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ABSTRACT 

MASS SPECTROMETRY-BASED QUANTITATIVE PROTEOMIC 

ANALYSIS OF BIOLOGICAL FLUIDS 

 

PATIENCE AKOSUA AFEDI 

2019 

Proteomics is a high-throughput approach to study protein expression, structure, function, 

interaction, post-translational modifications, and localization in a cell or tissue. Proteomic 

shotgun approach was used to analyze changes in proteins in bovine follicular fluid (FF) 

and plasma (PL) from cows with high estradiol (HE2) or low E2 (LE2) during the pre-

ovulatory period. FF creates a unique microenvironment in follicles necessary for follicle 

growth and oocyte maturation, and pre-ovulatory concentrations of E2 have been 

reported to impact several processes involved with fertility.  Initial steps in the analysis 

involved development of an immunodepletion protocol for high abundant proteins 

(HAPs) in bovine PL, FF, epididymis sperm and ejaculated sperm. The determined 

depletion rates for the HAPs albumin, IgG, and IgA ranged from 98.7 to 99.9%. Similar 

depletion rate was observed for alpha-1-antitrypsin based on its gel band. Peptides were 

labeled with iTRAQ reagents and quantified using 2-dimentional liquid chromatography 

(LC) electrospray (ES)-based mass spectrometry. E2 was associated with protein changes 

in PL and FF. Protein expression changes between FF HE2 and FF LE2 were higher than 

PL HE2 and PL LE2. There were 15 up-regulated proteins and ten down-regulated 



xv 

 

proteins in FF HE2 compared to FF LE2. Seven proteins were up-regulated and nine 

proteins down-regulated in PL HE2 compared to PL LE2. Proteins were more 

predominant in PL than in FF but the extent of protein changes with HE2 was greater in 

FF than in PL. Several of the differentially expressed proteins function in follicle 

development and were mainly categorized under cellular process and metabolic process. 

Pathway analysis identified the up and down-regulated proteins were predominantly 

associated with the complement and coagulation cascades which support the view that 

folliculogenesis and ovulation are hemorrhagic events. The data demonstrates E2 

regulates a wide range of reproductive associated proteins in bovine PL and FF and forms 

the basis for further investigation of specific processes involved in such regulation. This 

work was also interested in characterization and quantification of atherosclerotic lesions 

in three regions of aortic root of ApoE-/- mice.  

Atherosclerosis is the underlining cause of heart attack and stroke, the two leading cause 

of cardiovascular death worldwide. The three regions of the aortic root examined were 

the ascending aorta region (AAR), region showing the orifices of the coronary arteries 

marking the start of the ascending arch (OCAR) and aortic sinus region (ASR) in ApoE-/- 

male and female mice at different ages. 67 ApoE-/- and 27 wild type C57BL/6J mice 

(controls) were fed with a high fat diet (HFD) until age 8, 12, 18, or 24 weeks. Through 

systematic classification and quantification of lesions in each region and statistically data 

analysis, we found that the complexity and total atherosclerotic lesion areas in ApoE-/- 

mice was location and age dependent. It was slowest in the AAR with lesions progressing 

from dominant type I at 8 weeks, type II at 12 weeks, types III at 18 and types III and IV 

at 24 weeks of age. Lesion development was comparable in the OCAR and ASR regions; 
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types II and III lesions dominated in mice at 8 and 12 weeks of age respectively while 

types IV and types IV and V dominated at 18 and 24 weeks of age, respectively. Average 

percentage of atherosclerotic lesions typically increased from the AAR to the OCAR to 

the ASR at a specific age, and from 8 to 24 weeks of ApoE-/- mice at each region, 

correlating with the histological data. These findings would be beneficial in experimental 

design and targeting of lesion types in aortic roots of the popular ApoE-/- murine 

atherosclerosis model.  
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CHAPTER 1 

1 LITERATURE REVIEW 

1.1 Mass-spectrometry Based Proteomics 

Proteomics is a high-throughput approach to study protein expression, structure, 

function, interaction, post-translational modifications, and localization in a cell or tissue1. 

Proteomic field involves collection of varied disciplines including molecular biology, 

biochemistry, bioinformatics, cell imaging by light and electron microscopy, array and 

chip experiments, and genetic readout experiments1, 2. This makes proteomics a versatile 

tool for studying numerous biological systems. The ability of proteomic to analyze 

thousands of proteins and post-translational modifications (PTMs) in a single experiment 

with  good quality makes it advantageous over traditional methods such as western blots 

which often analyze one protein at a time3. 

Mass spectrometry is now the de facto method for analyzing proteomic samples, 

contributed greatly by advancement in mass spectrometry instrumentation including 

advancement in LC systems (e.g. ultra-high-pressure reversed-phase systems) and 

development of commercial and public software tools able to identify and quantify 

proteins from the numerous data generated from the MS and MS/MS analysis. 

Advancement in current mass spectrometry for proteomics [(e.g. quadrupole time-of-

flight (QTOF), linear trap quadroupole (LTQ) and Orbitrap technology)] include 

improved sensitivity (ten to 50 times), data acquisition and speed (five to ten times), and 

number of proteins identified and quantified from a proteome (5,000–10,000 proteins)4.  
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Because mass spectrometry is central to proteomics and is used in this dissertation, a 

theoretical background to the technology and principles is discussed below. 

1.2 Mass Spectrometer 

Mass spectrometric measurements are carried out in the gas phase on ionized 

analytes. The basic components of a mass spectrometer (Figure 1.1) are an ion source, a 

mass analyzer that measures the mass-to-charge ratio (m/z) of the ionized analytes, and a 

detector that registers the number of ions at each m/z value and displays the results in a 

chart form called the mass spectrum. 

 

 

Figure 1.1. The basic components of a mass spectrometer. Shown in Banerjee and 

Mazumdar3. The ion source ionizes the analytes, the mass analyzer measures the mass-to-

charge ratio (m/z) of the ionized analytes, and a detector registers the number of ions at 

each m/z value, displayed in the mass spectrum. 

 

1.2.1 Ionization Techniques   

Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization 

(MALDI) are the two techniques most commonly used to volatize and ionize the proteins 
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or peptides for mass spectrometric analysis. MALDI method involves subliming and 

ionizing the analyte out of a dry crystalline matrix via laser pulses. ESI ionizes analytes 

out of a solution. MALDI is relatively used to analyze simple peptide mixtures compared 

to ESI method which is preferred for complex matrices2.  ESI technique is used in this 

dissertation and is thus further discussed. 

ESI is a soft ionization process, i.e. very little residual energy is retained by the 

analyte which generally results in no fragmentation of the analyte or breakage of very 

weak interactions like electrostatic interactions, van der Waals interactions, and 

hydrophobic interactions upon the ionization process. ESI also produces multiple charged 

ions thereby giving ions with m/z values within the mass range of all common mass 

analyzers. These factors make ESI a powerful and reliable tool for ionizing non-volatile 

thermally labile large-molecular weight biomolecules (105 Da), such as proteins in the 

gaseous states and their subsequent mass spectrometric analysis for rapid identification 

and structural characterization on the basis of molecular mass of the analyte. Although 

ESI is primarily used for biomolecules, its application has been extended to a broad range 

of analytes including polar organic, inorganic, and metal-organic complexes3.  The ESI 

method is robust and sensitive and can detect peptides at femto levels in microliters 

volumes. Because ESI ionizes analytes out of a solution, it is readily coupled to liquid-

based separation tools such as chromatography techniques, which allows for 

prefractionation of the peptides in complex mixtures thereby reducing the number of 

different precursors that enter the mass spectrometer at a time. 

Under ESI operation, a dilute solution of the analyte is drawn to the tip of a 

capillary tube where a high voltage (2-6 kV) is applied. The applied voltage creates a 
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strong electric field which causes the dispersion of the sample solution into an aerosol of 

highly charged electrospray (ES) droplets with the same polarity as the applied voltage. A 

coaxial nebulizer gas (dry N2) flows around the capillary and enhances the nebulization, 

directs the emerging charged droplets towards the mass spectrometer and helps in the 

solvent evaporation of the charge droplets. The charged droplets diminishes in size by 

solvent evaporation as it moves towards the mass spectrometer until it reaches the point 

(Rayleigh limit) where the surface tension can no longer sustain the Coulomb force of 

repulsion and results in disintegration into much smaller offspring droplets (Coulomb 

fission). Solvent evaporation and Coulomb fission repeats until nanodroplets are obtained 

from which gas-phased charge analyte molecules is formed3. 

Different models have been proposed for the mechanism for forming the gas-

phase ions of the analyte from the highly charge droplets. According to the Charge 

Residue Model (CRM), this is proposed for large macromolecules like proteins, series of 

solvent evaporation and Coulomb fission result in extremely small charged droplet that 

contains only one analyte molecule. Desolvation of this droplet causes its charges (on the 

surface) to land on the analyte. Based on the Ion Evaporation Model (IEM), series of 

solvent evaporation and Coulomb fission decrease the radii of the charged droplets to a 

size when the electric field due to the charges at the surface of the droplet is strong 

enough to cause direct emission of the solvated ion. Thus formation of extremely small 

droplets is not required. Applied positive potential or positive-ion mode results in 

positively charged ions and applied negative potential or negative-ion mode results in 

negatively charge ions3.  
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Figure 1.2. Schematic representation of the electrospray ionization (ESI) process. Shown 

in Banerjee and Mazumdar3. ESI is a soft ionization process often used to ionize proteins 

for mass spectrometry analysis. 

 

To reduce flow rate which subsequently reduce space charge effect and increases 

ionization efficiency, small capillary electrospray emitter tips are employed (nano-

electrospray). Nano-electrospray is able to achieve a constant signal for 10-30 minutes 

for a 1 μl sample. The nano-electrospray is more tolerable to high aqueous solvents and 

salt contamination compared to conventional electrospray. Because less sample volume is 

used in nano-electrospray, sample lasts longer enabling multiple experiments to be 

performed3.  

1.2.2 Mass Analyzers 

The mass analyzer is central to the mass spectrometer. There are four basic types 

of mass analyzers currently used in proteomics research. These are the ion trap, time-of-

flight (TOF), quadrupole, and fourier transform ion cyclotron (FT-MS) which is currently 

being replaced by the orbitrap analyzer. These vary in design and in key parameters that 

characterize a mass analyzer, namely sensitivity, resolution, mass accuracy, and the 

ability to generate information-rich ion mass spectra from peptide fragments. Mass 
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analyzers can be stand alone or, in some cases, put together in tandem to take advantage 

of the strengths of each. This dissertation used the Finnigan Linear Trap Quadropole 

(LTQ) (Thermo Fisher Scientific). It consists of a 2-dimentional (2-D) quadrupole ion 

trap analyzer.  

Ion trap analyzers are typically composed of four rod-shaped electrodes, to which 

DC and AC are applied to produce electric fields that confine ions of interest in space 

prior to subsequent MS or MS/MS analysis. AC of same amplitude but opposite sign (i.e. 

positive and negative polarity) within the radio frequency (RF) range is applied to pairs 

of electrodes (This is referred to as the ‘main RF’) helps to confine ions radially and 

induce ion motion. The applied DC helps to confine ions axially. Ions of interest are 

isolated (i.e. trapped) and unwanted ions are simultaneously ejected via resonance 

ejection. Simultaneous resonance ejection is achieved by applying a superimposed AC 

wave containing secular frequency values (q) matching each of the unwanted ion’s 

secular motion to the exit rod5. In two dimensional (2-D) trap, also called linear ion tap 

(LIT) (Figure 1.3), the forces act on the ions only in the x and y dimensions. This allows 

them to spread out axially and increases the ion capacity compared to conventional three 

dimensional (3-D) traps. Therefore LIT has increased resolution, sensitivity, and mass 

accuracy than the 3-D trap and is more commonly used2, 6
.  Accordingly, the Finnigan 

LTQ mass spectrometer is robust, has high sensitivity, and provides rapid and 

reproducible mass spectrometric analysis of complex samples.  

 



7 

 

 

Figure 1.3. Basic design of the two-dimensional quadrupole ion trap. Shown in 

Schwartzet et al.6 The Finnigan LTQ mass spectrometer used in this dissertation consists 

of this type of analyzer. 

 

1.2.3 Fragmentation Techniques for Proteomics 

There are a number of techniques used to generate the fragment ions of precursor 

ions. These include collision-induced dissociation (CID), electron-capture dissociation 

(ECD), electron-transfer dissociation (ETD), surface-induced dissociation (SID), and 

infrared multiphoton dissociation (IRMPD). CID is the most widely used method to 

generate fragment ion. In CID, the gaseous precursor ion is allowed to collide with an 

inert and neutral target gas (e.g. N2, He, Ar) in the collision cell. Upon the collision, the 

precursor ion gains some of the kinetic energy which is converted into internal energy. 

Thus, an unstable excited state precursor ion is produced which then decompose into the 

product ions. CID mainly forms N-terminal a- and b-fragments, and C-terminal y-

fragment. Among the ion types, b and y are the most common, formed from the breakage 

of the amide bonds of the peptide backbone3.  Figure 1.4 shows formation of b- and y- 
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ions. a-ion can be formed from neutral loss of carbon monoxide from b-ion. CID was 

used in the identification of proteins in high abundant proteins (HAPs) and low abundant 

proteins (LAPs)/depleted fractions in plasma and FF in this dissertation.  

 

Figure 1.4. Formation of fragment ions from a peptide backbone. b- and y-ions are 

commonly formed with CID and are formed via breakage of the peptide bond. a-ion can 

be formed from neutral loss of carbon monoxide from b-ion. 

(http://www.alchemistmatt.com/mwthelp/peptidefragmodelling.htm). 

 

 1.2.3.1 Pulsed Q Collision-Induced Dissociation (PQD) 

Pulsed Q Collision-Induced Dissociation (PQD) was developed by Thermo Fisher 

Scientific and implemented exclusively for their LIT mass spectrometers. PQD involves 

activating the precursor ion at a high activation (Q) value (0.6-0.8 eV) and using a short 

(~100 μs), high amplitude resonance excitation pulse. In this step, the ions with m/z 

resonant to this excitation pulse absorb energy and become kinetically excited. Next, ions 

are held at the high Q value for a short period (delay time ~ 100 μs), which is long 

enough for the kinetic energy of the ions to be converted into internal energy through 

collisions, but not long enough for significant dissociation to occur. Subsequently, the 
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precursor ions’ Q value is pulsed to a low value by rapidly dropping the RF amplitude 

and then allowing the precursor ions to undergo fragmentation at this low Q value7. 

PQD generates spectra qualitatively similar to CID but additionally allows the 

observation of low m/z fragments that are usually excluded from CID spectra due to the 

“1/3 rule”. PQD therefore eliminates the need for MS3 which is often required with CID 

in ion trap instruments in order to detect low m/z fragments7, 8.  Because of its ability to 

detect product ions of low m/z, it has been applied successfully to detect the signature 

low-mass reporter ions (ranges from 114.1 to 121.1) of Isobaric Tag for Relative and 

Absolute Quantification (iTRAQ) labels for the quantification of peptides9. PQD was also 

successfully employed with iTRAQ labeling in this dissertation.  

1.2.4 Tandem Mass Spectrometry 

Tandem mass spectrometry (MS/MS) is a method where the gaseous ions are 

subjected to two or more sequential stages of mass analysis (which may be separated 

spatially or temporally) according to quotient mass/charge3. In MS/MS analysis, a 

precursor ion (parent ion) is selected by a mass analyser (Q1) and then focused into a 

collision cell (q2) where it undergoes gas-phased reactions to generate different fragment 

ions (daughter/product ions) of different masses. Another analyser (Q3) scans the masses 

of the product ions and generates the product ion spectrum. The MS/MS technique is 

selective, accurate, reproducible, and enhances the lower limit of detection for peptides 

by up to 100-fold compared to unbiased MS analysis. It also has multiplex capability in 

that it can analyze and quantitate hundreds of proteins per run, thereby increasing the 

throughput.  
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1.2.5 Data Dependent Acquisition and Data Independent Acquisition 

LC-MS/MS experiments in Data Dependent Acquisition (DDA) mode10, 11  is the 

standard method for proteomic profiling, biomarker discovery, and relative quantification 

of proteins through the use of stable-isotope labels. DDA is a method of choice due to its 

flexibility, breadth of detection, and the simplicity of its setup and analysis.  In DDA, the 

instrument cycles through first a short MS1 survey scan of currently eluting peptides 

which serves to monitor peptides intensities and identifies the most intense ions and 

potential sites to fragment. In the sequential MS2 scans, the most abundant precursor ions 

are individually isolated and fragmented in order of decreasing precursor ion intensity. 

The number of MS2 scans (or number of the top precursors) can be predefined by the 

user up to ten MS2 scans. Both MS scan and MS2 scans can occur in a duty cycle of 

approximately 1s up to 2 s with 10 MS2 scans. DDA can be limited in reproducibility and 

precision if too many peptides co-elute and appear in a single MS scan and only the most 

abundant peptides are selected thereby missing the rest. Also, it can prevent the 

measurements of low abundant proteins. Therefore, prior protein and peptide 

fractionations can be critical to successful application of DDA. Data generated in this 

dissertation used DDA and the optimized DDA parameters12 used are stated at the 

relevant sections.  

Data Independent Acquisition (DIA) involves repeatedly selecting all peptides 

within a large predefined mass ranges for MS2 scans. This generates highly complex 

MS2 spectra which can be analyzed aided by spectral libraries derived from prior DIA 

experiments or auxiliary DDA data. The complexity of the DIA MS2 data makes it 
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difficult to analyze and this is currently the main disadvantage of using this method. 

Recently however, DIA is gaining more attention with the development of bioinformatics 

softwares such as DIA-Umpire, OpenSWATH, and SWATHProphet, able to analyze 

DIA data10.  DIA is also limited in reproducibility and measurement of low abundant 

proteins as their signals can be dwarfed by more abundant proteins.  

1.3 Shotgun/Bottom-up Proteomic Workflow 

Advances in all areas of LCMS analysis including LC instrumentation and 

bioinformatics for handling MS/MS generated data, generation of complete gene 

sequences for a wide variety of organisms, and robust sample preparation and 

quantification techniques are increasingly making proteomics a reliable tool for 

investigating the proteome13. Proteomic workflows typically follow either the ‘bottom-up 

approach’ or top-down approach14. In bottom-up, the analysis is performed on proteolytic 

peptides of the protein while in top-down, the intact protein is analyzed.  When bottom-

up analysis is performed on a mixture of proteins it is called shotgun proteomics. Shotgun 

proteomics is superior for the analysis of complex matrices. In this dissertation, the 

shotgun proteomics approach was optimized and the main steps in our in-house workflow 

are shown in Figure 1.5. 

1.3.1 Protein Prefractionation 

Biological samples are complex matrices that contain wide dynamic range in 

protein concentrations. The dynamic range in protein concentrations in plasma is said to 

span 10 to 12 orders of magnitude15, 16.  Albumin and IgG, the top two high-abundant 
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proteins (HAPs) in plasma constitute about 60% of the total plasma proteome17, 18 and the 

top 12 abundant proteins make-up ~95% of the total protein mass15, 19. Proteomic analysis 

of complex biological samples is therefore limited in the limit of detection (LOD), limit 

of quantification (LOQ), and the linear range of response. Shotgun workflows can 

incorporate prefractionation methods for separation of proteins mixture to reduce these 

limitations. Available prefractionation methods include 1- and 2-dimensional 

polyacrylamide gel-electrophoresis, depletion, and isoelectric focusing (IEF)14.  

Depletion is done to separate the HAPs from the low-abundant proteins (LAPs). Removal 

of the HAPs enhance the detection of LAPs which otherwise are masked by the HAPs. 

Immunodepletion involves the use of antibodies in the separation. Our lab optimized 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

immunodepletion for the separation of protein mixtures in bovine plasma (PL), follicular 

fluid (FF), ejaculated sperm, and epididymal sperm samples. Detailed description of the 

depletion protocol development and optimization is discussed in chapter 2. 

SDS-PAGE is a common, simple, rapid, and sensitive fractionation method to 

separate intact proteins20.  The sodium dodecyl sulfate (SDS) denatures and disrupts the 

structure of proteins and confer uniform negative charge to the proteins such that the 

proteins separate primarily based on molecular weight. Separated protein gel bands can 

be detected by Coomassie Brilliant Blue or silver staining but the former is preferred for 

shotgun proteomics due to better linearity of signal and amenability to LC-MS/MS14.  For 

LC-MS/MS, gel bands are excised and digested by the in-gel trypsin digestion method21 

prior to analysis. In this dissertation, SDS-PAGE was used to separate crude, bound, and 

depleted fractions of PL, FF, and epididymal and ejaculated sperm samples. 
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Figure 1.5. Shotgun proteomic workflow used in-house. 

 

1.3.2 Proteolytic Digestion 

Proteolytic digestion of intact proteins generates peptides with masses able to be 

analyzed by mass spectrometry. Trypsin has become the gold standard for protein 

digestion to peptides for shotgun proteomics13, 14 and is used in this dissertation. Trypsin 

cleaves the carboxyl side of arginine and lysine. This sequence specific information is 

utilized in the identification of peptides and proteins during database search on LC-

MS/MS data. Apart from its high specificity, trypsin is also preferred because it generates 
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suitable size peptides (10-15 amino acids residue long) and produces double charged 

precursor ions which fragment efficiently in CID12.   

1.3.3 Peptide Fractionation 

The mixture of peptides from proteolytic digests of protein mixture is often too 

complex for current mass spectrometers to deal with all at once despite the recent 

progress in mass spectrometry. An optimized peptide fractionation method prior to MS 

analysis therefore becomes necessary to increase peak capacity (i.e. the number of peaks 

that can be resolved in a unit resolution) and to assure that the number of peptides that 

simultaneously enter the mass spectrometer stays within analyzable limits. This will 

enable more proteins to be identified and quantified22. Among peptide fractionation 

methods, liquid chromatography (LC) is often a method of choice because differences in 

charge and hydrophobicity of peptides can be exploited to assure high resolution of 

peptides. Adequate resolution of peptides of similar masses is crucial for obtaining 

distinct no-mixed fragmentation spectra. LC is also commonly used because of its 

amenability to mass spectrometry, high throughput, and sensitivity. Coupling nano-

electrospray to reverse-phase nanoflow liquid chromatography (RPnLC) has been shown 

to give the largest gain in sensitivity from peptide separation14, 22. Typically, one or more 

chromatographic techniques, such as strong cation exchange (SCX) or hydrophilic 

interaction chromatography (HILIC), are coupled to RPnLC to further enhance peptide 

separations. Multidimensional liquid chromatography techniques are now routinely being 

coupled to tandem mass spectrometry to provide a robust method to identify proteins in 

complex mixtures.  
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Strong-cation exchange-reversed phase (SCX-RP), HILIC-RP, and RP-RP 2D 

systems have been shown to provide suitable orthogonality, i.e. the separation properties 

in first dimension do not affect that in the second dimension22.  Orthogonality is crucial 

for maximizing peak capacity. The SCX-RP has become a popular method in shotgun 

proteomics, known as multidimensional protein identification technology (MudPIT)23, 

due to high sensitivity resulting from the high capacity of strong cation-exchange (SCX) 

resin and the high resolution of SCX and RP24. In SCX, peptides are displaced from the 

SCX resin by increasing salt concentration. Each collected fraction is then loaded onto a 

RP column where it is separated using an organic gradient. The SCX separation can be 

done offline or online in which case the eluted fraction is loaded directly onto the RP 

column. SCX-RP was successfully used in this dissertation.  

1.3.4 Protein identification  

Proteins identification with mass spectroscopy is commonly by database search 

via a number of approaches. Peptide mass fingerprint or peptide mass map analysis 

approaches25  involve determining the masses of experimental peptides derived from 

proteolytic digests of the proteins. Proteins are then identified based on comparison of the 

experimental masses with theoretical masses of peptides produced in silico by digestion 

of sequences in a target database by the same digestion enzyme as used in the 

experiment. Because peptide mass fingerprinting basically requires purified target 

protein, prior fractionation of proteins is necessary and often 1D and 2-D gel 

electrophoresis is used.  



16 

 

Protein identification using MS/MS data offer greater degree of specificity than 

peptide mass fingerprinting as it combines fragment ion patterns with peptide masses. 

This approach is more suitable for analysis of complex mixtures and is steadily replacing 

peptide mass fingerprinting. It involves scanning the product ion spectra against 

comprehensive protein sequence databases using one of a number of different algorithms.  

The ‘peptide sequence tag’ approach extracts a short, unambiguous amino acid sequence 

from the peak pattern that, when combined with the mass information, is a specific probe 

to determine the origin of the peptide. A common approach is to calculate a score based 

on comparison of calculated fragments from peptides sequences in the database with 

observed peaks. The calculated score reflects the statistical significance of the match 

between the spectrum and the sequences contained in a database. In another approach 

called the cross-correlation method, the search algorithm uses peptide sequences in the 

database to construct theoretical mass spectra and the overlap or ‘cross-correlation’ 

(known as xcorr) of these predicted spectra with the measured mass spectra determines 

the best match2, 13. The xcorr value is thus a statistical measure of the extent of correlation 

between measured and theoretical fragment spectra and shows the peptide sequence with 

the best match or score. 

The cross-correlation approach is used in one of the most popular peak-finding 

search engine, SEQUESTTM (Thermo-Fisher Scientific). This work utilized SEQUEST 

embedded in Proteome Discoverer (Thermo-Fisher Scientific) and searched the bovine 

protein FASTA database. The Proteome Discoverer application extracts relevant MS/MS 

spectra from the raw file and determines the precursor charge state and the quality of the 

fragmentation spectrum. SEQUEST searches the raw data and generates a peak list and 
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relative abundances. The peaks represent the fragments of peptides for a given mass and 

charge. SEQUEST then used the cross-correlation scoring system and assigns xcorr 

values for peptide candidates. To help increase confidence and validate protein 

identifications, the Proteome Discoverer application also uses a probability-based scoring 

system to independently rate the relevance of the best matches identified by the 

SEQUEST algorithm. The output of this is the false discovery rates (FDRs) or false 

positive rates values. FDR value estimates the number of false positive identifications 

among all identifications found by a peptide identification search. Determination of FDR 

involves searching spectra against a database of decoy (fake) peptides, typically derived 

from digesting in silico the inverted or scrambled sequences of expected proteins.  

As discussed above, the bulk of proteomic data is generated by database search 

using search algorithms. All search engines allow for the setting of a number of variables 

such as molecular mass range, polarity, precursor mass tolerance, fragment mass 

tolerance, scan type, activation type, proteolytic enzyme used and the maximum allowed 

missed cleavage sites by the enzyme, number of charges, maximum number of peptides 

considered for a peptide match, maximum protein references per peptide, type of 

fragment ion (e.g. b- and y- ions), and possible modifications (either static or dynamic) to 

certain residues such as alkylation of cysteine, oxidation of methionine or 

phosphorylation of residues including serine, threonine and tyrosine. Search parameters 

for database search should be chosen carefully and some parameters such as precursor 

and fragment mass tolerance may need to be optimized to generate relevant data. 

Summary of search parameters used in this dissertation are stated at the relevant sections. 
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 1.3.5 Quantitative Proteomics 

Protein quantitative data is important for modeling the cellular and metabolic 

response of an organism and also help in the designing of inhibitors for specific target in 

disease conditions26. Methods for protein quantification by mass spectrometry can be 

grouped into two: label-free methods and stable isotope labeling methods. In either 

quantitation approach, protein quantity can be estimated by measuring of peptide 

quantities

Label-free methods for quantitation are often used when the introduction of stable 

isotopes is impractical (e.g., in many animal studies) or the cost is prohibitive. In label-

free quantitation workflows11, 27 usually the peptide ion peaks or peptide fragment ion(s) 

are integrated and used as a measure of quantity. The absolute quantity can be calculated 

using a standard curve. Quantitation using fragment ions (as in multiple reaction 

monitoring; MRM) is more specific as it requires the masses of the precursor ion and the 

fragment ions to be close to the predicted masses. Also, because peptides fragment in a 

sequence specific manner, it requires that the relative intensities of the fragment ions do 

not deviate from the expected intensities which increase specificity. 

Other label free quantitation methods not based on peak integration involves 

searching the fragment mass spectra against a protein-sequence collection and 

quantitation is subsequently attained using a number of approaches. These include i) 

Spectra counting where the number of different fragment spectra that identifies peptides 

derived from a given protein is used as a measure of protein quantity. This method is 

based on the rationale that peptides from more abundant proteins will be more selected 
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for fragmentation and will thus produce a higher number of MS/MS spectra. ii) Calculate 

exponentially modified protein abundance index (emPAI), a measure based on the 

number of identified peptides of a protein. emPAI is based on the fact that generally more 

peptides are detected for larger proteins and is directly proportional to the protein content 

in the sample. Label-free quantitation not based on peak integration is generally less 

accurate when a small fraction of fragment spectra or peptide is observed for a given 

protein11, 27.  

 To compare samples quantitatively in label-free proteomic workflows, LC-

MS/MS analysis is performed on each sample separately and the calculated peptides and 

proteins quantities in the different samples are compared. Label-free methods are 

therefore susceptible to variations in time-instrument response due to the lack of 

multiplexity. High reproducibility in sample preparation, high reproducibility of 

chromatographic separation, the exact alignment of chromatograms from different 

samples, the use of high-scanning rate, high resolution power of the MS, and highly 

accurate mass measurement are thus prerequisite for statistical significant results11. The 

high-reproducibility requirements in label-free quantitation can put restraints on 

prefractionation. Also, analysis time can be greatly increased when the number of 

samples to be analyzed is large due to the lack of multiplexity. 

Labeling methods involving the use of stable isotopes can be classified into two 

main groups: chemical labeling and metabolic labeling. Labeling strategies are based on 

the fact that both labeled and unlabeled peptides exhibit the same chromatographic and 

ionization properties but can be distinguished from each other by a signature mass-shift11.  



20 

 

Introduction of labels can help optimize reproducibility of the proteomic workflow. In 

metabolic labeling, the label is introduced to the whole-cell organism through the growth 

medium. Metabolic labeling therefore provides the earliest possible introduction of 

stable-isotope labels into the sample but is not always feasible and can be costly and 

time-consuming particularly when applied to the study of complex organisms. Available 

metabolic labeling approaches include Stable Isotopic Labeling with Amino Acids in Cell 

Culture (SILAC) and 14N/15N Labeling22. 

 In chemical labeling, proteins or peptides are tagged with the label through a 

chemical reaction. Available chemical labeling approaches include Isotope-Coded 

Affinity Tags (ICAT), Tandem Mass Tag (TMT), Isotope-Coded Protein Labelling 

(ICPL), and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). The 

different chemical-labeling approaches differ in the site of reaction, the mechanism of 

reaction and the method of quantitation under the mass spectrometer platform11, 22. TMT 

share similar characteristics with iTRAQ but the number of identified peptides and 

proteins are higher with iTRAQ (4-plex or 8-plex) than TMT 6-plex28, 29.  The iTRAQ 

technology was used in this dissertation and is thus further discussed. 

1.3.5.1  iTRAQ Labeling 

iTRAQ is a popular chemical-labeling technique that allows four to eight samples 

to be multiplexed in a single run. The iTRAQ technique is a form of isotope labeling in 

which the tags are isobaric in nature. The tags contain a peptide reactive group N- 

hydroxysuccinimide (NHS) ester derivative, a balancer group (carbonyl group), and a 

reporter group (based on N-methylpiperazine). For 4-plex reagent, the reporter groups of 
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masses 114.1, 115.1, 116.1 and117.1 Da are balanced by corresponding 28, 29, 30 and 31 

balancer group to give a total constant mass of 145.1 Da (Figure 1.6). 8-plex reagent has 

four additional reporter groups of masses 113.1, 118.1, 119.1, and 121.1 and 

corresponding balance masses of  all eight reporter masses range is 192-184 Da, giving a 

total constant mass of 305.1Da26, 30. The different masses of the reporter groups and 

balancer group are achieved by using combinations of 13C, 14N and 18O isotopes. The 

iTRAQ derivatization is achieved by reaction of the NHS ester derivative with the N-

terminus and ɛ-amino group of the lysine side-chains to form an amide bond. This makes 

it possible to label all peptides in a sample.  

The iTRAQ protocol often involves reducing, alkylating, and digesting proteins in 

individual samples prior to iTRAQ labeling. Reduction and alkylation blocks any 

possible reaction of the reagent with cysteine residues. Digested peptides of a sample are 

then labeled with an iTRAQ reagent at room temperature and the individual-labeled 

samples are mixed together in 1:1 ratio. Often iTRAQ-labeled peptides are separated by 

performing strong cation exchange (SCX) followed by reverse-phase liquid 

chromatography.  

Quantitation with iTRAQ has several advantages over other chemical labeling 

techniques. Because the tags are isobaric, individual differentially labeled peptides at a 

given m/z elute as a single combined peak in MS, which greatly enhance the signal. This 

is an important contrast to non-isobaric labeling techniques such as ICAT in which the  
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Figure 1.6. Multiplex quantitation using 4-plex iTRAQ reagent. Shown in Ross et al31. 

(A) Structure of 4-plex iTRAQ reagent; (B) Combination of isotopic enrichments used to 

achieve constant mass (145.1 Da) for each of the four reagents; (C) Illustration of using 

4-plex reagents in an LC-MS/MS experiment. 

 

MS (precursor) signal is split due to mass shift and results in decreased signal.  Also, 

there is less complexity of the MS spectra, a benefit arising from the same mass of 

labeled peptides. At the MS/MS stage, balancer group is loss via neutral loss and the 

reporter ion which retains a charge is released and observed in the low mass region of the 

MS/MS spectrum. All other fragment ions remain isobaric, and their individual signal 

intensities are additive which also increases sensitivity at the MS/MS level26, 30.  Figure 
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1.7 is an example of the reporter region in MS/MS spectrum observed for a peptide from 

a protein digest in our lab. 

Because of the multiplexing nature of the iTRAQ tags, variation in time 

instrument response is eliminated. Additional benefit of iTRAQ technology is that 

proteins can be identified by their signature peptides and fragment ions via database 

search using appropriate algorithm in a parallel workflow. The quantification and 

identification data are emerged using appropriate algorithm e.g. Proteome Discover, 

ProteinPilot, and i-Tracker26. Protein-identification search parameters for iTRAQ labeled 

peptides include indicating iTRAQ as a fixed modification at the N-terminal and ɛ-amino 

group of lysine residues and iTRAQ as a variable modification at tyrosine residues.  

The peak intensities or areas of the reporter ions of different masses are used to 

calculate the relative quantities of peptides of proteins. More than one spectrum can be 

obtained for a single peptide due to the peptide having more charge states and 

corresponding different m/z and retention times. Additionally, this could be because the 

peptide has better ionization efficiency and is more abundant. Therefore more than one 

peptide ratio and error can be calculated for a single peptide. Spectra ratios are calculated 

often using the lowest reporter ion as the reference (114.1 in 4plex or 113.1 in 8 plex 

experiment). Spectra ratios corresponding to the same peptide are merged by i) taking the 

average of all the representing spectra ratios or the median to represent the peptide or ii) 

scoring the spectra and the spectrum that most defines a given peptide is chosen to 

represent the peptide. The average (or weighted average) or median of the calculated 

peptide ratios of an identified protein is taken to represent the relative quantity of that 
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protein. Absolute quantification with iTRAQ can be achieved by labeling a reference 

peptide belonging to the protein with one of the iTRAQ reagent and upon mixing with 

the other iTRAQ labeled samples and subsequent MS analysis, the intensity or area of the 

reporter ion of the reference peptide is used to calculate the absolute value. 

 

 

 

 

 

 

 

 

 

 

 

1.4 Applications of Proteomics in Reproduction Research in Bovine 

Mass spectrometry-based proteomics is continuing to provide insights into several 

biological systems in human and several species. An important area of its application is 

B A 

Figure 1.7. Exemplary MS/MS spectrum of an electrospray ionized peptide 

fragmented by pulsed q collision induced dissociation (PQD) in Finnigan LTQ. 

iTRAQ reporter ions (arrows) in low mass region in A is zoomed in and shown in 

B. Reporter ions 114, 115, 116 and 117 are observed.    
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molecular research in reproduction. The potential benefits from this area of research are 

enormous and include uncovering and broadening the understanding of a variety of 

molecular events in reproductive important tissues such as testis, ovary, endometrium, 

oviduct, and placenta as well as gametes and embryos; improved understanding of the 

effects of reproductive toxicants particularly disease states (e.g. polycystic ovary 

syndrome (PCOS), infertility, subfertility, endometrial disorders, and miscarriage) or 

hormones and cytokines; and identification of potential protein biomarkers and/or 

treatment targets for successful reproduction and fertility interventions32, 33. While 

significant proteomic research has been dedicated to human reproduction and fertility33, 

very few have focused on that of other species including bovine. A significant contributor 

to this drawback is the lack of available comprehensive sequence database for protein 

identification in these species.  Also, in bovine, established traditional methods for 

assessing and improving reproduction and fertility remain the standard practices among 

farmers.  

Cow-reproductive performance (fertility) is very important as it defines the 

attained biological and economic benefits. Traditionally, cow productivity, i.e. the 

number of calves produced per lifetime or per unit land area is estimated by a number of 

factors including age at first calving, calving (fertility rate), calving interval,  number of 

services per conception (NSC), age at puberty, and nutrition34. First calving marks the 

beginning of a cow's productive life and age at first calving is closely related to 

generation interval (the average age of parents at birth of their offspring that in turn will 

produce the next generation of breeding animals). Late first calving has been associated 

with increasing longer calving intervals. Also, NSC has also been reported to increase in 
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increasing age at first calving.  In general, earlier first calving increases lifetime 

productivity of cows. The commonest estimate of fertility rate is the percentage of mated 

or inseminated cows that become pregnant (pregnancy rate) or finally calve (calving 

rate). Fertility rates can also be estimated prior to calving as the percentage non-return 

rate. This is the number of cows bred that do not come back in heat and are thus assumed 

to have conceived. Differences in calving rate between years have been associated with 

the quality and quantity of available forage. Calving interval is probably the best index of 

a cattle herd's reproductive efficiency.  Calving interval is the amount of time (days or 

months) between the birth of a calf and the birth of a subsequent calf, both from the same 

cow. Calving interval is estimated to be affected by factors such as genetics, age, sex of 

the calf, suckling duration, and feeding after calving. Calving interval decreases with 

shorter suckling duration, high feeding after calving, and having female calves instead of 

males at calving. The shorter calving interval with female calves is attributed to shorter 

suckling duration with females than males. Shortest calving interval is observed with 

cows of intermediate age (6-9 years) compared to young age (3-6 years) and old age (12-

16 years). Effective recognition, measurements and management of the reproductive 

estimates is essential to the productivity of the cow. Artificial insemination (AI) is a 

common practice also used to increase pregnancy rate and cow productivity. In this 

respect, accurate detection of oestrus is essential for achieving high pregnancy rate.  

Although these traditional reproductive estimates are still being practiced, it is 

increasing being recognized that the application of proteomics can provide parallel 

information that will enhance reproduction in cattle. Proteomic application potential 

benefits include identification of biomarkers (i) predictive of early pregnancy detection, 
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fetus, and maternal survival35, 36;  (ii) for evaluation and selection of quality sperm, 

oocyte, and embryo37, 38; (iii) monitoring of genetic/physiological and environmental 

causal diseases affecting reproduction; and (iv) suitable for use as treatment targets for 

successful artificial insemination, pregnancy, and offspring.  Accordingly, a number of 

studies have been conducted39-43.  

Folliculogenesis is the process in which recruited primordial follicle grows and 

undergoes stages from primary, secondary, tertiary (pre antral follicle and mid-antral 

follicle), dominant  to ovulatory follicle with the potential to ovulate its oocyte to be 

fertilized or die by atresia44. Follicular fluid (FF) accumulates into the follicle antrum 

starting with the early stage of follicle development and becomes the natural environment 

of the developing oocyte (Figure 1.8). FF consists of a wide variety of dynamically 

changing proteins responsible for growth and development that ultimately affect the 

quality and fertilization potential of the oocyte. Therefore, FF is a useful substrate for 

proteomic reproduction and fertility research. Moreover, FF is an easily accessible 

biological fluid as it is aspirated in abundance from follicles33.  

Ferrazza et al.40 recently investigated protein expression profile of bovine FF at 

key stages of follicular development. The group identified a total of 143 proteins, twenty-

two of which were differentially expressed between stages indicating intrafollicular 

changes over development. The group also found that the complement and coagulation 

systems, acute-phase response signaling, liver/retinoid X receptor activation, and 

biosynthesis of nitric oxide and reactive oxygen were the most significant pathways 

associated with the proteins. Another group investigated the effect of bovine FF proteins 
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and their acidic and basic groups as maturation media supplements for in vitro embryo 

development. They found oocyte maturation rate, the development to the blastocyst stage 

rate, and blastocyst cell number were not significantly differing in 10% bovine FF 

supplemented in vitro maturation (IVM) medium and controls (supplemented with fetal 

bovine serum and hormones). However, inteferon tau (INFτ) and insulin-like growth 

factor-2-receptor (IGF-2r) expression levels in the 10% bFF were significantly higher 

than in the control. Supplementing the IVM medium with basic bovine FF protein 

fraction resulted in significantly higher oocyte maturation rate and blastocyst cell number 

and greater expression levels for almost all developmentally important genes, especially 

INFτ and HSP70 when compared to supplementing with acidic fraction. INFτ is the 

primary factor responsible for maternal recognition of bovine pregnancy45. Binding of 

IGF-2r to the growth factor enable pathway for the growth factor regulation of fetal 

growth46, 47.  The upregulation of both proteins shows the importance of FF proteins in 

the establishment of pregnancy and fetal growth. Proteomic approach was also used to 

identify eight differentially expressed proteins in FF from preovulatory follicles of less 

fertile cows that are important to follicular function48. 

These studies show the potential of proteomic analysis of FF to provide better 

insights into key factors involved in folliculogenesis, establishment of pregnancy, embryo 

development, and the identification of therapeutic targets in bovine. The applications of 

the outcomes of such research stand to improve the productivity of the cow. In this 

dissertation, proteomic analysis of bovine FF and plasma (PL) was performed and the 

effect of high and low estradiol (E2) on protein expressions during the preovulatory stage 

was investigated.  Detail of this work is discussed in Chapter 3. 
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Figure 1.8. Schematic picture of an ovarian antral follicle in mono-ovulant species. 

Shown in Fahiminiya et al49  

 

1.5 Atherosclerosis 

Atherosclerosis is a multifactorial progressive disease characterized by the 

narrowing and hardening of arteries caused mainly by build-up of cholesterol, lipids, 

cellular debris, and calcium to form plaque in the intima of large- and medium-sized 

arteries50. The plaque formation and subsequent narrowing and hardening of the arteries 

result in chronic luminal obstruction, abnormalities of blood flow, and diminished oxygen 

supply to target organs51. Complications of atherosclerosis lead to coronary artery disease 

(CAD; heart attack), cerebrovascular disease (CeVD; stroke), and diseases of the aorta and 

arteries, including peripheral vascular diseases (PVD) and hypertension. Globally, CAD 

and CeVD are the leading causes of cardiovascular deaths50. Risk factors for 

atherosclerosis include diabetes mellitus, obesity, hypertension, tobacco use, harmful use 
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of alcohol, high levels of low density lipoprotein (LDL) cholesterol, low level of high 

density lipoprotein (HDL) cholesterol, advancing age, male gender, unhealthy diet (rich in 

salt, fat and calories), psychological factors, physical inactivity, poverty, low education 

status, and family history of premature CAD50, 52.  

Atherosclerosis is viewed as an inflammatory disease53, 54 with initial events 

involving dysfunction of the endothelium (lining of the artery)55, 56. Endothelia injury is 

initiated by a variety of events/substances including dyslipidemia (particularly high levels 

of LDL cholesterol), hypertension, infection, presence of free radicals, and low shear stress. 

The damaged endothelium allows migration of lymphocytes, monocyte, and lipids, 

particularly LDL cholesterol, into the arterial intima. Dysfunction of the endothelium also 

promotes expression of cellular adhesion molecules ICAMs (e.g. ICAM-1), vascular cell 

adhesion molecules (VCAMs) (e.g. VCAM-1), chemokines, and selectins such as P- and 

E selectin. These processes are partially mediated by nuclear factor κB (NF-κB), one of the 

transcriptional controllers in vascular inflammation and an integrator in atherogenesis55-57.  

Leucocytes and monocytes adhere to the endothelium via VCAM-1 binding and enter the 

intima by diapedesis between endothelial cells at their junctions. This process is mediated 

through chemokines, such as monocyte chemoattractant protein 1 (MCP-1) and IL-8 as 

leukocyte chemoattractant. LDL cholesterol, upon migration into the arterial intima 

undergoes oxidation to become oxidized LDL (OxLDL) which are subsequently engulfed 

by monocyte-derived macrophages via receptors such as scavenger receptor A (SR-A) and 

CD36. A lipid laden macrophage is called a foam cell and is the first type of atherosclerotic 

lesion55 (Figure 1.9). The monocytes/macrophages promote the local inflammatory 

response secreting cytokines, degrading enzymes [(matrix metalloproteinases (MMPs)] as 
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well as growth factors that stimulate smooth-muscle cell (SMC) migration from the media 

(deeper layer of the artery) into the site of plaque formation and SMC proliferation. As the 

atherosclerosis development continues, a fibrous cap consisting of smooth muscle cells and 

collagen forms. Also, the necrotic lipid core is formed when macrophages involved in the 

initial reaction begin to die and accumulate and a fibrous cap is formed around the lesion 

location. The atherosclerotic lesion (atheromatous plaque) enlarges as cells and lipids 

accumulate. The enlarging lesion causes the inner surface of the artery to become irregular 

and also bulges into the arterial lumen resulting in narrowing of the lumen. These make it 

harder for blood to flow through the artery, resulting in the artery becoming less pliable50, 

55.   

The continuous influx of cells into the sub-intimal space elicits chronic 

inflammatory response by the adaptive immune system. Also, the microenvironment of the 

plaque could elicit adaptive immune response which in such case is coordinated by 

lymphocytes rather than macrophages. The selective recruitment and activation of T- 

helper type 1 (Th1) T lymphocytes represents a key point in the transition from stable 

plaque to unstable plaque. In particular, selective recruitment of Th1 T lymphocytes 

promotes plaque destabilization/disruption eliciting vascular inflammation and 

downregulating extracellular matrix production by SMCs. Other contributors to the 

thinning of the fibrous cap resulting in plaque rapture include activated macrophage 

secreted procoagulant proteins and MMPs proteases that can degrade collagen, interferon 

(IFN)-γ that strongly inhibit the proliferation of SMCs and the production of interstitial 

collagens by vascular SMCs, and ligation of CD40 (expressed by macrophages) which 

increases the production of matrix-degrading proteases. Thinning of the fibrous cap and 
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subsequent rapture of the plaque releases lipid fragments and cellular debris into the vessel 

lumen. Of importance is the exposure of procoagulant factors expressed within lesions to 

circulating clotting factors initiating the coagulation cascade responsible for thrombosis. If 

the thrombus develops in a coronary artery it can cause heart attack and if it develops in 

the cerebral (brain) artery, it can cause stroke50, 55.  

Six types of atherosclerotic lesions have been identified, and are differentiated by 

morphological features and clinical significance58-60. Types I to III lesions (early types) are 

usually clinically silent whereas types IV-VI lesions (advanced forms) are often associated 

with the symptoms and complications of the disease61.  Description of these lesions is 

discussed in section 4.4.4 of Chapter 4. 

 

 
 

Figure 1.9. Atherosclerotic plaque development. The numbering and arrows indicate 

events leading to plaque development. 

(http://www.resverlogix.com/product_development/nexvas_platform/nexvas_vascular_inflammation.html) 

Shown in Glaudemans et al, 201055 
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 1.6 The Apolipoprotein E Knock-Out (ApoE-/-) Mouse Model of Atherosclerosis 

Mice are the most popular experimental animals because of their small size, wide 

availability, easy of genetic manipulation, short generation time allowing less time 

duration for research projects and the relatively low cost in feeding and housing 

compared to other experimental animals62, 63. Wild-type mice however have a different 

serum-lipid profile of elevated levels of HDL in contrast to elevated levels of LDL in 

humans which makes it resistant to developing atherosclerosis unless on a high-saturated 

fat and cholesterol diet for prolonged periods. The C57BL/6 wild-type mouse strain was 

found to be the most susceptible on such diet but only developed early types of lesions 

which were not comparable to that found in humans64. This presented a need for a more 

efficient mouse model for studying atherosclerosis.  

Among the available mice-atherosclerosis models, the apolipoprotien E knock-out 

(ApoE-/-) mouse model65, 66 is popular because of its susceptibility to spontaneously 

develop atherosclerotic lesions in a progressive manner and with lesion morphological 

features observed in humans63, 67. The ApoE-/- mouse model is based on the function of 

apolipoprotein E (ApoE) protein. ApoE is a glycoprotein synthesized in the liver, brain, 

and by monocytes and macrophages in vessels. It is a constituent of all lipoproteins 

except low-density lipoprotein (LDL). It mediates the cellular uptake of several different 

lipoproteins, most notably, cholesterol, atherogenic triglycerides, and very low-density 

lipoproteins (VLDL). It also functions in biliary excretion of cholesterol63, 68, 69.  Deletion 

of the apoE gene thus dramatically increases the serum cholesterol levels mostly in the 

form of VLDL remnants and chylomicrons and makes it susceptible to developing 

atherosclerotic lesions. The atherogenic process is accelerated when on a high saturated 
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fat and cholesterol diet65, 66. Because C57BL/6 mouse strain is more susceptible in 

developing atherosclerosis64, 70, it is often the background for ApoE-/- mice71.  

The ApoE-/- atherosclerotic model allows for studies on lesion size and 

composition and the identification of possible therapeutic targets; nutritional 

interventions aimed at the effects of changes in micro- and macronutrients on lesion size 

and on atherosclerotic cells/molecules (e.g. monocytes, macrophages, oxLDL) or 

mechanisms (e.g. LDL oxidation, uptake of oxLDL by macrophages); the effects of 

therapeutic agents on atherosclerotic molecules, lesions, and events; and the genes related 

to atherosclerosis62, 63, 68.  

1.7 Lesion Analysis in Mice 

Atherosclerotic studies in mice often involve estimating the extent of lesions by 

histological methods. Two methods widely used are the en face method72 and the serial 

cross section method73. The en face method involves removing the entire aorta and 

opening it longitudinally to expose the intimal surface by dissecting from the heart to the 

iliac arteries. The primary incision follows the ventral side of the aorta and the inner 

curvature of the aortic arch. A second incision is made along the outer curvature of the 

aortic arch to the subclavian branch to obtain a flat tissue for imaging. Minor branches 

are cut off and the aorta, from the heart to approximately 3mm distal to the iliac 

bifurcation, is pinned out on a black surface using 0.2mm diameter stainless steel pins. 

Staining with, e.g., Sudan IV is performed to enable visualization of lipid-laden lesions 

and measurement of lesion surface areas. Lesion area is usually represented as a percent 

of the total intimal surface that is covered by atherosclerotic lesions. The en face is a 
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rapid method that provides a two-dimensional assessment of lesion size on the entire 

aorta but is limited in the assessment of lesion thickness71, 72. 

The serial cross-sectioning method involves sequential sectioning of the heart and 

the aortic root onto histological slides and subsequent histopathological analysis 

including staining (e.g. oil red O) and image analysis by appropriate software is used to 

examine and quantify lesions. Analysis of the aortic sinus region requires serial 

sectioning 400µm total area starting from the appearance of the aortic sinus cusps and 

spanning distal towards the ostia of the coronary arteries. Histological analysis of the 

aortic root and the ascending aorta requires serial sectioning spanning about 900µm 

stretch of the aortic root60, 73, 74.  The serial cross-sectioning method, although labor and 

time consuming, enables examination of lesion thickness and composition.  

Atherosclerosis studies with the ApoE-/- mouse model have enabled the 

identification of predilection sites (Figure 1.10) of atherosclerosis development in mice67, 

75 which include the aortic root, carotid arteries, lesser curvature of the aortic arch, 

pulmonary artery and the principal branches of the thoracic aorta. These predilection sites 

have been the focus for probing of the disease. Of these, the quantification of the aortic 

root is considered the standard in many laboratories due to the high susceptibility of this 

site to atherosclerosis in mice and lesions develop in mice at earlier age than the other 

predilection sites. Also, the aortic sinus cups serve as an anatomical landmark to keep the 

area under study constant76. This dissertation characterized and quantified lesions in the 

aortic root of ApoE-/- mice at different ages using the serial cross sectioning method and 

this is discussed in detailed in Chapter 4. 
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1.8 Proteomic in Atherosclerosis Biomarker Discovery  

Although clinical assessments remain the primary tool for atherosclerosis and 

associated cardiovascular disease management, they pose limitations particularly in 

predicting individual risk and risk of recurrence77. A biomarker is defined as “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes or pharmacologic responses to a therapeutic intervention”78. 

Identification and measurements of atherosclerosis biomarkers, which were originally 

introduced to improve existing clinical assessments and to enable the identification 

 

Figure 1.10. Predilection sites of atherosclerosis development on the aorta and 

pulmonary arteries of ApoE-/- mice. Predilection sites are shaded black. 1. Aortic root; 2. 

Lesser curvature of the aortic arch; 3. Principal branches of the thoracic aorta; 4. Carotid 

arteries; 5. Principal branches of the abdominal aorta; 6. Aortic bifurcation; 7. Iliac 

artery; and 8. Pulmonary arteries (From Nakashima et al.,67) 
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of vulnerable patients79 continue to hold great promise. A suitable biomarker would have 

the advantage of identifying high risk individuals, accurately and quickly diagnose 

disease conditions and effectively predict and treat patients with the disease79. 

Mass-spectrometry-based proteomics technologies are powerful tools that can be 

employed in the search for novel biomarkers for atherosclerosis and related diseases due 

to the ability of such technologies to identify thousands of proteins in a single 

experiment. By these methodologies, several biomarker candidates have been identified. 

A comprehensive list compiled by de la Cuesta et al, 201580 include fibrinogen fragment 

D, annexins (e.g. A4, A5, A10), cathepsin D, alpha 2 macroglobulin, S100 proteins, 

myeloperoxidase (MPO), gelatinase, matrix metalloproteinases (e.g. MMP-3, MMP-9), 

vinculin, apo B100, thrombospondin-2 (TSP-2), manganese-dependent superoxide 

dismutase (MnSOD), and caspase-9 as potential markers of atherosclerosis; death-inducer 

obliterator 1 (DIDO 1), fibrinogen, cardiac troponin I and T ( cTnI, cTnT), inosine, alpha 

2 macroglobulin, and serine as potential biomarker for myocardial infarction; haptoglobin 

(hp) and serum amyloid A (SAA) as candidate markers for ischemic stroke; proline, 

arginine, alanine, ornithine, creatinine, and trimethylamine N-oxide (TMAO) as potential 

markers for coronary artery diseases (CAD).  

Many of the candidate biomarkers have however not been incorporated into 

clinical assessments mainly because they fail to meet all the requirements of a true 

biomarker. Protein biomarkers that have been incorporated into clinical assessments such 

as oxidized low-density lipoprotein (oxLDL), C-reactive protein,  fibrinogen, lipoprotein-

associated phospholipase A2 (Lp-PLA2), Lp(a),  osteopontin (OPN), osteoprotegerin 

(OPG), .MMP-3, MMP-9, myeloperoxidase (MPO) , homocysteine, cardiac troponin I 
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and T ( cTnI, cTnT), and tissue factor  (TF)80, 81 have however not been able to predict 

individual risk above that achieved by the traditional risk factors. Therefore, there is still 

an urgent need to find true and useful biomarkers that can identify vulnerable patients and 

guide treatment development81. 

Circulating blood is the most used sample in proteomic atherosclerotic biomarker 

discovery studies probably because of the ease and convenience of sampling82. Other 

proteomic samples include urine83, circulating cells extracted from plasma/serum such as 

monocytes, platelets and leukocytes, plasma extracellular vesicles such as exosomes and 

microvesicles and tissues like carotid artery81, 84, 85.  In using the ApoE-/- mice in 

atherosclerosis studies, blood and urine samples collected can be viable source for 

proteomic work86. Proteomics on blood and tissues from these mice has the benefit of 

providing insights into the molecular mechanisms associated with the disease. The 

availability of tissues from mice for proteomic work is particularly advantageous since 

obtaining similar sufficient tissues from humans is difficult, especially in considering 

control samples for comparative analyses80.  

Although mice can be a good source for proteomic work, their small size can limit 

the amount of samples collected and this should be considered in the experimental design 

of such studies. Potential atherosclerotic biomarkers can be determined by comparing the 

data generated from ApoE-/- samples to that from control group of the study. A correlation 

analysis can also be performed between identified proteins from the proteomic analysis 

and lesion components, morphology or size.   
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The ApoE-/- mouse model is used in this dissertation to study lesion types and 

patterns with factors such as age and also make available blood and tissue samples for 

proteomic analysis for biomarkers of atherosclerosis.  
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CHAPTER 2 

IMMUNODEPLETION OF MULTIPLE HIGH-ABUNDANT PROTEINS 

FROM BOVINE FLUIDS 

2.1 ABSTRACT 

Immunodepletion of high-abundant proteins (HAPs) aids in the identification and 

analysis of low-abundant proteins (LAPs) in complex samples. Currently, 

immunodepletion methods for bovine samples are very limited whereas greater 

availability exists for human and murine animals. In this study, we report the 

simultaneous depletion of HAPs from bovine samples using an immunoaffinity depletion 

cartridge (the multiple affinity removal system; MARS) designed to target six human 

HAPs, while such a depletion kit for bovine samples is not available. Sandwich ELISA 

analysis showed 98.7 to 99.9% depletion of albumin, IgG and IgA from bovine plasma, 

follicular fluid (FF), ejaculated and epididymis sperm types. A similar percentage is 

expected of alpha-1-antitrypsin due to the dramatic removal in its SDS PAGE band 

compared to the crude samples. The method has high reproducibility and can be 

incorporated into proteomic workflows to increase sensitivity of proteomics analysis of 

LAPs in bovine biological fluids. 
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2.2 BACKGROUND AND MOTIVATION 

Proteomics is a high-throughput approach to study protein expression, structure, 

function and post-translational modifications in a cell or tissue. Advancement in 

proteomic sample preparation technologies, mass spectrometry instrumentation and 

bioinformatics87-89 have increased the application of proteomics to understand various 

biological systems. Bovine proteomics i.e. the application of proteomic strategies to 

bovine biological samples is an area of increasing interest90. Bovine proteomics potential 

benefits are extensive and include identification of biomarkers (i) predictive of early 

pregnancy detection, fetus and maternal survival35, 36; (ii) for evaluation of quality sperm, 

oocyte and embryo37, 38; (iii) for assessing the quality and safety of meat, milk and dairy 

products; and (iv) for detection, diagnosis and monitoring of genetic/physiological and 

environmental causal diseases90, 91.  

As is characteristic of biological samples, the complexity and wide dynamic range 

in protein concentrations found in bovine samples present a challenging step in their 

preparation for proteomic analysis92. The wide dynamic range in protein concentrations 

results in high abundant proteins (HAPs; 1-100 mg/mL) masking the identification and 

characterization of low abundant proteins (LAPs, <100 ng/mL). However, biomarkers of 

disease and normal states are most probably of the low abundant types, which make the 

ability to characterize these LAPs imperative in proteomic analysis. 

To bridge the wide concentration range and reduce sample complexity, proteomic 

workflows often incorporate fractionation method(s). Immunodepletion is a popular 

fractionation method due to its simplicity, specificity and reliability. Immunodepletion 
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method involves using antibodies to remove target HAPs with subsequent enhanced 

detection of LAPs.  Immunodepletion of HAPs allows for loading of LAPs at higher 

concentrations for improved visualization by one-dimensional (1-D) or two-dimensional 

(2-D) gel electrophoresis and liquid chromatography (LC) and increase the sensitivity of 

proteomics analyses19. The reliability of the immunodepletion method has led to 

advancement in immunodepletion technologies including commercialized kits for 

humans19 and murine biological samples93, 94. However, a method for immunodepletion 

of HAPs in samples from other species, including bovine, is very limited.  

In the absence of available immunodepletion technology, the majority of 

proteomic analysis of bovine biological samples have used gel-based 2-D gel 

electrophoresis and modified forms of 2-DE such as 2-D fluorescence differential gel 

electrophoresis (2D-DIGE) followed by mass spectrometry analysis36, 43, 95-97. However, 

incorporating immunodepletion of HAPs will enhance the gel-based approach and also 

decrease the number of fractionation steps often employed in shotgun proteomic analysis. 

Faulkner et al18 presented separate depletion methods for albumin and IgG, the two top 

abundant proteins in bovine plasma. However, combinations of depletions each targeting 

an abundant protein increase analysis time and can result in sample loss and 

contamination. Sequential depletions can also result in a decrease in the number of 

uniquely identified peptides98. 

2.3 OBJECTIVE OF STUDY 

The objective of this study was to develop an efficient and reproducible 

immunodepletion method for simultaneous removal of HAPs in bovine fluids. We 
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employed the high capacity multiple affinity removal system (MARS) originally 

designed to target six HAPs- albumin, Ig G, IgA, transferrin, alpha-1-antitrypsin, and 

haptoglobin (hp) in human biological fluids while a similar technology for bovine is not 

available. The six target HAPs represent 85-90% of the total protein mass in human 

serum. The MARS technology has been successfully utilized in many proteomic 

applications of human bio-fluids99-102.  

2.4 MATERIALS AND METHOD 

2.4.1 Chemicals and Reagents 

All chemicals and water were of LC/MS grade. Bio-SafeTM G-250 stain, 

Tris/glycine/SDS buffer, 2-mercaptoethanol (β-ME), laemmli sample buffer and 4-20% 

Criterion™ TGX precast gel were purchased from Bio-Rad Laboratories Inc. (California, 

USA). Formic acid, acetonitrile (ACN), triethylammonium bicarbonate (TEAB), and 

water were obtained from Fischer Scientific (New Jersey, USA). Ammonium bicarbonate 

(ABC) and iodoacetamide were purchased from Acros Organics (New Jersey, USA). 

Dithiothreitol (DTT) and TPCK treated trypsin was purchased from Promega (Wisconsin, 

USA).  

2.4.2 Cows Experimental Design 

All procedures were approved by the South Dakota State University Institutional 

Animal Care and Use Committee. Samples in the present study were collected from a 

previous study to characterize changes in steroidogenic enzymes and FF steroid 

concentrations103.  Briefly, 32 beef cows were synchronized by injecting with GnRH (100 
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mg as 2 mL of Factrel, intramuscularly; Pfizer Animal Health (Madison, NJ, USA) on 

day -7 and prostaglandin F2α (PGF2α) (PG; 25 mg as 5 mL of Lutalyse intramuscularly 

(Zoetis, Florham Park, NJ, USA) on day 0. Estrus was monitored every 3 h from PG on 

day 0 until hour 33 and at slaughter (hour 36 to 42) with the aid of EstroTect (Western 

Point, Inc, Apple Valley, MN, USA) estrus detection aids. Ovaries of all cows were 

examined on day -7, -4, and 0 by transrectal ultrasonography using an Aloka 500V 

ultrasound with a 7.5-MHz linear probe (Aloka,Wallingford, CT, USA)  to assess 

follicular dynamics and ovulatory response. Ten cows that were determined to initiate a 

new follicular wave by day -4 were slaughtered on day 2 (hour 36 to 42) for ovary 

collection. 

2.4.3 Follicular Fluid (FF) and Blood Samples Collection  

Immediately after ovary collection, follicular fluid (FF) was aspirated from 

dominant follicles (DF; >10mm diameter) and the GCs were separated from the FF by 

centrifugation (1,000 x g for 1 min). The FF was place in RNase Free Tubes (USA 

Scientific), snap frozen in liquid nitrogen and stored at -80oC until ready for analysis. 

Blood samples were collected at slaughter to provide better comparison to the FF 

collected at slaughter. To obtain plasma, blood collected at slaughter was placed in 

EDTA vacutainer tubes (Beckman Dickerson) and centrifuged at 1,200 x g for 30 min at 

4°C.  The plasma supernatant was snap frozen in liquid nitrogen and stored at -80oC until 

ready for further analysis. 
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2.4.4  Bulls Experimental Design and Sperms Collection 

All procedures were approved by the South Dakota State University Institutional 

Animal Care and Use Committee.  Ejaculated sperm from bulls (n = 9) were collected by 

electro-ejaculation weekly for three consecutive weeks. Collected ejaculated sperm on 

the second week was centrifuged at 700 x g for 10 minutes to separate the spermatozoa 

from the seminal plasma. The seminal plasma fraction was labeled as ‘ejaculated semen 

plasma’. The remaining spermatozoa fraction was washed with a high ionic solution104 

and vortexed for one minute to remove any proteins attached and then centrifuged at 700 

x g for 10 min.  The supernatant was labeled as ‘ejaculated sperm proteins’.  Following 

third sperm collection, bulls were rested for six weeks to allow epididymal reserves to 

renormalize. At the end of the resting period, bulls were slaughtered and the testes and 

epididymides collected. Collected epididymides were dissected and epididymal fluid and 

sperm collected from the cauda section and processed as described for the ejaculated 

sperm. The epididymal fluid fraction collected after separation from the epididymal 

spermatozoa was labeled as ‘epididymis semen proteins’. The spermatozoa were than 

wash as described above and the liquid fraction from washing off proteins on the 

epididymal spermatozoa was labeled as ‘epididymis sperm proteins’. All samples were 

stored at -80oC.   

2.4.5  Depletion of High Abundant Proteins (HAPs) 

Depletion of the different bovine fluids (PL, FF, epididymis sperm proteins, 

epididymis semen proteins, ejaculated sperm proteins, and ejaculated semen plasma) 

were performed using the High Capacity Multiple Affinity Spin Cartridge (MARS Hu-
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6HC) # 5188-5341 (Agilent Technologies, CA, USA). The MARS Hu-6 system contains 

polyclonal antibodies designed to remove six HAPs- albumin, IgG, IgA, transferrin, α-

antitrypsin, and haptoglobin (Hp) in human biological fluids. The depletion was done 

with vendor provided buffers. Initial depletions investigated 2, 4, 6, 8, 10, and 12 µL of 

bovine plasma and 4, 5, 7, 10, and 12 µL of bovine FF to determine optimal volume for 

depletion. Each plasma and FF sample volume was diluted with 1x buffer A, pH 7.4 (# 

5185-5987, Agilent Technologies, CA, USA) to achieve a final volume of 200 µL.  

Initial quantification of the crude samples showed the sperm samples were 

markedly of lower concentration compared to that of plasma or FF and upon depletion 

resulted in very low yield. Therefore, to ensure enough proteins is obtained in depleted 

samples for downstream analysis depletion volumes were increased to 60 µL for 

ejaculated semen plasma and 154 µL each for ejaculated sperm proteins, epididymis 

semen proteins and epididymis sperm proteins. For 154 µL depletion volume, 46 µL of 

4x buffer A (# 5188-8283, Agilent Technologies, CA, USA) was added to achieve a total 

volume of 200 µL. For depletion volume of 60 µL, 94 µL of water was added after 

addition of 46 µL of the 4x buffer A to obtain a final volume of 200 µL. The 4x dilution 

buffer A was used for the higher depletion volumes of the sperm to ensure similar neutral 

pH achieved with the plasma and FF samples using 1x buffer A.  

Diluted samples were transferred to 0.22µm spin filters (Corning Incorporated, 

NY, USA) and centrifuged at 16 000 x g for one minute. Filtered samples were applied to 

the spin cartridge which was previously equilibrated with 4 mL 1x buffer A. Flow-

through (FT) fraction (i.e. depleted fraction) was collected by centrifuging at 100 x g for 

1.5 minutes. To ensure optimal recovery of FT, the cartridge was washed twice each with 
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400 µL 1x buffer A. Each wash volume was collected by centrifuging for 2.5 minutes at 

100 x g. Collected wash volumes were combined with initial collected FT. Bound 

fraction were eluted using 2 mL of elution buffer B (#5185-5988, Agilent Technologies, 

CA, USA) at a flow rate of about 0.15 mL/min. Non-depleted samples, eluates, FT, and 

buffers were stored on ice throughout the experiment period to ensure protein integrity. 

Collected FT and eluates were stored at -80oC until ready for analysis.   

2.4.6 Coomassie Bradford Assay 

Coomassie (Bradford) assay kit, (#23200, Pierce Biotechnology, IL, USA) was 

used to determine protein concentrations of bound, depleted and non-depleted samples. 

The quantification was done according to manufacturer’s instruction.  Bovine serum 

albumin, 2 mg/mL (#23209, Thermo Scientific, IL, USA) was used as a standard for 

making a calibration curve which covered a concentration range of 0.00-1500 µg/mL. 

2.4.7 Sandwich ELISA Analysis  

BSA, IgG and IgA concentrations in non-depleted and depleted (FT) samples 

were determined using sandwich ELISA assay kits (Bethyl laboratories Inc., TX, USA).  

IgG was analyzed with bovine IgG ELISA quantitation set (Cat. No. E10-118), IgA with 

bovine IgA ELISA quantitation set (Cat. No. E10-131) and albumin with bovine albumin 

ELISA kit (Cat. No. E11-113). Samples were diluted and washed with vendor-provided 

buffers. Specific dilution factors used for the different samples are shown in Table 2. All 

quantifications were performed according to manufacturer protocols. Briefly, 100 µL of 

dilute IgA or IgG Coating Antibody solution was added to each assay well. The wells 

were incubated at room temperature for an hour and washed with 1x Wash Buffer. 200 
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µL Blocking Solution was added to each well and incubated at room temperature for 30 

minutes to block non-specific binding sites. Wells were then washed with 1x Wash 

Buffer. Assay wells for determining BSA concentration were obtained pre-coated with 

anti-bovine albumin antibody. 100 µL of the diluted FT or non-depleted fractions were 

then added to the assay wells with the coated antibodies. After one hour incubation at 

room temperature, unbound proteins were washed with 1x Wash Buffer.  

In determining IgA or IgG concentrations, 100 µL of  horseradish peroxidase 

(HRP) conjugated anti-bovine IgA or IgG Detection Antibody solution was added to each 

well and incubated at room temperature for an hour to bind to the captured IgA or IgG. 

For albumin determination, 100 µL of Albumin Detection Antibody solution and 100 µL 

of HRP solution were added stepwise with incubations at room temperature for an hour 

after the Detection Antibody addition and for 30 minutes after the HRP solution addition. 

Wells were then washed with 1x Wash Buffer. 100 µl of 3,3’,5,5’-Tetramethylbenzidine 

(TMB) Substrate Solution was added to each well and incubated in the dark for 15 

minutes in IgA or IgG measurements or 30 minutes in albumin measurement to initiate a 

calorimetric reaction which was stopped by addition of 100 µL Stop Solution to each 

well. Absorbance was measured at 450 nm by Synergy H1 Hybrid Multi-Mode Reader 

(BioTek, VT, USA). BSA, IgA and IgG concentrations were derived from calibration 

curves of reference standards included in the quantitation kits. 

2.4.8  SDS PAGE  

Depleted and bound proteins were buffer exchanged into 0.05% TEAB using zeba 

spin desalting columns, 7k MWCO (# 89891, Pierce Biotechnology, IL, USA) according 
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to manufacturer protocol. Samples were vacuum dried prior to SDS-PAGE analysis. 

SDS-PAGE was performed under reducing and non-reducing conditions. Under reducing 

conditions, β-ME was diluted 1:20 in laemmli buffer and the resulting solution diluted 

twice with water. 15 µL of the prepared sample buffer was added to each vacuum dried 

sample. Samples were vortexed, centrifuged and then boiled in a water bath for three 

minutes.  Boiled samples were quickly loaded onto a pre-cast gel. Non-reducing 

conditions excluded the addition of the β-ME and heating step. Equal amounts of 9 or 20 

µg of proteins and 5-8 µL of Precision Plus ProteinTM  unstained standard, 10-250 kDa 

(Bio-Rad Laboratories Inc., CA, USA) was used in the gel runs. Gels were 

electrophoresed in Bio-Rad Power PacTM unit using 1x Tris/glycine buffer and at constant 

voltage of 150 for 62 minutes. Gel bands were visualized using Coomassie BioSafe G250 

stain according to manufacturer instructions. Images were acquired using Proteineer SPII 

(Bruker Daltonics) equipped with SP3 Control software. 

2.4.9 In-Gel Tryptic Digestion of Coomassie-Stained Gel Bands 

Identities of protein-gel bands from bound fractions (HAPs fraction) were 

determined using in-gel digestion nano-LC-MS/MS. For in-gel digestion, each gel band 

from the bound protein lane was excised with sanitized cutting blade, transferred onto 

previously sanitized glass plate and then chopped into pieces. Gel pieces were transferred 

to a 0.5mL microcentrifuge tube and washed with 100µL LC/MS-grade water with gentle 

vortexing for five minutes. The water was removed and the gel pieces completely 

destained by washing with several 100µL portions of 25 mM ammonium bicarbonate 

(ABC) in ACN/ water (v/v = 50/50) solution. Destained gel pieces were dehydrated with 
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100 µl ACN for 10 minutes and dried in a speed-vac at 4oC for 5 minutes. Reduction was 

done with 100 µl of 10 mM DTT at 55oC for 30 minutes.  

After removal of reduction solution, alkylation was carried out by addition of 100 

µL of freshly prepared 55 mM iodoacetamide and incubating in a dark room for 45 

minutes. Gel pieces were washed with 100µL 25 mM ABC solution for 10 minutes, 

dehydrated with 100 µL ACN, and dried in speed-vac at 4oC for five minutes. 30 µL of 

freshly prepared cold 20 µg/mL TPCK treated trypsin (P/N 4370282; Ab Sciex Pte Ltd, 

MA, USA) in 25 mM ABC solution was then added to each sample and incubated on ice 

until gel pieces became fully rehydrated and clear. Excess trypsin solution was removed 

and the gel pieces were covered with 30 µL 25 mM ABC solution and incubated for 16 h 

at 37oC. To extract tryptic peptides, 25 µL of 25 mM ABC solution was added and the 

liquid fraction collected. Then 50 µL of ACN was added and incubated for 10 minutes 

with slight shaking and the liquid fraction also collected.  Finally, 30 µL water and 50 µL 

ACN were added stepwise with 10 minutes incubation with shaking in each step and the 

liquid fraction also collected. All extracted liquid fractions were combined, frozen for 15 

minutes and dried in a speed-vac at 4oC. Dried peptides were stored at -80oC. 

2.4.10 Nano-LC-MS/MS  

Dried peptides were purified and concentrated with either Pierce® C18 spin 

columns (Pierce Biotechnology, IL, USA) or ZipTip C18 tips (Millipore, MA, USA) 

based respectively on high intensity or low intensity of coomassie blue stained-gel band 

prior to de-staining. Purification was done according to manufacturer protocols. Purified 

samples were dried in a speed-vac at 4oC and stored at -80oC until analysis. Protein 
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identification was performed with nano-liquid chromatography tandem mass 

spectrometry (nanoLC-MS/MS) analysis by using Eksigent nanoLC - Thermo LTQ mass 

spectrometer. The dried, purified digest from each interested protein band was brought up 

in water/ACN/formic acid (95%5%/0.1%) and then was loaded on IntegraFrit Sample 

trap (ProteoPep IITM C18, 300 Å, 5µm , 100 μm × 25 mm New Objective, Inc., Woburn, 

MA). The retained peptides were washed isocratically with water premixed with 0.1% 

formic acid pumped from channel 1A to remove any excess reagents. The cleaned 

peptides were resolved on an analytical column (ProteoPepTM II C18, 300 Å, 5µm, 75 μm 

×100 mm, 75 µm tip size, New Objective, Inc., Woburn, MA) with a multistep gradient 

of solvent 2A (water premixed with 0.1% formic acid) and solvent 2B (ACN premixed 

with 0.1% formic acid) at a flow rate of 200 nL/min. A 90-min or a 240-min gradient was 

used for the peptides separation. The 90-min gradient started at 5% solvent B and was 

held for 5 minutes, then linearly increased to 40% solvent B at 55 min and to 95% solvent 

B at 65 min and finally held at 95% solvent B for 5 min before allowing to return to 

initial 5% solvent B at 73 min. Column re-equilibration with initial 5% solvent B was 

done for 17 min. The 240-min gradient started at 5% solvent B and was held for 5 

minutes, then linearly increased to 40% solvent B at 190 min and to 95% solvent B at 205 

min and finally held at 95% solvent B for 15 min before allowing to return to initial 5% 

solvent B at 223 min. Column re-equilibration with initial 5% solvent B was done for 17 

min. 

The LTQ mass spectrometer was operated in the data-dependent mode. The full 

MS spectra were acquired in positive mode within a range of 300-1800 m/z. Top three 

ions with intensities exceeding a preset threshold in full mass scan were chosen for
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Table 2.1. Concentrations of crude bovine fluids and data on yield (flow-through proteins) obtained after 

immunodepletion of abundant proteins 

Sample 

Concentration of 

crude (µg/ml) 

Load 

volume 

(µl) 

Load (µg) Yield (µg)  Yield (%) Yield concentration 

(µg/ml) 

Plasma 63960.2 ± 6523.0 4 255.8 ± 26.1 71.2 ± 11.4 27.9 ± 3.8 17798. ± 2839.4 

Follicular fluid 56445 ± 4196.8 5 287.9 ± 19.9 47.9 ± 11.1 17.3 ± 4.2 9988.6 ± 2119.4 

Epididymis sperm proteins 582.8 ± 64.3 154 89.8 ± 9.9 30.5 ± 4.5 34.1 ± 4.6 200.5 ± 30.8 

Epididymis semen proteins 1857.6 ± 236.7 154 286.1 ± 36.5 109.7 ± 7.33 38.7 ± 3.82 712.6 ± 47.6 

Ejaculated sperm proteins 1744.6 ± 42.35 154 268.7 ± 6.52 134.6 ± 9.4 50.9 ± 3.4 874.2 ±  61.13 

Ejaculated semen plasma 19678.9 ± 2866.7 60 1238.2 ± 156.8 552.2 ± 66.4 44.6 ±  1.5 9202.9  ± 1106.9 

Table 2.2. Dilution factors used in sandwich ELISA assay for measuring BSA, IgG and IgA 

concentrations in non-depleted and flow-through (FT) fractions 

  Dilution factors 

  Albumin IgG IgA 

Sample Non-depleted FT  Non-depleted FT  Non-depleted FT 

Plasma 2.5E+05 4.0E+02 1.0E+05 2.0 7.5E+04 3.0 

Follicular fluid 1.5E+05 2.0E+01 9.0E+04 2.0 1.5E+04 2.0 

Epididymis sperm proteins 3.0E+03 1.0E+02 1.0E+02 2.0 5.0E+01 1.0 

Epididymis semen proteins 1.0E+04 3.0E+02 3.0E+02 8.0 5.0E+01 2.0 

Ejaculated sperm proteins 3.0E+03 5.0E+02 2.0E+02 2.0 1.0E+02 5.0 

Ejaculated semen plasma 1.0E+04 2.0E+01 3.0E+02 2.0 2.0E+02 1.5 
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collision- induced dissociation (CID) in LTQ. The Q activation and time was set 

respectively at 0.25 eV and 30 ms. The maximum ion injection times used were 5.0 x104 

ms for the MS scan and 1.2 x105 for the MS/MS scan. The automatic gain control target 

settings were 3.0 x104 for the MS scan mode and 1.0 x 104 for the MS/MS scan mode. 

The normalized collision energy was 35 eV and the isolation window employed was 2.5 

m/z. The dynamic exclusion settings utilized were repeat count 2, exclusion duration 36 

s, exclusion list size 500, exclusion mass width low 1.0 and exclusion mass width high 

1.5.  

 2.4.11 Protein Identification  

The LC-MS/MS raw data from nanoLC-LTQ were correlated to theoretical 

fragmentation patterns of tryptic peptide sequences from the Fasta databases (Bovine and 

human) using SEQUESTTM (Thermo Fisher). The search parameters included (i) fixed 

cysteine modifications of +57 Da for carbamidomethyl-cysteines, (ii) variable 

modifications allowing +16 Da with methionines for methionine sulfoxide; (iii) restricted 

to trypsin-digested peptides and allowed for two missed cleavages; (iv) precursor mass 

range was 310-5000 Da; (v) precursor mass tolerance of 2.5 Da and fragment mass 

tolerance of ±0.8 Da; (vi) target false discovery rate (FDR) strict was 0.01 and FDR 

relaxed was 0.05; (vii) peptide were identified based on top hit(s) with individual cross 

correlation exceeding a threshold dependent on the precursor charge state. The proteins 

matched with at least two peptides at minimum 95% confidence (false discovery rate 

(FDR) of ≤5%) were considered as positive identification.  
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2.4.12 Reproducibility and Recovery of MARS Hu-6HC on Bovine Fluids 

To determine reproducibility of the MARS Hu-6HC cartridge, the bovine fluids 

were subjected to 3-5 replicate depletions on same day for 2-5 separate days. 

Reproducibility was assessed by coefficient of variations (CVs) of the percent of total 

protein depleted (Table 2.3.) and by SDS PAGE separation of crude, bound and depleted 

fractions (Figure 2.2. and 2.4.). Recovery was determined as protein content in bound 

plus FT fractions expressed as percent of protein content in non-depleted sample (Table 

2.4). Recovery ranged from 73-101%. Recovery of plasma (94%) and FF (101%) were 

higher than that of the sperm samples (73-82%). 

 

Table 2.3. *Total protein depleted with the MARS Hu-6HC cartridge on bovine fluids 

Sample 

Volume 

Depleted 

(µl) 

Total protein depleted on 

same day (%) 

Total protein depleted on 

separate days (%) 

    Mean ± SD    % CV Mean ± SD %CV 

Plasma 4 71.9 ± 4.9 6.8 72.1 ± 3.8 5.2 

Follicular fluid 5 86.0 ± 3.6 4.2 82.6 ± 3.8 4.6 

Epididymis  sperm proteins 154 66.2 ± 2.1 3.2 66. 1 ± 4.6 6.9 

Epididymis semen proteins 154 58.2 ± 2.9 5 61.3 ± 3.8 6.2 

Ejaculated sperm proteins 154 49.7 ± 2.9 5.9 49.8 ± 3.3 6.6 

Ejaculated semen plasma 60 53.6 ± 2.4 4.5 53.7 ± 1.9 3.5 

*Total protein depleted data were obtained from 2-5 separate days of depletions with n= 3-5 

replicates on day depletion. 
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2.5 RESULTS 

2.5.1 Depletion Efficiency of Target Proteins from the Bovine Fluids 

Percent depletion of the bovine samples by using the MARS Hu-6HC cartridge in 

removing the target HAPs was determined by comparing the total protein content in the 

FT (depleted) fraction to that of the non-depleted samples. Total protein depleted from 

each bovine fluid is shown in Table 3. Total protein depleted, expressed as percent 

depletion were comparable for different volumes of plasma or FF investigated: 67.9 ± 3.1 

(4.1%) for 2, 4, 6, 8, 10, 12, and 14 µL of plasma and 83.4 ± 6.0 (7.2%) for 4, 5, 7, 10, 

12, and 14 µL of FF; mean ± SD (%CV) (Figures 1 and 2). Therefore, 4 µL plasma and 5 

µL of FF were used in further investigation to conserve samples. Percent of LAPs (yield) 

from each bovine fluid is shown in Table 1. From two to five separate days of depletion, 

total protein depleted was highest for the FF sample (82.6 ± 3.8%) followed by the 

plasma sample (72.1 ± 3.8%) and then the four sperm- sample types- 66.1 ± 4.6 for 

epididymis sperm proteins, 61.3 ± 3.8% for epididymis semen proteins, 49.8 ± 3.3% for 

ejaculated sperm proteins and 53.7 ± 1.9% for ejaculated semen plasma. Similar values 

were obtained for same day depletions (Table 2.3).  

The effectiveness of depletion of abundant proteins was also assessed by SDS 

PAGE separation of non-depleted, bound and depleted proteins. Figures 2.2, 2.3, and 2.4 

reveal the unmasking and highlighting of LAPs after dramatic removal of HAPs from the 

different bovine fluids. In-gel digestion nano-LC-MS/MS analysis of gel bands from 

bound fractions identified four out of the six target HAPs namely serum bovine albumin 

(BSA), IgG, IgA and α-1-antitrypsin. Gel bands containing these proteins are shown in 
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Figure. 2.2. Transferrin and Hp were not identified in the bound fractions by the nanoLC-

MS/MS method.  

2.5.2 Specific Depletion Efficiency of BSA, IgG and IgA  

Depletion efficiency (i.e. the extent of removal) of BSA, IgG and IgA from the 

different bovine fluids was individually assessed using sandwich ELISA.  Results showed 

depletion of 98.25 to 99.99% BSA, 98.65 to 99.96% IgG and 98.85 to 99.96% IgA from 

all the bovine samples studied (Table 2.5). The observed depletion rates are comparable 

to manufacturer specification of 98.9-99.9% obtained for human biological fluids. 

Depletion efficiency for α-1-antitrypsin was not measured by the ELISA method. 

However, the dramatic removal of its protein gel band (Figure. 2.2) indicates similar 

depletion rate for this protein can be expected.  
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Figure 2.1. Total 

proteins depleted from 

different volumes of 

bovine plasma and 

follicular fluid (FF) 

with the MARS Hu-

6HC cartridge. Total 

protein depleted is 

similar over 2 (n=1), 4 

(n=7 ), 6 (n= 7), 8 

(n=2), 10 (n=5), 12 

(n=2), and 14 (n=8) µL 

of plasma and 4 (n=1), 

5 (n=1), 7 (n=3), 10 

(n=2), 12 (n=2), and 14 

(n=2) µL of FF. 
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2.5.3 Specificity of the Immunodepletion 

To assess the specificity of the depletion method for the target proteins in bovine 

fluids, 1-D SDS PAGE nano-LC-MS/MS analysis was performed on bound fractions. 

Concomitant removal of non-target proteins were observed from all the bovine samples 

depleted. These are summarized in Table 2.6. Non-target proteins from bound fraction of 

the ejaculated sperm types included three major binder of sperm (BSP) proteins namely 

PDC-109, BSP-A3 and BSP-30kD (Figure 2.3). Among the BSP depleted, the highest 

depletion rate was observed for PDC-109 which forms 25-47% of total BSP proteins105.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Reproducibility of the MARS Hu-6HC cartridge on different depletion 

volumes of bovine plasma. Lanes: 8D, 10D, 12D and 14D- Depleted fractions 

respectively from depletion of 8, 10, 12 and 14 µL of bovine plasma; B8, B10, B12 

and B14- Bound fractions respectively from depletion of 8, 10, 12 and 14µL of bovine 

plasma; C-Crude bovine plasma; M- Molecular weight marker. Reproducibility of the 

separation show similar depletion efficiencies were obtained for the different volumes 

of plasma depleted. Arrows show gel bands at the respective molecular weights of 

depleted BSA, IgA, IgG, and alpha-1- antitrypsin. 9µg of proteins were loaded on each 

lane of 4-20% Criterion™ TGX precast gel and run under reducing conditions using β-

ME. Bands were visualized with Coomassie blue staining 
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2.5.4 Reproducibility  

The immunodepletion method had good reproducibility for all the bovine samples 

studied.  The coefficient of variations (%CVs) of depletion efficiencies determined on the 

same day or separate days ranged 3.2 to 6.8 and 3.5 to 6.9 %, respectively (Table 2.3). 

The good reproducibility is also supported by the consistent protein band pattern on the 

SDS PAGE gel as is demonstrated in Figure 2.4. 

 

Table 2.4. Recovery with depletion method 

Sample 
Volume 

Depleted (µL) 
Recovery (%) 

    Mean ± SD % CV 

Plasma 4 93.96 ± 11.57 12.31 

Follicular fluid 5 101.35 ± 10.98 10.83 

Epididymis  sperm proteins 154 73.65 ± 7.51  10.2 

Epididymis semen proteins 154 81.77 ± 7.42  9.08 

Ejaculated sperm proteins 154 79.65 ± 3.82  4.8 

Ejaculated semen plasma 60 81.45 ± 3.53 4.33 

Data obtained from 2-5 separate days of depletions with n= 3-5 replicates on day 

depletion 

 

N= 2 replicates on 1-2 separate day 

Table 2.5. Depletion efficiencies of BSA, IgG and IgA obtained with the MARS 

Hu-6HC cartridge on Bovine fluids from Sandwich ELISA Analysis 

 % Depletion Efficiency (Mean ± SD) 

Sample Albumin IgG IgA 

Plasma 98.73 ± 0.29 99.45 ± 0.01 98.85 ± 0.21 

Follicular fluid 99.97 ± 0.02 99.96 ± 0.00 98.85 ± 0.60 

Epididymis sperm proteins 99.92 ± 0.04 99.61 ± 0.24 98.79 ± 0.45 

Epididymis semen plasma 99.98 ± 0.00 99.57 ± 0.21 99.40 ± 0.12 

Ejaculated sperm proteins 99.52 ± 0.20  99.52 ± 0.03 99.63 ± 0.04 

Ejaculated semen plasma 99.45 ± 0.01 98.65 ± 0.06 99.96 ± 0.02 
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2.6  DISCUSSION 

Immunodepletion methods are popular and often the first step fractionation to 

narrow the wide concentration range in biological samples and reduce sample 

complexity. To date, available immunodepletion methods for bovine samples are very 

limited. This study report a method for simultaneous immunodepletion of abundant 

proteins BSA, IgG, IgA and alpha-1-antitrypsin from bovine plasma, FF, epididymis and 

ejaculated sperm types with high depletion rates. Depletion rates for BSA, IgG and IgA 

were confirmed as 98.7 to 99.9% from all the bovine fluids studied using sandwich 

ELISA. The observed depletion rates are comparable to that stated by manufacturer for 

Figure 2.3. Unmasking and highlighting of LAPs after removal of HAPs from bovine 

ejaculated and epididymis sperm types with MARS Hu-6Hc cartridge.  M- Molecular 

weight marker. C- Crude sperm sample; D- Depleted fraction; B- Bound fraction. 1, 2, 

3, and 4 respectively ejaculated sperm proteins, ejaculated semen plasma, epididymis 

sperm proteins and epididymis semen proteins. BSA, IgG and IgA were targeted 

proteins depleted. Seminal plasma proteins- PDC-109, BSP-A3 and BSAP-30 kDa 

were non-specifically depleted from ejaculated sperm sample types. These seminal 

plasma proteins are HAPs found in ejaculated sperm. 20 µg of proteins were loaded on 

each lane of 4-20% Criterion™ TGX precast gel and run under non-reducing 

conditions. Bands were visualized with Coomassie blue staining. 
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these proteins from human fluids which is 98.9-99.9%. The similar depletion rates 

indicate sample variability did not significantly affect the affinity of the MARS 

polyclonal antibodies for the target proteins in the bovine fluids. Greater sequence 

similarities between the target proteins in human and bovine explains the effective 

application of this immunodepletion technology on bovine fluids. A search in UniprotKB 

database (http://www.uniprot.org) showed human serum albumin and alpha-1-antitrypsin 

respectively share greater than 75 and 68% sequence identity with their respective 

proteins in bovine. Sequence identity between human and bovine immunoglobulins light 

chains range is 53-76% whiles the heavy chains range is 33-65%. The high depletion 

rates achieved with the presented method makes it a viable alternative for achieving 

Figure 2.4. Reproducibility of the immunodepletion of bovine plasma and follicular 

fluid (FF) with the MARS Hu-6HC spin cartridge. Three replicates of plasma and 

two replicates of FF depletions were carried out with respectively 4µL and 5µL 

depleted volume in each case. Lanes: M-Molecular weight marker; C-Crude sample; 

D- Depleted fraction; B-Bound fraction. 6 µg of proteins were loaded on each lane 

of 4-20% Criterion™ TGX precast gel and run under non-reducing conditions. 

Bands were visualized with Coomassie blue staining. 
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immunodepletion of these abundant proteins in bovine biological fluids while similar 

technology is currently unavailable 

 

Table 2.6. SEQUEST results showing non-target proteins* in bound fractions of 

bovine plasma, follicular fluid (FF), epididymis, and ejaculated sperms after depletion 

with MARS Hu-6HC cartridge.  

Accession  No of peptides 

identified 

Score Description Protein Familyᵻ 

B8Y9S9 38 528.63 Embryo-specific fibronectin 1 

transcript variant  

 

P07589 27 515.40 Fibronectin  

Q7SIH1 33 395.84 Alpha-2-macroglobulin   

P02784a 8 323.32 Seminal plasma protein PDC-

109 

 

F1MAV0 19 238.79 Fibrinogen beta chain  

A5PJE3 16 229.46 Fibrinogen alpha chain  

G3X7A5 17 179.49 Complement C3   

P12799 8 173.91 Fibrinogen gamma-B chain  

P81019a 3 62.58 Seminal plasma protein BSP-30 

kDa 

 

P01030 2 42.92 Complement C4   

P04557a 2 34.56 Seminal plasma protein A3  

F1MBL6 2 32.17 Uncharacterized protein 

(Fragment)  

P13/P14 kinase family 

F1MI18 2 24.05 Uncharacterized protein  Alpha-2 macroglobin 

family 

E1BIF6 2 19.75 Uncharacterized protein  Ubiquitin associated 

domain 

P23805 4 16.95 Conglutinin   

Q28085 2 15.71 Complement factor H   

G3N0S9 2 11.42 Uncharacterized protein   Sushi CCP/SCR 

domain family 

F1N5M2 2  8.76 Vitamin D-binding protein  

*List excludes trypsin and keratin related proteins 
ᵻ Identified from UniProt KB search with accession number 
aOnly observed in ejaculated sperm types 

 

Contrary to the lack of effect of sample variability on individual target protein 

depletion rate, sample variability seems to affect the total proteins depleted in a sample. 

Total protein depleted was about 50- 83% for the bovine samples investigated. This range 
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was lower than the manufacturer specifications of 85-90% for human serum. But bovine 

FF and plasma were closer to the lower end range; respectively 83% and 71%. The total 

protein depleted is based on the levels of the target proteins in certain samples. Thus, 

differences in the levels of the target proteins in the different bovine fluids and between 

human and bovine would affect the total protein depleted. For instance, albumin, the most 

abundant protein in plasma represents more than 50% of the total protein in human 

plasma15 and about 42% in bovine plasma106. Plasma and FF are closely related in 

composition and majority of proteins in FF are viewed to originate from the blood107-109. 

But albumin is higher in FF compared to serum110, 111 which might explain the highest 

depletion rate attained with the FF. 2-DE analysis of caudal epididymis fluid found 

albumin represented ~21% of all proteins spots detected 42. By contrast, albumin 

concentration is very minimal in ejaculated sperm112. Accordingly, total proteins depleted 

were lower for the sperm sample types compared to the plasma and FF samples.  

The lower total proteins depleted from the bovine fluids are also contributed by 

the lack of depletion of Hp and transferrin which are both target proteins of the MARS 

Hu-6HC cartridge, contributing to the manufacture stated 85-90% . Sequence homology 

could not explain the lack of removal of both proteins as they are highly homologous 

between human and bovine, respectively 69% and 75% sequence identity. High 

specificity of the MARS Hu-6HC cartridge for human transferrin and Hp appears to be 

the primary reason for both proteins not depleted from the bovine fluids. Although Hp 

and transferrin were not depleted, the simultaneous rapid depletion of albumin, IgG, IgA 

and alpha-1-antitrypsin from all the bovine fluids show the effectiveness of application of 

the current immunodepletion method to bovine fluids. Albumin and IgG represents about 
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60% of the bovine plasma proteome. Depletion of both proteins increased the number of 

spots and intensities on a 2-DE map18. The additional depletion of abundant proteins by 

this depletion method is expected to provide more desirable probing of low copied 

proteins in gel-based and gel-free proteomic workflows for bovine fluids analysis. As 

shown in this study, the depletion of the four major proteins unmasked and highlighted 

more protein gel bands in SDS PAGE gels presented. Because the HAPs were removed 

in a single step, sample loss is expected to be minimized. Also, time is reduced.  

To determine reproducibility of the immunodepletion, replicate depletions on 

same day and on separate days were analyzed. The results show the method had high 

reproducibility on the bovine fluids as revealed by the low % CV values of total proteins 

depleted from different and same volumes. Because immunodepletion is often a first step 

fractionation option, a good reproducibility for its application is critical to the accuracy 

and further reproducibility of downstream protein separation, identification, and 

quantification. Low loading volumes of plasma and FF (4 and 5 µL) did not affect the 

reproducibility and this can be beneficial if sample is limiting.  

Concomitant removal of non-target proteins in immunodepletion methods is often 

inevitable99, 100. Non-target proteins removal from the bovine fluids included other HAPs, 

e.g. PDC-109, BSP-A3, BSP-30kD, alpha-2-macroglobulin, complement C3, 

complement C4, and fibrinogen. Non-target proteins removal could result from non-

specific binding to cartridge resin, accidental/specific cross reaction of the antibodies, or 

interactions with the target proteins. The BSP proteins were consistently removed from 

the ejaculated sperm samples. Their dramatic removal is considered beneficial since they 

are major proteins constituting 40-57% of the total protein in the seminal plasma 
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component of ejaculates. PDC-109 alone forms 25-47% of the BSP proteins mass105. 

Thus, depletion of the BSP proteins can additionally enhance the analysis of LAPs in 

these ejaculates. However, caution should be taken when applying this depletion method 

to target these seminal proteins since their removal is non-specific. In such cases, a better 

approach would be to analyze both the bound and unbound fractions to ensure adequate 

estimation of their depletions.  

2.7 CONCLUSION 

Immunodepletion methods for bovine fluids are currently very limited. This study 

describes an immunodepletion method for simultaneous removal of minimum of four 

HAPs in different bovine fluids. The high depletion efficiencies (98.7-99.9%) and 

reproducibility make it practical for its application in bovine proteomic analyses.  
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CHAPTER 3 

iTRAQ-BASED QUANTITATIVE ANALYSIS OF BOVINE PLASMA AND 

FOLLICULAR FLUID 

 3.1 ABSTRACT 

Bovine follicular fluid (FF) creates a unique microenvironment in follicles necessary for 

follicle growth and oocyte maturation, and preovulatory concentrations of estradiol (E2) 

have been reported to impact several processes involved with fertility. The objective of 

this study was to analyze changes in proteins in FF and plasma (PL) from animals with 

high E2 (HE2) or low E2 (LE2) during the pre-ovulatory period. Beef cows were 

synchronized with an injection of GnRH on day -7 and an injection of prostaglandin F2α 

(PGF2α) on day 0. Follicular dynamics and ovulatory response were monitored using 

transrectal ultrasonography. Nine cows were selected and slaughtered, blood samples 

were collected at slaughter and FF was aspirated from dominant follicles (DF; >10 mm). 

Abundant proteins (albumin, IgG, IgA, and alpha-1-antitrypsin) were depleted from both 

PL and FF. Peptides were labeled with iTRAQ reagents and quantified using two-

dimentional liquid chromatography ESI-based mass spectrometry. Estradiol was 

associated with increased protein changes in PL and FF. Protein expression changes 

between FF HE2 and FF LE2 were higher than PL HE2 and PL LE2. There were 15 up-

regulated proteins and 10 down-regulated proteins in FF HE2 compared to FF LE2. 

Seven proteins were up-regulated and nine proteins down-regulated in PL HE2 compared 

to PL LE2. Proteins were more predominant in PL than in FF but the extent of protein 

increase with HE2 was greater in FF than in PL. Several of the differentially expressed 
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proteins function in follicle development and were mainly categorized under cellular 

process and metabolic process. Pathway analysis identified the up- and down-regulated 

proteins were predominantly associated with the complement and coagulation cascades. 

The data demonstrates E2 regulates a wide range of reproductive associated proteins in 

bovine PL and FF, and can provide the basis for further investigation of specific 

processes involved in such regulation.  
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3.2  BACKGROUND AND MOTIVATION 

Follicular fluid (FF) provides a unique microenvironment for developing oocytes. 

It contains substances that primarily originate from circulating blood and from secretions 

by granulosa cells (GCs), theca cells, and the oocyte108. Proteins are a major proportion 

of the FF with total concentrations comparable with that in plasma113; however, the 

composition of the proteins in FF changes with follicle development40, 114 which indicates 

their involvement in the development of the follicle and competent oocyte. Accordingly, 

FF proteins have been implicated in oocyte meiosis, ovulation, formation of the corpus 

luteum, and fertilization108. Thus, FF proteins can reflect the physiological condition of 

the follicle and may serve as biomarkers for follicle growth and maturation. 

Estrogens are an important component of FF. During the steroidogenesis process, 

androgens produced in the theca cells traverse the basement membrane of the 

neighboring GCs where they are converted by cytochrome P450 aromatase (CYP19A1) 

under the influence of follicle stimulating hormone (FSH) to estrogens115, with Estradiol-

17β (E2) being the principal form of estrogen present115, 116. The pre-ovulatory follicle is 

reported to have the highest intra-follicular levels of E2 mainly because of the large 

number of GCs and its capacity for androgen aromatization115.  

 In developing follicles, E2 stimulates proliferation and differentiation of GCs115, 

and promotes growth, gap-junction formation, antrum formation, and inhibition of 

atresia117. Perry et al118 reported that among cows exhibiting standing estrus peak 

concentration of E2 were greater and positively associated with follicle size, but this 

association was not found in cows not exhibiting standing estrus. Cows with increased 



68 

 

concentration of circulating E2 had an up-regulation of the steroidogenic pathway during 

the pre-ovulatory period as evidenced by increased concentrations of steroidogenic 

associated enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD), CYP19A1, and 

cytochrome P450 side-chain cleavage enzyme (CYP11A1) and steroidogenic products 

estradiol and androstenedione103.   

An important means by which E2 achieves its regulatory reproductive functions is 

via regulation of proteins and protein receptors involved in the relevant functions. Such 

proteins include insulin-like growth factor 1 (IGF-1) which promotes proliferation of 

GCs and endometrial epithelial cells119, follicle stimulating hormone (FSH) receptors in 

GCs, and LH/human chorionic gonadotropin (hCG) receptors in GCs and thecal 

interstitial tissues when coupled with FSH120. Quantitative shot-gun proteomics, 

incorporating isobaric labeling techniques such as isobaric tags for relative and absolute 

quantitation (iTRAQ) and tandem mass tags (TMT), allow measuring of protein changes 

in time-dependent manner with greater precision and accuracy than label-free methods26. 

This can be applied to determine the influence of E2 on the expression of several proteins 

in a short period. Its application to FF is also beneficial considering the large number and 

diversity of the FF proteome. Ferrazza et al40 recently utilized TMT labels and identified 

22 differentially expressed proteins in bovine FF between different stages of follicle 

development. The group also demonstrated a correlation between some of the 

differentially expressed proteins (includes modified fibrinogen, alpha-2-macroglobulin, 

plasminogen, immunoglobulin M heavy chain, and spondin-1) and concentration of E2 or 

progesterone. 
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3.3 OBJECTIVE OF STUDY 

The objective of this study was to use the iTRAQ proteomic approach to 

quantitatively measure PL and FF proteomes and identify the influence of high and low 

pre-ovulatory circulating concentrations of E2 on PL and FF proteomes.  

3.4  MATERIALS AND METHODS 

3.4.1 Materials and Reagents 

Ammonium bicarbonate (ABC) and iodoacetamide were purchased from Acros 

Organics (New Jersey, USA). Formic acid, acetonitrile (ACN), triethylammonium 

bicarbonate (TEAB) and water were obtained from Fischer Scientific (New Jersey, 

USA). Dithiothreitol (DTT) was purchased from Promega (Wisconsin, USA). ZebaTM 

desalting spin columns from Pierce (Rockford, IL,USA). All chemicals and water were of 

LC/MS grade. 

3.4.2 Estradiol Measurement  

Estradiol (E2) concentrations in PL and FF (PL and FF collected as described in 

Chapter Two) were measured by radioimmunoassays (RIA) according to procedures as 

previously described121 and animals were then classified as either high E2 (peak estradiol 

≥ 6.0 pg/mL; PL:  n = 4, FF:  n = 4) or low E2 (peak estradiol ≤ 4.5 pg/mL; PL: n = 5, 

FF: n = 5) according Jinks et al122.  Concentrations of E2 and changes in the 

steroidogenic pathway have previously been reported by Larimore and coworkers103. 
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3.4.3 Coomassie Bradford Assay Quantitation 

The protein contents in depleted samples were quantified using Coomassie 

(Bradford) assay kit, #23200 (Pierce Biotechnology, IL, USA) according to 

manufacturer’s instruction. Bovine serum albumin (#23209, Thermo Scientific, IL, USA) 

was used as a standard for making a calibration curve. The standard (2 mg/mL) was 

diluted with 50 mM TEAB and the calibration curve covered a concentration range of 

0.00-1500 µg/mL.  

3.4.4 Reduction, Alkylation, Digestion, and iTRAQ Labeling of Proteins 

Fifty µg of each of the four depleted bovine samples (PL and FF) containing high 

or low E2 (i.e. PL HE2, PL  LE2, FF HE2 and FF LE2) were pooled and vacuum dried 

(Labconco, Kansas, MO, USA) at 4 oC. The dried proteins were prepared with 4-plex 

iTRAQ reagents according to manufacturer protocol (Applied Biosystems, Foster City, 

CA, USA). Briefly, the dried proteins were re-suspended in 25µL 1M TEAB solution. 

The proteins were denatured with 1µL 2% SDS solution, reduced with 2µL 50 mM tris-

(2-carboxy) ethylphosphine hydrochloride (TCEP), and alkylated with 1 µL of freshly 

prepared 84 mM iodoacetamide solution and incubated in dark room temperature for 30 

minutes. Each sample (50 µg) was digested overnight at 37 oC with 10 µL of freshly 

prepared 1µg/µL TPCK treated trypsin solution, P/N 4370282 (Ab Sciex Pte Ltd, MA, 

USA). iTRAQ reagents 114, 115, 116 and 117 were each resuspended in 70µL ethanol 

and added individually to the four digested PL and FF  protein samples. The samples 

were incubated at room temperature for 1h and the reaction quenched by adding 100 µL 

of HPLC-grade water and incubating at room temperature for 30 minutes. Each labeled 
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peptide was vacuum dried at 4oC, cleaned with ZebaTM desalting spin columns according 

to vendor instructions (Pierce, Rockford, IL,USA) and then vacuum dried  at 4oC. 

Samples were stored at -80oC until ready for analysis. 

3.4.5 Off-line Strong Cation Exchange (SCX) Separation 

The iTRAQ-labeled peptides were separated using ICAT® Cartridge–Cation 

Exchange, # 4326752 (POROS® 50 HS, 50-µm, 4.0 mm × 15 mm),  Opti-Lynx Quick 

Connect Hardware, # 4326688,  and ICAT® Cation Exchange Buffer Pack, # 4326747 

(Applied Biosystems, Foster City, CA, USA). The iTRAQ-labeled dried peptides were 

each diluted 10-fold with Load Buffer (10mM KH2PO4 in 25% ACN; pH 3) and the four 

samples combined in one new vial.  Equilibration of the SCX cartridge was done with 

1mL of Clean Buffer (10 mM KH2PO4 in 25% ACN / 1M KCl; pH 3) followed by 2mL 

Load Buffer. The mixed iTRAQ labeled peptides were then loaded onto the SCX 

cartridge. Excess iTRAQ reagents and salts in the cartridge were removed by washing the 

cartridge with 1mL of Load Buffer. The bound peptides on the cartridge were eluted by 

sequential injection of 500 µL of a series of salt solutions: 0, 30, 40, 50, 60, 70, 85, 100, 

130, 160, 350, 500, and 1000 mM KCl in Load Buffer. The flow rate of elution was ~1 

drop/second. Each eluted fraction and wash solution was cleaned with ZebaTM desalting 

spin columns according to vendor instructions (Pierce, Rockford, IL,USA). Purified 

peptides were vacuum dried at at 4oC (Labconco, Kansas, MO, USA) and stored at -80oC 

until further analysis. 
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3.4.6  Nano-LC-MS/MS Analysis 

Aliquots of the dried SCX peptide fractions were analyzed using the Thermo- 

Fisher FinniganTM LTQTM mass spectrometer equipped with a  nano-electrospray source 

(New Objective, Woburn, MA, USA) and coupled with a nano-LC separation system 

(Eksigent nanoLC 1D-plus). The LC system is equipped with an autosampler (Spark 

Holland 920 Endurance Autosampler). Each peptide fraction was re-suspended in 10 µL 

of water/ACN/formic acid (95%/5%/0.1%) and then 3 µL loaded onto IntegraFrit Sample 

trap (ProteoPep IITM C18, 300 Å, 5µm , 100 μm × 25 mm New Objective, Inc., Woburn, 

MA). The retained peptides were washed isocratically with water premixed with 0.1% 

formic acid pumped from channel 1A to remove any excess reagents. Peptide separation 

was performed on an IntegraFrit Analytical Column (ProteoPepTM II C18, 300 Å, 5µm, 

75 μm ×100 mm, 75µm tip, New Objective, Inc., Woburn, MA) with a multistep 4-h 

gradient using solvent A (water premixed with 0.1% formic acid) and solvent B 

(acetonitrile premixed with 0.1% formic acid) at a flow rate of 200 nL/min. The gradient 

started at 5% solvent B and was held for 5 minutes, then linearly increased to 50% 

solvent B at 205 min and to 95% solvent B at 213 min and finally held at 95% solvent B 

for 5 min before allowing to return to initial 5% solvent B at 223 min. Column re-

equilibration with initial 5% solvent B was done for 17 min.  

The LTQ mass spectrometer was operated in a data-dependent mode. The full MS 

spectra were acquired in positive mode within a range of 400-1800 m/z. The top four 

most intense ions in the acquired full mass scan were selected for followed pulsed Q 

dissociation (PQD) in LTQ. The Q activation and time was set respectively at 0.7 and 0.1 

ms. The maximum ion injection times used were 50 ms for the MS scan and 120 ms for 



73 

 

the MS/MS scans. The automatic gain control target settings were 3.0 x104 for the MS 

scan mode and 1.0 x 104 for the MS/MS scan mode. One microscan of full MS was 

performed. The normalized collision energy was 29.5% and the isolation window 

employed was 2 m/z. The dynamic exclusion settings utilized were repeat count 2, 

exclusion duration 25 s, exclusion list size 500, exclusion mass width low 0.5 and 

exclusion mass width high 1.5.  

3.4.7 Protein Identification and Quantification 

The LC-MS/MS raw data from nanoLC-LTQ were correlated to theoretical 

fragmentation patterns of tryptic peptide sequences in bovine protein fasta database using 

SEQUESTTM search engine embedded in Proteome Discoverer (version 2.1; Thermo 

Fisher Scientific). The search parameters included were as follows: fixed cysteine 

modifications of +57 Da for carbamidomethyl-cysteines, +144  Da for lysine-iTRAQ 

labeling and N-terminal peptides;  dynamic modifications allowing +16 with methionines 

for methionine sulfoxide and + 144 Da for Y-iTRAQ labeling; restricted to trypsin 

digested peptides and allowed for two missed cleavages; precursor mass range was 350-

5000 Da; peptide mass tolerance of 2.5 Da and fragment mass tolerance of ±0.8 Da; 

target FDR strict was 0.01 and FDR relaxed was 0.05; most confident centroid was 

selected for peak integration method and a 0.25 Da integration window tolerance was 

allowed. The proteins matched with at least one unique peptide at minimum 95% 

confidence (FDR < 5%) were considered positive identifications.  

The relative quantification of proteins in the samples was performed with the 

Proteome Discover (1.2). The quantification utilized the relative peak intensities of the 



74 

 

iTRAQ reporter ions derived from MS/MS spectra of all unique peptides that represented 

each protein. iTRAQ ratios of the reporter ions were calculated using reporter ions 

representing any two samples. The final ratios obtained from the relative protein 

quantifications were normalized according to the median protein quantification ratio to 

reduce experimental bias. The protein ratios were the median ratio of the corresponding 

peptide ratios. To determine protein expression levels, a fold change of >2.0 or <0.5 

between any two samples were respectively set for up- and down-regulated proteins. 

Functional analysis was performed for all identified proteins and for up- and down-

regulated proteins. 

 3.4.8 Bioinformatic Analysis of Identified Proteins 

The PANTHER (Protein Analysis Through Evolutionary Relationships) 

classification system123 was used to categorize the up- and down regulated proteins based 

on their molecular function (MF), biological process (BP), and cellular component 

(CC)/localization. Similar PANTHER analysis of all identified proteins in PL and FF are 

shown in Appendix 3.  Pathway analysis was performed using the Database 

for Annotation, Visualization, and Integrated Discovery (DAVID)124. Pathway plot was 

derived using Kyoto Encyclopedia of Genes and Genomes (KEGG)125.  Protein-protein 

intereactiosn were annotated using Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING)126 database. 
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3.5  RESULTS 

 3.5.1 General information on iTRAQ Analysis 

The overview of our iTRAQ-based SCX nano-LC/MS/MS ESI PQD method for 

analyzing the proteomes in bovine PL and FF is show in Figure 1. A total of 231 proteins 

matched to 793 unique peptides were identified with high confidence (FDR of 5% or 

less) and were subsequently included in further analysis. Details of all 231 identified 

proteins are shown in Appendix Table 1. Approximately 61% (140/231) of proteins were 

Reduction, alkylation, 

digestion 

4-plex mixture 

iTRAQ label 114 

Quantification and 50 

µg protein aliquot 

Plasma LE2 (n=5) Plasma HE2 (n = 4) FF LE2 (n=5) FF HE2 (n = 4) 

Depletion of HAPs Depletion of HAPs Depletion of HAPs Depletion of HAPs 

Quantification and 50 

µg protein aliquot 

Quantification and 50 

µg protein aliquot 

Quantification and 50 µg 

protein aliquot 

Reduction, 

alkylation, digestion 
Reduction, alkylation, 

digestion 
Reduction, alkylation, 

digestion 

iTRAQ label 115 iTRAQ label 116 iTRAQ label 117 

SCX and nanoLC-MS/MS 

Data analysis (Protein identification and quantification) 

Figure 3.1. Overview of workflow for identification and relative quantification of proteins in 

bovine plasma and follicular fluid containing high and low pre-ovulatory levels of E2. 
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identified by one unique peptide and ~39% by at least 2 up to 47 unique peptides (Figure 

3.2.A). About a third of proteins identified by one unique peptide were identified at 99% 

confidence. Analysis of the distribution of the sequence coverage (Figure 3.2.B) of the 

detected peptides of the proteins found ~53% (123/231) of identified proteins had greater 

than 5% coverage. Protein pI values ranged from 4.41 to 11.05 (Figure 3.2.C).  The 

molecular mass of the identified proteins ranged from 10.3 to 3811.5 kDa with majority 

of the proteins (~60%) between 20 to 80 kDa (Figure 3.2.D). Several of the proteins 

identified herein have been previously reported as components of bovine PL and/or FF40, 

127.   

3.5.2 Comparative Analysis of Protein Expression in Plasma and Follicular Fluid 

Paired comparisons were made to determine differences in protein expression 

between any two samples. Figure 3.3 depicts the different paired comparisons and the 

number of up- and down-regulated proteins obtained in each analysis. Up- and down-

regulated proteins were determined using a ratio fold-change of >2.0 or <0.5 between any 

two samples. Comparison between same fluid type (i.e. high and low of PL or FF) 

revealed nine down-regulated and seven up-regulated proteins in PL HE2 compared to 

PL LE2 and 10 down-regulated and 15 up regulated proteins in  FF HE2 compared to  FF 

LE2. Comparison between PL and FF showed more proteins up-regulated in PL 

compared to FF. Each PL and FF pair, (i.e. PL LE2 and FF LE2; PL HE2 and FF HE2) 

revealed 51 up-regulated proteins in PL. 21 proteins were down-regulated in  PL LE2 

compared to FF LE2 whereas 27 proteins were down-regulated in the  PL HE2 compared 

to the FF HE2. 39 up-regulated proteins and 11 down-regulated proteins were commonly 
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identified from both PL and FF paired analyses. Overlaps of numbers of proteins from 

the different paired comparisons are depicted in Figure 3.4 and the protein details in each 

pair are reported in Table 3.1. 

The fold change, i.e. iTRAQ ratio value of a protein, is indicative of the extent of 

up- or down-regulation of the protein in a sample. iTRAQ ratios of up- and down-

regulated proteins in PL compared to FF ranged from 2.017 to 27.247 and 0.036 and 

0.499 respectively. NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 11 

mitochondrial (NDUFB11), dpy-19 like 4 (DPY19L4), apolipoprotein B (APOB), 

cytohesin 1 (CYTH1), delta-like protein (JAG1), and gametocyte-specific factor 1-like 

(GTSF1L) were among the top up-regulated proteins whereas versican core protein 

(VCAN), inhibin alpha chain (INHA), serglycin (SRGN),  protein tyrosine phosphatase 

receptor type R protein (PTPRR), and dynein heavy chain domain 1 (DNHD1) were 

among the top down-regulated proteins in PL compared to FF.  

Protein predominance in the HE2 sample was higher after FF HE2/FF LE2 

comparison than the PL HE2/PL LE2 (respectively 2.08-6.21 and 2.00-3.71 fold change). 

Comparison of FF HE2 to FF LE2 identified keratin type II cytoskeletal 7 (KRT7), serum 

albumin (ALB), and cytokine receptor-like factor 3 (CRLF3) as the top three up-

regulated proteins and hemoglobin subunit alpha (HBA), hemoglobin subunit beta 

(HBB), and ubiquitin protein ligase E3 component n-recognin 4 (UBR4) as the top three 

down-regulated proteins in the  FF HE2. Suppressor of G2 allele of SKP1 

homolog(SUGT1), C8G protein (C8G), and SRGN were the top three up-regulated 

proteins and DDB1 and CUL4 associated factor 5 (DCAF5),  transmembrane protein 186
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(B) Distribution of protein sequence  coverage
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Figure 3.2. General information on 231 proteins identified by the itraq-based scx nano-LC-MS/MS 

ESI PQD method with high confidence. (A) Number of unique peptides of the identified proteins; (B) 

Distribution of protein sequence coverage; (C) Distribution of protein pI values. (D) Distribution of protein 

molecular weights. 
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 (TMEM186), and HP the top three down-regulated proteins in PL HE2 compared to  PL 

LE2. Seven proteins were commonly found from PL HE2/ PL LE2 and FF HE2/FF LE2 

analyses: SUGT1, engulfment and cell motility 1 (ELMO1) and family with sequence 

similarity 81 member A (FAM81A) had opposite expressions in either fluid; KRT7 was 

up-regulated and immunoglobulin lambda-like polypeptide 1 (LOC100297192), HP and 

TMEM186 were down-regulated in the HE2 samples compared to the respective LE2 

samples of either fluid type.  

3.5.3 Functions of Identified Proteins 

To determine the functions of all proteins showing expression changes, the up- 

and down-regulated proteins derived from all paired analyses were compiled (103 in 

total) and functional analysis performed using PANTHER classification system. The up- 
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Figure 3.3. The number of up- and down regulated proteins (y-axis) after 

comparisons between any two samples (x-axis). The number of proteins in each 

category is shown on the bar.  PL HE2: Plasma high E2; PL LE2: Plasma low E2; FF 

HE2: Follicular fluid high E2; FF LE2: Follicular fluid low E2.   
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and down-regulated proteins were categorized into 4 MF, 11 BP, and 7 CC (Figure 3.5). 

The major MF were binding (52%) and catalytic activity (40.0%). The BP categorized 

were  cellular component organization or biogenesis (6.8%), cellular process (33.3%), 

localization (6.8%), biological regulation (6.8%), response to stimulus (5.1%), 

developmental process (6.8%), multicellular organismal process (6.0%), biological 

adhesion (4.3%), locomotion (0.9%), metabolic process (20.5%), and immune system 

process (2.6%).  The CC analysis revealed majority of the up- and down-regulated 

proteins were localized in the cell (31.8%), the extracellular region (22.7%), and 

organelle (21.2%). Panther classification for all identified proteins is shown in Appendix 

3. 
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Figure 3.4. Overlap of number of up-regulated (a) and down- regulated (b) proteins in 

Pl and FF after paired analyses. PL HE2: Plasma high E2; PL LE2: Plasma low E2; FF 

HE2: Follicular fluid high E2; FF LE2: Follicular fluid low E2. Details of proteins 

from each paired analysis are shown in Table 3.1. 
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 3.5.4 Enriched Pathways 

DAVID was used to determine the pathways associated with the up- and down-

regulated proteins in PL and FF. The databases within the DAVID platform searched 

were KEGG and Reactome 128 databases. Results from KEGG showed the complement 

and coagulation cascades were enriched (p = 3.5 x 10-14); Figure 3.6.  The search in 

Reactome supported these enriched pathways by identifying platelet degranulation (p 

=8.2 x 10-9), intrinsic pathway of fibrin clot formation (p = 1.4 x 10-5), common pathway 

of fibrin clot formation (p = 2.4 x 10-4), scavenging of heme from plasma (p = 6.0 x 10-3), 

and terminal pathway of complement (p = 5.7 x 10-2) as the main pathways. 

3.6 DISCUSSION 

Proteomic workflows utilizing iTRAQ labeling allows for the simultaneous high- 

throughput identification and quantification of proteins. In this study, 4plex iTRAQ 

reagents were used to label PL and FF samples containing high or low concentrations of 

E2 (HE2 or LE2).  Ovaries of all cows were examined by transrectal ultrasonography and 

FF was subsequently aspirated from the DF. Blood was collected at slaughter. To reduce 

the masking effect of HAPs and matrix effect due to sample complexity, the samples 

were first subjected to an immunodepletion method which dramatically depleted targeted 

HAPs ALB, IgG, IgA, and alpha-1-antitrypsin. Subsequent steps in the workflow for the 

analysis included reduction, alkylation, and digestion of the plasma and FF proteins prior 

to labelling with the iTRAQ reagents. The iTRAQ-labeled peptides from each of the four 

samples were mixed at an equal mass ratio. The samples were then analyzed with off-line 

SCX and nanoLC-ESI-LTQ (PQD) method. Our approach enabled us to quantitatively 
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Table 3.1 Identified Up- and Down- regulated proteins in plasma and follicular fluid containing high or low pre-ovulatory E2   

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

(A) Up-regulated proteins 
     

2-acylglycerol O-acyltransferase 3 (Fragment) E1BN30 LOC618076 
  

5.370 3.971 

Alpha-2-macroglobulin Q7SIH1 A2M 
  

6.965 7.617 

Ankyrin repeat and KH domain containing 1 G3MZJ0 ANKHD1 
  

5.482 7.516 

AP complex subunit beta F6PZ41 AP4B1 
   

2.144 

Apolipoprotein B E1BNR0 APOB 
 

2.340 11.669 7.312 

Apolipoprotein R G3N0S9 LOC515150 
  

5.234 4.912 

ApoN protein Q2KIH2 ApoN 
   

2.809 

Asparagine-linked glycosylation 5, dolichyl-

phosphate beta-glucosyltransferase homolog (S. 

cerevisiae) 

Q2KIM7 ALG5 
  

2.103 3.265 

ATP binding cassette subfamily B member 9 E1BKR0 ABCB9 
 

2.075 7.448 3.384 

B double prime 1, subunit of RNA polymerase III 

transcription initiation factor IIIB 

F1MEB1 BDP1 
  

5.131 2.928 

C8G protein A8YXZ2 C8G 3.000 
   

CAD protein F1MVC0 CAD 2.359 
   

CCDC80 protein A5PKA3 CCDC80 2.007 
 

6.742 
 

Cell adhesion molecule 1 Q2TBL2 CADM1 
  

2.680 2.187 

Coagulation factor V F1N0I3 F5 
  

2.323 
 

Coagulation factor XII F1MTT3 F12  2.418   

Coagulation factor XIII A chain F1MW44 F13A1 
  

3.170 2.328 
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Table 1. Continued  

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

Cohesin subunit SA-3 E1B9B0 STAG3   3.175 5.194 

Complement C1s subcomponent Q0VCX1 C1S   3.884 6.060 

Conglutinin P23805 CGN1   3.279 3.521 

Cumulus cell-specific fibronectin 1 transcript variant B8Y9T0 FN1   2.620 2.334 

Cytochrome P450 20A1 Q5E980 CYP20A1  2.484 8.593 4.068 

Cytohesin 1 (Fragment) F1MCV3 CYTH1   5.453 15.900 

Cytokine receptor like factor 3 E1BCF2 CRLF3  3.048   

Delta-like protein E1BDN7 JAG1    13.738 

Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 1 

F1MJ36 LOC539818    2.280 

Dpy-19 like 4 (Fragment) F1MJJ1 DPY19L4   16.517 12.811 

DUOXA1 protein A6H723 DUOXA1  2.751 5.914  

Dynein heavy chain domain 1 F1MEF7 DNHD1  2.972   

E3 ubiquitin-protein ligase CHIP F1MUH4 STUB1   2.322 2.360 

Engulfment and cell motility 1 F1MQH0 ELMO1 2.133   2.514 

EPS8 like 1 E1BKS0 EPS8L1   2.727 2.352 

Family with sequence similarity 81 member A F1N4N5 FAM81A  2.279 2.035  

Fas activated serine/threonine kinase F1N4L0 FASTK   2.724  

FGG protein Q3SZZ9 FGG   6.258 4.117 

Fibrinogen alpha chain A5PJE3 FGA   9.225 5.720 

Fibrinogen beta chain F1MAV0 FGB   7.909 4.895 
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Table 1. Continued 

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

Fibulin-1 F1MYN5 FBLN1   2.488 2.276 

Gametocyte-specific factor 1-like Q3T026 GTSF1L   8.291 10.840 

HEAT repeat containing 5B E1BB26 HEATR5B    3.123 

HECT domain E3 ubiquitin protein ligase 2 F1N7A0 HECTD2   2.196 2.908 

Homeobox D3 E1B856 HOXD3 
  

2.453 
 

Keratin, type II cytoskeletal 7 Q29S21 KRT7 2.271 6.209 
  

KRAS proto-oncogene, GTPase E1BMX0 KRAS    2.192 

Kruppel like factor 17 (Fragment) G3N1K6 KLF17    2.915 

Lumican Q05443 LUM  2.904   

Lysine methyltransferase 2C (Fragment) F1MYZ3 KMT2C   3.774 3.229 

NADH dehydrogenase [ubiquinone] 1 alpha 

subcomplex assembly factor 4 

A4FUH5 NDUFAF4   5.033 4.573 

NADH dehydrogenase [ubiquinone] 1 beta 

subcomplex subunit 11, mitochondrial 

Q8HXG5 NDUFB11   27.247 23.059 

NIMA (Never in mitosis gene a)-related kinase 2 Q2KIQ0 NEK2  2.215   

Ornithine decarboxylase 1 E1BG69 ODC1   4.726 4.681 

Pantothenate kinase 3 Q08DA5 PANK3   5.058 4.976 

Phosphoglycolate phosphatase Q2T9S4 PGP    2.091 

Protocadherin Fat 2 precursor (Fragment) F1MPF3 -  2.807   

Regulating synaptic membrane exocytosis 2  

(Fragment) 

E1B7V2 RIMS2  2.480 2.125  
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Table 1. Continued 

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

Serglycin (Fragment) G5E5K5 SRGN 2.929    

Serum albumin P02769 ALB  5.960   

SH3 domain and tetratricopeptide repeats 1 G3MZW4 SH3TC1   2.137  

Sodium/glucose cotransporter 1-like (Fragment) G3MXJ0 LOC531152    3.779 

Sphingomyelin phosphodiesterase 5 (Fragment) F1N6X9 SMPD5   2.017  

Suppressor of G2 allele of SKP1 homolog Q2KIK0 SUGT1 3.741    

Synaptonemal complex protein 1 E1BLN1 SYCP1   5.469 5.407 

Synaptotagmin 12 E1BEH9 SYT12   4.194  

Titin F1N757 TTN 
   

2.320 

Trans-2-enoyl-CoA reductase, mitochondrial Q7YS70 MECR 
  

10.791 4.597 

Transcription factor 7-like 2 G3N0T7 - 
  

2.519 
 

Transcription initiation factor TFIID subunit 

(Fragment) 

F1MF62 TAF1 
  

3.579 2.963 

Transthyretin O46375 TTR 
 

2.403 3.208 
 

Uncharacterized protein E1BPG1 - 
   

2.677 

Uncharacterized protein F1MI18 - 
  

2.848 2.311 

Uncharacterized protein (Fragment) G3X6V5 - 
  

5.022 12.917 

Vacuolar protein sorting-associated protein 28 

homolog 

E1BIB3 VPS28 
  

6.898 8.348 

Von Willebrand factor A domain containing 5B1 E1BB39 VWA5B1 
  

2.316 2.377 

Zinc finger SWIM-type containing 3 (Fragment) F1MTI1 ZSWIM3 
  

3.527 2.750 
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Table 1. Continued 

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

Zona pellucida binding protein 2 Q0VCG8 ZPBP2   5.962 5.099 

 

(B ) Down-regulated proteins 

      

Alpha-1-antiproteinase P34955 SERPINA1   0.392 0.201 

C8G protein A8YXZ2 C8G   0.289  

CAD protein F1MVC0 CAD   0.332  

Chromosome 14 open reading frame 166 ortholog Q3T0S7 RTRAF    0.467 

Complement component C6 F1MM86 C6    0.496 

Cytohesin 1 (Fragment) F1MCV3 CYTH1  0.341   

DDB1 and CUL4 associated factor 5 F1N0J7 DCAF5 0.043    

Dynein axonemal heavy chain 11 F1N724 DNAH11 0.263 
  

0.492 

Dynein heavy chain domain 1 F1MEF7 DNHD1   0.493 0.036 

Endophilin-A2 Q2KJA1 SH3GL1   0.384 0.478 

Engulfment and cell motility 1 F1MQH0 ELMO1  0.372 0.453  

Factor XIIa inhibitor precursor E1BMJ0 SERPING1   0.434 0.472 

Family with sequence similarity 81 member A F1N4N5 FAM81A 0.283   0.245 

Fas activated serine/threonine kinase F1N4L0 FASTK 0.396    

Filamin B E1BKX7 FLNB   0.471  

Gasdermin B F1MCQ4 GSDMB   0.479 0.439 

Haptoglobin G3X6K8 HP 0.211 0.351   
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Table 1. Continued 

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

HECT, UBA and WWE domain containing 1, E3 

ubiquitin protein ligase 
E1BNY9 HUWE1    0.305 

Hemoglobin subunit alpha P01966 HBA  0.115 0.200  

Hemoglobin subunit beta P02070 HBB  0.177 0.261  

Immunoglobulin lambda-like polypeptide 1 F1MLW7 LOC100297

192 

0.242 0.433  0.499 

Immunoglobulin lambda-like polypeptide 1 

(Fragment) 

G3N2D7 LOC100297

192 

0.401    

Inhibin alpha chain P07994 INHA   0.079 0.062 

Keratin, type II cytoskeletal 7 Q29S21 KRT7    0.491 

Leucine rich repeat kinase 2 E1BPU0 LRRK2    0.422 

Lumican Q05443 LUM    0.469 

NIMA (Never in mitosis gene a)-related kinase 2 Q2KIQ0 NEK2    0.453 

Plasma serine protease inhibitor Q9N2I2 SERPINA5   0.353  

Protocadherin Fat 2 precursor (Fragment) F1MPF3 - 
   

0.360 

PTPRR protein A5PKF8 PTPRR   0.102  

Serglycin (Fragment) G5E5K5 SRGN   0.036 0.177 

Serpin family E member 2 F1MZX2 SERPINE2    0.140 

Serpin peptidase inhibitor, clade A (alpha-1 

antiproteinase, antitrypsin), member 3 

G8JKW7 SERPINA3 0.446   0.422 

Serum albumin P02769 ALB   0.302 0.073 
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Table 1. Continued 

Protein Description 
Uniprot 

Accession 
Gene ID 

 

PL HE2/ 

PL LE2 

 

FF HE2/ 

FF LE2 

PL LE2/ 

FF LE2 

   PL HE2/ 

FF HE2 

   

iTRAQ Ratio 

SPHK1 interactor, AKAP domain containing 

(Fragment) 
F1MZL5 SPHKAP    0.475 

Suppressor of G2 allele of SKP1 Q2KIK0 SUGT1  0.476 0.200  

TBC1 domain family member 4 E1BPA1 TBC1D4   0.315 0.334 

Transmembrane protein 186 Q5EA03 TMEM186 0.193 0.435  0.394 

Transthyretin O46375 TTR    0.257 

Ubiquitin protein ligase E3 component n-recognin 4 G3N0A8 UBR4  0.328   

Versican core protein F1N6I7 VCAN   0.129 0.331 

Vitamin D-binding protein F1N5M2 GC  0.393 0.330  

Zinc finger protein 618 E1BJV7 ZNF618   0.309 0.201 
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 measure and compare the proteomes in PL and FF containing high- and low-circulating 

levels of E2 during the pre-ovulatory period. Quantitative measurement of protein 

changes can confirm and/or provide better understanding of the protein’s functions. 

E2 is critical to the development and maturation of ovarian follicles115, 117. 

Concentration of E2 in PL and/or FF has been positively correlated to increased oocyte 

Figure 3.5. Panther analysis of up- and down-regulated proteins identified in bovine 

plasma (Pl) and follicular fluid (FF) containing low and high pre-ovulatory E2. The 

up- and down- regulated proteins were compiled from PL HE2/PL LE2, FF HE2/FF LE2, PL 

LE2/FF LE2 and PL HE2/FF HE2 analyses.  Proteins were classified according to (A) 

Molecular function (B), Cellular localization, and (C) Biological processes. 
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quality, fertilization and subsequent embryo quality129,  increased follicle size118, and 

improved pregnancy success130. Considering the vital role of proteins in cell function and 

regulation, this study thus examined the associations between E2 and protein expressions 

in FF and PL, because of the significant similarities between PL and FF proteins which 

results from the number of PL proteins capable of crossing the blood-follicular barrier 

during folliculogenesis131, 132.  

A total of 103 proteins significantly changed expression in the presence of E2 as 

defined by fold change. To determine a more direct influence of concentration of E2 on 

PL or FF proteome, high and low E2 in PL or FF were compared. The number and degree 

of fold change of proteins from the comparison between high and low E2 in FF was 

higher than the corresponding PL comparison.  This suggests pre-ovulatory circulating 

concentration of E2 has a greater impact on FF proteome than on PL proteome. This is 

not surprising as E2 is produced by the GCs of ovarian follicles116, 133 and FF is the 

immediate environment of the developing follicle and oocyte. The only predominant 

protein in PL HE2 which was also predominant in the FF HE2 when compared to the 

respective LE2 samples was KRT7 (keratin, type II cytoskeletal 7), a member of the 

keratin gene family. E2 seems to have a higher influence on KRT7 expression in FF than 

in PL evidenced by the higher fold change in FF (6.21 vs 2.27). The greater effect of E2 

on KRT7 in FF is further supported when PL and FF were compared. There was no 

observable fold change in KRT7 from PL LE2 and FF LE2 comparison but KRT7 was 

down-regulated in PL HE2 compared to FF HE2. The function of KRT7 is reported to be 

building structure integrity within complexes. Keratin genes are usually expressed in 

pairs consisting of one type I and one type II as both are necessary to for an intermediate 
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filament134, 135.  The presented data supports KRT7 involvement in developing follicles 

and possibly eliciting similar structural functions modulated by E2 in FF.  

Successful folliculogenesis requires adequate regulation of cellular apoptosis.  

ELMO1 promotes cellular apoptosis136. Specifically, ELMO1 is involved in cytoskeletal 

rearrangements required for phagocytosis of apoptotic cells and cell motility137. Very few 

apoptotic cells were found in primordial, primary, secondary and vital tertiary follicles. In 

contrast, apoptosis in atretic tertiary follicles was much more frequent138. Our observation 

of down-regulation of ELMO1 in FF HE2 compared to FF LE2 is therefore in support of 

decreased apoptosis in the pre-ovulatory follicle. The suppression of ELMO1 in the 

presence of E2 at the pre-ovulatory stage seems more localized in FF since it was more 

predominant in PL HE2 when compared to PL LE2.  

Proteins were more predominant in PL compared to FF which supports the 

hypothesis that several FF proteins originate from PL113. It should be noted that proteins 

down-regulated in PL compared to FF indicate their predominance in FF and possibly a 

more localized role in FF. A greater number of proteins showed expression change in the 

comparisons between PL and FF than between high and low E2 PL or FF comparisons.  

This is likely due to the inherent differences between PL and FF. The majority (50 out of 

72 or 78) of these proteins was common to the different comparisons between PL and FF 

and maintained their expressions (i.e. being up- or down-regulated) regardless of the E2 

level. Although the expressions for these common proteins did not change, individual 

iTRAQ ratios were generally lower for up-regulated proteins and higher for down-

regulated proteins after PL HE2 and FF HE2 paired comparison than PL LE2 and FF LE2 
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paired comparison. This further suggests a greater stimulating effect of high E2 on FF 

proteins such that the concentration difference of these proteins in PL and FF is lower 

resulting in lower up-regulated iTRAQ ratios and higher down-regulated iTRAQ ratios 

for the HE2 pair. Twenty-six out of 39 up-regulated proteins and 5 out of 11 down-

regulated proteins which were common to the different PL and FF paired comparisons 

showed this trend.  Common up-regulated proteins showing this trend included FGA, 

FGB, FGG, cumulus cell-specific fibronectin 1 transcript variant (FN1), apolipoprotein B 

(APOB), A2M, complement C1s subcomponent (C1S), and fibulin-1 (FBLN1). Common 

down-regulated proteins with this trend were F13A1, VCAN, endophilin-A2 (SH3GL1), 

SRGN, and TBC1 domain family member 4 (TBC1D4). 

PANTHER analysis revealed the up- and down-regulated proteins had 

multifunctional roles but cellular process and metabolic process were the major functions. 

Developing ovarian follicles undergo a series of coordinated cellular processes that 

induce morphological and functional changes within the follicle, leading to cell 

differentiation and oocyte development139. Further analysis in PANTHER showed the 

proteins under cellular function were involved in cell communication (52.4 %), cellular 

component movement (23.8%), cell growth (4.8%), cell cycle (14.3%), and chromosome 

segregation (4.8%). Coordinated communications between the granulosa, cumulus and 

thecal cells, and as well as the oocytes are critical for successful folliculogenesis and the 

development of an oocyte capable for ovulation and fertilization140. Of these 

communication between the oocyte and GCs is considered the most significant for 

growth regulation and maturation of the oocyte and follicular luteinization. The proteins 

linked to cell communication included INHA, FN1, FGG, FGB, lumican (LUM), 
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synaptotagmin-12 (SYT12), regulating synaptic membrane exocytosis 2 (RIMS2), and 

KRAS proto-oncogene, GTPase (KRAS). These proteins play vital roles in follicle 

growth and maturation. 

Folliculogenesis is highly regulated by gonadotropins and sex hormones. The 

secretions of these hormones are in turn regulated by a number of proteins. INHA is one 

such protein involved in the regulation of FSH secretion. Specifically, INHA selectively 

inhibits FSH secretion from the pituitary in a negative-feedback mechanism141. The 

decline in FSH continues to a level that is only able to be utilized by the largest follicle 

thereby enhancing its growth to become the DF. The inability of smaller follicles to 

utilize the low levels of FSH results in regression of their growth to become subordinate 

follicles142, 143.  INHA was found highly down-regulated in PL compared to FF with 

lower expression in the high E2 pair (PL HE2/FF HE2; iTRAQ ratio 0.062) than the low 

E2 pair (PL LE2/FF LE2; iTRAQ ratio 0.079). The high INHA concentration in FF from 

DF and with high E2 is consistent to the vital roles of INHA and E2 in the decline of FSH 

observed during follicular deviation142, 143. Apart from its role in regulating FSH 

secretion, INHA is also a critical regulator of different cellular processes including 

differentiation, cell migration, proliferation, and apoptosis144. 

SYT12 is another protein involved in regulation of hormonal secretion during 

follicular growth. It belongs to synaptotagmin family that serve as Ca2+ sensors for Ca2+ 

triggered release of hormones, including FSH from the pituitary gland145. RIMS2 is also 

involved in synaptic membrane exocytosis that results in the release of neurotransmitters. 

It functions by binding to pre-synaptic proteins including synaptotagmin 1 (SYT1), an 
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isoform of SYT12146, 147. SYT12 and RIMS2 were up-regulated in PL LE2 compared to 

FF LE2. RIMS2 was also up-regulated in FF HE2 compared to FF LE2. The expression 

changes in both proteins indicate their   involvement in follicle development.   

The proteins FN1, FGB, FGG, and apolipoprotein R were up-regulated in PL compared 

to FF but iTRAQ ratios indicate concentration increases in these proteins in FF with high 

E2 compared to low E2, signifying an influence of  E2 on these proteins. These proteins 

promote cellular processes by binding to a variety of cells and molecules. Indeed all five 

proteins were classified under biological adhesion by PANTHER. Cell adhesion leads to 

alterations in cell shape and motility that are required for different cellular functions 

during folliculogenesis and the development of a competent oocyte148, 149. Cell shape was 

reported to regulate cell proliferation in mouse GCs150 and steroidogenesis in rat GCs151. 

FN1 and fibrinogen have been reported to increase proliferation in a number of cells. 

Specifically, FN1 has been reported to stimulate proliferation of ovarian GCs152. Fibrin 

matrix composed of fibrinogen and thrombin has also been reported in the survival and 

proliferation of ovarian cells153 and promoted growth in primordial-primary follicles and 

secondary follicles. The growth to secondary follicles was greater compared to 

primordial-primary follicle growth154. Successful ovulation and capture of the oocyte by 

the oviduct and subsequent transport through the oviduct necessitates formation and 

expansion of the cumulus cell-oocyte (COC) matrix155. Stabilization and expansion of the 

COC matrix involves binding of several proteins including FN1, VCAN, and laminin 156.
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Figure 3.6.  Up-regulated (red) and down-regulated (pink) proteins involved in the complement and coagulation 

cascades identified in this study. Up- and down-regulated in plasma (PL) compared to follicular fluid (FF): Alpha-2-

macroglobulin (A2M), coagulation factor V (F5), coagulation factor XIII A chain (F13), complement C1s (C1S), 

complement C6 (C6), alpha-1-antiproteinase  (A1AT or SERPINA1), plasma serine protease inhibitor (PCI or 

SERPINA5), factor XIIa inhibitor precursor (C1INH or SERPING1), complement C8 gamma chain (C8G; this was also 

up-regulated in PL HE2 compared to PL LE2), and fibrinogen (fibrinogen alpha chain (FGA), fibrinogen beta chain 

(FGB), and fibrinogen gamma chain (FGG)). Fibrinogen is a ligand of complement receptor types 3 and 4 (CR3 and CR4; 

orange). Up-regulated in FF HE2 compared to FF LE2: Coagulation factor XII (F12).  

 



96 

 

Follicle development involves independent movements of cells and cellular 

components to sites of action and to enable interaction with other relevant molecules.  

Proteins with this function were categorized under cellular component movement, a sub-

set of cellular process. The proteins were AKAP domain containing SPHKAP 

(SPHKAP), dynein axonemal heavy chain 11 (DNAH11), DNHD1, ELMO1, and LUM. 

LUM is a widely distributed protein involved in different biological functions. 

Accordingly, LUM was categorized in 7 out of the 12 BP hererin: cellular process, 

biological regulation, cellular component organization or biogenesis, developmental 

process, locomotion, multicellular organismal process, and response to stimulus. LUM 

was up-regulated in FF HE2 compared to FF LE2, indicating a positive association with 

E2 in FF. This positive association is further supported by the PL and FF comparisons 

where LUM was down-regulated in PL HE2 compared to FF HE2 but showed no 

significant expression change from the low E2 comparison.  

Metabolic process was the second most associated BP. Primary metabolic process 

formed 46.7% of the metabolic processes which in turn was comprised of protein 

metabolism (48%) and nucleobase-containing compound metabolic process (28%). 

Protein metabolism is integral to the growth and maturation of follicles, occurring in cells 

including granulosa, cumulus, and thecal cells and the developing oocyte157. Protein 

synthesis competence, patterns, and rate in somatic cells and oocytes can be used as a 

measure of maturation of the follicles158, 159.  Proteins associated with protein metabolism 

in the current study were A2M, dpy-19 like 4 (DPY19L4), vacuolar protein sorting-

associated protein 28 homolog (VPS28), HP, E3 ubiquitin protein ligase HUWE1 

(HUWE1),  F13A1, Asparagine-linked glycosylation 5 (ALG5),  dolichyl-
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diphosphooligosaccharide-protein glycosyltransferase subunit 1 ( RPN1),  INHA, 

phosphoglycolate phosphatase (PGP), and transcription initiation factor TFIID subunit 

(TAF1).  

The protein A2M was predominant in PL compared to FF irrespective of high or 

low E2 levels. The lower concentration in FF than in PL is consistent to previous 

report160. However, concentration of A2M increases with follicle growth, promoted by its 

secretion by GCs and thecal cells160. A2M is involved in metabolic processes as well as 

regulating E2 production and follicular development via binding to a wide range of  

reproductive related targets  including inhibin, activin, transforming growth factor β and 

α (TGFβ, TGFα), and insulin-like growth factors to regulate their functions161-163. 

Another important metabolic protein is ALG5, which is involved in the formation of the 

COC matrix. The predominant component of the COC matrix is glycosaminoglycan 

hyaluronan (HA)140. Glycosylation of amino acids is therefore an important metabolic 

process in follicle maturation. ALG5 participates in the synthesis of oligosaccharides for 

asparagine-linked glycosylation. Concentration of ALG5 increased in FF and decreased 

in PL with high E2 than with low E2 but the expression changes were not significant 

(iTRAQ ratios 1.519 and 0.836 respectively). However, ALG5 significantly increased in 

PL when compared to FF (iTRAQ ratios 2.103-3.265). This observation shows a 

modulation of ALG5 by E2 in follicle growth. 

The immune system in the reproductive tract plays a critical role in 

simultaneously providing a protective microenvironment to support successful 

reproduction processes and conferring protection against potential pathogens. In fact, 
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folliculogenesis and ovulation are viewed as a hormone-induced inflammatory process164. 

Sex hormones, E2 and progesterone, significantly regulate the reproductive immune 

system cells, tissues, and molecules165.  This is supported by the results of this study by 

expression changes of immune-related proteins in the presence of high and low E2. 

Proteins relating to the immune system were categorized under response to stimulus- 

A2M, INHA, ankyrin repeat and KH domain containing 1 (ANKHD1), SPHK1 

interactor, AKAP domain containing (SPHKAP), LUM, and  Gasdermin-B (GSDMB);  

and immune system process- ANKHD1, immunoglobulin lambda-like polypeptide 1 

(LOC100297192) and apolipoprotein R (LOC515150).  

Follicuclogenesis is a developmental process that results in growth of primordial 

follicles into primary, secondary, and tertiary follicles. The proteins JAG1, VCAN, 

INHA, FBLN1, LUM, GSDMB, protocadherin Fat 2 precursor (FAT2), and titin (TTN) 

functions were classified under developmental process by PANTHER. Cell proliferation 

is key to the increase in size and transformation of follicles from one stage to the other. 

INHA and LUM promote cell proliferation. VCAN is a component of the extracellular 

matrix (ECM) of a variety of tissues. It forms large complexes with HA166 and in the 

ovary, binding to the HA of the COC matrix results in stabilization and expansion of the 

COC matrix156. VCAN also promotes cross-linking of the COC matrix by binding to 

several proteins including FBLN1 and FBLN2167. VCAN was up-regulated in FF 

compared to PL in the presence of low or high E2. 

A number of proteins were categorized under biological regulation. These 

proteins were identified mainly predominant in PL compared to FF. An example of such 
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proteins is ornithine decarboxylase (ODC1). ODC1 is the initial and rate-limiting step in 

the biosynthesis of polyamines required for growth, differentiation, and transformation of 

cells168. Inhibition of ODC1 with α-difluoromethylornithine (DFMO) was demonstrated 

to inhibit ovarian growth, the formation of graafian follicles, and the secretion of 

progesterone and E2 in immature mice. Administering of DFMO to adult cycling females 

on evening/night of proestrus markedly decreased plasma progesterone levels at diestrus 

which was linked to down-regulation of cytochrome cholesterol side-chain cleavage 

enzyme, steroidogenic factor 1,  and steroidogenic acute regulatory protein in the ovary 

and to a reduced vascularization of the corpora lutea169. Other proteins in the biological 

regulation category were SUGT1, SPHKAP, RIMS2, SYT12, LUM, CGN1, and 

epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8L1).  

Folliculogenesis involves proteins that transport and/or maintain substances 

including cells, cell components, metabolites, and proteins in specific locations of action. 

Proteins involved in this process were categorized under localization. Such proteins 

included GC and ALB. GC is the main protein involved in the transport of 25-

hydroxyvitamin D (25(OH)D), the precursor of the active form of vitamin D, and the 

recognized optimal indicator of vitamin D status. Vitamin D level is therefore 

predominantly contributed by GC level170, 171. Based on the free hormone hypothesis that 

protein-bound hormones are not biologically available and that unbound hormones are 

biologically active, down-regulation of GC as found in this study can indicate more 

bioavailable 25(OH)D170. Apart from its well-known role in bone morphology, vitamin D 

is increasing being viewed as vital for regulation of reproduction physiology. It has been 

positively associated with pregnancy, embryo implantation rate and IVF outcomes172 and 
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to reproductive steroid hormones173, 174. Our data asserts to a regulation of vitamin D by 

E2. 

ALB is a major component of PL and FF. Due to its abundance it was prior 

depleted to enable detection of lower abundant proteins. ALB transports a wide variety of 

substances including proteins, steroids, drugs, fatty acids, metabolites, hormones, and 

cations, facilitated by its multiple binding sites and longer circulatory half-life. ALB’s 

strong attraction to cations, its low molecular weight and its abundance enable it to play a 

central role in maintaining colloidal osmotic pressure (COP) that regulates the 

distribution of extracellular fluids between the vascular and extravascular 

compartments175, 176. STRING analysis of the up- and down-regulated proteins showed 

ALB had the highest interactions with other proteins (Figure 3.7) supporting ALB 

versatile role.  Identified proteins in this study that bind to ALB include GC, F13, HBA, 

C1S, apolipoprotein C-III (APOC3), and kininogen-2 (KNG2)177. 

Pathway analysis showed the complement and coagulation cascades were the 

predominant pathways, consistent with previous studies on FF40, 178. The stage of follicle 

development seems to regulate the proteins involved in coagulation pathway. Proteins 

involved in coagulation were found down-regulated in the pre-deviation, early deviation 

and pre-ovulatory stages and up-regulated in later deviation to post deviation stages40. 

Here, the coagulation and complement pathway involved 13 proteins showing different 

levels of expression changes, supporting a dependence on individual protein roles in the 

pathway. The predominance of the complement and coagulation cascades supports the 

view that the follicle development and ovulation are hemorrhagic and inflammatory- 

induced events.  
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Figure  3.7. Network of identified up- and down-regulated proteins in bovine PL 

and FF containing low and high concentration of estradiol during the pre-ovulatory 

stage. A total of 89 proteins are connected with 52 paired interactions annotated by 

STRING database. The highest number of interaction is seen with ALB, signifying the 

versatility of its function. There are no interaction among majority of the proteins which 

can suggest the independence and critical role each play in follicle growth and maturation. 

The relationships among proteins were derived from evidence from known interactions 

(from curated databases and experimentally determined), from predicted interaction (gene 

fusions, gene neighborhood and gene co-occurrence) and from other sources (textmining, 

co-expression and protein homology). These are shown in the legend with different colors. 

Details of the proteins are shown in Table 3.1. 
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The complement cascade and coagulation cascade are closely related and each 

activates the other in a reciprocal way.  For instance, activated platelets can activate the 

classical and alternative complement pathways. Thrombin, coagulation factors FIXa, 

FXa, FXIa, and plasmin can activate C3 and C5. F12a can activate C1qrs complex to 

activate the classical complement pathway. Conversely, mannan-binding lectin 

associated serine protease 2 (MASP-2) and the final stage complement complex C5b–9 

are able to generate thrombin through direct cleavage of prothrombin. Thrombin is a vital 

coagulation component that converts fibrinogen to fibrin. C5a promotes procoagulant 

activity by several actions on cells including inducing mast cell and basophil to switch 

from profibrinolytic to prothrombotic activities through the upregulation of the 

coagulation component plasminogen activator inhibitor-1 (PAI-1)179.  

F12 is the first component of the coagulation pathway and its activation triggers 

the intrinsic pathway of the coagulation system179. F12 was up-regulated in FF HE2 

compared to FF LE2, indicating a greater influence of E2 on F12 in FF. Five other 

proteins were down-regulated in PL compared to FF namely A1AT, PCI, C1INH, C6, 

and C8G. A1AT expression in FF HE2 was about double that in FF LE2 when compared 

to the corresponding PL samples. A1AT, C1INH, and PCI are protease inhibitors 

belonging to the SERPIN superfamily. The SERPINs regulate a wide range of proteins 

including those involved in the coagulation, fibrinolysis, and complement pathways180, 

181. Proteins in the coagulation and fibrinolytic system inhibited by A1AT include 

neutrophil elastase, activated protein C (APC), cathepsin G, thrombin, plasmin, 

coagulation factor X (F10), and coagulation factor XI (F11)182-186. PCI inhibits the down-
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regulation of coagulation system by inhibiting the activation of protein C by thrombin in 

the presence of thrombomodulin and by inhibiting APC186. APC down-regulates the 

coagulation system by degrading the coagulation factors Va and VIIIa by limited 

proteolysis and by eliciting anti-inflammatory response and cytoprotective signaling in 

endothelial cells by activating protease-activated receptor 1 (PAR-1)186. PCI also down-

regulates coagulation by inhibiting proteolytic cleavage of fibrinogen by thrombin in the 

presence of heparin187. 

 C1INH is a vital regulator of complement cascade and functions by inactivating 

C1r and C1s, components of C1q, and mannan-binding lectin associated serine proteases 

MASP-1 and MASP-2188. C1q is the first component in the classical pathway and MASP-

1 and MASP-2 are first components in the lectin pathway. C1INH is also a major 

regulator of the coagulation cascade. It inhibits inflammation by blocking the activities of 

activated F12 and plasma kallikrein, two proteins that participate in the production of 

bradykinin which promotes inflammation by increasing vascular permeability188, 189. C6 

and C8G are part of the later stage of complement activation and function as membrane 

attack proteins. They interact to form membrane attack complexes that are able to 

associate with the lipid bilayer of target molecules, leading to eventual disruption of the 

lipid bilayer188. The up-regulation of the six proteins in FF indicates their vital roles in 

regulation of coagulation and complement cascades during bovine follicular 

development.  

Other identified proteins in the coagulation and complement system were A2M, 

F5, F13, C1S, FGA, FGB, and FGG (up-regulated in PL compared to FF) and C8G (up-
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regulated in PL HE2 compared to PL LE2). The functions and associations of these 

proteins in the coagulation and complement pathway are shown in Figure 5. The up-

regulation of C8G in PL containing high E2 than low E2 suggests greater influence of E2 

on this protein in PL.  

3.7 CONCLUSION 

In conclusion, iTRAQ proteomic enabled probing of protein changes in PL and 

FF containing high and low concentrations of E2 during the pre-ovulatory period. E2 

influence the expression changes of several proteins in PL and FF. Protein expression 

changes is greater with high E2 in FF than in PL when compared to their respective low 

E2. But protein expression change with high and low E2 is similar when PL and FF are 

compared and this is possibly due to the inherent difference in protein concentrations in 

PL and FF. The expression changes of several of the proteins are associated to their 

function in follicle growth and maturation. The coagulation and complement cascades are 

enriched during bovine follicle development and support the view that folliculogenesis 

and ovulation are hemorrhagic events. 
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CHAPTER 4 

ATHEROSCLEROSIS DEVELOPMENT IN THREE REGIONS OF THE 

AORTIC ROOTS OF APOLIPOPROTEIN E KNOCKOUT (APOE-/-) MICE 

 4.1 ABSTRACT 

The aortic root is a predilection site for atherosclerosis development in mice. We report a 

investigation of atherosclerotic progression in three specific regions of the aortic roots, 

namely the ascending aorta region (AAR), region showing the orifices of the coronary 

arteries marking the start of the ascending arch (OCAR) and aortic sinus region (ASR) in 

a large population of ApoE-/- male and female mice at different ages.  In this study, 67 

ApoE-/- and 27 wild-type C57BL/6J mice (controls) were fed with a high fat diet (HFD) 

until age 8, 12, 18, or 24 weeks. Through systematic classification and quantification of 

lesions in each region and statistical data analysis, we found that the complexity and total 

atherosclerotic lesion areas in ApoE-/- mice was location and age dependent. It was 

slowest in the AAR with lesions progressing from dominant type I at 8 weeks, type II at 

12 weeks, types III at 18 and types III and IV at 24 weeks of age. Lesion development 

was comparable in the OCAR and ASR regions; types II and III lesions dominated in 

mice at 8 and 12 weeks of age, respectively, while types IV and types IV and V 

dominated at 18 and 24 weeks of age, respectively. Average percentage of atherosclerotic 

lesions typically increased from the AAR to the OCAR to the ASR at a specific age, and 

from 8 to 24 weeks of ApoE-/- mice at each region, correlating with the histological data.  

Aatherosclerosis development was found to be slightly faster in female than male ApoE-/- 

mice.  As expected, no lesions were observed in wild-type mice. These findings would be 
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beneficial in experimental design and targeting of lesion types in aortic roots of the 

popular ApoE-/- murine atherosclerosis model.  
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 4.2 BACKGROUND AND MOTIVATION 

The aortic root is a predilection site for lesion development67 in mice and is often 

investigated to determine the overall extent of atherosclerosis71 in mice. The aortic root 

has three identifiable regions: the ascending aorta region (AAR), the region showing  the 

orifices of the coronary arteries marking the start of the ascending arch (OCAR), and the 

aortic sinus region (ASR) characterized by the appearance of the aortic cusps190. The 

apolipoprotein E knock-out (ApoE-/-) mouse model65, 66 is efficient for demonstrating the 

progressive atherosclerotic events and lesion-morphological features found in humans191.  

ApoE-/- mice spontaneously develop atherosclerotic lesions when fed a normal mouse 

chow diet. These conditions are accelerated with a high saturated fat and cholesterol 

diet65.  The C57BL/6 mouse strain is more susceptible in developing atherosclerosis70 and 

is therefore often the background for ApoE-/- mice71. In this study, 67 ApoE-/- female and 

male mice on C57BL/6 background were fed a HFD for different periods of time 

corresponding to four age groups: 8, 12, 18 and 24 weeks. Serial cross-sectioning 

method190 with subsequent staining and calculation of lesion areas with image analysis 

software were then used to carefully identify, and quantify atherosclerotic lesions.  

 4.3 OBJECTIVES 

Although different atherosclerosis studies have examined the aortic root, none 

have characterized and quantified the three regions simultaneously in a large population. 

Our primary objective is to meet this limitation. Data from a large population size will be 

beneficial in experimental design of atherosclerotic studies with this mouse model. Other 

objectives are to identify atherosclerosis progression trends in the regions and to 



108 

 

investigate gender-specific differences in the disease development. This study provides 

photomicrographs of the different types of atherosclerotic lesions which could be 

beneficial, when used in conjunction with related images derived from nuclear and non-

nuclear imaging techniques55 for disease diagnosis and target interventions. Future work 

is to perform proteomic analysis on blood samples from mice in this study to identify 

potential phosphoprotein biomarkers of atherosclerosis. 

 4.4 MATERIALS AND METHODS 

4.4.1 Mice Housing 

ApoE-/- on C57BL/6 background and wild-type C57BL/6 mice were bought at 

three weeks of age from Jackson Laboratory (Maine). Both ApoE-/- and wild-type 

C57BL/6 mice were fed standard chow diet (contained 20% protein by weight, 4.5% fat 

by weight, 0.02% cholesterol by weight, no sodium cholate and casein) for one week 

upon arrival and then transferred onto a high fat diet (HFD) until they reached 8, 12, 18, 

or 24 weeks of age. These feeding periods have been shown to induce different degrees 

of atherosclerotic lesions in ApoE-/- mice67. The HFD (Harlan Laboratories, Madison, 

WI) contained 21% fat by weight, 0.15% cholesterol and 19.5% by weight casein without 

sodium cholate. There were 36 male ApoE-/- mice, with nine mice in each of the four 

groups. Female ApoE-/- mice totaled 32 with six mice in the 8 week group, eight mice in 

the 12 week group, nine mice in the 18 week group and nine mice in the 24 week group. 

One mouse from the 24 weeks female group died after the feeding period and was 

excluded from further analysis. For wild-type C57BL/6 male mice, there were four in the 

8-week group and three in each of the 12, 18 and 24 week groups (13 in total). There 
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were 14 female wild-type mice in total with three mice each in the 8- and 12-week groups 

and four mice in each of the 18 and 24 week groups. Mice were given diet and tap water 

ad libitum. The mice were housed in pathogen free 12 h dark cycles. All research 

protocols in this mouse study were approved by Institutional Animal Care and Use 

Committee (IACUC) in South Dakota State University.    

4.4.2 Histological Analysis of Aortic Roots 

All mice were sacrificed at the end of their designed feeding period and then 

dissected and sectioned according to the method previously described190. During 

dissection, the heart was separated from the aorta and placed in phosphate-buffered saline 

solution. At the time of sectioning, the lower ventricular portion of the heart was cut 

away such that the remaining upper cardiac portion was about 30% of the total heart 

tissue size. The upper cardiac portion was placed in a tissue mold and then completely 

covered with optimal cutting temperature (OCT) compound. Each OCT-embedded tissue 

was manipulated to ensure that it was placed center and perpendicular to the tissue mold 

and free of any bubbles. The mold was then quickly frozen on dry ice and sectioned 

immediately or wrapped in parafilm and frozen at -20oC for later sectioning.  

Tissues were sectioned with the upper ventricular portion facing outwards in the 

tissue mold. During sectioning, the frozen tissue was mounted on a cryostat (Leica 

CM3050 S) and cross-sectioned at 8 µm intervals until all three regions of the aortic root 

(i.e. AAR, OCAR, AAR, ASR) are collected, identified by the region spanning the 

appearance of the aortic cusps to the region of the disappearance of the circular shape of 

the ascending aorta. About 140 sections per mouse were collected spanning the three 
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regions. Frozen sections were collected in sequence on histological slides (8 to10 tissue 

sections per slide) and frozen at -80 °C until ready for staining.  

4.4.3 Oil Red Staining and Imaging 

Oil red O is commonly used to assist in quantification of atherosclerotic lesions in 

mice. Oil red O stains neutral lipids, enabling determination of lesions areas with image 

analysis softwares190. Oil red O stock solution was prepared by dissolving 0.5 g Oil red O 

(CI 26125; Sigma Aldrich, Saint Louis, MO, USA) in isopropanol (Fisher Scientific, 

Hampton, NH, USA) using a gentle heat of a water bath. Oil red O working solution was 

prepared by diluting 30 mL of stock solution with 20 mL of distilled water and filtering. 

Working solution was prepared fresh for use at each staining time. For Oil red O staining, 

frozen sections were first dried under room temperature for about 15 minutes to reduce 

tissue loss resulting from a weak bond with the histological slide. Tissue sections were 

fixed in formalin (paraformaldehyde in PBS; 4% w/v, pH = 6.9) and then washed under 

running tab water for about 10 minutes and rinsed with 60% isopropanol. Tissues were 

then stained with freshly prepared Oil red O working solution, rinsed with 60% 

isopropanol and then counter stained with Harris hematoxylin solution (Sigma Aldrich, 

St. Louis, MO, USA). Stained tissues were cover slipped with glycerin jelly mounting 

medium (Electron Microscopy Sciences, Hatfield, PA) and imaged immediately or 

refrigerated overnight or stored at -20 oC until ready for imaging. All tissue sections 

collected from each ApoE-/- mouse were stained. For C57BL/6 controls, alternating 

histological slides from the serial cross-sectioning were selected for staining. Images of 

Oil Red O stained aortic root tissues on histological slides were captured at 35 
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magnification using a Leica EZ4HD light microscope (0.057 nA ) equipped with Leica 

Acquiring Service, V.4.0 software. 200 (0.4 nA) and 600 (oil immersion nA 1.4-0.6) 

magnifications were obtained using Leica DM14000B inverted  light microscope 

connected to a Cool Snap Pro color video camera (Media Cybernetics) equipped with 

QCapture-Pro 5.1 software. Other magnifications (50 µm) were obtained with Olympus 

AX70 Upright Compound Microscope equipped with Olympus DP70 Digital Camera. 

4.4.4  Classification of Lesions 

Lesions were classified based on their size and morphology as previously 

described58-60 for atherosclerotic lesions. Lesion classification was done by individuals 

not involved in mice experimental design and feeding to prevent classification errors and 

bias. Lesion types observed in this study are shown in Figures 4.2 to 4.4. Type I lesions 

were characterized by the presence of scattered macrophages containing lipid droplets 

(foam cells) (Figure 4.2). Multilayer macrophage foam cells and lipid-laden smooth 

muscle cells were characterized as type II lesions (fatty streaks) (Figure 4.2, Panel C and 

D). Lesions that had pools of extracellular lipids in addition to features of type II lesions 

but lack the lipid rich core (necrotic core) were labeled type III (intermediate) lesions 

(Figure 4.3). The necrotic core is a key feature of types IV and V lesions. Type V lesion 

(Figure 4.4, Panels C and D) was differentiated from type IV (Figure 4.4, Panel A and B) 

by the additional presence of a substantial amount of spindle-shaped fibrous tissues 

mixed with the necrotic core lipids (sometimes occurred as multilayers of fibrous tissues 

in the lipid core) and/or a fibrous cap covering the top of the lipid core. 
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Figure 4.1. Workflow of the experimental design for the characterization and 

quantification of atherosclerotic lesions from aortic root regions of ApoE-/- mice.  

 

Type VI lesion, the complicated lesion, is characterized by the presence of fissure, 

hematoma, and thrombus, sometimes in addition to features of type IV or V. Type VI 

lesion was not observed in aortic roots from mice in this study. The overall disease state 

in a region was defined by the highest lesion type observed in tissues from that region.  

4.4.5 Quantification of Lesions 

Lesion areas and aortic luminal boundaries were manually measured using ImageJ 

analysis software developed by NIH. Lesion-area calculation with imageJ was achieved 

by tracing along a lesion outer boundary.  Measurement of lesion areas was carried out on 
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alternating tissue sections on all histological slides collected from the serial cross-

sectioning of an ApoE-/- mouse. About 70 tissue sections per mouse were quantified. A 

total of 15 mice, seven male and eight female ApoE-/- mice, were excluded from the 

quantification due to tissue loss from at least one of the regions during sectioning and/or 

staining. Thus a total of 29 male and 23 female ApoE-/- mice were quantified. To 

determine the percent of lesions in each stained tissue, the sum of all lesion areas 

(obtained from ImageJ analysis) in the tissue was expressed as the percent of the area 

corresponding to aortic luminal boundary. Average percent lesion for an aortic root 

region per mouse was calculated by taking the average of all the percent lesions 

calculated for tissues from that region. The average percent for a region per mouse was 

used to calculate the average percent of a region for a group, standard deviations and 

perform one-way analysis of variance (ANOVA).  

ANOVA performed included comparisons between the aortic root regions from 

mice within a group, the aortic root regions between the different groups and the aortic 

root regions between genders. The comparisons were made to determine whether the 

differences in lesion development were purely random or significant. Significant 

difference was established at p<0.05.  

4.5  RESULTS 

4.5.1 Atherosclerotic Lesions Progression and Characteristics in ApoE-/- Mice 

Atherosclerosis lesions were observed in all three regions of the aortic root of 

ApoE-/- mice but as expected, not in C57BL/6 control mice fed with the same HFD for the 

same time periods. Lesion size, distribution, and complexity increased from the AAR to 
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the OCAR and to the ASR. The size and severity of lesions also increased in all three 

regions with increasing age of mice (Figure 4.6). Lesion types I to V were observed and 

the progression occurred faster in female than in male mice. Type I lesions were 

dominant in the AAR while type II lesions were dominant in the OCAR and the ASR in 8 

week ApoE-/- male and female mice. By 12 weeks of age, type II lesions were dominant in 

the AAR. The dominant lesion was type III which were in some cases undergoing 

progression to type IV in the OCAR and ASR regions for both genders.  At 18 weeks, 

lesion progression in the AAR was dominantly type III in females and type II in males. 

Both genders showed mainly type IV lesions in the other two regions. The 24-week 

group developed dominant type IV lesions and type III lesions in AAR of females and 

males respectively. Types IV and V lesions were dominant in the other two regions.  The 

degree of fibrous tissues, identified at 200 and 630 magnification as spindle- shaped 

fibrous tissues in lesions were higher in 24 weeks mice than in 18 weeks mice.  In both 

the 18- and 24-week groups, fibrous tissues were higher in the ASR compared to the 

OCAR. However, fibrous tissues were not quantified.  Although advanced lesions (types 

IV to V) were dominant feature in older mice (18 to 24 weeks), early lesions (types I to 

III) were also observed, often at the shoulder regions of advanced lesions.  

The overall disease state in a region was defined by the highest lesion type 

observed in tissues from that region. The disease state in the AAR was type I at 8 weeks, 

types II at 12 weeks, type III at 18 weeks, and type V at 24 weeks. The disease state in 

the OCAR and ASR regions were type II at 8 weeks, type III (in some cases undergoing 

progression to type IV) at 12 weeks, and type V at 18 and 24 weeks. 
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 Figure 4.2. Photomicrographs of type I and type II lesions in tissue from the region 

showing the orifice of the coronary artery (OCAR) and from the arotic sinus region 

(ASR) respectively in 8 weeks female ApoE-/- mice fed a HFD. Insert in panel A and C 

(original magnification x35) are areas shown in Panel B and D (original magnification 

x630). Type I lesion consists of scattered macrophage foam cells (arrows). Type II 

consists of multilayer of foam cells and lipid-laden smooth muscle cells. Type I and II 

lesions are clinically benign. Tissues were embedded in formalin and then stained with 

oil red O to detect neutral lipids. Hematoxylin was used as the counter-stain. 

 

4.5.2 Magnitude of Atherosclerotic Lesions in ApoE-/- Mice  

Average percent lesion values (Table 4.1) for the ApoE-/- mice correlated well with 

histological observation of oil red-stained tissue sections from the regions of the different 

age groups. Average percent lesion values increased from the AAR to the OCAR to the 

ASR. This trend (Table 4.1, Figure 4.7) was observed in all age groups except in 24- 



116 

 

 

Figure 4.3. Photomicrograph of type III (intermediate) lesion from the region showing 

the orifice of the coronary arteries (OCAR) from 12 week male ApoE-/- mouse. Insert on 

panels A (original magnifications, x35) is area shown on panel B (original magnification, 

x200). Type III is an intermediate between the advanced types of lesions that can cause 

symptoms of atherosclerosis and the clinically benign lesions of type I and II. Type III is 

distinguished from the advanced types by the lack of the presence of necrotic lipid cores. 

Mouse was fed with high-fat diet. Tissue was stained with oil red O to visualize neutral 

lipids and counter-stained with hematoxylin. 

 

week female mice, whose average percent lesion value was slightly higher for the OCAR 

(47.96 ± 5.75) than the ASR (44.51 ± 6.07) but not statistically significant based on result 

(p = 0.263) from ANOVA analysis. Results from comparison between aortic root regions 

from mice within an age group showed that the average percent lesion value increased 

significantly (p<0.05; Table 2) from OCAR to ASR in 8 weeks mice. Comparison was 

not made between AAR and OCAR or AAR and ASR due to limited data obtained for the 

AAR in this age group. In the 12-week group, the percent lesion difference was 

significant between any two of the three regions. Among 18- and 24-week mice groups, 

lesion percentage differences were significant between any two regions except between 

the OCAR and the ASR of the 18/24- week male mice and of the 24-week female mice. 
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Average percent lesion values for the three regions also increased in an age-

dependent manner as showed in Figure 4.6. Average percentage lesions increased faster 

in older mice (18-week to 24-weeks) than younger mice (8 to 12 weeks) in the AAR. By 

contrast, it increased slower in older mice in the OCAR and the ASR. The similar 

changing trend observed in the OCAR and the ASR suggests that atherosclerotic 

development became more similar in these two regions as mice grew. 

To determine the significant level of lesion increase between the ages for each 

region, an ANOVA statistical analysis was performed. P-values obtained after 

comparison between the different ages for each region of the aortic root are listed in 

Table 4.3. In the AAR, a significant change (p< 0.05) of average percentage of 

atherosclerotic lesions was only observed from 18 to 24 weeks. In the OCAR and ASR, 

significant changes were observed from 8 to 12 to 18 weeks for both female and male 

ApoE-/- mice.  Only female mice showed significantly lesion increase in OCAR from 

week 18 to 24. No significant changes were observed in the ASR from week 18 to 24 for 

both genders. 

As observed in the histological data, the percent values were generally higher in 

females than in males (Table 4.1). However, ANOVA comparisons between males and 

females for the regions and different ages only found significant differences in the OCAR 

of 12-week (p = 0.0005) and 24-week (p=0.0049) male and female mice.  
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Figure 4.4. Photomicrographs of types IV and V lesions from the aortic sinus region 

(ASR) from 18 weeks respectively male and female ApoE-/- mice. Insert on panels A and 

C (original magnifications, x35) are areas shown on panel B and D (50 µm). The necrotic 

lipid core (LC) is a distinguishable feature of advanced lesions (types IV and V). A 

fibrous cap (arrows) covers the LC. A distinguishing feature of type IV form type V is 

substantial amount of fibrous tissues in type V. Both types of lesions can cause 

complications of atherosclerosis. Mice were fed with a high fat diet. Tissues were stained 

with oil red O to visualize neutral lipids and counter-stained with hematoxylin. 

 

  4.6 DISCUSSION 

4.6.1 Atherosclerosis in Aortic Root Regions of ApoE-/- Mice 

The atherogenic process is progressive in nature68.  In this study, increases in lesion  
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Figure 4.5. Atherosclerosis in three regions of ApoE-/- mice at ages (from left to right) 8, 

12, 18 and 24 weeks. A. AAR. B. OCAR. C. ASR. Lesion distribution and complexity 

increase from the AAR to the OCAR to the ASR. Lesions also increased with age of 

mice. Mice were fed a high fat diet. Tissues were embedded in formalin and stained with 

oil red O and hematoxylin. Original magnification, x35. 

 

Table 4.1. Average % lesions in three regions of the aortic root of ApoE−/− mice. 

* Total number quantified. This is less than the total number of mice in each age category used in 

the overall study.  

 

Age of Mice (Weeks) AAR OCAR ASR 

 
Average %Lesion ± SD (*# of mice quantified) 

 

Males  

8 0.90 (1) 1.02 ± 0.78 (3) 3.65 ± 0.77 (5) 

12 2.70 ± 1.47 (5) 6.78 ± 2.90 (7) 14.61 ± 6.99 (7) 

18 4.22 ± 2.84 (5) 33.83 ± 9.75 (7) 37.67 ± 7.66 (8) 

24 21.16 ± 7.65 (6) 37.88 ± 6.33 (8) 41.30 ± 7.04 (9) 

         

Females       

8 0.45 ± 0.12 (2)  0.78 ± 0.16 (3) 4.57 ± 0.36 (3) 

12 1.80 ± 1.70 (3)  16.14 ± 2.60 (4) 22.30 ± 2.72 (4) 

18 8.97 ± 2.54 (4) 35.20 ± 6.39 (8) 43.29 ± 7.39 (7) 

24 30.20 ± 1.85 (3) 47.96± 5.75 (8) 44.51± 6.07 (8) 
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Table 4.2. p-values obtained from comparison between aortic root regions from mice 

within an age group. 

Age of Mice (Weeks) *AAR vs. OCAR  *AAR vs. ASR OCAR vs. ASR 

Males    

8 N/A N/A 3.47E-03 

12 1.66E-02 4.10E-03 1.81E-02 

18 6.77E-05 1.60E-06 4.08E-01 

24 7.50E-04 1.57E-04 3.11E-01 

    

Females    

8 N/A N/A 7.74E-05 

12 2.33E-03 6.98E-04 1.70E-02 

18 1.54E-05 1.01E-05 4.05E-02 

24 6.47E-04 3.63E-03 2.63E-01 

*Comparisons was not done between AAR and OCAR and AAR and ASR of 8 weeks ApoE-/- 

mice due to limited quantification data for the AAR. 

 

severity and percentage from 8 weeks to 24 weeks in different ApoE-/- mice demonstrated 

this progressiveness. ApoE-/- mice on C57BL/6 background provided an effective model 

for studying disease progression in the aortic root. The aortic root is commonly examined 

in murine-atherosclerotic studies due to its predisposition to develop atherosclerosis.  

Majority of studies in the mouse aortic root have been focused on the ASR68 because 

complicated lesions develops in this region72, 192 and the appearance of the aortic cusps of 

the ASR allows for easy comparison between different mice.  Accordingly, lesion types 

and progression in the ASR has been broadly characterized whiles similar descriptions 

for the AAR and OCAR are rare. This study presents simultaneous characterization and 

quantification of all three regions of the aortic root in a large population of ApoE-/- mice 

on C57BL/6 background. 
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Table 4.3. p-values obtained after comparison between the different ages for each region 

of the aortic root. 

*Comparison was not done between 8 and 12 weeks ApoE-/- mice for AAR due to limited 

quantification data for the AAR. 
 

Lesion distribution, size, and complexity increased from the AAR to the OCAR to the 

ASR. Differences in the extent of atherosclerotic lesions in these three regions of the 

aortic root are linked to hemodynamic factors in each region. The AAR is circular and 

straight, which enables uniform laminar blood flow and the generation of high shear 

stress on the region’s endothelium lining. Straight arterial segments with high shear stress 

have been correlated to minimal/no development of atherosclerotic lesions. Conversely, 

areas where shear stress is low, such as the inner curve of the aortic arch, or where flow is 

oscillatory, such as near bifurcations, have turbulent blood flow and are associated with 

increased or extensive development of atherosclerotic lesions193, 194.  Low and/or 

oscillatory shear stress (OSS) increases atherosclerosis risk by primarily inducing 

dysfunction of the local endothelium57, 195. Endothelial dysfunction is an established 

condition that triggers initial atherosclerosis events including increasing the expression of 

cellular adhesion molecules ICAMs (e.g. ICAM-1), vascular cell adhesion molecules 

(VCAMs) (e.g. VCAM-1), chemokines, and platelets55-57. Progression of atherosclerotic 

Age of Mice (Weeks) *AAR OCAR ASR 

Males    

8 to 12 N/A 1.11E-02 6.32E-03 

12 to 18 3.19E-01 1.36E-05 4.06E-05 

18 to 24 1.19E-03 3.51E-01 3.25E-01 

    

Females    

8 to 12 N/A 1.73E-04 1.10E-04 

12 to 18 2.46E-02 2.19E-04 4.50E-04 

18 to 24 6.67E-05 8.94E-04 9.87E-01 
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lesions can then rapidly occur when risk factors such as hyperlipidemia, diabetes, and 

hypertension are present195. The high susceptibility of mouse ASR to develop lesions is a 

result of OSS196 caused by the aortic cusps. The extent of lesion formation in the OCAR 

is also associated with OSS and/or low shear stress in this region, predisposed by the 

branching of the coronary arteries. Also, closer proximity to the ASR potentially 

encourages easy spreading of the disease to this region. The generally higher lesion 

prevalence in the ASR compared to OCAR suggests higher OSS in the ASR. 

The morphology of atherosclerotic lesions is an indication of the severity of the 

disease. Accordingly, lesion types in a region corresponded to the severity of the disease 

in that region. The observation of complex lesions in the ASR in this study supports the 

common use of this region for probing advanced types of lesions  However, the AAR can 

be of use if early forms of lesion are the target of interest, such as in drug intervention 

studies aimed at preventing advancement of early atherosclerotic lesions. This would be 

particularly useful as the early types of lesion in OCAR and ASR in the ApoE-/- mice fed 

HFD rapidly progresses to advanced forms which could make early lesions difficult to 

target or enough time for expected effect of a target drug. In using the AAR for 

comparative studies, the, circular shape of this region could be a guide for accurate 

identification. The statistical differences or similarities in the average percent lesion 

values between regions and ages as shown above can provide a guide for designing future 

atherosclerotic studies.  
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Figure 4.6. Average percent lesions in three regions (i.e., AAR, OCAR and ASR) of the 

aortic root of 8- to 24-week male (a) and female (b) ApoE-/- mice.  

 

4.6.2 Lesion Progression with Age of ApoE-/- Mice 

The progression of lesion severity in the three aortic root regions from 8 to 24 

weeks observed in our study confirms age as a risk factor of atherosclerosis197. The risk 

with age is validated by the types of lesions formed at different ages in a specific region.  
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8-week ApoE-/- mice developed type I or II lesions (known to be clinically benign). By 

contrast, clinical important types IV and V lesions (necrotic core lesions) developed in 

older mice. 

4.6.3 Influence of Gender on Lesion Formation in Aortic Root Regions 

Histological data from this study revealed that lesion development were generally 

faster in female than in males ApoE-/- mice. However, statistical significant difference in 

average percentage of lesions between genders was only observed in the OCAR of 12- 

and 24-week mice. Higher disease proliferation in female mice is consistent with 

previous report198. However, the opposite is observed in humans. Premenopausal women 

are viewed to have lower risk of atherosclerosis and related heart diseases than age 

matched males, but the risk become similar in postmenopausal women and men of 

comparable age199. The decreased risk with younger women has been linked to protective 

effects of estrogen which decrease in women with age. The cardioprotective mechanisms 

of estrogen include decreased low-density lipoprotein (LDL), increased high-density 

lipoprotein (HDL), and release of vasodilators such as nitric oxide (NO) and prostacyclin 

(PGI2) from vessel walls, which results in inhibition of vascular constriction and 

lowering of blood pressure, as well as decreased platelet aggregation199. Similar disease 

proliferation in both genders with increased age was observed in mice from this study 

demonstrated by comparable lesions (in size and type) in higher prevalent regions. 
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 4.7 CONCLUSIONS 

This study showed a simultaneous comparison of atherosclerosis progression in 

three regions of the aortic root of ApoE-/- mice fed HFD. The ASR is a predilection site 

for lesion development in mice. Lesions in this region progress rapidly to advanced types 

of lesions by 18 weeks of age, which implies that this region is better suited for the study 

of advanced types of atherosclerotic lesions using the ApoE-/- mouse model. By contrast, 

the slowest lesion formation is in the AAR, with lesions progressing to the advanced 

forms in this region only in the 24-week mice. Therefore, AAR is suitable for the study of 

drug targeted at early types of lesions. Lesion types in the OCAR are mainly of types I 

and III in younger mice (8 and 12 weeks) and types IV-V in older mice (18 and 24 

weeks). This region is thus best suited for investigating all lesion types guided by the 

presented age limits for various lesion developments. The progressiveness and age 

dependency of the atherogenic process is also confirmed in this study. The data presented 

serve well as a guide in designing future murine atherosclerotic studies. 
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CHAPTER FIVE 

5.0  SUMMARY AND FUTURE WORK 

5.1 Summary 

The objectives of this work were (i) develop an immunodepletion method for 

bovine fluids, (ii) to analyze changes in proteins in FF and plasma (PL) from cattle with 

high E2 (HE2) or low E2 (LE2) during the pre-ovulatory period, and (iii) characterize 

and quantify atherosclerotic lesion development in three regions of the aortic root of 

ApoE-/- mice.  

A proteomic-shotgun (bottom down) approach was selected to achieve our second 

objective. This approach is suitable for analyzing complex matrices. An important and 

often required step in the shotgun approach is to employ a protein fractionation step. The 

protein fractionation method of choice was immunodepletion due to the high selectivity, 

sensitivity, and reproducibility reported for this method. However, because 

immunodepletion methods for bovine fluids are currently very limited, development of an 

immunodepletion method became necessary and this formed our first objective. 

Therefore an immmunodepletion method utilizing MARS Hu6-HC was developed for 

bovine PL, FF, epididymis sperm types, and ejaculated sperm types. High depletion rates 

for targeted HAPs albumin, IgG, IgA, and alpha-1-antitrypsin (or alpha-1-antiproteinase) 

was achieved. The depletion rates confirmed by sandwich ELISA for albumin, IgG, and 

IgA ranged from 98.7 to 99.9% in all the bovine samples investigated. A similar 

depletion rate was expected for alpha-1-anti-trypsin based on dramatic depletion of its gel 

band. The observed high depletion rates were primarily attributed to the high structural 
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similarity of these proteins between human and bovine. There was also dramatic 

depletion of binder of sperm proteins (BSP) - PDC-109, BSP-A3, and BSP-30kDa, which 

are HAPs in seminal plasma component of ejaculated sperm, forming 40-57% of the total 

protein component. The depletion of the BSP proteins was therefore considered 

beneficial if both bound and depleted fractions are analyzed. 

Protein quantification in proteomics enables detection of expression changes 

between treatments. iTRAQ reagents were successfully used for the quantification. 4-plex 

iTRAQ reagents were used to individually label PL HE2, PL LE2, FF HE2, and FF LE2 

and subsequent nanoLC-ESI-LTQ (PQD) analysis identified a total of 231 proteins with 

high confidence (FDR ≤0.05). 103 of the identified proteins showed expression changes 

(up-regulated or down-regulated) after comparisons between samples. Important 

information was drawn from our proteomic approach: higher number of proteins showed 

expression change between different fluid types (i.e. PL and FF) than between HE2 and 

LE2 of a fluid; E2 has a greater effect on FF proteins than PL proteins; the up- and down-

regulated proteins were mainly localized in the cell, the extracellular region and organelle 

and were mainly associated to cellular process and metabolic process. Binding and 

catalytic activity were the most associated molecular processes; E2 is critical to the 

development and maturation of ovarian follicles. Several of the proteins showing 

expression changes play important roles in folliculogenesis and are modulated by E2; and 

complement and coagulation pathways were the main pathways associated with the 

proteins, supporting the view that folliculogenesis and ovulation are hemorrhagic events. 

This work therefore demonstrates the ability of proteomic to provide insights into 

reproduction in bovine. The presented data specifically provides the basis for further 
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investigation of specific processes involved in E2 regulation of reproductive associated 

proteins.  

Atherosclerosis is the underlining cause for heart attack and stroke, the two 

leading cause of cardiovascular death worldwide. The ApoE-/- -mouse model is popular 

for atherosclerosis research. This work characterized and quantified atherosclerosis 

development in three regions of the aortic root of ApoE-/- mice. The examined three 

regions of the aortic root were ascending aorta region (AAR), region showing the orifices 

of the coronary arteries marking the start of the ascending arch (OCAR), and aortic sinus 

region (ASR). Lesion development in the three regions was location and age dependent.  

It was slowest in the AAR and formed types I-III lesions in this region from 8-18 weeks 

of age and type IV at 24 weeks of age. Lesion development was faster in OCAR and ASR 

and developed to types IV and V by 18 weeks. Average percent lesion values increased 

from the AAR to the OCAR to the ASR, correlating to the histological data. These 

findings would be beneficial in experimental design and targeting certain lesion types in 

aortic roots of the popular ApoE-/- murine atherosclerosis model. 

5.2 Future Work 

5.2.1  Identification of phosphoproteins biomarker candidates for atherosclerosis 

Protein phosphorylation entails the reversible incorporation of phosphate group to 

amino acid side chains of proteins and it is the most studied post-translational 

modification (PTM). Phosphoproteins are important biomarker targets for atherosclerosis 

because of the crucial regulatory role of protein phosphorylation in most cellular 

processes. Cellular processes such as metabolism, contraction and relaxation of muscles, 



129 

 

transcription and genetic information, hormonal and nerve signaling, proliferation, 

apoptosis, differentiation, cell growth, aging, and inflammation are directly or indirectly 

regulated by protein phosphorylation200, 201. Because casual factors for atherosclerosis 

development are widely recognized to be multiple, it is expected that alteration in 

associated phosphorylation/dephosphorylation regulatory processes could create disease 

conditions with the associated phosphoproteins being up- or down-regulated. For 

example, the most studied potential phosphoprotein biomarker is VSMC heat shock 

protein 27 (HSP27)81, 202. HSP27 expression is reported to increase in normal appearing 

vessels adjacent to atherosclerotic lesion whereas levels in the atherosclerotic lesion itself 

are significantly decreased. Both lesion and adjacent artery show decreased HSP27 

phosphorylation compared with reference vessel81, 203.  

The future work would be to use proteomic approach to identify and quantify the 

expression levels of phosphoproteins in the plasma samples from the ApoE-/- and control 

mice of all the ages from this study. Comparison between the plasma proteome of the 

ApoE-/- and control mice, and between the different ages groups could provide more 

insights into the differentially expressed phosphoproteins in the development of 

atherosclerosis. Possible biomarker candidates could then be sought for and further 

investigated.   

The experimental approach could employ  proteomic bottom-up methods which 

could include enrichment of phosphoproteins in the plasma sample, trypsin digestion of 

proteins into peptides, iTRAQ labeling of peptides, SCX separation of peptides, and 

analysis of samples using nanoLC-MS/MS with subsequent protein identification and 

quantification with the SEQUEST and Proteome Discoverer softwares. Enrichment of 
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phosphoproteins is particularly important for three main reasons: 1. Phosphoproteins are 

PTMs and therefore are low abundance in nature. 2. Phosphorylation is a transient 

modification, so the target protein could present in both the native and phosphorylated 

form and 3. Phosphopeptides ionize poorly in MS strategies particularly in the presence 

of non-phosphorylated molecules resulting in lower signal intensities204. Phosphoproteins 

enrichment can be achieved using metal oxide affinity chromatography (MOAC), 

immobilized metal affinity chromatography (IMAC), and titanium dioxide (TiO2)204, 205. 

Because the ApoE-/- group developed atherosclerosis as shown in this dissertation, 

it is expected the phosphoproteome in this group to differ, with phosphoproteins levels 

either up- or down-regulated compared to the control group. Our study shows that ApoE-/- 

mice fed with a HFD developed atherosclerosis as early as 8 weeks, with lesions mainly 

in the early-staged form. By 24 weeks, the disease had reached its advanced stage as 

visualized by the presence of features like the necrotic lipid core (LC) and greater degree 

of fibrous tissues. Therefore, identified phosphoprotein candidates showing expression 

changes in plasma samples from younger ApoE-/- mice (8 or 12 weeks) would be better 

markers for early stages of the disease whereas those from older ApoE-/- mice (18 and 24 

weeks) would be better biomarkers for advanced stage of the disease. Accordingly, 

special attention would be given to such proteins. Also, protein candidates that would be 

consistently present throughout all the stages of the disease would be sought for as these 

would be more robust in predicting risk of the disease.  
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5.2.2 Profiling and iTRAQ quantification of Epididymis and Ejaculated Sperm 

Proteins 

A focus of this dissertation was to profile proteins relevant to productivity of the 

cow, specifically at the folliculogenesis stage. Future work will be to profile sperm 

proteins relevant to bull productivity. During ejaculation, stored sperms from the cauda 

epididymis transit through the vas deferens and secretions from the accessory sex glands 

(prostate gland, cowper’s gland, and seminal vesicles) called seminal plasma is added and 

is released together with sperm as semen. With the contact with the seminal fluid, sperm 

undergoes series of biochemical and structural changes associated with sperm 

capacitation. Capacitation is required to make sperm competent to fertilize an oocyte206. 

Therefore, the protein composition of epididymis and ejaculated sperms are different. 

The future work would use proteomic shotgun approach to investigate these differences. 

Proteins of the sperm membranes and in the fluids surrounding either sperm type (herein 

labeled as ejaculated sperm proteins, ejaculated semen plasma, epididymis sperm 

proteins, and epididymis semen proteins) would be quantitatively measured using iTRAQ 

reagents. The immunodepletion method discussed in this work showed high depletion 

rates for abundant proteins in either sperm type and would be incorporated in the 

analysis. 
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APPENDICES 

Appendix 1. Details on 231 proteins identified in bovine PL and FF with high and low 

E2 during the pre-ovulatory stage. 

Description (* indicates protein was 

up- or down-regulated in at least 

one sample) 

Accession Coverage # Peptides # unique 

peptides 

Score 

  *2-acylglycerol O-acyltransferase 3 

(Fragment)  

E1BN30 2.62 1 1 20.86 

Acidic mammalian chitinase Q95M17 3.18 1 1 34.89 

Actin, cytoplasmic 1  F1MRD0 4.80 1 1 33.01 

Afamin G3MYZ3 3.15 2 2 81.25 

A-kinase anchoring protein 9 

(Fragment)  

F1MXF5 0.86 2 1 428.46 

Aldehyde oxidase 4  E1BL62 1.57 1 1 105.29 

Alpha-1-acid glycoprotein  Q3SZR3 52.48 12 12 1535.16 

*Alpha-1-antiproteinase  P34955 15.14 5 5 529.12 

Alpha-1B-glycoprotein  Q2KJF1 38.37 10 9 1035.57 

Alpha-2-antiplasmin  P28800 16.06 4 3 259.00 

Alpha-2-HS-glycoprotein P12763 25.35 6 6 1390.94 

*Alpha-2-macroglobulin  Q7SIH1 45.43 48 47 7776.09 

Alpha-amylase F1MJQ3 4.50 2 2 15.59 

Angiotensinogen  Q3SZH5 11.79 3 2 91.25 

*Ankyrin repeat and KH domain 

containing 1 

G3MZJ0 0.67 1 1 118.87 

Antithrombin-III  F1MSZ6 43.44 14 13 1121.12 

*AP complex subunit beta F6PZ41 3.11 1 1 56.29 

AP-2 complex subunit beta  G3X7G4 2.84 1 1 779.71 

Apolipoprotein A-I  P15497 63.77 26 26 4696.98 

Apolipoprotein A-II  P81644 27.00 4 4 339.84 

Apolipoprotein A-IV  F1N3Q7 46.58 16 15 655.00 

*Apolipoprotein B E1BNR0 0.68 2 2 140.79 

Apolipoprotein C-III  P19035 16.67 1 1 24.41 

*Apolipoprotein R G3N0S9 8.54 1 1 19.91 

*ApoN protein  Q2KIH2 16.54 4 4 110.40 

*Asparagine-linked glycosylation 5, 

dolichyl-phosphate beta-

glucosyltransferase homolog (S. 

cerevisiae)  

Q2KIM7 10.49 2 2 28.98 

*ATP binding cassette subfamily B 

member 9 

E1BKR0 0.96 1 1 61.08 
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*B double prime 1, subunit of RNA 

polymerase III transcription initiation 

factor IIIB 

F1MEB1 0.68 1 1 129.29 

BCL2 interacting protein 2 F1N6R4 4.46 1 1 53.24 

Beta-2-glycoprotein 1  P17690 13.91 4 4 205.18 

Beta-2-microglobulin  P01888 10.17 1 1 15.16 

C3 and PZP like, alpha-2-

macroglobulin domain containing 8 

E1BAA2 0.61 1 1 200.14 

C4b-binding protein alpha chain  Q28065 4.59 2 2 50.60 

*C8G protein  A8YXZ2 8.86 1 1 10.66 

*CAD protein F1MVC0 0.90 1 1 119.60 

Caspase recruitment domain family 

member 10 

F1MW90 1.36 1 1 72.61 

*CCDC80 protein A5PKA3 2.41 1 1 80.34 

*Cell adhesion molecule 1  Q2TBL2 4.56 1 1 599.16 

Ceruloplasmin F1N076 29.40 22 22 1539.90 

Chaperone activity of bc1 complex-

like, mitochondrial  

Q29RI0 2.01 1 1 84.33 

*Chromosome 14 open reading frame 

166 ortholog  

Q3T0S7 5.31 1 1 175.46 

Chromosome 20 open reading frame 

96 (Fragment)  

F1N466 5.59 1 1 276.11 

Clusterin  P17697 5.24 2 2 116.19 

CMP-N-acetylneuraminate-poly-

alpha-2,8-sialyltransferase  

F1MVI9 2.23 1 1 71.46 

Coagulation factor IX  F1MBC5 2.78 1 1 36.96 

*Coagulation factor V F1N0I3 1.83 2 2 37.79 

*Coagulation factor XII  F1MTT3 2.78 1 1 14.55 

*Coagulation factor XIII A chain  F1MW44 3.96 2 1 89.51 

*Cohesin subunit SA-3 E1B9B0 3.43 2 1 363.69 

*Complement C1s subcomponent Q0VCX1 6.39 2 1 27.90 

Complement C3  Q2UVX4 50.09 65 1 11912.41 

Complement C3  G3X7A5 49.91 65 1 11675.41 

 complement C3 (Fragment)  E1B805 3.82 4 4 165.08 

Complement C5a anaphylatoxin  F1MY85 11.87 15 13 633.38 

Complement C8 alpha chain F1MX87 11.04 4 3 92.83 

Complement C8 beta chain F1N102 12.37 4 3 123.27 

complement component 4A E1BH06 26.88 32 16 1940.14 

*Complement component C6  F1MM86 12.88 7 7 256.29 

Complement component C7  Q29RQ1 4.15 3 3 50.20 

Complement component C9  Q3MHN2 25.36 11 9 700.87 

Complement factor B  P81187 32.06 17 17 2031.94 

Complement factor H  Q28085 11.73 10 9 766.87 
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Complement factor I F1N4M7 12.30 6 6 300.36 

*Conglutinin  P23805 11.59 4 4 99.90 

Corticosteroid-binding globulin  E1BF81 13.37 3 2 86.85 

C-reactive protein  C4T8B4 4.46 1 1 62.37 

C-type lectin domain family 1 member 

A  

Q0VCS6 3.96 1 1 85.12 

*Cumulus cell-specific fibronectin 1 

transcript variant  

B8Y9T0 2.73 4 4 139.98 

*Cytochrome P450 20A1  Q5E980 2.81 1 1 47.83 

*Cytohesin 1 (Fragment) F1MCV3 3.49 1 1 79.67 

*Cytokine receptor like factor 3 E1BCF2 3.19 1 1 33.06 

*DDB1 and CUL4 associated factor 5 F1N0J7 1.83 1 1 125.40 

DEAH-box helicase 16 E1BF68 2.30 1 1 99.02 

*Delta-like protein  E1BDN7 1.40 1 1 71.56 

*Dolichyl-diphosphooligosaccharide--

protein glycosyltransferase subunit 1 

F1MJ36 2.80 1 1 380.50 

*Dpy-19 like 4 (Fragment)  F1MJJ1 2.77 1 1 74.83 

*DUOXA1 protein  A6H723 4.45 1 1 81.06 

*Dynein axonemal heavy chain 11 F1N724 0.22 1 1 198.47 

*Dynein heavy chain domain 1 F1MEF7 0.78 1 1 68.05 

Dystonin F1MPT5 0.15 1 1 569.35 

*E3 ubiquitin-protein ligase CHIP F1MUH4 7.95 1 1 21.38 

*Endophilin-A2  Q2KJA1 7.07 1 1 78.25 

*Engulfment and cell motility 1 F1MQH0 3.30 1 1 115.02 

*Epidermal growth factor receptor 

kinase substrate 8-like protein 1 

E1BKS0 2.00 1 1 31.95 

*Factor XIIa inhibitor precursor E1BMJ0 18.80 7 6 341.85 

*Family with sequence similarity 81 

member A 

F1N4N5 4.38 1 1 32.29 

*Fas activated serine/threonine kinase F1N4L0 7.14 1 1 45.88 

Fetuin-B  Q58D62 6.20 3 3 90.71 

*FGG protein  Q3SZZ9 48.05 16 15 2805.06 

*Fibrinogen alpha chain  A5PJE3 38.70 22 22 4967.64 

*Fibrinogen beta chain  F1MAV0 58.79 31 30 3584.70 

*Fibulin-1 F1MYN5 3.26 1 1 100.67 

*Filamin B E1BKX7 0.91 1 1 188.29 

Fragile X mental retardation 

syndrome-related protein 2 

E1B9L5 4.02 1 1 121.87 

G1/S-specific cyclin-D1  Q2KI22 5.42 1 1 157.65 

*Gametocyte-specific factor 1-like Q3T026 12.43 1 1 49.67 

*Gasdermin B F1MCQ4 1.99 1 1 9.35 

Gelsolin F1MJH1 12.18 6 5 252.10 
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Glutathione peroxidase  G3X8D7 7.59 1 1 13.51 

Glutathione S-transferase  E1BKD8 10.00 1 1 25.42 

*Haptoglobin  G3X6K8 12.47 4 4 123.61 

HAUS augmin like complex subunit 3 F1MNN1 1.16 1 1 34.23 

*HEAT repeat containing 5B E1BB26 1.45 1 1 345.14 

*HECT domain E3 ubiquitin protein 

ligase 2 

F1N7A0 3.48 1 1 47.44 

*HECT, UBA and WWE domain 

containing 1, E3 ubiquitin protein 

ligase 

E1BNY9 0.16 1 1 114.05 

*Hemoglobin subunit alpha  P01966 50.00 5 5 461.90 

*Hemoglobin subunit beta  P02070 70.34 10 10 1298.93 

Hemopexin Q3SZV7 48.15 16 16 2252.77 

 Hepatocyte growth factor activator 

preproprotein (Fragment)  

E1BCW0 10.77 2 2 46.89 

Histidine-rich glycoprotein  F1MKS5 18.28 9 5 530.26 

Histidine-rich glycoprotein 

(Fragments)  

P33433 14.65 5 1 282.49 

*Homeobox D3 E1B856 4.38 1 1 297.84 

*Immunoglobulin lambda-like 

polypeptide 1 

F1MLW7 22.65 4 2 313.19 

*Immunoglobulin lambda-like 

polypeptide 1 (Fragment)  

G3N2D7 12.93 1 1 28.07 

Importin 8 E1B8Q9 0.87 1 1 48.73 

*Inhibin alpha chain  P07994 10.28 2 1 44.05 

 Insulin like growth factor binding 

protein acid labile subunit(IGFALS) 

(Fragment)  

F1MJZ4 9.18 3 3 115.59 

Inter-alpha-trypsin inhibitor heavy 

chain H1 

F1MMP5 22.30 16 15 1046.27 

Inter-alpha-trypsin inhibitor heavy 

chain H2  

F1MNW4 18.50 11 10 531.07 

Inter-alpha-trypsin inhibitor heavy 

chain H3  

P56652 1.12 1 1 99.98 

Inter-alpha-trypsin inhibitor heavy 

chain H4  

F1MMD7 28.28 21 20 1460.66 

*Keratin, type II cytoskeletal 7 Q29S21 4.94 2 2 178.36 

Kinesin family member 13B E1BGB0 0.59 1 1 50.27 

Kininogen-1  P01044 13.85 7 4 339.99 

Kininogen-2 P01045 9.69 5 2 314.99 

*KRAS proto-oncogene, GTPase E1BMX0 6.38 1 1 115.89 

*Kruppel like factor 17 (Fragment)  G3N1K6 5.88 1 1 124.69 

Leucine rich repeat containing 4C F1MXH5 3.44 1 1 111.10 

*Leucine rich repeat kinase 2 E1BPU0 0.36 1 1 147.56 

Leucine-rich alpha-2-glycoprotein 1 Q2KIF2 23.41 6 5 697.42 
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Leucine-rich single-pass membrane 

protein 1  

A5PK14 9.38 1 1 137.68 

L-lactate dehydrogenase B chain  Q5E9B1 5.09 1 1 7.76 

*Lumican  Q05443 9.36 2 1 104.51 

*Lysine methyltransferase 2C 

(Fragment)  

F1MYZ3 0.19 1 1 57.82 

Maltase-glucoamylase G3MY87 1.31 2 2 46.70 

Mitogen-activated protein kinase 

kinase kinase 5 

F1MXH6 0.73 1 1 55.14 

*NADH dehydrogenase [ubiquinone] 

1 alpha subcomplex assembly factor 4  

A4FUH5 9.71 1 1 61.89 

*NADH dehydrogenase [ubiquinone] 

1 beta subcomplex subunit 11, 

mitochondrial  

Q8HXG5 14.94 1 1 21.41 

NADPH-dependent diflavin 

oxidoreductase 1  

Q1JPJ0 3.02 1 1 49.02 

*NIMA (Never in mitosis gene a)-

related kinase 2  

Q2KIQ0 5.22 1 1 17.48 

Nuclear factor interleukin-3-regulated 

protein  

Q08D88 2.81 1 1 87.28 

Olfactory receptor  E1BDG1 4.13 1 1 2.87 

*Ornithine decarboxylase 1 E1BG69 2.49 1 1 68.78 

Pantetheinase  Q58CQ9 6.47 2 2 52.55 

*Pantothenate kinase 3  Q08DA5 2.43 1 1 71.93 

Paraoxonase 1  Q2KIW1 17.18 4 4 109.17 

 Peptidoglycan recognition protein 2 

(Fragment)  

E1BH94 5.76 3 3 68.02 

Phosphatidylinositol-3,4,5-

trisphosphate dependent Rac exchange 

factor 2 

E1BDL7 1.18 1 1 74.79 

*Phosphoglycolate phosphatase  Q2T9S4 6.54 1 1 232.07 

Pigment epithelium-derived factor  Q95121 31.01 8 7 399.24 

*Plasma serine protease inhibitor  Q9N2I2 9.16 2 2 82.95 

Plasminogen  P06868 22.29 15 14 1272.51 

Primary amine oxidase, liver isozyme  Q29437 25.07 12 11 1069.72 

Progesterone immunomodulatory 

binding factor 1 

E1BCF0 0.92 1 1 51.54 

Protein AMBP  F1MMK9 17.05 4 4 255.61 

Protein HP-20  Q2KIT0 28.80 3 3 762.34 

Protein HP-25 homolog 1  Q2KIX7 22.17 3 3 177.58 

Protein HP-25 homolog 2  Q2KIU3 40.00 5 5 1012.44 

Protein phosphatase 1 regulatory 

subunit 37  

A7Z026 1.72 1 1 38.25 

Prothrombin P00735 40.48 18 17 779.65 

*Protocadherin Fat 2 precursor 

(Fragment)  

F1MPF3 0.41 1 1 59.65 
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PSMD1 protein A7MBA2 1.05 1 1 149.30 

*PTPRR protein  A5PKF8 3.36 1 1 21.91 

Pyridine nucleotide-disulfide 

oxidoreductase domain-containing 

protein 1  

A7YVH9 5.78 1 1 104.19 

*Regulating synaptic membrane 

exocytosis 2  (Fragment) 

E1B7V2 1.56 1 1 62.25 

Regulating synaptic membrane 

exocytosis 3 

E1BAB7 3.90 1 1 63.55 

RELT, TNF receptor F1N3F7 3.20 1 1 125.55 

Retinoic acid induced 1 E1B9X1 1.01 1 1 52.94 

Retinol-binding protein 4  P18902 17.49 3 3 158.77 

Ribosomal protein S6 kinase C1 E1BB43 1.70 1 1 122.46 

*Serglycin (Fragment)  G5E5K5 5.33 1 1 28.09 

Serine peptidase inhibitor, Kazal type 

5 

F1MJH0 1.10 1 1 141.20 

Serotransferrin  Q29443 67.90 48 3 10359.71 

Serotransferrin  G3X6N3 69.03 49 2 10020.55 

Serpin A3-2  A2I7M9 30.66 11 4 2476.77 

Serpin A3-4  A2I7N0 27.01 9 2 1486.42 

Serpin A3-7  A2I7N3 14.39 9 9 1090.11 

Serpin A3-8  A6QPQ2 21.77 8 6 516.68 

*Serpin family E member 2 F1MZX2 6.55 2 2 42.36 

*Serpin peptidase inhibitor, clade A 

(alpha-1 antiproteinase, antitrypsin), 

member 3 

G8JKW7 25.24 8 2 1430.95 

Serpin peptidase inhibitor, clade A 

(Alpha-1 antiproteinase, antitrypsin), 

member 7  

Q3SYR0 13.14 4 4 130.93 

SERPINA10 protein  A5PJ69 7.96 3 3 81.88 

SERPIND1 protein A6QPP2 19.15 7 6 323.80 

*Serum albumin  P02769 35.91 18 18 1669.86 

*SH3 domain and tetratricopeptide 

repeats 1 

G3MZW4 0.83 1 1 80.24 

SHBG protein  A5PKC2 8.73 2 1 33.21 

 *Sodium/glucose cotransporter 1-like 

(Fragment)  

G3MXJ0 2.43 1 1 32.29 

Solute carrier family 12 member 7 

(Fragment)  

F1N140 1.65 1 1 25.10 

 *Sphingomyelin phosphodiesterase 5 

(Fragment)  

F1N6X9 3.30 1 1 19.12 

 *SPHK1 interactor, AKAP domain 

containing (Fragment)  

F1MZL5 0.68 1 1 25.46 

Superoxide dismutase [Cu-Zn]  A3KLR9 16.60 3 3 25.75 

*Suppressor of G2 allele of SKP1  Q2KIK0 5.62 1 1 66.16 

*Synaptonemal complex protein 1 E1BLN1 1.90 1 1 41.64 
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*Synaptotagmin 12 E1BEH9 2.85 1 1 103.23 

*TBC1 domain family member 4 E1BPA1 2.00 1 1 172.77 

Tetranectin  Q2KIS7 18.32 3 3 156.53 

*Titin F1N757 0.13 2 2 1674.93 

*Trans-2-enoyl-CoA reductase, 

mitochondrial  

Q7YS70 6.17 1 1 75.63 

Transcription elongation factor A N-

terminal and central domain-

containing protein 2  

A5PKE4 3.85 1 1 20.37 

*Transcription factor 7-like 2 G3N0T7 6.53 1 1 116.94 

*Transcription initiation factor TFIID 

subunit (Fragment)  

F1MF62 0.48 1 1 268.01 

*Transmembrane protein 186  Q5EA03 7.55 1 1 289.96 

*Transthyretin  O46375 41.50 5 4 295.47 

Tubulin beta-6 chain (Fragment) G3X7R8 5.08 1 1 76.34 

Tyrosine-protein kinase  F1MCX4 0.93 1 1 45.94 

Ubiquitin carboxyl-terminal hydrolase 

2  

Q2KHV7 2.15 1 1 158.76 

*Ubiquitin protein ligase E3 

component n-recognin 4 

G3N0A8 0.40 1 1 118.70 

*Uncharacterized protein E1BPG1 2.67 1 1 47.01 

*Uncharacterized protein  F1MI18 13.33 16 15 404.88 

Uncharacterized protein  E1BH27 1.44 1 1 144.13 

Uncharacterized protein (Fragment)  F1MVK1 15.95 20 5 1479.93 

*Uncharacterized protein (Fragment)  G3X6V5 1.12 1 1 242.91 

Uncharacterized protein (Fragment)  G3N2S5 2.56 1 1 112.08 

Uncharacterized protein (Fragment)  G3N1I8 13.01 1 1 11.29 

Uncharacterized protein (Fragment); 

(Ig-like protein) 

G5E513 3.06 1 1 40.37 

Uncharacterized protein (Ig-like 

protein) 

F1MH40 6.67 1 1 127.21 

Uncharacterized protein (Ig-like 

protein) 

F1MLW8 14.16 3 1 123.85 

Utrophin F1MRT9 0.29 1 1 192.91 

*Vacuolar protein sorting-associated 

protein 28 homolog  

E1BIB3 8.60 1 1 90.26 

*Versican core protein F1N6I7 5.95 2 2 91.74 

*Vitamin D-binding protein Q3MHN5 30.17 11 1 1602.50 

*Vitamin D-binding protein  F1N5M2 32.07 11 1 1628.97 

Vitronectin Q3ZBS7 7.77 3 3 333.47 

Von Willebrand factor A domain 

containing 3B 

E1BB22 0.82 1 1 75.31 

*Von Willebrand factor A domain 

containing 5B1 

E1BB39 2.12 1 1 86.25 

Xin actin binding repeat containing 2 E1BL04 0.34 1 1 326.21 
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Zinc-alpha-2-glycoprotein  Q3ZCH5 24.41 5 3 109.60 

Zinc finger CCHC domain-containing 

protein 7 

Q2KIN0 1.65 1 1 260.09 

*Zinc finger protein 618 E1BJV7 2.71 1 1 73.67 

 *Zinc finger SWIM-type containing 3 

(Fragment)  

F1MTI1 2.03 1 1 108.62 

*Zona pellucida binding protein 2 Q0VCG8 12.50 1 1 81.07 

 

Appendix 2. Functions and cellular localization of 231 proteins identified in bovine PL 

and FF with high and low E2 during the pre-ovulatory stage. 

Description (* indicates 

protein was up- or 

down-regulated in at 

least one sample) 

Biological Process Molecular 

Function 

Cellular Component 

  *2-acylglycerol O-

acyltransferase 3 

(Fragment)  

metabolic process catalytic activity   

Acidic mammalian 

chitinase 

metabolic process catalytic activity   

Actin, cytoplasmic 1  cellular component 

organization or biogenesis; 

cellular process; 

localization   

structural 

molecule activity 

cell part; 

organelle 

Afamin localization      

A-kinase anchoring 

protein 9 (Fragment)  

      

Aldehyde oxidase 4  cellular process; 

metabolic process 

binding; 

catalytic activity  

cell part 

Alpha-1-acid 

glycoprotein  

      

*Alpha-1-antiproteinase      extracellular region 

Alpha-1B-glycoprotein  cellular process; 

response to stimulus  

receptor activity   

Alpha-2-antiplasmin      extracellular region 

Alpha-2-HS-glycoprotein biological regulation catalytic activity   

*Alpha-2-macroglobulin  cellular process; 

metabolic process; 

response to stimulus 

binding; 

catalytic activity 

  

Alpha-amylase       

Angiotensinogen      extracellular region 

*Ankyrin repeat and KH 

domain containing 1 

immune system process; 

response to stimulus 

  cell part 

Antithrombin-III      extracellular region 

*AP complex subunit 

beta 

localization      
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AP-2 complex subunit 

beta  

localization      

Apolipoprotein A-I  biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

developmental process; 

localization; 

metabolic process; 

multicellular organismal 

process; 

response to stimulus  

binding; 

catalytic activity; 

transporter 

activity  

extracellular region; 

macromolecular 

complex 

Apolipoprotein A-II  biological regulation; 

cellular component 

organization or biogenesis; 

metabolic process; 

multicellular organismal 

process 

binding; 

catalytic activity; 

transporter 

activity 

extracellular region; 

macromolecular 

complex 

Apolipoprotein A-IV  biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

developmental process; 

localization; 

metabolic process; 

multicellular organismal 

process; 

response to stimulus   

binding; 

catalytic activity; 

transporter 

activity  

extracellular region; 

macromolecular 

complex 

*Apolipoprotein B       

Apolipoprotein C-III        

*Apolipoprotein R biological adhesion; 

cellular process; 

immune system process  

    

*ApoN protein        

*Asparagine-linked 

glycosylation 5, dolichyl-

phosphate beta-

glucosyltransferase 

homolog (S. cerevisiae)  

cellular process; 

metabolic process  

    

*ATP binding cassette 

subfamily B member 9 

cellular process; 

metabolic process 

catalytic activity; 

transporter 

activity 

membrane 

*B double prime 1, 

subunit of RNA 

polymerase III 

transcription initiation 

factor IIIB 

cellular component 

organization or biogenesis; 

cellular process; 

metabolic process 

binding  cell part; 

macromolecular 

complex; 

organelle 

BCL2 interacting protein 

2 

cellular process; 

developmental process; 

metabolic process  

catalytic activity cell part 

Beta-2-glycoprotein 1  biological adhesion; 

cellular process; 

immune system process  
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Beta-2-microglobulin  response to stimulus   macromolecular 

complex 

C3 and PZP like, alpha-2-

macroglobulin domain 

containing 8 

cellular process; 

metabolic process; 

response to stimulus  

binding; 

catalytic activity 

  

C4b-binding protein 

alpha chain  

biological adhesion; 

cellular process; 

immune system process  

    

*C8G protein        

*CAD protein cellular process; 

metabolic process  

catalytic activity cell part 

Caspase recruitment 

domain family member 

10 

cellular process      

*CCDC80 protein       

*Cell adhesion molecule 

1  

      

Ceruloplasmin   catalytic activity macromolecular 

complex; 

membrane 

Chaperone activity of bc1 

complex-like, 

mitochondrial  

    cell part; 

membrane 

*Chromosome 14 open 

reading frame 166 

ortholog  

cellular process      

Chromosome 20 open 

reading frame 96 

(Fragment)  

      

Clusterin    binding  cell part; 

extracellular region; 

organelle 

CMP-N-

acetylneuraminate-poly-

alpha-2,8-

sialyltransferase  

      

Coagulation factor IX      extracellular region 

*Coagulation factor V       

*Coagulation factor XII  metabolic process catalytic activity extracellular region 

*Coagulation factor XIII 

A chain  

metabolic process catalytic activity   

*Cohesin subunit SA-3 cellular process  binding    

*Complement C1s 

subcomponent 

  catalytic activity extracellular region 

Complement C3  cellular process; 

metabolic process; 

response to stimulus  

binding; 

catalytic activity 

  

Complement C3  cellular process; 

metabolic process; 

response to stimulus 

binding; 

catalytic activity  

  

 complement C3 

(Fragment)  

cellular process; 

metabolic process; 

binding; 

catalytic activity  
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response to stimulus 

Complement C5a 

anaphylatoxin  

cellular process; 

metabolic process; 

response to stimulus 

binding; 

catalytic activity 

  

Complement C8 alpha 

chain 

      

Complement C8 beta 

chain 

      

complement component 

4A 

cellular process; 

metabolic process; 

response to stimulus 

binding; 

catalytic activity 

  

*Complement component 

C6  

      

Complement component 

C7  

      

Complement component 

C9  

      

Complement factor B        

Complement factor H        

Complement factor I       

*Conglutinin  biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

localization; 

multicellular organismal 

process   

binding  cell part; 

extracellular region; 

organelle 

Corticosteroid-binding 

globulin  

    extracellular region 

C-reactive protein        

C-type lectin domain 

family 1 member A  

      

*Cumulus cell-specific 

fibronectin 1 transcript 

variant  

biological adhesion; 

cellular process  

binding  extracellular region 

*Cytochrome P450 20A1        

*Cytohesin 1 (Fragment)       

*Cytokine receptor like 

factor 3 

  binding  cell part; 

organelle 

*DDB1 and CUL4 

associated factor 5 

cellular process; 

metabolic process  

binding; 

catalytic activity 

  

DEAH-box helicase 16 cellular process; 

metabolic process  

catalytic activity cell part; 

macromolecular 

complex; 

organelle 

*Delta-like protein  developmental process      

*Dolichyl-

diphosphooligosaccharid

e--protein 

glycosyltransferase 

subunit 1 

cellular process; 

metabolic process  

catalytic activity cell part; 

macromolecular 

complex; 

membrane; 

organelle 
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*Dpy-19 like 4 

(Fragment)  

cellular process; 

metabolic process  

catalytic activity cell part; 

membrane; 

organelle 

*DUOXA1 protein        

*Dynein axonemal heavy 

chain 11 

cellular process  binding; 

catalytic activity 

cell part; 

macromolecular 

complex; 

organelle 

*Dynein heavy chain 

domain 1 

cellular process  binding; 

catalytic activity 

cell part; 

macromolecular 

complex; 

organelle 

Dystonin cellular process  binding; 

structural 

molecule activity  

cell part 

*E3 ubiquitin-protein 

ligase CHIP 

      

*Endophilin-A2        

*Engulfment and cell 

motility 1 

cellular process  binding    

*Epidermal growth factor 

receptor kinase substrate 

8-like protein 1 

biological regulation; 

cellular component 

organization or biogenesis; 

cellular process  

  Cell part; membrane; 

organelle 

*Factor XIIa inhibitor 

precursor 

    extracellular region 

*Family with sequence 

similarity 81 member A 

      

*Fas activated 

serine/threonine kinase 

cellular process      

Fetuin-B  biological regulation catalytic activity   

*FGG protein  biological adhesion binding  extracellular region 

*Fibrinogen alpha chain        

*Fibrinogen beta chain  biological adhesion; 

cellular process  

binding  extracellular region 

*Fibulin-1 cellular process; 

developmental process  

binding; 

structural 

molecule activity 

extracellular region; 

extracellular matrix 

*Filamin B       

Fragile X mental 

retardation syndrome-

related protein 2 

cellular component 

organization or biogenesis; 

cellular process; 

developmental process; 

localization; 

metabolic process; 

multicellular organismal 

process  

binding; 

translation 

regulator activity  

cell part; 

macromolecular 

complex; 

organelle; 

synapse  

G1/S-specific cyclin-D1  biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

metabolic process  

binding; 

catalytic activity  

cell part; 

macromolecular 

complex; 

organelle 
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*Gametocyte-specific 

factor 1-like 

      

*Gasdermin B cellular process; 

developmental process; 

response to stimulus   

binding    

Gelsolin cellular component 

organization or biogenesis; 

cellular process 

binding; 

structural 

molecule activity  

cell part; 

organelle 

Glutathione peroxidase  immune system process; 

metabolic process; 

response to stimulus 

antioxidant 

activity; 

catalytic activity 

  

Glutathione S-transferase        

*Haptoglobin  metabolic process catalytic activity extracellular region 

HAUS augmin like 

complex subunit 3 

cellular component 

organization or biogenesis; 

cellular process  

  cell part; 

organelle 

*HEAT repeat containing 

5B 

      

*HECT domain E3 

ubiquitin protein ligase 2 

      

*HECT, UBA and WWE 

domain containing 1, E3 

ubiquitin protein ligase 

cellular process; 

metabolic process 

  cell part 

*Hemoglobin subunit 

alpha  

      

*Hemoglobin subunit 

beta  

      

Hemopexin     extracellular matrix 

 Hepatocyte growth 

factor activator 

preproprotein (Fragment)  

metabolic process catalytic activity extracellular region 

Histidine-rich 

glycoprotein  

biological regulation catalytic activity   

Histidine-rich 

glycoprotein (Fragments)  

biological regulation catalytic activity   

*Homeobox D3       

*Immunoglobulin 

lambda-like polypeptide 

1 

immune system process     

*Immunoglobulin 

lambda-like polypeptide 

1 (Fragment)  

immune system process     

Importin 8 biological regulation; 

cellular process; 

localization; 

response to stimulus   

transporter 

activity 

cell part; 

organelle 

*Inhibin alpha chain  cellular process; 

developmental process; 

metabolic process; 

response to stimulus   

binding  extracellular region 

 Insulin like growth 

factor binding protein 

biological regulation; binding    
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acid labile 

subunit(IGFALS) 

(Fragment)  

cellular component 

organization or biogenesis; 

cellular process; 

developmental process; 

locomotion; 

multicellular organismal 

process; 

response to stimulus   

Inter-alpha-trypsin 

inhibitor heavy chain H1 

metabolic process binding; 

catalytic activity  

  

Inter-alpha-trypsin 

inhibitor heavy chain H2  

metabolic process binding; 

catalytic activity 

  

Inter-alpha-trypsin 

inhibitor heavy chain H3  

metabolic process binding; 

catalytic activity  

  

Inter-alpha-trypsin 

inhibitor heavy chain H4  

metabolic process binding; 

catalytic activity 

  

*Keratin, type II 

cytoskeletal 7 

      

Kinesin family member 

13B 

cellular process; 

metabolic process  

binding; 

catalytic activity  

cell part; 

organelle 

Kininogen-1  biological regulation catalytic activity   

Kininogen-2 biological regulation catalytic activity   

*KRAS proto-oncogene, 

GTPase 

biological adhesion; 

cellular process; 

localization; 

multicellular organismal 

process  

binding; 

catalytic activity 

  

*Kruppel like factor 17 

(Fragment)  

cellular process; 

metabolic process 

binding  cell part; 

organelle 

Leucine rich repeat 

containing 4C 

      

*Leucine rich repeat 

kinase 2 

      

Leucine-rich alpha-2-

glycoprotein 1 

      

Leucine-rich single-pass 

membrane protein 1  

      

L-lactate dehydrogenase 

B chain  

metabolic process catalytic activity   

*Lumican  biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

developmental process; 

locomotion; 

multicellular organismal 

process; 

response to stimulus     

binding    

*Lysine 

methyltransferase 2C 

(Fragment)  

      

Maltase-glucoamylase metabolic process catalytic activity   
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Mitogen-activated protein 

kinase kinase kinase 5 

biological regulation; 

cellular process; 

metabolic process; 

response to stimulus  

catalytic activity; 

signal transducer 

activity 

  

*NADH dehydrogenase 

[ubiquinone] 1 alpha 

subcomplex assembly 

factor 4  

      

*NADH dehydrogenase 

[ubiquinone] 1 beta 

subcomplex subunit 11, 

mitochondrial  

  catalytic activity   

NADPH-dependent 

diflavin oxidoreductase 1  

  binding; 

catalytic activity 

cell part 

*NIMA (Never in mitosis 

gene a)-related kinase 2  

      

Nuclear factor 

interleukin-3-regulated 

protein  

cellular process; 

metabolic process; 

rhythmic process  

binding  cell part; 

organelle 

Olfactory receptor        

*Ornithine decarboxylase 

1 

biological regulation; 

cellular process; 

metabolic process  

catalytic activity cell part 

Pantetheinase  cellular process; 

metabolic process  

catalytic activity   

*Pantothenate kinase 3        

Paraoxonase 1    catalytic activity   

 Peptidoglycan 

recognition protein 2 

(Fragment)  

      

Phosphatidylinositol-

3,4,5-trisphosphate 

dependent Rac exchange 

factor 2 

cellular process; 

metabolic process; 

response to stimulus  

binding; 

catalytic activity 

membrane 

*Phosphoglycolate 

phosphatase  

cellular process; 

metabolic process  

catalytic activity cell part 

Pigment epithelium-

derived factor  

    extracellular region 

*Plasma serine protease 

inhibitor  

    extracellular region 

Plasminogen    catalytic activity   

Primary amine oxidase, 

liver isozyme  

      

Progesterone 

immunomodulatory 

binding factor 1 

      

Protein AMBP        

Protein HP-20        

Protein HP-25 homolog 1        

Protein HP-25 homolog 2        
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Protein phosphatase 1 

regulatory subunit 37  

immune system process; 

metabolic process; 

response to stimulus 

binding    

Prothrombin metabolic process; 

response to stimulus 

catalytic activity   

*Protocadherin Fat 2 

precursor (Fragment)  

developmental process      

PSMD1 protein cellular process; 

metabolic process  

catalytic activity cell part; 

macromolecular 

complex; 

organelle 

*PTPRR protein        

Pyridine nucleotide-

disulfide oxidoreductase 

domain-containing 

protein 1  

  catalytic activity   

*Regulating synaptic 

membrane exocytosis 2  

(Fragment) 

biological regulation; 

cellular process; 

multicellular organismal 

process  

binding  cell part; 

organelle; 

synapse  

Regulating synaptic 

membrane exocytosis 3 

biological regulation; 

cellular process; 

multicellular organismal 

process  

binding  cell part; 

organelle; 

synapse  

RELT, TNF receptor       

Retinoic acid induced 1 cellular process; 

metabolic process 

binding  cell part; 

organelle 

Retinol-binding protein 4  localization      

Ribosomal protein S6 

kinase C1 

biological regulation; 

cellular process; 

metabolic process; 

response to stimulus  

catalytic activity   

*Serglycin (Fragment)        

Serine peptidase 

inhibitor, Kazal type 5 

  binding    

Serotransferrin    binding  cell part; 

macromolecular 

complex; 

membrane; 

organelle 

Serotransferrin    binding  cell part; 

macromolecular 

complex; 

membrane; 

organelle 

Serpin A3-2      extracellular region 

Serpin A3-4      extracellular region 

Serpin A3-7      extracellular region 

Serpin A3-8      extracellular region 

*Serpin family E member 

2 

    extracellular region 
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*Serpin peptidase 

inhibitor, clade A (alpha-

1 antiproteinase, 

antitrypsin), member 3 

    extracellular region 

Serpin peptidase 

inhibitor, clade A (Alpha-

1 antiproteinase, 

antitrypsin), member 7  

    extracellular region 

SERPINA10 protein      extracellular region 

SERPIND1 protein     extracellular region 

*Serum albumin  localization      

*SH3 domain and 

tetratricopeptide repeats 1 

      

SHBG protein        

 *Sodium/glucose 

cotransporter 1-like 

(Fragment)  

cellular process; 

localization  

transporter 

activity 

  

Solute carrier family 12 

member 7 (Fragment)  

biological regulation; 

cellular process; 

localization; 

multicellular organismal 

process   

transporter 

activity 

  

 *Sphingomyelin 

phosphodiesterase 5 

(Fragment)  

      

 *SPHK1 interactor, 

AKAP domain 

containing (Fragment)  

biological regulation; 

cellular process; 

response to stimulus  

binding  cell part 

Superoxide dismutase 

[Cu-Zn]  

cellular process; 

response to stimulus  

antioxidant 

activity; 

binding; 

catalytic activity 

cell part; 

extracellular region 

*Suppressor of G2 allele 

of SKP1  

biological regulation; 

metabolic process 

    

*Synaptonemal complex 

protein 1 

      

*Synaptotagmin 12 biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

multicellular organismal 

process  

binding  membrane 

*TBC1 domain family 

member 4 

cellular component 

organization or biogenesis; 

cellular process; 

localization; 

metabolic process  

binding; 

catalytic activity 

cell part 

Tetranectin  multicellular organismal 

process 

  extracellular region 

*Titin cellular component 

organization or biogenesis; 

cellular process; 

binding; 

structural 

molecule activity  

cell part; 

macromolecular 

complex; 
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developmental process; 

multicellular organismal 

process  

organelle 

*Trans-2-enoyl-CoA 

reductase, mitochondrial  

cellular process; 

metabolic process  

catalytic activity cell part; 

organelle 

Transcription elongation 

factor A N-terminal and 

central domain-

containing protein 2  

metabolic process binding    

*Transcription factor 7-

like 2 

      

*Transcription initiation 

factor TFIID subunit 

(Fragment)  

cellular component 

organization or biogenesis; 

cellular process; 

metabolic process  

binding; 

catalytic activity 

cell part; 

macromolecular 

complex; 

organelle 

*Transmembrane protein 

186  

      

*Transthyretin  cellular process; 

metabolic process 

    

Tubulin beta-6 chain 

(Fragment) 

cellular component 

organization or biogenesis; 

cellular process  

binding; 

structural 

molecule activity  

cell part; 

organelle 

Tyrosine-protein kinase        

Ubiquitin carboxyl-

terminal hydrolase 2  

      

*Ubiquitin protein ligase 

E3 component n-recognin 

4 

      

*Uncharacterized protein       

*Uncharacterized protein        

Uncharacterized protein  cellular process; 

metabolic process  

catalytic activity   

Uncharacterized protein 

(Fragment)  

cellular process; 

metabolic process; 

response to stimulus  

binding; 

catalytic activity 

  

*Uncharacterized protein 

(Fragment)  

      

Uncharacterized protein 

(Fragment)  

      

Uncharacterized protein 

(Fragment)  

      

Uncharacterized protein 

(Fragment); (Ig-like 

protein) 

biological regulation; 

cellular component 

organization or biogenesis; 

cellular process; 

immune system process; 

localization; 

metabolic process; 

multicellular organismal 

process; 

response to stimulus  

binding  extracellular region; 

macromolecular 

complex; 

membrane 

Uncharacterized protein 

(Ig-like protein) 

immune system process     
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Uncharacterized protein 

(Ig-like protein) 

immune system process     

Utrophin cellular component 

organization or biogenesis 

    

*Vacuolar protein 

sorting-associated protein 

28 homolog  

cellular process; 

localization; 

metabolic process   

binding  cell part; 

macromolecular 

complex; 

membrane; 

organelle 

*Versican core protein developmental process; 

multicellular organismal 

process   

  extracellular region; 

extracellular matrix 

*Vitamin D-binding 

protein 

localization      

*Vitamin D-binding 

protein  

localization      

Vitronectin cellular process      

Von Willebrand factor A 

domain containing 3B 

      

*Von Willebrand factor 

A domain containing 5B1 

      

Xin actin binding repeat 

containing 2 

cellular process  structural 

molecule activity 

cell part 

Zinc-alpha-2-

glycoprotein  

    extracellular region 

Zinc finger CCHC 

domain-containing 

protein 7 

      

*Zinc finger protein 618 metabolic process binding    

 *Zinc finger SWIM-type 

containing 3 (Fragment)  

      

*Zona pellucida binding 

protein 2 
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Appendix 3 

 

(A) Molecular Function translation regulator
activity (0.7%)
binding (42.7%)

receptor activity
0.7%)
structural molecule
activity (4.9%)
signal transducer
activity (0.7%)
catalytic activity
(44.1%)
antioxidant activity
(1.4%)
transporter activity
(4.9%)

(B) Cellular Component
synapse (2.0%)

membrane (8.1%)

macromolecular
complex (12.8%)
extracellular matrix
(2.0%)
cell part (29.7%)

organelle (20.3%)

cellular component organization or biogenesis

cellular process

localization

biological regulation

response to stimulus

developmental process

rhythmic process

multicellular organismal process

biological adhesion

locomotion

metabolic process

immune system process

7.1%

28.2%

6.8%

8.9%

9.6%

4.6%

0.4%

5.7%

2.5%

0.7%

21.8%

3.6%
(C) Biological Process

 PANTHER analysis of all  identified proteins (231 in total) in bovine plasma (PL) and 

follicular fluid (FF) containing low and high pre-ovulatory E2. Proteins were classified 

according to (A) Molecular Function (B), Cellular Component, and (C) Biological Processes. 

The percentages in the different categories are comparable to that from the analysis of only 

proteins showing expression changes. 


	Mass Spectrometry-Based Quantitative Proteomic Analysis of Biological Fluids
	Recommended Citation

	tmp.1556297557.pdf.JR1ME

