SOC prediction using all spatial 

data from Landsat 8. BSIL = Bare Soil Index, NDVIL = Normalized Difference 

Vegetation Index, MSAVI2L = Modified Soil-Adjusted Vegetation Index, BIL = 

Brightness Index, n (number of observations) = 150. 

           * See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 

**Confidence level was set at 0.05. 

The value of the 𝑅2 is 0.474 when all Landsat 8 variables were used, and this means 

that regressor variables can explain approximately 47.4% of variation in SOC. The 

adjusted 𝑅2 is 0.436 which is almost 4 percent less than 𝑅2,  a large difference. Mean 

square error (MSE) was found as 0.206 which is very good compared to the range of the 

data studied. Since, we have a lot of variables as regressors that were not significant, we 

reduced the model to include only the important variables. The stepwise sequential 

regression procedure was used to select the best model (see Table 3.9). 

 

 

 

Parameters Estimate Std Error t Ratio Prob>|t| 

Intercept -120 46.8 -2.56 0.0116* 

BSIL
**

 1.38 0.490 2.81 0.0056* 

Band 4L 3330 1520 2.19 0.0302* 

Band 5L 693 289 2.40 0.0178* 

MSAVI2L -426 196 -2.17 0.0319* 

NDVIL -12.9 15.7 -0.82 0.4113 

Band 7L -13.2 8.6 -1.54 0.1267 

Band 6L 7.78 11.0 0.71 0.4815 

Band 2L 334 108 3.10 0.0024* 

Band 3L 3481 1538 2.26 0.0252* 

BIL -11300 4538 -2.48 0.0144* 
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Table 3.9 Ordinary Least Square (OLS) model output of soil organic carbon (SOC) 

prediction based on important Landsat 8 data. Significant at α = 0.05, BSIL = Bare Soil 

Index, n (number of observations) = 150. 

 

 

 
 

 

                   *See Table 2.8 and 2.10 for Landsat 8 bands and indices descriptions 

The value of the 𝑅2 for the reduced model is 0.423 and this means that regressor 

variables can explain approximately 42.3% of variation in SOC. The adjusted 𝑅2 is 0.403 

and that value was 2 percent less than 𝑅2, a big significant difference. Mean square error 

is 0.21 which is acceptable when compared to the range of the data. VIF values were 

calculated for the both models in the following Table 3.10 

 

 

 

 

 

 

 

 

 

 

 

Parameters Estimate Std Error t Ratio Prob>|t| 

Intercept  -100 22.7  -4.42 <0.0001* 

BSIL
*

 1.10 0.240 4.47 <0.0001* 

Band 5L  -23.0 6.00  -3.81 0.0002* 

Band 7L  -4.50 2.19  -2.06 0.0409* 

Band 2L 289 58.4 4.95 <0.0001* 

Band 3L  -272 60.4  -4.50 <0.0001* 
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Table 3.10 Variation Inflation Factor (VIF) values of Landsat 8 bands and indices, BandL 

= Landsat 8 bands, BSIL = Bare Soil Index, NDVIL = Normalized Difference Vegetation 

Index, MSAVI2L =Modified Soil-Adjusted Vegetation Index, BIL = Brightness Index, n 

(number of observations) = 150. 

Full Model Reduced Model 

Parameters VIF Parameters VIF 

BSIL
*

 206 BSIL 45.0 

Band 5L 291000 Band 5L 13.0 

Band 4L 31100 Band 7L 3.0 

MSAVI2L 7940 Band 2L 91.0 

NDVIL 113 Band 3L 207 

Band2L 326   

Band3L 14200   

Band6L 81.0   

Band7L 43.0   

BIL 933000   

*  See Table 2.8 and 2.10 for Landsat 8 bands and indices description. 

As seen from Table 3.10, VIF values of all variables in the full model are much 

greater than 4. There is a multicollinearity problem among the regressor variables in the 

full model. To deal with this problem, we followed the same statistical methods used for 

soil test data model development (Ridge Regression and Principle Component 

Regression). To compare the prediction performance of different models, we present the 

cross-validation values of the different models (see Table 3.11). 

Table 3.11 Prediction performance of the reduced model. k: Ridge parameter, PCs: 

Principal components, CV = Cross validation, n (number of observations) = 150. 

Model CV 

Regression (Reduced model) 0.228 

Ridge Regression (Reduced model, k=0.0001) 0.246 

Principal Component Regression (Reduced model, # PCs = 3) 0.262 
  

When the observed cross validation values are evaluated, the ridge regression was 

selected as the best model to use since it was not affected by multicollinearity problem. 
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We can conclude that by using Landsat 8 data, 37.0% of the variance of SOC distribution 

can be estimated from the RR model equation (see equation 3.28 and Figure 3.5): 

SOCp = -26.7 + (0.310 x BSIL) – (23.2 x BandL 5) + (75.8 x BandL 2) – (51.1 x BandL 3) 

– (3.05 x BandL 7)                                                                                                       [3.28]                             

The scatterplot in Figure 3.5 represents the results of predicted versus measured 

SOC using Landsat 8 imagery data. The approach showed good agreement between 

measured SOC and predicted SOC with 𝑅2= 37.0 %, p<0.0001 and confidence level was 

set 0.05. As seen from the R2 of OLS and RR, there is a difference. Ridge Regression 

(RR) gives an estimate which minimizes the sum of square error (SSE) and a penalty on 

the size of β (standardized regression coefficient). As a result, RR model is more 

numerically stable. Predicted SOC maps of studied area using Landsat 8 data are 

presented in Figures 3.6 to 3.10. 

 

 

Figure 3.5 The linear relationship between measured and predicted soil organic 

carbon (SOC) from Landsat 8. 

SOCmeasured = (1.05 x SOCpredicted) - 0.120
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Figure 3.6 Predicted SOC map from Landsat 8 satellite imagery for field A (Brookings 

County, SD). Map sources = Landsat 8 OLI (2018). 
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Figure 3.7 Predicted SOC map from Landsat 8 satellite imagery for field B (Brookings 

County, SD). Map sources = Landsat 8 OLI (2018). 
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Figure 3.8 Predicted SOC map from Landsat 8 satellite imagery for field C (Brookings 

County, SD). Map sources = Landsat 8 OLI (2018). 
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Figure 3.9 Predicted SOC map from Landsat 8 satellite imagery for field D (Lac qui 

Parle County, MN). Map sources = Landsat 8 OLI (2018). 
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Figure 3.10 Predicted SOC map from Landsat 8 satellite imagery for field E (Lac qui 

Parle County, SD). Map sources = Landsat 8 OLI (2018). 
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Relationship SOC and PlanetScope Data 

Soil Line Concept to Indicate Bareness of the Study Areas 

Soil line concept was demonstrated again in this section by using PlanetScope data 

(Team, 2017). The soil line concept is used to reveal bareness of the studied area. In this 

case we used high resolution imagery and 𝑅2 was found as 88.5 %. This result showed 

that the studied area was bare considering post-harvest plant residue. The detailed density 

plot is demonstrated in Figure 3.11 

 

 

 

  

 

 

Figure 3.11 Soil line concept representing the observed linear relationship between NIR 

(0.780-0.860 µm) and Red (0.590-0.670 µm) band reflectance (see Table 2.9) from 

PlanetScope. 

NIR band = -0.000162 + (1.55 x Red Band) 

𝑅2= 0.885 

n = 150 
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Correlation Between SOC and Spatial Data from Planet Scope 

Pearson Correlation and simple linear regression were applied to show correlation 

between SOC and spatial data from PlanetScope. All the data was analyzed at the 95% 

confidence interval (α=0.05; p<0.05). The complete Pearson correlation matrix and 

PlanetScope data are given Appendix C and Appendix E. To demonstrate the relationship 

of PlanetScope bands and spectral indices, the correlation map between variables and 

SOC was done (Figure 3.12). 

Significant correlations were found between SOC and PlanetScope Bands (see 

Figure 3.12). The correlogram identifies which indices and spectral bands of 

PlanetScope were statistically significant in the prediction of SOC for the test fields 

studied. The highest significant correlations were with BandP 4 (r = -0.74, p<0.0001), 

BandP 3 (r = -0.69, p<0.0001), BIp (r = -0.68, p<0.0001 ), BandP 2 (r = -0.65, p<0.0001), 

BandP 1 (r = -0.74, p<0.0001)  and this pattern was followed by MSAVI2P (r = -0.54, 

p<0.0001), NDVIP  = -0.44, p<0.0001), and BSIP (r = -0.35), p<0.0001). The SOC linear 

regression prediction equations and R2 for each PlanetScope variable are shown in Table 

3.12. When comparing Landsat 8 and PlanetScope data, PlanetScope imagery data is 

more strongly correlated to SOC than Landsat 8 due to higher spatial resolution (30m vs 

3.125m). 
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Figure 3.12 The correlogram (correlation color map) of soil organic carbon (SOC) vs extracted bands from PlanetScope (see Table 

2.9) and different calculated indices (Table 2.10). Blue color tones indicate negative correlations between SOC and spatial data (the 

values in the box show correlation coefficients at the 0.05 level), BandP = PlanetScope bands, n (number of observations) = 150. 
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Table 3.12 Linear regression between SOC and Spatial Data Derived from PlanetScope, 

SOCp = Predicted soil organic carbon, Bandp= PlanetScope bands, BSIP = Bare Soil 

Index, NDVIP = Normalized Difference Vegetation Index, MSAVI2P =Modified Soil-

Adjusted Vegetation Index, BIP = Brightness Index, n (number of observations) = 150. 

* See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 

When all variables are included in the model, the F-statistic was 28.8 and p- value 

was p<0.0001. Since p- value is < 0, at least one regressor variable is important in 

predicting SOC. As seen from the Table 3.13, the coefficient of BSI, and Band 1 are 

significantly different from 0. 

  

Equations Indices and 

Spectral Bands 

R2 Equation Number 

SOCp = 39.2 – (0.370 x BSIP) BSIP
*

 0.120 [3.29] 

SOCp = 4.42 – (19.4 x MSAVI2P) MSAVI2P 0.290 [3.30] 

SOCp = 4.64 – (12.7 x NDVIP) NDVIP 0.190 [3.31] 

SOCp = 6.40 – (4930 x BIP) BIP 0.460 [3.32] 

SOCp = 6.22 – (33100 x BandP 2) Band 2p 0.430 [3.33] 

SOCp = 6.47 – (3550 x BandP 3) Band 3p 0.480 [3.34] 

SOCp = 6.13 – (2310 x BandP 4) Band 4p 0.550 [3.35] 

SOCp = 7.41 – (4220 x BandP 1) Band 1p 0.370 [3.36] 
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Table 3.13 Ordinary Least Square (OLS) model output of SOC prediction based on all 

spatial data from PlanetScope (Table 2.9). *Confidence level was set at 0.05, Bandp= 

PlanetScope ands, BSIP = Bare Soil Index, NDVIP = Normalized Difference Vegetation 

Index, MSAVI2P =Modified Soil-Adjusted Vegetation Index, BIP = Brightness Index, n 

(number of observations) = 150.  
 

 

 

 

 

 

 

The value of the 𝑅2 is 0.620 and this means that PlanetScope regressor variables 

can explain approximately 62.0% of variation in SOC. The adjusted 𝑅2 is 0.599 and the 

value was approximately 2 percent less than 𝑅2, and is considered a large difference. 

Mean square error (MSE) was found as 0.146 which is very good when compared to the 

range of the data. Variance Inflation Factors (VIF) were calculated for each variable and 

are presented in Table 3.14. 

 

 

 

 

Parameter Estimate Std Error t Ratio Prob>|t| 

Intercept  -27.1 8.10  -3.35 0.0010* 

MSAVI2P  -2.45 2.52  -0.97 0.3340 

Band 4p  -210. 2250  -0.09 0.9259 

Band 3p  -19410 37100  -0.52 0.6020 

NDVIP  -8.39 7.18  -1.17 0.2445 

BSIP 0.349 0.0826 4.22 <0.0001* 

Band 2p  -20304 41500  -0.49 0.6256 

Band 1p 3735 1880 1.99 0.0487* 

BIP 47145 110000 0.43 0.6692 

* See Table 2.9 and 2.10 for PlanetScope bands and indices description. 
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Table 3.14 Variation Inflation Factor (VIF) values of PlanetScope, Bandp= PlanetScope 

Bands, BSIP = Bare Soil Index, NDVIP = Normalized Difference Vegetation Index, 

MSAVI2P =Modified Soil-Adjusted Vegetation Index, BIP = Brightness Index, n = 150 

(number of observations) 

Full Model            Reduced Model 

Parameter            VIF Parameter VIF 

MSAVI2P 1.84       BandP 4 1.92  

BandP 4 195       BSIP
* 1.92 

BandP 3 19500    

NDVIP 23.8   

BSIP 2.30    

BandP 2 25200    

BandP 1 27.6    

BIP 85700    

                     * See Table 2.9 and 2.10 for PlanetScope bands and indices description. 

Since, we have a lot of variables as our regressors that are not significant, we 

reduced the model to include only the significant variables and used the stepwise 

sequential procedure to choose the best model (see Table 3.15) 

Table 3.15 Ordinary Least Square (OLS) model output of SOC prediction based on 

important PlanetScope. *Confidence level was set at 0.05, Bandp= PlanetScope Bands, 

BSIP = Bare Soil Index, n (number of observations) = 150. See Table 2.9 and 2.10 for 

PlanetScope bands 

 

 

 

 

 

The value of the 𝑅2 is 0.601 and this means that regressor variables can explain 

approximately 60.1% of variation in response variable but, it is known that 𝑅2 always 

increases as additional regressor variables are added to the model. The calculated 

adjusted 𝑅2  is 0.596 and is 0.5 percent less than 𝑅2,  a small difference. Mean square 

error (MSE) was found as 0.147 which is very good for the range of the data studied. 

Parameters Estimate Std Error t Ratio Prob>|t| 

Intercept  -25.1 7.26  -3.46 0.0007* 

BandP 4  -2980 225  -13.26 <0.0001* 

BSIP
*

 0.327 0.0760 4.30 <0.0001* 

* See Table 2.9 and 2.10 for PlanetScope bands and indices description. 
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Cross-Validation (CV) was calculated as 0.15 to measure performance of the model. 

Variance Inflation Factor (VIF) was used to show collinearity for each variable. The 

results of the VIF is presented in Table 3.14 and the full model has high multicollinearity 

problem. As for reduced model, the VIF values are lower than 4 indicating that there is 

no collinearity problem for reduced model. In this case, there is no need to run PCR and 

RR for the full model. We can conclude that using PlanetScope spatial data, 60.1% of the 

variance of SOC distribution can be estimated (see equation [3.37]). 

SOCp = -25.1 + (2980 x Band 4) + (0.327 x BSI)                                  [3.37] 

 Figure 3.13 reveals the results of predicted SOC versus measured SOC using Planet 

Scope imagery data. The approach showed good agreement between measured SOC and 

predicted SOC with 𝑅2= 60%, p<0.0001 and confidence level was 0.05. Predicted SOC 

maps of studied area are presented in Figure 3.14 to 3.18. 
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Figure 3.13 The linear relationship between measured and predicted soil organic carbon 

(SOC) from PlanetScope data, n = 150 (number of observations) 
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Figure 3.14 Predicted SOC map from PlanetScope satellite imagery for field A (Brookings 

County, SD). Map sources = PlanetScope (2018). 
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Figure 3.15 Predicted SOC map from PlanetScope satellite imagery for field B (Brookings 

County, SD). Map sources = PlanetScope (2018). 



89 
 

 

 

 

 

 

Figure 3.16 Predicted SOC map from PlanetScope satellite imagery for field C (Brookings 

County, SD). Map sources = PlanetScope (2018). 
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Figure 3.17 Predicted SOC map from PlanetScope satellite imagery for field D (Lac qui Parle 

County, MN). Map sources = PlanetScope (2018). 
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Figure 3.18 Predicted SOC map from PlanetScope satellite imagery for field E (Lac qui Parle County, MN). Map sources = 

PlanetScope (2018). 
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Model Development with Spatial Data and Web Soil Survey Data (WSS) 

Model Development Using only WSS Data 

Pearson correlation and simple linear regression were applied to show correlation 

between SOC and Web Soil Survey (WSS) data using SoilWeb App 

(Casoilresource.lawr.ucdavis.edu, 2018) All the data was analyzed at the 95% confidence 

interval (α = 0.05; p<0.05). The complete Pearson correlation and WSS data are given in 

Appendix D and Appendix E. To demonstrate the relationships of selected WSS data and 

SOC a correlogram was built (see Figure 3.19)  

 

Significant correlations were found between SOC and WSS data. According to 

the color map, Sand (r = -0.70, p<0.0001) was highly negatively correlated, while Silt (r 

= 0.67, p<0.0001) and Clay (r = 0.58, p<0.0001) were strongly positively correlated to 

SOC, similar to soil test results found earlier in this publication. Moderate correlations 

were found between SOC and CEC (r = 0.48, p<0.0001). Lastly, weak correlation was 

Figure 3.19 The correlogram (correlation color map) of soil organic carbon (SOC) vs selected 

Web Soil Survey (WSS) data. Purple color tones indicate negative correlations between SOC, 

and spatial data and green colors show positive correlation (the values in the box show 

correlation coefficients at the 0.05. CEC = cation exchange capacity, n (number of observations) 

= 150 
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found between SOC and pH (r = 0.24, p= 0.0023). The linear regression results for each 

variable are shown in Table 3.16. 

Table 3.16 Linear regression between soil organic carbon (SOC) and selected Web Soil 

Survey (WSS) data. CEC = cation exchange capacity, n (number of observations) = 150. 

In order to develop a model using WSS data, the stepwise sequential procedure 

performed, and the model is shown in Table 3.17. 

Table 3.17 Model output of soil organic carbon (SOC) prediction based on Web Soil 

Survey (WSS) data. *Confidence level was set at 0.05, n (number of observations) = 150. 

Parameters Estimate Std Error t Ratio Prob>|t| 

Intercept 3.37 0.0778 43.28 <.0001* 

Sand_WSS -0.0206 0.00173 -11.92 <.0001* 

The value of the 𝑅2 is 0.490 and this means that regressor variable can explain 

approximately 49.0% of variation in response variable. The calculated adjusted 𝑅2 is 

0.486, 0.04 percent less than 𝑅2. Mean square error (MSE) was found as 0.18 which is 

very good when compared to the range of the data. CV was found as 0.188. Using WSS 

data can explain 49.0% of the variance of SOC distribution can be estimated (see 

equation [3.43]). 

          SOCp = 3.37 + (-0.0206 x Sand_WSS [g kg-1])                                                 [3.43] 

Equations Variables R2 Equation Number 

SOCp = 1.32 + (0.0540 x Clay) Clay (g kg-1) 0.330 [3.38] 

SOCp = 3.37 – (0.0210 x Sand) Sand (g kg-1) 0.489 [3.39] 

SOCp = 1.58 + (0.0260 x Silt) Silt (g kg-1) 0.450 [3.40] 

SOCp = -0.00850 + (0.365 x pH1:1) pH1:1 0.060 [3.41] 

SOCp = 1.33 + (0.0590 x CEC) CEC (cmolc kg-1) 0.240 [3.42] 
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Figure 3.20 shows the results of predicted versus measured SOC WSS data. The 

approach showed good agreement between measured SOC and predicted SOC with 𝑅2= 

49.0%, p<0.0001 and confidence level was 0.05.  

Figure 3.20 The linear relationship between measured and predicted soil organic carbon 

(SOC) from Web Soil Survey (WSS) data, n (number of observations) = 150. 
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Since we started to work on this project, we have tried to develop a SOC 

prediction model for precision agriculture use. The idea was to build model which 
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that, we used public free information from Landsat 8 and WSS data. 
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Since, we have a lot of variables as our regressors that are not significant, we 

reduced the model to include only important variables. Stepwise sequential procedure 

was used to choose the best model for this part (see Table 3.18) 

Table 3.18 Ordinary Least Square (OLS) model output of soil organic carbon (SOC) 

prediction based on Landsat 8 and Web Soil Survey (WSS) data. Significant at α = 0.05, 

BandL= Landsat 8 bands, VIF = variance inflation factor, n (number of observations) = 

150. 

 

 

The value of the 𝑅2 is 0.533 and this means that regressor variables can explain 

approximately 53.3 % of variation in SOC. The calculated adjusted 𝑅2 is 0.527, 

approximately 0.5 percent less than 𝑅2. Mean square error (MSE) was 0.16 which is very 

good when compared to the range values for the soil properties studied. Variation 

Inflation Factor values were calculated (see Table 3.18) for each variable and the values 

are lower than 4 which means there is no collinearity problem in this model. Cross 

Validation was found as 0.178. Using data providing by those two public free sources, 

53.3 % of the variance of SOC distribution can be estimated (see equation [3.44]). 

SOCp = 4.58 – (14.1 x BandL 3) – (0.0193 x Sand [g kg-1])                                [3.44] 

 

 

Parameters Estimate Std Error t Ratio Prob>|t| VIF 

Intercept 4.58 0.338 13.55 <.0001* . 

BandL 3*
 -14.1 3.83 -3.68 0.0003* 1.05 

Sand_WSS -0.0193 0.00170 -11.35 <.0001* 1.05 

* See Table 2.8 for the Landsat 8 bands descriptions. 
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Figure 3.21 The linear relationship between measured and predicted soil organic carbon 

(SOC) from Web Soil Survey (WSS) and Landsat 8 data, n (number of observations) = 

150. 

 

Figure 3.21 shows the results of predicted versus measured SOC using Landsat 8 

imagery data. The approach showed good agreement between measured SOC and 

predicted SOC with 𝑅2= 53.3%, p<0.0001 and confidence level was 0.05. As seen from 

the result we were able to increase our 𝑅2 from approximately 0.370 (RR model) to 0.533 

(OLS model) by adding WSS data in to the Landsat only model. 

We also developed a SOC prediction model using PlanetScope and WSS data. In 

this part, high resolution imagery (PlanetScope) data was used to build model with WSS 

data (see Table 3.19). 
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Table 3.19 Ordinary Least Square (OLS) model output of soil organic carbon (SOC) 

prediction based on PlanetScope and WSS data. Significant at α = 0.05, VIF = variance 

inflation factor, BandP = PlanetScope bands, BSI = bare soil index, n (number of 

observations) = 150. 

The value of the 𝑅2 is 0.688 and this means that regressor variables can explain 

approximately 68.8% of variation in SOC. The adjusted is 𝑅2  which 0.680 or 0.8 percent 

less than 𝑅2.  Mean square error (MSE) was found as 0.115 which is very good when 

compared to the range of soil property values studied. The variance inflation factor for 

each variable. VIF values are lower than 4 which means there is no collinearity problem 

in this model. Cross Validation was found as 0.119. Basically, we can conclude that using 

data providing by WSS and Planet Scope data, we were able to increase correlation 

coefficient from 60.1% to 68.8%. The SOC distribution can be estimated by the 

following prediction expression:  

SOCp = -21.7 – (0.00733 x Sand g kg-1) + (0.0168 CEC cmolc kg-1 )                         [3.45]  

– (2270 x Band 4)  +    (0.281 x BSI) 

Figure 3.22 shows the results of predicted versus measured SOC using 

PlanetScope imagery data. The approach showed good agreement between measured 

SOC and predicted SOC with 𝑅2= 68.8%, p<0.0001 and confidence level was 0.05. 

Parameters Estimate Std Error t Ratio Prob>|t| VIF 

Intercept -21.7 6.9 -3.15 0.0020* . 

Sand (g kg-1) -0.00733 0.00227 -3.22 0.0016* 2.776 

CEC (cmolc kg-1) 0.0168 0.00782 2.15 0.0334* 1.966 

Band 4P -2270 252 -9.01 <0.0001* 3.042 

BSIP 0.281 0.0718 3.91 0.0001* 2.174 

*See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 
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Figure 3.22 The linear relationship between measured and predicted soil organic carbon 

(SOC) from Web Soil Survey (WSS) and PlanetScope data, n (number of observations) = 

150. 
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CHAPTER 4: Discussion and Conclusion 

Discussion: 

The soil organic carbon (SOC) prediction model using soil test data gives 

satisfactory results in the study area. As seen from Figure 3.1, SOC level is mainly 

controlled by textural classes. Goidts and van Wesemael (2007) found that there is no 

correlation between SOC and soil texture. However, our study did show that in the 

selected regions, soil texture significantly impacts SOC level in the 0-15cm depth. 

McGrath and Zhang (2003) and Mondal et al. (2017) found that there is a significant 

correlation between SOC and silt (r = 0.74, p<0.0001) plus clay (r = 0.80, p<0.0001); 

and a negative correlation between SOC and sand (r = -0.87, p<0.0001), similar to our 

study. Moreover, there was a strong correlation between SOC and Soil Moisture Content 

(SMC) (r = 0.81, p<0.0001) content in surface soil materials. This result is due to the 

climatic conditions which are present in the A horizons across the North American Great 

Plains region (Brady and Weil, 2017). Some previous studies have found the association 

between SOC and SMC (Hudson and Conservation, 1994; Hugar et al., 2012; Manns et 

al., 2016). In contrast, Parajuli and Duffy (2013) found very weak correlation between 

SOC and SMC. 

  Due to the effect of soil pH on species, organism size, and microbial activities in 

the soil profile, soil pH can be responsible for SOC decomposition and enhance soil C 

density (Pietri et al., 2009). Some previous studies showed that SOC levels are 

significantly correlated with pH (Ou et al., 2017; Suarez and Gonzalez-Rubio, 2017). In 

our case, pH (1:1) was statistically correlated (pH r = 0.39, p<0.0001) with SOC. This 

result could be coming from the association of soil pH and SOC content due to increasing 
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use of N fertilization and the presence of high lime parent materials. Studdert (2000) 

discussed the impact of N fertilization for farming purposes with continuous or without 

continuous N application on sustaining or enhancing SOC levels in cultivated areas. 

A statistically high correlation was found between SOC and SOEC (r = 0.72, 

p<0.0001) in our study. Manrique et al. (1991) and Sullivan et al. (2006) mentioned that 

SOC can contribute to the CEC of the soil and values increases at higher pH levels. 

Moreover, Brady and Weil (2017) mentioned that the soil colloidal system consists of 

organic (humus) and mineral parts (clay). Soil organic matter is responsible for most of 

the CEC in soil surface, meanwhile, clay is responsible for most of the CEC in deeper 

parts of the soil profile. In a previous study, Caravaca et al. (1999) found that CEC of the 

soil is associated with SOC content of the same soil. The correlation between SOC and 

Clay was lower than with CEC. However, in our case, we found that SOC concentration 

is more strongly related to clay content than with CEC. The silicate clays in our soil are 

smectitic and our soils are young which supports our findings.  

 Principle Component Regression (PCR), Ridge Regression (RR), and Ordinary 

Least Square (OLS) were applied to the data set in order to deal with multicollinearity 

problems and to compare the prediction performance of different models. We presented 

the cross-validation values of the different models (see Table 3.5). Cross-validation (CV) 

showed that RR is slightly better than OLS. Considering the multicollinearity problem in 

our data set, PCR and OLS did not give the satisfactory results. However, adding the k 

constant in RR made model stronger since there is no multicollinearity problem with RR 

(Vigneau et al., 1997). Another study conducted by Shin (1990) mentioned that the 

ability of overcoming multicollinearity problems based on using RR which was better 
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than Ordinary Least Square (OLS). We did not focus on all soil variables. We only 

focused on soil variables that were used in reduced model.  

 Soil organic carbon is associated with soil color, nutrient-holding capacity, and 

helps to maintain soil composition (Ismail et al., 2012). In this regard, soil color and 

image intensity relationships were established between SOC concentration and satellite 

imagery data. Considering and evaluating the correlation color map (correlogram) and the 

performance of derived indices and single bands from satellite imagery (see Figure 3.4 

and 3.7), the specific bands and indices of BandL 6 (1.566-1.651 µm), MSAVI2L, BandL 

5 (0.851 - 0.879 µm ), BandL 7 (2.107 - 2.294 µm), BSIL; followed by BandL 4 (0.636 - 

0.673 µm) and BIL for the Landsat 8; BandP 4 (0.780-0.860 µm ), BandP 3 (0.590-0.670 

µm) and BIP for Planet Scope  showed the highest correlation with SOC. Typical 

absorption features for SOC around the VIS and SWIR spectral region were attributed to  

these results (Viscarra Rossel et al., 2011). Soil with dark hues have higher SOC contents 

when compared to the soil with bright hues in the case of equal moisture and the same 

parent materials (Castaldi et al., 2016).  However, there were some differences between 

studied fields such as moisture content and density of plant residue. Pimstein et al. (2011) 

explained that soils have different features such as moisture content during the data 

acquisition which can affect the spectral response. The amount of reflected and emitted 

spectra from soil surface is affected by soil humidity by decreasing reflectance values 

(Nocita et al., 2013). The OLS model from Landsat 8 and Planet Scope, include BSI as 

prediction parameters (see Table 3.9 and 3.15). BSI for both satellites was statistically 

correlated with SOC; high BSI areas were associated with low SOC, while low BSI was 

associated with high SOC. Kumar et al. (2016) found similar patterns with BSI which is 
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in agreement with our results. Frazier and Cheng (1989) obtained an 𝑅2 value of 0.98 for 

SOC prediction equation using the Thematic Mapper (TM) fifth and fourth bands. Their 

results were much higher than our study (0.42 𝑅2for OLS model, 0.36 𝑅2 for RR model 

from Landsat 8 and 0.60 𝑅2 for OLS model from PlanetScope). On the other hand, Nanni 

and Demattê (2006) only used TM`s seventh and second bands using spectral reflectance 

(SR) in the model and found  𝑅2 of 0.52. The reason for low 𝑅2 was the bareness of the  

study areas. Nanni and Demattê (2006) obtained the soil line (NIR vs Red band) as 𝑅2 of 

0.96 but in our case, the relationship was  𝑅2 of 0.866 for Landsat 8. According to Fox et 

al. (2004), the high 𝑅2 represents more bare soil and soil line can be related to soil 

surface conditions within a field. Moreover, PCR and RR were used to deal with 

dimensionality of the data. Our results for Landsat 8 data showed that RR was better than 

PCR in terms of Cross-Validation (CV) results. In contrast, (Fox and Metla, 2005) 

suggested that  PC1 within PCA were highly correlated to soil organic matter (SOM).  To 

assist numerous agricultural applications and environmental activities, satellite data or 

drone data would be the efficient and non-intrusive way to assist in soil mapping and soil 

management. It is important to note that results of relationships between SOC and 

reflectance data is the same globally. Given these conditions, soil sampling should be 

done, and new statistical model developed for every geographic or study area to be 

mapped as managed. Soil characteristics would be required information from the study 

area in order to develop predictive model between SOC and reflectance data. It means 

that in order to obtain a good relationship between SOC and image reflectance local 

environmental conditions must be considered when developing a sampling methodology 

condition  (Ladoni et al., 2010). 
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   Web Soil Survey (WSS) data was useful for the SOC prediction in the present 

study. Data from WSS; Sand, Clay, Silt, pH, and CEC showed similar trends with the soil 

test data (see Figure 3.1 and 3.9). Sand % (r = -0.87 for soil test data, r = -0.70 for WSS 

data) was highly correlated in both situations. As seen in Table 3.18 and Table 3.19, WSS 

significantly contributed to increase the coefficient of determination (𝑅2) for our models. 

Conclusions: 

  Soil organic carbon (SOC) is an important soil health property and needs to be 

monitored methodically and quantitatively. Remote sensing is one of the functional and 

inexpensive tools available to map SOC. In this study, SOC distribution in selected soils 

were estimated using soil test data, satellite imagery (Landsat 8 and PlanetScope) and 

Web Soil Survey (WSS) data. The main aim was to reduce the number of soil sampling 

points to build a cost-effective SOC prediction model using soil test data and free public 

data. The SOC prediction accuracy was improved by using selected soil test, satellite, and 

WSS data.  

 Soil test data was highly correlated to SOC. The full model explained 86.7% of 

the variation in SOC, however, the model was not free of multicollinearity with all soil 

variables. Even with the reduced model using SOEC, Sand, and pH which explained 

82.7% of the variation in SOC the model still had multicollinearity problems. To deal 

with multicollinearity, principal component regression (PCR) and ridge regression (RR) 

methods were used. The best methods were decided based on observed cross-validation 

(CV) result and RR was selected as the best model. As for WSS data, the relationship 

between soil variables and SOC showed similar pattern with soil test data but without 



105 
 

 

multicollinearity problems. The WSS Sand data was highly correlated to SOC and the 

final WSS model explained 49.0% of variation in SOC. 

 Estimation of SOC levels in surface soil from remotely sensed data showed good 

agreement with the other studies. The best SOC and Landsat 8 spectral bands and indices 

correlations were obtained from BandL 5, BandL 6, and MSAVI2L. After stepwise 

selection, ordinary least squared model (OLS) with BandL 7, BandL 5, BandL 3, BandL 2, 

and BSIL explained 42.3% of the variation in SOC. However, due to multicollinearity, 

RR and PCR were applied. Ridge regression was the best model (37.0% of variation 

explained) to estimate SOC using Landsat 8 data and was not affected by 

multicollinearity. PlanetScope data (BandP 4, BandP 3, and BIP) with higher spectral 

resolution provided the highest correlations with SOC. Stepwise selection produced OLS 

model which was not affected by multicollinearity with BSIP and BandP 4 explaining 

60.0% of the variation in SOC. WSS data also was included into model with both 

Landsat 8 and PlanetScope data. The results showed that WSS data improved the 

accuracy of the model and help estimation model of SOC using Landsat 8 data to remove 

multicollinearity problem. While the 53.3% of the variation explained by the WSS and 

Landsat 8 model, OLS model was expressed 68.0% of the variation in SOC by 

PlanetScope with WSS data. 

 The models developed in this study can be used for estimating the crop 

production inputs and their impacts on available SOC. Future work is needed to 

determine the number of soil samples needed to accurately predict SOC levels for an 

area. Another crucial part would be the acquisition time for the satellite imagery and the 

amount surface crop residue which affects reflectance. Sampling time and acquisition 
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time should be same day or very close. Adding drone imagery is another step in this 

project. As for crop residue, some remote sensing indices can be used to distinguish soil 

and plant residue. These situations would provide more accurate results. Moreover, as 

more quality and quantifiable soil data is added to the WSS data base, more precise 

predictions will be possible. The results of the research will improve and provide more 

precise soil data. Our research will assist scientists and farm managers determine the best 

management practices for their research, farm operations, and aid in conserving SOC 

levels and enhance precision agriculture farming systems.  In the near future, there will 

be more free data available which will impact soil data quality positively to monitor soil 

variables.  
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APPENDICEES 

Appendix A 

Table A.1 The complete Pearson correlation matrix for soil test data (n= 150) 

Parameters 
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SOC (g kg-1) 1.00                             

Moisture (g kg-1) 0.81 1.00                           

EC1:1 (dS m-1) 0.53 0.46 1.00                         

pH1:1 0.39 0.46 0.69 1.00                       

Sand (g kg-1) -0.87 -0.72 -0.46 -0.31 1.00                     

Clay (g kg-1) 0.80 0.64 0.65 0.45 -0.87 1.00                   

Silt (g kg-1) 0.74 0.63 0.18 0.10 -0.89 0.54 1.00                 

K+ (mg kg-1) 0.16 0.07 0.21 0.03 -0.04 0.12 -0.04 1.00               

Ca2+ (mg kg-1) 0.64 0.67 0.75 0.85 -0.54 0.69 0.27 0.05 1.00             

Mg2+ (mg kg-1) 0.77 0.73 0.53 0.58 -0.76 0.75 0.59 0.00 0.67 1.00           

Na+ (mg kg-1) 0.06 0.01 -0.04 0.18 0.07 -0.10 -0.02 0.02 0.01 0.08 1.00         

NH4
+-N (mg kg-1) 0.01 -0.29 0.14 -0.19 -0.07 0.25 -0.12 0.15 -0.15 -0.03 0.04 1.00       

NO3
--N (mg kg-1) 0.40 0.26 0.28 0.16 -0.52 0.32 0.59 -0.03 0.14 0.35 -0.13 -0.02 1.00     

SOEC (cmolc kg-1) 0.72 0.74 0.75 0.84 -0.63 0.75 0.37 0.08 0.98 0.80 0.04 -0.12 0.20 1.00   

PO4
3-

  (mg kg-1) -0.39 -0.47 -0.37 -0.61 0.38 -0.43 -0.24 0.43 -0.63 -0.51 -0.25 0.09 -0.03 -0.63 1.00 

All values in bold print are significant (P<0.05).  SOEC = Sum of Extractable Cation, EC = Electrical Conductivity, SOC= Soil 

Organic Carbon. Soils from 0-15cm depth. 
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Table A.2 Field A (Brookings County, SD) soil test data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

1 44.3849033 -96.9461351 3.5 24.6 6.4 0.8 216 3650 793 

2 44.3849738 -96.9442170 3.0 21.9 6.2 0.6 206 2780 672 

3 44.3863216 -96.9443015 3.3 36.2 7.6 0.9 269 4980 839 

4 44.3877266 -96.9442422 3.3 20.9 6.4 0.6 191 2510 596 

5 44.3880766 -96.9462404 3.2 21.6 6.0 0.6 509 2360 549 

6 44.3894226 -96.9462689 3.2 21.1 7.1 0.7 149 2970 777 

7 44.3893326 -96.9443454 3.5 22.7 6.8 0.7 174 3110 804 

8 44.3905456 -96.9462595 3.6 23.1 6.6 0.8 221 3130 804 

9 44.3905477 -96.9442898 3.3 29.6 6.1 0.6 218 2490 807 

10 44.3905362 -96.9426315 3.6 28.7 6.6 0.9 180 3270 897 

11 44.3892037 -96.9424045 3.2 22.8 6.8 0.7 192 2760 902 

12 44.3877270 -96.9423955 3.1 21.2 5.6 0.5 183 2400 593 

13 44.3863649 -96.9422821 3.3 22.7 6.0 0.5 157 2470 726 

14 44.3849364 -96.9422305 3.6 24.1 6.4 0.7 251 3000 855 

15 44.3849395 -96.9404207 3.0 19.5 7.0 0.8 169 3800 560 

16 44.3864433 -96.9405058 3.5 23.4 6.3 0.6 168 2830 649 

17 44.3877366 -96.9406607 3.4 22.1 5.7 0.6 179 2370 655 

18 44.3892959 -96.9407110 3.5 25.1 7.8 0.8 200 4500 1664 

19 44.3905324 -96.9407824 3.4 23.1 6.9 0.8 188 3990 871 

20 44.3905420 -96.9386300 3.6 24.0 7.6 1.0 245 4850 1090 

21 44.3893405 -96.9385052 3.3 29.2 7.6 0.7 172 3690 1180 

22 44.3877992 -96.9387336 3.1 32.7 6.8 0.7 160 3370 771 

23 44.3864869 -96.9386987 2.4 15.4 7.3 0.7 129 4060 476 

24 44.3849026 -96.9387805 3.3 22.8 7.7 0.8 178 4930 1090 

EC = Electrical Conductivity, SOC= Soil Organic Carbon. Soils from 0-15cm depth. 
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Table A.2 Continued 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
-3 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

1 44.3849033 -96.9461351 29 26 15 55 46 10.71 40.76 48.54 

2 44.3849738 -96.9442170 35 20 16 64 42 12.61 36.64 50.75 

3 44.3863216 -96.9443015 33 33 9 89 1 20.31 36.10 43.59 

4 44.3877266 -96.9442422 32 18 29 56 43 18.51 34.55 46.95 

5 44.3880766 -96.9462404 21 18 27 70 71 14.34 36.66 49.00 

6 44.3894226 -96.9462689 39 22 18 58 59 19.34 38.59 42.08 

7 44.3893326 -96.9443454 31 23 19 66 40 14.49 38.26 47.25 

8 44.3905456 -96.9462595 28 23 39 76 40 15.79 39.16 45.05 

9 44.3905477 -96.9442898 34 20 34 58 33 9.97 38.93 51.10 

10 44.3905362 -96.9426315 31 24 23 86 53 11.32 41.25 47.43 

11 44.3892037 -96.9424045 42 22 22 65 25 14.73 37.45 47.82 

12 44.3877270 -96.9423955 34 18 34 53 34 20.70 34.57 44.73 

13 44.3863649 -96.9422821 25 19 21 45 27 19.40 37.08 43.52 

14 44.3849364 -96.9422305 34 23 16 60 54 11.65 39.14 49.20 

15 44.3849395 -96.9404207 21 24 11 70 56 45.12 29.66 25.23 

16 44.3864433 -96.9405058 20 20 20 56 64 15.80 36.94 47.26 

17 44.3877366 -96.9406607 16 18 38 61 22 16.48 36.51 47.01 

18 44.3892959 -96.9407110 27 37 10 59 39 20.36 38.96 40.68 

19 44.3905324 -96.9407824 26 28 18 59 23 19.65 40.98 39.37 

20 44.3905420 -96.9386300 22 34 12 80 43 14.87 41.85 43.27 

21 44.3893405 -96.9385052 24 29 12 61 46 19.36 39.41 41.23 

22 44.3877992 -96.9387336 19 24 23 64 30 26.64 34.33 39.03 

23 44.3864869 -96.9386987 15 25 17 70 36 43.48 27.35 29.17 

24 44.3849026 -96.9387805 26 34 11 71 15 22.36 38.05 39.59 

SOEC = Sum of Extractable Cation. Soils from 0-15cm depth. 
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Table A.3 Field B (Brookings County, SD) soil test data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

1 44.4629807 -96.8467720 2.0 15.6 6.1 0.6 300 1890 363 

2 44.4630070 -96.8448609 2.1 12.4 6.1 0.5 267 2170 405 

3 44.4629894 -96.8428560 1.4 10.1 6.4 0.5 259 1270 261 

4 44.4628501 -96.8409707 2.2 14.7 7.3 0.7 232 2350 652 

5 44.4628333 -96.8389601 2.7 14.9 6.2 0.5 199 2170 402 

6 44.4613164 -96.8388696 2.6 15.9 6.1 0.5 208 2360 448 

7 44.4614810 -96.8409738 3.5 22.0 7.5 0.7 322 3670 1010 

8 44.4615306 -96.8428734 2.2 11.2 6.6 0.5 208 2230 445 

9 44.4617706 -96.8447335 2.2 12.6 6.8 0.5 184 1990 398 

10 44.4617408 -96.8467150 1.8 11.4 6.4 0.5 230 1660 324 

11 44.4603363 -96.8466976 2.4 16.9 7.3 0.6 284 2840 579 

12 44.4603057 -96.8444288 2.3 12.9 6.4 0.4 210 2200 441 

13 44.4598756 -96.8431769 1.9 11.3 6.8 0.4 197 1850 389 

14 44.4597715 -96.8409587 2.0 11.8 6.1 0.6 293 1360 273 

15 44.4594313 -96.8393745 2.2 14.3 6.7 0.5 174 2170 558 

16 44.4587020 -96.8390945 2.5 16.2 6.2 0.4 238 2270 459 

17 44.4587136 -96.8410623 2.6 16.7 6.6 0.5 253 2870 569 

18 44.4587878 -96.8430260 2.3 14.2 6.6 0.5 212 2120 436 

19 44.4588545 -96.8449193 2.4 15.6 6.7 0.5 272 2110 426 

20 44.4588720 -96.8467019 2.6 15.5 6.9 0.7 319 2600 525 

21 44.4573421 -96.8391653 3.1 17.7 6.3 0.7 368 2450 431 

22 44.4573916 -96.8411028 2.2 16.3 6.1 0.5 285 2580 441 

23 44.4574460 -96.8429200 2.9 17.7 7.3 0.7 260 3830 597 

24 44.4574153 -96.8448636 2.6 17.1 7.0 0.6 226 2930 553 

25 44.4575522 -96.8467046 2.9 17.9 7.0 0.6 383 2640 517 

EC = Electrical Conductivity, SOC= Soil Organic Carbon. Soils from 0-15cm depth. 
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Table A.3 Continued 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
-3 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

1 44.4629807 -96.8467720 48 27 46 51 14 62.46 18.70 18.83 

2 44.4630070 -96.8448609 50 21 31 42 15 56.32 20.47 23.2 

3 44.4629894 -96.8428560 60 34 30 48 9 73.07 12.42 14.52 

4 44.4628501 -96.8409707 54 19 41 37 18 59.96 22.82 17.22 

5 44.4628333 -96.8389601 44 25 33 40 15 53.75 25.01 21.24 

6 44.4613164 -96.8388696 40 11 28 37 16 42.68 19.24 38.07 

7 44.4614810 -96.8409738 70 87 0 42 28 41.92 27.63 30.46 

8 44.4615306 -96.8428734 75 8 24 35 16 58.61 18.24 23.15 

9 44.4617706 -96.8447335 66 16 30 44 14 60.47 20.55 18.98 

10 44.4617408 -96.8467150 41 14 35 40 12 60.17 18.70 21.13 

11 44.4603363 -96.8466976 87 34 29 31 20 45.55 24.94 29.51 

12 44.4603057 -96.8444288 44 25 25 40 15 54.31 22.70 22.98 

13 44.4598756 -96.8431769 46 26 17 47 13 63.14 18.18 18.68 

14 44.4597715 -96.8409587 65 45 35 50 10 66.53 12.47 21.00 

15 44.4594313 -96.8393745 39 14 23 27 16 60.23 18.59 21.18 

16 44.4587020 -96.8390945 39 19 21 52 16 43.07 27.31 29.61 

17 44.4587136 -96.8410623 70 35 18 39 20 42.09 26.63 31.28 

18 44.4587878 -96.8430260 52 28 17 37 15 51.74 24.70 23.56 

19 44.4588545 -96.8449193 83 39 20 44 15 56.07 22.79 21.14 

20 44.4588720 -96.8467019 113 52 27 41 19 48.38 30.50 21.12 

21 44.4573421 -96.8391653 84 58 41 60 17 49.11 27.19 23.70 

22 44.4573916 -96.8411028 59 25 30 41 18 46.8 27.44 25.76 

23 44.4574460 -96.8429200 57 20 41 36 25 40.84 31.57 27.58 

24 44.4574153 -96.8448636 54 12 29 32 20 40.53 31.85 27.61 

25 44.4575522 -96.8467046 70 37 27 50 19 41.13 31.42 27.45 

SOEC = Sum of Extractable Cation. Soils from 0-15cm depth. 
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Table A.4 Field C (Brookings County, SD) soil test data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

1 44.4286008 -96.8672630 2.0 13.0 5.4 0.3 209 1450 264 

2 44.4299830 -96.8671877 2.4 14.9 5.8 0.4 253 1690 327 

3 44.4314178 -96.8671488 2.3 14.8 5.7 0.6 268 1630 336 

4 44.4328201 -96.8670861 2.4 15.5 5.5 0.5 239 1690 348 

5 44.4342010 -96.8670197 1.9 13.2 5.7 0.3 185 1370 281 

6 44.4341373 -96.8651006 2.4 16.6 5.8 0.4 180 1780 334 

7 44.4327896 -96.8651324 1.3 9.5 5.5 0.2 239 944 189 

8 44.4315933 -96.8649219 1.3 8.6 5.6 0.1 252 851 171 

9 44.4299906 -96.8651800 2.3 15.0 5.7 0.3 218 1430 271 

10 44.4285866 -96.8652243 2.4 15.8 5.7 0.5 264 1800 329 

11 44.4285134 -96.8636093 2.3 15.5 5.6 0.5 299 1860 322 

12 44.4299351 -96.8635234 1.6 17.7 5.6 0.3 282 1140 221 

13 44.4314315 -96.8634919 1.1 8.8 5.6 0.3 237 800 173 

14 44.4327920 -96.8634859 1.3 9.0 5.6 0.3 237 893 191 

15 44.4341988 -96.8635278 2.4 16.2 5.3 0.4 189 1620 283 

16 44.4341861 -96.8616905 1.3 14.8 5.2 0.2 155 819 152 

17 44.4342965 -96.8589566 1.5 11.7 5.2 0.2 164 960 173 

18 44.4330571 -96.8594005 2.3 22.2 5.2 0.3 167 1400 234 

19 44.4312102 -96.8589493 2.3 18.1 5.0 0.4 176 1360 233 

20 44.4312967 -96.8612596 2.0 12.4 5.1 0.3 219 1140 200 

21 44.4321796 -96.8621143 1.1 7.3 4.9 0.2 160 607 122 

22 44.4305035 -96.8624173 2.8 22.2 6.6 0.4 167 2660 451 

23 44.4298767 -96.8611440 2.2 16.8 5.1 0.4 242 1230 206 

24 44.4293013 -96.8592668 2.7 21.1 6.9 0.4 497 2320 514 

25 44.4287346 -96.8625206 2.0 16.4 5.9 0.3 133 1670 233 

EC = Electrical Conductivity, SOC= Soil Organic Carbon. Soils from 0-15cm depth. 
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Table A.4 Continued 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
-3 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

1 44.4286008 -96.8672630 28 6 28 79 10 59.66 17.17 23.17 

2 44.4299830 -96.8671877 25 7 33 77 12 51.72 18.71 29.57 

3 44.4314178 -96.8671488 28 8 52 89 12 51.51 19.23 29.26 

4 44.4328201 -96.8670861 56 11 51 94 12 52.11 18.59 29.30 

5 44.4342010 -96.8670197 28 7 25 72 10 65.79 19.22 14.99 

6 44.4341373 -96.8651006 32 7 33 66 12 57.20 15.30 27.50 

7 44.4327896 -96.8651324 31 7 22 129 7 71.40 11.93 16.67 

8 44.4315933 -96.8649219 24 6 18 111 6 74.68 10.71 14.61 

9 44.4299906 -96.8651800 23 7 28 93 10 53.22 17.25 29.53 

10 44.4285866 -96.8652243 26 5 38 106 13 55.28 17.14 27.58 

11 44.4285134 -96.8636093 24 8 45 59 13 57.99 16.60 25.41 

12 44.4299351 -96.8635234 30 6 20 137 8 70.95 12.29 16.76 

13 44.4314315 -96.8634919 23 5 12 107 6 75.53 10.07 14.40 

14 44.4327920 -96.8634859 29 7 15 111 7 75.40 12.05 12.55 

15 44.4341988 -96.8635278 35 8 36 87 11 57.20 17.24 25.57 

16 44.4341861 -96.8616905 16 6 17 90 6 75.30 8.10 16.60 

17 44.4342965 -96.8589566 32 9 17 106 7 62.97 16.13 20.90 

18 44.4330571 -96.8594005 31 7 29 62 10 52.06 16.80 31.14 

19 44.4312102 -96.8589493 27 11 35 73 9 47.41 18.93 33.66 

20 44.4312967 -96.8612596 20 8 26 106 8 63.62 11.00 25.38 

21 44.4321796 -96.8621143 19 7 12 104 5 75.59 11.88 12.53 

22 44.4305035 -96.8624173 26 8 23 57 18 40.09 23.57 36.35 

23 44.4298767 -96.8611440 23 8 32 96 9 55.16 17.37 27.48 

24 44.4293013 -96.8592668 32 9 28 78 17 43.44 18.59 37.97 

25 44.4287346 -96.8625206 32 5 23 60 11 66.08 16.66 17.25 

SOEC = Sum of Extractable Cation. Soils from 0-15cm depth. 
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Table A.5 Field D (Lac qui Parle County, MN) soil test data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

1 45.0768865 -96.4362314 3.2 23.5 0.9 5.4 335 2440 499 

2 45.0758906 -96.4364095 2.6 15.6 0.4 5.3 216 1680 370 

3 45.0758857 -96.4383055 2.3 15.9 0.7 7.5 213 4280 347 

4 45.0759825 -96.4402876 2.4 16.0 0.9 6.9 366 4170 391 

5 45.0774180 -96.4402832 2.5 16.2 0.9 7.4 241 3260 441 

6 45.0771265 -96.4422473 2.2 12.0 0.4 5.1 230 1800 389 

7 45.0771957 -96.4439341 2.6 13.6 0.4 5.3 185 1950 448 

8 45.0770702 -96.4455203 3.1 16.3 1.0 6.3 998 2530 446 

9 45.0774757 -96.4487111 2.9 16.9 0.9 5.8 239 2610 435 

10 45.0764312 -96.4482571 2.6 15.0 0.5 5.5 184 2100 392 

11 45.0760938 -96.4461640 2.4 15.8 0.8 7.2 280 3520 433 

12 45.0760722 -96.4442455 2.0 13.2 0.4 5.4 166 1700 366 

13 45.0760254 -96.4422684 2.5 13.6 0.4 5.1 257 1820 383 

14 45.0745309 -96.4403463 2.1 12.5 0.8 7.2 189 3180 417 

15 45.0745025 -96.4383209 2.8 16.1 0.5 5.8 336 2620 595 

16 45.0745160 -96.4364722 2.5 15.4 0.8 7.0 874 2720 409 

17 45.0732658 -96.4365536 2.8 15.0 0.7 7.1 553 3870 370 

18 45.0731716 -96.4384935 1.4 8.7 0.9 7.5 211 2690 295 

19 45.0731979 -96.4404375 2.7 16.2 0.4 5.6 208 2100 389 

20 45.0731901 -96.4424481 2.2 13.9 0.7 6.8 197 3250 501 

21 45.0746446 -96.4423459 2.3 13.2 0.5 6.1 165 2470 419 

22 45.0746846 -96.4442935 1.7 12.3 1.0 7.5 182 4230 304 

23 45.0733040 -96.4443572 2.5 15.1 0.4 5.2 351 1890 409 

24 45.0747104 -96.4462512 2.5 15.0 0.4 5.4 233 2160 472 

25 45.0733217 -96.4463004 2.7 16.2 0.3 5.4 237 2100 468 

EC = Electrical Conductivity, SOC= Soil Organic Carbon. Soils from 0-15cm depth. 
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Table A.5 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

26 45.0719406 -96.4463698 2.5 14.8 5.5 0.4 336 1940 490 

27 45.0719065 -96.4444189 2.0 13.4 7.3 0.8 165 3940 403 

28 45.0718627 -96.4424870 2.8 15.3 6.4 0.9 211 2550 373 

29 45.0717867 -96.4405900 1.9 12.8 7.3 0.9 148 4080 383 

30 45.0717768 -96.4385603 1.8 12.7 7.0 0.8 172 2710 392 

31 45.0706961 -96.4369017 1.9 11.5 5.8 0.9 192 1720 358 

32 45.0703982 -96.4386233 2.1 11.8 5.2 0.4 218 1660 390 

33 45.0704304 -96.4405649 2.0 13.0 6.0 0.5 167 1920 441 

34 45.0704920 -96.4425195 2.2 13.7 5.5 0.5 201 1740 487 

35 45.0705178 -96.4444782 2.5 15.0 5.2 0.4 214 1970 453 

36 45.0705538 -96.4464279 2.7 16.0 5.5 0.9 252 2080 554 

37 45.0691506 -96.4464765 2.1 15.3 6.7 0.8 389 2520 615 

38 45.0692235 -96.4484432 2.7 15.5 6.6 0.9 247 3290 578 

39 45.0692628 -96.4504036 2.3 12.2 5.9 0.9 219 2100 432 

40 45.0678721 -96.4502198 2.9 16.5 7.0 0.9 208 4430 646 

41 45.0678494 -96.4485233 2.7 17.4 6.5 0.9 247 2640 809 

42 45.0681561 -96.4466793 2.7 18.4 7.0 0.9 291 3240 631 

EC = Electrical Conductivity, SOC= Soil Organic Carbon. Soils from 0-15cm depth. 
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Table A.5 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
-3 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

1 45.0768865 -96.4362314 35 45 34 99 17 34.70 36.89 28.42 

2 45.0758906 -96.4364095 32 60 21 92 12 44.65 31.77 23.58 

3 45.0758857 -96.4383055 27 33 53 37 25 47.04 35.80 17.16 

4 45.0759825 -96.4402876 25 36 41 67 25 44.55 31.82 23.63 

5 45.0774180 -96.4402832 15 44 84 76 21 53.20 25.25 21.54 

6 45.0771265 -96.4422473 21 54 19 96 13 52.91 27.38 19.71 

7 45.0771957 -96.4439341 14 59 25 78 14 45.02 29.05 25.94 

8 45.0770702 -96.4455203 16 54 50 358 19 43.30 32.56 24.14 

9 45.0774757 -96.4487111 17 44 31 81 17 41.56 30.14 28.31 

10 45.0764312 -96.4482571 22 43 31 58 14 54.97 27.46 17.58 

11 45.0760938 -96.4461640 16 36 41 32 22 46.95 33.85 19.21 

12 45.0760722 -96.4442455 22 43 20 69 12 54.50 27.93 17.57 

13 45.0760254 -96.4422684 45 61 22 84 13 44.73 27.42 27.85 

14 45.0745309 -96.4403463 21 45 45 66 20 60.07 24.60 15.33 

15 45.0745025 -96.4383209 20 62 25 61 19 39.71 34.14 26.15 

16 45.0745160 -96.4364722 17 26 35 180 19 46.51 31.97 21.53 

17 45.0732658 -96.4365536 16 31 42 92 24 42.38 31.50 26.12 

18 45.0731716 -96.4384935 14 31 28 35 17 68.04 21.07 10.89 

19 45.0731979 -96.4404375 16 52 28 81 14 46.40 29.53 24.07 

20 45.0731901 -96.4424481 16 43 18 43 21 42.94 33.34 23.72 

21 45.0746446 -96.4423459 25 38 22 54 16 53.16 29.27 17.56 

22 45.0746846 -96.4442935 23 34 28 31 24 59.89 26.96 13.15 

23 45.0733040 -96.4443572 20 58 20 116 14 39.90 31.97 28.13 

24 45.0747104 -96.4462512 28 50 23 46 16 40.06 34.21 25.72 

25 45.0733217 -96.4463004 29 26 19 37 15 33.26 33.94 32.80 

SOEC = Sum of Extractable Cation, Soils from 0-15cm depth. 
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Table A.5 Continued 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
-3 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

26 45.0719406 -96.4463698 22 59 21 47 15 41.97 32.09 25.93 

27 45.0719065 -96.4444189 20 40 27 28 24 40.22 30.23 29.56 

28 45.0718627 -96.4424870 22 41 27 55 17 41.49 34.95 23.57 

29 45.0717867 -96.4405900 33 28 31 34 24 45.12 29.90 24.98 

30 45.0717768 -96.4385603 19 51 34 51 17 55.37 27.87 16.76 

31 45.0706961 -96.4369017 20 70 31 73 12 58.59 24.38 17.03 

32 45.0703982 -96.4386233 26 63 14 87 12 51.75 28.79 19.46 

33 45.0704304 -96.4405649 21 43 26 47 14 54.58 25.03 20.39 

34 45.0704920 -96.4425195 26 65 25 41 13 41.28 33.17 25.56 

35 45.0705178 -96.4444782 29 42 23 62 14 32.94 33.09 33.97 

36 45.0705538 -96.4464279 23 69 24 57 16 35.02 37.21 27.77 

37 45.0691506 -96.4464765 30 48 21 30 19 41.98 38.73 19.29 

38 45.0692235 -96.4484432 28 44 23 33 22 34.90 35.21 29.88 

39 45.0692628 -96.4504036 37 53 25 62 15 51.81 28.65 19.54 

40 45.0678721 -96.4502198 23 51 44 1 28 34.51 38.20 27.29 

41 45.0678494 -96.4485233 27 57 32 68 21 33.86 40.76 25.38 

42 45.0681561 -96.4466793 24 35 47 79 22 30.26 42.46 27.28 

SOEC = Sum of Extractable Cation, Soils from 0-15cm depth. 
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Table A.6 Field E (Lac qui Parle County, MN) soil test data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

1 45.0943806 -96.4513185 3.1 27.8 8.0 1.0 198 4900 845 

2 45.0929747 -96.4513923 3.4 27.8 7.8 0.9 263 6120 565 

3 45.0915799 -96.4514550 2.6 23.0 6.0 0.3 188 2440 473 

4 45.0901786 -96.4515281 2.4 20.2 6.8 1.0 185 3260 421 

5 45.0887707 -96.4515790 3.3 30.9 7.7 0.9 258 5360 1188 

6 45.0889359 -96.4495657 3.6 30.6 7.8 1.0 336 5540 1010 

7 45.0901325 -96.4495335 2.9 22.5 7.0 0.9 279 4140 686 

8 45.0915302 -96.4494752 3.3 26.8 7.8 0.9 259 5550 459 

9 45.0929397 -96.4494075 4.4 35.0 7.7 1.0 269 5780 854 

10 45.0943300 -96.4493448 2.8 26.5 7.8 0.9 197 5390 650 

11 45.0942824 -96.4473747 2.2 18.1 7.6 0.5 222 3560 423 

12 45.0928912 -96.4474360 3.1 27.5 7.0 1.0 397 4020 895 

13 45.0914956 -96.4474954 3.4 18.1 7.3 1.0 200 4810 598 

14 45.0900797 -96.4475597 2.8 23.2 5.2 0.9 527 2090 405 

15 45.0887645 -96.4475490 2.4 16.0 5.0 0.4 270 1800 405 

16 45.0888396 -96.4456319 2.2 21.6 7.6 0.4 134 4490 478 

17 45.0900333 -96.4455679 3.2 28.3 7.8 0.9 278 5730 723 

EC = Electrical Conductivity, SOC= Soil Organic Carbon, Soils from 0-15cm depth. 
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Table A.6 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

SOC 

(g kg-1) 

Moisture 

(g kg-1) 

pH  

(1:1) 

EC (dS m-1) 

 (1:1) 

K+  

(mg kg-1) 

Ca2+  

(mg kg-1) 

Mg2+  

(mg kg-1) 

18 45.0914428 -96.4455129 3.4 29.1 7.8 0.9 463 5710 821 

19 45.0928519 -96.4454535 3.2 27.3 7.4 1.0 308 4560 665 

20 45.0945058 -96.4453727 1.9 17.0 6.1 0.4 283 2450 446 

21 45.0944088 -96.4434982 2.5 22.5 5.9 0.3 158 2180 428 

22 45.0930105 -96.4434506 2.2 18.4 6.0 0.4 217 2320 443 

23 45.0914038 -96.4435331 2.1 16.7 6.8 1.0 328 2560 395 

24 45.0899940 -96.4435857 2.7 22.1 6.3 0.4 348 2800 514 

25 45.0889262 -96.4437037 2.1 17.5 7.0 0.4 205 2790 516 

26 45.0886864 -96.4412690 1.8 16.3 5.2 0.4 319 1440 332 

27 45.0899627 -96.4414004 2.4 16.1 5.2 0.4 309 1590 319 

28 45.0929605 -96.4416428 1.8 14.2 6.9 0.5 207 2590 433 

29 45.0903772 -96.4357051 2.9 18.9 5.7 0.5 334 2730 531 

30 45.0889570 -96.4357631 2.6 20.3 7.7 0.7 171 4920 714 

31 45.0889662 -96.4376383 2.5 22.2 7.0 0.7 180 2970 764 

32 45.0887612 -96.4394635 1.8 17.2 6.6 0.5 194 2160 440 

33 45.0899445 -96.4393686 2.6 21.0 5.7 0.3 417 2140 414 

34 45.0902827 -96.4377227 3.0 22.8 6.3 0.4 327 2970 724 

EC = Electrical Conductivity, SOC= Soil Organic Carbon. Soils from 0-15cm depth. 
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Table A.6 Continued 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4 
3- 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

1 45.0943806 -96.4513185 28 32 7 11 0.5 39.43 35.19 25.38 

2 45.0929747 -96.4513923 31 36 7 13 0.5 34.09 48.61 17.30 

3 45.0915799 -96.4514550 33 17 8 10 35.3 41.88 28.36 29.76 

4 45.0901786 -96.4515281 29 20 9 11 30.5 42.69 29.29 28.02 

5 45.0887707 -96.4515790 37 38 10 9 33.2 24.37 41.26 34.37 

6 45.0889359 -96.4495657 40 37 9 14 1.2 25.87 42.28 31.85 

7 45.0901325 -96.4495335 30 27 11 15 46.0 40.48 31.90 27.63 

8 45.0915302 -96.4494752 18 32 9 18 0.6 39.98 31.07 28.95 

9 45.0929397 -96.4494075 48 37 11 14 0.7 26.87 40.92 32.21 

10 45.0943300 -96.4493448 28 33 9 11 0.4 39.67 34.59 25.74 

11 45.0942824 -96.4473747 31 22 7 15 37.5 53.99 24.84 21.17 

12 45.0928912 -96.4474360 21 29 10 10 45.5 47.19 41.36 11.45 

13 45.0914956 -96.4474954 19 30 11 17 33.0 42.11 32.42 25.47 

14 45.0900797 -96.4475597 25 15 11 30 101.2 43.37 26.55 30.08 

15 45.0887645 -96.4475490 27 13 9 22 58.2 48.54 25.81 25.65 

16 45.0888396 -96.4456319 28 27 8 10 29.5 45.56 27.12 27.32 

17 45.0900333 -96.4455679 79 36 9 13 0.5 33.18 36.79 30.03 

SOEC = Sum of Extractable Cation, Soils from 0-15cm depth. 
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Table A.6 Continued 

SOEC = Sum of Extractable Cation, Soils from 0-15cm depth. 

 

 

 

 

 

 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Na+ 

(mg kg-1) 

SOEC 

(cmolc kg-1) 

NH4
+-N 

(mg kg-1) 

NO3
--N 

(mg kg-1) 

PO4
-3 

(mg kg-1) 

Sand 

(g kg-1) 

Clay 

(g kg-1) 

Silt 

(g kg-1) 

18 45.0914428 -96.4455129 31 37 9 12 1 32.91 36.85 30.24 

19 45.0928519 -96.4454535 40 29 10 14 26 41.98 32.26 25.76 

20 45.0945058 -96.4453727 28 17 11 15 72 50.77 25.93 23.30 

21 45.0944088 -96.4434982 37 15 23 19 25 50.75 23.44 25.81 

22 45.0930105 -96.4434506 25 16 25 19 8 57.42 21.52 21.06 

23 45.0914038 -96.4435331 22 17 28 31 60 56.06 22.92 21.02 

24 45.0899940 -96.4435857 24 19 12 8 41 35.15 32.70 32.15 

25 45.0889262 -96.4437037 21 19 8 13 55 55.33 23.42 21.25 

26 45.0886864 -96.4412690 27 11 40 15 72 55.25 23.64 21.11 

27 45.0899627 -96.4414004 24 12 43 21 57 52.63 23.92 23.45 

28 45.0929605 -96.4416428 22 17 23 26 42 63.84 19.19 16.97 

29 45.0903772 -96.4357051 28 19 30 21 76 41.98 29.81 28.21 

30 45.0889570 -96.4357631 38 31 5 36 24 51.19 27.41 21.40 

31 45.0889662 -96.4376383 38 22 22 26 25 50.75 27.40 21.85 

32 45.0887612 -96.4394635 39 15 23 23 24 63.71 19.15 17.14 

33 45.0899445 -96.4393686 25 15 26 26 82 53.64 23.11 23.25 

34 45.0902827 -96.4377227 38 22 24 26 43 46.40 28.12 25.48 
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Appendix B 

 

Table B.1 The complete Pearson correlation matrix for Landsat 8 data (n= 150) 

 

 

 

 

 

 

 

 

 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. All values in bold print are significant (P<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters BSI Band 4 Band 5 MSAVI2 NDVI Band 7 Band 6 Band 2 Band 3 BI 

BSI 1          
Band 4 0.95 1         
Band 5 0.95 0.93 1        
MSAVI2 0.72 0.61 0.86 1       
NDVI 0.18 0.00 0.36 0.78 1      
Band 7 0.68 0.73 0.76 0.61 0.19 1     
Band 6 0.79 0.79 0.89 0.82 0.42 0.94 1    
Band 2 0.80 0.92 0.75 0.33 -0.29 0.63 0.62 1   
Band 3 0.92 0.98 0.87 0.50 -0.12 0.67 0.71 0.97 1  
BI 0.94 1.00 0.91 0.57 -0.05 0.71 0.76 0.94 0.99 1 
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Table B.2 Field A (Brookings County, SD) Landsat 8 single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
BSI MSAVI2 NDVI BI 

1 44.3849033 -96.9461351 0.10445 0.09320 0.10571 0.16984 0.28971 0.25253 97.62 0.10378 0.23 0.07047 

2 44.3849738 -96.9442170 0.10251 0.08647 0.09304 0.14838 0.27666 0.24632 96.27 0.09186 0.23 0.06351 

3 44.3863216 -96.9443015 0.10935 0.09459 0.10272 0.15713 0.28223 0.25122 96.82 0.08879 0.21 0.06982 

4 44.3877266 -96.9442422 0.10149 0.08844 0.09877 0.16190 0.29519 0.26284 97.10 0.10347 0.24 0.06629 

5 44.3880766 -96.9462404 0.09975 0.08626 0.09447 0.16456 0.26111 0.21928 96.97 0.11551 0.27 0.06396 

6 44.3894226 -96.9462689 0.10258 0.08732 0.09326 0.14617 0.26502 0.23491 96.45 0.08785 0.22 0.06388 

7 44.3893326 -96.9443454 0.10156 0.08738 0.09730 0.15735 0.28730 0.25253 96.81 0.09878 0.24 0.06539 

8 44.3905456 -96.9462595 0.10278 0.08774 0.09497 0.14779 0.26610 0.23414 96.53 0.08745 0.22 0.06465 

9 44.3905477 -96.9442898 0.10347 0.09017 0.10054 0.16296 0.29108 0.25386 97.09 0.10201 0.24 0.06752 

10 44.3905362 -96.9426315 0.10388 0.08732 0.09270 0.14079 0.26049 0.23254 96.10 0.08004 0.21 0.06368 

11 44.3892037 -96.9424045 0.10089 0.08481 0.09162 0.14472 0.27184 0.24033 96.19 0.08842 0.22 0.06242 

12 44.3877270 -96.9423955 0.10220 0.09088 0.10405 0.17026 0.29854 0.26126 97.58 0.10738 0.24 0.06907 

13 44.3863649 -96.9422821 0.10083 0.08501 0.09073 0.14254 0.26463 0.23549 96.23 0.08644 0.22 0.06217 

14 44.3849364 -96.9422305 0.10445 0.08952 0.09686 0.15072 0.27655 0.24580 96.62 0.08884 0.22 0.06595 

15 44.3849395 -96.9404207 0.10490 0.09435 0.10848 0.17446 0.30137 0.26448 97.81 0.10619 0.23 0.07188 

16 44.3864433 -96.9405058 0.10336 0.08836 0.09667 0.15694 0.29154 0.25737 96.63 0.09923 0.24 0.06549 

17 44.3877366 -96.9406607 0.10349 0.09067 0.10147 0.16452 0.29341 0.25721 97.21 0.10284 0.24 0.06804 

18 44.3892959 -96.9407110 0.10657 0.09098 0.09730 0.14894 0.26334 0.23235 96.49 0.08517 0.21 0.06660 

19 44.3905324 -96.9407824 0.10170 0.08670 0.09414 0.14902 0.27527 0.24162 96.52 0.09093 0.23 0.06399 

20 44.3905420 -96.9386300 0.10370 0.08684 0.09256 0.13998 0.25837 0.23042 96.02 0.07897 0.20 0.06346 

21 44.3893405 -96.9385052 0.10285 0.08643 0.09112 0.13871 0.25721 0.23063 96.08 0.07945 0.21 0.06280 

22 44.3877992 -96.9387336 0.10480 0.09270 0.10613 0.17924 0.31789 0.27587 97.50 0.11786 0.26 0.07046 

23 44.3864869 -96.9386987 0.10299 0.08695 0.09418 0.14977 0.28113 0.25072 96.30 0.09208 0.23 0.06409 

24 44.3849026 -96.9387805 0.10312 0.08797 0.09570 0.15004 0.27828 0.24601 96.53 0.08980 0.22 0.06499 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Table B.3 Field B (Brookings County, SD) Landsat 8 single bands and remote sensing indices data set 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
BSI MSAVI2 NDVI BI 

1 44.4629807 -96.8467720 0.09979 0.08486 0.09370 0.15528 0.27626 0.24025 96.57 0.10189 0.25 0.06321 

2 44.4630070 -96.8448609 0.09793 0.08220 0.08747 0.14220 0.27176 0.23880 96.02 0.09179 0.24 0.06002 

3 44.4629894 -96.8428560 0.09861 0.08415 0.08851 0.15447 0.30666 0.24389 96.12 0.11003 0.29 0.06106 

4 44.4628501 -96.8409707 0.09411 0.07554 0.07647 0.12267 0.24177 0.21311 94.80 0.07923 0.23 0.05375 

5 44.4628333 -96.8389601 0.09634 0.07898 0.08562 0.14023 0.26116 0.22942 95.66 0.09190 0.24 0.05824 

6 44.4613164 -96.8388696 0.09395 0.07532 0.08109 0.13414 0.26399 0.23163 95.22 0.09006 0.25 0.05534 

7 44.4614810 -96.8409738 0.09323 0.07339 0.07427 0.11600 0.22668 0.20423 94.34 0.07194 0.22 0.05221 

8 44.4615306 -96.8428734 0.09813 0.08288 0.09011 0.15303 0.29117 0.23885 96.17 0.10476 0.27 0.06121 

9 44.4617706 -96.8447335 0.09821 0.08279 0.09472 0.16141 0.28775 0.25359 96.72 0.10997 0.25 0.06290 

10 44.4617408 -96.8467150 0.09976 0.08514 0.09214 0.15386 0.29242 0.25556 96.40 0.10241 0.26 0.06273 

11 44.4603363 -96.8466976 0.09598 0.07941 0.08952 0.15176 0.26058 0.21769 96.31 0.10375 0.26 0.05983 

12 44.4603057 -96.8444288 0.09790 0.08223 0.09185 0.16573 0.28907 0.23866 96.53 0.12218 0.27 0.06164 

13 44.4598756 -96.8431769 0.09623 0.07869 0.08682 0.16712 0.29127 0.21929 95.91 0.13378 0.31 0.05859 

14 44.4597715 -96.8409587 0.09604 0.07974 0.08703 0.15999 0.29467 0.24879 96.32 0.12179 0.28 0.05902 

15 44.4594313 -96.8393745 0.09516 0.07717 0.08113 0.13206 0.25947 0.22749 95.23 0.08650 0.24 0.05599 

16 44.4587020 -96.8390945 0.09503 0.07827 0.08589 0.14561 0.26122 0.21973 96.01 0.10030 0.26 0.05810 

17 44.4587136 -96.8410623 0.09591 0.07824 0.08333 0.13767 0.26063 0.22739 95.55 0.09183 0.24 0.05715 

18 44.4587878 -96.8430260 0.09334 0.07587 0.08075 0.14659 0.27485 0.21161 95.49 0.11142 0.30 0.05540 

19 44.4588545 -96.8449193 0.09546 0.07886 0.08371 0.14861 0.26986 0.22544 95.80 0.10926 0.27 0.05750 

20 44.4588720 -96.8467019 0.09634 0.07965 0.08551 0.13732 0.24878 0.21471 95.83 0.08726 0.23 0.05843 

21 44.4573421 -96.8391653 0.09653 0.07957 0.08749 0.14489 0.26097 0.22669 95.95 0.09618 0.24 0.05913 

22 44.4573916 -96.8411028 0.09731 0.08081 0.08979 0.14869 0.26161 0.22758 96.21 0.09822 0.24 0.06040 

23 44.4574460 -96.8429200 0.09537 0.07940 0.08585 0.14626 0.26633 0.21948 96.12 0.10144 0.26 0.05847 

24 44.4574153 -96.8448636 0.09678 0.08107 0.08815 0.14574 0.26314 0.22161 96.21 0.09637 0.25 0.05988 

25 44.4575522 -96.8467046 0.09727 0.08064 0.08632 0.13751 0.25169 0.22019 95.86 0.08610 0.23 0.05907 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Table B.4 Field C (Brookings County, SD) Landsat 8 single bands and remote sensing indices data set 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
BSI MSAVI2 NDVI BI 

1 44.4286008 -96.8672630 0.10623 0.09312 0.10457 0.17275 0.31560 0.29322 97.25 0.110408 0.25 0.07001 

2 44.4299830 -96.8671877 0.10850 0.09730 0.10972 0.18237 0.32462 0.29382 97.75 0.116394 0.25 0.07332 

3 44.4314178 -96.8671488 0.10711 0.09721 0.10868 0.18177 0.31036 0.27356 98.00 0.117290 0.25 0.07291 

4 44.4328201 -96.8670861 0.10659 0.09584 0.10725 0.18219 0.30820 0.26739 97.82 0.120487 0.26 0.07192 

5 44.4342010 -96.8670197 0.10937 0.09883 0.11074 0.18483 0.31294 0.27248 97.91 0.118418 0.25 0.07422 

6 44.4341373 -96.8651006 0.11008 0.09981 0.11232 0.18657 0.32905 0.29630 97.98 0.118347 0.25 0.07513 

7 44.4327896 -96.8651324 0.11072 0.10027 0.11409 0.19189 0.33439 0.29829 97.98 0.123467 0.25 0.07594 

8 44.4315933 -96.8649219 0.11403 0.10376 0.12213 0.20667 0.35579 0.32414 98.12 0.131946 0.26 0.08013 

9 44.4299906 -96.8651800 0.11465 0.10769 0.12575 0.21041 0.35727 0.32335 98.75 0.131309 0.25 0.08278 

10 44.4285866 -96.8652243 0.11016 0.09736 0.10910 0.18225 0.32718 0.29962 97.43 0.117301 0.25 0.07311 

11 44.4285134 -96.8636093 0.10176 0.08797 0.09466 0.15767 0.28077 0.24299 96.88 0.104034 0.25 0.06461 

12 44.4299351 -96.8635234 0.11122 0.09890 0.11415 0.19347 0.34883 0.32115 97.62 0.125791 0.26 0.07552 

13 44.4314315 -96.8634919 0.11544 0.10985 0.12909 0.21238 0.36346 0.32998 99.01 0.128509 0.24 0.08475 

14 44.4327920 -96.8634859 0.10960 0.10152 0.11854 0.19767 0.34638 0.30671 98.47 0.124542 0.25 0.07803 

15 44.4341988 -96.8635278 0.10224 0.09025 0.09798 0.16581 0.30342 0.26284 97.37 0.111152 0.26 0.06661 

16 44.4341861 -96.8616905 0.11600 0.10883 0.12959 0.21639 0.35276 0.31703 98.74 0.133628 0.25 0.08461 

17 44.4342965 -96.8589566 0.12045 0.11340 0.13452 0.21032 0.32747 0.26564 98.78 0.116235 0.22 0.08797 

18 44.4330571 -96.8594005 0.11031 0.10029 0.11644 0.19958 0.34465 0.30509 98.10 0.131141 0.26 0.07684 

19 44.4312102 -96.8589493 0.10731 0.09879 0.11309 0.19628 0.32574 0.27807 98.35 0.131982 0.27 0.07508 

20 44.4312967 -96.8612596 0.10981 0.09844 0.11427 0.19274 0.32946 0.29091 97.79 0.124452 0.26 0.07541 

21 44.4321796 -96.8621143 0.12038 0.11378 0.13616 0.21531 0.33765 0.27645 98.87 0.120870 0.23 0.08872 

22 44.4305035 -96.8624173 0.10586 0.09466 0.10596 0.17693 0.30162 0.25841 97.68 0.114524 0.25 0.07104 

23 44.4298767 -96.8611440 0.10987 0.10143 0.11764 0.19840 0.33831 0.30141 98.40 0.127215 0.26 0.07767 

24 44.4293013 -96.8592668 0.09472 0.07992 0.08123 0.13327 0.21936 0.17365 96.20 0.088330 0.24 0.05698 

25 44.4287346 -96.8625206 0.09189 0.07500 0.07406 0.11671 0.22315 0.18331 95.28 0.073529 0.22 0.05270 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Table B.5 Field D (Lac qui Parle County, MN) Landsat 8 single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
BSI MSAVI2 NDVI BI 

1 45.0768865 -96.4362314 0.10035 0.08263 0.08834 0.13734 0.26970 0.24403 95.66 0.08218 0.22 0.06048 

2 45.0758906 -96.4364095 0.10266 0.08676 0.09630 0.15544 0.29652 0.26581 96.40 0.09748 0.23 0.06481 

3 45.0758857 -96.4383055 0.11145 0.09813 0.10677 0.15995 0.27842 0.24815 97.20 0.08621 0.20 0.07251 

4 45.0759825 -96.4402876 0.10031 0.08373 0.08547 0.14609 0.24864 0.20812 96.01 0.10185 0.26 0.05982 

5 45.0774180 -96.4402832 0.10584 0.09011 0.09601 0.14283 0.26961 0.24869 96.38 0.07751 0.20 0.06583 

6 45.0771265 -96.4422473 0.10594 0.09299 0.10426 0.16461 0.29945 0.26525 97.23 0.09803 0.22 0.06985 

7 45.0771957 -96.4439341 0.10519 0.09148 0.10154 0.16109 0.29465 0.26375 97.01 0.09724 0.23 0.06833 

8 45.0770702 -96.4455203 0.10968 0.09971 0.11178 0.17868 0.19499 0.13751 98.00 0.10700 0.23 0.07489 

9 45.0774757 -96.4487111 0.10058 0.08198 0.08564 0.13179 0.27094 0.25033 95.35 0.07785 0.21 0.05928 

10 45.0764312 -96.4482571 0.10162 0.08312 0.08759 0.13576 0.27321 0.25280 95.47 0.08092 0.22 0.06038 

11 45.0760938 -96.4461640 0.10509 0.08975 0.09717 0.14418 0.25829 0.23570 96.48 0.07765 0.19 0.06614 

12 45.0760722 -96.4442455 0.10571 0.09368 0.10646 0.16980 0.30334 0.26963 97.47 0.10239 0.23 0.07090 

13 45.0760254 -96.4422684 0.10721 0.09432 0.10754 0.17300 0.30344 0.26862 97.33 0.10554 0.23 0.07152 

14 45.0745309 -96.4403463 0.10330 0.08955 0.09530 0.14459 0.27452 0.24902 96.82 0.08164 0.21 0.06538 

15 45.0745025 -96.4383209 0.10349 0.08948 0.09755 0.15029 0.28054 0.25074 96.82 0.08691 0.21 0.06619 

16 45.0745160 -96.4364722 0.10704 0.09304 0.10368 0.16012 0.28522 0.25791 96.98 0.09190 0.21 0.06965 

17 45.0732658 -96.4365536 0.10355 0.08944 0.09836 0.15228 0.27508 0.24715 96.82 0.08871 0.22 0.06647 

18 45.0731716 -96.4384935 0.11290 0.10482 0.11754 0.17379 0.29195 0.26280 98.41 0.08942 0.19 0.07874 

19 45.0731979 -96.4404375 0.10580 0.09187 0.10278 0.16407 0.29526 0.26400 97.00 0.09978 0.23 0.06893 

20 45.0731901 -96.4424481 0.11018 0.09958 0.11263 0.17435 0.29893 0.26093 97.87 0.09876 0.22 0.07517 

21 45.0746446 -96.4423459 0.10711 0.09345 0.10509 0.16242 0.29014 0.25899 97.08 0.09309 0.21 0.07032 

22 45.0746846 -96.4442935 0.11804 0.10825 0.12375 0.18427 0.29536 0.26153 98.17 0.09504 0.20 0.08221 

23 45.0733040 -96.4443572 0.10455 0.09150 0.10347 0.16824 0.31117 0.27479 97.21 0.10522 0.24 0.06906 

24 45.0747104 -96.4462512 0.10432 0.09046 0.10087 0.15868 0.29494 0.26190 96.95 0.09456 0.22 0.06775 

25 45.0733217 -96.4463004 0.10280 0.08859 0.09798 0.15754 0.28865 0.25396 96.82 0.09786 0.23 0.06605 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Table B.5 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
BSI MSAVI2 NDVI BI 

26 45.0719406 -96.4463698 0.10746 0.09599 0.10856 0.16860 0.29172 0.25708 97.61 0.09680 0.22 0.07245 

27 45.0719065 -96.4444189 0.11299 0.10287 0.11664 0.17853 0.29501 0.25947 98.02 0.09833 0.21 0.07776 

28 45.0718627 -96.4424870 0.10565 0.09289 0.10451 0.16425 0.29711 0.26244 97.27 0.09703 0.22 0.06991 

29 45.0717867 -96.4405900 0.11631 0.11178 0.12776 0.18892 0.29530 0.25762 99.17 0.09538 0.19 0.08488 

30 45.0717768 -96.4385603 0.11020 0.09908 0.11228 0.17444 0.29856 0.26431 97.76 0.09950 0.22 0.07487 

31 45.0706961 -96.4369017 0.10908 0.09734 0.11218 0.18061 0.30835 0.27159 97.65 0.10933 0.23 0.07426 

32 45.0703982 -96.4386233 0.10702 0.09661 0.11105 0.17635 0.30037 0.26327 97.88 0.10463 0.23 0.07360 

33 45.0704304 -96.4405649 0.10819 0.09682 0.11020 0.17838 0.30928 0.27167 97.70 0.10931 0.24 0.07335 

34 45.0704920 -96.4425195 0.10569 0.09237 0.10469 0.16579 0.28746 0.25008 97.16 0.09915 0.23 0.06981 

35 45.0705178 -96.4444782 0.10634 0.09410 0.10733 0.17753 0.31136 0.27236 97.48 0.11304 0.25 0.07137 

36 45.0705538 -96.4464279 0.10499 0.09227 0.10278 0.16001 0.28954 0.25392 97.24 0.09331 0.22 0.06906 

37 45.0691506 -96.4464765 0.10754 0.09628 0.10640 0.16101 0.27425 0.24154 97.61 0.08855 0.20 0.07175 

38 45.0692235 -96.4484432 0.10607 0.09146 0.10127 0.15465 0.27793 0.24655 96.78 0.08738 0.21 0.06823 

39 45.0692628 -96.4504036 0.10659 0.09262 0.10393 0.16332 0.29326 0.26024 97.01 0.09657 0.22 0.06960 

40 45.0678721 -96.4502198 0.11317 0.10497 0.11330 0.17061 0.27057 0.22988 98.37 0.09174 0.20 0.07722 

41 45.0678494 -96.4485233 0.10235 0.08537 0.09019 0.13759 0.25581 0.22601 95.91 0.07927 0.21 0.06209 

42 45.0681561 -96.4466793 0.10499 0.08603 0.08998 0.13391 0.25076 0.22907 95.43 0.07357 0.20 0.06225 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Table B.6 Field E (Lac qui Parle County, MN) Landsat 8 single bands and remote sensing indices data set 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
NDVI BSI MSAVI2 BI 

1 45.0943806 -96.4513185 0.10945 0.08801 0.0926 0.13211 0.24831 0.23248 0.18 94.92 0.06594 0.06387 

2 45.0929747 -96.4513923 0.10565 0.08876 0.09466 0.14262 0.26598 0.24397 0.20 96.09 0.07956 0.06488 

3 45.0915799 -96.4514550 0.10802 0.09620 0.10966 0.17414 0.31070 0.28034 0.23 97.58 0.10362 0.07294 

4 45.0901786 -96.4515281 0.10804 0.09717 0.10979 0.17502 0.30627 0.27759 0.23 97.78 0.10477 0.07331 

5 45.0887707 -96.4515790 0.10393 0.08491 0.08849 0.13092 0.25079 0.23167 0.19 95.34 0.07129 0.06132 

6 45.0889359 -96.4495657 0.10602 0.08765 0.09131 0.13287 0.25401 0.24096 0.19 95.60 0.06949 0.06329 

7 45.0901325 -96.4495335 0.10316 0.08757 0.09547 0.14902 0.29154 0.26995 0.22 96.42 0.08855 0.06477 

8 45.0915302 -96.4494752 0.11222 0.09663 0.10359 0.15444 0.28455 0.26101 0.20 96.66 0.08296 0.07083 

9 45.0929397 -96.4494075 0.10526 0.08610 0.08871 0.12277 0.22317 0.21650 0.16 95.24 0.05733 0.06181 

10 45.0943300 -96.4493448 0.10974 0.09221 0.09780 0.14262 0.26523 0.24758 0.19 96.04 0.07402 0.06720 

11 45.0942824 -96.4473747 0.10480 0.08817 0.09399 0.14104 0.27398 0.25893 0.20 96.12 0.07816 0.06444 

12 45.0928912 -96.4474360 0.10517 0.08676 0.09052 0.12965 0.24145 0.23142 0.18 95.53 0.06556 0.06269 

13 45.0914956 -96.4474954 0.10551 0.08869 0.09324 0.13715 0.25725 0.24002 0.19 96.04 0.07311 0.06434 

14 45.0900797 -96.4475597 0.11459 0.10573 0.12342 0.19376 0.31631 0.26508 0.22 98.35 0.11014 0.08126 

15 45.0887645 -96.4475490 0.11461 0.10578 0.12386 0.19439 0.31861 0.26862 0.22 98.36 0.11034 0.08144 

16 45.0888396 -96.4456319 0.11540 0.10702 0.12055 0.18017 0.29542 0.25773 0.20 98.40 0.09417 0.08060 

17 45.0900333 -96.4455679 0.10430 0.08593 0.08998 0.13319 0.26431 0.24779 0.19 95.56 0.07237 0.06221 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Table B.6 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 

Band 5 

µm 

Band 6 

µm 

Band 7 

µm 
NDVI BSI MSAVI2 BI 

18 45.0914428 -96.4455129 0.10804 0.08894 0.09291 0.13371 0.24798 0.23888 0.18 95.49 0.06802 0.06431 

19 45.0928519 -96.4454535 0.10424 0.08541 0.08788 0.1262 0.24218 0.23534 0.18 95.34 0.06452 0.06127 

20 45.0945058 -96.4453727 0.10841 0.09713 0.11062 0.17323 0.30762 0.2772 0.22 97.69 0.10051 0.07360 

21 45.0944088 -96.4434982 0.09399 0.07629 0.08009 0.12859 0.25365 0.22722 0.23 95.33 0.08259 0.05530 

22 45.0930105 -96.4434506 0.09969 0.08479 0.09395 0.14881 0.27595 0.24557 0.23 96.51 0.09093 0.06328 

23 45.0914038 -96.4435331 0.09713 0.08186 0.08965 0.14489 0.28096 0.25899 0.24 96.31 0.09225 0.06070 

24 45.0899940 -96.4435857 0.10790 0.09052 0.09804 0.15262 0.28782 0.26995 0.22 96.13 0.08980 0.06672 

25 45.0889262 -96.4437037 0.10602 0.09160 0.10231 0.16234 0.30226 0.27518 0.23 96.88 0.09787 0.06866 

26 45.0886864 -96.4412690 0.10301 0.09194 0.10896 0.18416 0.31828 0.27909 0.26 97.73 0.12054 0.07128 

27 45.0899627 -96.4414004 0.09592 0.07938 0.08844 0.14939 0.2885 0.26174 0.26 96.00 0.10184 0.05942 

28 45.0929605 -96.4416428 0.09420 0.07618 0.08071 0.12942 0.26271 0.23628 0.23 95.27 0.08284 0.05549 

29 45.0903772 -96.4357051 0.09243 0.07128 0.07398 0.11723 0.23988 0.21903 0.23 94.04 0.07457 0.05137 

30 45.0889570 -96.4357631 0.09241 0.07292 0.07516 0.11216 0.22365 0.20633 0.20 94.47 0.06375 0.05236 

31 45.0889662 -96.4376383 0.09262 0.07155 0.07259 0.11097 0.22414 0.20621 0.21 93.94 0.06643 0.05096 

32 45.0887612 -96.4394635 0.09580 0.07959 0.08564 0.13427 0.25667 0.23302 0.22 95.90 0.08196 0.05846 

33 45.0899445 -96.4393686 0.09698 0.08092 0.08959 0.15191 0.29715 0.26768 0.26 96.17 0.10388 0.06036 

34 45.0902827 -96.4377227 0.09223 0.07169 0.07365 0.11581 0.23568 0.21523 0.22 94.19 0.07277 0.05139 

See Tables 2.8 and 2.10 for Landsat 8 bands and indices descriptions. 
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Appendix C 

                         

 

Table C.1 The complete Pearson correlation matrix for PlanetScope data (n= 150) 

 

 

 

 

 

 

 

 

 

 

See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. All values in bold print are significant (P<0.05). 

 
 

 

 

 

 

 

 

 

 

Parameters MSAVI2 Band 4 Band 3 NDVI BSI Band 2 Band 1 BI 

MSAVI2 1        
Band 4 0.63 1       
Band 3 0.58 0.94 1      
NDVI 0.38 0.57 0.27 1     
BSI 0.30 0.69 0.63 0.46 1    
Band 2 0.58 0.91 0.96 0.27 0.66 1   
Band 1 0.57 0.86 0.95 0.19 0.60 0.98 1  
BI 0.59 0.93 0.99 0.27 0.65 0.99 0.97 1 
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Table C.2 Field A (Brookings County, SD) PlanetScope single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

1 44.3849033 -96.9461351 0.001135 0.001060 0.001071 0.001536 0.103778 0.18 98.86 0.000753 

2 44.3849738 -96.9442170 0.001041 0.000933 0.000934 0.001239 0.091858 0.14 97.95 0.000660 

3 44.3863216 -96.9443015 0.001140 0.001063 0.001026 0.001322 0.088790 0.13 98.26 0.000739 

4 44.3877266 -96.9442422 0.001114 0.001054 0.001053 0.001481 0.103467 0.17 98.91 0.000745 

5 44.3880766 -96.9462404 0.001068 0.000949 0.000939 0.001480 0.115513 0.22 98.37 0.000668 

6 44.3894226 -96.9462689 0.001082 0.000983 0.000997 0.001357 0.087851 0.15 98.52 0.000700 

7 44.3893326 -96.9443454 0.001088 0.000985 0.000963 0.001320 0.098784 0.16 98.52 0.000689 

8 44.3905456 -96.9462595 0.001109 0.001020 0.001015 0.001342 0.087449 0.14 98.16 0.000720 

9 44.3905477 -96.9442898 0.001131 0.001083 0.001077 0.001490 0.102010 0.16 98.79 0.000764 

10 44.3905362 -96.9426315 0.001052 0.000937 0.000937 0.001203 0.080043 0.12 97.84 0.000663 

11 44.3892037 -96.9424045 0.001097 0.001012 0.001013 0.001360 0.088417 0.15 98.89 0.000716 

12 44.3877270 -96.9423955 0.001166 0.001135 0.001121 0.001567 0.107382 0.17 98.86 0.000797 

13 44.3863649 -96.9422821 0.001086 0.001009 0.001009 0.001369 0.086444 0.15 98.18 0.000713 

14 44.3849364 -96.9422305 0.001047 0.000947 0.000913 0.001266 0.088840 0.16 97.94 0.000658 

15 44.3849395 -96.9404207 0.001138 0.001055 0.001026 0.001444 0.106185 0.17 98.74 0.000736 

16 44.3864433 -96.9405058 0.001091 0.001007 0.001007 0.001340 0.099230 0.14 98.18 0.000712 

17 44.3877366 -96.9406607 0.001120 0.001065 0.001066 0.001470 0.102836 0.16 98.97 0.000753 

18 44.3892959 -96.9407110 0.001053 0.000939 0.000953 0.001245 0.085166 0.13 98.23 0.000669 

19 44.3905324 -96.9407824 0.001116 0.001029 0.001028 0.001344 0.090932 0.13 98.69 0.000727 

20 44.3905420 -96.9386300 0.001065 0.000974 0.000974 0.001194 0.078972 0.10 98.01 0.000689 

21 44.3893405 -96.9385052 0.001061 0.000938 0.000939 0.001156 0.079448 0.10 98.07 0.000664 

22 44.3877992 -96.9387336 0.001131 0.001089 0.001094 0.001509 0.117857 0.16 98.99 0.000772 

23 44.3864869 -96.9386987 0.001165 0.001120 0.001120 0.001468 0.092076 0.13 99.20 0.000792 

24 44.3849026 -96.9387805 0.001050 0.000930 0.000953 0.001227 0.089801 0.13 98.37 0.000666 

See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 
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Table C.3 Field B (Brookings County, SD) PlanetScope single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

1 44.4629807 -96.8467720 0.001224 0.001181 0.001181 0.001649 0.101888 0.17 98.46 0.000835 

2 44.4630070 -96.8448609 0.001157 0.001117 0.001107 0.001587 0.091793 0.18 98.53 0.000786 

3 44.4629894 -96.8428560 0.001219 0.001197 0.001197 0.001864 0.110032 0.22 98.67 0.000847 

4 44.4628501 -96.8409707 0.001216 0.001153 0.001153 0.001611 0.079231 0.17 98.78 0.000816 

5 44.4628333 -96.8389601 0.001180 0.001143 0.001143 0.001575 0.091896 0.16 98.35 0.000808 

6 44.4613164 -96.8388696 0.001174 0.001087 0.001097 0.001479 0.090057 0.15 98.18 0.000772 

7 44.4614810 -96.8409738 0.001093 0.000993 0.001004 0.001288 0.071942 0.12 97.58 0.000706 

8 44.4615306 -96.8428734 0.001216 0.001186 0.001186 0.001753 0.104761 0.19 98.72 0.000839 

9 44.4617706 -96.8447335 0.001216 0.001178 0.001178 0.001638 0.109966 0.16 98.51 0.000833 

10 44.4617408 -96.8467150 0.001191 0.001152 0.001152 0.001602 0.102412 0.16 98.51 0.000815 

11 44.4603363 -96.8466976 0.001173 0.001124 0.001124 0.001550 0.103751 0.16 98.16 0.000795 

12 44.4603057 -96.8444288 0.001187 0.001170 0.001170 0.001700 0.122183 0.18 98.30 0.000827 

13 44.4598756 -96.8431769 0.001179 0.001113 0.001113 0.001597 0.133778 0.18 98.76 0.000787 

14 44.4597715 -96.8409587 0.001174 0.001106 0.001105 0.001569 0.121786 0.17 98.70 0.000782 

15 44.4594313 -96.8393745 0.001161 0.001093 0.001093 0.001479 0.086503 0.15 98.14 0.000773 

16 44.4587020 -96.8390945 0.001099 0.001020 0.001020 0.001460 0.100299 0.18 98.42 0.000721 

17 44.4587136 -96.8410623 0.001112 0.001029 0.001029 0.001425 0.091832 0.16 98.40 0.000727 

18 44.4587878 -96.8430260 0.001146 0.001092 0.001063 0.001572 0.111417 0.19 98.77 0.000762 

19 44.4588545 -96.8449193 0.001160 0.001113 0.001119 0.001539 0.109262 0.16 98.58 0.000789 

20 44.4588720 -96.8467019 0.001115 0.001045 0.001045 0.001438 0.087263 0.16 98.14 0.000739 

21 44.4573421 -96.8391653 0.001133 0.001056 0.001054 0.001436 0.096175 0.15 98.43 0.000746 

22 44.4573916 -96.8411028 0.001151 0.001095 0.001095 0.001466 0.098225 0.14 97.91 0.000774 

23 44.4574460 -96.8429200 0.001141 0.001065 0.001065 0.001417 0.101438 0.14 98.00 0.000753 

24 44.4574153 -96.8448636 0.001150 0.001087 0.001087 0.001480 0.096366 0.15 98.36 0.000769 

25 44.4575522 -96.8467046 0.001156 0.001095 0.001096 0.001485 0.086101 0.15 98.08 0.000774 

See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 
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Table C.4 Field C (Brookings County, SD) PlanetScope single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

1 44.4286008 -96.8672630 0.001179 0.001179 0.001192 0.001596 0.110408 0.14 97.98 0.000838 

2 44.4299830 -96.8671877 0.001209 0.001170 0.001171 0.001657 0.116394 0.17 98.81 0.000828 

3 44.4314178 -96.8671488 0.001243 0.001206 0.001207 0.001810 0.117290 0.20 98.91 0.000853 

4 44.4328201 -96.8670861 0.001342 0.001368 0.001368 0.001931 0.120487 0.17 98.97 0.000967 

5 44.4342010 -96.8670197 0.001400 0.001426 0.001421 0.002058 0.118418 0.18 99.23 0.001007 

6 44.4341373 -96.8651006 0.001257 0.001238 0.001248 0.001708 0.118347 0.16 98.67 0.000879 

7 44.4327896 -96.8651324 0.001362 0.001375 0.001376 0.002040 0.123467 0.19 98.97 0.000972 

8 44.4315933 -96.8649219 0.001371 0.001402 0.001402 0.002039 0.131946 0.18 99.19 0.000991 

9 44.4299906 -96.8651800 0.001171 0.001148 0.001159 0.001591 0.131309 0.16 98.72 0.000816 

10 44.4285866 -96.8652243 0.001124 0.001044 0.001059 0.001454 0.117301 0.16 97.66 0.000744 

11 44.4285134 -96.8636093 0.001262 0.001245 0.001244 0.001689 0.104034 0.15 98.62 0.000880 

12 44.4299351 -96.8635234 0.001308 0.001294 0.001304 0.001876 0.125791 0.18 98.96 0.000918 

13 44.4314315 -96.8634919 0.001459 0.001555 0.001556 0.002159 0.128509 0.16 99.49 0.001100 

14 44.4327920 -96.8634859 0.001394 0.001428 0.001431 0.002094 0.124542 0.19 99.70 0.001011 

15 44.4341988 -96.8635278 0.001207 0.001178 0.001178 0.001604 0.111152 0.15 98.48 0.000833 

16 44.4341861 -96.8616905 0.001356 0.001357 0.001357 0.002075 0.133628 0.21 99.33 0.000960 

17 44.4342965 -96.8589566 0.001414 0.001470 0.001482 0.002007 0.116235 0.15 99.46 0.001044 

18 44.4330571 -96.8594005 0.001162 0.001113 0.001113 0.001607 0.131141 0.18 98.21 0.000787 

19 44.4312102 -96.8589493 0.001142 0.001101 0.001101 0.001493 0.131982 0.15 98.47 0.000778 

20 44.4312967 -96.8612596 0.001221 0.001217 0.001218 0.001717 0.124452 0.17 98.89 0.000861 

21 44.4321796 -96.8621143 0.001474 0.001515 0.001532 0.002095 0.120870 0.16 99.59 0.001077 

22 44.4305035 -96.8624173 0.001088 0.000990 0.000991 0.001294 0.114524 0.13 97.69 0.000700 

23 44.4298767 -96.8611440 0.001152 0.001083 0.001072 0.001458 0.127215 0.15 98.16 0.000762 

24 44.4293013 -96.8592668 0.001125 0.001017 0.001017 0.001413 0.088330 0.16 97.93 0.000719 

25 44.4287346 -96.8625206 0.001091 0.001005 0.001006 0.001316 0.073529 0.13 97.68 0.000711 

See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions.  
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Table C.5 Field D (Lac qui Parle County) PlanetScope single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

1 45.0768865 -96.4362314 0.001034 0.000959 0.000963 0.001335 0.082183 0.16 97.80 0.000680 

2 45.0758906 -96.4364095 0.001083 0.001023 0.001035 0.001592 0.097482 0.20 98.43 0.000728 

3 45.0758857 -96.4383055 0.001143 0.001100 0.001095 0.001506 0.086210 0.15 98.53 0.000776 

4 45.0759825 -96.4402876 0.001048 0.000971 0.000966 0.001364 0.101851 0.18 97.79 0.000685 

5 45.0774180 -96.4402832 0.001049 0.000989 0.000991 0.001335 0.077506 0.14 98.13 0.000700 

6 45.0771265 -96.4422473 0.001116 0.001104 0.001106 0.001560 0.098033 0.17 98.56 0.000782 

7 45.0771957 -96.4439341 0.001108 0.001084 0.001079 0.001572 0.097242 0.19 98.64 0.000765 

8 45.0770702 -96.4455203 0.001356 0.001414 0.001039 0.001412 0.107000 0.16 99.53 0.000877 

9 45.0774757 -96.4487111 0.001020 0.000947 0.000972 0.001360 0.077850 0.17 97.94 0.000679 

10 45.0764312 -96.4482571 0.001074 0.001021 0.001028 0.001391 0.080917 0.15 98.46 0.000725 

11 45.0760938 -96.4461640 0.001072 0.001013 0.001014 0.001430 0.077652 0.18 98.19 0.000717 

12 45.0760722 -96.4442455 0.001133 0.001116 0.001116 0.001624 0.102392 0.19 98.82 0.000789 

13 45.0760254 -96.4422684 0.001130 0.001108 0.001085 0.001701 0.105541 0.20 98.74 0.000775 

14 45.0745309 -96.4403463 0.001152 0.001119 0.001125 0.001545 0.081641 0.15 98.91 0.000793 

15 45.0745025 -96.4383209 0.001079 0.001048 0.001047 0.001442 0.086914 0.16 98.31 0.000741 

16 45.0745160 -96.4364722 0.001144 0.001123 0.001117 0.001570 0.091898 0.17 98.66 0.000792 

17 45.0732658 -96.4365536 0.001071 0.001018 0.001021 0.001410 0.088705 0.16 98.30 0.000721 

18 45.0731716 -96.4384935 0.001215 0.001214 0.001182 0.001667 0.089423 0.17 99.25 0.000847 

19 45.0731979 -96.4404375 0.001099 0.001065 0.001070 0.001523 0.099781 0.17 98.51 0.000755 

20 45.0731901 -96.4424481 0.001188 0.001162 0.001170 0.001698 0.098755 0.18 99.24 0.000824 

21 45.0746446 -96.4423459 0.001123 0.001091 0.001093 0.001544 0.093094 0.17 98.78 0.000772 

22 45.0746846 -96.4442935 0.001268 0.001231 0.001198 0.001718 0.095037 0.18 99.76 0.000859 

23 45.0733040 -96.4443572 0.001138 0.001118 0.001109 0.001635 0.105215 0.19 99.12 0.000787 

24 45.0747104 -96.4462512 0.001087 0.001058 0.001071 0.001513 0.094557 0.18 98.42 0.000753 

25 45.0733217 -96.4463004 0.001110 0.001086 0.001077 0.001541 0.097859 0.18 99.06 0.000765 

  See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 
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Table C.5 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

26 45.0719406 -96.4463698 0.001134 0.001105 0.001104 0.001583 0.096802 0.18 98.74 0.000781 

27 45.0719065 -96.4444189 0.001179 0.001168 0.001165 0.001650 0.098331 0.17 99.04 0.000825 

28 45.0718627 -96.4424870 0.001122 0.001124 0.001120 0.001604 0.097030 0.17 98.76 0.000793 

29 45.0717867 -96.4405900 0.001287 0.001286 0.001299 0.001770 0.095376 0.15 99.67 0.000914 

30 45.0717768 -96.4385603 0.001205 0.001216 0.001197 0.001604 0.099499 0.15 98.36 0.000853 

31 45.0706961 -96.4369017 0.001115 0.001098 0.001095 0.001647 0.109326 0.20 98.51 0.000775 

32 45.0703982 -96.4386233 0.001170 0.001209 0.001185 0.001653 0.104632 0.17 98.59 0.000846 

33 45.0704304 -96.4405649 0.001138 0.001138 0.001130 0.001666 0.109314 0.19 99.20 0.000802 

34 45.0704920 -96.4425195 0.001147 0.001122 0.001131 0.001679 0.099147 0.20 98.96 0.000797 

35 45.0705178 -96.4444782 0.001104 0.001068 0.001082 0.001581 0.113038 0.19 98.63 0.000760 

36 45.0705538 -96.4464279 0.001092 0.001058 0.001060 0.001531 0.093307 0.18 98.69 0.000749 

37 45.0691506 -96.4464765 0.001123 0.001082 0.001061 0.001530 0.088551 0.18 98.62 0.000758 

38 45.0692235 -96.4484432 0.001094 0.001051 0.001016 0.001467 0.087381 0.17 98.43 0.000731 

39 45.0692628 -96.4504036 0.001120 0.001071 0.001062 0.001530 0.096567 0.18 98.76 0.000754 

40 45.0678721 -96.4502198 0.001046 0.000998 0.000974 0.001393 0.091740 0.15 98.34 0.000697 

41 45.0678494 -96.4485233 0.001045 0.000990 0.000993 0.001283 0.079273 0.14 97.68 0.000701 

42 45.0681561 -96.4466793 0.001044 0.000965 0.000959 0.001291 0.073571 0.15 97.50 0.000680 

   See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 

 

 

 

 

 

 



138 
 

 

 

Table C.6 Field E (Lac qui Parle County) PlanetScope single bands and remote sensing indices data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

1 45.0943806 -96.4513185 0.001154 0.001091 0.001081 0.001469 0.065936 0.15 98.68 0.000768 

2 45.0929747 -96.4513923 0.001162 0.001124 0.001113 0.001560 0.079561 0.17 99.23 0.000791 

3 45.0915799 -96.4514550 0.001201 0.001203 0.001200 0.001767 0.103615 0.19 100.03 0.000850 

4 45.0901786 -96.4515281 0.001222 0.001201 0.001204 0.001725 0.104767 0.18 99.62 0.000850 

5 45.0887707 -96.4515790 0.001089 0.001025 0.001024 0.001435 0.071286 0.17 98.60 0.000725 

6 45.0889359 -96.4495657 0.001143 0.001068 0.001095 0.001468 0.069486 0.15 98.43 0.000765 

7 45.0901325 -96.4495335 0.001118 0.001067 0.001086 0.001547 0.088554 0.18 98.94 0.000761 

8 45.0915302 -96.4494752 0.001167 0.001129 0.001140 0.001580 0.082959 0.16 99.24 0.000802 

9 45.0929397 -96.4494075 0.001123 0.001081 0.001038 0.001399 0.057330 0.15 99.09 0.000749 

10 45.0943300 -96.4493448 0.001189 0.001135 0.001107 0.001522 0.074015 0.16 98.90 0.000793 

11 45.0942824 -96.4473747 0.001164 0.001112 0.001114 0.001492 0.078158 0.15 98.94 0.000787 

12 45.0928912 -96.4474360 0.001107 0.001047 0.001049 0.001444 0.065559 0.16 98.70 0.000741 

13 45.0914956 -96.4474954 0.001151 0.001105 0.001097 0.001550 0.073111 0.17 99.06 0.000779 

14 45.0900797 -96.4475597 0.001251 0.001269 0.001270 0.001854 0.110137 0.19 100.32 0.000898 

15 45.0887645 -96.4475490 0.001249 0.001255 0.001244 0.001781 0.110339 0.18 100.10 0.000884 

16 45.0888396 -96.4456319 0.001339 0.001364 0.001340 0.001801 0.094175 0.15 100.42 0.000956 

17 45.0900333 -96.4455679 0.001116 0.001044 0.001046 0.001420 0.072368 0.15 98.44 0.000739 

See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 
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Table C.6 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

Band 1 

µm 

Band 2 

µm 

Band 3 

µm 

Band 4 

µm 
MSAVI2 NDVI BSI BI 

18 45.0914428 -96.4455129 0.001129 0.001053 0.001079 0.001409 0.068023 0.13 98.37 0.000754 

19 45.0928519 -96.4454535 0.001126 0.001047 0.001016 0.001411 0.064518 0.16 98.29 0.000729 

20 45.0945058 -96.4453727 0.001233 0.001215 0.001229 0.001751 0.100506 0.18 99.68 0.000864 

21 45.0944088 -96.4434982 0.001067 0.001019 0.001028 0.001467 0.082586 0.18 98.94 0.000724 

22 45.0930105 -96.4434506 0.001141 0.001110 0.001121 0.001608 0.090929 0.18 99.38 0.000789 

23 45.0914038 -96.4435331 0.001101 0.001059 0.001055 0.001579 0.092250 0.20 99.11 0.000747 

24 45.0899940 -96.4435857 0.001161 0.001130 0.001130 0.001587 0.089796 0.17 99.39 0.000799 

25 45.0889262 -96.4437037 0.001201 0.001170 0.001176 0.001696 0.097874 0.18 99.41 0.000829 

26 45.0886864 -96.4412690 0.001180 0.001216 0.001224 0.001899 0.120544 0.22 100.65 0.000863 

27 45.0899627 -96.4414004 0.001096 0.001084 0.001084 0.001655 0.101844 0.21 99.75 0.000766 

28 45.0929605 -96.4416428 0.001084 0.001031 0.001017 0.001527 0.082841 0.20 98.85 0.000724 

29 45.0903772 -96.4357051 0.001050 0.000985 0.000985 0.001424 0.074568 0.18 98.53 0.000697 

30 45.0889570 -96.4357631 0.001071 0.001013 0.001012 0.001445 0.063745 0.18 98.71 0.000716 

31 45.0889662 -96.4376383 0.001053 0.000962 0.000964 0.001355 0.066434 0.17 97.90 0.000681 

32 45.0887612 -96.4394635 0.001129 0.001075 0.001074 0.001558 0.081963 0.18 98.88 0.00076 

33 45.0899445 -96.4393686 0.001109 0.001071 0.001079 0.001592 0.103875 0.19 99.22 0.00076 

34 45.0902827 -96.4377227 0.001024 0.000957 0.000957 0.001373 0.072769 0.18 98.43 0.000677 

See Table 2.9 and 2.10 for PlanetScope bands and indices descriptions. 

 

 

 

 



140 
 

 

Appendix D 

Table D.1 The complete Pearson correlation matrix for WSS data (n= 150) 

Parameters SOC_WSS Clay_WSS Sand_WSS Silt_WSS pH_WSS CEC_WSS 

SOC_WSS 1      
Clay_WSS 0.47 1     
Sand_WSS -0.25 -0.80 1    
Silt_WSS 0.14 0.63 -0.97 1   
pH_WSS 0.15 0.12 -0.27 0.30 1  

CEC_WSS 0.46 0.92 -0.67 0.49 0.12 1 

WSS = Web Soil Survey. All values in bold print are significant (P<0.05) 

       Table D.2 The complete Pearson correlation matrix for Web Soil Survey (WSS) and Soil Test Data (STD) (n= 150) 

Parameters 
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SOC_STD 1.00            
pH1:1_STD 0.39 1.00           
Sand_STD -0.87 -0.31 1.00          
Clay_STD 0.80 0.45 -0.87 1.00         
Silt_STD 0.74 0.10 -0.89 0.54 1.00        
SOEC_STD 0.72 0.84 -0.63 0.75 0.37 1.00       
SOC_WSS 0.07 0.00 -0.07 0.27 -0.12 0.09 1.00      
Clay_WSS 0.58 0.28 -0.57 0.61 0.39 0.48 0.47 1.00     
Sand_WSS -0.70 -0.41 0.75 -0.76 -0.56 -0.61 -0.25 -0.80 1.00    
Silt_WSS 0.67 0.41 -0.74 0.74 0.56 0.60 0.14 0.63 -0.97 1.00   
pH1:1_WSS 0.25 0.41 -0.11 0.33 -0.12 0.49 0.15 0.12 -0.27 0.30 1.00  
CEC_WSS 0.49 0.21 -0.40 0.43 0.27 0.39 0.46 0.92 -0.67 0.49 0.12 1.00 

        SOEC = Sum of Extractable Cation. All values in bold print are significant (P<0.05) 
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Table D.3 Field A (Brookings County, SD) Web Soil Survey (WSS) data set 

Sample 

No 

Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

1 44.3849033 -96.9461351 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

2 44.3849738 -96.9442170 3.32 1.93 27.78 15.85 56.37 6.93 22.66 

3 44.3863216 -96.9443015 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

4 44.3877266 -96.9442422 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

5 44.3880766 -96.9462404 3.08 1.79 20.72 42.12 37.16 6.90 17.93 

6 44.3894226 -96.9462689 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

7 44.3893326 -96.9443454 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

8 44.3905456 -96.9462595 3.71 2.16 29.20 7.42 63.38 6.65 24.43 

9 44.3905477 -96.9442898 3.71 2.16 29.20 7.42 63.38 6.65 24.43 

10 44.3905362 -96.9426315 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

11 44.3892037 -96.9424045 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

12 44.3877270 -96.9423955 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

13 44.3863649 -96.9422821 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

14 44.3849364 -96.9422305 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

15 44.3849395 -96.9404207 3.32 1.93 27.78 15.85 56.37 6.93 22.66 

16 44.3864433 -96.9405058 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

17 44.3877366 -96.9406607 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

18 44.3892959 -96.9407110 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

19 44.3905324 -96.9407824 3.59 2.09 29.07 6.92 64.01 6.70 24.21 

20 44.3905420 -96.9386300 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

21 44.3893405 -96.9385052 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

22 44.3877992 -96.9387336 2.99 1.74 24.92 9.47 65.61 6.48 21.06 

23 44.3864869 -96.9386987 3.65 2.12 29.00 7.00 64.00 7.21 23.29 

24 44.3849026 -96.9387805 5.68 3.30 21.56 40.99 37.46 7.85 22.23 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 
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Table D.4 Field B (Brookings County, SD) Web Soil Survey (WSS) data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

1 44.4629807 -96.8467720 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

2 44.4630070 -96.8448609 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

3 44.4629894 -96.8428560 3.84 2.23 15.14 64.64 20.22 6.65 15.31 

4 44.4628501 -96.8409707 5.73 3.33 25.32 31.90 42.78 7.13 26.08 

5 44.4628333 -96.8389601 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

6 44.4613164 -96.8388696 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

7 44.4614810 -96.8409738 5.73 3.33 25.32 31.90 42.78 7.13 26.08 

8 44.4615306 -96.8428734 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

9 44.4617706 -96.8447335 5.80 3.37 24.44 30.25 45.31 6.84 24.98 

10 44.4617408 -96.8467150 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

11 44.4603363 -96.8466976 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

12 44.4603057 -96.8444288 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

13 44.4598756 -96.8431769 5.80 3.37 24.44 30.25 45.31 6.84 24.98 

14 44.4597715 -96.8409587 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

15 44.4594313 -96.8393745 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

16 44.4587020 -96.8390945 3.35 1.95 20.88 40.14 38.99 7.35 16.77 

17 44.4587136 -96.8410623 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

18 44.4587878 -96.8430260 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

19 44.4588545 -96.8449193 3.45 2.01 15.26 62.99 21.75 6.65 14.78 

20 44.4588720 -96.8467019 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

21 44.4573421 -96.8391653 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

22 44.4573916 -96.8411028 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

23 44.4574460 -96.8429200 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

24 44.4574153 -96.8448636 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

25 44.4575522 -96.8467046 5.04 2.93 29.42 35.98 34.60 6.83 24.83 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 
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Table D.5 Field C (Brookings County, SD) Web Soil Survey (WSS) data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

1 44.4286008 -96.8672630 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

2 44.4299830 -96.8671877 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

3 44.4314178 -96.8671488 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

4 44.4328201 -96.8670861 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

5 44.4342010 -96.8670197 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

6 44.4341373 -96.8651006 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

7 44.4327896 -96.8651324 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

8 44.4315933 -96.8649219 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

9 44.4299906 -96.8651800 4.39 2.55 20.00 71.35 8.66 6.73 14.95 

10 44.4285866 -96.8652243 4.39 2.55 20.00 71.35 8.66 6.73 14.95 

11 44.4285134 -96.8636093 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

12 44.4299351 -96.8635234 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

13 44.4314315 -96.8634919 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

14 44.4327920 -96.8634859 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

15 44.4341988 -96.8635278 2.32 1.35 11.67 66.26 22.08 6.97 12.73 

16 44.4341861 -96.8616905 5.77 3.35 24.86 55.25 19.90 6.47 24.60 

17 44.4342965 -96.8589566 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

18 44.4330571 -96.8594005 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

19 44.4312102 -96.8589493 3.08 1.79 13.89 67.11 19.00 6.64 16.98 

20 44.4312967 -96.8612596 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

21 44.4321796 -96.8621143 3.70 2.15 21.36 37.85 40.79 6.47 24.60 

22 44.4305035 -96.8624173 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

23 44.4298767 -96.8611440 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

24 44.4293013 -96.8592668 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

25 44.4287346 -96.8625206 5.77 3.35 24.86 55.25 19.89 6.47 24.60 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 



144 
 

 

 

Table D.6 Field D (Lac qui Parle County, MN) Web Soil Survey (WSS) data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

1 45.0768865 -96.4362314 7.17 4.17 27.70 9.22 63.09 7.58 23.56 

2 45.0758906 -96.4364095 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

3 45.0758857 -96.4383055 7.37 4.28 12.52 44.30 43.18 7.55 10.42 

4 45.0759825 -96.4402876 7.17 4.17 27.70 9.22 63.09 7.58 23.56 

5 45.0774180 -96.4402832 7.53 4.38 23.73 29.66 46.62 8.07 22.54 

6 45.0771265 -96.4422473 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

7 45.0771957 -96.4439341 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

8 45.0770702 -96.4455203 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

9 45.0774757 -96.4487111 7.53 4.38 23.73 29.66 46.62 8.07 22.54 

10 45.0764312 -96.4482571 7.17 4.17 27.70 9.22 63.09 7.58 23.56 

11 45.0760938 -96.4461640 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

12 45.0760722 -96.4442455 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

13 45.0760254 -96.4422684 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

14 45.0745309 -96.4403463 3.02 1.75 24.66 38.91 36.43 7.29 19.92 

15 45.0745025 -96.4383209 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

16 45.0745160 -96.4364722 4.27 2.48 12.52 44.30 43.18 7.50 10.75 

17 45.0732658 -96.4365536 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

18 45.0731716 -96.4384935 4.27 2.48 12.52 44.30 43.18 7.50 10.75 

19 45.0731979 -96.4404375 16.88 9.81 30.85 25.49 43.67 6.78 27.40 

20 45.0731901 -96.4424481 5.94 3.45 23.03 39.71 37.26 7.02 20.09 

21 45.0746446 -96.4423459 3.02 1.75 24.66 38.91 36.43 7.29 19.92 

22 45.0746846 -96.4442935 3.02 1.75 24.66 38.91 36.43 7.29 19.92 

23 45.0733040 -96.4443572 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

24 45.0747104 -96.4462512 16.88 9.81 30.85 25.49 43.67 6.78 27.40 

25 45.0733217 -96.4463004 7.66 4.45 30.73 33.95 35.32 6.82 27.27 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 
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Table D.6 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

26 45.0719406 -96.4463698 3.12 1.81 15.72 56.42 27.87 7.19 14.76 

27 45.0719065 -96.4444189 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

28 45.0718627 -96.4424870 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

29 45.0717867 -96.4405900 7.37 4.28 12.52 44.30 43.18 7.55 10.42 

30 45.0717768 -96.4385603 4.27 2.48 12.52 44.30 43.18 7.50 10.75 

31 45.0706961 -96.4369017 3.22 1.87 13.93 65.00 21.07 6.91 13.72 

32 45.0703982 -96.4386233 3.22 1.87 13.93 65.00 21.07 6.91 13.72 

33 45.0704304 -96.4405649 16.88 9.81 30.85 25.49 43.67 6.78 27.40 

34 45.0704920 -96.4425195 7.66 4.45 30.73 33.95 35.32 6.82 27.27 

35 45.0705178 -96.4444782 7.66 4.45 30.73 33.95 35.32 6.82 27.27 

36 45.0705538 -96.4464279 7.66 4.45 30.73 33.95 35.32 6.82 27.27 

37 45.0691506 -96.4464765 7.66 4.45 30.73 33.95 35.32 6.82 27.27 

38 45.0692235 -96.4484432 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

39 45.0692628 -96.4504036 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

40 45.0678721 -96.4502198 8.53 4.96 23.72 38.62 37.67 7.00 19.21 

41 45.0678494 -96.4485233 7.66 4.45 30.73 33.95 35.32 6.82 27.27 

42 45.0681561 -96.4466793 16.88 9.81 30.85 25.49 43.67 6.78 27.40 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 
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Table D.7 Field E (Lac qui Parle County, MN) Web Soil Survey (WSS) data set 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

1 45.0943806 -96.4513185 5.93 3.45 30.30 32.27 37.43 7.82 24.55 

2 45.0929747 -96.4513923 5.26 3.06 30.73 33.95 35.32 6.82 27.27 

3 45.0915799 -96.4514550 4.32 2.51 23.56 39.57 36.87 7.15 19.94 

4 45.0901786 -96.4515281 4.32 2.51 23.56 39.57 36.87 7.15 19.94 

5 45.0887707 -96.4515790 7.45 4.33 33.35 20.98 45.67 7.14 27.77 

6 45.0889359 -96.4495657 4.90 2.85 29.14 7.43 63.43 6.45 24.64 

7 45.0901325 -96.4495335 5.93 3.45 30.30 32.27 37.43 7.82 24.55 

8 45.0915302 -96.4494752 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

9 45.0929397 -96.4494075 5.76 3.35 31.57 9.55 58.89 7.85 31.32 

10 45.0943300 -96.4493448 5.76 3.35 31.57 9.55 58.89 7.85 31.32 

11 45.0942824 -96.4473747 2.76 1.60 15.72 56.42 27.87 7.19 14.76 

12 45.0928912 -96.4474360 5.76 3.35 31.57 9.55 58.89 7.85 31.32 

13 45.0914956 -96.4474954 5.76 3.35 31.57 9.55 58.89 7.85 31.32 

14 45.0900797 -96.4475597 2.29 1.33 14.35 65.97 19.68 6.58 16.12 

15 45.0887645 -96.4475490 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

16 45.0888396 -96.4456319 2.63 1.53 13.66 64.58 21.76 6.82 13.30 

17 45.0900333 -96.4455679 6.95 4.04 31.60 25.20 43.20 6.77 26.69 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 
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Table D.7 Continued 

Sample No 
Latitude 

(ON) 

Longitude 

(OW) 

OM 

(g kg-1) 

SOC 

(g kg-1) 

Clay 

(g kg-1) 

Sand 

(g kg-1) 

Silt 

(g kg-1) 

pH 

(1:1) 

CEC 

(cmolc kg-1) 

18 45.0914428 -96.4455129 5.76 3.35 31.57 9.55 58.89 7.85 31.32 

19 45.0928519 -96.4454535 6.26 3.64 22.43 41.59 35.99 7.90 23.38 

20 45.0945058 -96.4453727 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

21 45.0944088 -96.4434982 3.34 1.94 14.86 66.40 18.74 6.81 15.75 

22 45.0930105 -96.4434506 3.34 1.94 14.86 66.40 18.74 6.81 15.75 

23 45.0914038 -96.4435331 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

24 45.0899940 -96.4435857 7.45 4.33 33.35 20.98 45.67 7.14 27.77 

25 45.0889262 -96.4437037 5.10 2.96 23.03 39.80 37.18 7.02 26.63 

26 45.0886864 -96.4412690 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

27 45.0899627 -96.4414004 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

28 45.0929605 -96.4416428 2.76 1.60 15.72 56.42 27.87 7.19 14.76 

29 45.0903772 -96.4357051 4.57 2.65 13.39 61.87 24.75 7.71 16.58 

30 45.0889570 -96.4357631 6.26 3.64 22.43 41.59 35.99 7.90 23.38 

31 45.0889662 -96.4376383 4.57 2.65 13.39 61.87 24.75 7.71 16.58 

32 45.0887612 -96.4394635 2.82 1.64 13.93 65.00 21.07 6.91 13.72 

33 45.0899445 -96.4393686 4.57 2.65 13.39 61.87 24.75 7.71 16.58 

34 45.0902827 -96.4377227 6.26 3.64 22.43 41.59 35.99 7.90 23.38 

CEC = Cation Exchange Capacity, OM= Organic Matter, SOC= Soil Organic Carbon. 
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Appendix E 

 

 

Table E.1 The complete Pearson correlation matrix for Landsat 8 and Soil Test Data (n= 150). 

SOEC = Sum of Extractable Cation, EC = Electrical Conductivity, SOC = Soil Organic Carbon. All values in bold print are 

significant (P<0.05). BandL represents Landsat 8 data (See Table 2.8 and 2.10), Soils test data from 0-15cm depth. 
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Table E.2 The complete Pearson correlation matrix for PlanetScope and Soil Test Data (n= 150). 

           SOEC = Sum of Extractable Cation, EC = Electrical Conductivity, SOC = Soil Organic Carbon. All values in bold print are 

significant (P<0.05). BandP represents PlanetScope data (See Table 2.8 and 2.10), Soils test data from 0-15cm depth. 
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MSAVI2 -0.54 -0.50 -0.60 -0.63 0.40 -0.61 -0.11 -0.08 -0.71 -0.61 -0.06 -0.10 -0.02 -0.73 0.53 

BandP 4 -0.74 -0.56 -0.49 -0.44 0.67 -0.65 -0.53 -0.08 -0.53 -0.67 -0.07 -0.17 -0.45 -0.60 0.38 
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       Table E.3 The complete Pearson correlation matrix for PlanetScope and Web Soil Survey data (n= 150). 

 

 

 

 

 

 

*WSS = Web Soil Survey, SOC = Soil Organic Carbon, CEC = Cation Exchange Capacity. All values in bold print are 

significant (P<0.05). BandP represents PlanetScope data (See Table 2.8 and 2.10). 

 

 

Parameters SOC_WSS* Clay_WSS Sand_WSS Silt_WSS pH1:1_WSS CEC_WSS 

MSAVI2 -0.20 -0.39 0.47 -0.46 -0.61 -0.33 

BandP 4 -0.15 -0.47 0.60 -0.58 -0.33 -0.36 

BandP 3 -0.20 -0.43 0.54 -0.52 -0.34 -0.32 

NDVIP 0.07 -0.30 0.41 -0.41 -0.13 -0.25 

BSIP -0.20 -0.33 0.29 -0.24 -0.07 -0.30 

BandP 2 -0.17 -0.42 0.52 -0.50 -0.32 -0.32 

BandP 1 -0.24 -0.39 0.48 -0.46 -0.35 -0.28 

BIP -0.19 -0.43 0.53 -0.51 -0.33 -0.32 
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Table E.4 The complete Pearson correlation matrix for Landsat 8, PlanetScope and Web Soil Survey data (n= 150). 

 

*WSS = Web Soil Survey. See Table 2.8, 2.9 and 2.10 for PlanetScope, Landsat 8 bands and remote sensing indices 

description. BandL and IndicesL represents Landsat 8 data, BandP and Indicesp shows PlanetScope data. All values in 

bold print are significant (P<0.05), Soils test data from 0-15cm depth. 
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	Estimating Soil Organic Carbon in Cultivated Soils Using Soil Test Data, Remote Sensing Imagery from Satellites (Landsat 8 and PlantScope), and Web Soil Survey Data
	Recommended Citation

	tmp.1555512172.pdf.tkDUg

