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ABSTRACT 

CROPPING SEQUENCE AFFECTS SUBSEQUENT SOYBEAN YIELD, SOIL 

MICROBIOME AND SOIL HEALTH 

IZZET BULBUL 

2019 

Rotation is an important cultural practice that farmers use to manage crop growth 

and diseases. Diversified crop rotations directly affect plant residue inputs that may 

enrich specific groups of microbes that form beneficial associations with the following 

crop. At two field sites, yield differences were observed in soybeans planted after the 

following four long-term (14 year) crop sequences: continuous corn (CC), corn (Zea 

mays)/corn/soybean (Glycine max) (CCS), corn/soybean/corn (CSC), 

soybean/corn/soybean (SCS). Soybean yields were in decreasing order, 

CC>CCS>CSC>SCS, and the yield differences could not be explained by soil chemical 

and physical properties previously reported by a different study on the same sites. Our 

goal was to relate soil biological properties, including soil health indicators and soil 

microbial community composition, with the differences in soybean yields. To assess the 

soil health, soil protein, permanganate-oxidizable carbon (POXC) and β-glucosidase 

activity were measured. After 14 years of the above-mentioned rotation regimes, soil 

protein was significantly higher in continuous corn (CC) plots compared with other 

rotations (p<0.05) in one of the two sites. POXC was also significantly greater in CC 

plots in one of the two sites (P<0.001). For microbial composition, we found uncultured 

order JG30-KF-AS9 was associated with higher POXC and protein levels. The taxa of 

bacteria Chthoniobacter, and one taxa of fungi, Ascomycota, were associated with higher 
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levels of β-glucosidase and correlated with the lower soybean yield observed in the SCS 

treatment. We also found a differential abundance of specific bacterial and fungal 

Operational Taxonomic Units (OTUs) to be informative on predicting yield differences, 

especially fungal pathogens from the genera Macrophomina and Corynespora at one 

location. Informative bacterial OTUs, however, are not pathogens, and belong to an 

uncultured family.
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CHAPTER ONE 

LITERATURE REVIEW 

Crop rotation is a series of different crops planted in the same field following a 

defined order (e.g. Corn-soybean) to manage the soil quality, soil fertility, water, weeds 

and diseases in an agroecosystem (1). It is a common practice for farmers to “rotate” the 

type of crops planted in their fields throughout the years (2, 3). Corn (Zea mays) and 

soybeans (Glycine max) are the annual main crop species in the Midwest U.S. that cover 

about 75% of the land surface (4). Several factors are at work to sustain this practice: 

efficient pesticides and fertilizers, the policies of the government and favorable 

economics (5, 6). In the 1950s and early 1960s, the use of fertilizers and pesticides were 

considered as a probable substitution for crop rotation, but that theory was proved wrong 

(2). Crop rotation has been largely accepted to have many advantages (7). Rotating crops 

is thought to increase the yield and sustainability (2). One study conducted six types of 

crop rotations to evaluate corn grain yields and the results showed that the rotations with 

alfalfa, soybeans, oats were associated with enhanced corn grain yields (6). R. Holliday 

(8) reported that regular corn and beans crop rotation could help to decrease the effect of 

Ustilago maydis disease, which affects overall corn yields by balancing the nitrogen to 

phosphorus ratio. Crop rotations play a role in improving the soil nutrient cycle because 

different crops can be effective in recovering different nutrients lost from soil (9). 

Rotating crops helps to increase soil microbial functions, soil accumulation and carbon 

segregation in the soil. Hence, crop rotations have a significant impact on improving soil 

quality (10). Moreover, crop substitutions have a positive effect on soil organic carbon 
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(SOC) and microbial biomass, break weed and disease cycles and decrease soil erosion 

(7, 11, 12).  

 The long-term crop rotation experiment helps to identify problems that threaten 

future productivity as an early warning system (13). The properties of soil are affected by 

crop rotation and tillage management. Therefore, it is important to understand the long-

term rotation impacts to sustain optimum soil properties (14). Having sustainable 

agriculture management by using long-term crop rotation is an imperative helper of our 

knowledge of practical solutions. Most of the existing agricultural problems may be 

explained by using long-term experiments (15). Therefore, it is important to evaluate 

different cultural practices, such as crop rotation, for the response of microorganisms in 

the soil because soil microorganisms can act as a bioindicator of changes in soil 

conditions (16). 

The structure of the microbial communities associated with soil and plants can be 

affected by crop rotation (17). A previous study showed that crop rotation had a positive 

impact on the microbial community structure in the soil by increasing microbial diversity 

when crops were rotated compared to when the same crop was continuously planted (18). 

It is known that microbial communities respond to factors such as plant host and genetics, 

soil properties and environmental conditions (1). Additionally, land management 

influences the biological activity in soil, and soil microbial activity is relevant to soil 

erosion rates (19). The right management of the soil is one of the cornerstones of 

agricultural management. Soil provides basic ecosystem services, including nutrient 

cycling, water regulation and the transformation of organic materials and toxic 

compounds, alongside pest and disease control (20).  
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Microorganisms represent the countless and metabolically complex life forms in 

the soil. On a per gram soil basis, it is estimated that there are at least one billion bacteria, 

a million fungi, millions of protozoa,  thousands to millions of algae and several dozen 

nematodes present (1). The microbiome is an integral part of almost all soil processes 

(21). Soil microorganisms producing extracellular enzymes are responsible for the 

biotransformation that provides the nutrients to plants and for maintaining the soil 

function (22). Soil microbial communities are particularly important to the support of 

ecosystems around the world, impacting nutrient cycling (22, 23), carbon cycling (24, 

25), suppression of diseases (17) and enrichment and conservation of soil organic matter 

(SOM) (24, 26, 27). Furthermore, microbial diversity and composition are the main 

factors that ensure the maintenance of ecological functions (28-30). In this way, 

elucidating the causes and controls of the soil microbial community’s distribution and 

composition are necessary to reach a better understanding of sustainable agriculture (31, 

32). Since soil microbiome plays a critical role in the improvement of soil from 

degradation (33, 34), the evaluation of microbial properties provides valuable information 

in soil health and soil quality, which contribute to sustainable agriculture (35).  

Bacteria are known as the most abundant species among the microorganisms (36, 

37) and contribute to many activities, including nitrogen-fixing and carbon cycling in the 

soil (37, 38). There are several algorithms and databases used to identify microorganisms 

taxonomically (39). Based on the amplicon sequencing approach, 16S ribosomal RNA 

(rRNA) gene sequences are commonly used to determine the bacterial classifications 

(40). Analysis of the 16S rRNA gene sequence is a suitable way to detect the uncultured 
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bacteria. It can also be used routinely for the identification of mycobacteria and may aid 

in recognition of new pathogens and uncultured bacteria (41) 

Permanganate Oxidizable Carbon (POXC) 

Organic matter content is an indicator of soil health. Permanganate oxidizable 

carbon (POXC) is a simple procedure for estimating labile organic carbon in soil. POXC 

is used as an indicator of soil quality parameters to determinate soil labile organic carbon 

(LOC), which is the most reactive and dynamic driver in soil organic carbon (SOC) (42). 

The advantages of  POXC are that it is a low cost and harmless method for measuring 

LOC (43). The SOC pool is greater than the atmospheric carbon pool and biomass carbon 

pool by 2.2 times and 2.8 times, respectively (44, 45). Soils form the greatest terrestrial 

organic carbon pool with more than 1550 Pg (1 Pg = 1015 g) (46). Carbon sequestration in 

soil is a mechanism to reduce the carbon dioxide concentration in the atmosphere (45). 

On the other hand, LOC is directly associated with soil carbon (C) and nitrogen (N) 

mineralization (47), and LOC may promote plant productivity due to influences on 

enhancing soil health and fertility (48). Positive correlations have further been found 

between POXC and soil-microbial parameters, comprising microbial biomass and, in 

particular, organic C (42, 49). 

Soil Protein Index 

The Autoclaved Citrate Extractable (ACE) Protein Content refers to the quantity 

of protein available in the SOM (50). The largest organic N pool in the soil is represented 

by proteins (51-53). The labile organic N pool is used to evaluate soils capacity to 

provide N (54). Since labile soil organic matter is an energy source accessible to 

microorganisms, it provides mineralization by playing a dominant role in N 
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mineralization in soil (55). Regarding plant growth and development, N mineralization is 

a critical process in the soil to provide an adequate amount of N for the use of the plant 

(56). Since protein content is an indicator of biological and chemical soil health, 

especially for SOM quality, it is directly linked to general soil health status (57). N-linked 

glycoprotein, which is called glomalin, is produced by arbuscular mycorrhizal fungi 

hyphae (58, 59), and glomalin is considered an enhancer of soil drainage, microbial 

activity and carbon sequestration in soil ecosystems (60). Also, there have been many 

studies that show soil protein is sensitive to crop rotation and tillage (57, 61-63). 

β-glucosidase Enzyme Activity  

Soil β-glucosidase, which plays a central role in the carbon cycle as an active 

enzyme in the soils (64), is one of the important indicators of soil quality (65). In terms of 

the carbon cycle, the importance of soil microorganisms in many ecosystems hinges on 

breaking down cellulose in plant cell walls (66). Cellulose is an organic compound 

widely found in the biosphere (67). β-glucosidase activity, which has a role in the final 

stage of cellulose degradation in soils, supplies important energy sources, like simple 

sugar, for microorganisms (68). Microorganisms have an important position for β-

glucosidase activity in the soils. Several microorganisms are reported for the production 

of β-glucosidase, especially filamentous fungi, such as Penicillium brasilianum (69), P. 

decumbens (70), Aspergillus niger (71), A. oryzae (72), Phanerochaete chrysosporium 

(73), Paecilomyces sp. (74), Debaryomyces pseudopolymorphus (75), Stachybotrys sp. 

(76) and Fmitopsis palustris (77). Reports for the production of β-glucosidase from yeast 

such as Candida sp. (78), and from various bacteria such as Flavobacterium johnsonae 

(79) and Lactobacillus plantarum (80) are also available. 
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 S. M. Zuber, et al. (14) concluded that long term cropping sequences between 

continuous corn and corn-soybean rotation do not result in significant differences in soil’s 

physical and chemical properties. Therefore, it was hypothesized that biological 

properties, including soil health indicators, diversity, and richness of soil microbiome, 

were correlated with differences in the productivity of the crop. Our objectives were to 

determine the effect of rotation on soil protein, organic carbon and β-glucosidase, and to 

identify microbiome composition differences in four different crop rotations that 

correspond to different soybean yields following the long-term rotation regimes. 
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CHAPTER TWO 

CROPPING SEQUENCE AFFECTS SUBSEQUENT SOYBEAN YIELD, SOIL 

MICROBIOME AND SOIL HEALTH 

INTRODUCTION 

A crop rotation is a series of different crops planted in the same field following a 

defined order (e.g. Corn-soybean) to manage the soil quality, soil fertility, water and 

weeds in an agroecosystem. Crop rotations are useful to the farmers for recycling 

different types of nutrients from the soil required by different crops. In order to maintain 

the fertility of the soil, the crops should be changed routinely, since not all the same 

nutrients are being used at the same rate each season. When planted within corn-soybean 

systems, diversified cropping rotations can provide important ecosystem services, such as 

enhancing C concentration and nutrition levels in the soil, which, in turn, provides 

environmental benefits like reduced soil erosion and nitrate leaching (1).  

The observations that yield differences often do not correlate well with soil 

chemical and physical properties suggest that plant-associated microbiomes, i.e. 

“phytobiomes,” can be the drivers for such differences (14, 81). Soil health is the term 

used for defining the properties of soil to sustain plant and animal productivity, maintain 

or enhance water and air quality and support human health and habitation, within the 

natural or managed ecosystem boundaries. It is vital for agriculture business operations 

since soil health is degrading at a very fast rate due to modern agricultural practices like 

aggressive tillage, mono-cropping, excessive usage of inorganic fertilizers, excessive 

removal of crop residues and usage of broad-spectrum pesticides (1). In order to assess 

soil health, we used main three biological indicators, POXC, protein content and β-
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glucosidase activity, to investigate the correlation between these parameters and the 

microbiome. Since soil bacteria and fungi directly mediate the carbon and nitrogen cycle, 

and regulate the nutrient availability for plants, these three soil biological indicators are 

expected to be associated with members of the soil microbiome. 

MATERIALS AND METHODS 

Fields Descriptions and Soil Sampling 

Field conditions were described in a published article (82).The Urbana soil site 

structure is on Flanagan silt loam and the Monmouth site soil structure is on Muscatune 

silt loam. Soils were sampled at a 0-15 cm depth from 14 year long-term rotation plots 

(Northwestern Illinois and Agricultural Research Center of the University of Illinois, 

Urbana-Champaign) with two locations (Monmouth IL (GIS: 40.931 -90.722) and 

Urbana IL (GIS:40.048 -88.232)). The experiment had 4 treatments: T1: Continuous corn 

(CCCCCCCCCCCCCC-S), T2: 2-yr of corn (CCSCCSCCSCCSCC-S), T3: 1-yr of corn 

(SCSCSCSCSCSCSC-S) and T4: 1-yr of soybean (CSCSCSCSCSCSCS-S) ahead of 

soybean x 4 rep (block) x 3 subsamples/plot in 2016. The field layout followed the 

random complete block design at both locations. After sampling, soils were kept cool 

during transportation and stored in a -80°C horizontal freezer until further processing. 

Determination of Permanganate Oxidizable Carbon (POXC)  

The procedure defined by Weil et al. (42) was followed for the measurement of 

the POXC. The standard stock solutions were prepared as 0.25, 0.50, 0.75 and 1.0 ml of 

KMnO4. From each sample, 2.5 g of dry soil were weighed in two 50 mL centrifuge 

tubes. In each tube, 18 ml of deionized water and 2.0 ml of 0.2 M KMnO4 stock solution 

were added into the tubes. A control was prepared in the same manner without adding the 
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soil. Tubes were put on a shaker at 240 oscillations per minutes for 2 minutes. After 

shaking, caps were removed and the soil allowed to settle down for 10 minutes in a dark 

place. The supernatant from the extracted samples were loaded in 96 well plates at the 

volume of 200 µl, with the same for the standards and control. The colorimetric method 

was used to measure the absorbance by a microplate reader (BioTek Synergy 2 Multi-

Mode Microplate Reader) at the wavelength of 550 nm. If a sample required dilution due 

to exceeding the range of the standard curve, 0.5 ml of the supernatant from each sample 

was mixed with 49.5 ml H2O into a second set of centrifuge tubes and calculated with the 

dilution factor accounted for.  

Soil protein Index 

Soil protein content was measured by following a protocol modified from Wright 

and Upadhyaya (1996) and Moebius-Clune et al. (2016) (50, 83). Standard solutions were 

prepared as 0, 25, 125, 250, 125, 250, 500, 750, 1000, 1500, and 2000 µg/ml of Albumin 

(BSA) (Pierce™ BCA Protein Assay Kit, LOT: TB263610, Thermo Scientific). 3.0 g of 

soil was weighed for each glass screw-top tube for three replications. 24 ml of sodium 

citrate buffer (pH 7.0) were added to each tube and mixed well. Samples were placed in a 

centrifuge at 180 rpm for 5 minutes. The tubes were put in an autoclave at 121°C and 15 

psi for 30 minutes. After the tubes were cooled, 2 ml of the slurry was transferred to 

clean microcentrifuge tubes to remove soil particles where samples were centrifuged at 

10,000 x gravity. 200 µl of the supernatant for each sample was placed into 96 well plates 

and incubated at 60°C for 30 minutes. After the incubation, the microplate reader 

(BioTek Synergy 2 Multi-Mode Microplate Reader) was used to obtain the optical 

density reading at the wavelength of 562 nm to measure the soil protein index. 
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Soil β-glucosidase enzyme activity 

Soil β-glucosidase enzyme activity was assayed according to the method 

described by Deng and Tabatabai (1994) (84). P-nitrophenol standard (4-nitrophenyl-β-D-

glucopyranoside, LOT: 001788-20140328, Chem-Impex International, Inc.) solutions 

were made from a series of dilutions resulting in 0, 10, 20, 30, 40 and 50 mg of p-

nitrophenol for a standard curve. Each sample as dry soil was weighed into three 50 mL 

Erlenmeyer flasks as two reps and one control. Subsequently, 2 ml of MUB (pH 6) and 

0.5 ml p-Nitrophenyl β-D-glucoside (PNG) solutions (4-nitrophenyl-β-D-

glucopyranoside, LOT: 001788-20140328, Chem-Impex International, Inc.)  were added 

to the two reps of the samples, but not the controls. All samples were placed in an 

incubator at 37°C for 60 minutes. After 60 minutes of incubation, 0.5 ml of 0.5 M 

calcium chloride (CaCl2) and 2 mL 0.1 tris aminomethane (THAM) buffer (pH 12) were 

added and mixed well. At the same time, 0.5 mL PNG solution was added to the control 

samples. Then, the soil suspension was filtered through a Whatman filter paper No.2 into 

pre-labeled 50 ml disposable falcon tubes. THAM buffer (pH 10) was used to dilute 

samples at the rate of 1:4 (note: the controls were not diluted) and samples were pipetted 

into 96 well microplates. The absorbance was measured using a microplate reader 

(BioTek Synergy 2 Multi-Mode Microplate Reader) at the wavelength of 405 nm. 

Soil DNA Extraction 

The FastDNA™ Spin Kit (For soil, Cat.No.116560200, MP Biomedicals, Solon, 

Ohio) was used following the manufacturer’s protocol for DNA extraction from soil with 

some minor modification. 500 mg of soil was placed in each Lysing Matrix E tube. 978 

µl sodium phosphate buffer and 122 µl MT buffer were added to each sample and 
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allowed to homogenize in a vortex adapter as horizontal at the highest speed for 20 

minutes. Samples were centrifuged at the speed of 14,000 rpm for 10 minutes. After 

centrifugation, the supernatant was transferred to a new 2 ml centrifuge tube and 250 µl 

protein precipitation solution was added. Then, the tube was inverted to mix and 

centrifuged at 14,000 rpm for 5 minutes. In order to get a better mixing and DNA 

binding, the supernatant was transferred to a 15 ml microcentrifuge tube, 1 ml binding 

matrix solution added to the supernatant, and inverted gently by hand for 2 minutes and 

the silica beads were left to settle for 3 minutes. After that, 500 µl of supernatant was 

discarded from the samples. The binding matrix in the remaining supernatant was 

resuspended and 600 µl of the mixture was transferred to a spin™ filter where it was 

centrifuged at 14,000 rpm for 1 minute. After centrifuge, catch tubes were emptied and 

the remaining mixture was added to the same spin™ filter and centrifuged again. 500 µl 

of SEWS-M solution was added to the filters with empty catch tubes and were 

centrifuged at 14000 rpm for 1 minute for washing (note: this step was repeated 3 times). 

Eventually, filters sitting on top of empty catch tubes were centrifuged at 14,000 rpm for 

2 minutes. The catch tubes were discarded and replaced by new catch tubes. Next, spin™ 

filters were left for drying at room temperature for 5 minutes and 100 µl of deionized 

water was pipetted onto the spin filter. Lastly, tubes were centrifuged at 14,000 rpm for 1 

minute to elute the DNA and spin filters were discarded to get the eluted DNA in the new 

catch tubes. Samples were kept at -20°C until CTAB purification of DNA. 

CTAB (Cetyltrimethylammonium bromide) Purification of DNA (post-extraction) 

The above DNA extract was placed in a pre-labeled 1.5 ml tube and 5 M of 16.25 

µl NaCl solution added. 12 µl of CTAB stock solution (0.7 M NaCl, 10% CTAB) was 
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added to each DNA samples then mixed well and incubated at 65°C for 15 minutes. After 

15 minutes of incubation, 128 µl of chloroform: isoamyl alcohol (24:1) was added to 

each sample and mixed carefully. Samples were placed in a centrifuge at 14,000 rpm for 

5 minutes. The top layer of sediment was transferred carefully to a clean 1.5 ml 

centrifuge tube using filter tips and 256 µl of 100 % ice-cold ethanol (EtOH) was added 

to precipitate DNA. In order to increase DNA precipitation, samples were put in a freezer 

(-20°C) overnight. After that, samples were placed in a centrifuge at the maximum speed 

at 4°C for 30 minutes, followed by discarding the supernatant carefully to avoid 

disturbing the pellet, which was washed by adding 125 µl of 70% EtOH to each sample. 

Samples were centrifuged at the maximum speed for 10 minutes. After centrifugation, the 

supernatant was removed, and samples were placed in a speed-vac (Savant ISS100-

Thermo Scientific) to dry the pellets for 15 minutes at low setting. 30 µl dH2O was added 

to each sample to resuspend the DNA. The DNA concentrations were measured to 

evaluate ratios of A260/280 and A260/230 the purity of DNA using Thermo Scientific 

NanoDrop™1000 Spectrophotometer. Finally, DNA samples were stored at -20°C in the 

freezer until further analysis. 

Bacterial and Fungal DNA Amplicon Sequencing 

Bacterial 16S rDNA and fungal Nuclear ribosomal internal transcribed spacer 

(ITS) classifications were amplified to identify the Operational Taxonomic Units (OTUs) 

and sequenced by University of Minnesota Genomic Center (Minneapolis, Minnesota, 

US) using MiSeq-V3 chemistry from a published protocol with a dual-index approach 

(85). The 16S V3-V4 and ITS-1 regions were targeted for the bacterial community and 

fungal community, respectively. 
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Data Analyses 

Statistical analyses were done using SAS-JMP version pro 14.0.0 (SAS Institute 

2018) to analyze yields, POXC, protein index and β-glucosidase activities using the 

Analyisis of Varience followed by LSMeans Differences Tukey HSD test. The threshold 

was designated for probability at P < 0.05. The classifications of bacteria and fungi were 

determined using QIIME2 (86) followed by the ANCOM test (87). Also, the multiple 

analyses module in XLSTAT (v. 2019) was used for the canonical correspondance 

analysis (CCA). 

RESULTS 

At two field sites, which are Monmouth and Urbana, Figure 1 and Figure 2 

showed significant differences in soybean yields planted after the four long-term (14 

year) crop sequences - continuous corn (CC), corn/corn/soybean (CCS), 

corn/soybean/corn (CSC) and soybean/corn/soybean (SCS). Soybean yields were in 

decreasing order: CC>CCS>CSC>SCS. We observed that there were significant 

differences between the two locations, so the following statistical analysis was performed 

separately for each location. Yields from CC (Mnm:5,255 kg ha−1 and Urb:5,614.25 

kg ha−1) plots were significantly higher than CCS, CSC and SCS crop rotations with p-

value less than 0.05 at both sites. At the Monmouth site, there were no significant 

differences among the CCS, CSC and SCS plots, but the average yields were in 

decreasing order of 4,825.5 kg ha−1, 4,676 kg ha−1 and 4,597.75 kg ha−1 for each 

treatment, respectively. At the Urbana site, the yield at CCS (5,009.75 kg ha−1) plots were 

also significantly higher (P<0.05) than CSC (4,802.75 kg ha−1) and SCS (4,802.75 
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kg ha−1) plots. There was no significant differences between CSC and SCS treatments at 

the Urbana site. 
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Figure 2. Effect of rotation treatment on soybean yield (kg/ ha−1) in Urbana, IL 

in 2016. 

Figure 1. Effect of rotation treatment on soybean yield (kg/ ha−1) in Monmouth, 

IL in 2016. 



15 
 

Table 1: Soil Protein, Permanganate Oxidizable Carbon (POXC) and β-glucosidase 

enzyme analysis for Urbana and Monmouth Location 
†CC, continuous corn; CCS, two years corn; CS, corn-soybean; SCS, soybean-corn. 

ǂMeans within the same column followed by different small letters are significantly 

different at P<0.05 for rotation. 
ǂMeans within the same row followed by different capital letters are significantly 

different at P<0.05 for rotation. 
 

Data for soil protein, POXC and β-glucosidase are presented in Table 1. Soil 

protein and POXC analyses results showed that there were no significant differences 

between Urbana and Monmouth when comparing same treatment for two locations, but 

β-glucosidase enzyme analysis displayed that Urbana and Monmouth had significant 

differences when comparing the same treatment for each location statistically. 

After 14 years of the above-mentioned rotation regimes, shown in Figure 3, we 

found that POXC was significantly greater in CC (815.4 mg C/kg soil) and CCS (735.7 

mg C/kg soil) plots (P<0.001) than CS and SCS plots. Also, there were no difference 

between CS (605.6 mg C/kg soil) and SCS (585.1 mg C/kg soil) plots when we compared 

POXC levels at the Monmouth location. At the Urbana site, Figure 4 showed that POXC 

was significantly higher in CC (646.7 mg C/kg soil) and CCS (776.7 mg C/kg soil) 

treatments compared to the other plots (P<0.05), and POXC levels were in decreasing 

order of CCS (776.7 mg C/kg soil) >CC (646.7 mg C/kg soil) >SCS (561.6 mg C/kg soil) 

>CS (489.7 mg C/kg soil). However, there were no significant differences between CC 

 Protein Analysis (mg/gm 

per kg soil) 
POXC (mg C/kg of Dried 

soil) 
β-glucosidase (mg p-
nitrophenol/ gm)  

 

Treatment† Urbana         Monmouth  Urbana        Monmouth    Urbana        Monmouth 
CC 7360.0aǂA      5841.7aA 646.78abA   815.47aA 0.925bB    1.510aA 

CCS 5627.4abA       5426.0aA 776.76aA     735.73aA 0.914bB     1.241bA 

CS 5416.8bA        5453.3aA 489.77bA      605.65bA 0.868bB    1.728aA 

SCS 5613.0abA       5468.8aA 561.65bA      585.13bA 1.187aB     1.725aA 

p-value .0242* .0001 .0001* 



16 
 

and CCS plots, so was there no difference between CC, CS and SCS plots. Both data sets 

passed the normality test. 

 

 

 

 

 

 

As for the protein index measured from each treatment for two locations, 

statistical analyses showed that the CC plot had higher protein content when we 
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Figure 3. Effect of rotation treatment on permanganate oxidizable carbon (POXC) of 

soil samples from Monmouth, IL (mg C/kg of dried soil). 

Figure 4. Effect of rotation treatment on permanganate oxidizable carbon (POXC) of 

soil samples from Urbana, IL (mg C/kg of dried soil). 
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compared with other crop treatments at the Urbana plot (Figure 5). CC (7,360 mg/gm−1 

per kg soil) treatment was significantly greater than CCS (5,627.3 mg/gm−1 per kg soil), 

CS (5,416.8 mg/gm−1 per kg soil) and SCS (5,612.9 mg/gm−1 per kg soil) treatments 

(p<0.05). There was no difference between CCS and SCS plots. As for the Monmouth 

location, no significant differences in protein content were found among the CC (5,841.7 

mg/gm−1 per kg soil), CCS (5,425.9 mg/gm−1 per kg soil), CS (5,453.3 mg/gm−1 per kg 

soil) or SCS (5,468.7 mg/gm−1 per kg soil) sequences (Figure 6). However, the CC plot 

had the highest average of protein. The distribution analysis showed that protein content 

was normally distributed. 
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Figure 5. Effect of rotation treatment on soil protein of soil samples from 

Monmouth, IL (mg/gm−1 per kg soil).  
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Soil β-glucosidase enzyme activity was significantly higher in SCS (Urb:1.18 and 

Mnm:1.72 (mg p-nitrophenol/gm of dried soil)) rotations compared with other rotations 

(p<0.05) at both sites. When we analyzed each location separately for β -glucosidase 

enzyme activity, no difference was found among the CC (0.92 mg p-nitrophenol/ gm of 

dried soil), CCS (0.91 mg p-nitrophenol/ gm of dried soil) and CS (0.86 mg p-

nitrophenol/ gm of dried soil) rotations at the Urbana site (Figure 7). Also, we observed 

that SCS (1.72 mg p-nitrophenol/ gm of dried soil) and CS (1.72 mg p-nitrophenol/ gm of 

dried soil) rotations resulted in more β-glucosidase enzyme produced than CC (1.51 mg 

p-nitrophenol/ gm of dried soil) and CCS (1.24 mg p-nitrophenol/gm of dried soil) plots 

at the Monmouth site (Figure 8). The distribution analysis showed that soil β-glucosidase 

activity values were normally distributed. 
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Figure 7. Effect of rotation on β-glucosidase levels of soil samples from Urbana, IL 

(mg nitrophenol/gm of dried soil). 

Figure 8. Effect of rotation on β-glucosidase levels of soil samples from Monmouth, 

IL (mg nitrophenol/gm of dried soil). 
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Analysis of the composition of microbiomes (ANCOM) was used as a statistical 

tool for comparing microbial abundances according to the underlying structure in the 

data. The ANCOM results showed that three bacterial phyla, Chloroflexi, Proteobacteria 

and Verrucomicrobia, were the differentially abundant taxa at the Monmouth site 

between different treatments (crop sequences). In the Chloroflexi phylum, the uncultured 

bacterium belonging to the order of JG30-KF-AS9 was observed as having a higher 

abundance in the CC plot and in a descending relative abundance order of 

CCS>CS>SCS. Another uncultured bacterium abundance under Proteobacteria, 

belonging to the order of Ellin329, had a descending order of abundance in 

CC>CCS>CS>SCS plots. The third indicative bacteria under Verrucomicrobia, 

belonging to the genus of Chthoniobacter, was found in the CS plot as having the highest 

level of relative abundance with a descending order of other crop sequences of 

CC>CCS>SCS, respectively (Figure 9). 

 

 

 

A) 
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In the fungal community, according to ANCOM analysis, Ascomycota was found 

to be the most informative phylum separating the four crop sequences. Specifically, the 

genius of Corynespora was located at higher levels of abundance in the SCS rotation and 

Figure 9 (A, B, C). Box-and-whisker plots of bacterial relative abundance distributions for 

the taxa that varied significantly among rotation treatments by the ANCOM tests at the 

Monmouth site. 

B) 

C) 
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decreasing relative abundance in order of CCS>CS>CC rotations. The relative abundance 

of uncultured fungi belonging to the Mycosphaerellaceae fungal family was revealed to 

have the greatest abundance in the SCS crop sequence and showed a decreasing order of 

CS>CC>CCS crop sequences. Third, the Macrophomina genius was detected as most 

abundant in the SCS crop sequence with decreasing order of abundance as CCS>CS>CC 

at the Monmouth site (Figure 10). 

 

 

 

A) 
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Figure 10 (A, B, C). Box-and-whisker plots of fungal relative abundance distributions 

for the taxa that varied significantly among rotation treatments by the ANCOM tests at 

the Monmouth site. 

B) 

C) 
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At the Urbana site, ANCOM test showed that only the bacterial genus of 

Skermanella, belonging to family Rhodospirillaceae under class Alphaproteobacteria, 

was an informative taxa distinguishing the four treatments, with decreasing relative 

abundance in order of CS>SCS>CCS>CC plots (Figure 11). 

 

 

 

 

 

The uncultured fungus belonging to family Hyponectriaceae in order Xylariales 

under class Sordariomycetes in the phylum of Ascomycota was found to be the only one 

significantly different in relative abundance separating the four crop sequences, with the 

order of SCS>CS>CCS>CC at the Urbana site (Figure 12). 

 

Figure 11. Box-and-whisker plots of bacterial relative abundance distributions for the 

taxa that varied significantly among treatments by the ANCOM tests at the Urbana 

site. 
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At the Monmouth site, the dominant taxa of Ellin329 in CC and CCS rotations 

was related to higher levels of soil protein content. The order of JG30-KF-AS9 was 

found as the most abundant taxa in CC rotation and it was associated with higher levels 

of POXC. Also the genus of Chthoniobacter was related to protein content (Figure13). 

Figure 12. Box-and-whisker plots of fungal relative abundance distributions for the 

taxa that varied significantly among treatments by the ANCOM tests at the Urbana 

site. 
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Figure 13. Canonical correspondence analysis (CCA) for bacteria taxa with differential 

abundances at the Monmouth location. Only significant taxa are shown. Sites; treatment- 

Objectives; fungi-Variables; environmental data 

 

 

 

Figure 14 showed that, in the soil samples from Monmouth, differentially 

abundant fungal taxa of Macrophomina was not closely related to the soil health 

indicators measured in this study; however, Mycosphaerellaceae and Corynespora 

were associated with β-glucosidase activity, based on the canonical correspondence 

analysis (CCA). 
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In the soil samples from Urbana, the bacterial genus of Skermanella was shown to 

be highly responsive to the β-glucosidase activity (Figure 15), and the fungal family of 

Hyponectriaceae was observed as the most abundant taxa in SCS rotation for producing 

higher level of β-glucosidase activity (Figure 16). 
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Figure 14. Canonical correspondence analysis (CCA) for fungal taxa with differential 

abundances at the Monmouth location. Only significant taxa are shown. Sites; treatment-

Objectives; fungi-Variables; environmental data 
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abundances at the Urbana location. Only significant taxa are shown. Sites; treatment- 
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According to qiime 2 results, the alpha diversity in the bacterial and fungal 

community, there were no significant differences between the two locations. 

Therefore, alpha diversity indices from the two locations were pooled and analyzed 

together for the rotation effect. Figure 17 showed that no difference was found among 

the four rotations for bacterial community alpha diversity. Likewise, in the fungal 

community, there were no significant differences among the four treatments in alpha 

diversity based on the Chao1 index (Figure 18) (P>0.05). 
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Figure 16. Canonical correspondence analysis (CCA) for fungal taxa with differential 

abundances at the Urbana location. Only significant taxa are shown. Sites; treatment- 

Objectives; fungi-Variables; environmental data 
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Figure 17. Rarefaction curves of the alpha diversity 

for the bacterial community based on Chao1 index.   

Figure 18. Rarefaction curves of the alpha diversity 

for the fungal community based on Chao1 index.   
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Based on the principal coordinates analysis (PCoA) results of the β-diversity in 

the bacterial community, the two locations are very dissimilar, represented by two 

clusters in different colors (Figure 19, left), but there was no separation among the 

four rotation treatments represented as four colors within each location (Figure 19, 

right). When analyzed separately by location, no separation was found as well (Figure 

not shown). Likewise, in the fungal community, the β-diversity between the 

Monmouth and Urbana locations were dissimilar, but no separation was found among 

the four treatments (Figure 20) even when analyzed separately by location (Figure not 

shown). 

                                              
                                                 Location & Rotation effects 

           
 

 

 

 

                       

Figure 19. PCoA plot for β-diversity of bacterial 16S OTU in bulk soil. 
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                                                  Location & Rotation effects 

         
 

 

DISCUSSION 

Crop rotation is a strategy to enhance soybean yield as a cultural management 

system in agriculture. Many studies have shown that a higher yield was observed in 

soybeans when rotated with other crops instead of growing soybeans continuously 

(monoculture) (88-91). Our results showed that after the continuous corn regime, 

immediately before planting, soybeans had a higher yield when compared with other crop 

rotations (Figure 1 and Figure 2). A recent study conducted by B. S. Farmaha, et al. (92) 

stated that soybean yield in corn-corn-soybean rotation was higher compared to soybean-

corn-soybean crop rotation. The results from this study explained that two previous years 

of corn crop sequences resulted in increased soybean yield as compared to one previous 

year of corn crop sequences. However, the underlying cause for these benefits has been 

difficult to uncover. One study reported that the rotation of corn and soybeans showed 

that no effect as positive or negative on above-ground sediment was found (93). K. R. 

Whiting and R. K. Crookston (94) found that the yield benefit from the rotation of 

Figure 20. PCoA plot for β-diversity of fungal OTU in bulk soil. 
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soybean with corn was not due to the decrease in the incidence of leaf diseases. Rotation-

related increased yield was due to enhanced root function (95-97) or decreased soil 

pathogenic microorganisms affecting root growth (98, 99). Several studies demonstrated 

that including corn in rotation helped to decrease soybean cyst nematode (Heterodera 

glycines) composition and raised the yield of soybeans (100, 101). Hence, the increase in 

soybean yield related to the crop sequences seems to be the result of multiple interactive 

components in the soil. 

  Nitrogen and carbon cycling in the soil can be affected by crop rotations (102). 

Soil microorganisms are central to the carbon cycle (24, 25) and nitrogen fixation (37). 

POXC is a measurement of LOC and is directly related to soil organic carbon (42). Our 

POXC results showed that POXC had higher levels in CC and CCS plots (Figure 3 and 

Figure 4), which corresponded to higher yields of soybean in those plots. 

Some free-living Proteobacteria may play a role in N fixation (103) and  CO2 

fixation process in the soil (104). Indeed, Figure 13 showed that the uncultured order 

Ellin329, belonging to Proteobacteria, was associated with higher protein levels. The 

fungal phylum of Ascomycota are known for producing a major amount of β-glucosidase 

(105). The CCA analysis did reveal that the family of Mycosphaerellaceae, belonging to 

Ascomycota, was associated with higher levels of β-glucosidase (Figure 14). 

The class of Ktedonobacter is a non-photosynthetic bacteria responsible for 

carbon monoxide (CO) oxidation and utilizing CO as a carbon source in the soil (106). 

We observed that Ktedonobacter had significantly higher levels of abundance in CC 

rotation (Figure 9A) and was related to POXC and directly linked to higher soybean 

yields in CC crop sequences at the Monmouth site.  
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Ellin 329 is a member of the Alphaproteobacteria class, which is a significant 

bacterial order for the decomposition of organic matter in the soil (107). In our results, 

Ellin 329 was found as significantly dominant taxa in the CC crop sequence (Figure 9B). 

Ktedonobacter and Ellin 329 were observed as dominant taxa in CC rotation 

(Figure 9A,B). When compared to yields difference (Figure 1 and Figure 2), and these 

two bacterial taxa abundance, both decreased order in the same direction 

CC>CCS>CS>SCS plots. Therefore, Ktedonobacter and Ellin 329 could be potential soil 

biological and soil health indicators for future studies.  

Chthoniobacter is a bacterial genus known to be responsible for the 

decomposition of organic carbon in the soil (108) but correlated with some of the 

nematodes as an endosymbiont’s life form (109). The highest level of bacterial 

abundance of Chthoniobacter under the CS rotation (Figure 9C) was found to be 

associated with a lower level of soybean yield. While we did not test the soybean cyst 

nematode (SCN) population in the study, the endosymbionts form between 

Chthoniobacter and SCN could be a reason for the lower soybean yield in CS rotation.  

The fungal pathogen from the genera Corynespora is the causal agent of soybean 

for frogeye leaf spot disease (110). We found that Corynespora was significantly more 

abundant in SCS than the other crop sequences (Figure 10C), which corresponds to a 

lower soybean yield. Also, another fungal pathogen, genera Macrophomina, which infect 

soybean roots as charcoal rot disease (111) was found to be more abundant in SCS crop 

rotation (Figure 10A). Lastly, the ANCOM results detected Mycosphaerellaceae, which 

includes many fungal pathogen genera and species (110), as a significantly more 

abundant taxa in SCS crop rotation (Figure 10C). 
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CONCLUSION 

The results of this 14-year long-term crop study provided insight that crop 

rotation has a crucial impact on soybean yield. After the continuous corn crop regime, the 

soybean yield at CC was significantly greater than the other three (CCS, CS, SCS) crop 

rotation regimes in both locations. The application of crop rotation systems in the field 

could provide many important benefits enhancing soil C concentration and nutrition, 

improving soil physical properties, providing diverse bacterial and fungal communities 

and increasing yield. This study provided evidence that soil biological properties, 

including POXC, protein content, bacterial 16S rDNA and fungal ITS relative 

abundances, generally correlated with yield positively but negatively with β-glucosidase. 

Specific taxa of the microbiome also shed light on the yield differences as a result of the 

four crop sequences compared when soil chemical and physical properties fall short of 

providing adequate explanation from other related studies. It is evident that soybean 

pathogen populations are determinants, as well as some uncultured bacterial taxa, which 

still require efforts in culturing and further characterization. Culturability of bacteria has 

been greatly improved in recent years and this study clarifies that bacteria under the 

orders of Ellin329 and JG30-KF-AS9 should be further focused on for isolation with the 

goal to improve soybean yields in the future. 
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APPENDIX

 

Microbiome Analysis Report 

 

Taxa Summary Bar charts 

 

Level 2 16S  
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Level 3 16S 
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Level 4 16S 
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Level 5 16S 
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Level 2 ITS 
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