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ABSTRACT 

INFLUENCE OF SPORULATION AND GERMINATION BEHAVIOR 

OF BACILLUS LICHENIFORMIS ON MICROBIAL QUALITY OF SKIM MILK 

POWDER 

NANCY AWASTI 

2019 

This dissertation includes modeling of sporulation and germination behavior of 

Bacillus licheniformis strains during raw milk holding, tracking the survival of 

sporeformers and spores of high sporulating Bacillus strain during skim milk powder 

manufacturing. In addition, preliminary studies were done to standardize a rapid spore 

detection technique by using ratiometric fluorescence. To understand the role of strain 

variability during raw milk holding conditions, population dynamics of two strains of 

Bacillus licheniformis, ATCC 6634 and 14580, were modeled as a function of 

temperature (4.0 -12.0˚ C) and duration (0 - 72 h), using regression analysis. Based on 

initial spiking of vegetative cells (approx. 4.0 log cfu/mL) and spores (approx. 2.0 log 

cfu/mL), regression equations elucidating B. licheniformis growth behavior during raw 

milk holding at low temperatures were obtained. Contour plots were developed to 

determine the time-temperature combinations, keeping the population changes to less 

than 1.0 log. Results suggested that for vegetative cell spiking study of B. licheniformis 

ATCC 6634 (S1), cell population changes remained below 1.0 log up to 72 h at 8˚ C. For 

B. licheniformis ATCC 14580 (S2), 1.0 log shift was observed only after 80 h at 8˚ C, 

indicating greater multiplication potential of S1 as compared to S2. As S2 was a readily 

sporulating strain, the vegetative spiking study showed spore formation at different 
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storage temperatures. In the presence of equivalent numbers of both types of sporulating 

strains in raw milk, despite strain variability, holding the milk at 8˚ C for not more than 

72 h would keep any cell population changes below 1.0 log. In addition, under these 

storage conditions, the population would remain as vegetative cells that could easily be 

inactivated by pasteurization.  

As BL ATCC 14580 was the high sporulating strain, therefore, further studies 

were conducted using this strain, wherein spiked milk samples were held prior to 

manufacturing of milk powder. A pilot-scale skim milk powder trial was conducted to 

evaluate the influence of holding conditions on final spore and sporeformer counts. After 

spiking, raw milk silos were maintained at two different holding temperatures i.e. at PMO 

based conditions (10˚ C for 4 h, followed by 7˚ C for 72 h, treatment 1) and at optimum 

holding condition based on contour plots (4˚ C for 24 h, treatment 2). Powders 

manufactured under these conditions were assessed for vegetative and spore population at 

different stages of processing. The overall final spore and vegetative cell counts in the 

powders manufactured under optimum holding condition (4˚ C for 24 h) were found to be 

significantly lower (0.58 ± 0.04 and 1.82 ± 0.05 log cfu/g) as compared to the conditions 

likely to practice by dairy plants (2.74 ± 0.03 and 1.03 ± 0.06 log cfu/g). This shows that 

milk powders with reduced vegetative and spore counts can be prepared by optimizing 

the raw milk holding conditions. 

For standardization of a novel spore detection method, CaDPA content of spores 

was quantified using a ratiometric fluorescence technique. This method is based on the 

detection of CaDPA that enhances the luminescence of lanthanide ion when complexed 

with a semiconducting polymer. The intensity was recorded after chelating 



xiii 
 

semiconducting fluorescent polyfluorene (PFO) dots with terbium ions, sensitized by 

different volumes of CaDPA (0.1μM). The standard curve showed a linear relationship 

(R2 = 0.98) in the experimental concentration range of 2.5 nM to 25 nM of CaDPA, with 

corresponding intensity (a.u.) of 545 to 2130 nm. In HPLC grade water, the minimum log 

spores detected were 1.36 ± 0.09 log cfu/mL with corresponding mean CaDPA content of 

<2 nM. On the other hand, for raw skim samples, the minimum log spores detected were 

5.21 ± 0.07 cfu/mL with mean CaDPA content of approx. 2.0. For raw milk spiked 

samples, reduced fluorescence detection was observed and was approx. five times lower 

as compared to the spiked samples of HPLC grade water. The reduced fluorescence 

ability in raw milk can be due to the turbidity of the solution or interference of proteins, 

amino acids and other ions of milk. This study provides a proof of concept for a potential 

application of this technique to rapidly detect bacterial endospores in the dairy and food 

industry. Further studies are required to remove the inference of ionic components in 

milk to improve the efficiency of the protocol. Based on these studies we were able to 

establish the holding time-temperature values for raw milk holding that would result in 

the least change in the population of sporeformers and spores. Using these combinations, 

we were able to manufacture skim milk powder with lower counts of spores and 

sporeformers as compared to the PMO recommended holding conditions. The proof of 

concept generated through the spore detection protocol has the potential to be established 

as a rapid detection technique for spore counts in milk and related products.  
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INTRODUCTION 

Bacillus species are major contaminants in food and dairy industry and have been 

responsible for milk and dairy products spoilage (Seale et al., 2015). Various quality and 

shelf stability issues caused by Bacillus species are sweet curdling, bitty cream, flat sour, 

off flavor, and ropiness (Berkeley, 2002, Heyndrickx and Scheldeman, 2008, Burgess et 

al., 2010). Previous studies stated the incidence of thermoduric psychrotrophs in raw milk 

and determined that a significant proportion of shelf life issues in milk and dairy products 

are linked to Bacillus species (Francis et al., 1998, Sharma and Anand, 2002). According 

to the Grade ‘A’ Pasteurized Milk Ordinance (PMO; FDA, 2017), after completion of the 

first milking cycle, raw milk is recommended to be cooled to 10˚ C (50˚ F) or less in four 

hours or less, and to 7˚ C (45˚ F) or less, within two hours after the completion of 

milking. After completion of each milking, many a time, due to economic and 

organizational reasons, raw milk is stored at low temperatures in the farm for long hours, 

and several times the supplied milk is not processed immediately. B. licheniformis has 

frequently been encountered in milk powders, and pasteurized, as well as, UHT milk 

products (Barbano et al., 2006, Leitner et al., 2008, Buehner et al., 2015, Miller et al., 

2015) it was also identified as the most predominant species in Midwest dairy farms 

(Buehner et al., 2014). These psychrotolerant spore-forming Bacillus species are regarded 

as a major challenge, as many of these organisms can withstand pasteurization and can 

germinate and outgrow in final product (Ivy et al., 2012, Masiello et al., 2014). A 

previous study (Kumari and Sarkar, 2014) reported the ability of Bacillus species to 

produce biofilms even at 4˚ C, which was isolated from chilling tank.  
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Skim milk powder manufacturing is a complex process which involves microbial 

as well as functional changes during all stages of processing. Among spoilage organisms, 

thermoduric Bacillus species are frequently present during all manufacturing steps. 

Spoilage is mostly caused by the heat-stable lipolytic and proteolytic enzymes or post-

process contamination of the products during handling (Coorevits et al., 2008). These 

organisms, essentially in the form of spores, can survive pasteurization, evaporation as 

well as spray drying temperatures, and are an important source of milk powder 

contamination (Kalogridou-Vassiliadou, 1992, Scheldeman et al., 2006). Bacillus spores 

are capable of surviving pasteurization treatments, which can reduce 99.9% of the 

vegetative population but, provides a suitable environment for the subsequent 

germination and growth of spores which tend to form biofilms on the surfaces of 

processing equipment (Palmer et al., 2010). The endospores are formed as a defense 

mechanism to unfavorable environmental conditions which would hinder its 

growth/existence in the vegetative state and are resistant to most agents that would 

normally kill the vegetative cells they are formed from. Bacterial build-up during storage 

of raw milk may lead to the maintenance of ‘persistence cycles' of thermodurics that may 

lead to microbiological quality issues such as ‘bacterial or spore-spikes' in the final 

products such as milk powder (Hayes et al., 2001). Scott et al. (2007) reported 

evaporators and plate heat exchanger as the predominant sporulation sites during whole 

milk powder manufacturing. The problem of bacterial outgrowth could be addressed 

early on during milk processing by optimizing raw milk holding conditions. Numerous 

studies have evidenced the growth of vegetative cells at refrigeration temperatures during 

milk processing (Kent et al., 2016) but none of the studies explored the sporulation 
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behavior in raw milk held at refrigeration storage and during powder processing run at 

pilot scale. Regardless of all the above aspects, the influence of the length of storage, 

temperature and powder manufacturing conditions on germination, sporulation or 

multiplication behavior of Bacillus sporeformers, and their ability to form spores at farm 

and pilot scale is not understood clearly. Therefore, it is important to control spores and 

sporeformers at initial stages of milk powder processing and thus understanding the 

influence of time-temperature combinations that favor minimum multiplication or 

sporulation of sporeformers by using process optimization strategies, could help control 

bacterial load in raw milk during holding as well as during powder manufacturing.  

Taking an example of B. licheniformis, we hypothesized that different strain may 

behave differently in terms of germination, multiplication, and sporulation in during raw 

milk holding before processing and powder processing run especially during evaporation. 

If the sporulation and germinations sites are known during the overall milk processing 

into powder, then those specific conditions can be optimized to reduce sporeformers and 

spores in the final product. To understand the influence of processing conditions, current 

dissertation conducted studies that studied the influence of refrigeration holding and 

strain variability on raw milk holding at refrigeration temperatures, the effect of lab scale 

evaporator namely, rotatory evaporator and a pilot scale, Niro drier on population 

dynamics of common sporeformers and spores. These studies will help us understand the 

influence of individual treatment such as holding, evaporation and spray drying on 

population dynamics of Bacillus species. Understanding the influence of powder 

processing conditions that favors either sporulation or germination of spores can help 

understand the behavior of Bacillus species and help identify the steps responsible for the 
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outgrowth of microbes. Such information can be helpful to control spores and 

sporeformers by using process optimization strategies.  

As the current spore detection methods rely on cultural techniques and have 

limitations of time, efficiency, and sensitivity, attempts were made to standardize a 

ratiometric fluorescence technique to rapidly detect bacterial endospores. Based on a 

previous study (Li et al., 2013), the current study investigated CaDPA concentration in 

Bacillus spores using ratiometric fluorescence technique, an important biomarker and 

major component of bacterial spores. Development of a rapid spore the detection kit can 

be helpful in detection of spores in milk and milk products within about 30 min.  

The overall objectives of this study were to 1. understand the influence of 

refrigerated storage, evaporation and drying temperatures on sporulation and germination 

behavior of B. licheniformis strains during skim milk powder manufacturing, and 2. To 

standardize a rapid spore detection technique using ratiometric fluorescence 

spectrophotometry. 
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CHAPTER 1 

Literature Review 

Bacillus species are major contaminants in food and dairy industry and have been 

responsible for milk and dairy products spoilage (Seale et al., 2015). Predominant spore-

forming bacteria of concern to the dairy industries belong to the genus Bacillus and 

vegetative and spore forms of this species may contaminate foods including dairy 

products through different sources (De Jonghe et al., 2010). The vegetative cells range 

from 0.5 x 1.2 to 2.5 x 10 µm in diameter. Their optimal growth temperatures range from 

25 to 37˚ C, although, thermophilic and psychrotrophic species are capable of growing at 

temperatures as high as 75˚ C or as low as 3˚ C, respectively. Overall, these bacilli are 

responsible for many organoleptic and physical defects of different foods including milk 

and dairy products, thereby, causing a great economic loss. 

1.1 Prevalence of Bacillus species in raw milk and milk powder 

Spoilage by Bacillus species has been reported not only in raw milk but also in 

pasteurized milk (Magnusson et al., 2006), in milk powders (Murphy et al., 1999), and 

even in the commercially sterilized and UHT treated milks (Scheldeman et al., 2005). 

Such spoilage is mostly caused by the heat stable lipolytic and proteolytic enzymes or 

post process contamination of the products during further handling (Coorevits et al., 

2008). Raw milk is an appropriate medium for bacterial growth and hence the quality of 

milk is mostly dependent on the population of the microorganisms in it. Raw milk can be 

contaminated with the bacteria before, during, and after milking. Spore forming bacilli 

are frequently being described to be associated to the spoilage of raw and pasteurized 

milk or milk products. Presence of Bacillus species and their spores before pasteurization 
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play a significant role for such degradation (Slaghuis et al., 1997).The undesirable effects 

of Bacillus species are mainly described  in terms of production of food spoilage enzymes 

that may lead to organoleptic and compositional changes in milk and milk products. 

Various quality and shelf stability issues caused by Bacillus species are bitty cream, 

sweet curdling, off flavor, flat sour, and ropiness (Berkeley, 2002, Heyndrickx and 

Scheldeman, 2008, Burgess et al., 2010).  

After Pseudomonas, Bacillus is the second predominant species frequently isolated 

from refrigerated raw milk (Sørhaug and Stepaniak, 1997, Vithanage et al., 2016). The 

major bacilli that contaminate and spoil milk and dairy products are B. cereus, B. subtilis, 

B. licheniformis, B. stearothermophilus, B. coagulans (Robinson, 2002), B. 

sporothermodurans (Pettersson et al., 1996, De Jonghe et al., 2008), Brevibacillus 

bortelensis, Paenibacillus (Scheldeman et al., 2006, Huck et al., 2007), and 

Anoxybacillus flavithermus (Scott et al., 2007). Among these species, B. licheniformis has 

frequently been encountered in dry milk powders, and pasteurized, as wells as, UHT milk 

products (Barbano et al., 2006, Leitner et al., 2008, Buehner et al., 2015, Miller et al., 

2015) It was also identified as the most predominant species in Midwest dairy farms 

(Buehner et al., 2014). If adequate hygienic conditions are not practiced at farm level, 

then as high as 102 to 106 cfu/mL of spores may be encountered in raw milk (Te Giffel et 

al., 2002). These heat-stable Bacillus spores could survive milk processing steps, and at 

optimum conditions they germinate and cause spoilage (Becker et al., 1994, Rukure and 

Bester, 2001, Chen et al., 2004), due to the production of enzymes (proteases and lipases) 

and acid (Chen et al., 2004). McGuiggan et al. (2002) studied different factors that 

influence the population of the different spore-formers in raw milk and found the number 



11 
 

of mesophilic spore-formesr in raw milk ranging from 1.4x101 to 2.4 x 10 5 spores/mL in 

raw milk. They further described that such organisms were generally found to be 

positively associated with the mean environmental temperatures and somatic counts in 

raw milk.  

Spore counts in raw milk are relatively lower and generally remain around 50 cfu 

per ml of milk. During milk powder processing, raw milk is concentrated by 

approximately 10 times, which itself makes the concentration of spores in milk powder to 

be approximately 500 cfu/gm even if no significant growth is considered during milk 

processing within the plant (McGuiggan et al., 2002, Rückert et al., 2004). The 

processing cycles and the clean in place (CIP) systems are designed to keep the number 

of bacterial counts within the specification. But several other factors such as bacterial 

quality of raw milk, plant hygiene, biofilms, and thermal operating conditions of the plant 

play an important role in increasing the number of bacteria in the final product (Rueckert 

et al., 2006).  

1.2 Source of sporeformers 

Bacilli are ever present in nature and can easily contaminate milk through different 

sources. They can grow well in a wide temperature range and hence could fall under any 

of the psychrotrophic, mesophilic or thermoduric group of an organism (Meer et al., 

1991, Robinson, 2002). They produce enzymes that can degrade protein and fat present in 

milk. When the cells of bacilli are stressed due to any reason, they respond to stress by 

converting themselves into spores, which help them resist those stresses and remain 

viable for a longer period of time (Setlow et al., 2001, Henriques and Moran, 2007). 

Bacterial spores contaminate almost all sorts of dairy foods through several sources such 
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as milk from an unhealthy animal, biofilm, resistance and persistence of spore forming 

strains in processing lines, soil, transportation, personal hygiene, environmental sources, 

and others. Multiplication of cells following germination and outgrowth of spores can 

take place at wide ranges of intrinsic and extrinsic factors such as temperature, pH, and 

water activity (Carlin, 2011, Peter and Eric, 1997). The major sources of raw milk 

contamination on the farm are exterior of udder, surfaces of equipment coming in contact 

with milk, inadequate cleaning, and sanitizing procedures, and the miscellaneous 

environmental factors (Schmidt, 2009). Slaghuis et al. (1997)  categorized such factors as 

pre-milking, during milking, and post-milking factors. 

Among all sources, soil is one of the major habitat of spore-forming bacteria, and 

contaminated soil can serve as a source of contamination of milk via dirty teats (Novak et 

al., 2005, Hong et al., 2009, Carlin, 2011). Slaghuis et al. (1997) reported spore counts in 

soil up to 105 to 108 cfu/g. Fecal materials and manure can directly contaminate soil, 

water, and raw milk. Hong et al. (2009) carried out a study to compare the Bacillus spore 

counts in soil and feces, and their result revealed that soil contained 10 to 100 times more 

aerobic spore than the human fecal material, however, the average counts in feces were 

also significant (104 cfu/g). Feeds and bedding materials may also serve as sources for the 

spore contamination of milk (Magnusson et al., 2007, Slaghuis et al., 1997). However, 

feed concentrate, silage, fresh grass, and hay contain low spore population, which makes 

them less important factors for spore contamination (Novak et al., 2005). Magnusson et 

al. (2007) reported less than 50 Bacillus spores/g in fresh bedding material, whereas used 

bedding material had a considerably higher spore content. They further detected vast 

differences in the spore counts (900 to 62,000 spores/g) obtained from the samples of 
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bedding material in the surface layer, and there was a decrease in counts towards the 

bottom of the layer. Te Giffel et al. (2002) reported the level of spores in silage to be 10 

to 105 per gram, and inferred silage to be a significant source of contamination of raw 

milk with spores. Hull et al. (1992) reported that Bacillus spores in raw milk normally 

remained at the level of 5x103 spores per mL. The counts were reported to depend on 

housing of cattle contamination of teats, and water supply with soil. Spore counts per teat 

of cow ranged from 102-105.  

There are many different sources on the farm environment that lead to the 

contamination of different types and forms of microorganisms in milk. Milking 

personnel, milking equipment and utensils, air, dust and aerosols, and water used for 

cleaning are the major external contamination sources of milk (Schmidt, 2009). 

Magnusson et al. (2007) analyzed the air and rinse water samples collected during 

milking. The spore content in air was very low with a maximum of 100 spores/m3, 

whereas rinse water collected at the outlet of the milking system contained up to 250 

spores per liter, even though 38 out of 63 samples analyzed did not show spores in 

detectable number.  

1.3 Thermal resistance among Bacillus species  

The organism producing higher heat resistant (HRS) spore was first isolated from 

the milk sample taken from the bypass of indirect heating UHT device in Belgium and 

was later identified as Bacillus sporothermodurans. The problems related to its 

occurrence in UHT milk samples were simultaneously reported in other European and 

Non-European countries (Scheldeman et al., 2005, Scheldeman et al., 2006). Spores of 

thermophilic bacteria are activated immediately after heat treatment, and their 
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germination and propagation into milk or milk products cause a number or food spoilage 

problems. Spores are not only resistant to the commonly applied thermal processes, but 

some of them also adhere to surfaces of the processing equipment resulting in biofilm 

formation (Scheldeman et al., 2006). On the basis of a wide range of favorable growth 

temperatures, the resistance of spores to industrial pasteurization, and their ability to 

grow at refrigeration storage; thermoduric, thermophilic, and psychrotrophic spore 

formers are considered of significance to the dairy industry (Hull et al., 1992).  

Thermoduric bacteria can survive the pasteurization process, but may not 

necessarily be thermophilic (Hull et al., 1992). Once they survive the pasteurization 

process, they are carried over to the final product and later on result in defects and 

spoilage. Almost 100 % spores of Bacillus survive at 63˚ C for 30 minutes. They not only 

escape pasteurization but can also germinate and colonize into very large number during 

the manufacturing process, and cause several problems related to product quality and 

safety (Hileman, 1940, Silva and Gibbs, 2010).  

The term thermophilic bacteria applies particularly to bacteria which grow at 

elevated temperatures normally between 40 - 65˚ C (Scott et al., 2007). Few organisms 

are referred as thermoduric such as B. stearothermophilus, Geobacillus 

stearothermophilus, B. coagulans, B. licheniformis, B. subtilis, and B. 

sporothermodurans and can grow up to 55˚ C, even though their optimum growth 

temperature may be at a mesophilic range. (Martin, 1981, Yoo et al., 2006, Burgess et al., 

2010). 

Psychrotrophic bacteria can be defined as the bacteria which, irrespective of their 

optimum growth temperature, can survive and grow at or below 7˚ C (Meer et al., 1991, 
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Shah, 1994). Evidence from the literature suggest that thermoduric psychrotrophs may be 

simply variants of mesophilic organisms that adapted to grow at lower temperatures 

(Collins, 1981, Meer et al., 1991).  From the spoilage point of viewpoint, psychrotrophs 

are the most important organisms because they can grow and spoil milk and dairy 

products at even refrigeration temperature (Champagne et al., 1994, Granum and Lund, 

1997).  

In general, the psychrotrophs in milk are less than 10% of the total bacterial load 

in raw milk, even though they acquire higher attention as they grow rapidly and 

predominate other microflora during refrigeration (Shah, 1994). Psychrotolerant aerobic 

spore-forming bacteria, particularly Bacillus and Paenibacillus spp., which are 

thermoduric psychrotrophic in nature, are recognized as second most important 

organisms responsible for lowering the shelf life of HTST milk (Ranieri et al., 2009).  

1.3.1 Heat resistance based on different thermal treatments. Yuan et al, (2012) 

characterized three strains of Bacillus on the basis of heat treatment and reported that 

spores of all the strains survived all time-temperature combinations of pasteurization 

treatments, whereas spores of only Geobacillus strain survived UHT treatment. Based on 

the thermal resistance of various Bacillus strains, the population levels in raw milk and 

powder were evaluated by Kent et al., 2016. They reported Bacillus licheniformis as a 

most prominent strain in raw milk and powder. Out of five different treatments, 

mesophilic spore counts (isolated using heat treatment temperature of 80˚ C for 12 mins) 

were found significantly higher in raw milk whereas, for powder samples, spores from 

three treatment namely, high heat resistant mesophilic and thermophilic spore and 

especially thermoresistance spore method showed no significant difference in numbers.  
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1.4 Influence of microbial quality of raw milk on end-product  

The number of spore-forming psychrotrophs in raw milk may vary from 1 to 1600 

spore per mL, whereas their presence in pasteurized milk has been quoted between <0.5 

to 300 spores per mL. It has been suggested that about 25 % of the issues regarding shelf 

life of conventionally pasteurized milk in the U.S. may be related to the thermoduric 

psychrotrophs (Collins, 1981, Meer et al., 1991). Inadequate hygiene during milk 

processing can result in an increase of thermophilic numbers up to the level of 104 cfu/g 

in milk products like powders. The level and type of spores are based method used for 

detection (Kent et al., 2016). Even though raw milk is a major source of thermophilic 

bacilli in milk products, higher load in final products is not necessarily correlated with 

the initial loads in raw milk. As per previous studies, soil, feces, unhygienic conditions, 

bedding, and silage may result in aerobic spores ranging from 5 to 8 log cfu/mL but even 

then, the average number spores in raw milk is as low as 1-2 log spores/mL (Slaghuis et 

al., 1997, Pereira and Sant’Ana, 2018).  

A study done by Walstra et al, (2006) reported that microbial quality of raw milk 

may not necessarily contribute in spore and spore-forming bacterial contamination of 

final product, but the major contribution of contamination is from production practices 

and post-processing contamination. Processing conditions and proper sanitization 

practices in dairy plant plays a crucial role in controlling the spore and sporeformer 

populations. Biofilms within processing lines, loaded with sporeformers and spores may 

serve as a continuous source of contamination of product (Ronimus et al., 2003, Pereira 

and Sant’Ana, 2018). Despite the low number in raw milk, improper CIP and poor 

sanitization of the dairy plants allow the retention and extensive multiplication of these 
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bacteria within the processing system, especially in the longer processing cycles (Burgess 

et al., 2010). Therefore, from the above discussion, it’s clear that several factors play an 

important role in increasing the number of bacteria in the final product such as an initial 

microbial load of raw milk, processing conditions, plant hygiene, biofilms, and thermal 

operating conditions of the plant. 

1.5 Influence of low-temperature storage during raw milk holding on population 

dynamics of Bacillus species 

According to the Grade ‘A’ Pasteurized Milk Ordinance (PMO; FDA, 2017), after 

completion of the first milking cycle, raw milk is recommended to be cooled to 10˚ C 

(50˚ F) or less in four hours or less, and to 7˚ C (45˚ F) or less, within two hours after the 

completion of milking. After completion of each milking, many a time, due to economic 

and organizational reasons, raw milk is stored at low temperatures in the farm for long 

hours, and several times the supplied milk is not processed immediately. Since after 

milking, raw milk is cooled to 8˚ C or less, however, abused temperature (>8˚ C or more) 

conditions during milking intervals and transportation can significantly impact the 

microbiological attributes of raw milk leading to the outgrowth of the microbial 

population (Lafarge et al., 2004, Salustiano et al., 2009). Holding raw milk for up to 96 h 

at temperatures higher than 6˚C (O’Connell et al., 2016) can impair its chemical, physical 

as well as microbiological quality and thus, reduces its suitability for processing various 

dairy products (Barbano et al., 2006, Leitner et al., 2008). After Pseudomonas, Bacillus is 

the second predominant species frequently isolated from refrigerated raw milk (Sørhaug 

and Stepaniak, 1997, Vithanage et al., 2016). These psychrotolerant spore-forming 

Bacillus species are regarded as a major challenge, as many of these organisms can 
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withstand pasteurization and can germinate and outgrow in the final product (Ivy et al., 

2012, Masiello et al., 2014).  

A previous study (Kumari and Sarkar, 2014) reported the ability of Bacillus species 

to produce biofilms even at 4˚ C, which was isolated from chilling tank. Based on the 

strain specificity, these Bacillus species can multiply, germinate or may form spores 

under stressed conditions such as temperatures below and above their optimum range. 

These heat-stable Bacillus spores could survive milk processing steps, and at optimum 

conditions they germinate and cause spoilage (Becker et al., 1994, Rukure and Bester, 

2001, Chen et al., 2004), due to the production of enzymes (proteases and lipases) and 

acid (Chen et al., 2004). Bacterial build-up during storage of raw milk may lead to the 

maintenance of ‘persistence cycles' of thermoduric that may lead to microbiological 

quality issues such as ‘bacterial or spore-spikes' in the final products (Hayes et al., 2001). 

Numerous studies have evidenced the growth of vegetative cells at refrigeration 

temperatures during milk processing (Kent et al., 2016) but none of the studies explored 

the sporulation behavior in raw milk, stored at low temperatures. Regardless of all the 

above aspects, the influence of the length of storage and temperature on germination and 

sporulation behavior of different sporeformers, and their ability to form spores during 

raw milk holding at the farm and plant silos is not understood clearly. Different strains of 

B. licheniformis could behave differently in terms of germination, multiplication, and 

sporulation in raw milk held at refrigeration temperatures for longer durations. Therefore, 

understanding the influence of time-temperature combinations that favor minimum 

multiplication or sporulation of sporeformers by during raw milk holding can be helpful 
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in increasing the efficiency of thermal treatments and reducing the bacterial load in end-

product.  

1.6 Influence of powder processing steps on final counts in the product 

During milk powder manufacture, thermophilic bacteria are able to grow within the 

section of processing plant where the temperature for thermophile growth is ideal. 

Regeneration sections of heat exchangers and evaporators are the sections where the 

operating temperature remains between 45 to 75˚ C, which favors the growth of 

thermophiles resulting up to  106  cfu/g in the milk powder (Scott et al., 2007). The 

growth and sporulation ability of such Bacillus strains during evaporation and other 

thermal treatments can result into survival of these bacteria during hostile conditions thus 

resulting into persistence and constant contamination of end-product for long-term. Three 

species of  bacilli viz. G. stearothermophilus, B. licheniformis and Anoxybacillus 

flavithermus constituted 91.9 % of the total bacterial population in milk powder collected 

from 18 different countries and screened by a RAPD based survey (Rückert et al., 2004). 

In other studies, Rueckert et al. (2005), and Rueckert et al. (2006) reported seven strains 

of Bacillus that commonly occurred in milk powder. These were identified to be G. 

stearothermophilus (strain A), A. flavothermus (Strain B, C, D), B. licheniformis (Strain 

F, G) and B. subtilis.  

 Murphy et al. (1999) determined thermophilic counts of milk at the intermediate 

stages of milk powder processing. He reported that preheat treatment of milk used in the 

manufacture of low heat powder, resulted in the growth of thermophilic counts up to a 

level of log 5 cfu/ ml. Bypassing the preheater was found to reduce the growth of bacteria 

at evaporation stage, and ultimately reduced their numbers in milk powder. Limiting the 
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production cycle to 12 h substantially reduced the number of thermophiles in milk 

powder. In another milk powder processing plant, no spores were detected in the milk in 

feed balance tank, whereas the number in the evaporator pass sample reached up to log 

4.1 cfu/mL (Scott et al., 2007).  

Apart from thermophilic strains, other species of Bacillus such as Bacillus 

licheniformis, B. subtilis and B. coagulans were also present in milk powders (Gopal et 

al., 2015). During drying, the inlet temperature of dryer usually ranges from 180 – 230˚ C 

(Moejes & Boxted, 2017), whereas in most cases the temperature that product 

experiences is about 60-100˚ C and is much lower to kill most of the spores of various 

species. As different strains and species of Bacillus respond to heat stress differently, 

therefore it is important to understand the influence of duration, temperature, water 

activity, initial load, strain variability and processing conditions during powder 

manufacturing on survivability and growth of vegetative as well as spore population. The 

evidence suggests that the number of spores in milk powder increases basically due to 

two major reasons; increase in spore concentration along with the concentration of milk, 

and favorable growth conditions within specific segments of processing line that 

supported the growth of thermophiles during longer manufacturing cycles. 

1.7 Rapid spore detection methods 

Spores are very resistant microbial structures that survive adverse conditions and can 

germinate when conditions are favorable. Detection of bacterial spores and determining 

their numbers are very useful in many applications. Detecting bacterial spores in dairy 

and food processing environments, water, dairy and food matrix can help reduce spoilage 

and shelf life issues in final product. Aerobic sporeforming Bacillus species are known as 
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a major contaminant in food and dairy industry (Seale et al., 2015). Bacillus, being a 

second pre-dominant species, is frequently isolated from raw milk and responsible for 

many shelf life issues of milk and milk products (Sharma and Anand, 2002). The Bacillus 

sporeformers are of importance to the food and dairy industry as these generally produce 

heat- resistant spores that may survive industrial sterilization and ultimately become 

incorporated into final products. Detection and enumeration of bacterial endospore 

concentrations are time consuming tasks. Therefore, timely detection of Bacillus species 

before milk processing is vital, to identify the source of contamination and strategies to 

reduce or control Bacillus build up in the later stages of the process.  

Number of methods has been developed during past decades including plating 

techniques, biological methods such as polymerase chain reaction (PCR’s) and 

immunoassays and optical methods. The most frequently used methods of quantification 

of spores are microscopy and plate culture counting methods, which are slow and tedious. 

Plating methods for spore enumeration may take up to 72 hours for the results to be 

available (Sharma and Prasad, 1992, Rosen et al., 1997). Whereas, biological methods 

usually require costly reagents and requires sample processing time before analysis. 

Thus, there remains a need for simple and cost-effective method that can help rapid 

identification of aerobic Bacillus spores in food and dairy matrix.   

From past two decades, optical method for detection and enumeration of spores based 

on dipicolonic acid (DPA) have occupied a great deal of attention. Most of the modern 

methods work using dipicolonic acid (DPA) as a spore marker (Rosen et al., 1997, Bell et 

al., 2005). Rosen et al. (1997) have described a method based on terbium dipicolinate 

photoluminescence. In this method terbium chloride (TbCl3) is added to an aqueous 
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suspension containing bacterial endospores. Another method based on delayed gate 

fluorescence detection of dipicolinic acid (DPA) chelated with lanthanide metals has 

been described. The optimized system had a detection limit of 2 nM DPA, which also 

allowed a real-time monitoring of the germination of bacterial spores by continuously 

quantifying exuded DPA. A minimum detection limit of 104 B. subtilis spores per ml 

could be attained (Hindle and Hall, 1999). Yet another rapid spore enumeration assay, 

Rapid SSEA, has been reported. Rapid SSEA is based on imaging and counting 

individual bacterial spores in a microscopic field, where a magnified contrast is generated 

by a highly luminescent complex of (Tb3+) and dipicolinic acid (DPA) which is released 

from spores during germination (Yung et al., 2006). A method using lysozyme and 

performic acid as germination inducer and staining of the germinated spore with acridine 

orange has been described (Sharma and Prasad, 1992). Surface-enhanced Raman 

spectroscopy (SERS) based assay of spore DPA to enumerate B. anthrax spores has been 

described by Bell et al. (2005).  

As a follow-up to a previous study (Li et al., 2013), further investigation should be 

done to evaluate CaDPA concentration in Bacillus spores using ratiometric fluorescence 

technique. This technique can be useful rapidly enumerate total spore counts in raw milk 

and is based on the detection of calcium dipicolinate (CaDPA), an important biomarker 

and major component of bacterial spores. Lanthanide ions (Ln3+) have a high affinity for 

CaDPA, and thus the binding could enable a very sensitive assay with bright 

luminescence. Most of the lanthanide-based sensors only use the change of fluorescence 

intensity to estimate the concentration of CaDPA. While, the ratiometric fluorescent 

detection method, being validated in this study, could measure the relative changes of 
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fluorescence intensities at two different wavelengths. Development of these rapid spore 

detection kits can be helpful in detection of spores in milk and milk products within farm 

facilities itself within a duration of approx. 20-25 min.  

1.8 Optimization strategies, based on regression models, to control spore population 

Currently, the dairy and food industry are more concerned in attaining strategies 

whereby spore-former and spore counts can be controlled or reduced to safe levels. Thus, 

Response Surface Methodology is a powerful mathematical and statistical technique 

widely used in developing and optimizing response variable in the industrial world 

(Lenth, 2009). RSM was initially described by box and Wilson, allows the estimation of 

various process parameters and their interactions on the dependent variables. 

Understanding the influence of time-temperature combinations that favor minimum 

multiplication or sporulation of sporeformers by using process optimization strategies, 

could help control bacterial load in raw milk. As the conditions like temperature and 

duration of holding raw milk can vary continuously in bulk silos, and throughout the 

powder processing run therefore application of optimization strategies can be helpful in 

knowing the optimum time temperature conditions.  

In a recent study Buehler et al., (2018) used predictive models to predict spoilage 

patterns in HTST pasteurized milk which can be helpful in analyzing various approaches 

in reducing milk spoilage. Therefore, in current study, RSM can be used to analyze 

different parameters namely temperature and duration to optimize the outcome and to 

analyze the response variable, low degree model can be applied. The contour plots can be 

applied to generate time-temperature combinations where least or no sporulation ability 

of strains occur. Regression equations can be applied to predict the individual strain 
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population numbers for specific temperature and duration of raw milk holding. This 

increases the ability to create predicted values for vegetative cell population growth at a 

wide time-temperature range, which can be easily generated using regression equations. 

Based on germination, multiplication and sporulation patterns of individual strain, such 

population changes can be predicted using regression equations that can be applied at 

production farms and dairy industry. Such optimized milk holding conditions would 

prove useful for the dairy industry, and thus in future can be used as a strategy for shelf 

life determination of raw milk. The contour plots can readily be used even over an 

extended time-temperature range of storage to predict the behavior of sporeformers 

during raw milk holding in bulk silos at production farms and dairy plants. 
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Chapter 2 

Influence on Population Dynamics of Low Sporulating Strain During Raw Milk Holding 

at Different Refrigeration Temperatures – A Case Study  

ABSTRACT 

Bacillus licheniformis is a widely reported spore-former in raw milk and milk powders. 

The organism, being thermotolerant, is considered a challenge during milk processing. It 

would be of interest to understand the growth dynamics of Bacillus species during raw 

milk storage at low temperature in farm and plant silos. The current study was conducted 

to observe the changes in a population of vegetative cells and spores of B. licheniformis 

ATCC 6634, spiked in raw milk samples at about 4.0 and 2.0 log cfu/mL respectively. 

The vegetative cell spiked milk samples were stored at 4 and 8˚ C, for durations of 0 and 

72 h whereas, spore spiked milk samples were incubated at 4, 6, 8, 10 and 12˚ C for up to 

72 h and enumeration was performed after every 24h interval. Standard protocols were 

followed for microbial analysis. Spore enumeration was done by heating the spiked milk 

samples at 80˚ C for 12 min prior to plating on Brain Heart Infusion agar. Three trials, in 

replicates of three, were conducted, and the data were analyzed using two sample t-test, 

analysis of variance, and first order regression model. For vegetative cell spiking, log 

vegetative counts increased to 4.09 log cfu/mL after 72 h at 4˚ C whereas at 8˚ C the 

counts increased to 4.42 logs cfu/mL. A significant difference (p < 0.02) was thus 

observed in the mean counts after 72 h of holding for 4 and 8˚ C. On the other hand, the 

corresponding spore population mainly remained unchanged during 72 h at different 

storage temperatures. The results thus suggest that B. licheniformis may multiply to a 

greater extent when milk is held at temperature of 8˚ C or above. Whereas, no lack of fit 
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(p = 0.294) was observed for spore values, and the entire regression surface was not 

significant. The regression equations were applied to generate contour plots for 

estimating the population shift across the holding temperature and duration. The contour 

plots were also used to determine the time-temperature combinations, where 1.0 log 

increase in population was observed. In the vegetative cell spiking study of B. 

licheniformis ATCC 6634, cell population remained mainly unchanged for 72 h up to 8˚ 

C, with more than 1.0 log change observed only at 10˚ C and above, therefore suggesting 

expeditious multiplication of low sporulating strain. The experimental log sporeformer 

and spore numbers were validated with that of contour plot generated values, which were 

originally applied using regression equations. Overall, if raw milk is predominated by 

population of low sporulating strain then, contour plots suggested using time-temperature 

combination of 8˚ C or below up to 72 h for holding milk. Current results exhibited that 

population dynamics of a low sporulating Bacillus species is influenced due to 

temperature and duration of holding raw milk. Importantly, the current study provides 

regression equation that can be used at farm and dairy industry to predict microbial 

outgrowth during raw milk holding and thus in future can be used as a strategy for shelf 

life extension of the final product.  

2.1 INTRODUCTION 

Bacillus species are known as a major contaminant in food and dairy industry 

responsible for food-borne diseases and milk and milk product spoilage (Granum et al., 

1993, Seale et al., 2015). Previous studies reported the presence of thermoduric 

psychrotrophs in raw milk and determined that 25% of shelf life problems in milk and 
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milk products are associated in the United States is linked to Bacillus species (Francis et 

al., 1998, Sharma and Anand, 2002). As per Pasteurized Milk Ordinance (PMO) 

requirements, the total microbial count in Grade A milk leaving the farm is <100,000 

cfu/mL and should be less than <300,000 cfu/mL after pooling milk in processing plant 

(Barbano et al., 2006). According to the Grade ‘‘A’’ Pasteurized Milk Ordinance (PMO, 

2017) guidelines, after completion of the first milking cycle, raw milk should be cooled 

to 10˚ C (50˚ F) in less than four hours, and to 7˚ C (45˚ F) or less, within two hours after 

the completion of milking. A previous study (Wehr and Frank, 2004) examined standard 

methods for dairy products and analyzed that, general quality parameters exist in the 

industry that limits thermophilic spore-formers to a maximum of 2,000 cfu/g.  

After Pseudomonas, Bacillus is the second predominant species frequently 

isolated from refrigerated raw milk (Sørhaug and Stepaniak, 1997, Vithanage et al., 

2016). Among Bacillus species, Bacillus licheniformis is considered as a potential source 

of spoilage of milk and milk products including dry milk powders, pasteurized as wells as 

UHT milk products (Barbano et al., 2006, Leitner et., 2008, Buehner et al., 2015, Miller 

et al., 2015). Due to economic and organizational reasons, it becomes impossible to 

deliver milk after completion of each milking, to dairy plant and industry. Therefore, 

milk is stored at low temperatures in the farm for long hours and several times, supplied 

milk is not processed immediately. Holding raw milk for long hours impairs its chemical, 

physical as well as microbiological quality and thus, reduces its suitability for processing 

various dairy products by intensifying milk impairment (Barbano et al., 2006, Leitner et 

al., 2008). Thermoduric psychrotrophs Bacillus can multiply even in hygienically 

produced raw milk and is dependent on the duration and temperature of storage (Griffiths 
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et al., 1987, Griffiths et al., 1988). In the dairy industry storing raw milk at refrigerated 

conditions is a prerequisite process and many a times raw milk is held for three to five 

days in bulk tanks before delivering to processing plants. However, abused temperature 

conditions during milking intervals and transportation can significantly impact the 

microbiological attributes of raw milk leading to the outgrowth of psychrotrophs (Lafarge 

et al., 2004). Therefore, our study analyzed the effect of different refrigeration storage 

temperatures and durations on population dynamics of raw milk spiked with B. 

licheniformis ATCC 6634 spiked in raw milk. 

Regardless of all the above aspects, only a few studies and research has 

undertaken the microbial behavior in raw milk quality between its production and 

processing. In this study, the microbial attribute of spiked raw milk is accessed to observe 

the behavior of spores and vegetative form of B. licheniformis ATCC 6634 at low 

temperatures, when held for several hours. The growth pattern of B. licheniformis was 

observed after spiking raw milk with 4.0 log of vegetative cells and 2.0 log of spores in 

relation to its different storage temperatures and duration of holding. Therefore, our study 

hypothesizes that raw milk holding at low temperatures, may involve germination and 

sporulation of strain that may provide a chance for microbial build-up in the raw milk, 

leading to microbiological quality issues such as ‘spore-formers or spore-spikes’ in the 

final products. 

Currently, the dairy and food industry are more concerned in attaining strategies 

whereby spore-former and spore counts can be controlled or reduced to safe levels. Thus, 

Response Surface Methodology is a powerful mathematical and statistical technique 
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widely used in developing and optimizing response variable in the industrial world 

(Lenth, 2009). RSM was initially described by box and Wilson, allows the estimation of 

various process parameters and their interactions on the dependent variables. As the 

conditions like temperature and duration of holding raw milk can vary continuously in 

bulk silos, therefore, this study involves different combinations of treatments x1 and x2 to 

accurately estimate the response or dependent variable i.e. the enumeration of spore-

formers and spores. Thus, RSM is employed using different parameters namely 

temperature and duration to optimize the outcome and to analyze our response variable, 

low degree model was applied. RSM with first and second order model is applied to our 

data to optimize the time-temperature conditions where least or no significant shift in log 

cfu/mL of spore-formers and spores are observed. Generated second order regression 

equations were used to apply contour plots ts are used, to help predict the optimum time-

temperature combinations. Percent dissolved oxygen (% DO) and pH are investigated as 

covariates during spiked raw milk storage study.  

2.2 MATERIALS AND METHODS 

2.2.1 Bacterial Strain Collection and Growth Conditions 

This study includes a pure culture of B. licheniformis ATCC 6634, purchased 

from the American Type Culture Collection of Microorganisms (ATCC). B. licheniformis 

was grown in Brain Heart Infusion (BHI; BD DifcoTM) by incubation at 32˚ C. The 

culture was preserved for future use by using protocol suggested by (Perry, 1995). The 

pellets of actively grown culture were prepared at mid-exponential phase by centrifuging 

at 4500 × g for 30 min. Phosphate buffer saline (PBS) with pH 7.4 was used to suspend 
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pellet, and the culture was preserved in 1.8 mL cryogenic vials (CRYOBANKTM – Copan 

diagnostics Inc., CA, USA). For further use, the cryovials were stored at -80 ˚C in a deep 

freezer (NuAire ultralow freezer, NuAire Inc. MN, USA).  

2.2.2 Growth Curve and Dose Standardization 

Growth curve of Bacillus licheniformis ATCC 6634 was analyzed in fresh BHI 

broth and culture was plated after every 2 h of inoculation using BHI agar and 

absorbance was also recorded at 600 nm. Growth rate constant (k) and mean generation 

time (Td) was calculated as described by (Powell, 1956). For dose standardization, 

activated cultures of B. licheniformis was centrifuged and later was suspended in 1.0 mL 

of phosphate buffered saline (PBS Different concentrations of the culture were obtained 

by adjusting the OD (approx. 0.3) at 600 nm (Spectronic 200, Fisher Scientific, Passaic, 

NJ, USA) and pour plating was done to validate the viable counts. Plates were incubated 

at 32˚ C for up to 24–48 h, and plates with 25–250 colonies were enumerated for 

calculating total counts (Wehr and Frank, 2004).  

2.2.3 Sample Collection, and Inoculation 

Challenge studies were conducted using aseptically collected (500 mL each) raw 

milk from South Dakota State University (SDSU) dairy farm. The raw milk samples were 

transported in refrigerated conditions (7° C or less) and stored at 4 ± 0.03° C before use. 

Raw milk samples (500 mL) were spiked separately with pre-standardized dose 

vegetative cells (approx. 4.0 log cfu/mL) and spores (approx. 2.0 log cfu/mL) of B. 

licheniformis ATCC 6634. Spiked raw milk samples were incubated in a refrigerated 
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incubator (FSC-97-990E, Fisher Scientific, Passaic, NJ, USA) at the respective 

temperatures and durations. Plates were incubated at 32˚ C for 24–48 h, and plates with 

25–250 colonies were enumerated for calculating total counts (Wehr and Frank, 2004). 

Endospores were prepared using method as recommended by Khanal et al. (2014). 

Approximately 1.0 mL of actively growing broth culture of each of the spore-formers 

was spread-plated on the BHI agar plates. The plates were incubated at the appropriate 

incubation temperatures for up to 15 d. To monitor the level of sporulation, spore staining 

was performed occasionally throughout the incubation period and after achieving 90% of 

sporulation, spores were harvested using a similar technique described by Wang et al. 

(2009). 

2.2.4 Experimental Design 

Two factors were studied to understand the population dynamics of B. 

licheniformis namely: temperature and duration of holding. Parameters such as pH 

(Fischer AE150, Fischer Scientific, Passaic, NJ, USA) and dissolved oxygen (Dissolved 

Oxygen Meter Pen, Fischer Scientific, Passaic, NJ, USA) were used as covariates and 

were recorded for all time-temperature combinations during our study. 

2.2.4.1 Vegetative spiking. Developing First Order Regression Model 

At the beginning of this study, for vegetative spiked raw milk, a rotatable design 

(9 experiments) with three levels (-1, 0 and +1) of two independent variables 

(temperature and duration) were used initially to obtain first order regression model and 

was potent in searching the direction of optimum domain (Table 2.1). A two-factor 

rotatable (9 experiments) design, with axial points (experiments N1 to N4, Table 2.1), 

https://www.sciencedirect.com/topics/food-science/agar
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and central points in five repetitions (experiments N5 to N9) was used to assess the 

influence of two factors (temperature and duration of holding) on sporulation, 

germination and population dynamic behavior of B. licheniformis for raw milk spiked 

with vegetative cells. Nine experiments were augmented with five replications in the 

center points (6˚ C for 36 h) to check the bias within several sets of experiments and to 

estimate the pure error. The aim of repetition of the central points was to supply a 

measure of the pure error of the regression analysis (Granum et al., 1993, Peña et al., 

2014). Upper and lower limits for independent variables (temperature and duration) were 

fixed, based on previous reports and studies (Vinthanage et al., 2017). Spiked raw milk 

samples were incubated in a refrigerated incubator (FSC-97-990E, Fisher Scientific, 

Passaic, NJ, USA) at their respective temperatures and durations as shown in table 2.1 to 

2.3. Spore-formers and spores were enumerated by using BHI agar as described in above 

section. To search the direction of an optimum domain, a first-degree model was 

performed accordingly, the equation can be expressed as: 

y = β0 + β1x1 + β2x2 + ε   (1) 

where x1 is temperature, x2 is duration and y is the response (spore-former or 

spore). The variables x1 and x2 are independent variables where the response y depends 

on them and experimental error term is denoted as ε. Our study includes response surface 

methodology (RSM) to model and analyze spore-former and spore growth in spiked raw 

milk samples, influenced by temperature and duration of holding. We assume that the 

multiplication and outgrowth of spore-formers or spores are influenced by the change in 

temperature x1 and duration x2. 
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2.2.4.1.2 Applying Second Degree Model 

To accurately approximate the true response surface for spore-formers, the fitted 

first-order model suggested using the second-degree model thus, a series of additional 

time-temperature combinations were evaluated towards the optimum region called 

steepest ascent model at 6, 8, 10 and 12˚ C at their corresponding duration 36, 42.6, 49.2 

and 55.8 h for vegetative spiked raw milk. Plating and enumeration of spore-formers 

were performed at these points as described in section 2.4. All the data from above two 

separate experiments were used to generate the second-degree equation by mean 

centering and adjusting the effect of covariates. The equation can be expressed as: 

y = β0 + β1x1 + β2x2 + β11x11 + β22x22 + β12x12 + ε  (2) 

Where x11 = x1 * x1, x22= x2 * x2 and x12 = x1 * x2 

2.2.4.2 Spore spiking 

Spores of BL ATCC 6634 were spiked in raw milk samples with spiking levels of 

approx. 2.0 log cfu/mL. The spore spiked raw milk samples were incubated at 4, 6, 8, 10 

and 12˚ C for 0, 24, 36, 48 and 72 h of durations as shown in table 2.3. Standard 

protocols were followed as described above and microbial analysis was carried out at 0-

72 h duration with 24 h interval. 

2.2.5 Statistical Analysis, Regression Surface and Contour Plots 

 Two-sample t-test, multiple linear regression analysis and response surface 

methodology (RSM) were performed using SAS 9.3 software (SAS Institute Inc., Cary, 

NC) to observe any significant difference between initial and final vegetative or spore 



44 
 

counts of spiked raw milk. The dependent variable (measured response) was the log10 of 

colony forming unit per milliliter of B. licheniformis spore-formers and spores for 

specific time-temp. combination. All the experiments were done in triplicates with three 

replicates. The significance of the model was analyzed, and lack of fit test was 

performed. Regression equations were used to generate contour plots and the model 

generated values were compared with that of experimental values.  

The objectives of current study were to (1) Understand the influence of 

temperature and duration of raw milk holding on multiplication and germination abilities 

of low sporulating Bacillus strain (2) To derive regression equation which can be applied 

at farm and industrial level and based on initial logs these equations will help understand 

the optimum time temperature combinations that will lead to minimum or least increase 

in the bacterial load.  

2.2.6 Quantification of Spore-formers and Spores 

Incubated spiked raw milk samples were enumerated for spore-formers and 

spores. Sterile PBS solution at pH 7.4 was used for the serial dilution of spiked raw milk 

to enumerate spore-formers and spores. Sporulation was detected by enumerating 

samples for spores, spiked raw milk was heated to 80˚ C for 12 minutes, and was then 

cooled for 10 min in the ice bucket (Kent et al., 2016). The diluted samples were pour 

plated by using Brain heart infusion agar (BHI). Plates were stored at 30° C for 24-48 h 

(Khanal et al., 2014) and plates with 25 to 250 colonies were enumerated. Calculation of 

colony-forming units per milliliter of samples was done using a previous method (Wehr, 

2004). 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Growth Curves of Bacillus Strains 

The growth curves of both strains are illustrated in Figure 2.1. The growth 

constant (k) and estimated mean generation time (Td) for BL ATCC 6634 were 1.180/min 

and 35.2 min. Therefore, in terms of mean generation time our results agree with 

previous reports that estimated the mean generation time of Bacillus species of 28.7 and 

30 mins at 35˚ and 30˚ C (Powell, 1956, Leighton and Doi, 1971). This growth curves 

were helpful in identifying the mid-exponential phase for two individual strains. 

Activated culture was spiked in raw milk only after mid-exponential phase was reached, 

which was at approx. 11 h. 

2.3.2 Effect of Independent Variables on Population Dynamics of Vegetative Cells of B. 

licheniformis  

It is known that temperature and duration of storage conditions play a key role for 

bacterial proliferation in raw milk (Griffiths  et al., 1987, Griffiths et al., 1988, Francis et 

al., 1998, Lafarge et al., 2004, De Jonghe et al., 2011) whereas, Kumari and Sarkar 

(2014) reported the ability of Bacillus species to produce biofilms at 4˚ C isolated from 

chilling tanks. Among Bacillus species of thermoduric psychrotrophs, B. licheniformis 

and B. coagulans are the most predominant species found in raw milk and considered as a 

potential source of spoilage-causing microbes in milk and its products including 

pasteurized as wells as UHT milk products (Johnston and Bruce, 1982, Francis et al., 

1998, Barbano et al., 2006, Leitner et al., 2008, Buehner et al., 2014). Recent studies 

(Vithanage et al., 2016, 2017) confirmed that the abused temperature conditions during 
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refrigerated storage of milk processing can significantly impact the microbiological 

quality of milk, due to increase in total bacterial counts and several other factors. Despite 

this, there are no reports, that investigated the effect of these factors on population 

dynamics of Bacillus species when spiked in raw milk.  

To identify the population dynamics of B. licheniformis stored at refrigeration 

conditions for a specific duration, this study analyzed its growth behavior in terms of 

multiplication, germination and sporulation at different time-temperature combinations 

ranging from temperatures, 4.0 to 12.0˚ C & duration 0 to 72 h. The present study 

involves enumeration of total spore-formers and spores of B. licheniformis at specific 

time-temperature combinations spiked in raw milk at the rate of log 4.0 cfu/mL and their 

growth patterns are shown in table 2.1, respectively. In this study, we have observed that 

during 12˚C storage of spiked raw milk, more extensive multiplication of spore-formers 

occurred when compared with low-temperature storage (Table 2.1). Santos et al. (2003) 

compared two storage temperatures (0.5 & 6˚C) for pasteurized fluid milk and observed 

lower bacterial counts when fluid milk was stored at a temperature of < 6˚ C.    

Spore-former enumeration (table 2.1) showed no significant difference between 

counts at 0 h for 4 and 8˚ C, thus confirms that the initial spiking levels were significantly 

similar for all replicates. Though the mean log values of spore-formers were highly 

significant between 4 and 8˚ C after 72 h of storage. In terms of outgrowth of microbes in 

milk during low-temperature storage, the present study results agree with the previous 

studies (Datta and Deeth, 2003, Lafarge et al., 2004, Barbano et al., 2006, Leitner et al., 

2008). The study performed by Leitner et al., (2008) observed that the milk collected 

from farm bulk milk silos and dairy tanks, possess significant difference in bacterial 
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counts after 48 h of storage. Therefore, it is well documented that milk quality is 

influenced by the storage conditions and the potential leading cause is, continuous 

bacterial growth. In the present study, the total vegetative counts in raw milk spiked with 

B. licheniformis ATCC 6634 were 3.80 ± 0.05 and 3.92 ± 0.19 log cfu/mL for 4 and 8˚ C 

at 0 h of spiking (Table 2.1). We have observed, the number of total vegetative counts 

varied over a same range of temperature after 72 h of storage and these differences were 

found significant. Our results are consistent with Vithanage et al. (2016) that reported a 

significant increase of bacterial counts in 2-3 days of holding at ≥ 6˚ C or 4 days at 4˚ C. 

For temperatures 4 and 8˚ C, about 0.29 and 0.50 log increase were observed after 

72 h in spiked raw milk previously inoculated with vegetative cells of B. licheniformis at 

3.80 and 3.92 logs, respectively (Table 2.1). Similarly, a much higher multiplication of 

vegetative cells was observed for milk stored at higher degrees for longer durations. After 

comparing initial inoculum level of vegetative cells, we observed 1.12 - 3.25 log increase 

in spiked raw milk stored at 10 and 12˚ C after 49.2 and 55.8 h, respectively. On the other 

hand, no significant increase in spore numbers was observed after 72 h of inoculation for 

milk stored at 4 and 8˚ C. Therefore, this is an important observation demonstrating the 

multiplication behavior of vegetative cells of B. licheniformis at low-temperature storage. 

Abused temperature conditions in farm silos and dairy plant, may lead to a greater 

multiplication of such thermoduric psychrotrophs that can be further carried over beyond 

pasteurization. Therefore, may serve as a source of post-pasteurization contamination 

leading to several quality issues in final milk products. Our study agrees with the 

previous study done by Grosskopf and Harper (1974), reported the multiplication of B. 

licheniformis and other Bacillus species in pasteurized milk and milk products stored at 
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4˚ C for four weeks. Current trends of holding raw milk for an extended time at 

refrigeration temperatures may exacerbate the significance of B. licheniformis for food 

and dairy industry. 

2.3.3 Effect of Temperature and Holding Time on Population Dynamics of B. 

licheniformis Spores 

It is assumed that, during the holding of raw milk, spores possess the ability to 

germinate and produce vegetative cells and can again form spores under stressed 

conditions in farm and dairy silos. Depending on temperature and storage duration under 

unfavorable environmental conditions these spore-formers may sporulate to produce 

large numbers of spores. Numerous studies have evidenced the growth of vegetative cells 

at refrigeration temperatures during milk processing but none of the studies explored 

spore behavior in raw milk, stored at low temperatures. Scott et al. (2007) reported the 

predominant sporulation sites as evaporators and plate heat exchanger during whole milk 

powder manufacturing but did not investigated raw milk in farm or dairy silos. If 

hygienic conditions are not followed, then 102 to 106 cfu/mL of spores in raw milk is 

contributed by, silage, transportation, animal health and environment (Te Giffel et al., 

2002). The heat stable spores of Bacillus can survive milk processing thus, germinate and 

outgrow to elevated levels in final products such as milk powders, cheese and infant food 

formulas (Becker et al., 1994, Rukure and Bester, 2001). Therefore, to identify the 

population dynamics of B. licheniformis, spores were held at refrigeration conditions for 

72 h of duration, this study analyzed the ability of spores to germinate at various low 

temperatures ranging from (4.0-12.0˚ C) for 0 – 72 h of duration. Thus, pre-prepared 
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spores of B. licheniformis ATCC 6634 were spiked (log 2.0 cfu/mL) in raw milk and 

their growth pattern during low temperature of holding is shown in table 2.3, 

respectively.  

In present study, we have observed that during 12˚ C incubation of spore spiked 

raw milk, more extensive germination of spores occurred when compared to 4.0 and 6.0 ˚ 

C of storage (Table 2.3). Table 2.3 represents, decrease in spore numbers from 2.48 ± 

0.03 and 2.45 ± 0.02 to 2.00 ± 0.02 and 1.73 ± 0.02 at 10 and 12˚ C after 72 h of 

incubation. Similarly, we observed a slight increase in vegetative cell population from 

3.17 ± 0.01 and 3.13 ± 0.02 to 3.87 ± 0.01 and 3.93 ± 0.00 at 10 and 12˚ C after 72 h of 

holding. Thus, our results represent the ability of spores to germinate at higher 

refrigeration temperatures. 

2.3.4 Influence of Covariates (pH and dissolved oxygen) 

From Table 2.1 and 2.2, we can clearly observe the increase in pH with increase 

in duration of storage. As per previous studies (Bosworth et al., 1922, (Bosworth et al., 

1922, Cárdenas-Fernández et al., 2012) few strains of Bacillus species possess the ability 

to produce ammonia that can significantly increase the pH of milk with duration. 

Similarly, a previous study (Chantawannakul et al., 2002) have evaluated that, the 

increase in pH during fermentation process by Bacillus species is possibly due to 

proteolysis and ammonia release. They have also observed that the difference in 

temperature conditions influence the difference in pH changes. The present study agrees 

with previous reports and confirms that increase in pH are more prominent at higher 

temperatures of storage.  Therefore. this increase in pH from 0 to 72 h of storage of 
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spiked raw milk at 4 and 12˚ C indicates the ammonia release due to higher activity of 

Bacillus protease. Whereas, we have not observed any significant change in dissolved 

oxygen before and after storage of spiked raw milk samples at low temperatures for 72 h 

for both spiking experiments. Thus, our results indicate that DO and pH may not be a 

factor influencing the population changes during raw milk holding. 

2.3.5 Optimization of Temperature and Holding Time for Raw Milk Storage by Response 

Surface Methodology (RSM) 

Two sample t-test and multiple linear regression model was performed, and we 

observed positive influence of independent variables (temperature and duration) on the 

dependent variable (vegetative cell counts) whereas, no significant difference was 

observed in spore numbers after 72 h of incubation. A slight increase in counts of 

vegetative cells (B. licheniformis) was observed at 4˚ C in spiked raw milk samples, 

during 72 h of storage. Similar trends were observed at 8°C after 72 h of storage. The 

multiple linear regression model was found significant for vegetative cell counts for 

vegetative spiked raw milk samples. Based on the requirements of experimental design, 

two mathematical models (first and second-degree model) were fitted to the time-

temperature combination data (log cfu/mL) of B. licheniformis vegetative cells. Similarly, 

data from raw milk spiked with spores was analyzed using two sample t-test and multiple 

linear regression model. We observed a log-cycle reduction in spore numbers with 

simultaneous increase in temperature and duration of holding.   

2.3.6 Regression Models of Response 
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2.3.6.1 Log Increase in Sporeformers - Applying First and Second-Degree Model on 

Vegetative Spiked Raw Milk Data. Three temperatures and duration levels were evaluated 

to approximate polynomial (first-order model) for two dependent variables, explaining 

their effect on population dynamics of B. licheniformis in terms of multiplication and 

outgrowth. Table 2.1 represents the experimental design consisting response variable (y), 

total number of spore-formers and spores (log cfu/mL) enumerated for each set of 

experiment. Based on Eq. (1), the data was analyzed, and the first order equation is given 

as follows: 

Y^ = 4.08786 + 0.11874 (𝑥1) + 0.19629 (𝑥2)                      (3) 

According to Eq. (3), all the factors have positive effects and were significant. 

Interestingly, we observed increase in spore-formers counts with increase in temperature 

and duration of storage. We observed that a unit increase in temperature and duration 

lead to significant increase in vegetative cell counts. Therefore, temperature and duration 

are significant independent variables, which can affect the growth rate, leading to an 

increase in vegetative cell counts (dependent variable). The influence of storage 

temperature was more pronounced and significant than that of duration of storage. 

Interestingly, the spore numbers did not change throughout the storage conditions while 

the increase in spore-formers numbers were observed. This inferred that B. licheniformis 

possess the ability to multiply and grow at lower temperatures and their growth is 

influenced with the unit increase in temperature and duration of holding whereas, no 

sporulation was observed at lower temperature of storage after 72 h for B. licheniformis 

ATCC 6634.  
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  In summary, the first order model (preliminary) indicated and suggested to 

rearrange all the variables to search direction of the optimum region. Therefore, based on 

the above-obtained model equation, Eq. (3), to analyze the optimum domain with more 

accuracy, the steepest ascent experiment (data shown in table 2.2) was conducted and the 

relocation of a central point was done as follows: Temperature 6˚ C and Duration 36 h. 

Further new levels of temperature and duration combinations (additional points), were 

chosen as factors (Table 2.2, N5 to N13), after analyzing steepest ascent experiment. 

enumerating spore-formers to optimize the independent variables. The second-degree 

equation was obtained from the data shown in table 2. Three, second-degree equations 

were generated from vegetative spiked raw milk data. Equation 4 explains the effect of 

temperature and duration of holding vegetative spiked (log 4.0 cfu/mL) raw milk by 

adjusting the effect of pH and DO on a response is as follows: 

Log Veg. cells = 4.22749 + 0.09379(x1) + 0.01006(x2) + 0.00177(x12) + 0.04365(x11) – 

0.00017558(x22)           (4) 

Regression equation 3 explains the response of log-cycle increase of vegetative 

cells of B. licheniformis 6634 influenced by holding temperature and duration in 

vegetative spiked raw milk.  

2.3.6.2 Log Shift in Spores to Spore-formers, Spore Spiking Evaluation. The response 

variable (log-cycle reduction of spores) with the mean value (n=9) were obtained using 

data as shown in table 2.3. After applying quadratic centered regression model, second-

order polynomial equations were generated explaining the effect of independent variables 

with and without adjusting for the effect of pH and DO on the response variable. 
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Log spores = 0.51015 – 0.02722(x1) + 0.00291(x2) – 0.00145(x12) – 0.01262(x11) – 

0.00001(x22)         (5) 

Regression equation 5 explain the response of log-cycle change in spore 

population of B. licheniformis 6634 influenced by holding temperature and duration in 

vegetative spiked raw milk. According to equation 5, we observed that a unit increase in 

temperature resulted into decrease in spore population by 0.03 log10 spores/mL whereas, 

the holding duration positively influenced the increase in spore population and thus lead 

to increase in spores by 0.003 log10 spores/mL. We observed a very low probability value 

(P < 0.0001) for the above equations, demonstrating that the model is highly significant. 

Higher computed F-values indicated that the treatment differences are highly significant, 

therefore, the models were found to be adequate. The above equations (3-5) helped us 

develop contour plots across the holding temperature and duration of holding (Fig. 2.2 A 

& B). The current trends of holding raw milk for an extended duration at refrigeration 

temperatures also enhances the significance of sporeformers such as B. licheniformis for 

food and dairy industry. Regression equation 5 explains the response of log-cycle 

increase of B. licheniformis influenced by temperature and duration of holding vegetative 

spiked raw milk, including the effect of adjusted pH. Part of this work (Awasti et. al, 

2017) was also presented in American Dairy Science Association, 2017 in Pittsburg, PA  

2.3.7 Analysis of Variance (ANOVA) 

The analysis of variance (ANOVA) was analyzed for above quadratic models by 

using R programming and we observed the R values were close to 1 indicating a high 

degree of correlation between predicted and observed values. We observed a very low 
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probability value (P < 0.0001) for above equations, demonstrating that the model is 

highly significant. Higher computed F-values indicated that the treatment differences are 

highly significant, therefore the above models were found to be adequate.   

2.3.8 Optimum Time Temperature Conditions Generated using Contour Plots 

Regression equations were applied to generate contour plots to estimate the 

population shift during raw milk holding. To identify the optimum levels of each 

independent variable with least or no change in log numbers of vegetative cells (spore-

formers) and spores, contour plots were used to determine time-temperature 

combinations where 1.0 log increase in population can be observed. According to a 

previous study (Buehner et al., 2014), raw milk collected from Midwest dairy farms, 

usually consisted of 2.61 to 2.76 log cfu/mL sporeformers and 1.08 to 2.06 log spores/mL 

thus, our study includes comparative numbers for initial spiking levels. It is important to 

note that the product defects are detected when the concentration of microorganisms 

reaches up to the level of approx. log 7.0 cfu per mL of milk (Shehata et al., 1971, 

Janštová et al., 2006). As the maximum spiking levels of vegetative cells and spores of B. 

licheniformis is approx. 4.0 and 2.0 logs, therefore even 1.0 log increase in population 

was identified as a cutoff point to decide the optimum parameters.  

2.3.9 Comparing the Experimental Values with Model Generated Predicted Values 

Contour plots in figure 2.2 generated from equation 4 explain the increase in 

response variable as a function of temperature and duration by using the mean values. 

According to the experimental values approx. 1.0 log increase in the vegetative cell 

population after holding milk at 10˚ C increased the vegetative population within 50 h. 
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As per predicted values, if raw milk is predominated by a low sporulating strain then, 

milk could be held at 8˚ C or below up to 72 h or 9˚ C up to 48 h without 1.0 log increase 

in sporeformer population. Although holding milk at 10˚ and 12˚ C will increase the low 

sporulating strain population within 42 and 35 h respectively. The experimental values 

were similar to that of regression model predicted values that were generated using 

second-degree polynomial regression equation. Since the actual experiments were done 

only for certain time-temperature combinations, but the analysis of variance (ANOVA) 

analyzed for above quadratic models by using R programming showed that the R values 

(coefficient of determination) were close to 1, indicating a high degree of correlation 

between predicted and observed values. Therefore, this increases our confidence in 

applying contour plot generated predicted values, as the fitted values were comparable 

with actual values. This increases the scope to create predicted values for vegetative cell 

population growth at a wide time-temperature range, which can be easily generated using 

regression equations. According to the model predicted values, if the raw milk holding 

temperatures were 10˚ or 12˚ C then 1.0 log increase can be seen at 70 and 60 h of 

holding. From vegetative spiking results, we observed that the spore populations did not 

change much due to low sporulation ability of BL ATCC 6634 in raw milk. Thus, the 

current study observed that the change in population dynamics is influenced by strain 

predominance, multiplication and germination behavior, and variations in temperature 

and duration during raw milk holding. Overall, based on strain predominance, sporulation 

and germination behavior, if raw milk is predominated by a low sporulating strain then 

the contour plots suggested using time-temperature combination of 8˚ C or below for 72 

h. In view of this, holding milk at time-temperature of 8˚ C for not more than 72 h will 
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not allow the increase in population by 1.0 log cfu/mL, and will keep the population 

towards vegetative side, which can be easily inactivated using thermal treatments such 

pasteurization. The contour plots being proposed in this study could readily be used even 

over an extended time-temperature range of storage to predict the behavior of 

sporeformers during raw milk holding in bulk silos at production farms and dairy plants. 

2.4 CONCLUSIONS 

After statistical analysis, no significant increase in spores was observed for 

vegetative spiked raw milk samples held at 72 h of incubation for all refrigeration 

temperatures. Whereas, we have observed a significant increase in vegetative (spore-

formers) counts after 72 h of incubation at all the temperatures. Similarly, an increase in 

vegetative cells was observed when spores were spiked due to potential germination of 

spores and multiplication of vegetative cells. Thus, we can infer that, when raw milk is 

spiked with a standardized dose of B. licheniformis, there is a significant shift of spores to 

vegetative cells at low temperature of storage for 72 h due to potential germination of 

spores and multiplication of spore-formers under specified conditions. Bacillus 

licheniformis thus may possess the ability to multiply and germinate in raw milk samples 

at low temperatures, whereas, the sporulation behavior was not observed under the 

specified conditions. Therefore, the above generated contour plots can help the industry 

understand the use of optimum time-temperature combinations, resulting in least or no 

population shift of spore-formers.  
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Table 2.1. Experimental design with real and coded values and log cfu/mL of spore-formers and spores present in spiked raw milk as a 

function of temperature and time 

Experiment* Temperature 

(°C) 

Time (h) Spore-formers 

(log cfu/mL)1,2 

Spores 

(log cfu/mL) 1,2 

Covariates† 

pH DO 

N1 4.0(-1) 0.0(-1) 3.80 ± 0.05aC 0.30 ± 0.11aA 6.7 ± 0.02 20.4 ± 0.04 

N2 4.0(-1) 72.0(+1) 4.09 ± 0.12aB 0.70 ± 0.08aA 6.9 ± 0.01 19.0 ± 0.12 

N3 8.0(+1) 0.0(-1) 3.92 ± 0.19aC 0.42 ± 0.15aA 6.7 ± 0.01 20.3 ± 0.19 

N4 8.0(+1) 72.0(+1) 4.42 ± 0.12bA 0.48 ± 0.18aA 7.1 ± 0.01 18.8 ± 0.12 

N5 6.0(0) 36.0(0) 4.09 ± 0.10aB 0.67 ± 0.14aA 6.9 ± 0.01 18.6 ± 0.09 

N6 6.0(0) 36.0(0) 4.07 ± 0.05aB 0.56 ± 0.19aA 6.9 ± 0.01 19.0 ± 0.04 

N7 6.0(0) 36.0(0) 4.15 ± 0.17aB 0.73 ± 0.15aA 6.9 ± 0.02 18.9 ± 0.16 

N8 6.0(0) 36.0(0) 4.15 ± 0.05aB 0.60 ± 0.11aA 6.9 ± 0.02 18.7 ± 0.07 

N9 6.0(0) 36.0(0) 4.21 ± 0.05aB 0.67 ± 0.07aA 6.9 ± 0.02 18.9 ± 0.05 

* Nine sets of experiments are conducted, and three trials are performed in triplicates (N = 3 × 3) 

† Covariates (pH and dissolved oxygen) analyzed for all design points 

Coded values are presented between brackets; values in table represents means ± standard errors of each trial performed in triplicates 

1 Lowercase superscripts represents significance level checked for same temperatures 

2 Uppercase superscripts represent significance level checked for durations for all temperatures 
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Table 2.2: Experimental design after analyzing steepest ascent model and additional points with log cfu/mL of spore-formers present 

in spiked raw milk as a function of temperature and time 

Values in table represents means ± standard errors of each trial performed in triplicates. 

Experiment Independent variables Dependent Variables Covariates 

 Temperature (°C) Time (h) Vegetative (log cfu/mL) pH DO (%) 

N1 6 36 4.13 ± 0.10 6.9 ± 0.02 19.1 ± 0.09 

N2 8 42.6 4.29 ± 0.10 6.9 ± 0.02 18.2 ± 0.10 

N3 10 49.2 4.99 ± 0.10 6.7 ± 0.02 17.9 ± 0.21 

N4 12 55.8 7.05 ± 0.27 6.5 ± 0.02 17.7 ± 0.27 

N5 4.6 45 3.87 ± 0.01 6.83 ± 0.02 19.03 ± 0.17 

N6 5 30 3.83 ± 0.02 6.8 ± 0.00 19.7 ± 0.11 

N7 5 60 4.24 ± 0.01 6.76 ± 0.00 19.06 ± 0.08 

N8 7 30 4.22 ± 0.46 6.83 ± 0.00 19.13 ± 0.08 

N9 7 60 4.93 ± 0.00 6.78 ± 0.00 18.63 ± 0.14 

N10 7.4 45 4.77 ± 0.01 6.80 ± 0.00 19.07 ± 0.03 

N11 6 23.8 4.38 ± 0.07 6.89 ± 0.00 18.9 ± 0.15 

N12 6 66.2 4.78 ± 0.01 6.81 ±0.00 19.06 ± 0.18 

N13 6 45 4.55 ± 0.01 6.83 ± 0.00 19.26 ± 0.03 
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Table 2.3: Influence of temperature and duration of holding on germination behavior of spores (log cfu/mL) in raw milk.  

Duration 

4˚ C 6˚ C 8˚ C 10˚ C 12˚ C 

Spores Veg Spores Veg Spores Veg Spores Veg Spores Veg 

0 h 

2.38 ± 

0.01Aa 

3.15 ± 

0.00dA 

2.39 ± 

0.01aA 

3.12 ± 

0.02cA 

2.45 ± 

0.01Aa 

3.09 ± 

0.02cA 

2.48 ± 

0.03aA 

3.17 ± 

0.01dA 

2.45 ± 

0.02aA 

3.13 ± 

0.02eA 

24 h 

2.36 ± 

0.01aC 

3.17 ± 

0.00cBC 

2.38 ± 

0.01aC 

3.14 ± 

0.02bcC 

2.43 ± 

0.01aB 

3.12 ± 

0.02cC 

2.49 ± 

0.02aA 

3.22 ± 

0.01dAB 

2.41 ± 

0.01abBC 

3.27 ± 

0.01dA 

36 h 

2.35 ± 

0.01aC 

3.18 ± 

0.00bcB 

2.37 ± 

0.01aBC 

3.17 ± 

0.02abcB 

2.43 ± 

0.01aA 

3.19 ± 

0.03bcB 

2.41 ± 

0.01aAB 

3.30 ± 

0.00cA 

2.37 ± 

0.01bBC 

3.34 ± 

0.02cA 

48 h 

2.33 ± 

0.02aB 

3.20 ± 

0.01bB 

2.35 ± 

0.02aB 

3.22 ± 

0.03abB 

2.42 ± 

0.01aA 

3.25 ± 

0.06bB 

2.22 ± 

0.02bC 

3.60 ± 

0.04bA 

2.08 ± 

0.01cD 

3.66 ± 

0.03bA 

72 h 

2.32 ± 

0.02aA 

3.23 ± 

0.01aD 

2.34 ± 

0.01aA 

3.24 ± 

0.02aD 

2.36 ± 

0.01bA 

3.40 ± 

0.03aC 

2.00 ± 

0.02cB 

3.87 ± 

0.01aB 

1.73 ± 

0.02dC 

3.93 ± 

0.00aA 

 

* Nine sets of experiments are conducted, and three trials are performed in triplicates (N = 3 × 3) 

Coded values are presented between brackets; values in table represents means ± standard errors of each trial performed in triplicates 

Lowercase superscripts represents significance level checked for same temperatures and different duration (along column, separately 

done for spores and vegetative cells)  

Uppercase superscripts represent significance level checked for same durations for all temperatures (along row, separately done for 

spores and vegetative cells) 
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Figure 2.1: Growth curve of B. licheniformis ATCC 6634 

 

Values presented are Mean ±SE: □ represents growth curve of B. licheniformis ATCC 

6634 at 32˚ C 
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Figure 2.2: Contour plots showing B. licheniformis ATCC 6634 (A) vegetative cell and 

(B) spore population (log10 cfu/mL) in response to varying degrees of temperature and 

duration of holding vegetative cells (4.0 log cfu/mL) spiked raw milk  
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Chapter 3 

Influence on Population Dynamics of High Sporulating Strain During Raw Milk Holding 

at Different Refrigeration Temperatures – A Case Study  

ABSTRACT 

As Bacillus species such as B. licheniformis, is widely reported spore-former in 

raw milk and other milk products. The organism, being most predominant in Midwest 

region of United States, is considered a challenge during milk processing due to spore 

forming ability of few strains. In the first phase of our study (Chapter 2), we noticed that 

the strain BL ATCC 6634 was a slow spore producing strain Therefore, it would be of 

interest to understand the growth dynamics of rapid sporulating strain during raw milk 

storage at low temperature in farm and plant silos. The current study was conducted to 

observe the changes in population of vegetative cells and spores of B. licheniformis 

ATCC 14580, spiked in raw milk samples at about 4.0 and 2.0 log cfu/mL respectively. 

The milk samples spiked with vegetative cells and spores were separately incubated at 4, 

6, 8, 10 and 12˚ C for up to 72 h and enumeration was performed after every 24 h 

interval. Standard protocols were followed for microbial analysis. Spore enumeration was 

done by heating the spiked milk samples at 80˚ C for 12 min prior to plating on Brain 

Heart Infusion agar. Three trials, in replicates of three were conducted, and the data were 

analyzed using two sample t test, analysis of variance, and first order regression model. 

In vegetative cell spiking study of B. licheniformis ATCC 14580, 1.0 log shift was 

observed only after 80 h at 8˚ C, with increased sporulation potential at lower 

temperature of storage and vegetative spiking study showed spore formation at different 

storage temperatures. Evidence of some parallel germination was observed for this strain 
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at 8˚ C or higher when raw milk samples were spiked with spores. The experimental 

values obtained for sporeformers and spore counts were validated with contour plots 

generated values. Overall, for raw milk samples predominated by a readily sporulating 

strain, raw milk could be held at 8˚C for 80 h. Sporulation behavior, germination and 

multiplication ability, and temperature and duration of holding raw milk influenced the 

population dynamics of Bacillus species. Keeping holding temperature below 6˚ C for 

less than 48 h will keep the cell population cell changes below 1.0 log. In addition, under 

these storage conditions, the population would remain as vegetative cells that are easily 

inactivated by pasteurization. The contour plots, so generated, would help predict the 

population shifts, and define optimum holding conditions for raw milk before further 

processing. 

3.1 INTRODUCTION 

Bacillus species are major contaminants in food and dairy industry and have been 

responsible for milk and dairy products spoilage (Seale et al., 2015). Various quality and 

shelf stability issues caused by Bacillus species are bitty cream, sweet curdling, off 

flavor, flat sour, and ropiness (Berkeley, 2002, Heyndrickx and Scheldeman, 2008, 

Burgess et al., 2010). Previous studies reported the presence of thermoduric 

psychrotrophs in raw milk and determined that a significant proportion of shelf life 

problems in milk and dairy products are linked to Bacillus species (Francis et al., 1998, 

Sharma and Anand, 2002). According to the Grade ‘A’ Pasteurized Milk Ordinance 

(PMO; FDA, 2017), after completion of the first milking cycle, raw milk is recommended 

to be cooled to 10˚ C (50˚ F) or less in four hours or less, and to 7˚ C (45˚ F) or less, 
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within two hours after the completion of milking. After completion of each milking, 

many a time, due to economic and organizational reasons, raw milk is stored at low 

temperatures in the farm for long hours, and several times the supplied milk is not 

processed immediately.  Since after milking, raw milk is cooled to 8˚ C or less, however, 

abused temperature (>8˚ C or more) conditions during milking intervals and 

transportation can significantly impact the microbiological attributes of raw milk leading 

to the outgrowth of microbial population (Lafarge et al., 2004, Salustiano et al., 2009). 

Holding raw milk for up to 96 h at temperatures higher than 6˚C (O’Connell et al., 2016) 

can impair its chemical, physical as well as microbiological quality and thus, reduces its 

suitability for processing various dairy products (Barbano et al., 2006, Leitner et al., 

2008). After Pseudomonas, Bacillus is the second predominant species frequently 

isolated from refrigerated raw milk (Sørhaug and Stepaniak, 1997, Vithanage et al., 

2016). The major bacilli that contaminate and spoil milk and dairy products are B. cereus, 

B. subtilis, B. licheniformis, B. stearothermophilus, B. coagulans (Robinson, 2002), B. 

sporothermodurans (Pettersson et al., 1996, De Jonghe et al., 2008), Brevibacillus 

bortelensis, Paenibacillus (Scheldeman et al., 2006, Huck et al., 2007), and 

Anoxybacillus flavithermus (Scott et al., 2007). Among these species, B. licheniformis has 

frequently been encountered in milk powders, and pasteurized, as well as, UHT milk 

products (Barbano et al., 2006, Leitner et al., 2008, Buehner et al., 2015, Miller et al., 

2015) it was also identified as the most predominant species in Midwest dairy farms 

(Buehner et al., 2014). These psychrotolerant spore-forming Bacillus species are regarded 

as a major challenge, as many of these organisms can withstand pasteurization and can 

germinate and outgrow in final product (Ivy et al., 2012, Masiello et al., 2014). Based on 
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the strain specificity, these Bacillus species can multiply, germinate or may form spores 

under stressed conditions such as temperatures below and above their optimum range, 

acid shock, and other environmental conditions (Griffiths et al., 1987, Griffiths et al., 

1988, Francis et al., 1998, Lafarge et al., 2004, De Jonghe et al., 2011). When bacilli cells 

are stressed, they respond to stress by converting themselves into spores, which help 

them resist those stresses and remain viable for a longer period of duration (Setlow et al., 

2001, Henriques and Moran, 2007). If adequate hygienic conditions are not practiced at 

farm level, then as high as 102 to 106 cfu/mL of spores may be encountered in raw milk 

(Te Giffel et al., 2002). These heat-stable Bacillus spores could survive milk processing 

steps, and at optimum conditions they germinate and cause spoilage (Becker et al., 1994, 

Rukure and Bester, 2001, Chen et al., 2004), due to the production of enzymes (proteases 

and lipases) and acid (Chen et al., 2004). Bacterial build-up during storage of raw milk 

may lead to maintenance of ‘persistence cycles' of thermodurics that may lead to 

microbiological quality issues such as ‘bacterial or spore-spikes' in the final products 

(Hayes et al., 2001). Numerous studies have evidenced the growth of vegetative cells at 

refrigeration temperatures during milk processing (Kent et al., 2016) but none of the 

studies explored the sporulation behavior in raw milk, stored at low temperatures. 

Regardless of all the above aspects, the influence of length of storage and temperature on 

germination and sporulation behavior of different sporeformers, and their ability to form 

spores during raw milk holding at the farm and plant silos is not understood clearly. The 

variable sporulating ability of this genus has been indicated in Bergey’s Manual of 

Systematic Bacteriology (Logan et al., 2009). According to few studies under unfavorable 

or stressed conditions a few strains of Bacillus can sporulate to produce large numbers of 



73 
 

spores and thus can withstand high thermal treatment such as pasteurization to serve as a 

potential contaminant. Taking an example of B. licheniformis, we hypothesized that 

different strain of the organism could behave differently in terms of germination, 

multiplication, and sporulation in raw milk held at refrigeration temperatures for longer 

durations. The problem of bacterial outgrowth could be addressed early on during milk 

processing by optimizing raw milk holding conditions. Therefore, understanding the 

influence of time-temperature combinations that favor minimum multiplication or 

sporulation of sporeformers by using process optimization strategies, could help control 

bacterial load in raw milk. In the present study, a shift or increase in population was 

considered when the bacterial population increased by approx. 1.0 log cfu/mL from initial 

spiked levels. Regression equations were generated to develop contour plots to optimize 

raw milk holding conditions to keep the population towards the vegetative side with least 

multiplication and sporulation.   

3.2 MATERIALS AND METHODS 

3.2.1 Sourcing of Bacterial Strains and Growth Conditions 

This study included a Bacillus licheniformis ATCC 14580 (BL ATCC 14580) 

cultures purchased from the American Type Culture Collection of Microorganisms 

(ATCC). Brain Heart Infusion (BHI; BD DifcoTM) media was used to grow and incubate 

culture at 37˚ C. The culture was preserved for future use by using protocol suggested by 

(Perry, 1998). The pellets of actively grown cultures were prepared at mid-exponential 

phase by centrifuging at 4500 × g for 30 min. Phosphate buffer saline (PBS), pH 7.4, was 

used to suspend pellets, and the cultures were preserved in 1.8 mL cryogenic vials 
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(CRYOBANKTM – Copan Diagnostics Inc., CA, USA). For further use, the cryovials 

were stored at -80˚ C in a deep freezer (NuAire ultralow freezer, NuAire Inc. MN, USA).  

3.2.2 Developing Growth Curves, Dose Standardization, and Formation of Spores 

Growth curve of Bacillus strain was developed using standard protocols (Fig. 

3.1). For dose standardization, activated cultures of B. licheniformis was centrifuged after 

the respective time intervals and was separately suspended in 1.0 mL of phosphate 

buffered saline (PBS). Different concentrations of the culture were obtained by adjusting 

the OD (approx. 0.3) at 600 nm (Spectronic 200, Fisher Scientific, Passaic, NJ, USA) and 

pour plating was done to validate the viable counts. Plates were incubated at 37˚ C for 

24–48 h, and plates with 25–250 colonies were enumerated for calculating total counts 

(Wehr and Frank, 2004). Endospores were prepared by using a method as recommended 

by Khanal et al. (2014). Approximately 1.0 mL of actively growing broth culture of BL 

ATCC 14580 was spread-plated on the BHI plates. The plates were incubated at the 

appropriate incubation temperatures for up to 15 d. To monitor the level of sporulation, 

spore staining was performed occasionally throughout the incubation period and after 

achieving 90% of sporulation, spores were harvested using a similar technique described 

by Wang et al. (2009).  

3.2.3 Sample Collection, and Challenge Studies 

Challenge studies were conducted using aseptically collected raw milk from 

South Dakota State University (SDSU) dairy farm. The raw milk samples were 

transported in a cooler and stored at 4˚ ± 0.5˚ C, until used. Raw milk samples (500 mL 
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each) were spiked separately with vegetative cells (approx. 4.0 log cfu/mL) and spores 

(approx. 2.0 log cfu/mL) of B. licheniformis ATCC 14580. Spiked raw milk samples 

were stored in a refrigerated incubator (FSC-97-990E, Fisher Scientific, Passaic, NJ, 

USA) at the respective temperatures and durations for two strains (Fig. 2 and 3). 

Vegetative cells and spores were enumerated using BHI agar as described below.  

3.2.4 Overall Experimental Design of Challenge Studies  

Two factors were studied to understand the influence of sporulating behavior on 

population dynamics of B. licheniformis namely: temperature and duration of holding. 

Additional parameters such as pH (Fischer AE150, Fischer Scientific, Passaic, NJ, USA) 

and dissolved oxygen (Dissolved Oxygen Meter Pen, Fischer Scientific, Passaic, NJ, 

USA) were used as covariates, and were recorded for all time-temperature combinations 

during our study. For the population dynamics, the challenge studies were conducted by 

spiking raw milk samples with vegetative cells of BL ATCC 14580, and the data thus 

obtained were supported by conducting spore spiking experiments of both the strains.  

3.2.5 Vegetative Cell Spiking for Studying Population Dynamics.  

Raw milk samples (500 mL each) were spiked with approx. 4.0 log cfu/mL of 

vegetative cells of BL ATCC 14580 strains. Spiked raw milk samples were incubated at 

4, 6, 8, 10 and 12˚ C for 72 h durations, and samples were collected at 24 h intervals. The 

samples were analyzed for vegetative and corresponding spore population after holding 

them at specific temperatures. Sporulation was detected by enumerating after heating raw 

milk to 80˚ C for 12 minutes, followed by cooling (Kent et al., 2016). Appropriately, 
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diluted samples were pour plated using Brain heart infusion (BHI) agar. The vegetative 

cell spiking data were regressed using quadratic regression model to understand the 

influence temperature and duration of storage and regression equations so obtained, were 

applied to develop contour plots.  

3.2.6 Spore Spiking for Studying Population Dynamics.  

In a parallel study, spores of BL ATCC 14580 were spiked in raw milk samples at 

spiking levels of approx. 2.0 log cfu/mL. The spore spiked samples were incubated at 4, 

6, 8, 10 and 12˚ C and standard enumeration protocols were followed, as described 

above, and microbial analysis was carried out at 0-72 h duration, at 24 h intervals.  

3.2.7 Regression Analysis  

Our study included multiple linear regression analysis to model and analyze 

sporeformers and spore growth in spiked raw milk samples, as influenced by sporulation 

potential of strains, and temperature and duration of holding. We assumed that 

multiplication and outgrowth of sporeformers or spores are influenced by the tendency to 

form spores, and changes in temperature (x1) and duration (x2) of holding. 

First, the following first-degree model was fitted: 

y = β0 + β1x1 + β2x2 + ε(1) 

where x1 is temperature, x2 is duration and y is the response (spore-former or 

spore). The variables x1 and x2 are independent variables, where the response y depends 

on them and experimental error term is denoted as ε. The adequacy of the first-order 
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model was assessed using residual analysis. Then the second-order model was fitted to 

account for curvatures. The second-order model with an interaction term used is given 

by:  

y = β0 + β1x1 + β2x2 + β11x11 + β22x22 + β12x12  + ε (2) 

where, x11 and x22 are quadratic terms, namely x11= x1 + x2, x22= x2 + x2 and 

x12 is an interaction between temperature and duration x12= x1 + x2. The independent 

variables were mean centered to alleviate the multicollinearity problem. 

Additional statistical analysis was performed using SAS 9.3 software (SAS 

Institute Inc., Cary, NC) to see any significant difference between initial and final 

vegetative cells or spore counts of spiked raw milk. The dependent variable (measured 

response) was the log10 of colony forming unit per milliliter of B. licheniformis vegetative 

cells and spores for specific time-temperature combinations. All the experiments were done 

in triplicates with three replicates. The significance level of the model was analyzed, and a 

lack of fit test was performed. Contour plots were generated from regression coefficients 

using R programming (Studio, 2012) and predicted response values from the fitted 

regression were analyzed and compared with that of experimental values. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Growth Curves of Bacillus Strains 

The growth curves of BL ATCC 14580 IS illustrated in Figure 3.1. The growth 

constant (k) and estimated mean generation time (Td) were 1.379/min and 30.1 min. 

Therefore, in terms of mean generation time our results agree with previous reports that 
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estimated the mean generation time of Bacillus species of 28.7 and 30 mins at 35˚ and 

30˚ C (Powell, 1956, Leighton and Doi, 1971). This growth curve was helpful in 

identifying the mid-exponential phase for two individual strains. The activated culture 

was spiked in raw milk only after mid-exponential phase was reached, which was at 

approx. 9 h for BL ATCC 14580.  

3.3.2 Raw Milk Holding Conditions Influences the Population Dynamics 

To understand the population dynamics of B. licheniformis in spiked raw milk, 

stored under refrigeration conditions, this study analyzed growth pattern in terms of 

multiplication, germination, and sporulation at different time-temperature combinations 

ranging from temperatures, 4˚ to 12˚ C and duration 0 to 72 h. Regression model was also 

developed subsequently.  

3.3.2.1 Changes in Vegetative cell and Spore Population. Vegetative cell enumeration 

showed no significant difference between counts at 0 h for all storage temperatures, thus 

confirms that the initial spiking levels were comparable for all replicates. Although an 

average (± SE) vegetative cells of 4.11 ± 0.03 and 4.16 ± 0.02 log10 cfu/mL at 0 h for 

holding temperatures of 4˚ and 8˚ C showed a significant increase in microbial population 

after 72 h of holding with average (± SE) of 4.71 ± 0.03 and 4.99 ± 0.01 log10 cfu/mL 

(Table 3.1). For holding temperature of 12˚ C, more than 1.0 log increase in vegetative 

cells of S2 from 4.11± 0.04 to 5.25 ± 0.01 log10 cfu/mL was only evident after 72 h of 

holding (data not shown). A corresponding increase of spore average (± SE) was 

observed at 4˚ and 8˚ C, which were 1.39 ± 0.03 and 1.55 ± 0.03 log10 spore/mL at 0 h, 

whereas, 2.10 ± 0.00 and 1.88 ± 0.02 log10 spore/mL after 72 h of holding (Table 3.1). 
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Thus, current results indicate a higher sporulation potential of BL ATCC 14580 at lower 

storage temperatures. Although, holding spiked raw milk for 72 h at 12˚ C resulted into 

the decrease in spore population from 1.54 ± 0.03 to 1.25 ± 0.03 log10 spore/mL, 

demonstrating expeditious germination of spores at higher storage temperatures into 

vegetative form. From the above results, it is interpreted that BL ATCC 14580 strain has 

the potential to sporulated, as well as, germinate at higher refrigeration temperatures. In 

terms of microbial outgrowth, our results agreed with Vithanage et al. (2016) that 

reported a significant increase of bacterial counts in milk after 2-3 days of holding at ≥ 6° 

C or 4 days at 4˚ C. Similarly, a previous study (Santos et al., 2003) reported increased 

multiplication behavior of bacterial counts in stored pasteurized milk. They compared, 

two storage temperatures (0.5 and 6˚ C) and observed lower bacterial counts when milk 

was stored at a temperature of < 6˚ C.  The multiplication and outgrowth of Bacillus 

vegetative population in milk during refrigeration storage is consistent with previous 

studies (Datta and Deeth, 2003, Lafarge et al., 2004, Barbano et al., 2006, Leitner et al., 

2008). For raw milk collected from farm bulk milk silos and dairy tanks, Leitner et al. 

(2008) reported the significant influence of storage duration on bacterial counts after 48 h 

of storage. The total bacterial counts and psychrotrophs after 48 h of raw milk holding 

ranged from 4 × 103 to 7 × 106 cfu/mL whereas, in current study increased bacterial 

counts to 5.25 ± 0.01 log10 cfu/mL was observed at 55.8 h of raw milk holding.  

The main aim of spore spiking study was to understand and support the growth 

trends of Bacillus strains as obtained in the vegetative cell spiking study discussed above. 

The growth pattern of vegetative and spore population after spiking raw milk samples 

individually with BL ATCC 14580 spores are shown in Table 3.2. Spore enumeration 
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showed no significant difference between counts at 0 h for all storage temperatures, thus 

our results confirmed that the initial spiking levels were significantly similar for all the 

replicates. In present study, spore spiking of BL ATCC 14580 with approx. 2.0 log 

spores/mL in raw milk, showed a shift in spores to the vegetative population for all 

storage temperatures with significant decrease in spore population was observed with 

some germination of spores into vegetative cells. Our results represent, decrease in 

average (± SE) (Table 3.2) spore population from 2.32 ± 0.02 to 1.93 ± 0.01 log10 

spores/mL at 4˚ C after 0 and 72 h of spiking. Whereas, incubating raw milk samples 

spiked at 8˚ C resulted into decrease in spore population from 2.39 ± 0.02 to 1.52 ± 0.02 

log10 spores/mL. With decrease in spore population, a corresponding increase in 

vegetative population was observed as shown in Table 3.2. The corresponding significant 

increase in average (± SE) vegetative population at 4˚ C were 3.40 ± 0.01 to 3.93 ± 0.06 

log10 cfu/mL after 0 and 72 h of spiking. Similarly, incubating raw milk samples spiked 

separately with spores, resulted into significant increase in vegetative cells from average 

(± SE) 3.37 ± 0.02 to 4.04 ± 0.07 log10 cfu/mL after 0 and 72 h of incubation at 8˚ C. 

Incubating spore spiked raw milk samples at 12˚ C showed a significant decrease in spore 

numbers from 2.31 ± 0.04 to 1.67 ± 0.01 log10 spore/mL with corresponding significant 

increase in vegetative cells from 3.36 ± 0.03 to 4.20 ± 0.06 log10 cfu/mL after 0 and 72 h 

of spiking. Thus, current results confirmed the tendency of spores to simultaneously 

germinate and add to the overall vegetative cell population at 8˚ C and above. 

Germination potential of these Bacillus spores in raw milk is in agreement with a 

previous study (Mikolajcik and Koka, 1968). In a recent study Buehler et al., (2018) 

observed a maximum growth rate of Bacillus species of approx. 0.5 to 1.0 log cfu/mL per 
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day and 0.5 to 1.5 log cfu/mL per day at 4˚ and 6˚ C of holding. Overall, in the present 

study, we have observed that during 8˚ and 12˚ C incubation of spore spiked raw milk, 

more extensive germination of spores to vegetative cells occurred, when compared to 4˚ 

C of storage. By applying two sample t-test and multiple linear regression models, we 

observed the significant influence of independent variables (temperature and duration) on 

the dependent variable (Log10 vegetative cell and spore) after 72 h of incubation. 

3.3.3 Influence of Covariates (pH and Dissolved Oxygen) 

We did not observe any significant changes in pH and dissolved oxygen during 

storage of spiked raw milk samples at low temperatures for 72 h for all spiking 

experiments. Thus, our results indicate that pH and dissolved oxygen may not be factors 

influencing the population changes during raw milk holding under the conditions of 

storage used in this study. 

3.3.4 Application of Regression Equations and Contour Plots in Depicting the Population 

Changes during Raw Milk Holding 

Based on the requirements of experimental design, two mathematical models 

(first and second-degree model) were fitted to the time-temperature combination data of 

individual spore forming strains of B. licheniformis in raw milk. After applying 

regression model on vegetative spiked data of both strains, we observed that a unit 

increase in temperature and duration lead to increase in vegetative cell counts (Equation 

3). Therefore, temperature and duration are significant independent variables, which can 

influence the Bacillus growth in raw milk, leading to an increase in vegetative cell counts 
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(dependent variable). From coefficient values in equation 3, the influence of storage 

temperature was more pronounced and significant than that of the duration of storage.  

Log Veg. cells = 4.52500 + 0.04109(x1) + 0.01250(x2) + 0.00103(x12) + 

0.00076918(x11) + 0.00001103(x22) (3) 

Regression equation 3 explains the response of log-cycle increase of vegetative 

cells of B. licheniformis 14580 influenced by holding temperature and duration in 

vegetative spiked raw milk.  

Log S2 spores = 1.63681 – 0.04945(x1) + 0.00335(x2) – 0.00205(x12) – 0.00533(x11) – 

0.00001582(x22) (4) 

Regression equation 4 explain the response of log-cycle change in spore 

population of B. licheniformis 14580 (S2) influenced by holding temperature and 

duration in vegetative spiked raw milk. According to equation 4 we observed that a unit 

increase in temperature resulted into decrease in spore population by 0.05 log10 

spores/mL whereas, the holding duration positively influenced the increase in spore 

population and thus lead to increase in spores by 0.003 log10 spores/mL. We observed a 

very low probability value (P < 0.0001) for above equations, demonstrating that the 

model is highly significant. Higher computed F-values indicated that the treatment 

differences are highly significant, therefore, the models were found to be adequate. The 

above equations (3 & 4) helped us develop contour plots across the holding temperature 

and duration of holding (Fig. 3.2 A & B). The current trends of holding raw milk for an 

extended duration at refrigeration temperatures also enhances the significance of 

sporeformers such as B. licheniformis for food and dairy industry.  
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Present study provides regression equations that can be applied at farm and dairy 

facilities to help predict the optimum conditions that will result into minimum increase in 

sporeformer population during raw milk holding. Before applying these equations, few 

assumptions considered were (1) the initial sporeformers population of approx. 4.0 logs 

and (2) strain variability; the predominance of either low or rapidly sporulating strain in 

raw milk.  

3.3.5 Optimum Time Temperature Conditions Generated using Contour Plots.  

Regression equations were applied to generate contour plots to estimate the 

population shift during raw milk holding. To identify the optimum levels of each 

independent variable with least or no change in log numbers of vegetative cells (spore-

formers) and spores, contour plots were used to determine time-temperature 

combinations where 1.0 log increase in population can be observed. According to a 

previous study (Buehner et al., 2014), raw milk collected from Midwest dairy farms, 

usually consisted of 2.61 to 2.76 log cfu/mL sporeformers and 1.08 to 2.06 log spores/mL 

thus, our study includes comparative numbers for initial spiking levels. It is important to 

note that the product defects are detected when the concentration of microorganisms 

reaches up to the level of approx. log 7.0 cfu per mL of milk (Shehata et al., 1971, 

Janštová et al., 2006). As the maximum spiking levels of vegetative cells and spores of B. 

licheniformis is approx. 4.0 and 2.0 logs, therefore even 1.0 log increase in population 

was identified as a cutoff point to decide the optimum parameters.  

3.3.5.1 Comparing the Experimental Values with Model Generated Predicted Values. 

Contour plots in figure 3.2A generated from equation 3 explain the increase in response 
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variable as a function of temperature and duration by using the mean values. According 

to the experimental values approx. 1.0 log increase in the vegetative cell population was 

observed in less than 56 h of holding at 12˚ C, whereas, the experimental values showed 

an increase in vegetative population by 1.0 log at 10˚ C only after 72 h of holding 

although, for lower temperatures of holding 8˚ C and below, a log increase was not 

evident up to 72 h. (Figure 3.2A). Experimental values for sporeformers were found in 

agreement with that of regression model predicted values. The experimental values were 

similar with that of regression model predicted values that were generated using second-

degree polynomial regression equation. Since the actual experiments were done only for 

certain time-temperature combinations, but the analysis of variance (ANOVA) analyzed 

for above quadratic models by using R programming showed that the R values 

(coefficient of determination) were close to 1, indicating a high degree of correlation 

between predicted and observed values. Therefore, this increases our confidence in 

applying contour plot generated predicted values, as the fitted values were comparable 

with of actual values. This increases scope to create predicted values for vegetative cell 

population growth at a wide time-temperature range, which can be easily generated using 

regression equations. According to the model predicted values, if raw milk is 

predominated by a readily spore producing strain then, raw milk could be held at 8˚ C or 

below for up to 72 h, although a corresponding increase in spore population was evident 

only at lower temperatures of holding such as 4˚ and 6˚ C. Whereas, if the raw milk 

holding temperatures were 10˚ or 12˚ C then 1.0 log increase can be seen at 70 and 60 h 

of holding. Whereas, from Table 3.1 it is evident that BL ATCC 14580 can readily 

produce spores during low temperatures of holding, thus a shift in vegetative cells to 
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spores can be seen if the raw milk population is dominated by high sporulating strain 

such as in the current study. From above results, it is interpreted that strain BL ATCC 

14580 have the potential to sporulate, as well as germinate, at higher refrigeration 

temperature.   

Thus, current study observed that the change in population dynamics is influenced 

by strain predominance, sporulation and germination behavior, and variations in 

temperature and duration during raw milk holding. Overall, based on strain 

predominance, sporulation and germination behavior, if raw milk is predominated by a 

rapidly sporulating strain then it could be held at 8˚ C or below for not more than 72 h. In 

view of this, if raw milk held at these conditions, holding milk at these temperatures will 

not allow the increase in population by 1.0 log cfu/mL, and will keep the population 

towards vegetative side, which can be easily inactivated using thermal treatments such 

pasteurization. In terms of strain variability, this strain was compared with that of BL 

ATCC 6634 in a study presented (Awasti et al., 2018) in American Dairy Science 

association (ADSA) held at Knoxville, TN. The contour plots being proposed in this 

study could readily be used even over an extended time-temperature range of storage to 

predict the behavior of sporeformers during raw milk holding in bulk silos at production 

farms and dairy plants. 

3.4 CONCLUSIONS 

Findings from the current study suggest that B. licheniformis ATCC 14580 can 

readily produce spores during refrigeration storage of skim raw milk. B. licheniformis 

ATCC 14580 can multiply, sporulate, and germinate in raw milk during refrigeration 
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storage, and thus may significantly influence the keeping quality of raw milk. Control of 

these spoilage-causing organisms, before processing stages itself, is essential to produce 

final products with lower spore and sporeformer counts and extended shelf life attributes. 

Our study came up with regression equations that can be applied to predict the behavior 

of high sporulating strain population for specific temperatures and durations of raw milk 

holding. In the case of presence of high sporulating strains, holding raw milk at time-

temperature of 8° C for no more than 72 h would ensure that the population does not 

change by 1.0 log cfu/mL. Such optimized milk holding conditions would prove useful 

for the dairy industry, and thus in future can be used as a strategy for shelf life 

determination of raw milk. Further studies need to be conducted to include more 

sporeformers and their strains to create more robust models. Although the current study is 

based on just one readily sporulating strain which provides an evidence on abilities of 

Bacillus strain to multiply, germinate or sporulate during raw milk holding. Based on this 

the further studies can be expanded to look at more sporeformers and their strains. For 

future studies, application of these regression models should be combined with product 

processing techniques such as filtration, evaporation and drying that could help target the 

overall decrease in common sporeformers and spores in the end products.  
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Table 3.1: Influence of temperature and duration of holding on germination and sporulation behavior of spiked sporeformers (log 

cfu/mL) of B. licheniformis ATCC 14580 in raw milk 

 

 4˚ C 6˚ C 8˚ C 10˚ C 12˚ C 

Duration Veg Spore Veg Spore  Veg Spore Veg Spore Veg Spore 

0 h 

4.11 ± 

0.03cA 

1.39 ± 

0.03cA  

4.11 ± 

0.02dA 

1.49 ± 

0.03cA 

4.16 ± 

0.02dA 

1.55 ± 

0.03cA 

4.11 ± 

0.02dA 

1.58 ± 

0.02aA 

4.11 ± 

0.04dA 

1.54 ± 

0.03aA 

24 h 

4.20 ± 

0.03cC 

1.52 ± 

0.01bA 

4.27 ± 

0.04cBC 

1.52 ± 

0.03cA 

4.34 ± 

0.01cB 

1.53 ± 

0.01cA  

4.31 ± 

0.01cB 

1.55 ± 

0.02abA 

4.44 ± 

0.01cA 

1.41 ± 

0.01bB  

48 h 

4.48 ± 

0.01bE 

2.04 ± 

0.01aA 

4.63 ± 

0.01bD 

1.87 ± 

0.01bB 

4.73 ± 

0.02bC 

1.77 ± 

0.03bC  

4.84 ± 

0.01bB 

1.47 ± 

0.02bcD  

5.09 ± 

0.01bA 

1.29 ± 

0.03cE 

72 h 

4.71 ± 

0.03aE 

2.10 ± 

0.00aA 

4.82 ± 

0.01aD 

1.98 ± 

0.03aB 

4.99 ± 

0.01aC 

1.88 ± 

0.02aB  

5.09 ± 

0.01aB 

1.39 ± 

0.05cC 

5.25 ± 

0.01aA 

1.25 ± 

0.03cD  

 

Values in table represents means ± standard errors of three trials performed in triplicates 

Lowercase superscripts represents significance level checked for same temperatures and different duration (along column, separately 

done for spores and vegetative cells)  

Uppercase superscripts represent significance level checked for same durations for all temperatures (along row, separately done for 

spores and vegetative cells) 
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Table 3.2: Influence of temperature and duration of holding on germination behavior of spiked spores (log cfu/mL) of B. licheniformis 

ATCC 14580 in raw milk 

 

 4˚ C 6˚ C 8˚ C 10˚ C 12˚ C 

Duration Veg Spore Veg Spore Veg Spore Veg Spore Veg Spore 

0 h 

3.40 ± 

0.01dA 

2.32 ± 

0.02aA 

3.39 ± 

0.01dA 

2.32 ± 

0.03aA 

3.37 ± 

0.02dA 

2.39 ± 

0.02aA 

3.40 ± 

0.02cA 

2.39 ± 

0.02aA 

3.36 ± 

0.03cA 

2.31 ± 

0.04aA 

24 h 

3.53 ± 

0.01cD 

2.28 ± 

0.02aA 

3.57 ± 

0.00cD 

2.24 ± 

0.03aAB 

3.63 ± 

0.01cC 

2.26 ± 

0.07aA 

3.73 ± 

0.01bB 

2.01 ± 

0.08bBC 

3.81 ± 

0.03bA 

1.79 ± 

0.09bC 

48 h 

3.68 ± 

0.01bD 

2.20 ± 

0.02bA 

3.73 ± 

0.00bD 

2.12 ± 

0.02bA 

3.79 ± 

0.02bC 

1.97 ± 

0.05bB 

3.86 ± 

0.02bB 

1.86 ± 

0.02bcBC 

3.92 ± 

0.01bA 

1.80 ± 

0.01bC 

72 h 

3.93 ± 

0.06aB 

1.93 ± 

0.01cA 

3.98 ± 

0.07aAB 

1.78 ± 

0.03cB 

4.04 ± 

0.07aAB 

1.52 ± 

0.02cD 

4.14 ± 

0.08aAB 

1.79 ± 

0.00cB 

4.20 ± 

0.06aA 

1.67 ± 

0.01bC 

 

Values in table represents means ± standard errors of three trials performed in triplicates 

Lowercase superscripts represents significance level checked for same temperatures and different duration (along column, separately 

done for spores and vegetative cells)  

Uppercase superscripts represent significance level checked for same durations for all temperatures (along row, separately done for 

spores and vegetative cells) 
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Figure 3.1: Growth curve of B. licheniformis ATCC 14580  

 

Values presented are Mean ±SE: △ represents growth curve of B. licheniformis ATCC 14580 at 

37˚ C 
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Figure 3.2: Contour plots showing B. licheniformis ATCC 14580 (A) vegetative cell and (B) 

spore population (log10 cfu/mL), in response to varying degrees of temperature and duration of 

holding vegetative cells (4.0 log cfu/mL) spiked raw milk  
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Chapter 4 

A Pilot Scale Skim Milk Powder Manufacturing by Controlling Raw Milk Holding Time-

Temperature Conditions- A case study   

ABSTRACT 

B. licheniformis is one of the most prevalent species of spore forming bacteria in the 

Midwest region of United States dairy environment and is capable of surviving pasteurization 

and other thermal treatments. Currently, dairy industries are more focused in attaining strategies 

to reduce sporeformers and spores during milk powder processing run. Therefore, it is important 

to understand the influence of each processing conditions individually, such as evaporation and 

drying in terms of sporulation, multiplication and germination. In terms of sporulation and 

multiplication, results from our previous studies (chapters 2 and 3) identified variable behavior 

of Bacillus licheniformis strains. Amoung two strains, BL ATCC 14580 showed increased 

sporulation potential during refrigeration storage of raw milk. Spores are resistant towards 

thermal treatments, therefore current study tracked BL ATCC 14580 behavior during powder 

manufacturing run at pilot scale. Two treatments were separately conducted. In treatment 1 raw 

milk was held in silo using PMO recommended conditions and in second silo raw milk was held 

at optimum conditions at 4˚ C for 72 h (treatment 1) before processing milk into milk powder. 

Standard protocols were followed to enumerate vegetative cells and spores using brain heart 

infusion agar. Samples were collected in replicates of three and means were compared using 

ANOVA. The objective of this study was to understand the influence of raw milk holding 

conditions, evaporation and drying temperatures on sporulation and germination behavior of B. 

licheniformis strain. The overall final spore and vegetative cell counts in the powders 
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manufactured under optimum holding condition (4˚ C for 24 h) were found to be significantly 

lower (0.58 ± 0.04 and 1.82 ± 0.05 log cfu/g) as compared to the conditions likely to practice by 

dairy plants (2.74 ± 0.03 and 1.03 ± 0.06 log cfu/g). This shows that milk powders with reduced 

vegetative and spore counts can be prepared by optimizing the raw milk holding conditions. This 

study is based on just one plant trial with shorter powder processing run of approx. 7 h, therefore, 

it does not address any changes in the behavior of the organism during longer processing runs. 

Based on these results, studies can be expanded to look at the survivability of other sporeformers 

and their strains at pilot scale. For future studies, the application of techniques such as filtration 

or cavitation could also be included to evaluate the efficiency in elimination or reduction of 

spores in powder for longer powder processing run. 

4.1 INTRODUCTION 

The current global export of skim milk powder/nonfat dry milk (SMP/NDM) from the 

United States is 67,154 tons (aggregate volume as of March 2018), which is 38% more from 

March 2017 (U.S. Dairy Export Council-Global Dairy market, 2018). The quality of products 

has, however lead the US to face criticism in  recent years from the South East Asian market 

regarding inconsistencies and tax specifications. There has been a lag in the export of 

SMP/NDM to major Asian markets such as Philippines, Indonesia and Vietnam, and the major 

cause is the continuous increasing demand of high specification dairy ingredients that meet their 

needs, especially low-spore powders.  

Skim milk powder manufacturing is a complex process which involves microbial as well 

as functional changes during all stages of processing. Among spoilage organisms, thermoduric 

Bacillus species are frequently present during all manufacturing steps. Spoilage by Bacillus 
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species has been reported not only in raw milk but also in fluid milk (Magnusson et al., 2006, 

Scheldeman et al., 2006) and even in milk powders (Buehner et al., 2015). Such spoilage is 

mostly caused by the heat-stable lipolytic and proteolytic enzymes or post-process contamination 

of the products during handling (Coorevits et al., 2008). These organisms, essentially in the form 

of spores, can survive pasteurization, evaporation as well as spray drying temperatures, and are 

an important source of milk powder contamination (Kalogridou-Vassiliadou, 1992, Scheldeman 

et al., 2006). Bacillus spores are capable of surviving pasteurization treatments, which can 

reduce 99.9% of the vegetative cells but, provides a suitable environment for the subsequent 

germination and growth of spores which tend to form biofilms on the surfaces of processing 

equipment (Palmer et al., 2007). The endospores are formed as a defense mechanism to 

unfavorable environmental conditions which would hinder its growth/existence in the vegetative 

state and are resistant to most agents that would normally kill the vegetative cells they are 

formed from. In New Zealand milk powder plants, seven strains of thermophilic bacilli able to 

grow at 55˚ C or above have been identified, which included one strain each of B. subtilis and 

Geobacillus stearothermophilus, three strains of Anoxybacillus flavithermus, and two strains of 

B. licheniformis (Burgess et al., 2009). Similarly, ten G. stearothermophilus strains and one 

strain of A. flavithermus were isolated from powder manufacturing plant by Burgess et al., 

(2014). During milk powder manufacture, few strains of Bacillus can grow within the section of 

processing plant where the temperature for growth is ideal. Regeneration sections of heat 

exchangers and evaporators are the sections where operating temperature remains between 45 to 

75˚ C, which favors the growth of thermophiles resulting up to 106 cfu/g in the milk powder 

(Scott et al., 2007). Three species of bacilli viz. G. stearothermophilus, B. licheniformis and 

Anoxybacillus flavithermus constituted 91.9 % of total bacterial population in milk powder 
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collected from 18 different countries and screened by a RAPD based survey (Rüeckert et al., 

2004). In other studies, Rüeckert et al., (2005) and Rüeckert et al., (2006), reported seven strains 

of Bacillus that commonly occurred in milk powder. These were identified to be G. 

stearothermophilus, A. flavothermus, B. licheniformis and B. subtilis whereas, work done by 

Buehner et al., (2015) reported B. licheniformis as a most prevalent isolated species among 

Midwest manufacturing companies. NDM/SMP is used as raw ingredients in a variety of 

products like infant formulae, ice creams, yogurts, bakery, confectionery, etc., and all these foods 

provide perfect nutrients for the bacteria to proliferate and cause contamination. Therefore, it is 

important to control spores and sporeformers at initial stages of milk powder processing.  

Taking an example of B. licheniformis, we hypothesized that different strain may behave 

differently in terms of germination, multiplication, and sporulation in during powder processing 

run especially during evaporation. If the sporulation and germinations sites are known during 

powder manufacturing, then those specific conditions can be optimized to reduce sporeformers 

and spores in final product. To understand the influence of processing conditions, current study 

analyzed the effect of evaporator and dryer at pilot scale on population dynamics of common 

sporeformers and spores. As a follow up to our previous study (Awasti et al., 2019), current 

study aims at comparing powder made from two different treatments, where control includes 

holding spiked raw milk at 10˚ C for 4 h and then at 7˚ C for up to 72 (as per PMO guidelines, 

FDA 2017), treatment 1 and 2 includes raw milk holding at 4˚ C for 24 h and 8˚ C for 72 h 

(Awasti et al., 2019). Milk from all the above-mentioned treatments and a control were HTST 

pasteurized, evaporated and dried for efficiently inactivating endospores and conveniently 

processing skim milk to get skim milk powder with low viable counts. Understanding the 

influence of powder processing conditions that favors either sporulation or germination of spores 
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can help understand the behavior of Bacillus species and help identify the steps responsible for 

the outgrowth of microbes. Such information can be helpful to control spores and sporeformers 

by using process optimization strategies.  

4.2 MATERIALS AND METHODS 

4.2.1 Bacterial Strain Collection and its Growth Condition 

This study included two Bacillus licheniformis cultures purchased from the American 

Type Culture Collection of Microorganisms (ATCC). Brain Heart Infusion (BHI; BD DifcoTM) 

media was used for both cultures, where B. licheniformis ATCC 14580 at 37˚ C. The cultures 

were preserved for future use by using protocol suggested by (Perry, 1998). The pellets of 

actively grown cultures were prepared at mid-exponential phase by centrifuging at 4500 × g for 

30 min. Phosphate buffer saline (PBS), pH 7.4, was used to suspend pellets, and the cultures 

were preserved in 1.8 mL cryogenic vials (CRYOBANKTM – Copan Diagnostics Inc., CA, 

USA). For further use, the cryovials were stored at -80˚ C in a deep freezer (NuAire ultralow 

freezer, NuAire Inc. MN, USA).  

4.2.2 Spore preparation  

Endospores of B. licheniformis ATCC 14580 were prepared by using the method as 

described in our previous study (Awasti et al., 2019). Approximately 1.0 mL of actively growing 

broth culture of each of the spore-formers was spread-plated on the BHI  plates. The plates were 

incubated at the appropriate incubation temperatures for up to 15 d. To monitor the level of 

sporulation, spore staining was performed occasionally throughout the incubation period and 
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after achieving 90% of sporulation, spores were harvested using a similar technique described by 

Wang et al. (2009).  

4.2.3 Challenge Studies: 

Challenge studies were conducted by aseptically spiking three storage silos containing 

skim raw milk (1500 lbs. each) with vegetative cells (approx. 4.0 log cfu/mL) of B. licheniformis 

ATCC 14580 at Davis Dairy Plant, South Dakota State University (SDSU). Based on our 

previous study (Awasti et al., 2019), two out of three silos were held at two different conditions 

i.e. for treatment 2, the spiked raw milk in tank A was held at 4˚ C for 24 h whereas, for 

treatment 3, the spiked raw milk in tank C was held at 8˚ C for 72 h before it is  pasteurized, 

evaporated and spray dried to produce skim milk powder. Based on the Pasteurized Milk 

Ordinance (PMO, 2017) guidelines, control (Tank A, Treatment 1) was held after spiking at 10˚ 

C for 4 h with an extended holding at 7˚ C for 72 h before processing it to skim milk powder. 

4.2.4 Sample Collection Points and Processing Conditions 

Figure 4.1 outlines the points from where samples were collected during powder 

manufacturing at pilot scale. Raw milk (before and after spiking), intermediate (cavitated, 

pasteurized, evaporated) and powder samples were aseptically collected during all processing 

steps of treatment and control. Milk was pasteurized at 73˚ C for 15 s by using HTST pasteurizer 

at Davis Dairy Plant, SDSU. The pasteurized milk was evaporated to obtain approx. 42 to 45% 

total solids (TS). The temperature of evaporator was set at 65˚ C for both the effects and the flow 

rate of milk was adjusted accordingly. The evaporated milk samples were dried using Niro drier 

with outlet temperature of 200˚ C, an inlet temperature of approx. 95˚ C and flow rate of approx. 
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150-180 L/h. For microbial analysis, samples were collected aseptically in triplicates using 

sterile containers and were transported in a cooler and stored at 4˚ ± 0.5˚ C, until used. Table 5.1 

and 5.2 details the list of sampling points which were collected during the different stages of 

powder manufacturing including cavitation, pasteurization, evaporation and spray drying using 

Niro dryer (Davis Dairy Plant, SDSU) with corresponding vegetative cells and spores. 

4.2.5 Sample processing and Enumeration of Vegetative cells and Spores 

Eleven grams of evaporated milk and powder samples were aseptically transferred to 

stomacher bag and 99 mL of warm sodium citrate (40˚ to 45˚ C) was used to wash off the sample 

from weighing dish to the stomacher bag and was blended for 2 minutes in stomacher bag. The 

samples were analyzed for vegetative and corresponding spore population after collecting them 

before and after each processing treatment. Spores were enumerated after heating samples to 80˚ 

C for 12 minutes, followed by cooling (Kent et al., 2016). Appropriately, diluted samples were 

pour plated using Brain heart infusion (BHI) agar. Plates were incubated at 37˚ C for 24–48 h, 

and plates with 25–250 colonies were enumerated for calculating total counts (Wehr and Frank, 

2004). 

4.2.6 Statistical Analysis 

Additional statistical analysis was performed using SAS 9.3 software (SAS Institute Inc., 

Cary, NC) to see any significant difference between initial and final vegetative cells or spore counts 

of spiked raw milk. All the experiments were done in triplicates with three replicates. The 

significance level of the model was analyzed using ANOVA.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 Fate of vegetative cells and spores during powder processing 

Before spiking, raw milk for all the treatments and control were assessed for the total 

number of vegetative cells (VC) and spore counts (SC) by using BHI agar pour plate method. 

The VC in raw milk ranged from 2.27 ± 0.13 to 2.39 ± 0.10 log cfu/mL whereas, SC were 1.18 ± 

0.03 to 1.32 ± 0.03 log cfu/mL. Based on previous reports (Vithanage et al. 2016), total plate 

count in raw milk collected from dairy farms ranged from 1.17 × 104 cfu/mL to 1.34 × 105 

cfu/mL. Therefore, we decided to spike raw milk with 4.0 log cfu/mL.  

4.3.1.1 Changes in spores and vegetative cell population in treatment 1. Since it is a PMO 

recommended conditions, thus treatment 1 was considered as a control for this study. In 

comparison with initial spiking, log mean vegetative cells were significantly different after 

holding spiked raw milk samples for 4 h at 10˚ C and then for 72 h at 7˚ C (Table 4.1), these 

results are in accordance with our previous study (Awasti et al., 2019). Whereas, the mean spore 

count after 72 h at 7˚ C did not show any significant change when compared to spore counts after 

4 h at 10˚ C holding (Table 4.2). This behavior of spores is may be due to their germination 

ability during 72 h of holding which showed a parallel significant increase in vegetative 

population from 3.69 ± 0.02 to 4.13 ± 0.02 log cfu/mL. After pasteurization and evaporation 

step, a significant drop in vegetative cells was evident with approx. 2.4 log cfu/mL reduction. 

Our findings in terms of vegetative counts after pasteurization are in agreement with previous 

studies (Scott et al., 2007) although the reduction in the current study was slightly higher as 

compared to <1 log cfu/mL. Several studies have reported an increase in vegetative and spore 

counts after evaporation (Scott et al., 2007, Murphy et al., 1999) whereas in the current study the 
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trend of spore increase follows the previous studies results. But for vegetative counts, we 

observed log reduction of approx. 0.6 logs which were not significantly different from that of 

pasteurized milk, which further validates the resistance of these strains towards high thermal 

treatments such as evaporation. Therefore, we suggest that raw milk treatment such as 

pasteurization and evaporation can lead to the survival of sporeformers and concentration of 

spores and can influence the quality of end-product. Studies have reported total spore counts in 

milk powder of approx. 1.10 to 3.40 log cfu/g (Kent et al., 2016) and 3.60 log cfu/g (Buehner et 

al., 2015). Whereas, for the current study, log mean spore and vegetative counts of the powder 

prepared from spiked milk resulted in 2.74 ± 0.03 and 1.03 ± 0.06 log cfu/g.  

4.3.1.2 Changes in spore and vegetative cell population in treatment 2 and 3. Currently, dairy 

industries are more focused on attaining strategies to reduce sporeformers and spores during milk 

powder processing run. Therefore, we came up with an approach of holding raw milk at 

optimum time-temperature condition before it is processed to end-product (milk powder). To 

determine best raw milk holding condition at pilot level, VC and SC were compared after 

separately holding spiked raw milk at 4˚ C for 24 h and 8˚ C for 72 h respectively. Raw milk for 

Treatment 2 (T2) and Treatment 3 (T3) were spiked with vegetative cells of approx. 4.0 log 

cfu/mL and were 3.66 ± 0.03 and 3.62 ± 0.04 log cfu/mL at 0 h of spiking. No significant 

difference was observed between spiking levels of two different treatments. Although after 

holding raw milk at their respective conditions i.e. T2 for 24 h at 4˚ C and T3 for 72 h at 8˚ C, an 

increase in VC was evident. After holding, sporeformer population for T2 and T3 significantly 

increased to 3.84 ± 0.02 and 4.07 ± 0.08 log cfu/mL and their mean values were also 

significantly different with respect to each other. VC and SC showed totally different population 

levels and survival patterns. Both survived until the end of the process but, the numbers in milk 
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powder (end-product) varied between two treatments and a control. After witnessing VC/SC 

counts of powder samples from T2 and T3, no significant difference between two mean values 

was observed. Despite of holding raw milk at different conditions, no significant difference was 

found in VC and SC of milk powder made from two treatments. 

Although after evaporation step, we observed an increase in spore numbers for both 

treatments with a parallel reduction in vegetative population and our results are in agreement 

with a previous study (Murphy et al., 1999) that also reported a similar trend of survival and 

growth of microbial population during powder processing run. The results and previous evidence 

suggest that the number of spores increase basically due to two major reasons; increase in spore 

concentration along with the concentration of milk, and favorable growth conditions within 

specific segments of a processing line that supported the sporulation of Bacillus strain during 

powder manufacturing cycles. The microbial population of vegetative and spore counts in 

powder prepared from treatment 2 resulted in 0.58 ± 0.04 and 1.82 ± 0.05 log cfu/g.   

For all treatments, VC population showed reduced levels after pasteurization 

corresponding to 1.73, 1.66 and 1.26 log reduction respectively. Regardless of using different 

treatments, the vegetative population showed a similar trend of decline after pasteurization, 

evaporation and spray drying. Whereas, spore population for T2 and T3 after holding spiked raw 

milk, resulted in a significant increase from 1.56 ± 0.06 and 1.60 ± 0.01 to 1.79 ± 0.03 and 1.82 

± 0.04 and this increase in SC numbers also agrees with our previous study (Awasti et al., 2019). 

Whereas, VC/SC population from skim milk powder prepared from treatment 1, 2 and 3 resulted 

into increase in spore population by 6.2%, 17.4% and 38.2% with overall reduction of vegetative 

population by 99.9%, 99.9% and 99.7%. After spray-drying, the log means values of VC and SC 
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from T1, T3 and control (p > 0.05) suggested that most of the population in powder existed as 

spores. On an average, spore counts were found to increase significantly after the evaporation 

step. Of the two treatments and control powder samples, treatment 2 resulted in significantly 

lower spore counts then treatment 3 followed by control. Holding milk for 24 h at 4˚ C is an 

energy efficient process, so the current study suggests using low temperature holding of raw milk 

to produce a powder with reduced spores and sporeformers.  

4.3.1.3 Optimized raw milk holding conditions produces milk powder with lower vegetative cells 

and spores: The powders prepared using three treatments showed the presence of some spores 

and vegetative cells, however, the holding time-temp combination of 4˚C for 24 h resulted in 

lower counts as compared to other treatments and the control. During powder, vegetative cells 

and spores survived until the end of the processes in all treatments, but their numbers varied. 

Vegetative cell population showed a decline after pasteurization, evaporation and spray drying, 

whereas, spore population resulted in significant increase throughout the processing steps. This 

increase in spore count is similar to a previous study (Murphy et al., 1999). A significant 

difference between mean values of vegetative and spore counts was observed in the powder 

samples obtained using treatment 1, 2 and 3. Among the treatments, treatment 2 resulted in lower 

spore counts as compared to treatment 1 and 3 (Table 4.1 and 4.2).  

Log mean spore of the powder prepared after treatment 1 and 2 from spiked milk were 

2.74 ± 0.03 and 1.82 ± 0.05 log cfu/g, respectively. Whereas, total vegetative cells were 1.03 ± 

0.06 log cfu/g and 0.58 ± 0.04 log cfu/g, respectively. This shows that powder with reduced 

vegetative cells and spore counts can be prepared by just altering the raw milk holding 

conditions. After spray-drying, the log mean values of vegetative cells and spore counts from 
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both treatments (p > 0.05) suggested that most of the population in powder existed as spores. 

Overall, in the current study we did not observe the increased level of microbial numbers as in 

case of previous studies (Murphy et al., 1999, Scott et al., 2007), that reported thermophilic 

counts to a level of log 5 and 4.1 cfu/mL, respectively. The possible reason for low microbial 

build-up in the current study during processing run and, in the end-product may be due to 

reasons such as 1. The predominance of strain with mesophilic thermoduric characteristics 

spiked in raw milk, that may allow its survival during pasteurization but restrict its multiplication 

behavior with parallel spore formation during evaporation under thermal stress, 2. Short-time 

production cycle of approx. 7 hours (pasteurization to spray drying) may not have allowed 

biofilm build up and thus have shown the substantial reduction in microbial cells in milk powder. 

Burgess et al. (2010) reported that despite of low numbers in raw milk, improper CIP and poor 

sanitization of the dairy plants allow the retention and extensive multiplication of these bacteria 

within the processing system, especially in the longer processing cycles. This study is based on 

just one plant trial with shorter powder processing run of approx. 7 h, therefore, it may not 

explain the behavior of organisms during longer processing run. However, the current study 

provides a proof of concept that if proper cleaning in place (CIP), sanitation protocols, short 

powder processing runs are followed accompanied withholding raw milk at optimum time-

temperature combinations is helpful in reducing the spores and growth of microbial numbers in 

milk powder manufacturing plants.  

4.4 CONCLUSION 

Our study compared the microbial population of different raw milk holding conditions 

throughout the processing run and concludes that combining optimum raw milk holding 
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conditions with that of shorter powder processing run can help reduce the spore population to 

significant numbers. Control of these spoilage-causing spore-forming organisms, during 

processing stages itself, is essential to produce final products with lower spore and sporeformer 

counts with extended shelf life attributes. Microbial population (vegetative cells/ spores) from 

skim milk powder prepared from treatment 2 resulted in reduced spores and vegetative numbers 

in comparison to treatment 1. Although the current study is based on just one plant trial with 

shorter powder processing run of approx. 7 h therefore, is a limiting factor which could not able 

to explain the behavior of organism during longer processing run. Based on these results, further 

studies can be expanded to look at more sporeformers and their strains at pilot scale. For future 

studies, the application of techniques such as filtration or cavitation should be included to 

evaluate the efficiency in elimination or reduction of spores in powder for longer powder 

processing run.  
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Table 4.1: Vegetative counts during skim milk powder manufacturing at pilot scale 

 

Treatment 1 

(Control)1 Treatment 21 

 

Treatment 31 

Before spiking 2.27 ± 0.13d 2.39 ± 0.10c 2.34 ± 0.14c 

After spiking 3.37 ± 0.03cA 3.66 ± 0.03bA 3.62 ± 0.04b 

10˚ C after 4 h 3.69 ± 0.02b - - 

4˚ C after 24 h - 3.84 ± 0.02a - 

8˚ C after 72 h   4.07 ± 0.08a 

7˚ C after 72 h 4.13 ± 0.04a - - 

After 

Pasteurization 2.36 ± 0.06dA 2.11 ± 0.04cB 2.41 ± 0.05cA 

After Evaporation 1.72 ± 0.07dA 1.67 ± 0.03cB 1.94 ± 0.09cA 

Powder 1.03 ± 0.42dA 0.58 ± 0.04cB 0.86 ± 0.16cB 

 

1 values in table represents means ± standard errors of one trial and samples were analyzed in triplicates 

Lowercase superscripts represents significance level checked for same treatment (along column)  

Uppercase superscripts represent significance level checked within two treatments for same processing step (along row) 
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Table 4.2: Spore counts during skim milk powder manufacturing at pilot scale 

 

Treatment 1 

(Control)1 Treatment 21 

 

Treatment 31 

Before spiking 1.32 ± 0.03f 1.19 ± 0.08c 1.18 ± 0.03d 

After spiking 2.18 ± 0.01e 1.56 ± 0.06b 1.60 ± 0.01c 

10˚ C after 4 h 2.48 ± 0.03cd - - 

4˚ C after 24 h - 1.79 ± 0.03a - 

8˚ C after 72 h   1.82 ± 0.04b 

7˚ C after 72 h 2.59 ± 0.05c - - 

After Pasteurization 2.46 ± 0.04dA 1.19 ± 0.08cB 1.31 ± 0.04cd 

After Evaporation 2.81 ± 0.02aA 1.88 ± 0.04aA 2.11 ± 0.04a 

Powder 2.74 ± 0.03bA 1.82 ± 0.05aB 1.90 ± 0.03b 

 

1 values in table represents means ± standard errors of one trial and samples were analyzed in triplicates 

Lowercase superscripts represents significance level checked for same treatment (along column)  

Uppercase superscripts represent significance level checked within two treatments for same processing step (along row) 
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Figure 4.1: Flow chart representing sampling points during powder processing run for treatment 1, 2 and control 

 

 

Where, 

A represents milk sample from storage tank after spiking,  

B represents sample collected after holding,  

C represents sample collected after pasteurization,  

D represents sample collected after evaporation,  

E represents sample collected after Drying 
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Chapter 5 

Ratiometric Fluorescence Spectroscopy - A Novel Technique for Rapid Detection of 

Bacterial Endospores- A proof of concept  

ABSTRACT 

The current spore detection methods rely on cultural techniques, having 

limitations of time, efficiency, and sensitivity. Spore coat contains calcium dipicolinic 

acid (CaDPA) as a major constituent and can serve as a biomarker for bacterial 

endospores. We report a rapid and sensitive technique for the detection of bacterial 

endospores by using ratiometric fluorescence-based sensors. This method is based on the 

detection of CaDPA that enhances the luminescence of lanthanide ion, when complexed 

with a semiconducting polymer. A CaDPA standard curve was generated at an excitation-

emission wavelength of λ275-λ544 by using Synergy 2 fluorescence spectrophotometer. 

Intensity was recorded after chelating semiconducting fluorescent polyfluorene (PFO) 

dots with terbium ions, sensitized by different volumes of CaDPA (0.1μM).  The standard 

curve so generated showed a linear relationship (R2 = 0.98) in the experimental 

concentration range of 2.5 nM to 25 nM of CaDPA, with corresponding intensity (a.u.) of 

545 to 2130. Endospores of  aerobic spore former, Bacillus licheniformis ATCC 14580 

were produced at 37˚ C for 15 days, on Brain Heart Infusion agar. The efficiency of 

sporulation was evaluated by spore staining and plating techniques. Total CaDPA content 

in spores was estimated after suspending reducing concentrations of spores (logs 9.0 

through 1.0 cfu/mL, at one-log intervals) in HPLC grade water and raw skim milk 

samples. In HPLC grade water, for higher spore spiking levels such as 9.2±0.03, 
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8.4±0.05, 7.1±0.13 and 6.3±0.02 logs, the corresponding mean CaDPA values observed 

from the standard curve were 9.4, 7.2, 6.2 and 5.3 nM. Whereas, for lower levels of 

4.2±0.05, 3.1±0.04, 2.0±0.11 and 1.36±0.09 logs, we observed 3.8, 3.3, 2.2 and 1.3 nM, 

mean CaDPA content. Whereas, for raw skim milk spiked with B. licheniformis ATCC 

14580 spores, the mean CaDPA content on spores detected were approx. 2.5, 3.8 and 5.0 

nM for spiking levels of 5.21, 6.39 and 9.47 log cfu/mL respectively. Trials were 

conducted in replicates of three and means were compared. Trials conducted using HPLC 

grade water indicated a linear relationship of the CaDPA content of endospores with that 

of the endospore counts and the standard curve of CaDPA concentration. Whereas, for 

raw milk spiked samples a reduced fluorescence detection was observed and was approx. 

five times lower as compared to the spiked samples of HPLC grade water. The reduced 

fluorescence ability in raw milk can be due to the turbidity of the solution or interference 

of proteins, amino acids and other ions of milk. This study provides a proof of concept 

for a potential application of this technique to rapidly detect bacterial endospores in the 

dairy and food industry. Further studies are required to remove the inference of ionic 

components in milk in order to rapidly detect spores in other dairy product matrices such 

as cheese, whey proteins, and powders. 

5.1 INTRODUCTION 

Spores are very resistant microbial structures that survive adverse conditions and 

can germinate when conditions are favorable. Detecting bacterial spores in dairy and food 

processing environments, water, dairy and food matrix can help reduce spoilage and shelf 

life issues in the final product. Aerobic sporeforming Bacillus species are known as a 

major contaminant in food and dairy industry (Seale et al., 2015). Bacillus, being a 
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second pre-dominant species, is frequently isolated from raw milk and responsible for a 

total 25% shelf life issues of milk and milk products in the United States (Sharma and 

Anand, 2002). Detection and enumeration of bacterial endospore concentrations are time-

consuming tasks. Therefore, timely detection of sporeformers before milk processing is 

vital, to identify the source of contamination and strategies to reduce or control Bacillus 

build up. A number of methods has been developed during past decades including plating 

techniques, molecular and optical methods. The most frequently used methods of 

quantification of spores are microscopy and plate culture counting methods, which are 

slow, tedious and may take up to 72 hours for the results to be available (Sharma and 

Prasad, 1992, Rosen et al., 1997). Whereas, molecular methods usually require costly 

reagents and requires sample processing time before analysis. Thus, there remains a need 

for a simple and cost-effective method that can be used for rapid identification of aerobic 

bacillus spores in food and dairy matrix. From the past two decades, optical method for 

detection and enumeration of spores based on dipicolonic acid (DPA) have occupied a 

great deal of attention. Several techniques involving Raman spectroscopy, 

electrochemical methods and other spectrofluorometric method have been developed for 

detection of DPA (Zang et al., 2005, Tan et al., 2014). Most of the previous methods 

evaluated dipicolonic acid (DPA) as a spore marker (Rosen et al., 1997, Bell et al., 2005) 

with a detection limit of 2 nM DPA. Whereas, a study done by Hindle and Hall (1999) 

quantified spores by monitoring spore germination and exuded DPA and were able to 

detect up to 104 B. subtilis spores/ml.  

In a hope to develop a rapid, sensitive and accurate method to quantify spores in a 

food matrix, the current study investigated CaDPA concentration in Bacillus spores using 
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ratiometric fluorescence technique. As a follow up to a previous study (Li et al., 2013), 

current investigation applied an optical method for detecting bacterial spores based on the 

detection of calcium dipicolinate (CaDPA), an important biomarker and major 

component of bacterial spores. Enhanced emission peak with bright luminescence was 

observed at 544 nm upon binding of DPA with lanthanide ion (Tb3+), whereas emission 

peak at 439 nm remained stable without addition of DPA and thus served as an internal 

reference. This technique showed improved detection, sensitivity when spores were 

spiked in HPLC grade water, while spore spiked skim milk sample showed reduced 

fluorescence. Meanwhile, this study provides a proof of concept for the application of 

this technique to rapidly detect Bacillus spores in the dairy and food industry.  

 

5.2 MATERIALS AND METHODS 

5.2.1 Preparation of Polymerdots (Pdots) 

Functionalized Pdots was prepared by using the nanoprecipitation method as 

described in a previous study (Li et al., 2013). The stock solution with a concentration of 

1 mg/mL was prepared by dissolving semiconducting polymer PFO (poly (9,9-

dioctylfluorene)) and functional polymer PSMA (poly (styrene-co-maleic anhydride) in 

tetrahydrofuran (THF) respectively. PFO and PSMA were mixed and diluted with THF to 

produce a solution mixture with a PFO concentration of 50 μg/mL and a PSMA 

concentration of 10 μg/mL. The mixture was sonicated (frequency of 40-50 kHz, power 

85% for 35 min at 25˚ C) by using bath sonicator to make a homogenous solution. After 

sonication 5 mL of this solution mixer was quickly added to 10 mL HPLC grade water. 

THF was removed by nitrogen stripping followed by filtration through a 0.2 μm filter. 
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The resulting functionalized Pdot dispersions are clear and stable for months without 

signs of aggregation.  

5.2.2 Preparation of CaDPA 

CaDPA solution was prepared by neutralizing reaction where a 3.3-mmol quantity 

of the DPA and an equal molar amount of calcium hydroxide (Ca(OH)2) were separately 

dissolved in 50 mL of HPLC grade water and then the DPA solution was neutralized by 

dropwise addition of Ca(OH)2 aqueous solution. The reaction solution was stored at 5˚ C 

for 48 h, followed by filtration and evaporation (115˚ C for 2 min).  

5.2.3 Validation of the CaDPA Detection by Sensor 

For CaDPA sensor detection, the reaction mixture was prepared by adding 

terbium chloride of 100 μl (0.1 mM TbCl3) to an aqueous solution of pre-prepared 

functionalized PFO dots (31.74 μl) to produce a solution with a Pdot concentration of 

about 80 pM and terbium concentrations of 1 μM, respectively. The solution was agitated 

for 5 min by using agitator. Then luminescence sensing experiments of the terbium 

chelated PFO dots was performed by adding different volumes of CaDPA (0.1 μM) to the 

terbium chelated Pdots solutions. Fluorescence spectra were measured using synergy 2 

fluorescence spectrometer. First, a standard curve was made by using the different 

concentration of CaDPA at luminescence intensity of 544 nm (Figure 5.1 A) and then, 

ratios of intensities were plotted at I544/I439 to generate CaDPA calibration curve (Figure 

5.1 B). The next step was to validate the protocol by spiking spores in HPLC grade water. 

Once the validation was proved, a similar protocol will be followed to determine and 

quantify the spore present in raw skim milk samples.  
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5.2.4 Bacterial Strain Collection and Spore Preparation 

This study included Bacillus licheniformis ATCC 14580, purchased from the 

American Type Culture Collection of Microorganisms (ATCC). Bacillus licheniformis 

ATCC 14580 was grown and incubated at 37˚ C in Brain Heart Infusion (BHI; BD 

DifcoTM). Endospores were prepared by using a method as suggested in our previous 

study Awasti et al. (2019). Approximately 1.0 mL of actively growing broth culture of 

the B. licheniformis was spread-plated on the BHI plates. The plates were incubated at the 

appropriate incubation temperatures for up to 15 d. To monitor the level of sporulation, 

spore staining was performed occasionally throughout the incubation period and after 

achieving 90% of sporulation, spores were harvested using a similar technique described 

by Wang et al. (2009). The endospores were preserved for future use by using protocol 

suggested by (Perry, 1998). For further use, the cryovials were stored at -80˚ C in a deep 

freezer (NuAire ultralow freezer, NuAire Inc. MN, USA). 

5.2.5 Estimation of Total CaDPA Content of Spores Spiked in HPLC Grade Water and 

Skim Raw Milk Samples  

HPLC grade water was purchased from Fisher’s scientific whereas, skim raw milk 

samples were collected from Davis dairy plant (SDSU, SD, USA). The reducing 

concentrations of spores (logs 9.0 through 1.0 cfu/mL, at one-log intervals) were spiked 

separately in HPLC grade water and raw skim milk samples. The spiked samples were 

added to the reaction mixture by adding different volumes in it and were analyzed using 

synergy 2 fluorescence spectrometer. The samples were excited at a wavelength of UV 

range i.e. λ275 and fluorescence were read at two different intensities I544 and I439. The ratios 
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of two intensities were separately plotted for both the samples (Figure 5.2 A and B). The 

mean CaDPA content in spore spiked HPLC grade water and raw skim milk samples were 

quantified using CaDPA calibration curve (Figure 5.1 A and B).  

5.3 RESULTS AND DISCUSSION 

Our strategy to quantify a total number of spores in ion-free water and raw milk is 

based on detection CaDPA content by using ratiometric fluorescence techniques, which 

were previously described by Li et al. (2013). Functionalized PFO dots were prepared using 

a fluorescent semiconducting polymer PFO and functional polymer PSMA as mentioned 

above. The terbium-dipicolinic acid (Tb-DPA) complex and PFO dots can be at the same 

time excited with wavelength of 275 nm without affecting the luminescence of each other. 

The detection of CaDPA content using fluorescence spectroscopic technique depends on 

common absorption peak (∼275 nm) of CaDPA and semiconducting polymer PFO. In the 

current study long-pass filter was placed in front of detector in order to remove any 

interference from excitation at 275 nm as observed by previous report (Li et al., 2013).   

5.3.1 CaDPA Detection and Calibration Curve 

According to the previous study (Li et al., 2013) the sensitivity of CaDPA sensor 

was evaluated and their results showed a significant luminescence response of the sensor 

when CaDPA in the aqueous solution was excited at 275 nm. The emission spectra of PFO 

dots and CaDPA did not showed any interference with each other and their major emission 

peaks were at 439 nm and 544 nm. The current study validated the results from previous 

study by plotting the luminescence intensity with increasing CaDPA concentration. In 

terms of excitation and emission of CaDPA sensor, our results are in agreement with a 
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previous study (Li et al., 2013).  CaDPA was detected and plotted at excitation-emission 

(λ275- λ544) wavelength by using Synergy 2 fluorescence spectrophotometer (Fig. 5.1A). A 

linear relationship (R2 = 0.98) exist in our experimental CaDPA concentration range of 2.5 

nM to 25 nM with corresponding intensity (a.u.) of 545 to 2130 nm.  

Figure 1B explains the ratiometric calibration plot (I544/I439) of Pdot sensor as a 

function of CaDPA concentration. The ratios of two emission intensities were the highest 

emission peaks of Tb3+ excited in the presence of DPA and PFO dots. In terms of sensor 

sensitivity, our results agree with the previous report and limit of detection observed was 

approx. 0.2 nM. Figure 5.1B allowed us to create a link between CaDPA concentration and 

ratiometric intensity which was further used to calibrate total CaDPA content on spores 

spiked in HPLC grade water and raw skim milk samples. 

5.3.2 Estimation of Total CaDPA content of spores spiked in HPLC grade water 

Excitation of spore spiked HPLC grade water at 275 nm after adding it to reaction 

mixture of Pdots resulted into luminescence at two different intensities that is I544 and I439. 

The ratios of these two intensities were plotted against spiked log spores cfu/mL, as shown 

in Figure 5.2. The graph so obtained was compared with calibration curve (Figure 5.1B) of 

CaDPA (ratiometric graph) to quantify the total concentration of CaDPA on spores. We 

observed that for higher spore spiking levels such as 9.2 ± 0.03, 8.4 ± 0.05, 7.1 ± 0.13 and 

6.3 ± 0.02 logs, the corresponding mean CaDPA values observed from the standard curve 

were >25, >25, 25 and 20 nM. Whereas, for lower levels of 4.2 ± 0.05, 3.1 ± 0.04, 2.0 ± 

0.11 and 1.36 ±0 .09 logs, we observed 15, 12, 2 and <2 nM, mean CaDPA content. Trials 

conducted using HPLC grade water indicated a linear relationship of the CaDPA content 
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of endospores with that of the endospore counts, and the standard curve of CaDPA 

concentration. The mean CaDPA content on spores ranged from approx. >25 nM to <2 nM. 

In a current study Liu et al., (2019) were able to detect the concentration range of DPA 

from 0.5 nM to 2.5nM using carbon dots as a binding polymer. With respect to our 

experiment, enhanced sensitivity of this technique was due to presence of more DPA 

binding sites on carboxyl and amide groups of carbon dot. Therefore, after comparing these 

two studies we conclude that, sensitivity of probe can be enhanced by increasing DPA 

binding sites. 

5.3.3 Estimation of Total CaDPA content of spores spiked in raw milk 

To demonstrate the robustness of this detection method, we conducted spore 

detection in raw milk samples. Different logs count of B. licheniformis ATCC 14580 spores 

were added into the reaction mixture of Pdots solution.   The mean CaDPA content on 

spores detected were approx. <2, ~2.5 and 5.0 nM for spiking levels of 5.21, 6.39 and 9.47 

log cfu/mL respectively (Figure 5.2 B). We were not able to detect intensities below the 

spiking levels of 5.21 log cfu/mL. We observed a reduced fluorescence detection was 

approx. five times lower as compared to the spiked samples of HPLC grade water. Recently 

(Yilmaz et al., 2018), a combination of Eriochrome Black T (EBT)- Eu3+ has been applied 

to detect DPA. The sensitivity of system for detection of Geobacillus stearothermophilus 

spores was as low as 2.5 × 105 and is in accordance with our spore detection limit in raw 

milk. The reduced fluorescence ability in raw milk can be due to the turbidity of the 

solution or interference of proteins, amino acids and other ions present in milk. Sensor with 

combined attributes of calorimetric and fluorescent detection of DPA using (EBT)- Eu3+ is 

emerging as new technique, due its enhanced sensitivity and detection and thus can be used 
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in combination with our technique. To improve the ability of fluorescence sensor, further 

strategies should be combined with that of other techniques by using binding ions such as 

Eu3+, carbon dots (with carboxyl and amide ligands) and enzymes technology to remove 

interfering components such as proteins and other ions.  

5.4 CONCLUSIONS 

In summary, we have demonstrated that spores in raw milk can be detected and 

quantified by using ratiometric fluorescent detection technique. This study provides a proof 

of concept for a potential application of this technique to rapidly detect bacterial 

endospores in the dairy and food industry. Preliminary studies with Bacillus licheniformis 

spores in raw milk samples showed that about 5.21 log spores/mL can be determined with 

our method. Further studies are required to remove the inferencing ionic components in 

milk in order to improve the efficiency of the sensor to rapidly detect spores in other dairy 

product matrices such as cheese, whey proteins, and powders. 
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Figure 5.1: (A) Plot of luminescence intensity change (544 nm) of Pdots sensor with 

increasing concentration of CaDPA; (B) ratiometric calibration (I544/I439) of the Pdot 

sensor as a function of CaDPA concentration. 
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Figure 5.2: Ratiometric calibration plot (I544/I439) of spore spiked (A) in HPLC grade 

water; (B) in skim milk samples using Pdot sensor as a function of CaDPA concentration 
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Overall Summary 

Results from refrigeration holding of raw milk suggested that for vegetative cell 

spiking study of B. licheniformis ATCC 6634 (S1), cell population changes remained 

below 1.0 log up to 72 h at 8˚ C. Whereas, for B. licheniformis ATCC 14580 (S2), 1.0 log 

shift was observed only after 80 h at 8˚ C, indicating greater multiplication potential of 

S1 as compared to S2. As S2 was a readily sporulating strain, the vegetative spiking 

study showed spore formation at different storage temperatures. Evidence of some 

parallel germination was observed for this strain at 8˚ C or higher, when raw milk 

samples were spiked with spores. Sporulation behavior, germination and multiplication 

ability, strain variability, and temperature and duration of holding raw milk influenced 

the population dynamics of Bacillus species. In the presence of equivalent numbers of 

both types of sporulating strains in raw milk, despite of strain variability, holding the 

milk at 8˚ C for not more than 72 h would keep any cell population changes below 1.0 

log. As holding raw milk for up to 72 h at 8˚ C would not allow the increase in population 

by 1.0 log therefore, further studies were done using raw milk holding time-temperature 

of 4˚ C for 24 h as an optimum condition to enumerate the influence of these conditions 

during powder processing steps. In addition, under these storage conditions, the 

population would remain as vegetative cells that are easily inactivated by pasteurization.  

Based on results from two studies, we evaluated that amoung two strains, BL 

ATCC 14580 produces more spores in raw milk held at lower temperatures. Therefore, 

further studies were done using high sporulating strain of this species. In terms of 

survivability, germination, multiplication and sporulation, behavior of BL ATCC 14580 

was evaluated during skim milk powder manufacturing at pilot scale. Skim milk powder 
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prepared using PMO recommended (treatment 1) and optimum holding (treatment 2) 

conditions at the pilot scale showed different survival patterns of vegetative cells and 

spores during each processing step. Among two treatments, treatment 2 resulted in lower 

spore counts when compared to treatment 1. The overall final spore and vegetative cell 

counts in the powders manufactured under optimum holding condition (4˚ C for 24 h) 

were found to be significantly lower (0.58 ± 0.04 and 1.82 ± 0.05 log cfu/g) as compared 

to the conditions likely to practice by dairy plants (2.74 ± 0.03 and 1.03 ± 0.06 log cfu/g). 

This shows that milk powders with reduced vegetative and spore counts can be prepared 

by optimizing the raw milk holding conditions. Overall, we did not observe the increased 

level of microbial numbers and the possible reasons for the low microbial build-up during 

processing run and in end-product is may be due to two reasons i.e. 1. The predominance 

of strain with mesophilic thermoduric characteristics spiked in raw milk, that may allow 

its survival during pasteurization but restrict its multiplication behavior during 

evaporation under thermal stress, 2. Short-time production cycle of approx. 7 hours 

(pasteurization to spray drying) may not have allowed biofilm build up and thus have 

shown a substantial reduction in vegetative cells in milk powder. Although this study was 

based on just one plant trial with shorter powder processing run of approx. 7 h therefore, 

is a limiting factor which could not able to explain the behavior of organism during 

longer processing run. Thus, a current study provides a proof of concept that if proper 

cleaning in place (CIP), sanitation protocols, short powder processing runs are followed 

accompanied with holding raw milk at optimum time-temperature combinations is 

helpful in reducing the spores and growth of microbial numbers in milk powder 

manufacturing plants.  
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For ratiometric fluorescence studies, standard curve so generated showed a linear 

relationship (R2 = 0.98) in the experimental concentration range of 2.5 nM to 25 nM of 

CaDPA, with corresponding intensity (a.u.) of 545 to 2130 nm. We report a validation of 

rapid and sensitive technique for the detection of bacterial endospores by using 

ratiometric fluorescence-based sensors. In HPLC grade water, for higher spore spiking 

levels such as 9.2±0.03, 8.4±0.05, 7.1±0.13 and 6.3±0.02 logs, the corresponding mean 

CaDPA values observed from the standard curve were >25, >25, 25 and 20 nM. Whereas, 

for lower levels of 4.2±0.05, 3.1±0.04, 2.0±0.11 and 1.36±0.09 logs, we observed 15, 12, 

2 and <2 nM, mean CaDPA content. Whereas, for raw skim milk spiked with B. 

licheniformis ATCC 14580 spores, the mean CaDPA content on spores detected were 

approx. 2.0, 2.5 and 5.0 nM for spiking levels of 5.21, 6.39 and 9.47 log cfu/mL 

respectively. Preliminary studies with Bacillus licheniformis spores in raw milk samples 

showed that about 5.21 log spores/mL can be determined with our method. For raw milk 

spiked samples, reduced fluorescence detection was observed and was approx. five times 

lower as compared to the spiked samples of HPLC grade water. The reduced fluorescence 

ability in raw milk can be due to the turbidity of the solution or interference of proteins, 

amino acids and other ions of milk. Further studies are required to remove the inference 

of ionic components in milk in order to rapidly detect spores in other dairy product 

matrices such as cheese, whey proteins, and powders. Moving forward, to improve the 

sensitivity of sensor, ratiometric technique can be combined with other methods such as 

calorimetric, protein digestion (by using proteolytic enzymes) and protein/ peptide 

separation (using filtration technology).   
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Conclusions 

The current study concludes that B. licheniformis strains differ in the ability to 

multiply, sporulate, and germinate in raw milk during refrigeration storage and drying 

temperatures, and thus may significantly influence the keeping quality of raw milk and 

milk powder. Control of these spoilage-causing organisms, before processing stages itself, 

is essential to produce milk powder with lower spore and sporeformer counts and extended 

shelf life attributes. Our study came up with regression equations that can be applied to 

predict the individual strain population numbers for specific temperature and duration of 

raw milk holding. This increases our ability to create predicted values for vegetative cell 

population growth at a wide time-temperature range, which can be easily generated using 

regression equations. Even in the case of mixed types of sporulating strains, holding raw 

milk at a common time-temperature of 8˚ C for no more than 72 h would ensure that the 

individual population does not change by 1.0 log cfu/mL. The present study used regression 

generated time-temperature combinations based on contour plot prediction of raw milk 

holding and powder prepared showed reduced levels of sporeformers and spores. Thus, the 

current study demonstrates that different strains of B. licheniformis may have variable 

potential to multiply and sporulate during refrigerated holding but using optimized 

conditions generated through regression models can help reduce the spore and sporeformer 

population to significant levels. Using such optimization techniques at farm and plant scale 

would prove useful for the dairy industry, and thus in future can be used as a strategy for 

shelf life determination of raw milk and other milk products. Based on these results, further 

studies can be expanded to look at other sporeformers and their strains. The application of 

regression models may also be combined with product processing techniques such as 
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filtration and cavitation, especially during longer powder processing runs, to produce 

powders or dairy products with improved microbial quality. In addition, this study also 

provides a proof of concept for a potential application of ratiometric fluorescence 

spectroscopy technique to rapidly detect bacterial endospores. Further studies are required 

to standardize the protocol for application in milk and related dairy products. 
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