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ABSTRACT 

 

STREAM FLOW ANALYSIS OF THE BIG SIOUX RIVER JUST SOUTH OF 

BROOKINGS, SOUTH DAKOTA 

SAMUEL RUPPERT 

2019 

 Floods are the most common type of natural disaster in the world and one of the 

most damaging. Changes in climate conditions such as precipitation and temperature are 

causing changes in stream flow. This means that in order to better understand flooding 

and possibly develop a system for making flood predictions, stream flow needs to be 

analyzed more closely.  

 The primary objective of this thesis is to analyze the Big Sioux River just south of 

Brookings, South Dakota, both annually and seasonally. The United States Geological 

Survey (USGS) has stream gauges placed in rivers and streams all over the United States. 

One of those gauges was installed in 1953 and is located in the Big Sioux River just south 

of Brookings, South Dakota and is the gauge that will be used for this study.  

 The daily stream flow from October, 1953, to September, 2018, was selected as 

the time period of study. The stream flow data was grouped into yearly stream flow then 

classified as very wet, wet, average, dry and very dry for each year. Then the steam flow 

data was broken into four seasons for each year; fall, winter, spring and summer.  

 The climate classification fit a log normal distribution with twenty-four years 

classified as average, sixteen classified as wet, seventeen classified as dry and the very 
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wet and very dry classifications each having four years. The seasonal analysis showed 

that the spring months had the highest stream flow and the fall had the lowest stream 

flow.  

 The streamflow analysis results were then compared to multiple other research 

projects, but the main comparison was to a study performed by Sadichya Amatya. That 

project focused on the development of climate scenarios based on precipitation analysis 

for five different locations in eastern South Dakota, including Brookings South Dakota. 

In comparing results, it was found that similar climate classifications were made between 

the two studies. However, in Amatya’s study she classified eight-year periods of 

precipitation rather than each individual year. This proved to be less useful than 

analyzing each individual year for flood prediction purposes but did allow an analysis of 

how a wet or very wet 8-year cycle is related to high streamflows.   

 In order to continue the process of making flood predictions, more research is 

suggested in the area of an analysis of precipitation data for the area, snow melt and 

runoff analysis, ground water analysis, stream height analysis and other stream studies.  
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Chapter 1 Introduction 

 

1.1 Background 

 

 Flooding is the most common natural disaster worldwide, with 40% of all natural 

disasters being floods (Baldassarre & Uhlenbrook, 2011). Floods have claimed the lives 

of millions of people and caused complete destruction of property and natural habitats. 

The ability to predict flooding would be an extremely valuable benefit worldwide and 

could save thousands of lives and prevent billions of dollars in damages.  

 One method to determine flood risk is to perform stream flow analysis.  Stream 

flow analyses have been conducted all around the world. A study on the impact of 

climate variability on stream flow in the Yellow River in China indicated that 

precipitation and temperature affected stream flow (Fu & Charles, 2007). Their study of 

annual precipitation in La Nina and El Nino years showed that for small precipitation 

increases, the stream flow percentage change is less than the precipitation change for the 

Yellow River. These findings act as a resource to allow for watershed water resources 

planning and management to maintain the proper function of the river.  

 Another study was conducted in an arid region of northwest China. It was found 

that climate variability accounted for an estimated 64% of the reduction in average 

annual stream flow, with most of the reduction due to decreased precipitation (Ma & 

Kang, 2008). Their findings also concluded that the stream flow in the Shiyang river 

basin is more sensitive to precipitation changes than potential evaporation.  
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 Changes in climactic conditions such as precipitation, temperature, wind and 

evaporation can cause large and rapid changes in stream flow (Robson & Stewart, 1990). 

Hence, the need for stream flooding predictions and analysis based on historic data. In 

order to conduct a stream flow analysis, sufficient stream flow data needs to be collected. 

Entities such as the United States Geological Survey (USGS, 2019a) have installed and 

maintained stream gauges to retrieve data and the information is stored in the USGS data 

base.  Stream flow data is one type of data collected from the gauges. 

1.2 Scope and Objectives 

 

 The objective of this study was to perform a stream flow analysis of the Big Sioux 

River just south of Brooking, South Dakota. Historical stream flow data was used to 

classify each year into five different climate classifications. The data is then analyzed on 

a seasonal scale. The basic sub objectives of this study are: 

I. To develop five climate classifications for very wet, wet, average, dry and very 

dry years using stream flow data for the Big Sioux River. 

II. To separate the stream flow data into four different seasons, fall, winter, spring, 

and summer. 

III. To analyze the difference in seasonal stream flow based on the climate 

classification. 

IV. To compare the results to precipitation analyses performed in the same 

geographic region. 

V. To recommend future work.  

 



 
3 

 

1.3 Overview of the Thesis 

 

 This thesis is arranged by chapters starting with the introduction in Chapter 1. 

Chapter 2 covers the materials and methodologies, which describe how the data was 

obtained and analyzed. The results from the analysis are presented in Chapter 3. Chapter 

4 presents the discussion of results from the data analysis. The summary and conclusion 

are presented in Chapter 5. Finally, Chapter 6 presents recommendations for future 

research.  
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Chapter 2 Materials and Methodologies 

 

 This chapter will cover the geographical background of the study region, where 

the data for this research was obtained, the Quality Assurance/Quality Control (QA.QC) 

procedures, how the data was analyzed and definitions.  

2.1 Geographical Background 

In the 2010 federal census, Brookings, South Dakota had a population of 22,056 

and a population density of 1,704 inhabitants per square mile (U.S. Census Bureau, 

2018). The elevation of Brookings is 1,621 feet. Sixmile Creek runs through Brookings 

and then feeds into the Big Sioux River south west of town. Figure 2.1 shows a satellite 

photo of Brookings, South Dakota. The location of study (Figure 2.2) for this thesis is 

located just south of Brookings, South Dakota on the Big Sioux River.  

 

Figure 2.1: Brookings South Dakota Aerial Photo (Anyplace America, 2019) 
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Figure 2.2: Location of Study Area (Anyplace America, 2019) 

 The Big Sioux River rises in Roberts County, South Dakota, and feeds into the 

Missouri River in Sioux City, Iowa. The Big Sioux River flows 419 miles through 

Watertown, Castlewood, Bruce, Flandreau, Egan, Trent, Dell Rapids and Sioux Falls, 

South Dakota. Figure 2.3 shows the map of the Big Sioux River.  
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Figure 2.3: Map of the Big Sioux River (Cronin, 2014) 

 

2.2 Data Source 

All stream flow data used in this thesis came from USGS gauge #0648000, which is 

located just south of Brookings, South Dakota. Figure 2.4 and Figure 2.5 show the 

location of the gauge station used for data analysis.  

Gauge#06480000 
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Figure 2.4: USGS Stream Flow Gauge Sites in the United States (USGS, 2019b) 

 

Figure 2.5: USGS Stream Flow Gauge Sites in South Dakota (USGS, 2019c) 

Gauge#06480000 
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 The Big Sioux River gauge station #06480000 is located in Moody County just 

south of Brookings, South Dakota. The gauge has a contributing drainage area of 2,469 

square miles. The flood stage is nine feet and the datum of the gauge is 1,551.91 above 

NGVD29. The daily discharge, in cubic feet per day, was recorded from 08-01-1953 to 

present. There is a continuous record of stream flow data without any missing data points 

(USGS, 2019a).   

2.3 Quality Assurance/Quality Control 

The stream flow data used in this thesis was obtained from USGS. The data was 

thoroughly reviewed and has received final approval, with the exception of the stream 

flow data for 2018. The 2018 stream flow data is still listed as provisional and needs to be 

reviewed by USGS as part of their normal review process.  

2.4 Data Processes  

This section will discuss the methods used to analyze the data. First it will discuss 

how the data was converted into cubic feet from cubic feet per day. Then it will discuss 

how the data was graphed and what statistical analyses were performed. 

The data provided by USGS was for stream flow and had units of cubic feet per 

day. It was converted to a volume with units of cubic feet. The volume values from each 

day were then summed over a water year (defined in section 2.5.1) to obtain a cumulative 

annual stream flow volume 

 

 

.  
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2.4.1 Statistical Analyses 

Mean 

The mean of a list of numbers is the sum of the list divided by the number of 

items in the list (Yamen, 1967). The mean is the most commonly used type of average 

and is often referred to as simply the average. The mean (µ) is defined as: 

𝜇 =  
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1
 

 The mean calculation is used to calculate the average seasonal stream flow. In 

Microsoft® Excel, the function ‘=AVERAGE(N1:N2)’ is used to calculate the mean for a  

list of data. 

Standard Deviation 

The standard deviation (σ) of a data set is the square root of its variance. The 

variance of a data set is the mean of the deviation squared of that variable from its 

expected value or mean. The variance is simply the measure or the amount of variation 

within the values of a set (Yamane, 1967). In other words, the standard deviation is the 

calculation of how much a data set deviates from its average. 

𝜎 =  √
1

𝑛
∑(𝑥𝑖 − 𝜇)2

1

𝑖=1

 

 The standard deviation was used to define the climate classification for the annual 

analysis. In Microsoft® Excel the function ‘=STDEV(N1:N2)’ is used to calculate the 

standard deviation for a list of data. 
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Variability 

 Variability is the amount in which data points in a statistical distribution or data 

set diverge from the average value, as well as the extent to which these data points differ 

from each other (Kenton, 2018).  

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝜎

𝜇
 

 The variability was used to determine which season was the most different when 

compared to the other seasons.  

Skewness  

 In probability and statistics, skewness is a measure of the degree of asymmetry of 

a distribution (Yamane, 1976). A distribution is considered to be skewed if the tail on one 

side of the distribution is longer than the tail on the other side. If the data is skewed in the 

direction of higher values, it is positive skewed. If the opposite is true, it has a negative 

skewness. In a perfect distribution there will be no skewness and the skew value will be 

zero.  

 The skewness was used to determine whether the data fit a normal or log normal 

distribution. In Microsoft® Excel the function ‘=SKEW(N1:N2)’ is used to calculate the 

skewness for a list of data. 

2.5 Definitions 

This section will discuss how a water year was defined then it will cover how the 

cumulative annual stream flow was sorted into climate classifications. Finally, the 

manner in which the data was divided into seasons will be explained. 
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2.5.1 Water Year Convention 

The daily stream flow data obtained from USGS needed to be divided into years. 

USGS defines a water year to be from October 1 to September 30. For example, the 2018 

water year is from 10-1-17 to 9-30-18. Once the data was separated by water year, the 

daily data within each year was summed to obtain a cumulative stream flow for that 

water year. 

2.5.2 Climate Classification 

The average and standard deviation of the annual cumulative stream flow of the 

entire data set was manipulated to determine boundaries for climate classification. Table 

2.1 shows the classification boundaries.  

Table 2.1: Boundaries for Climate Classification Based on Stream Flow 

 Parameter Classification 

Above Average + 1.5xStandard Deviation Very Wet 

Between 
Average + 1.5xStandard Deviation & Average + 

0.5xStandard Deviation 
Wet 

Between  
Average + 0.5xStandard Deviation & Average - 

0.5xStandard Deviation 
Average 

Between 
Average - 0.5xStandard Deviation & Average - 

1.5xStandard Deviation 
Dry 

Below Average - 1.5xStandard Deviation  Very Dry 

 

2.5.3 Season Classification   

 After each year was classified as either very wet, wet, average, dry or very dry, a 

seasonal analysis was performed. The weather year defined by USGS starts in the Fall 
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and ends in the Summer. Knowing this, the months were divided into seasons as seen in 

Table 2.2. 

Table 2.2: List of Moths Separated into Seasons 

Season Months 

Fall October, November, December 

Winter January, February, March 

Spring April, May, June 

Summer July, August, September 

 

 After the data was split into seasons, it was analyzed. Each season was compared 

against each other in their respective climate classifications. Finally, all the results were 

compiled into one chart in order to visually compare seasonal stream flow in different 

climate classifications. 
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Chapter 3 Results 

 

The results from the stream flow analysis of the Big Sioux River are presented in 

this section. This chapter is divided into two sections. The first section shows the results 

from the annual stream flow analysis and the second shows results from the seasonal 

analysis. 

3.1 Annual Analysis 

 

 The plot in Figure 3.1 presents the cumulative annual stream flow of the Big 

Sioux River from 1954 to 2018. Note that the total flow in the figure is displayed using 

log scale.  

 

Figure 3.1: Cumulative Annual Stream Flow of the Big Sioux River South of 

Brookings 
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The results indicate that the year with the highest cumulative stream flow was 

2011, with a cumulative stream flow volume of 53,791,603,200 cubic feet. Whereas, 

1959 had the lowest cumulative stream flow volume of 488,963,520 cubic ft.  

 Figure 3.2 shows the threshold for a very wet, wet, average, dry or very dry year 

according to the cumulative stream flow of each year from 1954 to 2018, as defined in 

Table 2.1. The figure is in log scale.  

 

Figure 3.2: Cumulative Annual Stream Flow of the Big Sioux River South of 

Brookings With Threshold Indicators.  The threshold indicators are lines on the 

graph that denote the cutoff values for very wet (above orange line), wet (between 

orange and yellow lines), average (between yellow and green lines), dry (between 

green and red lines) and very dry (below red line). 

The average volume was 6,667,070,609 cubic feet. Any year with a cumulative 

stream flow volume higher that the average plus one and a half times the standard 

deviation (represented by the orange line) is considered to be a very wet year. Any year 

with a cumulative stream flow volume between the average plus one and a half times the 
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standard deviation (orange line) and the average plus half the standard deviation 

(represented by the yellow line) are considered to be wet years. Years with cumulative 

stream flow volume that falls between the average plus half the standard deviation 

(yellow line) and the average minus half the standard deviation represented by the green 

line) are considered average years. Years with cumulative stream flow volume that fall 

between the average minus half the standard deviation (green line) and the average minus 

one and a half times the standard deviation (represented by the red line) are considered to 

be dry years. Years with cumulative stream flow volumes that are below the average 

minus one and a half times the standard deviation (red line) are considered very dry 

years.  Table 3.1 shows the years sorted into the climate classifications and Table 3.2 

shows the cut-off values used in the analysis. 
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Table 3.1: Very Wet, Wet, Average, Dry and Very Dry Climate Classifications 

Climate Classification  
Very Wet Years 

(4) 

Wet Years 

(16) 

Average Years 

(24) 

Dry Years 

(17) 

Very Dry Years 

(17) 

1986 1962 1954 1955 1956 

1993 1969 1960 1957 1959 

2010 1972 1963 1958 1968 

2011 1978 1965 1961 1981 

- 1984 1966 1964 - 

- 1985 1970 1967 - 

- 1994 1973 1971 - 

- 1995 1979 1974 - 

- 1996 1980 1975 - 

- 1997 1983 1976 - 

- 1998 1987 1977 - 

- 1999 1990 1982 - 

- 2001 1991 1988 - 

- 2007 1992 1989 - 

- 2017 2002 2000 - 

- 2018 2005 2003 - 

- - 2006 2004 - 

- - 2008 - - 

- - 2009 - - 

- - 2012 - - 

- - 2013 - - 

- - 2014 - - 

- - 2015 - - 

- - 2016 - - 

 

Table 3.2: Cutoff Values for the Climate Classifications of Cumulative Annual 

Stream Flow Volume From 1954 to 2018 

Analysis of Cumulative Annual Stream Flow of the Big Sioux River From 

1954 to 2018 

Parameter Log Transformed Non-Log Transformed 

Average - 1.5 STDEV 9.108 1,283,130,811 

Average - 1/2 STDEV 9.585 3,849,287,484 

Average 9.824 6,667,070,609 

Average + 1/2 STDEV 10.062 11,547,547,616 

Average + 1.5 STDEV 10.540 34,641,698,369 
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3.2 Seasonal Analysis 

 

 From the information gained in the annual analysis of stream flow volume, the 

seasonal analysis could be then be conducted. The main information needed from the 

annual analysis was the climate classification of very wet, wet, average, dry or very dry 

for each year (Table 3.1).  

 Each year was broken into four seasons: Fall, Winter, Spring and Summer. Fall is 

October through December, Winter is January through March, Spring is April through 

June and Summer is July through September. The years were separated into five different 

tables depending on their climate classification (very wet, wet, average, dry, very dry) 

and then the average and total stream flow volume for each season was found, along with 

the standard deviation for each group (Table 3.3 to Table 3.7). From these tables, graphs 

were made using the average cumulative seasonal flow volume of each classification to 

visually compare the seasonal differences within each classification (Figure 3.3 to Figure 

3.7). 
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Table 3.3: Total, Average and Standard Deviation for Each Year Classified as Very 

Wet 

(Red = Lowest Seasonal Flow Value, Green = Highest Seasonal Flow Value) 

Very Wet Years 

Year 
Cumulative Seasonal Flow Volume (ft3) 

Fall Winter Spring Summer 

1986 2,414,966,400 4,081,104,000 21,541,507,200 8,016,364,800 

1993 1,275,955,200 2,158,272,000 18,303,753,600 15,294,182,400 

2010 2,689,675,200 6,732,720,000 13,099,104,000 16,954,358,400 

2011 6,565,190,400 10,651,824,000 28,443,744,000 8,130,844,800 

Total 12,945,787,200 23,623,920,000 81,388,108,800 48,395,750,400 

Average 3,236,446,800 5,905,980,000 20,347,027,200 12,098,937,600 

STDEV 1,993,605,434 3,185,201,013 5,560,821,952 4,068,103,416 

 

 

Figure 3.3: Comparison of Average Seasonal Stream Flow for Very Wet Years 

 The Spring had the highest average stream flow volume for very wet years with 

an average stream flow value of 20,347,027,200 cubic feet. The highest seasonal flow 

volume value for the Spring was 28,443,744,000 cubic feet and it was in 2011. The 

lowest Spring seasonal flow volume occurred in 2010 and was 13,099,104,000 cubic feet.  
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 The season with the lowest average stream flow volume for very wet years was 

the Fall with an average stream flow value of 3,236,446,800 cubic feet. Again, 2011 had 

the highest Fall cumulative flow volume with a value of 6,565,190,400 cubic feet. The 

lowest Fall flow volume value was in 1993 with a Fall cumulative flow volume value of 

1,275,955,200 cubic feet.   

Table 3.4: Total, Average and Standard Deviation for Each Year Classified as Wet 

(Red = Lowest Seasonal Flow Value, Green = Highest Seasonal Flow Value) 

Wet Years 

Year 
Cumulative Seasonal Flow Volume (ft3) 

Fall Winter Spring Summer 

1962 120,960,000 2,561,414,400 6,070,550,400 5,138,467,200 

1969 378,259,200 66,960,000 14,340,412,800 938,476,800 

1972 384,376,320 1,675,373,760 9,054,720,000 3,362,256,000 

1978 590,630,400 3,492,979,200 7,021,296,000 669,945,600 

1984 552,407,040 2,777,673,600 16,220,304,000 2,820,795,840 

1985 3,391,796,160 6,015,168,000 5,733,849,600 2,497,236,480 

1994 3,288,643,200 5,629,824,000 11,784,182,400 6,325,344,000 

1995 2,254,780,800 3,207,513,600 17,637,696,000 7,650,374,400 

1996 7,932,211,200 3,834,432,000 12,953,692,800 2,957,904,000 

1997 1,684,886,400 2,627,164,800 23,854,435,200 6,083,164,800 

1998 2,363,558,400 3,952,540,800 6,965,827,200 1,729,641,600 

1999 2,414,016,000 2,469,571,200 6,848,928,000 2,239,833,600 

2001 216,561,600 85,864,320 21,607,776,000 4,510,080,000 

2007 649,598,400 4,495,132,800 8,355,657,600 935,236,800 

2017 2,140,992,000 3,552,076,800 5,381,856,000 3,650,745,600 

2018 5,620,924,800 3,733,776,000 13,924,396,800 6,224,860,800 

Total 33,984,601,920 50,177,465,280 187,755,580,800 57,734,363,520 

Average 2,124,037,620 3,136,091,580 11,734,723,800 3,608,397,720 

STDEV 2,091,629,011 1,584,907,511 5,636,295,635 2,099,045,090 
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Figure 3.4: Comparison of Average Seasonal Stream Flow Volume for Wet Years 

 Similar to the very wet years, Spring for the wet years had the highest average 

stream flow volume with an average stream flow volume value of 11,734,723,800 cubic 

feet. The highest seasonal flow volume value for the Spring was 21,607,776,000 cubic 

feet and it was in 2001. The lowest Spring seasonal flow volume occurred in 2017 and 

was 5,381,856,000 cubic feet.  

 The season with the lowest average stream flow volume for wet years was the Fall 

with an average stream flow volume value of 2,124,037,620 cubic feet. The year 2018 

had the highest Fall cumulative flow volume with a value of 5,620,924,800 cubic feet. 

The lowest Fall flow volume value was in 2001 with a Fall cumulative flow volume 

value of 216,561,600 cubic feet. 
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Table 3.5: Total, Average and Standard Deviation for Each Year Classified as 

Average 

(Red = Lowest Seasonal Flow Value, Green = Highest Seasonal Flow Value) 

Average Years 

Year 
Cumulative Seasonal Flow Volume(ft3) 

Fall Winter Spring Summer 

1954 338,601,600 1,725,494,400 3,344,112,000 856,656,000 

1960 26,498,880 1,136,721,600 3,785,356,800 317,520,000 

1963 374,803,200 477,014,400 1,586,822,400 2,621,548,800 

1965 86,313,600 27,820,800 6,243,868,800 622,771,200 

1966 394,588,800 2,589,079,680 1,586,822,400 436,492,800 

1970 426,124,800 1,539,388,800 3,434,659,200 512,265,600 

1973 1,033,344,000 3,581,539,200 2,174,169,600 212,976,000 

1979 219,343,680 497,016,000 8,293,622,400 1,319,846,400 

1980 756,000,000 559,699,200 2,290,723,200 858,643,200 

1983 1,366,416,000 3,725,568,000 4,202,064,000 631,152,000 

1987 3,583,180,800 3,115,411,200 3,231,990,720 870,929,280 

1990 142,853,760 142,896,960 2,090,102,400 1,683,331,200 

1991 361,238,400 216,259,200 3,230,755,200 2,186,956,800 

1992 461,376,000 2,229,206,400 4,450,982,400 4,011,292,800 

2002 1,361,491,200 949,968,000 4,285,396,800 439,413,120 

2005 1,132,427,520 382,639,680 2,708,035,200 1,087,568,640 

2006 1,984,694,400 2,047,766,400 5,210,611,200 748,967,040 

2008 1,225,152,000 633,657,600 7,091,452,800 1,080,535,680 

2009 1,025,291,520 3,424,291,200 4,910,889,600 1,433,021,760 

2012 1,701,216,000 1,844,985,600 4,178,131,200 353,808,000 

2013 187,591,680 148,348,800 6,947,856,000 3,318,468,480 

2014 886,109,760 797,085,792 6,520,867,200 2,423,347,200 

2015 660,355,200 829,180,800 2,218,752,000 2,559,116,160 

2016 1,105,980,480 2,229,552,000 3,551,558,400 2,262,384,000 

Total 20,840,993,280 34,850,591,712 97,569,601,920 32,849,012,160 

Average  868,374,720 1,452,107,988 4,065,400,080 1,368,708,840 

STDEV 770,857,906 1,155,839,809 1,816,501,912 1,016,756,007 
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Figure 3.5: Comparison of Average Seasonal Stream Flow Volume for Average 

Years 

Again, the Spring had the highest average stream flow volume for the average 

years with an average stream flow volume value of 4,065,400,080 cubic feet. The highest 

seasonal flow volume value for the Spring was 7,091,452,800 cubic feet and it was in 

2008. The lowest Spring seasonal flow volume occurred in 1963 and 1966. Both years 

having a cumulative Spring flow volume of 1,586,822,400 cubic feet.  

 The season with the lowest average stream flow volume for average years was the 

Fall with an average stream flow volume value of 868,374,720 cubic feet. 1987 had the 

highest Fall cumulative flow volume with a value of 3,583,180,800 cubic feet. The 

lowest cumulative flow volume value was in 1960 with a Fall cumulative flow volume 

value of 26,498,880 cubic feet. 
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Table 3.6: Total, Average and Standard Deviation for Each Year Classified as Dry 

(Red = Lowest Seasonal Flow Value, Green = Highest Seasonal Flow Value) 

Dry Years 

Year 
Cumulative Seasonal Flow Volume (ft3) 

Fall Winter Spring Summer 

1955 229,219,200 703,641,600 612,835,200 72,066,240 

1957 104,716,800 505,267,200 2,641,766,400 556,329,600 

1958 238,636,800 231,984,000 884,649,600 94,305,600 

1961 138,153,600 996,969,600 936,748,800 243,388,800 

1964 504,921,600 189,648,000 2,448,316,800 214,531,200 

1967 157,783,680 639,290,880 2,060,294,400 466,473,600 

1971 333,331,200 1,253,664,000 1,033,084,800 332,285,760 

1974 163,382,400 601,663,680 622,684,800 58,661,280 

1975 54,836,352 12,146,976 1,123,200,000 93,484,800 

1976 64,912,320 955,065,600 514,010,880 2,598,912 

1977 585,792 1,033,737,120 841,492,800 198,097,920 

1982 124,588,800 1,020,548,160 1,164,067,200 561,772,800 

1988 484,099,200 1,374,105,600 1,309,564,800 60,056,640 

1989 90,331,200 1,091,352,960 795,571,200 266,457,600 

2000 774,144,000 728,265,600 1,704,326,400 585,273,600 

2003 388,895,040 589,078,656 1,018,474,560 214,926,048 

2004 137,514,240 462,896,640 1,192,250,880 760,086,720 

Total 3,990,052,224 12,389,326,272 20,903,339,520 4,780,797,120 

Average 234,708,954 728,783,898 1,229,608,207 281,223,360 

STDEV 196,347,317 371,060,941 609,052,948 219,690,493 



 
24 

 

 

Figure 3.6: Comparison of Average Seasonal Stream Flow Volume for Dry Years 

Spring had the highest average stream flow volume in dry years with an average 

stream flow volume value of 1,229,608,207 cubic feet. The highest seasonal flow volume 

value for the Spring was 2,641,766,400 cubic feet and it was in 1957. The lowest Spring 

seasonal flow volume occurred in 1976, having a cumulative Spring flow volume of 

514,010,880 cubic feet.  

 Again, the Fall was the season with the lowest average stream flow volume for 

dry years with an average stream flow volume value of 234,708,954 cubic feet. 2000 had 

the highest Fall cumulative flow volume with a value of 774,144,000 cubic feet. The 

lowest cumulative flow volume value was in 1977 with a Fall cumulative flow volume 

value of 585,792 cubic feet. 
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Table 3.7: Total, Average and Standard Deviation for Each Year Classified as Very 

Dry 

(Red = Lowest Seasonal Flow Value, Green = Highest Seasonal Flow Value) 

Very Dry Years 

Year 
Cumulative Seasonal Flow Volume (ft3) 

Fall Winter Spring Summer 

1956 51,563,520 18,144,000 423,187,200 470,016,000 

1959 34,102,080 255,631,680 187,142,400 12,087,360 

1968 107,049,600 64,091,520 367,459,200 172,834,560 

1981 148,029,120 134,507,520 328,838,400 155,554,560 

Total 340,744,320 472,374,720 1,306,627,200 810,492,480 

Average 85,186,080 118,093,680 326,656,800 202,623,120 

STDEV 45,186,593 89,571,602 87,252,480 166,512,489 

 

 

Figure 3.7: Comparison of Average Seasonal Stream Flow Volume for Very Dry 

Years 

Like all other climate classifications, Spring had the highest average stream flow 

volume in very dry years with an average stream flow volume value of 326,656,800 cubic 

feet. The highest seasonal flow volume value for the Spring was 423,187,200 cubic feet 
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and it was in 1956. The lowest Spring seasonal flow volume occurred in 1959, having a 

cumulative Spring flow volume of 187,142,400 cubic feet.  

 Again, the Fall was the season with the lowest average stream flow volume for 

very dry years with an average stream flow volume value of 85,186,080 cubic feet. The 

year 1981 had the highest Fall cumulative flow volume with a value of 148,029,120 cubic 

feet. The lowest Fall cumulative flow volume value was also in 1959 with a cumulative 

flow volume value of 34,102,080 cubic feet.  

All climate classifications were graphed together to visually compare each 

classification (Figure 3.8). Spring shows the highest and Fall shows the lowest stream 

flow volume amounts in all cases. The highest average stream flow volume in the Spring 

was 20,347,027,200 cubic feet in the very wet years and the lowest average stream flow 

volume Fall was 86,112,015 cubic feet in the very dry years. 

The main difference found in these graphs is in the Summer and Winter seasons. 

In all cases, the Spring season has the highest average flow volume and the Fall season 

has the lowest average flow volume. However, the Summer has the second highest 

average flow volume in very wet, wet, and very dry years but the Winter season has the 

second highest stream flow volume in the average and dry years. 
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Figure 3.8: Average Stream Flow Amounts for Each Season in the Respective 

Climate Classification   

  

Figure 3.9: Graphed as a Percent of Average in Their Respective Climate 

Classification 
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To help show which seasons have the most variability depending on the 

classification, all the seasons were graphed as a percent of the season average flow 

(Figure 3.9). This illustrates the point that the Summer and Spring months are the most 

variable by the type of climate.  

The largest positive difference was found in the Summer season of the very wet 

years, with the average seasonal flow volume being 544% of the overall summer average, 

or 5.44 times overall average seasonal flow volume. The largest negative difference was 

found in the Spring of the very dry years, with the average seasonal flow volume being 

5% of the overall spring average, or 0.05 times the overall average seasonal flow volume. 

The closest to the overall average seasonal flow volume was found in the Fall and Winter 

months of the average years, with the average seasonal flow volume being 78% of the 

overall average, or 0.78 times the overall average seasonal flow volume. This indicates 

that the spring and summer months had the largest effect on climate classification of a 

year.  
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Chapter 4 Discussion and Analysis of Results 

 

 Presented in this section are the analysis and discussion of results for the stream 

flow study of the Big Sioux River.  

4.1 Discussion on Yearly Analysis Results 

 

 The goal for the yearly analysis of stream flow for the Big Sioux River was to be 

able to classify each year as either a very wet, wet, average, dry or very dry year. After 

analyzing the results, this was able to be achieved.  

 The cumulative annual stream flow volume was used for the year classification as 

opposed to the average annual stream flow volume. The reason for this was to more 

accurately represent the stream flow for each year in the analysis. Some of the years had 

a stream flow of zero (0) cubic feet per day in the Winter. Even though the stream had no 

flow, there was more than likely still precipitation in the form of snow during the Winter. 

By using the cumulative stream flow for each year, the precipitation in the winter would 

still be taken into account in the form of Spring runoff from snow melt. If the average 

stream flow for each year was used, the precipitation in the Winter would not be as 

accurately accounted for. This means that if the stream was frozen during the Winter of a 

year that had a very high amount of precipitation and the average yearly stream flow was 

used, that year may be classified as an average year when in reality it was a wet or very 

wet year.  

 The cumulative annual stream flow volume data did not fit a normal distribution. 

When performing the statistical analysis of the cumulative annual stream flow volume 

assuming a normal distribution, the standard deviation was almost the same as the 
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average for the sample, with a standard deviation of 11,397,689,359 and an average of 

11,186,300,475 cubic feet. Also, the normal distribution was skewed toward the left, 

meaning there would be more years being classified as dry to very dry than there were 

years being classified as wet. Forty-five out of sixty-four years were below average when 

using a normal distribution. This is due to such large cumulative stream flow volume 

values in the very wet years, causing a skewness of 1.68 in the data. Figure 4.1 shows the 

normal scale of the data with the solid horizontal line representing the average.  

 

Figure 4.1: Normal scale of the Cumulative Annual Stream Flow of The Big Sioux 

River 

 Figure 4.2 shows the log scale of the data with the solid horizontal line 

representing the average.  A log transform of the data was then used, which gave a 

standard deviation value of 0.4771 and an average of 9.824.  
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Figure 4.2: Log Scale of the Cumulative Annual Stream Flow of The Big Sioux 

River  

 When analyzing the log transformed data, half of the data falls below average. 

Also, the skewness of the log scale data was -0.27. This means that the data set more 

closely fits a log normal distribution.  

 The classification of each year was then made using the average and standard 

deviation of the sample size. A clear indicator that the classification of years more closely 

fits a log normal distribution is the number of years that is in each classification. Before 

performing the analysis, it was expected that the grouping of years in their respective 

classifications should form a centered bell-shaped curve. This is because one would 

expect an equal number of very wet to very dry years and wet to dry years with a 

majority of years that fall in the average classification assuming that the data was taken 

from a large enough sample size. 
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 The number of years classified as average years were 24, 16 years were classified 

as wet and 17 were classified as dry. Lastly, four years were classified as very wet and 

another four were classified as very dry. This means that the resulting classification 

distribution forms a nearly perfect bell curve, indicating that the sample size is large 

enough and that this classification of seasons can be used to perform a seasonal analysis 

of the data.  

 

Figure 4.3: Distribution of Years in Each Climate Classification 

4.2 Discussion on Seasonal Analysis Results 

 

 The goal for the seasonal analysis of stream flow for the Big Sioux River was to 

find any patterns, or lack thereof, that may occur as it relates to climate classification. 

The results obtained from the yearly analysis allow for an accurate seasonal analysis to be 

conducted.  

 When performing the seasonal analysis, the average cumulative seasonal flow 

volume was used as opposed to the total cumulative seasonal flow due to the varying 
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number of years in each climate classification (see Figure 4.3). The average is being used 

in this case because the seasonal flow analysis is not being compared to the yearly flow 

analysis; the yearly analysis was only used to determine the climate classifications for 

each year.  

 A graph was made for each year classification of the average cumulative seasonal 

flow volume. In all cases, Spring had the highest flow and Fall had the lowest. Spring 

having the largest average cumulative seasonal flow volume is not a surprise because, 

aside from normal precipitation, snowmelt runoff and the contribution of ground water 

will also contribute to the stream flow volume. What is surprising, however, is that the 

Fall season has the lowest stream flow in all cases.  

It was expected that the Winter would have the lowest stream flow volume due to 

little to no immediate precipitation runoff and frozen ground. However, the parameters 

for Winter and Fall defined by USGS may not be what is commonly perceived as Fall 

and Winter months. Winter is from January through March, which means that in some 

years the snow starts to melt, and the ground starts to thaw in March due to an increased 

average temperature over that time period, contributing to more runoff and higher stream 

flow. Fall is October through December, which is when the ground is starting to freeze, 

and the precipitation is turning to snow instead of rain. 

The Summer season varied the most between year classifications. In very wet and 

wet years, it was the season with the second highest average cumulative stream flow 

volume, but in average and dry years it was the season with the second lowest average 

cumulative stream flow volume. 
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In order to better understand how seasonal stream flow volume varied for each 

climate classification, a percent of average analysis was performed for each season in 

each climate classification. From this analysis, it was clear that Summer and Spring 

seasonal stream flow volume had the most variation, with the Summer seasonal flow 

volume being 5.43 times higher than the overall Summer average flow volume in the 

very wet years and the Spring being 0.05 times the spring average flow volume in the 

very dry years. Figure 3.9 shows the percent of average for all seasons in all climate 

classifications.  

 Note that all seasons in the average climate classification were below 100%, 

where it would be expected that they would be. This is due to the large stream flow 

volumes in the wet and very wet years skewing the average value toward larger flows.  

The importance of this finding is in the ability to create more accurate seasonal 

stream flow simulations. Simulations could be in the form of estimating missing data 

from previous years, or making future seasonal predictions.  Based on the work of Basnet 

(2011) and Kshatriya (2018), future precipitation predictions cannot be made simply 

based on the climate classification of a year alone. Due to the variability of precipitation 

in each season, future seasonal precipitation predictions would have to be made, rather 

than yearly precipitation predictions. The findings of this thesis support the findings of 

Basnet (2011) and Kshatriya (2018) in that the seasonal variability of stream flow shows 

that predictions based on yearly climate classifications alone will not be accurate, i.e. 

creating a wet or very wet years by simply multiplying an average stream flow volume by 

some factor does not accurately reflect reality.  Table 4.1 shows the variability of each 

season as a further illustration of this.  
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Table 4.1: Seasonal Cumulative Stream Flow Volume Variability 

Cumulative Seasonal Stream Flow Analysis 

Parameter Fall Winter Spring Summer 

Average (ft3) 1,109,264,291 1,869,441,200 5,983,434,742 2,224,160,241 

Standard Deviation 1,551,144,710 1,955,047,406 6,461,984,094 3,262,532,313 

Variability 1.3984 1.0458 1.0800 1.4669 

 

From the seasonal analysis in this study, it was determined that Spring and 

Summer flow volume has the highest stream flow for every climate classification.  This 

matches the measured flood reports since about 75% of flash flood reports occur between 

April and September (NWS, 2019), with a majority of high stream flow occurring in the 

Spring and Summer months. Figure 4.5 was obtained from the NWS and shows the 

number of flash floods reported per month.  
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Figure 4.4: Daily Flash Flood Reports (NWS, 2019) 

4.3 Comparison to Climate Scenario Development Using Precipitation Data 

 

 Nabin Basnet (2011) conducted a climate study but instead of using stream flow 

data, he used precipitation data. Basnet’s thesis is titled Development of Climatic 

Scenarios Using Precipitation Data for Aberdeen South Dakota. The goal of his research 

was to define five climate scenarios for Aberdeen, South Dakota, using the precipitation 

data.  The methods for climate classification in Basnet’s study were very similar to the 

methods used in this thesis. This means that comparing classifications based on 

precipitation data and stream flow data could be performed.  The information found in 

Basnet’s study does not directly correlate to this study, as it was not conducted for the 

same geographic area. However, both studies were conducted in the same climate zone, 

Humid Continental “B” as shown in Figure 4.5. 
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Figure 4.5: Climate Zones of South Dakota (Hogan, 1998) 

In Table 4.2, the comparison of results from Basnet’s research and this study is 

presented. Note that there is no stream flow data for (1942-1949, wet years) since the 

data set the current study is using does not include data prior to 1953 due to the gauge 

being installed that year. therefore a full comparison cannot be made. Also, the climate 

classifications are based on the 8-year precipitation classifications made in Basnet’s study 

and not the classifications made in this thesis.  
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Table 4.2: Comparison of Cumulative Annual Stream Flow Near Brookings and 

Basnet’s Precipitation Near Aberdeen, South Dakota 

Cumulative Annual Stream Flow and Precipitation Comparison 

Climate Classification (8-year period) 

Accumulated 

8-year 

Precip. (in) 

Accumulated 8-year 

Stream Flow 

Volume (ft3) 

Very Wet (1993-2000) 189.72 189,514,339,200 

Wet (1942-1949) 172.18 - 

Average (1977-1984) 156.44 64,577,945,952 

Dry (1959-1966) 140.61 42,367,078,080 

Very Dry (1969-1976) 127.63 50,334,315,840 

 

The 8-year period classified as “very wet” can be compared to the stream flow 

volume data in this thesis. The cumulative annual stream flow volume calculated for the 

8-year period from 1993-2000 is much higher than the cumulative annual stream flow 

volumes for the other identified 8-year periods. The 8-year period from 1977-1984 was 

classified as ‘average’ and can also be confirmed by the stream flow analysis. However, 

the very dry and dry 8-year period classifications in the precipitation analysis are 

contradicted by the stream flow analyses of those periods. In the stream flow analysis, the 

8-year period from 1969-1976 has a higher cumulative annual stream flow volume 

compared to the 8-year period from 1959-1966. This could be due to the time period 

before 1959-1966 also being dry years with less potential for runoff.  For the stream flow 

to reflect runoff from precipitation, the infiltration rate of precipitation must be lower 

which occurs when the soil moisture and/or ground water levels are higher. Table 4.3 

illustrates the lagging of precipitation from the stream flow analysis since 1969 to 1971 

still showed climate classifications of wet and average even though the 8-year 
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precipitation period was very dry. This means that there was very little runoff from 

precipitation from 1969-1976 but the soil moisture and groundwater levels were still high 

from previous wet precipitation years.  

Table 4.3: Climate Classification Comparison to Basnet's Research 

Basnet's 

Climate 

Classification 

This Thesis Climate Classification 

1993-2000 1993 1994 1995 1996 1997 1998 1999 2000 

Very Wet Very Wet Wet Wet Wet Wet Wet Wet Dry 

1942-1949 1942 1943 1944 1945 1946 1947 1948 1949 

Wet - - - - - - - - 

1977-1984 1977 1978 1979 1980 1981 1982 1983 1984 

Average  Dry Wet   Average  Average  Very Dry Dry   Average Wet  

1959-1966 1959 1960 1961 1962 1963 1964 1965 1966 

Dry  Very Dry Average  Dry  Wet  Average  Dry  Average  Average  

1969-1976 1969 1970 1971 1972 1973 1974 1975 1976 

Very Dry Wet Average Dry Wet Average Dry Dry Dry 

 

4.4 Comparison to Historical Precipitation for Northern South Dakota 

 

 Uday Singh Kshatriya (2018) conducted a study similar to Basnet’s study but for 

multiple locations in north central South Dakota. This thesis is titled Comparison of 

Historical Precipitation for Aberdeen, Ipswich, and Eureka, South Dakota (Kshatriya, 

2018). The goal of that study was to analyze precipitation records for the locations stated. 

One of the analyses was to classify years as wet, moderately wet, average, moderately 

dry and dry based on the precipitation patterns.    
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Kshtriya’s study defined the years with precipitation values that occurred between 

the mean plus one half the standard deviation and the mean plus one and a half times the 

standard deviation to be wet years and anything above this as very wet (the same 

definition for dry and very dry but you subtract from the average instead of add to it). In 

Kshtriya’s thesis, moderately wet years are defined as years that fall between the average 

and the average plus the standard deviation and anything above that is considered wet. By 

classifying the years by this definition, fewer years would be considered average 

compared to the number considered wet or dry.  

One comparison that should be made is between the results for Aberdeen and this 

thesis study, as stated in the previous section, Aberdeen and Brookings are both classified 

as humid continental “B” climate zones. The data analyzed by Kshatriya also includes 

data that is more recent than the data in Basnet’s research.   

In Table 4.4, the comparison of results from Kshatriya’s research and this thesis 

study are presented. Because the data set used for Kshatriya’s thesis includes more recent 

precipitation data, we can compare the wet 8-year periods, unlike in Basnet’s research 

where there was a missing set of years. Again, note that the climate classifications are 

based on the 8-year precipitation classifications made in Kshatriya’s study and not the 

yearly classifications made in this study. 
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Table 4.4: Comparison of Cumulative Annual Stream Flow Near Brookings and 

Kshatriya’s Precipitation Near Aberdeen, South Dakota 

Cumulative Annual Stream Flow and Precipitation Comparison 

Climate Classification (8-year period) Precip. (in) Stream Flow (ft3) 

Very Wet (1993-2000) 189.78 189,514,339,200 

Wet (2006-2013) 177.66 157,199,823,360 

Average (1985-1992) 159.32 91,172,295,360 

Dry (1957-1964) 141.39 35,636,976,000 

Very Dry (1969-1976) 127.63 50,334,315,840 

 

Even with the larger and more current data set, most of the results are similar to 

the findings in Basnet’s research. In both studies, the very wet 8-year period was from 

1993-2000 and the very dry 8-year period was from 1969-1976 with the total 

precipitation calculations being the same for the very dry period and only six hundredths 

of an inch different for the very wet years. The dry 8-year period was shifted back two 

years in Kshatriya’s study. The main differences in the two studies (Kshtriya and Basnet) 

are the average and wet 8-year periods. With the more current precipitation data being 

considered for Kshatriya’s study, an entirely different 8-year wet period was found. Also, 

due to the more current information, the average 8-year period was shifted back by 8 

years from Basnet’s study results. 

The 8-year periods classified as very wet, wet and average in Kshatriya’s thesis 

can all be confirmed by the stream flow analysis in this thesis. However, just like in 

Basnet’s study, the 8-year periods classified as dry and very dry in Kshatriya’s study are 
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contradicted by the stream flow data analysis for this thesis study. In the stream flow 

analysis, the 8-year period from 1969-1967 has a higher cumulative annual stream flow 

than the 8-year period from 1957-1964. This could again be due to the period before 

1957-1964 also being dry years, so for the stream flow to reflect precipitation, the soil 

moisture and ground water must be recharged first. Table 4.5 illustrates the lagging of 

precipitation from the stream flow analysis since 1969 to 1971 still had climate 

classifications of wet and average even though the 8-year precipitation period was very 

dry. This means that there was very little runoff from precipitation during 1969-1976 but 

the soil moisture and groundwater were still recharged from previous wet years. 

Table 4.5: Climate Classification Comparison to Kshatriya's Research 

Kshatriya’s 

Climate 

Classification 

This Thesis Climate Classification 

1993-2000 1993 1994 1995 1996 1997 1998 1999 2000 

Very Wet Very Wet Wet Wet Wet Wet Wet Wet Dry 

2006-2013 2006 2007 2008 2009 2010 2011 2012 2013 

Wet Average Wet Average Average Very Wet Very Wet Average Average 

1985-1992 1985 1986 1987 1988 1989 1990 1991 1992 

Average Wet  Very Wet Average Dry Dry Average Average Average 

1957-1964 1957 1958 1959 1960 1961 1962 1963 1964 

Dry  Dry Dry  Very Dry Average  Dry  Wet  Average  Dry  

1969-1976 1969 1970 1971 1972 1973 1974 1975 1976 

Very Dry Wet Average Dry Wet Average Dry Dry Dry 

 

In order to more accurately compare the two results, Kshatriya’s classification 

system should be changed to match the classification system of this thesis.  
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4.5 Comparison to Climate Scenario Development in Eastern South Dakota 

 

 Sadichya Amatya conducted a study in 2011 that can be compared more directly 

to the results of the current study. Amatya’s thesis is titled Development of Climate 

Scenarios Using Climate Data from Specific Stations in Eastern South Dakota (Amatya, 

2011). The goal of her study was to develop climate scenarios in multiple locations of 

eastern South Dakota using precipitation data and then analyze the evaporation and 

precipitation scenarios in each location.  

 One of the locations in the study was Brookings, South Dakota, which is the same 

geographic area as the current study. Amatya used a very similar method of climate 

classification to determine the climate scenarios as the current study making it easier to 

compare the results. However, Amatya used an 8-year period when finding the climate 

scenarios, similar to Kshtriya and Basnet. This differs from the current study, which 

defined each individual year as very wet, wet, average, dry or very dry.  

 In Amatya’s research 1989-1996 was considered wet (very wet), 1982-1989 was 

considered moderately-wet (wet), 1998-2005 was considered Average, 1970-1977 was 

considered moderately-dry (dry) and 1952-1959 was considered dry (very dry), with the 

text in parentheses noting the finding from the current study. The text in the parentheses 

are noting the findings from the current study.  

Looking at Figure 4.7, four out of the eight years fall in either the very wet stream 

flow classification or near the upper boundary of the wet stream flow classification. 

However, one of the years (1989) is considered to be dry and three of the others are 

average with one of the average years (1992) being on the edge of the wet classification. 
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The current study shows a closer representation of a very wet 8-year period being 1992-

1999. 

The reason for this shift could be due to precipitation events being discrete and 

stream flow continuous. If there is a large rain event, there will usually be a spike in the 

stream flow value on the hydrograph depending on how close the precipitation event is to 

watershed. This means that data collected from precipitation studies is discrete, i.e. if 

there is a large rain event, a stream flow analysis may show a gradual increase in a stream 

flow rather than a large spike depending on how widespread the precipitation event is and 

the location of the precipitation gauge within the watershed.  The volume of precipitation 

is a major factor in determining the volume of runoff and, hence, stream flow.  

Increased precipitation over an extended period would result in an increase in soil 

moisture and ground water. This means that there will be more direct runoff from a 

precipitation event that follows a long period of wet conditions and the stream will 

maintain a stable flow due to high quantities of ground water, which can contribute to 

stream flow as base flow. This also means that stream flow will not reflect high 

precipitation when coming directly from a dry period as part of the precipitation would 

infiltrate the soil and potentially lead to ground water recharge and not direct runoff. If 

there is abundant ground water storage available, the majority of precipitation events will 

contribute to the recharging of ground water, rather than direct runoff.  
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Figure 4.6: Comparison of the current study to the work of Sadichya Amatya. The 

boxes annotated on the graph represent the climate periods as identified by Amatya 

(2011) 

 The comparison of the remaining four climate scenarios show similar patterns to 

that of the very wet classification. It is important to note that when conducting a 

precipitation study, most of the precipitation that occurs in the winter is not accounted for 

in stream flow because it is in the form of snow and precipitation gauges can’t accurately 

measure the amount of moisture from snow fall. However, when performing a stream 

flow analysis, most of the precipitation due to snow is accounted for in the form of runoff 

during periods of snow melt. This can be seen from analyzing the data in Table 4.6. 
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Table 4.6: Cumulative Seasonal Stream Flow and Precipitation Near Brookings, South Dakota Comparison 

 Cumulative Seasonal Stream Flow and Precipitation Comparison 

Years 
Fall Winter Spring Summer Total 

Precip. (in) Stream Flow (ft3) Precip. (in) Stream Flow (ft3) Precip. (in) Stream Flow (ft3) Precip. (in) Stream Flow (ft3) Precip. (in) Stream Flow (ft3) 

1989-1996 36.27 15,807,389,760 7.34 18,509,757,120 50.81 71,246,736,000 106.89 40,375,843,200 201.31 145,939,726,080 

1982-1989 57.24 12,007,785,600 6.47 23,200,931,520 50.54 54,198,918,720 78.97 15,724,765,440 193.22 105,132,401,280 

1998-2005 46.9 8,788,608,000 7.82 9,620,824,896 57.33 46,331,015,040 69.24 11,566,823,328 181.29 76,307,271,264 

1970-1977 38.8 2,487,642,023 8.46 10,770,619,949 52.19 19,004,593,751 68.71 4,824,502,645 168.16 37,087,358,368 

1952-1959 21.97 1,174,117,398 11.55 5,635,644,783 41.84 12,956,631,349 73.31 2,650,873,617 148.67 22,417,267,148 

Total 201.18 40,265,542,781 41.64 67,737,778,268 252.71 203,737,894,861 397.12 75,142,808,230 892.65 386,884,024,140 
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In Amatya’s research, the Winter accounts for 4.7% of the total precipitation and 

the Spring accounts for 28.3%. In this study, the Winter accounts for 17.5% of the total 

stream flow and the Spring accounts for 52.6%. This shows that the precipitation that 

occurs in the Winter is not being fully accounted for in the stream flow analysis at the 

time it occurs but is being mostly accounted for in the stream flow analysis in the form of 

runoff after a period of time. 

 In order to truly compare and obtain results from a precipitation analysis in the 

Brookings, South Dakota, area, the data in Amatya’s research would need to be re-

analyzed to study the classification of each individual year and not the 8-year period. 

Doing this would allow for more accurate comparisons and potentially lead to accurate 

flood predictions.   

4.6 Comparison to Stream Flow and Sediment Load Study 

 

 Brittany Leibel conducted a study of stream flow and sediment load in the Bad 

River watershed in order to analyze the effects of best management practices (BMPs). 

BMPs are practices that aim to improve water quality parameters with the addition of 

structural or non-structural improvements (Leibel, 2012). Structural BMPs are 

constructed basins or facilities where non-structural BMPs are developmental practices or 

land uses that reduce pollutants (Protect with Pride, 2012). Her thesis was titled A Study 

of Stream Flow and Sediment Load From the Bad River Watershed Before and After 

BMP Implementation (Leibel, 2012).  

 The main information found in her research that relates to this study is the 

correlation of precipitation to stream flow for various precipitation and stream flow 
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gauges. In Leibel’s study, precipitation and stream flow in the same water year were 

compared to one another and the comparison showed that the amount of stream flow had 

a direct correlation to the amount of precipitation in that year.  

 This further illustrates the point that the amount of stream flow in the Spring and 

Summer months is influenced by the amount of precipitation in the Fall and Winter. In 

order to more accurately predict flooding and stream flow conditions, a closer analysis of 

precipitation needs to be performed.  

 The research conducted by Leibel is just one example of the other uses for stream 

flow analysis. In the current study the main analysis was intended for future flood 

predictions. However, you could also use this data to perform other studies, like Leibel’s 

sediment load study.  
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Chapter 5 Summary and Conclusion 

 

 Based on the USGS stream flow data at gauge #06480000, located just south of 

Brookings, South Dakota, years were classified into five categories. This study focused 

on the yearly classification and study of seasonal stream flow of the Big Sioux River just 

south of Brookings, South Dakota.  The yearly classification and seasonal analysis 

involved the collection of historical daily stream flow data from the USGS website. This 

data was converted to a stream flow volume and then summed into cumulative yearly 

stream flow data consisting of the years 1954 to 2018. The data fit a log normal 

distribution.  

 A graph was made to illustrate the yearly stream flow from 1954 to 2018. The 

average and standard deviation were then calculated and manipulated to determine the 

ranges for climate classification. Each year was classified as either very wet, wet, 

average, dry, or very dry. The years within the classifications were then analyzed.  

 A seasonal analysis was then performed, and the yearly data was broken into four 

seasons per year: Fall, Winter, Spring and Summer. The cumulative stream flow volume 

for each season in each year was then calculated. Then the seasonal average stream flow 

volume for each classification was calculated and analyzed. Patterns were observed and 

noted and further analysis, such as percent of average and percent of total flow volume, 

were performed on each season.  

 It was found that the Spring seasons had the highest stream flow volume and Fall 

seasons had the lowest stream flow volume in all climate classifications. It was expected 
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that Spring season would have the highest stream flow, however initially it was not 

expected that Fall season would have the lowest.  

 It was also found that the Summer season had the most variability and influenced 

the classification by providing significant amounts of stream flow volume. The summer 

months had some of the highest or some of the lowest stream flow volume values. This 

could be because the wetter the year is, the longer the runoff from Winter will last and the 

more ground water will be stored and contribute to stream flow.  

 The data was then compared to other research projects such as the development of 

climate scenarios using precipitation data in many locations, historical precipitation 

studies and the study of sediment loading for stream flow. From these comparisons, 

correlations were made and it was determined that it is possible to relate annual stream 

flow volume classifications to annual precipitation classifications. However, either new 

data needs to be analyzed or the studies need to be re-evaluated to more accurately 

portray the annual precipitation data for Brookings South Dakota.  
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Chapter 6 Future Research 

 

 This thesis presented results for stream flow analysis of the Big Sioux River just 

south of Brookings, South Dakota. Further comparisons of this research to other studies 

could provide useful data to use in making flood predictions. The following are suggested 

for future work: 

I. Further precipitation analysis for the Brookings, South Dakota, area could 

be performed and then compared to the stream flow analysis in this study. 

This could be done by either expanding on the work done by Sadichya 

Amatya (2011) or conducting an entirely new precipitation study for the 

area.  

II. A study of snow melt and runoff in the area could be performed. This 

would help determine how much flooding is due to precipitation in the 

winter season and give a clearer understanding of how stream flow is 

affected by precipitation during other seasons. 

III. A study of ground water storage and its effect on runoff and stream flow 

could be conducted. This would benefit possible flood prediction in that, 

the more information obtained on how ground water levels fluctuate with 

season and climate, more accurate predictions of stream flow can be 

made.  

IV. Finally, a comparison of all studies listed, along with this study, could be 

performed to develop flood prediction parameters.  
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Appendix 

 Please visit http://openprairie.sdstate.edu/etd/XXXXX for the raw data and 

seasonal stream flow data from this thesis.  

http://openprairie.sdstate.edu/etd/XXXXX
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