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ABSTRACT 

MODELING RUNOFF FROM SMALL AGRICULTURAL WATERSHEDS IN 

EASTERN SOUTH DAKOTA  

 

BRYCE SIVERLING 

 

2019 

 

The capability to be able to consistently and accurately model any problem has 

potential time and money savings. The present study aimed to determine if the Natural 

Resources Conservation Service’s Curve Number (CN) model or the more detailed Soil 

and Water Assessment Tool (SWAT) Model can consistently and accurately model 

runoff events from small agricultural fields in Eastern South Dakota. The overall goal 

was to better understand models used to predict runoff and determine if they can produce 

accurate estimates of runoff from the watersheds being studied. 

Runoff measurements were collected from an agricultural field located south of 

Coleman, South Dakota. The field of study was under a conventional tillage, two-year 

corn-soybean rotation. Three distinct watersheds make up the farm field with one flume 

at the lowest point for each watershed. Four years of collected rain data at the site (2013-

2016) along with two years of runoff data (2015-2016) were used for modeling and 

subsequent statistical comparison. This study examined the collected runoff totals for rain 

events and evaluated the accuracy and precision of model predictions to the observed 

runoff totals.  

For the two years studied, almost all predicted runoff events using the CN method 

were higher than the measured runoff totals. On average, the CN model over-predicted 

runoff totals by 300%. Adjustments to three areas of the CN model (initial abstraction 



ix 
 

ratio, curve number, and watershed size) improved comparison statistics. However, none 

of the changes made to the CN model produced satisfactory statistical results. 

The 2015 and 2016 runoff events were then compared to the SWAT model 

predictions. The first model run was with SWAT’s recommended settings and produced 

higher runoff than was observed. Adjustments to three areas of the SWAT model (curve 

number (CN2), potential evapotranspiration method (IPET), and daily curve number 

calculation method (ICN)) were combined to improve comparison statistics. The SWAT 

model using Penman-Monteith method + Potential Evapotranspiration method + 10% 

decrease in CN2 produced the closest approximation to measured values relative to all 

models, including the CN model. This variation of the SWAT model did not produce a 

consistent and accurate model for all three watersheds, but it did produce partially 

acceptable results for the largest watershed.  

Neither the CN nor SWAT produced a model that was statistically acceptable at 

predicting runoff for the studied agricultural watersheds. For further research it was 

decided to focus on changes to the SWAT model. Given this, the next steps would be: 

produce fewer outlets during the startup of the SWAT model, test the three watersheds as 

one large watershed in SWAT, and/or take soil samples at the testing site to determine if 

the soil is more hydrophilic than modeled.  
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CHAPTER 1 

INTRODUTION 

Runoff and its related problems are a known issue that affect watersheds of all 

sizes. From local issues, like roads washing out in the spring, to national issues such as 

the hypoxic problem down in the Gulf of Mexico, water runoff is a problem that affects 

most people sooner or later. The volume of runoff is not the main culprit. Moreover, what 

is being carried in the water creates problems, which is the case for the Gulf. According 

to the United States Environmental Protection Agency (EPA), nonpoint source pollution 

is the leading source of water quality impacts on surveyed rivers and lakes, with the 

largest contributor bring agriculture lands (Nasab, Singh, & Chu, 2017). The EPA and 

U.S. Geological Survey (USGS) combined spend millions of dollars a year to study and 

follow runoff and its effects on rivers and lakes (Swanson, 2013).  

Runoff from South Dakota farm fields can make its way to streams and creeks, to 

the upper Mississippi and Missouri river basins, which flow down to the Gulf and 

contribute to the Gulf of Mexico hypoxic zone. This hypoxic zone is largely caused by 

excess nitrogen carried down to the Gulf via the Mississippi River. Agricultural and 

urban runoff are the largest contributors to nonpoint source pollution for United States 

waterways (Rabotyagov et al., 2010). South Dakota might not be the largest contributor 

to the problem but runoff from South Dakota does add to the problem. It is the shared 

responsibility of all states involved to improve procedures and refine nutrient applications 

to help solve problems created by over application and untimely application of nutrients.  
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Programming efforts like Wisconsin’s Runoff Risk Advisory Forecast tool or the 

Fertilizer Forecaster tool from Pennsylvania help farmers best manage their application 

timing to minimize possible nutrient loss via runoff (USDA-ARS; Penn State Center for 

Environmental Informatics, 2014; Wisconsin’s Runoff Risk Advisory Forecast Tool, 

2014). These models are generally designed in areas with wetter conditions than South 

Dakota, and often include state-specific conditions or parameters. Many other models 

designed over the years foreshadow possible runoff events and the hazards associated 

with them. What these various models and tools appear to have in common is an 

approach based on the Law of Conservation of Mass. Meaning, at a basic level, inputs 

minus what will stay in the watershed equal the outputs (runoff/nutrients). 

Many variables factor into runoff events, such as land type, use, and weather. 

Having enough recorded sample data to be able to look back for similar sets of conditions 

in order to predict future events for watersheds is costly and time-consuming. We create 

and test models from large sets of historical data by interpreting patterns in the collected 

data and simplifying the factors to those that affect the process the greatest to generate 

the expected outcomes. Modeling has a range of uses, from helping both local and federal 

agencies determine whether land is suitable for certain uses, like farming or construction, 

to determining what size culverts or water spillways need to be built to help prevent 

water erosion or flooding.  

The goal of this thesis is to better understand the base models that are being used 

to forecast runoff events for state agencies, but more importantly determine if they can 

produce effective models to represent historical data collected from smaller (field-scale) 

agricultural watersheds in Eastern South Dakota.  
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The scope of this thesis is the quantity of runoff produced by three field-scale 

watersheds in Eastern South Dakota under common management.  
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CHAPTER 2 

BRIEF REVIEW OF RUNOFF MODELS 

Introduction 

It is too costly and time consuming to have enough records to be able to look back 

on all combinations of past runoff event conditions to predict how a future event will 

unfold. There are just too many variables affecting runoff events, such as land type, use, 

and weather. That is why models are created and tested from sets of historical data for 

select watersheds by interpreting patterns in the collected data and simplifying the factors 

to those that affect the process the greatest to generate the expected outcomes. Modeling 

runoff events has a range of uses, such as helping local and federal agencies determine 

whether land is suitable for certain uses like farming or construction, or to determining 

what size culverts or water spillways will help prevent water erosion or flooding.  

Most runoff models are based on the principle of Law of Conservation of Mass, 

by deriving the total output (runoff) from the watershed by subtracting water retention by 

the soil from the total amount of precipitation added to the watershed. This paper 

compares four runoff models: 

 Curve Number Method (CN);   

 Water Erosion Prediction Project (WEPP); 

 Revised Universal Soil Loss Equation, Version 2 (RUSLE II); and 

 Soil and Water Assessment Tool (SWAT). 
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These runoff models range from a single equation and basic descriptors of the 

watershed, to series of equations and interactions between equations that require more 

finite detail of the watershed. The objective of this section is to demonstrate and compare 

how each model achieves its goal of simulating storm water runoff, nutrient loss due to 

runoff, or both. We also present published recent applications of each model, based on 

Google Scholar search results for each model that were published in 2018 (Google, 

2004). The first 20 to 30 models for each model search result were examined, with 

example papers cited. 

Model Description and Review 

CN 

The United States Department of Agriculture (USDA) Natural Resources 

Conservation Service’s (NRCS) TR-55, Curve Number (CN) Method is the oldest of the 

reviewed models. The CN was developed by the USDA Soil Conservation Service in 

1954 and has been revised multiple times over the years by USDA (Cronshey, 1986). The 

last completed revision was in 1986 with an update to the user appendix in 1999. It was 

originally developed from many years of runoff records for agricultural watersheds 

collected across the United States. With modifications and some assumptions it is also 

used to estimate runoff from urban watersheds (Huffman, Fangmeier, Elliot, Workman, 

& Schwab, 2013). As of 2017, a committee was investigating further revisions to the CN 

Method.  

The CN is the most basic of all the reviewed models. There are few variables and 

mathematical operations (Equation 2.1) (Ponce & Hawkins, 1996). The model input 

requirements are rainfall depth of an event and curve number (CN). The CN is a function 
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of soil type (hydrologic soil group, in particular) and land use, ground cover, and soil 

water conditions. Equation 2.1 predicts the volumetric runoff rate for a single event. The 

model assumes the watershed area serves a single purpose with consistent topography. If 

one of the conditions that determines the CN changes drastically within a watershed, like 

from a farm field to woods or flat land to rolling hills, then a new CN should be found for 

that part of the watershed, making two smaller watersheds. The two smaller watersheds 

can then be calculated separately but the totals added together to find the total amounts of 

runoff for the original larger watershed. This model does not address any water quality 

aspects of the runoff.    

𝑄 =
((𝑟−0.2(

1000

𝐶𝑁
−10))

2
)

(𝑟+0.8(
1000

𝐶𝑁
−10))

, (𝑄 = 0 𝑖𝑓 𝑟 < 0.2(
1000

𝐶𝑁
− 10))  Equation 2.1 

Where Q = direct surface runoff depth (in); 

r = storm runoff total (in); and 

CN = Curve Number. 

In 2018, approximately 1500 published articles referenced the CN Method. While 

some articles discussed use of the CN method within research projects to validate 

measurements, many articles looked at opportunities to improve CN method accuracy. 

Many articles focused around changes to the initial abstraction ratio, (0.2(
1000

𝐶𝑁
− 10)) in 

Equation 2.1), which partly symbolizes soil water infiltration during the rain event. For 

example, Santikari & Murdoch (2018) found fewer false predictions of zero-runoff events 

if the initial abstraction ratio changes during the storm event. A meta-paper looked at the 

most common changes to the CN Method: initial abstraction ratio, water storage, and CN, 

and how implementing these changes might affect designing of water systems and land 
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management recommendations (Moglen, McCuen, & Moglen, 2018). One paper 

reviewed whether seasons should be accounted for, which produced no statistical 

significance for doing so (D'Asaro, Grillone, & Hawkins, 2018). Finally, a different paper 

determined if the Hydrologic Soil groups should be better defined, which found 

moderately high runoff potential soil dominate the global distribution but no clear pattern 

for moderately low runoff potential soils (Ross et al., 2018). 

WEPP 

The Water Erosion Prediction Project (WEPP) originated in 1985. The USDA 

developed WEPP to replace the Universal Soil Loss Equation (USLE) as an erosion 

prediction technology for use by federal agencies in environmental planning and 

assessment (Flanagan, Gilley, & Franti, 2007). The model uses climate simulation, 

surface/subsurface hydrology, water balance, plant growth, and many other physical 

attributes in the modeling of the watershed. It also has a large database of cropland soils 

and vegetation scenarios, and it can model and asses a variety of land uses, climate, and 

hydrologic conditions (Flanagan, Ascough II, Nicks, Nearing, & Laflen, 1996). 

The WEPP model bases its runoff equation on the water balance principle as the 

CN method, but uses the modified Green-Ampt equation (Equation 2.2) (Almedeij & 

Esen, 2014) to predict the amount of infiltration.  

𝑓(𝑡) = 𝐾(
𝑆∆𝜃

𝐹(𝑡)
+ 1)      Equation 2.2 

Where f = infiltration rate (mm ℎ−1); 

t = time (h).  

𝐾 = hydraulic conductivity (mm ℎ−1); 
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𝑆 = capillary suction head at the wetting front (mm); 

∆𝜃 = available porosity; and 

𝐹 = cumulative infiltration (mm). 

The WEPP model also uses a modified Yalin equation (Finkner S. C., 1989) to 

predict sediment transport (Equation 2.3)(Flanagan, 2015).  

𝑇𝑐 = (0.635𝛿(1 −
1

𝛽
𝑙𝑛(1 + 𝛽)))((𝑆𝐺)𝑑𝜌𝑤

1

2𝑇𝑠

1

2)    Equation 2.3 

Where Tc = sediment transport capacity (kg m−1s−1); 

SG = particle specific gravity (unitless); 

d = particle diameter (m) 

𝜌𝑤 = mass density of water (kg m−3); and 

𝛽 and 𝛿 = dimensionless parameters. 

 

Approximately 600 papers referenced the WEPP model in 2018. Almost all the 

articles pertained to using WEPP as a tool in the study to determine runoff load with few 

looking at actual changes to the model itself. There were mixed results when comparing 

WEPP, USLE or RUSLE II predictions to collected data for watersheds. One paper 

reviewed how saturation rates and slope of watershed affected infiltration of water in the 

WEPP model, along with how much the velocity of the runoff water changed with those 

variables (Huang et al., 2018).    

RUSLE II 

Developed in 1993 by the United States Department of Agriculture, the RUSLE II 

model is the newest model in this comparison. Its goal is to help with conservation 

planning but is only intended to estimate nutrient loss rates (USDA, 2016). The fact that 
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storm erosivity and erosion are linearly proportional led to the basic idea and 

development of the Universal Soil Loss Equation (USLE), RUSLE II’s parent model 

(Toy, Foster, & Renard, 2002). This idea, paired with the fact that RUSLE II implements 

a daily integration of the estimated erosion factors, is what gives RUSLE II more power 

and accuracy over USLE or RUSLE I. RUSLE II still uses the base USLE equation 

structure, but it is paired with process-based equations to make it better than a purely 

empirically-based system like the USLE (Toy et al., 2002). A process-based equation 

cares as much about the intermediate values (i.e. each day’s sediment loss) that make up 

the outcome as the outcome itself (i.e. total sediment loss for the month). An empirically 

based system only cares about the outcome. This addition of daily time computing can be 

seen in Equation 2.4 where ḋ represents the day of the year (USDA, 2016).  

𝐴 = 𝑆 ∑(𝑟ḋ𝑒ḋ𝑙ḋ𝑐ḋ𝑝ḋ)    Equation 2.4 

Where A = average annual erosion (kg/hectare) 

S = slope steepness (m/m); 

r = rainfall-runoff erosivity factor; 

e = soil erodibility factor; 

l = slope length (m); 

c = cover management factor; 

p = support practices factor; and 

ḋ = index for day of the year. 

In 2018, approximately 150 published articles referred to RUSLE II. While some 

articles compared WEPP and RUSLE II, as mentioned above, many discuss using 

RUSLE II to validate measurements. Few articles looked at opportunities to improve 
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RUSLE II method accuracy. One article looked at slope tillage in China and used RUSLE 

II to determine which management practices worked best (Xu et al., 2018). Another 

article created a new soil mapping reference so RUSLE II can be used in Switzerland 

(Schmidt, Ballabio, Alewell, Panagos, & Meusburger, 2018; Xu et al., 2018). Finally, a 

published review of RUSLE II described advances over the years which allow the model 

to better operate and estimate erosion on a daily time step, much like WEPP can do 

(Kinnell, Wang, & Zheng, 2018).  

SWAT 

The Soil and Water Assessment Tool (SWAT) is the most complex and most 

advanced model of the four models. The model’s goal is to help with management 

decisions about water, sediment, and nutrients on large, ungauged river basins (Arnold, 

Moriasi, et al., 2012). Development of SWAT started in the early 1990’s. Unlike the 

other models, it is updated regularly. SWAT is made up of many models. For example: 

hydrology and crop growth models, Groundwater Loading Effects of Agricultural 

Management Systems (GLEAMS) model, the Chemicals, Runoff, and Erosion from 

Agricultural Management Systems (CREAMS) model, and the Environmental Policy 

Integrated Climate model. SWAT includes many models that are built up from other 

models, such as CREAMS which has aspects of CN method and Green-Ampt equation in 

its model (Arnold, Moriasi, et al., 2012). Models like CN and Green-Ampt were then 

modified by expanding their computing power, adding these models together, and/or 

adding new components to the models altogether (Neitsch, 2011).   

One example of how SWAT uses sub-models is the Green-Ampt equation and CN 

method for calculating infiltration (Equation 2.2, Equation 2.1). If the rainfall data are 
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given to SWAT in hourly totals, Green-Ampt (Equation 2.2) is used. However, if the data 

are given in daily rain totals the CN Method is implemented to determine infiltration 

(Knisel & Douglas-Mankin, 2012). Like most models, because of the modified Green-

Ampt’s impacts on plant growth and the movements of sediments, the basic concept of a 

water balance is the power plant behind the SWAT simulation (Equation 2.5) (Arnold, 

Moriasi, et al., 2012). 

SWAT’s simulated water balance/hydrologic cycle is broken into two parts. Part 

one is the land phase of the hydrologic cycle which controls the amount of water, 

sediment, and nutrient loadings, and part two is the water routing phase which defines the 

movement of the water and sediments (Neitsch, 2011). Equation 2.5 is part of the water 

balance part one and calculates soil water content over time.  

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1   Equation 2.5 

where 𝑆𝑊𝑡 = final soil water content (mm); 

𝑆𝑊0 = initial soil water content (mm); 

t = time (days); 

𝑅𝑑𝑎𝑦 = precipitation per day (mm); 

𝑄𝑠𝑢𝑟𝑓 = amount of surface runoff (mm); 

𝐸𝑎= evapotranspiration (mm); 

𝑤𝑠𝑒𝑒𝑝= water entering vadose zone from the soil profile (mm); and 

𝑄𝑔𝑤= return flow (mm). 
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Approximately 2800 article referenced the SWAT model in 2018. A vast majority 

of the top results for the SWAT model focused around using the model within research 

projects to validate measurements or the setting up of the SWAT model against 

historically measured data for an area. For example, Tejaswini and Sathian (2018), used 

the SWAT model and calibrated and validated it to be used in the Kunthipuzha Basin in 

India. 

 Another paper looked at how SWAT, given limited data, would assess the impact 

of the Mississippi River Basin Healthy Watersheds Initiative on an Arkansas watershed 

(Leh, Sharpley, Singh, & Matlock, 2018). Very few articles looked at opportunities to 

improve SWAT model accuracy but one did research better ways to calibrate the model. 

In the paper authors linked SWAT and SPOTPY (Statistical Parameter Optimization Tool 

for Python), together to calibrate and validate SWAT model results (Camargos, Julich, 

Houska, Bach, & Breuer, 2018). In doing so, it gives another alternative to using 

SWAT’s calibration and validation program, SWAT-CUP (SWAT Calibration and 

Uncertainty Programs).  

Model Comparison 

The CN and RUSLE II models require very little data. The CN only needs daily 

rain fall totals and a basic understanding of the watershed. For RUSLE II, a basic 

knowledge of watershed components like land use and soil type will produce results. The 

WEPP and SWAT models require everything CN method and RUSLE II do, but also, 

when combined with Arc GIS, you need to know how to make boundary maps and make 

topography maps. Along with that, SWAT is less user friendly, with any errors in user 
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uploaded files resulting in aborted runs or unintentional incorrect output data. Another 

big difference is the sheer number of models that a program like SWAT has combined 

into its program, like CREAMS or GLEAMS models. In contrast, the CN method is its 

own entity. Even a midlevel model such as RUSLE II uses the CN equation as part of its 

model to produce a model that is more advanced than the sum of its parts alone. 

Table 2.1 summarizes the four models. The CN method may not be as powerful as 

the other three, but what it lacks in power it makes up for by being very easy and 

straightforward to use; hence its use is still wide spread today. On the other hand, the 

SWAT model is the most powerful model and can do everything the other models can do 

and more. However, it is not a model that can easily be used once for some quick data 

output. SWAT requires a lot of forethought and inputs that must go into the model and 

even then, it takes training classes and/or many hours of working with the model to fully 

understand it and make it work. As for WEPP and RUSLE II, they are adequate 

representations of middle of the road models in use today. They are easy enough to 

understand and figure out how to use on their own, but a model like WEPP that also 

requires empirical input data makes it more accurate than a very simplistic equation like 

the CN method. In the end, it is all about determining how much and how accurate of 

data output is required, then picking the correct model to fit that need.  

 

 

Table 2.1: Comparisons among models: CN, WEPP, RUSLE II, and SWAT. 

Attribute CN Method WEPP  RUSLE II  SWAT  

Year Developed 1954 1985 1993 Early 1990’s 

Peer reviewed No Yes Yes Yes 

ARCGIS 

Compatible 

Yes Yes No Yes 
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 Table 2.1 (continued) 

Land types it can 

be used on 

Agricultural land, 

urban areas, 

forests, range 

lands, and grass 

lands (based on 

the NRCS-tr55 

tables any land 

could be 

estimated)  

Forestry, area 

around Fisheries, 

rangeland, mining 

studies, and 

agricultural land 

Forestry, area 

around Fisheries, 

rangeland, mining 

studies, 

construction sites, 

landfills, parks, 

reclaimed land, 

military training 

sites, and 

agricultural land  

Forestry, area 

around Fisheries, 

rangeland, mining 

studies, 

construction sites, 

landfills, parks, 

reclaimed land, 

military training 

sites, and 

agricultural land  

Optimal 

Watershed size  

Best if kept to the 

size that the 

watershed is one 

homogeneous area 

1-1000 hectares  Best if kept to the 

size that the 

watershed is one 

homogeneous area 

Designed for large 

catchments but can 

work on small 

watersheds  

Runoff 

Calculation 

Frequency  

Calculates 

daily/event total 

runoff  

Daily  Yearly Daily  

Can be used for 

snowmelt runoff 

No Yes Yes Yes 

Physical based or 

regression 

equation based 

Physical Physical Both Both, percent of 

which depends on 

how much 

empirical data is 

put in the model 

User based data 

as inputs 

Yes, Rainfall data Yes, rain fall and 

elevation 

No Almost everything 

can be site specific 

user data if 

obtainable 

Model provided 

table-based inputs 

All but rain total Majority Majority Empirical is used 

for most inputs if 

possible 

Continuous or 

single event 

model 

Single rain event 

is calculated at a 

time 

Continuous 

modeling 

Yearly sediment 

loss modeling 

Continuous 

modeling 

Runoff water 

quantity base 

equation 

SRS-TR55  

(CN Method) 

Modified Green-

Ampt equation 

SRS-TR55 is used 

in model but 

runoff water 

quantity is not an 

output 

Green-Ampt 

equation paired 

with other models 

Runoff water 

quality base 

equation 

None Modified Yalin 

Equation 

Upgraded USLE 

is the RUSLE II 

model equation 

GLEAMS and 

CREAMS as base 

models  
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Table 2.1 (continued) 

Calibration  Given known site 

runoff and 

calculated runoff 

differences, model 

can be calibrated 

for site over time 

Given 10-20 years 

of extremely 

detailed, plot 

specific data, it is 

possible to 

calibrate the 

model for the 

watershed 

All calibration is 

done by the 

program 

Self-calibrates and 

user’s calibration 

is required.     

Used for 

prediction of past 

or future events 

Used to predict 

runoff from past 

events or future 

events 

Used to predict 

runoff and 

sediment from 

past events or 

future events 

Used to predict 

yearly sediment 

loss for both time 

frames 

Used to predict 

past runoff and 

water quality 

events or future 

possible events. 

 

Summary 

This chapter compared four runoff models: CN, WEPP, RUSLE II, and SWAT. 

Each model simulates storm water runoff, nutrient loss due to runoff, or both, using 

different variables and methods. Ultimately all models attempt to produce accurate 

representations of possible real events to help its user better understand and predict what 

will happen to the watershed examined.   
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CHAPTER 3 

THE STUDIED WATERSHEDS IN EASTERN SOUTH DAKOTA 

Introduction 

 A set of three watersheds were established near Colman, in Moody, South 

Dakota, as part of a long-term study of winter manure application (Singh, 2016). These 

watersheds are where all runoff data used in this study were collected. The goal of this 

chapter is to present the characteristics of these three watersheds and explain data 

collection methods. 

Materials and Methods 

Studied Runoff Watersheds 

The three watersheds had areas of 2.63 ha (North watershed), 2.71 ha (East 

watershed), and 4.25 ha (South watershed). The North and East watersheds drained to the 

north and the South watershed drained to the south (Figure 3.1). All three watersheds 

were managed similarly in a corn-soybean rotation. The North and South watersheds 

received winter manure applications. These manure applications happened every winter; 

the upper slope on the South watershed received manure but not the lower slope and the 

inverse for the North watershed. 
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Figure 3.1: The Colman Runoff site, with runoff monitoring station for each watershed(Singh, 2016). 

  

 

Runoff and Weather Measurement 

Each watershed was equipped with a water runoff monitoring station and H-flume 

at its outlet. A Sonic Ranging Sensor (SR50A, Campbell Scientific, Logan, UT) in each 

flume measured the distance to the bottom of the flume, or top of the water, with a data 

logger converting that information into the depth of the flowing water, recording said 

depth every two minutes. A Tipping Bucket Rain gage (TE525, Campbell Scientific, 

Logan, UT) near the South flume continuously measured on-site precipitation based on 

the number of tips at two-minute intervals. Game cameras (Moultrie M80 Game Spy, 

Moultrie, Birmingham, AL) were located at each flume and took digital still frames every 
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15 minutes; the images helped verify the flow data. All data were downloaded after large 

runoff events or at least once a month (Figure 3.2). 

 
     Figure 3.2: Picture of data collection and maintenance at flume site. 

 

Data Processing  

Data were recorded as time-stamped water depth in inches. The water-depths 

were converted to flow rate (volume (ft3) per time) using a flume conversion equation 

designed to compensate for increasing head in the flume (Brandenburg, 2013). Erroneous 

data like negative water heights and heights larger than possible to be recorded in the 

flume were removed. The digital photos were used in conjunction with the water height 

data to establish the start and end of each runoff event. Event start times were determined 

by comparing photos taken at the time of rain events to see at what depth water was seen 

exiting the flume. Runoff start depths/end depths were found this way to minimize any 

depth error in the collection system. By looking at game camera photos, the runoff 

starting depth for each flume site was determined, with the South, East, and North flume 
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start depths being: 1.75, 2, and 1.27 centimeters respectively. Finally, all runoff data 

points were added up for the time between the start and stop points to calculate a runoff 

event total and finally converted into the SI units system (m3).  

 All data was processed in Microsoft Excel. 

Results and Discussion 

Over the 2015 and 2016 seasons 249 rain events were measured. Forty-four 

precipitation events produced measured runoff from one or more of the watersheds. Table 

3.1 shows the South watershed produced the most runoff events with 22, then the North 

watershed with 15, and finally the East watershed with 7.  

All three watersheds are located on the same agricultural field, but differences in 

size and shape produced differences in number of runoff events. The South watershed is 

the biggest and produced the most runoff events. Even though the North and East 

watersheds are very similar in size, they differ in shape. The East watershed’s narrow and 

long shape (Figure 3.1) suggests the water must run farther to reach the flume and 

therefore has more time for infiltration into the soil.  The largest runoff event was 

captured at the South watershed when 18.8 cm of rain produced 1,767 m3 of runoff. The 

smallest event was produced by the North watershed where 0.7 cm of rain produced 1 m3 

of runoff.  
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Table 3.1. The total runoff from each watershed in 2015 and 2016. (** in the table represents a confirmed 

runoff event, but erroneous runoff volume recorded)  
Year Event Date Precipitation 

total (cm) 

Runoff Total (m3) 

South East North 

2015 1 5/16/2015 3.38 15 0 13 

  2 6/6/2015 18.85 1767 ** 55 

  3 6/19/2015 2.26 18 0 17 

  4 6/20/2015 1.04 5 0 4 

  5 6/22/2015 6.99 225 58 166 

  6 7/5/2015-7/6/2015 15.09 693 137 325 

  7 7/25/2015-7/26/2015 5.54 10 2 2 

  8 7/28/2015 3.12 21 5 ** 

  9 8/6/2015 2.24 1 0 0 

  10 8/9/2015 2.67 0 2 0 

  11 8/18/2015 - 8/19/2015 3.33 155 0 1 

2016 1 5/25/2016 1.63 2 0 0 

  2 5/28/2016 7.59 49 13 29 

  3 5/31/2016 1.22 1 0 0 

  4 6/13/2016 1.14 1 0 0 

  5 6/14/2016 0.71 ** 0 1 

  6 7/6/2016 1.42 1 0 0 

  7 7/10/2016 3.10 7 0 3 

  8 7/23/2016 2.39 4 0 1 

  9 8/11/2016 2.03 8 0 0 

  10 8/18/2016 - 8/19/2016 2.01 21 3 6 

  11 9/5/2016 2.74 2 0 0 

  12 10/4/2016 4.14 3 0 2 

  13 10/6/2016 1.42 1 0 0 

 

Summary 

During the 2016-2016 growing season, a total of 44 runoff events were recorded, 

despite 249 rain events. Half of the runoff events were for the South watershed. Size and 

shape are two factors that likely contributed to differences in the occurrence and amount 

of runoff from each watershed for a common rainfall event. 
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CHAPTER 4 

CURVE NUMBER MODEL ANALYSIS 

Introduction 

Background 

The Runoff Curve Number Method (CN method) was developed in 1954 by the 

USDA Soil Conservation Service (SCS) as a method of estimating direct runoff from 

storm rainfall (Rallison & Cronshey, 1979). The method has been revised through the 

years and was last altered in 1993. Being simple to use and requiring basic watershed 

data to implement means this method has been published and still taught to future 

generations for more than 60 years (Blick, Kelly, & Skupien, 2004). Literature has shown 

varying accuracy of the CN Method in predicting runoff depending on the biome, and 

that the initial abstraction ratio may need variances depending of geologic and climatic 

settings (Ponce & Hawkins, 1996). The CN method has gained wide acceptance among 

engineers, designers, regulators, and land management agencies. Its use was 

recommended or required by 49 of 50 randomly analyzed Land Development and Storm 

Water Management Ordinances in Pennsylvania, based on its ease of use or a lack of 

anything else available to use (Fennessey & Hawkins, 2001). The objective of this study 

was to determine if the CN method provides an accurate estimate of runoff from three 

smaller watersheds in Eastern South Dakota ranging from around 2.5 to 4.5 ha.  
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Materials and Methods 

Watersheds and Runoff Measurements 

 Rain data was collected from three watersheds in Moody, South Dakota, referred 

to as North, East and South. All three watersheds were managed similarly in a corn-

soybean rotation, with South and North watersheds receiving winter manure applications. 

Each watershed sloped to a single runoff point which was equipped with a water runoff 

monitoring station and H-flume. Every two minutes water height in the flume is recorded 

along with rain depth and air temperature. A game camera also takes pictures of the 

flumes every 15 minutes and help verify the data being collected (Chapter 3). All data 

was processed in Microsoft Excel, cleaned, and refined to runoff totals for each rain event 

(Chapter 3). 

Curve Number Method Runoff Estimation 

The CN for cultivated agricultural lands and the hydrologic soil group for each 

watershed are shown in Table 4.1 (Huffman et al., 2013). Additionally, each field was 

designated as having row crops, contoured, and having poor hydrologic condition since 

there was not much observed residue left on the soil surface each year whether in 

soybeans or corn the previous year (Figure 4.1). 

 
Figure 4.1: Residue left on soil surface after spring planting. The previous crop was soybean. 
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Table 4.1: Watershed factor and the resulting Curve Numbers. 

Watershed Hectares Land Use Treatment 
or 
Practice 

Hydrologic 
Condition A 

Hydrologic Soil Group B CN 

South 4.25 Row Crop Contoured Poor 76% group C, 24% group B 83 

North 2.63 Row Crop Contoured Poor 61% group C, 39% group B 82 

East 2.71 Row Crop Contoured Poor 50% group C, 50% group B 82 
A Derived from Soil and Water Conservation Engineering Manual, Sixth Edition (Huffman et al., 2013) 
B Derived from Web Soil Survey, websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (Soil Survey 

Staff, 2016). 

Data Comparison 

The measured and predicted runoff (Eq 2.1) values were compared side by side 

for each event. Comparison consisted of the following statistics: R2, normalized mean 

square error (NMSE), and linear regression slope and intercept. All three were used to 

evaluate how well the predicted runoff resembled the measured runoff. 

Additional simulations and comparisons between measured and predicted runoff 

were performed to investigate alternative initial abstraction ratios, CN numbers, and 

hectares contributing to runoff. 

Results and Discussion 

Original CN Model  

The CN predicted 82 runoff events over the two years for the 249 measured rain 

events, whereas measurements detected 44 runoff events (Chapter 3). The CN predicted 

28 runoff events for the South watershed and both the North and East water sheds were 

estimated to have 27 events.  

Figure 4.3 shows a graphical comparison of measured and calculated runoff 

totals. The slope of measured rainfalls with increasing precipitation amounts is 

considerably lower than the estimated runoff amounts for the same precipitation.  



 
24 

 

The largest predicted event occurred at the South watershed for the same rain 

event that produced the largest measured runoff. Using the CN, the 18.8 cm rainfall event 

produced an estimated 5,688 m3 of runoff. The smallest predicted events took place for 

the North and East water sheds with 1.1 cm of rain predicted to produce 0.03 m3 of 

runoff. There were three rainfall events with measured runoff that CN predicted to have 

zero runoff, and inversely 41 CN-predicted runoff events where no runoff was measured.  

Figure 4.2: Measured and CN modeled runoff amounts for the 2015-2016 rain events. 

 

Figure 4.2 shows the calculated runoff relative to the measured runoff for all 

recorded rain events in 2015-2016, for all three watersheds. The R2 associated with the 

linear regression was 0.67, indicating a relationship between measured and calculated 

runoff. The NMSE, however, was 122, which is excessively large. When the mean of the 

measured was compared to the mean of the predicted it was found that, on average, the 

predicted runoff was 3.8 times higher than the measured.     
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Figure 4.3: Linear regression of measured runoff compared to the predicted runoff for each rain event. 

 

Comparison of Alternative Initial Abstraction Ratios 

Changing the initial abstraction ratio of (0.2(
1000

𝐶𝑁
− 10)) in CN has been 

performed in many studies (Ponce & Hawkins, 1996) to improve model agreement with 

measurements. Table 4.2 shows initial abstraction ratios from 0.1 to 0.9 were tested in 

CN model. Larger initial abstraction ratio values in Eq. 2.1 theoretically means more rain 

infiltrated into the soil (compared to standard 0.2 ratio in Eq. 2.1) and this infiltration 

reduces the amount of runoff. The data shows that as a common trend that the higher the 

ratio was set, the lower the NMSE became and R2 improved. Changing the initial 

abstraction ratio may help correct the NRCS CN equation to better predict runoff for 

these fields.  
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Table 4.2: Different levels of Curve Number Method initial abstraction ratio comparison. 

 

  Statistic 

 

Watershed 

                          Curve Number Method Initial Abstraction Ratio 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 

NMSE 

South 55 56 55 54 52 49 46 42 39 

East 478 507 529 540 540 529 514 499 483 

North 259 271 277 279 276 270 263 255 247 

 

R2 

South 0.86 0.88 0.89 0.9 0.91 0.92 0.93 0.93 0.94 

East 0.87 0.89 0.91 0.92 0.93 0.93 0.92 0.91 0.9 

North 0.49 0.48 0.47 0.46 0.45 0.43 0.42  0.4 0.38 

 

Mean of 

Measured 

South  36 36 36 36 36 36 36 36 36 

East 3 3 3 3 3 3 3 3 3 

North 8 8 8 8 8 8 8 8 8 

 

Mean of 

Calculated 

South 225 193 169 150 136 123 113 104 95 

East 100 79 64 54 46    40 35 30 26 

North 141 120 105 93 84    76 70 63 58 

 

Comparison of Alternative Curve Numbers 

Curve numbers from 30% to 100% of the original CN for each watershed, in steps 

of 10%, were used to estimate runoff for each precipitation event and each watershed. A 

similar experiment with runoff data compared measured data to those calculated with the 

NRCS equation and curve number (Boughton, 1989). Similar results were also found 

with, in many cases, smaller CN values more accurately predicted runoff values. The best 

calculated results came when CN was 60% to 40% less than the CN numbers prescribed 

originally (Table 4.2). 

Table 4.3: 10% step decreases in original Curve Number down to 30% of original CN. See Table 4.1 for 

original CN values. 

 

  Statistic 

 

Watershed 

                % of CN Used in Calculated Runoff 

  100% 90% 80% 70%   60%  50% 40% 30% 

 

NMSE 

South 56 43 28 13 3 7 77 1490 

East 507 455 374 273 168 61 16 - 

North 271 242 200 153 105 61 46 499 

 

R2 

South 0.88 0.91 0.93 0.95 0.96 0.97 0.98 0.85 

East 0.89 0.92 0.93 0.91 0.88 0.84 0.84 - 

North 0.48 0.45 0.42 0.37 0.32 0.26 0.16 0.02 
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Comparison of Alternative Effective Watershed Hectares 

Finally, the total area of the watershed was adjusted with the thought that maybe 

only parts of the watershed produce runoff or not 100% of the watershed runoff makes it 

to the measuring flume (Boughton, 1989). This too was done by comparing 10% 

decreases in the original watershed size down to 5% (Table 4.4). The table shows 

decreases in NMSE for all three to 40% of their original area, with predicted optimal 

areas being anywhere from 30% to 5% of the actual watershed.  

  

Table 4.4: 10% step decreases in watershed area down to 5% of the original area. 

 

Statistic 

 

Watershed 

                              % of Original Watershed Hectares 

 

100

% 

  

90

% 

    

80

% 

     

70

% 

 

60

% 

 

50

% 

  

40

% 

  

30

% 

 

20

% 

 

10

% 

 

5

% 

 

NMSE 

South 56 47 38 30 22 14 8 4 5 27 85 

East 507 452 396 341 286 230 175 121 67 18 3 

North 271 241 211 181 151 122 92 64 36 15 18 

 

Interpretation of Comparisons and Next Steps 

Manipulation of the NRCSs’ CN method can produce more accurate predicted 

results for these Eastern South Dakota watersheds, as has been done in other regions and 

land use practices. Any possibly statistically acceptable model of these watersheds will 

come from some implementation of changes to all three changes at the same time. The 

many different levels of changes would take time to implement and test. This is because 

to compare all changes correctly would require many more runoff sites in Eastern South 

Dakota and many more years of data.    
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Summary 

The goal of this study was to compare measured runoff amounts from Eastern 

South Dakota alongside runoff amounts calculated by the CN. Two years of measured 

data were collected and used as a baseline of runoff in the area. The comparison produced 

R2 results of 0.67 indicating a relationship between the predicted and measured runoff, 

but large differences in NMSE, always greater than 3, indicating over predicting of runoff 

by the models. Due to this, it can be concluded that the CN Method for calculating runoff 

on the three watersheds studied did not produce result suitable for continuing to 

validation of a model. 
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CHAPTER 5 

SWAT MODEL ANALYSIS 

Introduction 

Background 

Based on studies on the Curve Number method in Chapter 4 at the three examined 

watershed sites in Eastern South Dakota over the 2015 and 2016 growing season it was 

determined that the CN model did not predict rain event runoff satisfactory to calibrate 

and validate the model. The next step was therefore to test the more powerful SWAT 

model, in the hopes of being able to calibrate and validate a working model for the 

watersheds. SWAT was chosen due to its popularity and the user’s ability to fine tune the 

program due to it being a progression based model. Progression based means that the 

model uses multiple steps to achieve its end output and at each of the sets adjustments 

can be made to the program. 

The objective of this chapter was to determine if the SWAT model can accurately 

model the runoff from three small watersheds in Eastern South Dakota. Changes to 

SWAT’s preprogramed evapotranspiration methods were also reviewed to improve 

simulations relative to measured runoff totals.  

Methods and Materials 

Watersheds and Runoff Measurements 

 All rain data was collected from Moody County, South Dakota. An agricultural 

field consisting of three watersheds was the location of the study site. Each watershed 

was managed similarly in a corn-soybean rotation with two receiving winter manure 
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applications.  Every two minutes water depth in the flume was recorded along with rain 

depth and air temperature. A game camera also took pictures of the flumes every 15 

minutes and help verify the data being collected. All data was processed in Microsoft 

Excel, cleaned, and refined to runoff totals for each rain event (Chapter 3). 

Data Processing 

The three studied watersheds were mapped in the GIS program of ARC SWAT 

(ArcSWAT, 2012). Lidar data maps were also brought into ArcGIS as the model source 

for elevation data for the watersheds (U.S Geological Survey, 2018). The preprogramed 

SWAT databases of WGEN US FirsOrder and ArcSWAT SSURGO were chosen for a 

weather station and soil data respectively, with this weather station supplying advanced 

data like solar radiation and wind. 

 The first run of SWAT was completed using the default settings in the system 

and data collected at the site or known about the study site. Any other small inputs 

needed to run SWAT selected from the SWAT website/user manual (Arnold, Kiniry, et 

al., 2012). Two slope classes were set at 0 – 4.2% and 4.2 – 9999% ranges for every 

hydrologic response unit (HRU) and the HRU threshold was set at 10% for land use, 10% 

for soil class, and 10% for slope class. HRU threshold is inconsequential in a watershed 

of this size and could be set anywhere from 0% to 25% (Her, Frankenberger, Chaubey, & 

Srinivasan, 2015).  

Because the watersheds were so small, and elevation changed so little over them, 

SWAT would not recognize a single outlet at the sites’ flumes. Without multiple outlets, 

SWAT would not model the entirety of the watershed. Therefore, 15 outlets were made 
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for the North watershed, 6 for the South watershed, and 37 for the East watershed, 

therefore ensuring full modeling of the watersheds. Runoffs values from all outlets of a 

watershed were summed in Excel after model runs were completed.  

Daily precipitation data was added from the closest South Dakota Cooperative 

Weather Station for the years of 2013 through 2016 to fill in missing daily precipitation 

that occurred in the winter and was not collected at the site (South Dakota State 

University, 2018). This was done because SWAT runs a continuous model that builds off 

the previous days to calculate the amount of moisture in the soil. The daily high and low 

temperature data collected year-round from the watershed monitoring area (Chapter 3) 

was used in the SWAT models. Table 5.1 shows the land use data. All 2013 and 2014 

data were used as warmup for the model with 2015 and 2016 being years that were fully 

modeled and producing output data. 

To further improve simulated runoff totals relative to measurements, a series of 

changes to the SWAT model settings for soil water absorption were investigated. This 

model parameter was also significant in CN comparisons (Chapter 4). Literature 

suggested that changes to the curve number (CN2), potential evapotranspiration method 

(IPET), and daily curve number calculation method (ICN) would have the best chance of 

reducing over-predictions of runoff (Guse, Reusser, & Fohrer, 2014; Lenhart, Eckhardt, 

Fohrer, & Frede, 2002; White & Chaubey, 2005). First, the various combinations of the 

preprogrammed SWAT IPET methods and ICN methods were changed to determine if 

there was a combination that produced closer modeled results to the observed data. Once 

a best combination was chosen, the SWAT model was set to that combination and the 

curve number was reduce by 10% to represent a more hydrophilic soil.  
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Whether directly or indirectly the ICN, IPET, and CN2 all allow for more water 

infiltration into the soil. Three of the most popular models to calculate potential 

evapotranspiration (IPET) are the Priestley-Taylor method, Penman-Monteith method, 

and the Hargreaves method (Arnold, Kiniry, et al., 2012). All three methods calculate 

daily soil water loss to the atmosphere, and therefore more availability to infiltrate rain 

water. The ICN also had a dropdown list with two choices in SWAT with either Soil 

Moisture Method or Evapotranspiration Method being selected and used in the modeling 

of the watersheds. These are calculating daily CN value as a function of soil moisture 

SMM (Soil Moisture Method) or calculating it as a function of plant evapotranspiration 

PEM (Plant Evapotranspiration method). Therefore, the ICN and IPET were tested 

together because IPET evapotranspiration method chosen would directly affect the ICN if 

Evapotranspiration method was being used in the model. Lastly, CN2 was decreased by 

10% to show a more hydrophilic soil. It was not reduced any more than that because such 

a decrease would represent to great a change in soil hydrology, and the goal was to only 

determine how SWAT would react to simple decrease. Six SWAT model combinations 

were simulated for ICN and IPET methods combinations with a seventh SWAT model 

run including a 10% decrease in CN2 for the statistically best model overall of the first 

eight model. The seven SWAT model runs are as follows:  

1. SWAT 1 Model: Penman-Monteith method + Soil Moisture method 

2. SWAT 2 Model: Penman-Monteith method + Potential Evapotranspiration 

method 

3. SWAT 3 Model: Hargreaves method + Soil Moisture method 
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4. SWAT 4 Model: Hargreaves method + Potential Evapotranspiration 

method 

5. SWAT 5 Model: Priestly-Taylor method + Soil Moisture method 

6. SWAT 6 Model: Priestly-Taylor method + Potential Evapotranspiration 

method 

7. SWAT 7 Model: Penman-Monteith method + Potential Evapotranspiration 

method + 10%   decrease in CN2 

Table 5.1: Fertilizer, Planting, and Harvest dates for the two warm up years and to modeled years in 

SWAT for each watershed. 

Year Month Day Operation Crop 

2013 3 10 Fertilizer application  

2013 5 28 Plant/begin. grow Soybean 

2013 10 25 Harvest and kill  

2014 3 10 Fertilizer application  

2014 5 14 Plant/begin. grow Corn 

2014 10 25 Harvest and kill  

2015 3 23 Fertilizer application  

2015 5 28 Plant/begin. grow Soybean 

2015 10 25 Harvest and kill  

2016 4 22 Fertilizer application  

2016 5 14 Plant/begin. grow Corn 

2016 10 25 Harvest and kill  

 

In this study, only runoff events from the months of May through October were 

examined so snow melt and freezing did not affect the observed runoff at the watersheds. 

SWAT can produce runoff data throughout the year but due to flume design and runoff 
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collection methods, too much error was present to compare spring runoff for rains/snow 

melt.     

Data Comparison 

For model comparison to measurements, we sorted data using the following steps. 

The first criteria were seeking days with rainfall events (Table 3.1). Next, only days 

where either the observed, the model, or both produced runoff events for a given 

watershed were kept for statistical comparison. This step was to keep the large number of 

data points where both the observed and the modeled were zero from affecting the 

statistical analysis.  

The modeled and collected watershed data was compared using the Nash-Sutcliffe 

efficiency (NSE) and Percent bias (PBIAS) as per the Meta paper ‘Model Evaluation 

Guidelines for Systematic Quantification of Accuracy in Watershed Simulations’ 

(Moriasi et al., 2007). A CN (Eq. 2.1) comparison was also included. Satisfactory results 

for the NSE are 0.50 to 1 and a PBIAS of -25 to 25, with a perfect model being 1 and 0 

for NSE and PBIAS, respectively.    

Results and Discussion 

Over the 2015 and 2016 seasons 249 rain events were measured. Forty-four 

precipitation events produced measured runoff and these 44 events were unevenly 

divided among the three watersheds.  

For the 2015-2016 study periods, the SWAT 1 Model predicted the three 

watersheds would produce 89 runoff events, over doubling that of the actual number of 

events recorded. The last iteration (SWAT 7 Model) only predicted 27 runoff events. 
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Along with a large decrease in the number of runoff events the SWAT 7 Model produced 

the best statistics for all three watersheds out of all the models examined (Table 5.2).  

 Appendix A shows all rain event for 2015 and 2016 along with all collected and 

modeled runoff events.    

Table 5.2: Statistical tests for the observed vs modeled data using the CN method and SWAT iterations 1-7. 

NSE (Nash-Sutcliffe efficiency) and PBIAS (Percent bias) of Observed Data vs Modeled Data, and 

number (n) of runoff events per model 

Model South Watershed East Watershed North Watershed 

NSE PBIAS n NSE PBIAS n NSE PBIAS n 

CN Model -8.04 -432 28 -266.66 -2122 20 -114.09 -1219 21 

SWAT 1 Model 

(Penman-Monteith 

method + Soil 

Moisture method) 

-2.37 -270 31 -311.21 -2484 29 -92.45 -1183 30 

SWAT 2 Model 

(Penman-Monteith 

method + Potential 

Evapotranspiration 

method) 

-0.67 -162 33 -152.74 -1565 28 -47.44 -778 30 

SWAT 3 Model 

(Hargreaves method 

+ Soil Moisture 

method) 

-2.27 -262 19 -300.78 -2404 19 -91.31 -1160 19 

SWAT 4 Model 

(Hargreaves method 

+ Potential 

Evapotranspiration 

method) 

-1.16 -199 36 -199.35 -1871 34 -61.45 -909 34 

SWAT 5 Model 

(Priestly-Taylor 

method + Soil 

Moisture method) 

-3.73 -325 22 -345.24 -2739 20 -123.16 -1362 20 

SWAT 6 Model 

(Priestly-Taylor 

method + Potential 

Evapotranspiration 

method) 

-1.85 -233 16 -203.23 -1941 16 -78.96 -1013 16 

SWAT 7 Model 

(Penman-Monteith 

method + Potential 

Evapotranspiration 

method + 10%   

decrease in CN2) 

0.63 -59 9 -30.13 -772 9 -19.74 -447 9 
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Table 5.2 also shows an improvement in most statistics for SWAT-based model 

compared to the CN Model. Some exceptions are the SWAT 5 Model for the East and 

North watersheds, and the SWAT 1 and 3 Models for the East watershed. For all three 

watersheds, statistics improved from SWAT 1 Model to SWAT 2 Model. The NSE 

improved from -2.37 to -0.67 for the South watershed, -311.21 to -152.74 for the East 

watershed, and -92.45 to -47.44 for the North watershed. SWAT 2 Model was the best 

statistically when comparing the CN model and SWAT 1-6 Models.  

SWAT 2 Model was proven to the closest to acceptable NSE’s and PBIAS’s of 

0.5 and plus or minus 25 respectively so a 10% decrease in CN2 was added to the model 

to represent an increase in soil water holding capacity, thus creating SWAT 7 Model. The 

new SWAT 7 Model provides the best overall statistics by far with improvements for all 

watersheds in both NSE and PBIAS. The trend can be seen in figure 5.1A and 5.1B from 

the CN model to the SWAT 1 Model, with the only decrease in statistics seen for the East 

watershed. SWAT 7 Model produces a passing result with an NSE of 0.63 for the South 

watershed, with a passing being anything above 0.5 (Figure 5.1A).  
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Figure 5.1: The NSE (Nash-Sutcliffe efficiency) (5.1A) and PBIAS (Percent bias) (5.1B) between modeled 

(various models) and measured runoff amounts for the three study watersheds. 

 

  There was an uneven number of runoff events for rainfalls less than and greater 

than 2 cm. There is also a theoretical inflection point at low rainfalls where the soil 

infiltration rate is exceeded, and runoff occurs. A rainfall of 2.01 cm is the first record of 

all three watersheds producing runoff for a rain event. Only four 1 to 5 m3 runoff events 

combined took place for rainfall from 0 – 2 cm. Based on these two observations, the 

models’ runoff estimates were split between rainfalls of 2.01 cm and above and 2 cm and 

below. Tables 5.3 and 5.4 show that 0 – 2 cm rainfalls have an unproportioned effect on 

all three watersheds statistics despite very few runoff events in this rainfall range. North 

and East watersheds only recorded 3 and 2 runoff events for the model and rainfall, 

respectively. Table 10 show all three watersheds have the poorest NSE and PBIAS for 
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low rainfall events, with statistical decreases of 1000% or more in some cases. Note, no 

decrease was seen by the North watershed for the CN model and in general the CN model 

saw not as great of effect as the other models. With the exclusion of the rain events below 

2 cm, the overall statistics in table 5.3 can be seen to be better than the same modeling 

settings in table 5.2 including the smaller rain events. Due to the skewing power of the 

small rain events, figures 5.2 to 5.4 focus on the 2.01 cm and greater rainfall where 85% 

of the runoff events for SWAT 7 Model occur.  

 

Table 5.3: Statistical tests for the observed vs modeled data for best SWAT model iterations and the 

original CN model, greater than 2 cm rainfall. 

NSE (Nash-Sutcliffe efficiency) and PBIAS (Percent bias) of Observed Data vs Modeled Data for 

rainfalls greater than 2 cm and (n) number of runoff events per model 

Model South Watershed East Watershed North Watershed 

NSE PBIAS n NSE PBIAS n NSE PBIAS n 

CN Model -7.08 -429 18 -252.61 -2119 18 -103.31 -1227 18 

SWAT 1 Model 

(Penman-Monteith 

method + Soil 

Moisture method) 

-1.98 -259 16 -261.68 -2377 15 -76.33 -1153 15 

SWAT 6 Model 

(Priestly-Taylor 

method + Potential 

Evapotranspiration 

method) 

-0.47 -158 11 -122.99 -1525 11 -41.07 -769 11 

SWAT 7 Model 

(Penman-Monteith 

method + Potential 

Evapotranspiration 

method + 10%   

decrease in CN2) 

0.67 -56 8 -24.92 -744 8 -17.42 -440 8 
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Table 5.4: Statistical tests for the observed vs modeled data for best SWAT model iterations and the 

original CN model, less than 2.01 cm rainfall. 

NSE (Nash-Sutcliffe efficiency) and PBIAS (Percent bias) of Observed Data vs Modeled Data for 

rainfalls less than 2 cm and number (n) of runoff events per model 

Model South Watershed East Watershed North Watershed 

NSE PBIA

S 

n NSE PBIA

S 

n NSE PBIA

S 

n 

CN Model -62.63 -1248 10 N/A 0 

error 

N/A 0 

error 

2 -0.33 -127 3 

SWAT 1 Model 

(Penman-

Monteith method 

+ Soil Moisture 

method) 

-917.99 -3341 15 N/A 0 

error 

N/A 0 

error 

14 -1006.35 -5384 15 

SWAT 6 Model 

(Priestly-Taylor 

method + 

Potential 

Evapotranspiratio

n method) 

-279.77 -1291 5 N/A 0 

error 

N/A 0 

error 

5 -179.99 -2032 5 

SWAT 7 Model 

(Penman-

Monteith method 

+ Potential 

Evapotranspiratio

n method + 10%   

decrease in CN2) 

-96.97 -872 1 N/A 0 

error 

N/A 0 

error 

1 -43.98 -1426 1 

 

Figures 5.2, 5.3, and 5.4 show the resulting runoff events for rainfalls greater than 

2.01 cm data from the cleaning process, and closer examination for rainfall greater than 

4.5 cm. Each figure shows the recorded runoff, the SWAT 1 Model, and the statistically 

best model SWAT 7 Model, for each watershed. As is shown in the NSE and PBIAS in 

table 5.2, the SWAT 7 Model produces closer trending lines to the collected data than 

that of the SWAT 1 Model. For rainfall measurements of 4.5 cm to 8 cm, the SWAT 7 

Model much more closely followed trends in the collected data then that of the SWAT 1 

Model. For the larger rainfalls, 4 cm – 19 cm, the SWAT 7 Model seems to most closely 

follow the collected data. Even with SWAT 7 trending closer to the collected data than 
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any other model, it still over-predicts more runoff than was collected for almost every 

rainfall event, similar to other model iterations. In taking a closer look at all three 

watersheds from 2 cm – 4.5 cm in figure 5.2B, 5.3B, and 5.4B much less of a linear trend 

can be seen between the collected and modeled data. These figures show little to no 

trends taking place between the runoff values at each rainfall, with the only resemblance 

of matching data point taking place where collect and modeled data produce zero runoff.  

 
Figure 5.2: South watershed (SW) collected, SWAT 1 modeled, and SWAT 7 modeled runoff for every 2015-

2016 rain events of; 2 cm or greater for figure 5.2A and 2 cm to 4.2 cm for figure 5.2B. 

 
Figure 5.3: North watershed (NW) collected, SWAT 1 modeled, and SWAT 7 modeled runoff for every 

2015-2016 rain events of; 2 cm or greater for figure 5.3A and 2 cm to 4.2 cm for figure 5.3B. 
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Figure 5.4: East watershed (EW) collected, SWAT 1 modeled, and SWAT 7 modeled runoff for every 2015-

2016 rain events of; 2 cm or greater for figure 5.4A and 2 cm to 4.2 cm for figure 5.4B. 
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producing 100 m3 of collected runoff and 106 m3 of modeled runoff would equal an NSE 

of 0 but a PBAIS of -5.7, an acceptable PBAIS results.     

 

Summary 

The SWAT 7 Model was able to produce the best model results for all watersheds 

and a satisfactory NSE (0.67) for the South watershed at higher rainfalls, 2cm and above. 

For rainfalls above 4 cm there is consistent trending with the collected data and the best 

modeled comparison results. The SWAT model still must overcome struggles in the 2 cm 

to 4.2 cm rainfalls with hardly any commonality between collected and modeled for those 

rainfall depths. Overall, SWAT can model the watersheds to some degree, given its 

ability to trend with the collected data at higher rainfalls, especially when changes were 

made to areas like the IPET, ICN, and CN2 which improved the modeling results.  

Changes to the SWAT inputs improved the results but no changes have yet produce a 

model that works for all the watersheds to a satisfactory degree.   
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CHAPTER 6 

CONCLUSIONS 

What We Know Now 

Thus far, neither the CN or SWAT models was able to produce an overall 

acceptable model for the small Easter South Dakota watersheds in this study. The SWAT 

modeling process does show promise to be able to produce a satisfactory model with an 

acceptable NSE result for the North watershed. Both models could be manipulated to 

improve model improvements relative to measurements, but no ideal manipulation was 

found for all situations.   

How to Further the Research? 

With the moderate success SWAT showed in producing a working model and the 

limited possibilities left to change in the CN model, future testing should be focused on 

the SWAT model. The SWAT model’s biggest hurdle to success is the model over 

estimation of runoff at almost every rainfall point. To overcome this problem three 

different possible solutions are laid out as follows. 

1. To model the entire watersheds in the SWAT model, multiple outlets were created 

in the model for each site. This insured full coverage of the watersheds but may 

have inadvertently resulted in SWAT over producing runoff that may have 

otherwise infiltrated into the soil. The East watershed had the most outlets due to 

its shape and over predicted runoff by the greatest amount. The East watershed 

had the highest NSE and PBIAS. With a possible solution to this would be cut the 
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number of outlets by 10-25% while still achieving maximum coverage and see if 

model statistics improve. 

2. Although SWAT is designed to be able to work on small watersheds, it was 

designed for use on much larger watersheds than were tested. Given this, working 

the test area as one large watershed my produce better results for modeling 

through SWAT. Combining all the watersheds would increase the size to a 

watershed almost three times bigger than all the watersheds alone. This would 

likely smooth out the differences seen between the watersheds, such as their 

differences in shape and size.  

3. Given the manure applied to the field every year along with the healthy soils that 

cover the watersheds there may be a higher organic matter than SWAT gives 

credit for. A 10% decrease in CN produced a better model, harking to possible 

better soil hydrology than is being modeled. This can also partly explain why 

modeled runoff is usually higher than the collected as well as some of the 

differences seen in the collected vs modeled data. A better understanding of the 

soil may help produce better results. 

 

Summary 

The goal of this study was to see if CN or SWAT models would be able to model 

the studied testing sites in eastern South Dakota, in hopes to better understand what 

problems may be faced when performing such a task. In doing so, it would provide a base 

for being able to more efficiently predict how rain storms will affect agricultural land in 

the region, as well as be able to guide other projects to better understand problems that 
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may be faced when modeling Ag lands in the area. No model, or iteration thereof, may 

have successfully modeled all three watersheds but the problem and possible solutions to 

this fact have now been laid out.   



 
46 

 

APPENDIX 
Appendix A: Runoff data for all SWAT models, the CN model, and the measured model. For every rain event in 2015-2016 (shaded 

numbers signify zero runoff). 

Rain 

(cm) 

Runoff (m3) 

Collected Runoff 

CN Model SWAT 1 SWAT 2 SWAT 3 SWAT 4 SWAT 5 SWAT 6 SWAT 7 

CN Model 
Penman/Monteith method + 

Soil Moisture method 

Penman/Monteith method + 

Potential 

Evapotranspiration method 

Hargreaves method + Soil 

Moisture method 

Hargreaves method + 

Potential 

Evapotranspiration method 

Priestly-Taylor method + 

Soil Moisture method 

Priestly-Taylor method + 

Potential 

Evapotranspiration method 

Penman/Monteith method + 

Potential 

Evapotranspiration method 
+ 10%   decrease in CN2 

South East North South East North South East North South East North South East North South East North South East North South East North South East North 

18.85 1767 ** 55 5664 3317 3322 3616 2721 2667 2758 2100 2049 3629 2734 2675 3071 2339 2283 4356 3309 3232 3693 2811 2741 2114 1609 1570 

15.09 693 137 325 4209 2395 2408 3003 2313 2256 2674 1937 1890 2943 2275 2218 2853 2117 2064 3168 2386 2331 2791 2034 1986 1735 1266 1236 

7.59 49 13 29 1494 744 760 1473 1120 1093 453 338 329 1484 1125 1097 573 426 415 1507 1145 1117 684 512 499 241 178 174 

6.99 225 58 166 1295 630 646 1073 856 834 1128 811 793 1043 833 811 1144 870 845 1305 995 970 1401 958 937 523 362 354 

5.54 10 2 2 850 383 397 353 248 246 119 76 75 304 214 212 219 137 135 361 246 243 155 102 100 6 3 3 

4.14 3 0 2 470 185 196 199 122 122 21 16 15 191 117 117 42 32 31 279 181 180 86 65 63 0 0 0 

3.38 15 0 13 293 101 109 48 30 31 0 0 0 56 36 37 5 3 3 173 119 118 33 25 24 0 0 0 

3.33 155 0 1 282 96 103 155 120 118 148 93 92 109 85 83 244 173 169 157 119 116 262 174 170 2 1 1 

3.12 21 5 ** 241 77 84 279 210 205 203 138 135 251 189 185 309 206 202 288 212 207 254 176 172 42 26 26 

3.10 7 0 3 235 75 82 39 22 22 0 0 0 45 26 26 0 0 0 49 29 29 0 0 0 0 0 0 

2.74 2 0 0 169 47 52 23 10 11 0 0 0 19 9 9 0 0 0 41 21 21 0 0 0 0 0 0 

2.67 0 2 0 156 42 47 208 159 155 165 112 109 175 132 129 236 166 162 218 164 160 259 179 175 26 16 16 

2.39 4 0 1 111 25 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.29 0 0 0 96 19 23 144 107 105 0 0 0 148 109 106 0 0 0 154 115 112 4 2 2 0 0 0 

2.26 18 0 17 93 18 22 66 56 55 42 31 30 63 54 53 50 38 37 137 107 104 115 70 69 0 0 0 

2.24 1 0 0 89 17 20 93 65 64 25 15 15 83 59 58 67 45 44 106 74 72 60 39 39 0 0 0 

2.03 8 0 0 63 9 11 1 0 0 0 0 0 1 0 0 0 0 0 4 2 2 0 0 0 0 0 0 

2.01 21 3 6 60 8 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.83 0 0 0 41 3 5 0 0 0 0 0 0 0 0 0 0 0 0 10 5 5 0 0 0 0 0 0 

1.80 0 0 0 38 3 4 0 0 0 0 0 0 1 0 0 0 0 0 32 22 22 0 0 0 0 0 0 

1.63 2 0 0 23 0 1 66 49 48 0 0 0 72 53 52 0 0 0 75 55 54 0 0 0 0 0 0 
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Appendix A continued 

Rain 
(cm) 

Runoff (m3) 

Collected Runoff 

CN Model SWAT 1 SWAT 2 SWAT 3 SWAT 4 SWAT 5 SWAT 6 SWAT 7 

CN Model 
Penman/Monteith method 

+ Soil Moisture method 

Penman/Monteith method 

+ Potential 

Evapotranspiration 

method 

Hargreaves method + Soil 

Moisture method 

Hargreaves method + 

Potential 

Evapotranspiration 

method 

Priestly-Taylor method + 

Soil Moisture method 

Priestly-Taylor method + 

Potential 

Evapotranspiration 

method 

Penman/Monteith method 

+ Potential 

Evapotranspiration 

method + 10%   decrease 

in CN2 

South East North South East North South East North South East North South East North South East North South East North South East North South East North 

1.42 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.42 1 0 0 10 0 0 3 1 1 0 0 0 3 1 1 0 0 0 12 7 7 0 0 0 0 0 0 

1.40 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

1.35 0 0 0 6 0 0 24 18 17 5 2 2 15 11 11 19 13 12 26 18 18 18 10 10 0 0 0 

1.22 1 0 0 2 0 0 33 24 24 0 0 0 32 24 23 0 0 0 32 24 24 0 0 0 0 0 0 

1.17 0 0 0 1 0 0 17 11 11 0 0 0 20 14 13 0 0 0 20 14 14 0 0 0 0 0 0 

1.14 1 0 0 1 0 0 13 8 8 0 0 0 15 10 10 0 0 0 15 10 10 0 0 0 0 0 0 

1.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.04 5 0 4 0 0 0 4 4 4 4 2 3 4 4 4 5 3 4 20 16 16 38 18 20 0 0 0 

1.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.02 0 0 0 0 0 0 4 3 3 0 0 0 2 1 1 5 2 3 6 4 4 5 2 2 0 0 0 

0.91 0 0 0 0 0 0 4 2 2 0 0 0 5 3 3 0 0 0 5 3 3 0 0 0 0 0 0 

0.89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0.71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.71 ** 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 

0.66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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Appendix A continued 

Rain 
(cm) 

Runoff (m3) 

Collected Runoff 

CN Model SWAT 1 SWAT 2 SWAT 3 SWAT 4 SWAT 5 SWAT 6 SWAT 7 

CN Model 
Penman/Monteith method 

+ Soil Moisture method 

Penman/Monteith method 

+ Potential 

Evapotranspiration 

method 

Hargreaves method + Soil 

Moisture method 

Hargreaves method + 

Potential 

Evapotranspiration 

method 

Priestly-Taylor method + 

Soil Moisture method 

Priestly-Taylor method + 

Potential 

Evapotranspiration 

method 

Penman/Monteith method 

+ Potential 

Evapotranspiration 

method + 10%   decrease 

in CN2 

South East North South East North South East North South East North South East North South East North South East North South East North South East North 

0.58 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 2 1 1 0 0 0 0 0 0 

0.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.36 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 

0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.25 0 0 0 0 0 0 5 3 3 1 1 1 5 3 3 2 1 1 5 3 3 2 1 1 1 0 0 

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.15 0 0 0 0 0 0 2 1 1 0 0 0 3 2 2 0 0 0 8 5 5 2 1 1 0 0 0 
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Appendix A continued 

Rain 
(cm) 

Runoff (m3) 

Collected Runoff 

CN Model SWAT 1 SWAT 2 SWAT 3 SWAT 4 SWAT 5 SWAT 6 SWAT 7 

CN Model 
Penman/Monteith method 

+ Soil Moisture method 

Penman/Monteith method 

+ Potential 

Evapotranspiration 

method 

Hargreaves method + Soil 

Moisture method 

Hargreaves method + 

Potential 

Evapotranspiration 

method 

Priestly-Taylor method + 

Soil Moisture method 

Priestly-Taylor method + 

Potential 

Evapotranspiration 

method 

Penman/Monteith method 

+ Potential 

Evapotranspiration 

method + 10%   decrease 

in CN2 

South East North South East North South East North South East North South East North South East North South East North South East North South East North 

0.13 0 0 0 0 0 0 173 107 116 131 82 89 173 108 117 146 91 99 207 130 140 177 111 120 100 63 68 

0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.08 0 0 0 0 0 0 6 3 4 2 1 1 5 3 3 4 2 3 6 3 4 3 2 2 0 0 0 

0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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