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ABSTRACT 

GROWTH PERFORMANCE, METABOLIC AND RUMEN PROFILE, NUTRIENT 

UTILIZATION, AND HEALTH OF CALVES FED CONDENSED WHEY SOLUBLES 

WITH STARTER PELLETS 

Michaela Joy Della 

2019 

 A study was conducted for this thesis to evaluate the effectiveness of a new 

product’s ability to improve calf health and growth performance. In addition to the results 

from the study, this thesis also includes a literature review of immune and rumen 

maturation in calves and a discussion of ways to protect and encourage those 

fundamental progressions. For the main research project 48 dairy calves were used in a 

randomized complete block design study to evaluate the growth performance, rumen 

fermentation and metabolic profiles, nutrient utilization, and health scores when calves 

were supplemented Condensed Whey Solubles (CWS) with their starter pellets. The 

calves were enrolled in the study for twelve weeks. The CWS was offered with an aliquot 

of the daily starter pellets to encourage consumption of CWS and solid feed. The daily 

dosage of CWS was consistent, either none for control calves, 40 mL/d for CWSL calves 

or 80 mL/d for CWSH calves. The remainder of the daily starter pellet was fed after the 

aliquot was consumed and starter pellets were fed ad libitum. Supplementing CWS 

improved dry matter intake, increased withers and hip heights in the post weaning stage, 

and lowered body temperatures post weaning. Moreover, CWS improved fecal 

consistencies for CWSL calves in the post weaning stage. Supplementing CWS is an 
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option for producers to improve growth and health while maintaining metabolic and 

rumen development.  

INTRODUCTION 

Investigating optimal ways to care for and raise dairy calves is critical for 

producers. The care and attention calves receive during their first 12 wk of life impact 

their efficiency and productivity later in life. However, during these critical weeks, calves 

are developing a functional rumen and maturing their immune system and remain very 

vulnerable to illness. Researchers have investigated the maturation and developmental 

processes of calves extensively. Therefore, this thesis aims to catalog the literature and 

knowledge to date on the topic. The immune system begins its progression at the passive 

transfer of immunities from colostrum. From that point on the calf’s immune defense is 

shifting and evolving into its own entity. This process is coupled with the calf’s transition 

from milk dependency to consuming solid feed, which matures the rumen. Developing 

the rumen and the microbial ecosystem within is crucial for the calf’s ability to extract 

energy from fibrous material.  However, if the calf’s fragile immune system is battling an 

illness, then metabolized energy will be shunted to fuel the immune defense and not 

towards rumen maturation and skeletal growth. Because immune status is so important, 

alternatives have been explored, and products have been developed that can enhance the 

immune system. One of those promising avenues is the use of oligosaccharides as 

prebiotics in calf diets. These complex carbohydrates have been shown to improve calf 

health, which is demonstrated through lower body temperatures and better fecal 

consistencies. Additionally, several studies have found that feeding oligosaccharides 

encourage growth. These benefits may be caused by supporting the immune system so 
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energy can go towards growth or because of the product themselves; regardless, 

oligosaccharides have proven themselves to be worth investigating. Therefore, the 

experiment found in this thesis examines a new product that is concentrated with 

prebiotic compounds derived from milk carbohydrates. Several health and growth 

benefits with feeding this new product called, Condensed Whey Solubles (CWS), were 

found. The findings supported the hypothesis that calves fed CWS would have improved 

growth performance and display a healthier immune status. Therefore, the objective of 

this thesis are to use previous literature to support the relevance of researching CWS, 

describe execution and results of the CWS study, and additionally to interpreting results 

for future investigations.  
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CHAPTER 1 

LITERATURE REVIEW 

Introduction 

 Dairy calves are a significant investment of both time and money for producers. 

Nutritional and health management in the first few months of life is crucial for a calf’s 

long-term performance. Therefore, producers and researchers are constantly searching for 

the most efficient and effective management tools and products. Those first few months 

are critical because the calf is undergoing major digestive tract and immunological 

changes. Calves receive their first form of immunity through passive transfer from their 

mothers. The calves are vulnerable for weeks thereafter while they develop their immune 

defense. Furthermore, born with a gastrointestinal (GI) tract that more closely mimics the 

monogastric digestive system, calves have to transition into a ruminant. This process has 

been heavily researched with a focus on making the rumen functional through starter 

intake and rapidly fermentable carbohydrates. Evolutionarily speaking, no matter how 

nutritionally rich a calf’s diet is, if that calf is sick, then energy will go to maintenance 

and immune function, not growth or development. But research has also found nutritional 

avenues where certain nutrients can be used as diet supplements acting primarily as 

preventative measures against illness. 

In this literature review the challenges young calves have to overcome early in 

life will be defined and discussed. Additionally, previous research investigating ways to 

improve this developmental stage will be covered. There are several different managerial 

methods to promote calf health and development, but the research here will be focused on 

feeding practices and alternatives to feed-grade antibiotics. Then, a developing new 
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product, Condensed Whey Solubles (CWS), will be introduced. Condensed whey 

solubles has properties similar to previously studied nutrients that have proven to be 

beneficial to growth and health. A pilot study initiated the investigation of CWS, but 

results elicited further research into its mechanisms of benefit to the calf. Therefore, the 

objective of this literature review is to define the challenges young calves have to 

overcome early in life, discuss current methods to help calves overcome these obstacles, 

and introduce the need for a second study on supplementing CWS. 

Calf Rearing Importance and Challenges  

Raising healthy calves and heifers is the goal of all dairy operations because those 

calves and heifers will eventually join the lactating herd. Moreover, raising replacement 

heifers is a significant expenditure for operations, averaging at least two years of input 

before the first lactation (Gabler et al., 2000). Research on optimal and cost-efficient 

ways to improve the growth and health of dairy calves is a focus within dairy science. 

Many researchers have evaluated the impact early-life nutrition and management has on 

an animal once fully developed. Their findings quantify that a properly cared for calf and 

heifer leads to better growth performance, increased production, and longevity within the 

herd (Rincker et al., 2011; Heinrichs et al., 2011; Soberon et al., 2012).  

However, calves face two major obstacles at birth. Their first challenge is that 

they have an undeveloped immune system. Their second struggle is that their rumens, 

which will supply them energy the majority of their lives, are nonfunctioning and need 

maturation. The National Animal Health Monitoring System (NAHMS) reported in 2014 

the dairy heifer calf morbidity rate of 38.1% and a mortality rate of 5% (Urie et al., 

2018a). Of those morbidity cases, 33.4% were due to respiratory illness and 56.0% of the 
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cases were due to digestive issues. Within the mortality rate digestive, respiratory, or a 

combination were the primary causes of death. Digestive problems claimed 32.0% of the 

deaths alone (Urie et al., 2018b). These numbers are better than the 1992 report when the 

morbidity and mortality rates for preweaned heifer calves was 36.1 and 8.4% 

respectively, but there is still room for improvement (USDA, 1992). Additionally, the 

primary form of treatment in the survey data collected by NAHMS was antibiotics, which 

is both expensive and a continually pressing concern of consumers (Urie et al., 2018a). 

Therefore, research and calf management techniques should continue to pursue ways to 

improve calf performance and health.  

Immune Development 

Calves develop within their dams through a cotyledonary placenta. Therefore, 

nutrients are not passed directly through blood, calves do not receive prepartum 

antibodies, and that is why calves are born with undeveloped immune systems (Senger, 

2003). In response, dairy cows produce colostrum, a form of milk that is higher in total 

solids, fat, proteins, and contains immunoglobulins. The colostrum is secreted for about 

24 hours after parturition before the secretory cells in the alveoli of the mammary gland 

transition into making milk within the following 48 hours. This passive transfer of 

antibodies is critical for establishing the calf’s immunity. Colostrum is checked for 

quality before being administered to the calf. If the quality is insufficient then the farm 

must use a colostrum replacer or frozen colostrum in accordance to the management 

protocol. Regardless of protocol variances, delivering the colostrum is time-critical 

because as time progresses the calf’s gut loses the ability to absorb the immunoglobulins 

(Weaver et al., 2000).  
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Immunoglobulins from colostrum are the calf’s initial building block for their 

immune development. However, calves remain very susceptible to diseases for the 

following 12 weeks; with the highest chance of death happening before week 4 of life 

(Urie et al., 2018b).  The industry has developed ways to aid the calf’s developing 

immune system.  One of those methods is housing. Preweaned dairy calves are mostly 

afflicted by diseases that are inhaled or ingested (Wells et al., 1996). A well-bedded, 

ventilated, individual hutch promotes calf health and it also stops the spread of disease 

(Cummins et al., 1991; Quigley et al., 1995).  The other technique to help the developing 

system is through nutrition since one of the primary ways young calves get sick is 

through digestive infections. Their basic nutritional requirements have to be met; but in 

addition, the industry has investigated dietary additives that promote immunity. In the 

past, producers used feed-grade antibiotics. There were positive results, but at the end of 

2016 this feeding practice was ruled to require a veterinarian prescription by the 

Veterinary Feed Directive. Therefore, researchers and producers have increased their 

search for effective alternatives which include: iron binding antimicrobial proteins (Joslin 

et al., 2002), prebiotics such as oligosaccharides (Heinrichs et al., 2003), and probiotics 

(Timmerman et al., 2005) to name the most researched. The pursuit continues to find 

options that will supplement the immune system until it is adequately developed to 

protect the calf. 

Ruminal Development  

Dairy calves are born with rumens that are underdeveloped and essentially non-

functional (Lyford, 1988). The esophageal grove at the base of their esophagus shunts 

suckled milk past the rumen and directly into the abomasum for degradation (Van Soest, 
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1982). However, eventually calves have to transition from being functional monogastrics 

to plant-based ruminants. At birth, the rumen and reticulum combined hold nearly the 

same volume as the abomasum, but by 12 weeks old they hold nearly six times as much 

as the abomasum (Lyford, 1988). Several factors influence the calf’s ability to make the 

transition. In addition to unlimited water availability and solid foods offered at an early 

age, the immune status influences calf development. The immune system is developing 

alongside the rumen; therefore, if the immune status is compromised, then the body will 

channel nutrients to improving health and not growth of body or development of mature 

GI tract. The functional development of the rumen in a calf is critical for producers 

because they are establishing the calf’s metabolic proficiency for her future production 

life.  

A pivotal stage in this transition is called weaning. A calf’s primary source of 

nutrients has to come from milk or milk replacer for at least four weeks, but then it is up 

to the producer’s discretion when to initiate weaning. Producers tend to wean their calves 

around 6 to 8 weeks of age or once they start consuming 1kg of starter pellets per day 

(Hopkins, 1997). The weaning process can be very stressful for calves, with the risk of 

decreased feed efficiency, intake, and ADG; as well as depressing the immune system 

(Eckert et al, 2015; Steele et al., 2017). There are different ways to wean calves, but 

research shows that the step-down method is the most beneficial for the calf. In the step-

down model a calf receives one liquid feeding per day for about 10 to 14 days. Khan et 

al. (2007a) found that the gradual step-down method, versus the conventional abrupt 

weaning, increased growth and solid feed intake. Later, Steele et al. (2017) found that in 
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addition to increased ADG postweaning, the step-down calves also had greater rumen 

volatile fatty acid (VFA) production.  

Stress is minimized at weaning when calves have already begun consuming solid 

feed and their rumens have gained functionality. There is no concrete initiation to rumen 

maturation. Although born sterile, bacteria can be found in the rumen within a day 

postpartum. Additionally, the colonies of bacteria and other microbiota found in a typical 

adult rumen are present within two weeks of age and stabilize around two months old 

(Meale et al., 2017a). Suspended in an anaerobic, water saturated environment, microbes 

interact with and break down solid food in the rumen. The by-products of the microbial 

fermentation process are VFA, the most prevalent being acetic, butyric, and propionic 

acid. Volatile fatty acids provide 70 to 80% of the energy requirement for a fully 

developed cow (Owens and Goetsch, 1988). Bergman (1990) ranked these prominent 

VFA’s, butyric > acetic > propionic, for their rumen developmental abilities. In addition 

to digestion of the microbes themselves, acetic and propionic acid are absorbed through 

the rumen wall and primarily provide energy to the calf (Fahey and Berger, 1988). 

Butyric acid, however, is converted to BHB in the rumen mucosa and is used primarily 

by the rumen (Sander et al., 1959; Hodson et al., 1965).  

The rumen’s ability to utilize VFA is contingent on its ability to absorb the acids. 

Papillae are the sites of VFA absorption within the rumen, and their finger-like structure 

increases surface area for uptake (Lyford, 1988). Butyric acid’s primary purpose within 

the rumen is papillae growth by providing energy for epithelial proliferation (Sander et 

al., 1959; Baldwin et al., 2004). Tamate et al. (1962) and Hamada et al. (1976) introduced 

inert objects to the calf diet and saw increases in rumen volume and muscular strength, 
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but no epithelial improvement. These studies support that physical rumen growth is 

encouraged by the nature of the solid food, but epithelial development is stimulated by 

the chemical process of fermentation. The aforementioned is why solid intake is 

positively correlated with rumen development. Tamate et al. (1962) photographed the 

visual rumen differences between a 12 week-old calves fed only milk versus a 12 wk old 

calf fed milk, hay, and grain. The differences were astonishing. The rumen in the milk-

fed calf was light in color and smooth with no presence of papillae, but the second rumen 

of the calf fed milk, grain, and hay was dark in color and the papillae growth was dense. 

This was further supported by Coverdale et al. (2004) which reported that calves had 

greater weight gain, feed efficiency, and VFA concentrations with a diet mixture of 

forage and coarse starter. Additionally, increased solid feed intake at an earlier age results 

in the rumen becoming functional sooner (Biesheuval et al., 1991; Khan et al., 2016; 

Meale et al., 2017b).   

Furthermore, Heinrichs and Jones (2016) published a series of photos illustrating 

the ruminal differences between calf diets. One series of pictures captured the rumens of 

6 wk old calves fed only milk, milk and grain, or milk and hay. These illustrations 

supported Tamate et al. (1962) data but they also showed the importance of grain. The 

hay and milk rumen were darker in color but lacked papillae development like the milk 

only rumen (Heinrichs and Jones, 2016). In an invited review, Khan et al. (2016) 

summarized the effects of concentrates and forages on rumen development. Their 

research concluded that forages have a greater impact on rumen expansion, weight, and 

reduced passage rate for increased degradation. Concentrates, on the other hand, have a 
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greater impact on papillae differentiation and growth, butyrate production, and total VFA 

production.   

Carbohydrates in Calf Diets   

Protein, carbohydrates, and fat are the three energy sources found within a diet. 

Carbohydrates make up 60 to 70% of a cow’s diet (NRC, 2001). A carbohydrate is a 

molecule containing carbon, hydrogen, oxygen with some amount of water.  When 

carbohydrates are fermented by the microbes and the VFA which are produced are 

absorbed, the body converts those end products of rumen fermentation into glucose or 

fatty acids to utilizes them for energy. If the glucose is not absorbed directly, it is 

synthesized via gluconeogenic pathways from propionate, glycerol, and lactate. Glucose 

is very important for body function. It is used all across the body for cellular maintenance 

and proliferation. This is particularly crucial in calves who need it for muscular growth, 

the beginning stages of mammary development, as well as the rumen epithelial 

maturation (Fahey and Berger, 1988).  

Carbohydrates are divided into classes of saccharides. Monosaccharides and 

disaccharides have the smallest molecular weights and are classified as sugars; examples 

include, glucose, fructose, and galactose. Oligosaccharides contain two to ten saccharide 

units such as lactose and fructo-oligosaccharide. Carbohydrates with more than ten 

saccharides are polysaccharides and these are commonly known as starch, cellulose, 

hemicellulose, and lignin. Polysaccharides are further divided into structural and 

nonstructural carbohydrates. Structural carbohydrates, cellulose and hemicellulose, are 

primarily found in cell walls of plants, are very fibrous, and not readily available to a 
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developing rumen (NRC, 2001). Therefore, nonstructural carbohydrates are the primary 

source of glucose in calf diets.  

The initial carbohydrates come from milk: lactose, glucose, and galactose. The 

nonstructural carbohydrates that make up the bulk of the calf’s diet postweaning can be 

found in sources such as corn, oats, molasses, barley, and soyhulls (Huntington, 1997; 

Hill et al., 2008). Because it is so rapidly fermented, starch is the primary nonstructural 

carbohydrate found in calf pellets (NRC, 2001). Herrera- Saldana et al. (1990) ranked 

starch sources on degradability through in vitro and in situ trials and the results were: oats 

> wheat > barley > corn > sorghum. However, it is also well documented that processing 

the starch sources via grinding, rolling, or cracking improves nutrient availability and 

therefore increases starch digestibility (Lykos and Varga, 1995, Huntington 1997; 

Bateman et al., 2009). Corn is the most commonly used source for starch because it is the 

least expensive feed ingredient in the USA and it is 80% starch (Miller and Hoover, 

1998; Hill et al., 2008). Moreover, Kahn et al. (2007b) reported that calves fed corn as 

their starch source had greater ADG than calves fed oats, barley, or wheat. Oats however 

are often fed to improve coarseness to the feed and are around 45% starch (Hill et al., 

2008). Molasses is a rapidly fermented sugar that provides energy and increased 

palatability (NRC, 2001). Feeding too much molasses can reduce ADG and increase 

health issues in calves (Lesmeister and Heinrichs, 2005). Barley averages 57% starch on 

a DM basis (NRC, 2001). Jarrah et al. (2013) found that processing barley did not 

improve calf performance. Soybean hulls have less starch compared to other feeds at 19% 

and they are also low cost, but add bulk to the diet (Hill et al., 2008).    
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Dietary Oligosaccharides as Prebiotics 

The industry has researched antibiotic alternatives for decades. Since 2016, when 

producers could no longer freely feed antibiotics, there has been a push to find effective 

replacements to aid the fragile rumens and immune systems of calves. Two of the more 

researched substitutions are pro- and prebiotics. Probiotics are defined as live cultures of 

microorganisms that improve the microbial communities within the gastrointestinal tract 

(Uyeno et al., 2015). Some examples of constituents that have been found to have 

probiotic effects are yeast (Quigley et al., 1992; Lascano and Heinrichs, 2007), specific 

strains of bacteria (Abe et al., 1995), multispecies probiotics (Timmerman et al, 2004), 

and kefir (Fouladgar et al., 2016). Most probiotics are fed as preventative measures, but 

Renaud et al. (2019) reported that a multispecies probiotic was able to reduce the 

duration of diarrhea incidences in calves when fed as a treatment. Probiotics have also 

been found to improve health and increase ADG (Timmerman et al., 2005; Signorini et 

al., 2012), but probiotic efficiencies do vary because of products being inconsistent 

(Uyeno et al., 2015). The inconsistency is partially due to probiotics being distinguished 

as either defined or undefined. In a defined probiotic there are known specific strains of 

microorganisms. The risk for those defined probiotics is the chance that it will not 

support the GI microbial communities needed for that farm. An undefined probiotic is a 

mixture that is not completely characterized or quantified. Undefined probiotics tend to 

be more efficient, but there is also a chance the impact is muted by the numerous 

microorganisms (Gaggia et al., 2010). Additionally, since they are live cultures, 

appropriate storage and handling are critical to ensure the viability of probiotic product.  
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Prebiotics are defined as selectively fermented or indigestible food that cause 

specific changes in the GI microbiota that benefit the health of the host (Gibson et al., 

2004). The mechanisms through which prebiotic ingredients benefit the host are still 

being investigated; but in short, prebiotics avoid traditional metabolic pathways through 

resisting fermentation of microbes, gastric acids, and enzymatic degradation (Gibson, 

2004). Van Loo and Vancraeynest (2008) reported that prebiotics potentially displace 

pathogenic bacteria by competing for nutrients or attaching to absorbency sites in the gut 

epithelium. They also stated that another mechanism could be encouraging short-chain 

fatty acid production which lowers intestinal pH and stimulates an immune system 

response. Geigerova et al. (2017) later suggested that prebiotics can be used to support 

the benefits of and survival of administered probiotics as alternatives for antibiotics 

(2017). Furthermore, it is also suggested that prebiotics bind to harmful bacteria such as 

Escherichia coli and Salmonella sp and pass through the digestive system (Newman, 

1994). 

Animals have enzymes that digest most carbohydrates; however, some galactans 

and oligosaccharides cannot be digested. Researchers have also discovered prebiotic 

health benefits of these undigested carbohydrates. There are several different types of 

oligosaccharides found in nature. Some of the more researched ones in livestock species 

are fructo-oligosaccharides (FOS), mannan-oligosaccharides (MOS), and galacto-

oligosaccharides (GOS). Fructo-oligosaccharides are primarily found in the energy 

storage organs of plants such as wheat, bananas, barley, and asparagus. Fructo-

oligosaccharides appear to encourage the growth of beneficial bacteria (Sghir et al., 1998) 

while inhibiting the colonization of pathogens (Grizard and Barthomeuf, 1999). Donovan 
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et al. (2002) concluded that FOS and probiotic bacteria could be used as alternatives to 

antibiotics. Additionally, Webb et al. (1992) reported increased weight gain when FOS 

was added to milk replacer for calves. Fructo-oligosaccharides have also been found to 

impact feed conversion rate and shifted VFA production from acetate to butyrate in veal 

calves (Grand et al., 2013). Furthermore, Respondek et al. (2008, 2011) observed FOS 

increasing insulin sensitivity in obese dogs and horses and increased growth performance 

in pigs and poultry (Flickinger et al., 2003). 

 Most MOS is derived from the cell walls of Saccharomyces cerevisiae (yeast) 

through enzymatic hydrolysis and centrifuged for isolation (Spring et al., 2000). Spring et 

al. (2000) study on chickens hypothesized that MOS provides a competitive binding site 

for harmful bacteria which results in that bacteria exiting the digestive tract without 

attaching to the epithelium. Savage et al., (1996) suggests that MOS stimulate antibody 

production to improve health. The benefits of MOS in human intestinal health has also 

been researched extensively (Jenkins et al., 1999; Gibson et al., 1999; Singh et al., 2018). 

Dvorak and Jacques (1997, 1998) observed MOS improve performance of pigs and 

increased grain intake and weight gain in dairy calves. Later, Heinrichs et al., (2003, 

2013) reported that MOS improved feed intake and fecal consistency scores in dairy 

calves. 

Lastly, GOS is present in cow milk and is usually derived from the cheese making 

by-product, whey permeate (Yanahira et al., 1995). Whey permeate is rich with lactose 

and the GOS can be separated from the lactose through an enzymatic reaction using β-

galactosidase (Torres et al., 2010). The resulting syrup is a mixture of glucose, galactose, 

lactose, and oligosaccharides; collectively the combination is called GOS (Castro et al., 
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2016). The mechanisms through which GOS benefits the host is unclear. However, most 

research supports that GOS encourages the growth of the beneficial bacteria 

Lactobacillus and Bifidobacteria and works synergistically if fed with probiotics 

(Macfarlane et al., 2008; Castro et al., 2016). Galacto-oligosaccharides are also present in 

human milk and therefore potential human benefits have been investigated (Macfarlane et 

al., 2008; Matsumoto et al., 2017; Ashwini et al., 2019). Aly et al. (2016) found that GOS 

supplemented in infant formula increased iron bioavailability. In livestock, Tsukahara et 

al. (2009) studied GOS being fed to weaning pigs and concluded that GOS improved 

growth performance and health status of the small intestine. Castro et al. (2016) reported 

that dairy calves supplemented with GOS had greater intestinal epithelial development 

and more lactic acid bacteria in their colon during the first two weeks of life. However, 

GOS calves also had lower SCFA concentrations and higher fecal consistency scores. 

They attributed these negative results to the treatment dosage exceeding the colon’s 

absorption abilities and suggest more osmotic balance and concentrated dosage for future 

research. Additionally, cows supplemented with a mixture of yeast and GOS had a 

tendency to improve N metabolism (Mwenya et al., 2005).  

Of the oligosaccharides previously mentioned, GOS has been researched the least 

in regard to dairy calf health and growth benefits. This is largely due to the variability 

found in the GOS compound profile as well as the efficiency of and differences among β-

galactosidases used (Angus et al., 2005). Investigating the prebiotic potential of 

oligosaccharides should continue to be explored.  
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Condensed Whey Solubles Pilot Study  

Senevirathne et al. (2018a) conducted a pilot study beginning in May of 2017. 

The product, condensed whey solubles (CWS), is made from milk permeate and the 

composition is around 25% lactose and 20% prebiotic properties containing 

oligosaccharides. The objectives of the study were to evaluate the effect CWS had on calf 

growth, health, nutrient utilization, and rumen development, hypothesizing that CWS 

calves would perform better than control calves. The study was a randomized complete 

block design where the Holstein dairy calves were blocked by sex and birthdate. The 

calves were then randomly assigned to either the control group with no CWS 

supplementation or assigned to 40 mL/d supplementation of CWS. Previous literature 

supporting oligosaccharides benefits to the GI tract influenced the trial’s design. The trial 

administered the CWS to the calves with the pasteurized waste milk that was fed during 

the preweaning stage to evaluate CWS impact on the abomasum and lower GI tract since 

the product would be shunted past the rumen. Then the treatment calves were dosed the 

CWS on their calf starter pellets postweaning to investigate ruminal digestion benefits. 

The calves were fed 2.83 L of pasteurized waste milk twice daily during wk 1 through 5. 

The calves were weaned during wk 6 with only one milk feeding in the morning and 

completely off milk at the start of wk 7. Intakes and health evaluations were recorded 

daily. Health parameters included rectal body temperature, ocular and nasal discharge, as 

well as fecal consistency. Body weight, body condition scores, and frame growth were 

measured once a week, 3 h after morning feeding. Additionally, blood samples were also 

taken weekly at the same time as body measurements. Rumen fluid samples were 

collected via esophageal tube around 4 h after morning feeding at the end of wk 8 and 12. 
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Fecal grabs samples were also collected at 15 different time points over the course of 

three days to evaluate apparent total tract digestibility of DM, CP, and fiber. Data were 

analyzed using MIXED procedures of SAS 9.4 with repeated measures. Significant 

differences were declared at P < 0.05 and tendencies were 0.05 ≤ P < 0.10.    

The results from the study concluded that CWS improved (P = 0.03) BHB blood 

concentrations (34.37 and 36.07 mg/dL; SEM = 1.03 for CON and CWS respectively), 

but there were no treatment differences in frame growth or rumen profile. Some of most 

intriguing results from the pilot study were the differences found in starter pellet and total 

DMI postweaning. The DMI was similar between treatments preweaning, but from the 

transition week on the CWS calves had greater (P < 0.01) starter DMI (2.19 and 2.29 

kg/d; SEM= 0.25) and total DMI (2.19 and 2.31 kg/d; SEM = 0.25) postweaning. 

Corresponding increased body weight tended (P = 0.05) to be greater in treatment calves 

postweaning as well (109.29 and 113.27 kg/d; SEM = 0.05). Additionally, fecal scores 

and rectal temperatures were similar between treatments preweaning, but postweaning 

the CWS calves had lower (P < 0.01) fecal consistency scores (0.45 and 0.28; SEM = 

0.03) and lower (P = 0.01) rectal temperatures (39.81 and 39.7°C; SEM = 0.02).  

Collectively these results provoked reconsidering where in the digestive tract the 

CWS was having the greatest impact since most of the statistical treatment effects were 

observed during the postweaning stage. During the postweaning portion of the trial, the 

CWS administered on the starter were sequestered to rumen microbial fermentation. This 

resulted in increased DMI intake and greater body weight, potentially if the CWS had 

been available on the starter pellets preweaning, intake would have been encouraged. 

Additionally, CWS has concentrated amounts of digestion resistant oligosaccharide, and 
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the pilot study saw improved health postweaning in treatment calve. Those results call for 

further investigation into CWS potentially having the most prebiotic effect beginning in 

the rumen. Further research is required to investigate if CWS would have the greatest 

impact when applied only to starter pellet.  

Conclusion 

 Specific calf rearing practices differ among operations, but all producers have to 

overcome the developmental challenges with which calves are born. Addressing these 

challenges and investigating strategies to improve calf health and growth performance 

continues to be a focus of dairy research because early life development has life-long 

impacts on milk production and longevity.  

 The initial challenge is the vulnerable and underdeveloped immune system. After 

the critical colostrum dose calves remain the most susceptible to disease those first 

twelve weeks of life. Traditionally, producers would feed calves antibiotics through milk 

and milk replacer, but since that is no longer an option, the industry searches for ways to 

supplement and protect the developing immune system. Research has investigated the 

potential prebiotic benefits of oligosaccharides as antibiotic alternatives. Although the 

exact mechanisms through which oligosaccharides work is still unsure, research has 

found that oligosaccharides improve health scores and increase various aspects of 

performance in comparison to animals on control diets.  

 The other challenge calves have to overcome is a nonfunctional rumen that needs 

to become fully functional before weaning and continue to mature through their first two 

years of life. This rumen development is crucial, and many factors influence its 

development including the immune status of the calf and consumption of solid feed. 
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Dairy scientists have been researching how to increase starter intake for over twenty 

years (Kertz et al., 2017).  Through that research they have discovered that earlier starter 

intake minimizes stress at weaning and improves overall calf performance because the 

rumen becomes functional sooner. 

 A pilot study was conducted on a product containing concentrated milk sugars 

and galacto-oligosaccharides to investigate its potential health and growth benefits. The 

results revealed however, that the CWS product might have the greatest impact beginning 

the dosage in the rumen since most treatment differences were seen postweaning. 

Therefore, the proposed follow-up study has the potential to support the hypothesis that 

oligosaccharides have prebiotic effects on the GI tract starting from the rumen as well as 

encourage earlier starter intake, rumen development, and improve growth performance.  
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CHAPTER 2 

 EFFECTS OF SUPPLEMENTING CONDENSED WHEY SOLUBLES WITH 

STARTER PELLETS ON GROWTH PERFORMANCE, METABOLIC AND 

RUMEN PROFILE, NUTRIENT UTILIZATION, AND HEALTH.  

ABSTRACT 

The objective was to evaluate growth, rumen fermentation, metabolic profile, and 

health of calves supplemented with condensed whey solubles (CWS) on starter pellets. 

Forty-eight 2 d-old calves in huts were used in a 12-wk randomized complete block 

design study. Calves were blocked by breed (33 Holstein, 15 Brown Swiss), sex (30 

female; 18 male), and birth date. Treatments were: 1) control (CON) with no supplement, 

2) 40 mL/d CWS (CWSL), and 3) 80 mL/d CWS (CWSH). Treatments were top-dressed 

on an aliquot of starter pellet. Amount of starter pellets in aliquot increased with 

consumption. The remainder of ad libitum-fed starter pellets were offered after morning 

feeding. Calves were fed 2.83 L of pasteurized milk 2×/d during wk 1 to 5, 1×/d in wk 6, 

and weaned at d 42. Individual intakes of milk and starter pellets were measured daily. 

Fecal scores (0 = firm, 3 = watery) were observed and recorded daily. Additionally, 

respiratory scores (healthy ≤ 3, sick ≥ 5) were observed daily and recorded and were 

calculated from the sum of rectal temperature, cough, ocular and nasal discharge scores. 

Body weights (BW), frame measures, and jugular blood samples were taken 1 d/wk 

around 3 h post feeding. Rumen samples were taken wk 8 and 12 via esophageal tubing. 

Fecal grab samples were collected in wk 12 for total tract digestibility. Data were 

analyzed using MIXED procedures of SAS 9.4 with repeated measures. Significance was 

declared at P < 0.05 and tendencies were 0.05 £ P < 0.10. Total DMI were similar, but 
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had a treatment by time interaction, tending to increase with CWS post-weaning. Average 

daily gains were similar, but BW, withers height, and hip height tended to increase post-

weaning with CWS. Other frame measures and BCS were similar. Health scores were not 

different, but post-weaning fecal scores were firmer for CWSL and rectal temperatures 

were lower for CWS calves. Glucose had a treatment effect due to the increasing 

inclusion of CWS. Rumen VFA profiles, PUN, cholesterol, triglycerides, and BHB were 

similar. The wk 12 apparent total tract digestibility on nutrients were similar among 

treatments. Supplementing CWS improved calf post-weaning intakes, growth, and health 

with maintained rumen VFA, and metabolic profile.   

Keywords: condensed whey solubles, dairy calf, growth performance 
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INTRODUCTION 

Calf health and growth is a focus of producers because those first few months are 

vital for that animal’s efficiency and production life. Early life illness and death is mostly 

due to pathogens that have been ingested (Urie et al., 2018b). There was a time when 

producers could feed specific antibiotics to the calves to help eradicate diseases and 

viruses present on the farm; however, feeding antibiotics without a veterinarian’s 

approval was prohibited in 2016. The industry has since intensified its search for 

antibiotic alternatives in order to continue to help supplement the calf’s developing 

immune system. Two of the more popularly researched and investigated alternatives are 

pro- and prebiotics. Probiotics are defined as live cultures that directly impact the host’s 

microbiota, but prebiotics are not as well defined. Prebiotics resist traditional metabolic 

pathways in order to provide a benefit to the host. An example of a nutrient that has 

prebiotic characteristics are oligosaccharides. Fructo-oligosaccharides have been found to 

encourage beneficial bacteria growth (Sghir et al., 1998) and increase weight gain in 

calves when fed with milk replacer (Webb et al., 1992). Mannan-oligosaccharides have 

also been reported to increase weight gain in dairy calves (Dvorak and Jacques, 1997) as 

well as improve fecal consistency scores (Heinrichs et al., 2013). Furthermore, galacto-

oligosaccharides are produced through enzymatic treatment of dairy products, mostly 

whey and milk permeate. In research, galacto-oligosaccharides have been found to 

encourage the growth of beneficial bacteria and increase intestinal epithelial development 

(Castro et al., 2016). Galacto-oligosaccharides’ profiles are concentrated with milk sugars 

and complex carbohydrates with ratios dependent on the enzyme used for degradation. 

Idaho Milk Products developed a Condensed Whey Solubles (CWS) product that is rich 
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in milk sugars and contains prebiotic compounds. These properties give CWS the 

potential to positively influence calf health and performance.  

The hypothesis of this study was that feeding CWS on calf starter pellet could 

improve growth performance and encourage starter intake. More specifically, feeding 

CWS would provide prebiotic benefits by improving the health status of the treatment 

calves. Additionally, CWS would improve early gastrointestinal rumen development, 

which would lead to greater nutrient utilization and improved growth. The objective of 

this study is to determine the effects of supplementing CWS at multiple dosages on 

growth performance, nutrient utilization, and health of dairy calves.    

 

MATERIALS AND METHODS 

Experimental Design 

 Forty-eight dairy calves at two days old were used in a 12-wk randomized 

complete block design study. The calves were both Brown Swiss (nine females, six 

males) and Holsteins (twenty-one females, twelve males). Therefore, the calves were 

blocked by sex, breed, and birth date with a total of sixteen blocks. The calves were then 

randomly assigned to one of three treatments within blocks. The treatment diets were: 1) 

control (CON) with no supplement, 2) 40 mL/d of CWS (CWSL), and 3) 80 mL/d of 

CWS (CWSH).  

Animal Care and Feeding 

 All animal procedures and uses were approved by the South Dakota State 

University Intuitional Animal Care and Use Committee under protocol number 17-109E 

and institutional Animal Welfare Assurance number #A3958-01.  The study was 



 24 

conducted, and all calves were housed at the South Dakota State University Dairy 

Research and Training Facility (SDSU- DRTF) in Brookings, South Dakota. The farm 

trial portion of the study began December 8th, 2017 and ended July 7th, 2018. Calves were 

fed two colostrum feedings by the SDSU-DRTF staff before starting the study. Each 

calf’s blood serum protein concentrations were measured via refractometer (LW 

Scientific, Lawrenceville, GA) to assess the immune status prior to starting the study.  

The calves were housed outside in individual hutches and bedded with straw as 

needed. The treatments were given to the calves via top-dressing of an aliquot of the daily 

starter pellets. This top-dressed aliquot was offered roughly one hour before the morning 

milk feeding. The exception being CON calves which were offered their full daily starter 

pellet amount roughly one hour before the morning milk feeding. The amount of the 

aliquoted starter pellets was based on individual starter pellet intake. All calves were 

initially offered roughly 25g of pellet as fed to their assigned CWS treatment. The 

amount of starter pellet offered with the CWS treatment would increase in 25g as fed 

increments until plateauing at 300g as fed of starter pellet for the daily aliquot. The 

amount of pellets consumed at the time of the morning milk feeding determined if the 

aliquot would be increased the next day.  Orts were weighed once daily, and starter 

pellets offered was adjusted to ensure 10% feed refusals. Thus, water and starter pellets 

were fed ad libitum. Calves were also fed 2.83L of pasteurized waste milk two times per 

day at 0600 and 1800h. one time per day (at 0600) during wk 6, and weaned at d 42.  

The starter pellets were custom made by Pipestone Grain Company (Pipestone, 

MN) to avoid an confounding ingredients often contained in commercial pellets. The calf 

pellets contained soy hulls, ground corn, soybean meal, wheat middlings, and minerals 
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(Table 1). The milk was collected from SDSU- DRTF cows two times per day and was 

pasteurized on site (Platinum DT-30G; Dairy Tech Incorporated, Severance, CO).  Calves 

were observed daily for health concerns and were treated according to SDSU- DRTF 

management protocols.  

Measurements and Sampling 

 Milk and pellet intake, as well as orts for individual calves were recorded once 

daily at 0430 h. Weekly samples of the milk were taken after pasteurization, analyzed in 

the SDSU Manufacturing plant by Dairy Spec FT (Bentley Instruments, Chaska, MN) for 

composition, and then stored at -20°C. A sample of each new shipment of CWS was 

taken, dates used recorded, stored at -20°C, and then later analyzed for DM. Weekly 

samples of the pellets were preserved at -20°C and then composited equally by month at 

the end of the study for nutrient analysis. Additionally, individual samples of each calf 

orts were taken at the end of week twelve, stored at -20°C, and then analyzed later for 

digestibility analysis and calculations.  

 Health scores were observed and recorded daily. Fecal scores were recorded daily 

in accordance with University of Wisconsin-Madison School of Veterinary Medicine’s 

Calf Health Scoring Chart. With the scale of 0= normal, firm; 1= semi-formed, pasty, 2= 

loose, but stays on top of bedding, and 4= watery, shifts through bedding. Respiratory 

health was also evaluated and recorded daily based on the respiratory score being the sum 

of rectal temperature, cough, ocular, ear, and nasal discharge scores. Each of the 

individual scored were also made on a scale of 0 to 3 (University of Wisconsin-Madison 

School of Veterinary Medicine, Calf Respiratory Scoring Chart).  
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 Fecal grab samples were collected at the end of week 12 over the course of three 

days at fifteen different time increments. These fecal samples were stored at -20°C until 

they could be composited in equal amounts at the end of the study for digestibility 

analysis. In combination with the fecal samples and ort samples, acid detergent insoluble 

ash (ADIA) was used as the internal digestibility marker to determine total tract 

digestibility for each calf.  

 Body weight (BW), body condition scores (BSC), and frame growth 

measurements were taken weekly, approximately 3 h post morning feeding. The weekly 

body condition scores were from an average of three different trained individuals who 

evaluated the calves on the Wildman et al. (1982) scale, where 1 = emaciated and 5 = 

obese. Frame growth measurements under consideration were hip width, hip height, 

withers height, heart girth, paunch girth, and body length. These were measured using a 

store-bought retractable measuring tape with a ruler and level fashioned to it, a store-

bought steel framing square, and store-bought soft sewing measuring tape.  

 At the same time as the growth measurements, blood was sampled weekly 

approximately 3h after the morning feeding through venipuncture of the jugular vein. The 

blood was drawn into two 10-mL Vacutainer® tubes containing potassium ethylene 

diamine tetra-acetic acid (K2EDTA) for plasma urea nitrogen (PUN), triglyceride, 

cholesterol, and beta-hydroxybutyrate (BHB) analyses. Blood was also drawn into one 7 

ml vacutainer tube containing sodium fluoride for glucose analysis (Becton, Dickson, and 

Co., Franklin Lakes, NJ). Samples were immediately placed on ice and within 3 hr 

brought to the lab to be centrifuged at 2,000 rpm for 20 min at 5°C (CR412 centrifuge; 
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Jouan Inc., Winchester, VA). Once separated, the serum was pipetted into polystyrene 

tubes and preserved at -20°C for later analyses.   

 Ruminal fluid samples were taken from each calf at wk 8 and wk 12, 

approximately 4 hours after feeding via esophageal tubing. The initial 50mL of fluid was 

discarded due to potential contamination from the bleach-water solution used to rinse the 

pump and saliva. Once the initial fluid is discarded roughly 20 mL of rumen fluid was 

collected, immediately measured for pH using a handheld pH meter (Waterproof pH 

Testr® 30, OAKTON Instruments, Vernon Hills, IL), and then two aliquots of 5 mL were 

placed in vials for storage at -20°C. The one vial contained 100 µL of 50% sulfuric acid 

for ammonia N (NH3-N) analysis. The other vial contained 1 mL of 25% meta-

phosphoric acid for volatile fatty acid (VFA) analysis.  

Laboratory Analysis 

 Weekly pellet samples, pellet ingredients, wk 12 starter pellet orts, and wk 12 

fecal samples were thawed and composited into representative samples either by calf or 

month. In duplicate, the composited samples were dried for 48 h at 55°C in a Despatch 

Oven (style V-23, Despatch Oven Co., Minneapolis, MN), and were ground to a 4 mm 

particle size using a Wiley Mill (model 3; Arthur H. Thomas Co., Philadelphia, PA). The 

samples were further ground to a 1mm particle size using an ultracentrifuge mill 

(Brinkman Instruments Co., Westbury, NY) and stored in mason jars until nutrient 

analysis. To correct analyses to a 100% DM basis, 1g samples of the feed and fecals were 

run in duplicate and dried for 3 h at 105°C in a muffle furnace in accordance to an 

abbreviated method from AOAC International’s method 935.29 (1998). Ash content was 

then determined through an abbreviation of AOAC International’s., method 942.05 
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(2002) where the beforementioned 1 g samples were incinerated for 13 h instead of the 

method’s 8 h at 450°C in a muffle furnace. To determine the DM and ash of the CWS 1 g 

samples, ran in duplicate, were dried for 8 h at 105°C and then incinerated for 13 h at 

450°C in muffle furnaces. Organic matter was calculated as OM = (100 - % ash).  

 The composited monthly pellets, pellet ingredients, wk 12 starter pellet orts, and 

wk 12 fecal samples were weighted out in 0.5g samples into ANKOM fiber bags in 

duplicate. Neutral detergent fiber (NDF) (Van Soest et al., 1991) and acid detergent fiber 

(ADF) (Robertson and Van Soest, 1981; AOAC International, 2002, method 973.18) 

were analyzed sequentially using the ANKOM 200 fiber analyzer (ANKOM Technology 

Corp., Fairport, NY). For NDF, heat-stable a- amylase and sodium sulfite were used 

(AOAC International, 2002, method 2002.04). Ether extract was determined for the 

monthly pellet composites by weighing out 1 g of the samples in triplicate and running 

the samples through Ankom XT10 Extraction System (ANKOM Technology Corp., 

Fairport, NY) with petroleum ether as the solvent (AOAC International’s method 920.30, 

2002).  

The monthly pellets and pellet ingredients were sent to a commercial laboratory 

(Dairyland Laboratories Inc., Arcadia, WI) for analysis of crude protein, starch, and 

minerals including Ca, P, Mg, K, S, Na, and Cl. Mineral content, excluding Cl, was 

determined using inductively coupled plasma spectroscopy (AOAC, International 1995). 

Chloride content was determined using a direct reading chloride analyzer (Corning 926, 

Corning Inc., Corning, NY). Starch was analyzed using a modified procedure analyzing 

glucose using YSI Biochemistry Analyzer (YSI Inc., Yellow Springs, OH; Bach 

Knudsen, 1997). The CP was measured using the combustion method (AOAC 
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International, 2002; method 990.03).  Nonfiber carbohydrates were calculated as % NFC 

= 100 – (%ash + % CP + %NDF + %EE) according to the NRC (2001). 

 For apparent total-tract digestibility calculations, the ADIA content was analyzed 

for the monthly pellet composites, pellet ingredients, wk 12 orts, and wk 12 fecal 

samples. This was determined by weighing 0.5 g samples into ANKOM fiber bags, 

analyzing for ADF (Robertson and Soest, 1981) as previously described, and then 

incinerating the sample bags for 13 h at 450°C in a muffle furnace. The ash percent was 

determined using a modified procedure of AOAC International’s method 935.29 (1998). 

Calculations for digestibility were done according to Merchen (1988). 

 Blood metabolites including glucose, BHB, triglyceride, cholesterol, and PUN 

were analyzed using commercially available enzymatic or colorimetric assay kits on 

microplate spectrophotometer (Cary 50, Varian Inc., Walnut Creek, CA). Serum glucose 

concentrations were analyzed using glucose oxidase reagent as described by Trinder 

(1969; catalog no. G7521, Pointe Scientific Inc, Canton, MI). Concentrations of BHB 

were analyzed by BHB dehydrogenase and diaphorase according to the method described 

by McMurray et al., (1984; catalog no. H7587-58, Pointe Scientific Inc., Canton, MI). 

Triglycerides concentration were determined using enzyme glycerol phosphate oxidase 

after hydrolysis by lipoprotein lipase, as described by Fossati and Lorenzo (1982; catalog 

no. T7532-500, Pointe Scientific Inc, Canton, MI). Plasma concentrations of cholesterol 

were analyzed using cholesterol esterase and oxidase (catalog no. C7510, Pointe 

Scientific Inc.) as described by Allain et al. (1974). The PUN concentrations were 

determined using diacteylmonoxime in accordance with procedure 0580 of Stanbio 

Laboratory, Boerne, TX (catalog no. 0580-250, Pointe Scientific Inc, Canton, MI).  
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 Rumen fluid samples were first thawed and vortexed to completely mix contents 

before pipetting 2mL into a microcentrifuge tube. The samples were then centrifuged at 

30,000 x g for 20 min at 4C in a microcentrifuge (Eppendorf 5403, Eppendorf North 

America, Hauppauge, NY). Ammonia N concentrations were analyzed using colorimetric 

assay performed on a microplate spectrophotometer (Cary 50, Varian Inc., Walnut Creek, 

CA) in accordance with the assay described by Chaney and Marbach (1962). The other 

samples that were preserved for VFA were analyzed for: acetate, propionate, butyrate, 

isobutyrate, isovalerate, and valerate using an automated gas chromatograph (model 

6890, Hewlett-Packard Co., Palo Alto, CA) using a flame ionization detector. Volatile 

fatty acids were separated on a capillary column (15m x 0.25 mm i.d.; Nukol 17926-01C, 

Supelco Inc., Bellefonte, PA) using 2-ethylbuturate as an internal standard. The split ratio 

of 100:1 in the injector port was at a temperature of 250°C and a flow rate of 1.3 mL/min 

of helium. The column and detector temperature were maintained at 140 and 250°C, 

respectively. 

Statistical Analysis 

 All data were analyzed using SAS version 9.4 (SAS Institute Inc., Cary, NC). Calf 

intake, growth data, fecal consistency scores, respiratory scores, and metabolic profiles 

parameters were analyzed as randomized complete block design with repeated measures 

using MIXED procedures (Littell et al., 2006). Calves were assigned to 16 blocks based 

on birth date, breed, and sex. The model included treatment, week, sex, stage, breed, and 

interactions of these terms (stage being defined as preweaning= wk 0-6; postweaning= 

wk 6-12). Calf nested within block was the random variable. There was no breed by 

treatment interaction effects, so those results were not reported although these terms were 
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included in the model. Initial body frame measurements and BW were included as 

covariates within the model.  Repeated measures by week of the feeding period were 

done on intakes, BW, body frame measures, fecal consistency scores, respiratory scores, 

VFA, and metabolites using calf (block) as the subject. Akaike’s criterion was used to 

determine the most suitable covariance structure for the repeated measures analysis for 

each parameter. Covariance structures tested were compound symmetry, first-order 

autoregressive, Toeplitz, and unstructured.  Compound symmetry resulted in the least 

absolute Akaike’s values and was used for the final model. Least square means were 

compared using orthogonal contrasts for linear and quadratic effects, and the slice 

command was used to determine the P-values for treatments during individual weeks and 

stages. As linear and quadratic effects were a key part of the experimental design they 

were considered a propriety over treatment effects. To determine ADG for body weight 

and change per day for body frame measurements, the difference was found between 

each data collection time point and the previous time point and then divided by the 

number of days in the time period. The MIXED procedures of SAS were used for 

analysis of data for apparent total-tract digestibility of nutrients. All data are presented as 

the least square means with the highest standard error of the mean (SEM) among the 

values. Significant differences were declared at P ≤ 0.05 and tendencies were declared at 

0.05 < P ≤ 0.10.  
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RESULTS AND DISCUSSION 

Nutrient Composition 

Tables 2 and 3 show the nutrient composition of the feed ingredients that were in 

the starter pellets and the nutrient composition of the starter pellets respectively. Starter 

pellets CP content was 23.11%, which is greater than the recommended 18% by the NRC 

(2001). The starter pellet was also higher by 3% in EE and 10% NDF, but less than 

recommended for ADF content by 2% (NRC, 2001). The concentration of calcium and 

sulfur matched what is recommended in NRC for starter pellets. The other mineral 

concentrations were greater in the formulated starter pellets compared to NRC 

recommendation with the exception of sodium which was less than recommended. 

Primarily the individual pellet ingredients had nutrient compositions that were similar to 

what is recorded in the Nutrient Composition of Feeds tables in NRC (2001). Table 4 lists 

the nutrient composition of pasteurized waste milk and CWS. The CWS supplementation 

product is high in lactose and prebiotic concentrations. The pasteurized waste milk 

composition of percent fat, protein, lactose, and total solids were within breed averages 

for Brown Swiss and Holsteins.    

Intakes 

  Starter DMI, total DMI, and intakes of NDF, ADF, and EE are presented in Table 

5. Weekly means of the total DMI are found in Figure 1. The mean DMI was 1.53, 1.64, 

and 1.67 kg/d; with a SEM = 0.08 for CON, CWSL, and CWSH, respectively, which are 

comparable to total DMI from previous research conducted using CWS (Senevirathne et 

al., 2018a; Senevirathne et al., 2018b). During the preweaning stage and for the overall 

means there was no treatment effect for starter DMI and total DMI. However, total DMI 
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tended (P = 0.08) to be greater in treatment calves post weaning. At weaning it can be 

seen (Figure 1) that treatment calves experienced little to no decrease in DMI, which 

supports that CWS negates the negative impact weaning can have on calves. This is 

consistent with Heinrichs et al. (2003) which reported calves on the MOS treatment diet 

consumed more grain during the weaning week than the other treatment calves. It was 

observed that CWS calves found the syrup very palatable, but it tended to crystallize or 

become very thick and hard at cold temperatures which made it less enticing to the 

calves. Senevirathne et al. (2018a) saw treatment differences for both starter DMI and 

total DMI overall means, but that research was conducted during warmer months. The 

DMI gradually increased for all diets, and this can be attributed to the growth and 

increase in metabolic demand of the calves (Figure 1). There were no differences found 

in EE, ADF, and NDF intakes. Senevirathne et al. (2018a) study had treatment effects for 

total CP, starch, ADF, and EE intakes, which is attributed to the treatment differences 

seen in the pellet DMI.   

Growth Performance 

Body weights and ADG can be found in Table 6. Body weights were 69.50, 

70.81, and 73.24 kg; with SEM 1.59 for CON, CWSL, and CWSH, respectively. There 

were no differences observed among body weights and ADG. Similarly, Heinrichs et al. 

(2003) reported no overall treatment effect on body weight, despite MOS calves having 

greater grain intake during and after weaning. There was a linear tendency (P = 0.09) 

with ADG, and this can be attributed to growth of the calves. In general, BW were 

slightly less, but comparable to Senevirathne et al. (2018a; 2018b). Additionally, Quigley 
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et al. (1997) fed galactosyl-lactose, a trisaccharide very similar to GOS, and saw an 

increase in BW gain and feed efficiency.  

Body frame growth measurements and body condition scores are found in Table 

7. Body frame growth was not different among treatments overall. However, treatment 

differences were observed in withers heights (P = 0.02) and hip heights (P = 0.05) during 

the post weaning stage. Additionally, there was a treatment effect (P = 0.05) on average 

daily change for withers height. There were no differences among treatments for body 

length, heart girth, paunch girth, hip width, and body condition scores. The limited 

differences among treatments in growth performance could be attributed to seasonal 

variations in growth performance. The majority of the calves were enrolled in the study 

during the winter which had monthly average temperatures of -6.1, -7.7, -9.4, 1.1ºC for 

December, January, February, and March, respectively. The results suggest that feeding 

CWS has some effects on skeletal growth.  

Metabolic Profiles 

Table 8 records the overall mean and means by stage of plasma concentrations for 

glucose, cholesterol, triglycerides, plasma urea nitrogen (PUN), and Beta-

hydroxybutyrate (BHB). The mean serum glucose concentrations were 96.41, 100.46, 

and 104.75 mg/dL; with an SEM of 1.63. For glucose there were treatment differences (P 

< 0.01) for the overall mean and both developmental stages. As the CWS was top-

dressed on a common starter pellet the diets were slightly imbalanced for glucose and 

milk carbohydrate intakes. Figure 2 depicts the average weekly glucose concentrations 

among treatments. These results affirm that treatment calves were digesting sufficient 

amounts of the CWS previous to weaning. The glucose concentrations decreased with 
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age. This is due to the primary metabolic energy source shifting from glucose to VFA as 

the rumen develops (Hammon et al., 2002). There were no treatment differences 

observed for cholesterol, triglycerides, PUN, and BHB. This is different from the results 

found by Senevirathne et al (2018a) who saw treatment differences (P = 0.03) for BHB, 

which is associated with rumen functionality and papillae maturation (Baldwin et al., 

2004). Senevirathne et al. (2018a) recorded plasma concentrations for glucose, BHB, and 

PUN that were comparable to the current study. Additionally, concentrations for BHB 

were consistent with Lesmeister and Heinrichs (2004). Furthermore, cholesterol and 

triglyceride concentrations in the present study were slightly lower than what was 

recorded in Ghasemi et al. where calves were observed under cold stress (2017). 

Rumen Fermentation 

Rumen VFA profiles, ammonia-N, and pH can be found in Table 9. Total VFA, 

specific VFA proportions, ammonia-N, and pH were not different among treatments. The 

concentrations of ammonia-N and each VFA proportion are comparable or slightly 

greater than Senevirathne et al. (2018a). To be specific, the present study found greater 

proportions of butyrate, acetate, and greater acetate to propionate ratios compared to 

Senevirathne et al. (2018a). In contrast, the total VFA amount in the current study was 

significantly greater than what was reported in Castro et al. (2016), but their method of 

sampling was post calf death rather than esophageal tubing like in the present study. 

Ghasemi et al. (2017) studied calves under cold stress and reported total VFA, specific 

VFA proportions, and acetate to propionate ratios are very comparable to the current 

study. The results of this present study may have been negatively impacted by sampling 

technique. Samples were taken via esophageal tube and a hand pump. There is no way to 
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know exactly where in the rumen the sample is being collected from within the 

forestomach compartments (i.e., rumen vs. reticulum). Additionally, calves have very 

little rumen fluid and it is difficult to get enough sample and avoid saliva contamination.  

Health Score Observations 

Fecal scores, rectal temperatures, and respiratory scores are presented in Table 10. 

Overall fecal scores were not different among treatments. However, during the 

postweaning stage there was a treatment effect (P <0.01). That treatment effect stems 

from CWSL whereas CWSH had a negative effect on fecal scores in the post weaning 

stage which can be seen in Figure 3. Potentially the CWSH dosage made the osmotic 

ratio too high for the colon comparable to findings in the study conducted by Castro et al. 

(2016). However, fecal scores among treatments were better in the current study than 

what was reported in Senevirathne et al. (2018a). Improvement in fecal consistency for 

treatment calves in the current study is similar to the results from Quigley et al. (1997) 

who fed galactosyl-lactose to Holstein bull calves. Additionally, Heinrichs et al. (2003) 

saw improved fecal consistency in calves fed mannose oligosaccharides. There were no 

treatment differences for overall rectal temperatures. However, CWS calves had lower (P 

<0.01) rectal temperatures during the post weaning stage. Figure 4 depicts the weekly 

rectal temperatures by treatment. Temperatures were comparable with Senevirathne et al. 

(2018a). It has been suggested that prebiotics encourage the growth of beneficial bacteria 

(Macfarlane et al., 2008), potentially bind with harmful bacteria preventing absorptions 

(Newman, 1994), or that prebiotics compete for nutrients and absorption sites (Van Loo 

and Vancraeynest, 2004). These results support that the oligosaccharides in CWS have 

prebiotic effects on the GI microflora. Respiratory scores were comparable with those 
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reported in Senevirathne et al. (2018). There was no difference among treatments for 

respiratory scores. In regard to calves needing to be treated for illnesses, there were no 

differences among treatments on a percentages of days for diarrhea, fever, or pneumonia.  

Apparent Total Tract Digestion of Nutrients 

 Table 11 presents results for the apparent total tract digestion of nutrients. No 

differences were observed among treatments for the digestibility of DM, OM, NDF, and 

ADF.  This is similar to Mwenya et al. (2005) who fed an oligosaccharide to cows and 

observed no treatment digestibility differences. Additionally, Smiricky-Tjardes et al. 

(2003) observed no treatment differences in apparent total tract digestibility in which they 

fed oligosaccharides to pigs. However, Senevirathne et al. (2018a) saw a treatment 

tendency (P = 0.10) for treatment calves, having greater NDF digestibility. In regard to 

percent digestibility, Senevirathne et al. observed 10- 20% greater digestibility for DM, 

NDF, and ADF in their study versus the current study. 

Conclusion 

 The dairy calves fed CWS with their starter pellets tended to consume more total 

DMI in the post weaning stage. Corresponding withers and hip heights were also greater 

in calves post weaning. However, body weights, average daily gains, and most frame 

growth measurements were not different among treatments. Apparent total tract 

digestibility of DM, OM, NDF, and ADF were not different among CON and CWS 

calves. There were no treatment effects on most of the blood metabolites except for 

glucose. Glucose was greater in CWS calves during both stages and overall from the 

increasing conclusion of CWS. Rumen profiles were similar among treatments. The CWS 

improved fecal scores in the CWSL calves during the post weaning stage. Rectal 
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temperatures overall tended to be lower in treatment calves. Respiratory scores were not 

different among treatments.  

Data were possibly influenced by the climate for that time of year in South 

Dakota. The majority of calves enrolled on the current study participated from December 

through April. Therefore, a majority of the calves experienced long periods of cold stress 

which reduced intake and the ability to put energy towards growth (Young, 1981; NRC, 

2001). It was also previously mentioned that product physical attributes were also 

negatively impacted by the winter temperatures. Senevirathne et al. (2018b) ran a study 

with similar dosages but with larger calf numbers on a commercial dairy in Idaho. 

Senevirathne et al. saw treatment effects for BW, ADG, and BHB (2018b). That study 

also ran March through June 2018; therefore, those calves experienced warmer weather 

than the calves on the current study conducted in South Dakota. Additionally, most of the 

calves on the commercial study (Senevirathne et al., 2018b) were Jersey x Holstein F1 

crosses so there was a difference in calf body size to supplementation rate compared to 

the current study. 

Though the mechanism of dosage changed during pre-weaning (with pellets 

versus with milk), most of the statistical results in this current study were during the post 

weaning stage, similar to the findings from the Senevirathne et al. pilot study (2018a). 

This suggests that more research is needed to investigate where and how CWS can have 

the greatest impact on calf growth and maturation. However, CWS administration could 

have also had a negative impact on results. The significant differences seen in the pilot 

study may be due to CWS priming the lower intestinal tract during the preweaning stage 

when the milk and product were shunted past the rumen. More research should be 
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conducted investigating the potential benefits of simultaneously putting CWS in the milk 

and on the starter pellets to prime lower GI tract while encouraging starter intake. Results 

demonstrate that supplementing CWS with starter pellet has the potential to improve calf 

post-weaning intakes, skeletal growth, and health while maintaining rumen and metabolic 

profiles. 
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Table 1. Ingredient composition for calf starter pellets 
Ingredients, % DM   Starter Pellets 
Corn, Ground  26.96 

Soybean meal  21.11 

Wheat middlings  40.05 

Soybean hulls  6.25 

Molasses, dried   3.41 

Mineral Mix1     1.77 

Salt   0.44 
1 48.2% dicalcium phosphate; 13.7% salt; 28.73% limestone; 3% selenium (0.06%); 5% 
ruminant trace mineral mix (2.59% calcium; 10.64% magnesium oxide; 1,802 mg/kg 
cobalt carbonate; 25,022 mg/kg copper sulfate; 340 mg/kg iodine; 100,715 mg/kg iron 
sulfate; 49,906 mg/kg manganese sulfate, 49,900 mg/kg zinc sulfate; 1.0% mineral oil; 
rice hulls as carrier); 1.2% liquid molasses; 0.44% vitamin A; 0.13% vitamin D 66 IU/kg; 
0.017% vitamin E 275,000 IU/kg 
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Table 2.  Nutrient compositions of corn grain, wheat middlings, soybean hulls, and 
soybean meal used to make calf starter pellets 

Item, % 
of DM 

Corn Wheat Middlings Soybean Hulls Soybean Meal 

Mean SD Mean SD Mean SD Mean SD 

DM 85.71 1.99 88.32 1.02 88.04 0.09 89.00 0.35 

Ash 0.55 0.17 5.18 1.29 4.88 0.08 7.22 0.40 

OM 99.45 0.17 94.82 1.29 95.12 0.08 92.78 0.40 

NDF 12.00 1.17 42.58 3.04 61.94 3.17 7.49 0.94 

ADF 3.45 0.17 14.49 0.87 45.55 0.77 4.46 1.09 

CP 8.21 0.37 18.66 0.88 12.36 0.82 52.60 2.52 

EE 5.14 0.68 5.67 0.27 2.79 0.23 2.44 0.12 

NFC1 74.10 - 27.91 - 18.03 - 30.25 - 

Starch 69.24 3.04 15.62 2.02 0.89 0.36 1.82 1.08 
1 % NFC = 100- (% Ash + %CP + %NDF +%EE) (NRC, 2001).  
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Table 3. Nutrient composition of calf starter pellets 
Item1          Mean          SD 
DM2, %  87.91 0.86 

Ash2  6.66 0.16 

OM2  93.34 0.16 

CP2  23.11 0.69 

EE2  6.26 0.41 

NDF2  22.69 0.90 

ADF2  8.87 0.39 

NFC2,3  44.81 - 

Starch  25.92 1.21 
Ca  0.69 0.04 

P  0.94 0.03 

Mg  0.38 0.02 

K  1.46 0.05 

S  0.29 0.01 

Na  0.31 0.03 

Cl  0.52 0.03 
1 % of DM unless otherwise indicated 
2 Analysis performed on monthly composites (n= 7), each sample was run in duplicate. 
3 % NFC = 100- (% Ash + %CP + %NDF +%EE) (NRC, 2001).  
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Table 4. Nutrient compositions of pasteurized waste milk and condensed whey solubles 
(CWS) fed to calves.  

   Pasteurized Waste Milk1 CWS2 

Nutrients, %   Mean SD Mean SD 
DM  13.11 0.65 60.01 2.85 
Ash  - - 4.11 0.35 
Fat  4.24 0.53 - - 
True Protein  3.03 0.32 - - 
Total Protein  3.22 0.34 - - 
Crude Protein  - - 1.91 0.24 
Solid non fat3  8.82 0.41 - - 
Lactose  4.87 0.16 25.33 2.26 
Glucose  - - 7.27 0.55 
Galactose  - - 2.76 0.78 
Prebiotics   - - 20.72 1.98 

1 Milk samples were collected weekly (n= 23), each sample was run in duplicate. 
2 Data were lab analysis provided by IDMP (n= 18), each sample was run in duplicate. 
3 Solid non fat % = Total solid % - Fat % 
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Table 5. Nutrient intakes for calves fed starter pellets (CON) and starter pellets with 
condensed whey solubles (CWSL, CWSH) 

Item 

Treatment  P-values1 

CON CWSL CWSH 

SEM 

Trt wk Trt 
× 

wk 

Stage Trt × 
Stage 

Lin Q 

Starter DMI, g/d            

    Mean 1170.5 1253.6 1252.9 71.5 0.55 <0.01 0.06 <0.01 0.02 0.38 0.58 
    Pre-weaning 181.9 199.1 199.1 74.8 0.98 

      

    Post-weaning 2168.8 2313.3 2315.3 74.8 0.19 
      

Total DMI, g/d 
           

    Mean 1532.3 1640.2 1669.6 72.8 0.29 <0.01 0.07 <0.01 0.02 0.16 0.61 
    Pre-weaning 904.9 944.3 985.2 75.9 0.72 

      

    Post-weaning 2168.7 2339.0 2362.6 75.7 0.08 
      

NDF Intake, g/d 
           

    Mean 302.1 323.6 323.3 18.5 0.55 <0.01 0.06 <0.01 0.02 0.38 0.58 
    Pre-weaning 46.9 51.4 51.4 19.4 0.98 

      

    Post-weaning 559.7 597.0 597.5 19.4 0.19 
      

ADF Intake, g/d 
           

    Mean 118.1 126.5 126.4 7.2 0.55 <0.01 0.06 <0.01 0.02 0.38 0.58 
    Pre-weaning 18.4 20.1 20.1 7.6 0.98 

      

    Post-weaning 218.8 233.4 233.6 7.6 0.19 
      

Fat Intake, g/d 
           

    Mean 8342.8 8922.7 8918.9 512.1 0.56 <0.01 0.06 <0.01 0.03 0.39 0.29 
    Pre-weaning 1303.7 1426.4 1422.1 536.8 0.98 

      

    Post-weaning 1453.0 1303.7 1422.1 537.9 0.21 
      

1 P values for effects of treatment (Trt), week (wk) and the treatment × week interaction (Trt×wk) and 
stage (pre-weaning vs post-weaning) and treatment × stage interaction (Trt × stage) and orthogonal 
contrasts linear (Lin) and quadratic (Q). 
2Starter DMI incudes only starter DMI.  
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Table 6. Body weights and average daily gains (ADG) for calves fed starter pellets 
(CON) and starter pellets with condensed whey solubles (CWSL, CWSH)  

Item 

Treatment   P-values1 

CON CWSL CWSH 

SEM 

Trt wk Trt × 
wk 

Stage Trt × 
stage 

Lin Q 

BW, kg        
  

  

   Mean 69.50 70.81 73.24 1.59 0.23 <0.01 0.76 <0.01 0.41 0.09 0.74 
   wk 0 43.28 43.72 42.08 1.80 0.78   

  
  

   wk 6 65.97 66.64 68.95 2.05 0.54   
  

  

   wk12 101.50 103.90 107.10 2.06 0.14   
  

  

   Pre-weaning 55.70 55.54 57.35 1.94 0.75   
  

  

   Post-weaning 83.44 85.32 88.91 1.95 0.12   
  

  

ADG, kg/d            
   Mean 0.68 0.72 0.75 0.06 0.38 <0.01 0.08 <0.01 0.99 0.17 0.92 
   Pre-weaning 0.52 0.55 0.59 0.05 0.64     

  
   Post-weaning 0.84 0.87 0.90 0.05 0.59             

1P values for effects or treatment (Trt), week (wk) and the treatment × week interaction (Trt × 
wk) and stage (pre-weaning vs post-weaning) the treatment x stage interaction (Trt × stage) and 
orthogonal contrasts linear (Lin) and quadratic (Q). 
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Table 7. Frame growth measurements and body condition scores for calves fed starter 
pellets (CON) and starter pellets with condensed whey solubles (CWSL, CWSH) 

Item 

         Treatment   P-values1 

CON CWSL CWSH 
SEM 

Trt wk Trt × 
wk 

Stage Trt × 
stage 

Lin Q 

Withers Height, 
cm 

           

     Mean 82.91 84.24 84.13 0.82 0.35 <0.01 0.30 <0.01 0.79 0.26 0.42 
     wk 0 74.24 72.25 73.97 1.66 0.56       
     wk 6 82.38 84.51 84.39 0.94 0.12       
     wk12 89.70 92.56 91.87 0.94 0.04       
     Pre-weaning 79.04 80.08 80.06 0.51 0.16       
     Post-weaning 86.77 88.39 88.20 0.51 0.02       
     ADC, cm/d 0.19 0.24 0.21 0.02 0.05 0.31 0.84 0.41 0.59 0.21 0.05 
Hip Height, cm            
     Mean 87.57 88.62 88.31 0.44 0.14 <0.01 0.40 <0.01 0.45 0.21 0.16 
     wk 0 79.42 78.9 79.87 0.09 0.74       
     wk 6 87.24 88.88 88.29 0.68 0.13       
     wk12 94.72 96.36 96.34 0.68 0.09       
     Pre-weaning 83.62 84.67 83.85 0.44 0.11       
     Post-weaning 91.49 92.56 92.78 0.44 0.05       
     ADC, cm/d 0.17 0.22 0.19 0.01 0.21 0.24 0.56 0.35 0.77 0.18 0.29 
Body Length, 
cm 

       
  

  

     Mean 74.50 75.15 74.50 0.73 0.70 <0.01 0.50 <0.01 0.91 0.99 0.41 
     wk 0 64.93 64.56 65.86 1.06 0.66       
     wk 6 73.28 75.87 74.76 1.10 0.15       
     wk12 83.42 84.52 83.95 1.10 0.72       
     Pre-weaning 69.98 79.89 70.18 0.58 0.39       
     Post-weaning 78.92 79.89 78.83 0.58 0.69       
     ADC, cm/d 0.22 0.24 0.22 0.16 0.68 0.07 0.14 0.78 0.72 0.89 0.39 
Heart Girth, cm            
     Mean 92.68 93.62 93.8 0.66 0.35 <0.01 <0.01 <0.01 0.36 0.20 0.58 
     wk 0 77.87 78.31 78.86 0.90 0.74       
     wk 6 91.01 93.8 92.38 0.90 0.03       
     wk12 105.87 107.18 107.21 0.90 0.41       
     Pre-weaning 85.83 86.88 86.22 0.69 0.43       
     Post-weaning 99.46 100.36 101.37 0.69 0.11       
     ADC, cm/d 0.33 0.35 0.35 0.01 0.44 <0.01 <0.01 0.98 0.42 0.30 0.53 
Paunch Girth, 
cm 

       
  

  

     Mean 100.66 101.22 102.54 0.93 0.31 <0.01 0.77 <0.01 0.54 0.13 0.70 
     wk 0 79.00 79.56 80.14 0.93 0.69       
     wk 6 96.59 99.78 99.04 1.42 0.15       
     wk12 121.53 121.16 124.47 1.42 0.17       
     Pre-weaning 89.13 112.3 114.66 1.03 0.58       
     Post-weaning 112.10 90.14 90.42 1.03 0.12       
     ADC, cm/d 0.49 0.50 0.54 0.23 0.33 0.01 0.79 0.05 0.50 0.17 0.47 
Hip Width, cm            
     Mean 19.50 19.61 19.64 0.22 0.86 <0.01 0.31 <0.01 0.91 0.62 0.85 
     wk 0 15.78 16.07 15.88 0.25 0.68       



 47 

     wk 6 19.55 19.17 19.4 0.28 0.51       
     wk12 23.17 23.28 23.5 0.28 0.66       
     Pre-weaning 17.73 17.79 17.82 0.20 0.94       
     Post-weaning 21.25 21.44 24.47 0.20 0.64       
     ADC, cm/d 0.09 0.09 0.09 0.004 0.87 <0.01 0.24 0.29 0.51 0.68 0.71 
Body Condition 
Scores  

       
  

  

     Mean 2.42 2.42 2.42 0.05 0.99 <0.01 0.85 <0.01 0.45 0.99 0.96 
     wk 0 1.71 1.8 1.73 0.04 0.18       
     wk 6 2.29 2.39 2.42 2.42 0.46       
     wk12 2.94 2.90 2.85 2.85 0.71       
     Pre-weaning 2.06 2.11 2.08 0.04 0.64       
     Post-weaning 2.77 2.73 2.75 0.04 0.71       

1P values for effects or treatment (Trt), week (wk) and the treatment × week interaction (Trt × wk) and 
stage (pre-weaning vs post-weaning) the treatment × stage interaction (Trt × stage) and orthogonal 
contrasts linear (Lin) and quadratic (Q). 
2 Calves were weaned off pasteurized waste milk at the end of wk 6. 
3 Scale of 1 to 5 with 1 being emaciated and 5 being obese (Wildman et al., 1982). 
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Table 8. Blood metabolite concentrations for calves fed starter pellets (CON) and starter 
pellets with condensed whey solubles (CWSL, CWSH) 

Item 

Treatment 
 

P-values1 

CON CWSL CWSH 
SEM 

Trt wk Trt × 
wk 

Stage Trt × 
Stage 

Lin Q 

Glucose2, mg/dL             

     Means 96.41 100.46 104.76 1.63 <0.01 <0.01 0.65 <0.01 0.23 <0.01 0.95 
     Pre-weaning 107.12 109.61 116.55 2.05 <0.01       

     Post-weaning 85.70 91.30 92.85 2.05 <0.01       
Cholesterol3, 
mg/dL 

           

     Mean 47.11 49.27 51.50 2.34 0.36 <0.01 0.67 <0.01 0.75 0.16 0.99 
     Pre-weaning 57.49 61.03 62.51 2.79 0.35       

     Post-weaning 36.72 37.52 40.49 2.79 0.57       

Triglycerides,4 
mg/dL 

           

     Mean 15.81 15.75 16.42 1.17 0.90 <0.01 0.26 0.03 0.16 0.70 0.77 
     Pre-weaning 16.16 18.39 18.05 1.54 0.44       

     Post-weaning 15.47 13.11 14.77 1.54 0.42       

PUN5, mg/dL            

     Mean 18.18 17.69 17.56 0.63 0.71 <0.01 0.02 <0.01 0.05 0.45 0.79 
     Pre-weaning 15.85 15.38 13.94 0.78 0.16       

     Post-weaning 20.51 19.97 21.18 0.78 0.50       

BHB6, mg/dL            

     Mean 35.44 35.12 35.95 1.62 0.86 <0.01 0.37 <0.01 0.95 0.73 0.64 
     Pre-weaning 23.74 23.79 24.55 1.51 0.90    

   

     Post-weaning 47.16 46.55 47.30 1.51 0.91             
1P values for effects or treatment (Trt), week (wk) and the treatment × week interaction (Trt × 
wk) and stage (pre-weaning vs post-weaning) the treatment × stage interaction (Trt × stage) and 
orthogonal contrasts linear (Lin) and quadratic (Q). 
2 Serum concentrations of glucose 
3 Plasma concentrations of cholesterol  
4 Plasma concentrations of triglycerides 
5 Plasma concentrations of Urea Nitrogen. 
6 Plasma concentrations of Beta-hydroxybutyrate. 
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Table 9. Rumen fermentation characteristics of calves fed starter pellets (CON) and 
starter pellets with condensed whey solubles (CWSL, CWSH) 

Item 

Treatment   P-values1 
CON CWSL CWSH 

SEM 
Trt wk Trt × 

wk 
Lin Q 

Rumen, pH 5.99 6.27 6.30 0.16 0.18 0.12 0.74 0.13 0.43 
Ammonia- N, mg/dL 23.48 20.97 22.71 2.06 0.58 0.94 0.59 0.78 0.34 
Total VFA, mM 80.14 72.53 71.46 5.65 0.35 0.36 0.61 0.23 0.56 
VFA, mMol/100mMol          
       Acetate 47.34 47.03 46.83 0.70 0.83 0.99 0.14 0.57 0.94 
       Propionate 37.30 37.79 37.67 0.99 0.90 0.93 0.08 0.77 0.76 
       Butyrate 10.76 10.77 10.86 0.69 0.99 0.77 0.67 0.91 0.96 
       Isovalerate 1.08 1.09 1.15 0.08 0.78 0.13 0.44 0.50 0.78 
       Valerate 3.52 3.31 3.44 0.31 0.81 0.32 0.15 0.84 0.58 
       Acetate:Propionate 1.29 1.26 1.27 0.05 0.90 0.69 0.06 0.74 0.79 

1P values for effects or treatment (Trt), week (wk) and the treatment × week interaction (Trt x 
wk) and orthogonal contrasts linear (Lin) and quadratic (Q). 
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Table 10. Fecal scores, temperature, respiratory scores, and incidences for calves fed 
starter pellets (CON) or starter pellets with condensed whey solubles (CWSL, CWSH) 

 Treatment   P-values1 

Item 

CON CWSL CWSH 

SEM 

Trt wk Trt × 
wk 

Stage Trt × 
stage 

Lin Q 

Fecal Score        
  

  

    Mean 0.16 0.18 0.18 0.04 0.85 <0.01 0.02 <0.01 0.09 0.74 0.67 

    Pre-weaning 0.21 0.28 0.23 0.03 0.24 
      

    Post-weaning 0.11 0.09 0.13 0.03 <0.01 
      

Temperature, °C 
          

    Mean 39.38 39.37 39.29 0.06 0.11 <0.01 0.03 <0.01 <0.01 0.05 0.33 

    Pre-weaning 39.37 39.39 39.34 0.03 0.24 
      

    Post-weaning 39.39 39.35 39.24 0.03 <0.01 
      

Respiratory Score 
          

    Mean 2.50 2.46 2.43 0.06 0.68 0.28 0.88 0.16 0.78 0.39 0.96 

    Pre-weaning 2.48 2.48 2.38 0.06 0.49 
      

    Post-weaning 2.53 2.44 2.49 0.06 0.75 
      

Incidences8, % of d           
    Diarrhea  0.22 0.24 0.17 - 0.87       
    Fever  0.05 0.07 0.05 - 0.91       
    Pneumonia  0.00 0.00 0.02 - 0.70       

1P values for effects or treatment (Trt), week (wk) and the treatment × week interaction (Trt × wk) and 
stage (pre-weaning vs post-weaning) the treatment × stage interaction (Trt × stage) and orthogonal 
contrasts linear (Lin) and quadratic (Q). 
2 Scale of 0 to 3 with 0 being firm (Normal) and 3 being watery 
3 Respiratory score = (Temperature Score4 + Nasal Score5 + Eye Score6 + Cough Score7).  
4 Scale of 0 to 3 with 0 being 37.77- 38.27°C and 3 being ≥ 39.44°C.  
5 Scale of 0 to 3 with 0 being normal and 3 being heavy ocular discharge. 
6 Scale of 0 to 3 being normal and 3 being heavy ocular discharge. 
7 Scale of 0 to 3 with 0 being none and 3 being repeated spontaneous coughs. 
8 Requiring administration of appropriate treatment  
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Table 11. Week 12 apparent total tract digestibility of nutrients for calves fed starter 
pellets (CON) and starter pellets with condensed whey solubles (CWSL, CWSH) 

Digestibility, 
% 

Treatment   P-values1 
CON CWSL CWSH SEM Trt Lin Q 

DM 88.70 86.64 88.89 1.18 0.20 0.90 0.07 
OM 87.97 85.72 87.68 1.15 0.19 0.83 0.07 
NDF 27.70 27.37 25.60 2.22 0.67 0.40 0.56 
ADF 34.36 33.73 31.54 2.80 0.66 0.39 0.77 

1 P values for effects of treatment (Trt) and orthogonal contrasts linear (Lin) and quadratic (Q). 
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Figure 1.  Weekly starter dry matter intake (DMI) for calves fed starter pellets (CON) or 
supplemented with condensed whey solubles (CWSL, CWSH). 
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Figure 2. Weekly plasma glucose concentration for calves fed starter pellets (CON) or 
supplemented with condensed whey solubles (CWSL, CWSH). 
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Figure 3. Weekly fecal scores for calves fed starter pellets (CON) or supplemented with 
condensed whey solubles (CWSL, CWSH). 
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Figure 4. Weekly rectal temperatures for calves fed starter pellets (CON) or 
supplemented with condensed whey solubles (CWSL, CWSH). 
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OVERALL CONCLUSIONS 

 Overall, feeding CWS can benefit the development of dairy calves. It has been 

previously discussed the mechanism through which the rumen matures. Essentially, the 

rumen gains functionality as the calf transitions from a strictly liquid diet to gaining 

nutrients from readily fermented carbohydrates and other solid feed. This process is 

catalyzed by weaning. One of the first things to be impacted by the stress of weaning 

calves off milk is intakes, but from the DMI intake graph (Figure 1) one can see that 

treatment calves did not drop in intake during the weaning period. Therefore, feeding 

CWS may limit the negative impacts associated with weaning. Moreover, some skeletal 

growth was observed among treatments for CWS calves post weaning.  

Additionally, the development of the immune system was discussed along with 

sources of supplementation that help the calf establish its immune system. This process is 

happening at the same time as rumen maturation and has a major impact on the efficiency 

of the maturation process. Since feed grade antibiotics can no longer be freely fed to 

calves, alternative supplements, such as compounds within CWS, have been explored. 

From the results in this thesis, CWS may provide health benefits to calves. Treatment 

calves saw improved fecal consistencies and lower body temperatures with CWS post 

weaning.   

Research has investigated the development of calves extensively and the literature 

review within this thesis records their relevant conclusions. However, a full 

understanding of the benefits found in feeding carbohydrates and prebiotics to calves is 

inconclusive. There are still debates surrounding the mechanisms through which 

prebiotics work. Furthermore, it is understood that pre weaning starter intake eases stress 
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at weaning, but effective ways to encourage that earlier intake is still under-investigated.  

Condensed Whey Solubles is effective, but further investigation is required to look into 

the modes through which it works and the ideal way(s) to feed it to growing calves.  
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