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ABSTRACT 

AUGMENTING LAND COVER/LAND USE CLASSIFICATION BY 

INCORPORATING INFORMATION FROM LAND SURFACE PHENOLOGY: AN 

APPLICATION TO QUANTIFY RECENT CROPLAND EXPANSION IN SOUTH 

DAKOTA 

LAN HOANG NGUYEN 

2019 

Understanding rapid land change in the U.S. NGP region is not only critical for 

management and conservation of prairie habitats and ecosystem services, but also for 

projecting production of crops and biofuels and the impacts of land conversion on water 

quality and rural transportation infrastructure. Hence, it raises the need for an LCLU dataset 

with good spatiotemporal coverage as well as consistent accuracy through time to enable 

change analysis. This dissertation aims (1) to develop a novel classification method, which 

utilizes time series images from comparable sensors, from the perspective of land surface 

phenology, and (2) to apply the land cover/land use dataset generated from the 

phenometrically-based classification approach to quantify crop expansion in South Dakota. 

A novel classification approach from the perspective of land surface phenology 

(LSP) uses rich time series datasets. First, surface reflectance products at 30 m spatial 

resolution from Landsat Collection-1, its newer structure—Landsat Analysis Ready Data, 

and the Harmonized Landsat Sentinel-2 (HLS) data are used to construct vegetation index 

time series, including the Enhanced Vegetation Index (EVI), and the 2-band EVI (EVI2), 

and various spectral variables (spectral band and normalized ratio composites).  MODIS 
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Level-3 Land Surface Temperature & Emissivity 8-day composite products at 1 km spatial 

resolution from both the Aqua and Terra satellites are used to compute accumulated 

growing degree-days (AGDD) time series. The EVI/EVI2 and AGDD time series are then 

fitted by two different land surface phenology models: the Convex Quadratic model and 

the Hybrid Piecewise Logistic Model. Suites of phenometrics are derived from the two 

LSP models and spectral variables and input to Random Forest Classifiers (RFC) to map 

land cover of sample areas in South Dakota. The results indicate that classifications using 

only phenometrics can accurately map major crops in the study area but show limited 

accuracy for non-vegetated land covers. RFC models using the combined spectral-

phenological variables can achieve higher accuracies than those using either spectral 

variables or phenometrics alone, especially for the barren/developed class. Among all 

sampling designs, the “same distribution” models—proportional distribution of the sample 

is like proportional distribution of the population—tends to yield best land cover 

prediction. A “same distribution” random sample dataset covering approximately 0.25% 

or more of the study area appears to achieve an accurate land cover map. 

To characterize crop expansion in South Dakota, a trajectory-based analysis, which 

considers the entire land cover dataset generated from the LSP-based classifications, is 

proposed to improve change detection. An estimated cropland expansion of 5,447 km2 

(equivalent to 14% of the existing cropland area) occurred between 2007 and 2015, which 

matches more closely the reports from the National Agriculture Statistics Service—NASS 

(5,921 km2) and the National Resources Inventory—NRI (5,034 km2) than an estimation 

from a bi-temporal change approach (8,018 km2). Cropland gains were mostly 

concentrated in 10 counties in northern and central South Dakota. An evaluation of land 
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suitability for crops using the Soil Survey Geographic Database—SSURGO indicates a 

scarcity in high-quality arable land available for cropland expansion. 
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CHAPTER 1 

 

INTRODUCTION 
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1.1 Background 

Despite low population, the US Northern Great Plains (NGP) region has been 

undergoing substantial land cover/land use change (LCLUC) over the past two decades. 

Federally mandated policies spurring the demand for biofuels, particularly corn-based 

ethanol and biodiesel from soybean (Schnepf & Yacobucci, 2013), coupled with federally 

subsidized crop insurance led to a tripling in market prices for corn and soybean between 

2002 and 2012 (Johnston, 2013). Increases in commodity prices resulted in one of the most 

significant land change episodes in recent US history: the conversion of grasslands and 

wetlands to croplands, primarily in the eastern Dakotas, western Minnesota, and southern 

Iowa (Faber et al., 2012; Johnston, 2013, 2014; Wright & Wimberly, 2013). Johnston 

(2013) estimated wetlands losses of 5,000-6,000 ha per year since 1979 due to cropland 

expansion. Wright & Wimberly (2013) estimated a net loss of 530,000 ha in grass-

dominated lands in the Western Corn Belt from 2006 to 2011 based on analysis of the 

USDA’s Cropland Data Layer (CDL). Remaining intact grassland habitats are also at risk 

of conversion to cropland under projected future demands for food and fuel since ~84% of 

the area is privately owned (WWF, 2016).  

Several efforts have been made to characterize land change dynamics in the Great 

Plains. Much of the extant literature has used either the National Resources Inventory 

(NRI), a periodic statistical survey of land use and natural resource conditions on US non-

federal lands (Claassen et al., 2011; Rashford et al., 2011) that lacks spatial detail, or post-

classification change detection methods using publicly available LCLU databases, 

especially the USDA Cropland Data Layer (Faber et al., 2012; Wright & Wimberly, 
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2013a,b; Johnston, 2013, 2014; Lark et al., 2015; WWF, 2016) due to its finer 

spatiotemporal resolution and high number of thematic classes.  

The use of CDL can be justified by its high overall accuracy of 85% to 95% for 

major crops, and often 97% producer’s and user’s accuracies for corn and soybean (Boryan 

et al., 2011). However, it is important to realize that the CDL is meant to monitor 

agricultural land cover annually; and it has undergone substantial methodological changes 

over time (Mueller & Seffrin, 2006; Boryan et al., 2011). In addition, the conventional 

classification methods, such as ones first applied to the CDL and the more general National 

Land Cover Database (NLCD), were developed in an era of data scarcity and limited 

computational power and thus focused on using just a few cloud/snow-free scenes.  

Understanding rapid land change is not only critical for management and 

conservation of prairie habitats and ecosystem services, but also for projecting production 

of crops and biofuels and the impacts of land conversion on rural infrastructure, such as 

roads and water quality. Hence, there is a need for a land cover/land use dataset with good 

spatiotemporal coverage as well as consistent accuracy through time. In the current era of 

abundant earth observations, a better approach would be able to take advantage of all 

available useful data to accurate map different land cover types. 

Late fall 2016, the U.S. Geological Survey (USGS) announced a science initiative 

called Land Change Monitoring, Assessment, and Projection (LCMAP) to fulfill the 

demand of “even higher quality data, additional land cover and land change variables, more 

detailed legends, and most importantly, more frequent land change information” (Young, 

2017). LCMAP utilizes the global Landsat archive that dates back to 1972 to characterize 

historical, near real-time land change at any location across the entire Landsat record using 
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the Continuous Change Detection and Classification algorithm (Zhu & Woodcock, 2014). 

Although the future of LCMAP is bright, it will be quite some time before those data 

become generally available. Furthermore, LCMAP is restricted to the few classes of 

Anderson Level 1 plus a “transition” class; thus, it will not be suitable for studies needing 

higher levels of detail, for example, monitoring crop types and rotation. 

Shifts in land cover or environmental conditions, management practice, disturbance 

may lead to a spatiotemporal variation of land surface phenology (LSP), i.e., seasonal 

patterns of reflectance from the vegetated land surface as observed using remote sensing 

(Henebry & de Beurs, 2013). Several methods have been used to simulate the temporal 

variation of vegetation index time series (Jönsson & Eklundh, 2003; Zhang et al., 2003; de 

Beurs & Henebry, 2004; Beck et al., 2006; Qader et al., 2016; Roy & Yan, 2018). Among 

those, the double logistic curve (and its modifications) is one of the more commonly used 

fitting methods. Application of the logistic curve seems better suited to landscapes 

dominated by woody vegetation (Zhang et al., 2003; Ahl et al., 2006; Beck et al., 2006; 

Baumann et al, 2017). However, characterizing phenology for herbaceous vegetation is 

more difficult than for woody vegetation due to strong interannual variation in grasslands 

and croplands (Schwartz & Reed, 1999). Another LSP fitting approach originates from 

traditional phenological models that relate to the progression of thermal time during the 

growing season to events in plant development. Studies have shown that the temporal 

development of remotely sensed vegetation indices in temperate and boreal ecosystems can 

be well approximated as a quadratic function of accumulated growing degree-days 

(AGDD) because AGDD captures well the seasonal course of insolation at middle to higher 
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latitudes (de Beurs & Henebry, 2004; Henebry & de Beurs, 2013; Krehbiel & Henebry 

2016; Krehbiel et al., 2016, 2017).  

Modeled vegetation index time series can provide a larger number of sequentially 

related predictor variables to be exploited by classification techniques. Zhong et al. (2011) 

mapped multiple crops in San Joaquin Valley, California using phenometrics derived by 

fitting the double asymmetric sigmoid functions to the smoothed 8-d NDVI at 250-m 

resolution calculated from MOD09Q1 product. The classification accuracies were between 

70% to 80% for all study years. Xue et al. (2014) computed “phenological markers” 

(timings of phenological events) from the seasonal and trend components of the 16-d 

EVI/NDVI time series at 250-m from MOD13Q1 product. Using only those time markers, 

the authors were able to map land covers in Nanjing City, China using different classifiers 

with overall accuracies of between 88% and 98%. Also using MODIS EVI/NDVI time 

series, Yan et al. (2015) calculated various statistical composites as well as amplitude and 

phase information of harmonic components derived from Fourier transform to be used in 

LCLU classification. The entire Northeast China was classified with an overall accuracy 

of 84% and kappa statistics of 0.79. Using similar data and method to Zhong et al. (2011), 

Qader et al. (2016) accurately mapped broad dominant cover classes in Iraq and 

characterized changes from 2002 to 2012. The overall accuracy for 2003, 2006, and 2013 

classifications were 94%, 91% (using Google Earth images), and 88.5% (ground truths), 

respectively. Both Jia et al. (2014) and Kong et al. (2016) attempted to produce land cover 

maps at finer resolution by fusing Landsat NDVI at 30-m and GF-1 NDVI at 16-m 

resolution, respectively, with MODIS NDVI at 250-m resolution. Phenometrics were then 

computed from the fused datasets to be used in land cover classifications with spectral data. 
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Both studies found that phenometrics significantly improved classification accuracy 

compared to those using only spectral data (overall accuracy increased approximate 10%). 

So far, all extant studies were based on MODIS surface reflectance or vegetation index 

time series which have fine temporal but coarse spatial resolution (250 m), and none of 

those study used thermal data. A convex quadratic (CxQ) LSP model linking a vegetation 

index, such as the NDVI or the enhanced vegetation index (EVI), to thermal time as 

measured by accumulated growing degree-days (AGDD) was first applied to compare 

spring green-up dynamics before and after the collapse of the Soviet Union (de Beurs & 

Henebry, 2004) to detect significant change in a noisy AVHRR time series. Krehbiel et al. 

(2016, 2017) using a similar approach with Landsat (for NDVI) and MODIS (for AGDD) 

time series detected the conversion of croplands to residential areas near Omaha, NE and 

Minneapolis-St. Paul, MN. Although de Beurs & Henebry (2004) and Krehbiel et al. (2016, 

2017) successfully detected land cover changes in their study area through significant shifts 

in phenological metrics, these studies did not quantify areal changes or generate spatially 

explicit LCLU change maps. 

1.2 Research questions 

Understanding rapid land change is not only critical for management and 

conservation of prairie habitats and ecosystem services, but also for projecting production 

of crops and biofuels and the impacts of land conversion on water quality and rural 

transportation infrastructure. Hence, it raises the need for an LCLU dataset with good 

spatiotemporal coverage as well as consistent accuracy through time to enable change 

analysis. There are four major questions I want to address: 
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First, how well does land cover mapping perform if phenological metrics alone are 

used for input to the classification algorithm? Multi-temporal classification has proved 

superior to classification relying on just a few scenes (Franklin et al., 2015). Therefore, a 

current rapid increase of accessible Earth Observation data (particularly from the Landsat 

archive and its augmentation by newer sensors, such as Sentinel 2A and 2B) coupled with 

improved computing power is leading to the emergence of methods for generation annual 

land cover products from time series data. Generally, vegetation index (VI) time series at 

different pixels are often not observed at the same set of days due to variation in data 

quality. This limitation prevents a direct comparison between annual VI patterns to 

distinguish between land cover types. Thus, a common approach to utilize multi-temporal 

images is to generate composited images (Hansen et al., 2011; Zhang & Roy, 2017; 

Teluguntla et al., 2018). However, since the composites images may still contain gaps (if 

the composited period is too short) and mixed spectral signals (from multiple observations), 

the use of composited images in LCLU classification is generally limited to one of two 

options: (1) use multi-year data of short-period composites (e.g., monthly) to generate a 

single land cover map with fairly high details (e.g., NLCD Level-2 land cover/land use 

classes; Zhang & Roy, 2017), or (2) use long-period composites (e.g., quarterly) or statistics 

from multiple short-period composites to generate annual land cover map with only few 

broad categories (Hansen et al., 2011; Teluguntla, 2018).  

To exploit multi-temporal data more fully, I propose a novel approach to map land 

cover map accurately in a timely manner using land surface phenology modeling. First, I 

filtered the entire annual vegetation index and AGDD time series using simple functional 

forms (e.g., Convex Quadratic Model; de Beurs & Henebry 2004 or Hybrid Piecewise 
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Logistic Model; Zhang, 2015) so that land surface phenology at every pixel was described 

by a set of phenological metrics (phenometrics). Those phenometrics then were used as the 

only input for land cover/land use classification. I hypothesized that classification using 

only phenometrics could produce consistent and accurate land cover maps. Output of this 

study was cross-compared with the CDL. The newly generated land cover maps were also 

validated using point reference data and compared with reports from the U.S. Department 

of Agriculture. 

Second, what is the rate and spatial pattern of crop expansion in South Dakota over 

the past decade? Agriculture is the leading industry in South Dakota, contributing 

approximate $21 billion to the State’s economy each year (about 20% of our state’s 

economic activity, SDDA, 2018). Over the past decade, the growing demand for biofuel 

production increased agricultural activities in South Dakota, leading to the conversion of 

grassland to cropland. Although shifts in land cover may impact a wide range of 

stakeholders and interest groups, and society in general (Reitsma et al., 2014), there is not 

yet a comprehensive land change analysis available for South Dakota. Most extant studies 

take a “bi-temporal snapshot” approach (Decision Innovation Solutions, 2013; Wright & 

Wimberly, 2013; Reitsma et al., 2014) that only compares data between two isolated points 

in time and disregards intermediate-year data. The bi-temporal approach does not capture 

the regular rotation of lands into and out of cultivation and the approach can be affected by 

misclassification error at either or both time points. Thus, bi-temporal change detection can 

potentially inflate (or deflate) reported rates of conversion. On the other hand, Lark et al. 

(2015) and Arora & Wolter (2018) provided a continuous picture of land change in South 

Dakota. However, while Lark et al. (2015) only examined changes from 2008 to 2012, the 
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long-term analysis from Arora & Wolter (2018) covered only a portion of the state (Landsat 

WRS-2 Path 30, Rows 28-29). Comprehensive land change analysis in South Dakota over 

the past decade will be critical for management and conservation of prairie habitats and 

ecosystem services, as well as for projecting production of crops and of biofuels and 

assessing the impacts of conversion on rural infrastructure, such as roads and water use and 

water quality. 

LSP-based classification is a simple and consistent way to map land cover/land use. 

However, from initial results, three major challenges of the LSP-based classification were 

identified. First, the proposed method only performs well with vegetated land covers, 

especially crops. Estimated areas for non-crop covers can be unreliable (e.g., 

overestimation of grassland and underestimation of urban/built up area). A better land 

cover map would enable detection of changes not in only cropland but in other cover types. 

Second, LSP model fitting may fail due to few valid observations being available as a result 

of obscuring cloud cover and/or sensor artifacts. Those failed models create gaps in the 

outputs preventing direct comparison of land cover maps for change detection. Although 

the gaps can be filled using temporal and/or spatial context, the filling process itself can be 

complicated. The gap filling often works only for small gaps, and/or when classification 

task only retrieves a few broad land cover classes (e.g., I only mapped three land covers in 

South Dakota: cropland, grassland, and others). For example, if before- and after-year 

covers are crop, current-year cover is very likely crop. However, if before- and after-year 

covers are corn, it still not enough information to confirm that current-year cover is corn 

since rotation with soybean is likely but not guaranteed. Finally, the classification accuracy 

may vary due to the chosen model as one may be more suitable for some certain vegetation 
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types than others. Above challenges of LSP-based classification prohibit the creation of 

complete, high detailed land cover maps over a large area with diversity land cover. Thus, 

it will significantly reduce the use of those maps in change analysis as it only able to focus 

on the most accurate class and in small area where coverage is complete (or gaps are small 

enough to be filled). An effort to overcome those limitations leads me to ask the third and 

fourth research questions. Third, how will the classification accuracy be impacted by 

selecting different LSP models to fit annual time series? Fourth, can LSP-based 

classification be improved for non-vegetated surfaces by incorporating information from 

all other spectral bands? 

1.3 Data and Method 

1.3.1  Study Area 

Among the States composing the NGP region, we selected South Dakota as our 

study area for four reasons: (1) it has continental climate with high seasonal and interannual 

variation, pronounced gradients in precipitation (east-west) and temperature (north-south); 

(2) the State has strong livestock, dairy, and row crop production industries that make it 

economically viable to convert grasslands to croplands (Reitsma et al., 2015); (3) unique 

high resolution reference datasets were available for training and validation; and (4) South 

Dakota is the hot spot of grassland conversion to cropland between 2006 and 2011 as 

reported by Wright and Wimberly (2013). 

1.3.2 Input Data 

Several satellite products were used in this research. Surface reflectance products 

at 30 m resolution from Landsat Collection-1 (from Landsat 5, 7 & 8) (USGS, 2016), its 

newer structure—Landsat Analysis Ready Data (ARD) (USGS, 2018), and Harmonized 
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Landsat Sentinel-2 (HLS) (Claverie  et al., 2018) were used to construct vegetation index 

time series, including Enhanced Vegetation Index (EVI) and 2-band EVI (EVI2), and 

spectral variables (spectral band and normalized ratio composites). Collections 5 and 6 of 

the MODIS level-3 global Land Surface Temperature (LST) & Emissivity 8-day composite 

products at 1 km resolution (from both Aqua and Terra satellites) (NASA LP-DAAC, 2013; 

Wan et al., 2015a&b) were used to compute accumulated growing degree-days (AGDD) 

time series. The Cropland Data Layer (CDL; Boryan et al., 2011) was used to generate 

sample datasets and cross-compare with outputs from this study. Beside the CDL, a rich 

reference point dataset derived from high spatial resolution imagery (only cover 3 years: 

2006, 2012 & 2014; Reitsma et al, 2015; 2016) was also used to evaluate accuracy of the 

land cover maps newly generated in this study. 

1.3.3  Technical Approach 

Research question #1 

First, an annual time series of accumulated growing degree-days (AGDD) was built 

from MODIS 8-day composites of land surface temperatures. Using the EVI time series 

derived from Landsat Collection 1’s surface reflectance, a downward convex quadratic 

model to each year’s progression of AGDD (derived from Collection 5 LST) was then fit 

at each pixel (i.e., EVI = α+β×AGDD−γ×AGDD2). Phenological metrics derived from 

fitted model and the goodness of fit then are submitted to a random forest classifier (RFC) 

to characterize LCLU for four sample counties (Roberts, Bon Homme, Codington, 

Walworth: located within the Landsat’s sidelaps to achieve more observations) in South 

Dakota in three years (2006, 2012, 2014) when reference point datasets are available for 

training and validation. To answer research question #1, accuracy of RFC models and 
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predicted land cover maps were evaluated by testing data generated from the CDL. To 

examine the sensitivity of the RFC to sample size and design, land cover classifications 

were performed under different sample selection scenarios. 

Research question #2 

To characterize land changes in the study area, a fine spatiotemporal resolution land 

cover dataset with just three broad categories (“cropland”, “grassland”, and “others”) was 

generated using the phenometrically-based classification developed to answer the research 

question #1. To overcome the limitations of the bi-temporal change detection, a trajectory-

based approach—centers on the logistic regression—was proposed that considers the entire 

land cover/land use time series to determine if there was actual land change at a particular 

location. Crop expansion in South Dakota between 2007 and 2015 were then summarized 

for each county or each NASS reporting district to answer research question #2. The results 

were compared against various official data sources released by the United States 

Department of Agriculture. 

Research questions #3 and #4 

First, several annual time series of remotely sensed data were built, including: 

accumulated growing degree-days from the Collection 6 MODIS 8-day land surface 

temperature product, 2-band Enhanced Vegetation Index (EVI2), and spectral statistics 

from the Harmonized Landsat Sentinel-2 as well as from the U.S. Landsat Analysis Ready 

Data surface reflectance products. Then at each pixel, EVI2 time series were simulated 

using two land surface phenology models: Convex Quadratic model (CxQ) and Hybrid 

Piecewise Logistic Model (HPLM). Phenometrics and spectral variables were submitted 

separately and together to Random Forest Classifiers to depict land cover/land use in 
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Roberts County, South Dakota. Four classification scenarios using different sets of input 

variables were performed: (1) only CxQ phenometrics, (2) only HPLM phenometrics, (3) 

only spectral variables, and (4) the combined spectral-phenological variables. Comparisons 

between classification scenarios, which answer research questions #3 and #4, were 

conducted based on conventional accuracy (Congalton & Green, 2008) metrics and two 

alternatives of kappa statistic (Pontius & Millones, 2011). 

1.4 Significance of the research 

My dissertation research will advance the researcher’s toolkit for land cover 

mapping and change analysis as well as shine fresh light on what has been a controversial 

issue since 2013: the conversion of mixed-grass prairie to commodity crops, particularly 

to corn and soybean, due to the increasing demand for biofuels,  animal feed, and exports 

1.5 Thesis structure 

This research dissertation has five chapters, including this introductory first 

chapter. Chapter Two explores the accuracy of land cover classification using 

phenometrics generated from the Convex Quadratic model solely (research question #1). 

The chapter also examined performance of Random Forest Classifiers (RFC) under 

multiple sampling designs (no-controlled versus controlled samples) and increasing sample 

sizes. Chapter Three provides a comprehensive analysis of cropland expansion in South 

Dakota between 2007 and 2015 (research question #2). To overcome the limitation of the 

conventional bi-temporal method, the trajectory-based change detection approach, which 

utilized the entire land cover time series to separate between true changes and mis-

classifications as well as rotations of land use, was proposed. Chapter Four further explores 

land surface phenology-based classification demonstrated in Chapter Two. In the chapter, 
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I evaluated performance of land cover classification using (1) only phenological metrics 

derived from two different land surface phenology models, (2) only spectral composited 

bands and ratios, and (3) combined phenological-spectral variables. Finally, Chapter Five 

presents the main research summaries and recommendations. 
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CHAPTER 2 

 

CHARACTERIZING LAND COVER/LAND USE FROM MULTIPLE YEARS OF 

LANDSAT AND MODIS TIME SERIES: A NOVEL APPROACH USING LAND 

SURFACE PHENOLOGY MODELING AND RANDOM FOREST CLASSIFIERS 

 

Paper #1:  

Nguyen, L.H.; Joshi, D.R.; Clay, D.E; Henebry, G.M. 2019. Characterizing land cover/land use from multiple 

years of Landsat and MODIS time series: a novel approach using land surface phenology modeling and 

random forest classifiers. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2018.12.016. 

 

2.0 Abstract 

Over the last 20 years, substantial amounts of grassland have been converted to 

other land uses in the Northern Great Plains. Most of land cover/land use (LCLU) 

assessments in this region have been based on the U.S. Department of Agriculture - 

Cropland Data Layer (USDA - CDL), which may be inconsistent. Here, we demonstrate 

an approach to map land cover utilizing multi-temporal Earth Observation data from 

Landsat and MODIS. We first built an annual time series of accumulated growing degree-

days (AGDD) from MODIS 8-day composites of land surface temperatures. Using the 

Enhanced Vegetation Index (EVI) derived from Landsat Collection 1’s surface reflectance, 

we then fit at each pixel a downward convex quadratic model to each year’s progression 

of AGDD (i.e., EVI = α+β×AGDD−γ×AGDD2). Phenological metrics derived from fitted 

model and the goodness of fit then are submitted to a random forest classifier (RFC) to 

characterize LCLU for four sample counties in South Dakota in three years (2006, 2012, 
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Table S4.5. Accuracy assessment of RFC models summarized by sample pool scenarios. 

 2016  2017 

 ARD HLS  ARD HLS 

Metrics C1S C1M C2S C2M C1S C1M C2S C2M  C1S C1M C2S C2M C1S C1M C2S C2M 

PA_Corn 94.6 95.3 95.3 95.7 91.2 92.1 92.3 92.6  93.9 94.5 94.7 95.4 91.8 93.2 93.4 94.0 

PA_Wheat 75.4 77.9 78.3 78.6 70.2 72.9 73.1 74.4  59.0 63.4 63.8 66.3 57.0 62.5 61.3 63.3 

PA_Alfalfa 73.5 80.3 79.1 82.6 69.3 77.1 77.2 79.9  74.2 80.2 78.2 82.7 71.2 80.1 76.4 82.8 

PA_Soybean 95.4 96.1 96.1 96.6 90.3 91.1 91.8 92.1  95.3 95.7 95.7 96.2 93.6 94.6 94.6 95.1 

PA_Other Crops 11.2 35.4 19.7 50.9 15.3 43.9 25.2 55.0  15.6 21.2 22.3 29.7 15.6 25.1 21.2 33.2 

PA_Water 97.4 98.4 98.2 98.3 96.2 97.9 97.8 98.2  96.4 97.1 97.6 97.5 95.4 96.8 97.3 97.3 

PA_Barren/Dev. 55.1 58.6 59.7 60.9 47.4 47.2 54.3 56.1  54.3 55.6 57.6 58.5 48.6 44.6 50.8 51.9 

PA_Forest 87.7 89.5 93.1 94.0 84.3 87.8 93.1 94.5  83.3 84.2 87.5 88.3 81.6 84.4 88.9 90.8 

PA_Grassland 93.0 94.1 93.8 94.9 93.6 95.0 95.1 96.1  93.4 94.2 94.2 94.9 94.0 94.7 95.2 95.8 

PA_Wetland 66.8 74.4 72.1 79.2 73.9 80.4 82.0 87.7  67.7 72.8 74.6 78.9 69.9 76.7 79.8 84.2 

                  

UA_Corn 94.8 95.5 95.4 95.9 89.8 90.6 91.3 91.5  94.7 95.3 95.3 95.9 91.8 93.0 93.1 93.4 

UA_Wheat 84.4 89.3 87.6 90.2 82.0 86.5 85.5 89.1  80.6 84.2 83.1 86.1 80.4 82.8 83.3 84.3 

UA_Alfalfa 83.7 88.8 87.7 91.2 79.8 87.2 86.6 89.6  87.9 91.0 90.9 92.9 85.0 91.5 90.0 93.6 

UA_Soybean 93.6 94.7 94.7 95.2 90.4 91.6 91.7 92.2  92.7 93.1 93.4 93.9 91.5 92.6 92.9 93.4 

UA_Other Crops 35.8 61.3 49.9 70.2 46.6 67.0 54.0 71.0  41.0 43.8 50.3 52.8 40.4 47.6 45.0 55.1 

UA_Water 97.5 97.6 97.7 97.6 96.3 96.2 96.4 96.9  96.4 96.0 96.2 96.5 95.9 96.0 95.8 96.3 

UA_Barren/Dev. 77.0 80.2 77.1 79.0 72.4 74.1 74.0 75.9  77.0 78.5 77.7 78.6 75.7 73.4 76.2 77.1 

UA_Forest 86.7 88.5 90.4 91.1 84.8 87.5 90.6 92.4  80.7 82.9 85.4 86.6 82.4 84.3 88.3 89.7 

UA_Grassland 84.9 87.2 86.4 88.6 85.6 87.6 88.9 90.4  85.5 87.4 88.0 89.3 85.3 87.5 88.6 90.0 

UA_Wetland 74.2 79.5 80.1 84.4 76.3 81.6 83.4 87.5  73.9 77.7 78.8 82.1 75.1 79.5 81.6 84.9 

OA 88.8 90.7 90.4 91.8 86.8 88.7 89.4 90.7  89.0 90.2 90.5 91.6 87.9 89.6 90.3 91.3 

k_L 0.904 0.923 0.921 0.935 0.884 0.904 0.909 0.922  0.909 0.921 0.923 0.933 0.898 0.915 0.922 0.932 

k_Q 0.917 0.926 0.924 0.932 0.906 0.914 0.921 0.927  0.913 0.920 0.924 0.929 0.908 0.917 0.920 0.927 
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Table S4.6.  The nonparametric Mann–Whitney U test and the TOST equivalence test for the (P01 

versus P25 RFC models) and (C1S versus C2M RFC models) comparison. The null hypothesis is 

that a random accuracy metric of the first scenario will be less than a random accuracy metric of 

the second scenario (or the first population has smaller values than the second population). 

Significance level of the U test are indicated by ***, ** and * for p-values of less than 0.001, 0.01, 

0.05 and NS for “not significant”. Results of the TOST equivalence test are highlighted in light 

blue for “not equivalent” and light yellow for “equivalent”. 

 P01 versus P25  C1S versus C2M 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** ***  *** *** *** *** 

PA_Wheat *** *** *** ***  *** *** *** *** 

PA_Alfalfa *** *** *** ***  *** *** *** *** 

PA_Soybean *** *** *** ***  *** *** *** *** 

PA_Other Crops *** *** *** ***  *** *** *** *** 

PA_Water NS NS NS NS  *** *** *** *** 

PA_Barren/Dev. *** *** *** ***  *** *** *** ** 

PA_Forest NS NS NS NS  *** *** *** *** 

PA_Grassland *** *** *** ***  *** *** *** *** 

PA_Wetland *** *** *** ***  *** *** *** *** 

          

UA_Corn *** *** *** ***  *** *** *** *** 

UA_Wheat NS NS NS NS  *** *** *** *** 

UA_Alfalfa NS NS NS NS  *** *** *** *** 

UA_Soybean *** *** *** ***  *** *** *** *** 

UA_Other Crops *** *** *** ***  *** *** *** *** 

UA_Water NS NS NS NS  *** *** * *** 

UA_Barren/Dev. ** *** * **  *** *** ** ** 

UA_Forest NS NS NS NS  *** *** *** *** 

UA_Grassland *** *** *** ***  *** *** *** *** 

UA_Wetland *** *** *** ***  *** *** *** *** 

          

OA *** *** *** ***  *** *** *** *** 

k_L *** *** *** ***  *** *** *** *** 

k_Q *** *** *** ***  *** *** *** *** 
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Table S4.7. Accuracy assessment of RFC models summarized by sample size scenarios. 

 2016  2017 

 ARD HLS  ARD HLS 

Metrics P01 P05 P15 P25 P01 P05 P15 P25  P01 P05 P15 P25 P01 P05 P15 P25 

PA_Corn 94.1 94.8 95.8 96.2 89.8 91.8 93.1 93.6  93.3 94.4 95.2 95.6 90.7 93.2 94.1 94.5 

PA_Wheat 58.1 79.2 85.3 87.4 49.6 73.7 82.4 85.0  45.8 64.0 70.3 72.5 44.4 62.4 67.4 69.9 

PA_Alfalfa 61.9 79.9 85.7 87.9 55.0 77.9 84.2 86.5  56.8 81.4 87.5 89.7 55.0 80.0 87.1 88.5 

PA_Soybean 94.6 96.2 96.6 96.8 88.5 91.6 92.5 92.8  93.3 95.8 96.7 97.1 92.1 94.4 95.5 96.0 

PA_Other Crops 7.1 21.8 40.0 48.3 9.1 27.2 47.3 55.9  0.0 16.6 31.6 40.6 0.0 18.8 33.2 43.0 

PA_Water 97.5 98.1 98.3 98.5 97.0 97.4 97.9 97.9  96.3 96.9 97.6 97.8 96.0 96.3 97.1 97.4 

PA_Barren/Dev. 49.6 58.2 62.4 64.2 38.8 50.7 56.5 58.9  47.0 55.8 60.8 62.5 36.1 48.0 54.8 57.0 

PA_Forest 86.6 91.4 92.8 93.4 84.5 90.3 92.0 92.8  77.9 86.7 89.0 89.7 79.1 87.0 89.4 90.3 

PA_Grassland 92.6 94.0 94.5 94.7 93.7 94.9 95.5 95.7  93.1 94.1 94.5 94.9 93.9 94.8 95.4 95.6 

PA_Wetland 64.8 73.7 76.4 77.6 74.5 81.3 83.6 84.5  64.4 73.8 77.3 78.6 69.2 78.3 81.0 82.2 

                  

UA_Corn 93.0 95.6 96.4 96.7 87.4 91.1 92.2 92.6  92.8 95.4 96.4 96.7 89.9 92.8 94.0 94.6 

UA_Wheat 84.5 87.5 89.4 90.2 80.6 85.6 88.0 89.0  70.5 84.9 88.7 89.8 67.6 82.0 89.9 91.3 

UA_Alfalfa 75.2 91.2 92.1 92.9 69.9 90.1 91.1 92.0  81.3 92.8 94.0 94.6 79.1 92.4 93.9 94.7 

UA_Soybean 92.2 94.3 95.6 96.1 87.9 91.3 93.0 93.6  91.0 93.0 94.3 94.8 89.8 92.6 93.8 94.3 

UA_Other.Crops 7.0 48.0 77.6 84.7 9.0 55.8 84.3 89.5  0.0 27.1 73.9 86.9 0.0 29.4 73.2 85.5 

UA_Water 97.4 97.6 97.7 97.8 96.1 96.2 96.6 96.8  94.9 96.2 96.9 97.1 95.0 96.0 96.4 96.5 

UA_Barren/Dev. 72.5 78.3 80.7 81.7 66.0 73.7 77.9 78.9  70.5 78.1 81.0 82.2 67.1 75.7 79.1 80.4 

UA_Forest 85.3 89.0 90.8 91.6 84.7 88.2 90.8 91.6  80.0 83.4 85.6 86.7 82.1 85.8 87.9 88.9 

UA_Grassland 83.7 86.9 87.9 88.5 84.8 88.1 89.5 90.1  84.5 87.6 88.8 89.3 84.8 87.8 89.2 89.7 

UA_Wetland 72.8 79.6 82.4 83.5 74.6 82.7 85.2 86.3  72.2 77.7 80.7 81.9 73.8 79.9 83.1 84.2 

OA 87.1 90.5 91.8 92.3 84.8 89.0 90.6 91.2  87.1 90.2 91.7 92.2 86.3 89.7 91.3 91.9 

k_L 0.906 0.919 0.927 0.931 0.883 0.903 0.914 0.919  0.907 0.918 0.928 0.932 0.899 0.914 0.924 0.929 

k_Q 0.877 0.929 0.944 0.949 0.862 0.922 0.940 0.945  0.871 0.926 0.942 0.947 0.866 0.923 0.939 0.944 
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Table S4.8. Producer’s and user’s accuracies in percent (%) of 2017 RFC models summarized by sets of 1 

input variables. A particular scenario (current column) was compared to a scenario on the left (left column) 2 

using the nonparametric Mann–Whitney U test and the TOST equivalence tests. The null hypothesis of the 3 

U test is that a random accuracy metric of the first scenario (left column) will be less than a random accuracy 4 

metric of the second scenario (current column). Significance level of the U test are indicated by ***, ** 5 

and * for p-values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST 6 

equivalence test are highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 7 

 ARD  HLS 

Metrics CxQ HPLM  SPL  CMB   CxQ HPLM  SPL  CMB  

PA_Corn 92.2 95.2 *** 94.0 NS 97.1 ***  91.5 94.2 *** 90.9 NS 95.9 *** 

PA_Wheat 81.2 77.7 NS 14.7 NS 79.0 ***  74.9 81.1 *** 8.1 NS 80.0 *** 

PA_Alfalfa 71.5 86.2 *** 75.9 NS 81.9 ***  70.4 88.8 *** 69.9 NS 81.4 *** 

PA_Soybean 94.5 92.7 NS 97.0 *** 98.8 ***  92.5 93.0 ** 94.6 *** 97.8 *** 

PA_Other Crops 34.6 25.4 NS 5.9 NS 22.9 ***  31.7 29.3 NS 4.6 NS 29.4 *** 

PA_Water 93.8 96.1 *** 99.4 *** 99.4 NS  93.1 94.7 *** 99.5 *** 99.3 NS 

PA_Barren/Dev. 43.4 43.5 NS 69.5 *** 69.7 NS  40.1 35.1 NS 59.3 *** 61.4 ** 

PA_Forest 73.7 78.7 *** 94.8 *** 96.1 ***  75.2 80.7 *** 94.4 *** 95.4 *** 

PA_Grassland 92.1 93.2 *** 95.0 *** 96.3 ***  93.0 93.2 * 96.2 *** 97.3 *** 

PA_Wetland 71.0 71.4 NS 72.7 *** 78.9 ***  77.7 72.2 NS 77.5 *** 83.2 *** 

                

UA_Corn 95.1 94.7 NS 93.3 NS 98.2 ***  92.8 94.4 *** 87.2 NS 97.0 *** 

UA_Wheat 89.8 90.7 NS 61.4 NS 92.1 ***  88.7 91.1 *** 57.5 NS 93.6 *** 

UA_Alfalfa 87.3 91.4 NS 89.7 * 94.4 ***  86.7 93.3 NS 86.0 NS 94.1 *** 

UA_Soybean 92.9 94.2 *** 89.4 NS 96.6 ***  92.2 93.7 *** 88.3 NS 96.1 *** 

UA_Other Crops 55.0 51.5 NS 28.4 NS 52.9 ***  52.8 53.7 NS 24.7 NS 56.9 *** 

UA_Water 92.3 93.2 *** 99.9 *** 99.8 NS  91.2 93.3 *** 99.8 *** 99.6 NS 

UA_Barren/Dev. 62.2 63.8 *** 93.3 *** 92.4 NS  59.2 63.0 *** 91.8 *** 88.3 NS 

UA_Forest 72.0 77.1 *** 93.1 *** 93.4 NS  76.7 82.8 *** 91.3 *** 94.0 *** 

UA_Grassland 86.2 86.4 NS 88.1 *** 89.6 ***  87.6 85.2 NS 88.8 *** 89.9 *** 

UA_Wetland 70.7 74.5 *** 81.0 *** 86.3 ***  73.0 74.5 *** 85.5 *** 87.9 *** 

  8 
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Table S4.9. The nonparametric Mann–Whitney U test and the TOST equivalence test for the comparison 9 

between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a 10 

random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the 11 

second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-12 

values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 13 

highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 14 

 CxQ versus SPL  HPLM versus SPL 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** NS  *** *** NS NS 

PA_Wheat NS NS NS NS  NS NS NS NS 

PA_Alfalfa *** *** NS NS  NS NS NS NS 

PA_Soybean *** *** *** ***  *** *** *** *** 

PA_Other Crops NS NS NS NS  NS NS NS NS 

PA_Water *** *** *** ***  *** *** *** *** 

PA_Barren/Dev. *** *** *** ***  *** *** *** *** 

PA_Forest *** *** *** ***  *** *** *** *** 

PA_Grassland *** *** *** ***  *** *** *** *** 

PA_Wetland *** *** *** NS  *** *** *** *** 

          

UA_Corn *** *** NS NS  *** *** NS NS 

UA_Wheat NS NS NS NS  NS NS NS NS 

UA_Alfalfa *** ** NS NS  *** *** * NS 

UA_Soybean *** *** NS NS  NS NS NS NS 

UA_Other Crops NS *** NS NS  NS *** NS NS 

UA_Water *** *** *** ***  *** *** *** *** 

UA_Barren/Dev. *** *** *** ***  *** *** *** *** 

UA_Forest *** *** *** ***  *** *** *** *** 

UA_Grassland *** *** *** ***  *** *** *** *** 

UA_Wetland *** *** *** ***  *** *** *** *** 

          

OA *** *** *** ***  *** *** *** NS 

k_L *** *** *** ***  *** *** *** *** 

k_Q *** *** NS NS  *** *** NS NS 

  15 
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Table S4.10. The nonparametric Mann–Whitney U test and the TOST equivalence test for the comparison 16 

between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a 17 

random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the 18 

second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-19 

values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 20 

highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 21 

 CxQ versus HPLM  SPL versus CMB 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** ***  *** *** *** *** 

PA_Wheat NS NS NS ***  *** *** *** *** 

PA_Alfalfa *** *** *** ***  *** *** *** *** 

PA_Soybean *** *** NS **  *** *** *** *** 

PA_Other Crops NS NS NS NS  *** ** *** *** 

PA_Water *** *** *** ***  NS NS NS NS 

PA_Barren/Dev. *** *** NS NS  NS NS NS ** 

PA_Forest *** *** *** ***  * NS *** *** 

PA_Grassland *** NS *** *  *** *** *** *** 

PA_Wetland NS NS NS NS  *** *** *** *** 

          

UA_Corn *** *** NS ***  *** *** *** *** 

UA_Wheat * NS NS ***  *** *** *** *** 

UA_Alfalfa NS NS NS NS  *** *** *** *** 

UA_Soybean *** *** *** ***  *** *** *** *** 

UA_Other Crops *** NS NS NS  *** * *** *** 

UA_Water *** *** *** ***  NS NS NS NS 

UA_Barren/Dev. *** *** *** ***  NS NS NS NS 

UA_Forest *** *** *** ***  ** *** NS *** 

UA_Grassland *** NS NS NS  NS *** *** *** 

UA_Wetland NS NS *** ***  *** *** *** *** 

          

OA *** NS *** ***  *** *** *** *** 

k_L *** NS *** ***  *** *** *** *** 

k_Q NS NS NS NS  *** *** *** *** 

  22 
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Table S4.11. The nonparametric Mann–Whitney U test and the TOST equivalence test for the comparison 23 

between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a 24 

random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the 25 

second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-26 

values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 27 

highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 28 

 CxQ versus CMB  HPLM versus CMB 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** ***  *** *** *** *** 

PA_Wheat *** *** ** ***  *** *** *** ** 

PA_Alfalfa *** *** *** ***  NS NS NS NS 

PA_Soybean *** *** *** ***  *** *** *** *** 

PA_Other Crops NS NS NS NS  NS NS NS NS 

PA_Water *** *** *** ***  *** *** *** *** 

PA_Barren/Dev. *** *** *** ***  *** *** *** *** 

PA_Forest *** *** *** ***  *** *** *** *** 

PA_Grassland *** *** *** ***  *** *** *** *** 

PA_Wetland *** *** *** ***  *** *** *** *** 

          

UA_Corn *** *** *** ***  *** *** *** *** 

UA_Wheat *** *** *** ***  *** *** *** *** 

UA_Alfalfa *** *** *** ***  *** *** *** *** 

UA_Soybean *** *** *** ***  *** *** *** *** 

UA_Other Crops *** *** NS ***  *** *** * *** 

UA_Water *** *** *** ***  *** *** *** *** 

UA_Barren/Dev. *** *** *** ***  *** *** *** *** 

UA_Forest *** *** *** ***  *** *** *** *** 

UA_Grassland *** *** *** ***  *** *** *** *** 

UA_Wetland *** *** *** ***  *** *** *** *** 

          

OA *** *** *** ***  *** *** *** *** 

k_L *** *** *** ***  *** *** *** *** 

k_Q *** *** *** ***  *** *** *** *** 

 29 
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Table S4.12. Pixel-based comparison between 2016 predicted land cover maps and the CDL 

summarized by sample pools. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL C1S C1M C2S C2M  C1S C1M C2S C2M 

Corn Area 662 643 639 643 639   668 666 670 670 
 

UA 
 92.7 92.9 92.6 92.7  86.2 86.0 85.9 85.8 

 
PA 

 90.2 89.6 90.0 89.5  87.0 86.6 87.0 86.8 

Wheat Area 103 100 104 103 105   97 101 102 105 
 

UA 
 82.5 80.2 80.9 79.7  79.5 77.1 76.1 74.1 

 
PA 

 80.6 81.5 81.2 81.6  75.1 75.6 75.7 76.1 

Alfalfa Area 45 30 32 31 33   31 33 31 35 
 

UA 
 76.5 74.0 75.1 72.6  69.5 66.1 68.3 64.4 

 
PA 

 51.0 52.5 52.1 53.7  47.2 48.8 47.6 49.5 

Soybean Area 746 730 721 721 714   712 696 696 688 
 

UA 
 90.9 91.4 91.4 91.8  87.3 88.2 88.2 88.7 

 
PA 

 88.9 88.4 88.3 87.9  83.3 82.2 82.3 81.7 

Other Crops Area 13 0 0 0 0   0 1 1 1 
 

UA 
 0.0 0.0 0.0 0.0  0.0 0.0 89.1 0.0 

 
PA 

 0.0 0.0 0.0 0.0  0.0 0.0 4.0 0.0 

Water Area 154 127 123 121 119   131 126 125 125 
 

UA 
 96.7 97.2 97.4 97.5  93.0 94.1 94.4 94.5 

 
PA 

 79.7 77.7 76.3 75.6  79.2 77.1 76.6 76.5 

Barren/Dev. Area 131 51 50 47 51   47 53 48 58 
 

UA 
 51.0 48.6 49.5 46.6  41.6 36.3 38.7 33.1 

 
PA 

 20.1 18.6 17.8 18.4  15.0 14.8 14.2 14.7 

Forest Area 64 62 64 64 67   63 65 63 65 
 

UA 
 68.3 67.1 66.7 64.8  62.9 61.6 62.2 61.0 

 
PA 

 65.7 66.2 66.1 67.2  61.1 61.8 60.6 61.3 

Grassland Area 761 923 918 924 916   933 939 944 955 
 

UA 
 74.6 74.6 74.5 74.7  72.9 72.5 71.9 71.2 

 
PA 

 90.5 90.1 90.4 90.0  89.5 89.5 89.2 89.5 

Wetland Area 262 274 290 288 295   259 262 262 240 
 

UA 
 48.0 45.5 45.3 43.9  51.9 50.3 50.4 51.2 

 
PA 

 50.0 50.3 49.7 49.5  51.3 50.2 50.3 46.9 

OA 80.8 80.4 80.4 80.1   77.9 77.4 77.4 77.0 

k_loc 0.820 0.819 0.819 0.817   0.782 0.777 0.779 0.780 

k_quan 0.878 0.868 0.867 0.863   0.875 0.871 0.866 0.857 
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Table S4.13. Pixel-based comparison between 2017 predicted land cover maps and the CDL 

summarized by sample pools. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL C1S C1M C2S C2M  C1S C1M C2S C2M 

Corn Area 685 607 597 601 595   616 602 606 602 

 UA  95.4 95.8 95.8 95.9  92.0 92.9 92.6 92.7 

 PA  84.6 83.6 84.1 83.3  82.8 81.6 81.9 81.5 

Wheat Area 87 63 65 65 65   63 63 63 63 

 UA  88.0 87.7 87.6 87.7  87.6 87.5 87.5 87.4 

 PA  64.3 65.6 65.4 65.8  63.8 63.9 63.9 63.8 

Alfalfa Area 50 37 36 39 38   36 36 38 38 

 UA  83.8 82.2 81.0 80.2  80.1 79.1 78.4 76.8 

 PA  61.4 60.1 64.0 61.1  57.9 56.6 59.6 57.8 

Soybean Area 803 817 806 811 803   820 811 812 808 

 UA  89.7 90.3 90.1 90.5  87.1 87.6 87.5 87.7 

 PA  91.3 90.7 90.9 90.4  89.0 88.5 88.5 88.2 

Other Crops Area 8 0 0 1 0   0 0 0 0 

 UA  0.0 0.0 99.0 0.0  0.0 0.0 0.0 0.0 

 PA  0.0 0.0 8.3 0.0  0.0 0.0 0.0 0.0 

Water Area 153 121 120 116 115   125 122 119 119 

 UA  97.0 97.2 97.8 97.8  93.7 94.2 95.1 95.1 

 PA  76.7 75.9 73.8 73.7  76.2 75.2 73.8 73.6 

Barren/Dev. Area 111 46 50 48 53   44 49 46 51 

 UA  52.4 50.0 51.3 48.7  46.2 43.4 43.3 40.7 

 PA  21.6 22.5 22.5 23.5  18.3 19.1 18.1 18.8 

Forest Area 63 66 69 72 73   60 63 62 61 

 UA  63.6 62.4 60.7 59.5  63.2 61.6 61.8 62.0 

 PA  67.0 68.2 69.2 69.4  60.3 61.6 60.6 60.0 

Grassland Area 744 920 914 911 905   938 937 946 949 

 UA  73.6 73.7 73.7 73.8  72.0 71.8 71.3 70.9 

 PA  91.1 90.6 90.3 89.8  90.7 90.4 90.6 90.5 

Wetland Area 237 263 283 277 293   239 258 248 250 

 UA  48.7 45.6 46.1 43.8  50.5 47.0 47.5 46.3 

 PA  54.0 54.5 54.0 54.3  50.9 51.3 49.9 48.9 

OA 81.2 80.8 80.8 80.4   79.5 79.0 78.9 78.6 

k_loc 0.841 0.838 0.838 0.833   0.814 0.811 0.810 0.806 

k_quan 0.852 0.846 0.848 0.843   0.858 0.851 0.851 0.851 
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Table S4.14. Pixel-based comparison between 2016 predicted land cover maps and the CDL 

summarized by sample sizes. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL P01 P05 P15 P25  P01 P05 P15 P25 

Corn Area 662 651 638 640 642   690 661 661 662 
 UA  91.0 92.8 93.0 93.1  82.9 86.3 87.0 87.1 
 PA  89.5 89.5 90.0 90.3  86.5 86.3 86.9 87.2 

Wheat Area 103 75 103 111 112   66 100 111 113 
 UA  87.6 79.0 77.4 77.4  86.3 75.0 72.8 73.1 
 PA  64.4 79.6 83.7 84.6  55.7 73.0 79.1 80.6 

Alfalfa Area 45 24 31 34 34   23 32 35 35 
 UA  82.2 74.1 72.9 72.9  75.8 66.3 64.6 64.9 
 PA  43.3 51.9 54.4 55.8  39.5 47.8 50.0 50.9 

Soybean Area 746 724 722 721 722   683 702 704 706 
 UA  90.0 91.2 91.6 91.8  86.7 87.6 88.2 88.5 
 PA  87.3 88.2 88.6 88.8  79.4 82.4 83.3 83.7 

Other Crops Area 13 0 0 0 0   0 0 1 1 
 UA  0.0 0.0 0.0 0.0  0.0 0.0 87.9 83.4 
 PA  0.0 0.0 0.0 0.0  0.0 0.0 4.2 6.4 

Water Area 154 119 121 123 125   125 126 127 128 
 UA  97.3 97.4 97.3 97.1  93.9 94.3 94.2 94.1 
 PA  75.6 76.6 77.6 78.6  76.2 76.9 77.7 78.0 

Barren/Dev. Area 131 46 49 53 55   44 50 52 54 
 UA  44.8 49.8 50.7 51.1  32.8 37.2 40.2 40.7 
 PA  15.7 18.7 20.7 21.6  11.0 14.2 16.0 16.7 

Forest Area 64 64 65 64 64   62 65 64 64 
 UA  65.8 66.0 66.9 67.3  61.8 61.0 62.0 62.3 
 PA  65.1 66.6 66.8 66.8  59.0 61.8 61.9 61.9 

Grassland Area 761 966 917 903 897   988 949 930 925 
 UA  71.9 74.6 75.5 76.0  69.6 71.7 72.9 73.3 
 PA  91.3 90.0 89.7 89.7  90.4 89.5 89.2 89.2 

Wetland Area 262 272 294 291 289   260 256 255 253 

 UA  43.5 44.7 46.4 47.3  47.8 50.5 51.9 52.7 

 PA  45.0 50.0 51.5 52.1  47.4 49.2 50.4 50.8 

OA 78.9 80.1 80.7 81.0   75.5 77.2 78.0 78.3 

k_loc 0.808 0.817 0.821 0.823   0.776 0.776 0.783 0.786 

k_quan 0.853 0.866 0.872 0.876   0.828 0.868 0.874 0.876 
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Table S4.16. Pixel-based comparison between 2017 predicted land cover maps and the CDL 

summarized by sets of input variables. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL CxQ HPLM SPL CMB  CxQ HPLM SPL CMB 

Corn Area 685 597 625 602 604   613 627 641 608 
 UA  91.6 90.7 90.9 95.1  88.3 88.4 82.7 92.1 
 PA  79.9 82.8 80.0 83.9  79.1 81.0 77.4 81.8 

Wheat Area 87 64 66 14 70   59 70 2 67 
 UA  81.7 84.5 55.2 83.4  80.9 81.6 76.7 84.7 
 PA  60.0 64.5 8.7 67.1  55.4 66.2 1.8 65.8 

Alfalfa Area 50 38 42 39 36   34 43 35 36 
 UA  81.2 73.6 69.0 82.1  80.2 70.6 67.9 78.8 
 PA  62.3 61.3 53.7 59.0  54.9 61.0 47.7 56.9 

Soybean Area 803 765 755 912 816   769 762 910 812 
 UA  88.2 89.5 80.2 89.6  85.7 87.1 77.7 87.4 
 PA  84.1 84.0 91.1 91.0  82.1 82.6 88.1 88.4 

Other Crops Area 8 0 0 0 0   0 0 0 0 
 UA  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 
 PA  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Water Area 153 118 121 119 116   119 115 124 120 
 UA  91.6 91.7 97.5 97.8  89.1 92.3 94.1 94.9 
 PA  70.5 72.1 75.5 74.2  69.5 69.0 76.3 74.5 

Barren/Dev. Area 111 71 64 53 57   65 46 46 61 
 UA  25.1 31.1 55.5 52.9  24.8 28.4 50.6 43.6 
 PA  16.1 17.9 26.6 27.1  14.7 11.9 21.1 24.1 

Forest Area 63 56 73 76 74   37 65 73 67 
 UA  46.2 48.1 60.5 61.0  55.7 49.7 55.0 60.1 
 PA  40.9 55.7 73.0 72.1  32.4 51.1 63.9 64.1 

Grassland Area 744 833 886 906 915   866 927 931 938 
 UA  76.1 73.8 72.5 73.3  73.9 70.4 70.4 71.5 
 PA  85.2 87.9 88.2 90.1  86.0 87.6 88.1 90.1 

Wetland Area 237 399 310 220 253   377 286 178 231 

 UA  33.7 38.5 51.0 49.9  35.4 38.8 56.1 49.8 

 PA  56.7 50.4 47.4 53.3  56.4 46.9 42.1 48.6 

OA 75.7 77.1 77.3 80.9   74.6 75.5 74.8 78.9 

k_loc 0.778 0.787 0.810 0.834   0.766 0.767 0.780 0.805 

k_quan 0.831 0.845 0.818 0.857   0.826 0.842 0.811 0.861 
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Figure S4.4. Number of valid observations (cloud/snow/shadow-free, EVI2>0) over the study area 

for each combination of year and data source. 
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CHAPTER 5 

 

RESEARCH SUMMARY AND RECOMMENDATIONS 

  



189 
 

 
 

5.1 Summary and Key Findings 

Understanding rapid land change in the U.S. Northern Great Plains region is not 

only critical for management and conservation of prairie habitats and ecosystem services, 

but also for projecting production of crops and biofuels and the impacts of land conversion 

on water quality and rural transportation infrastructure. Hence, it raises the need for an 

LCLU dataset with good spatiotemporal coverage as well as consistent accuracy through 

time to enable change analysis. This dissertation aimed (1) to develop a novel classification 

method from the perspective of land surface phenology, which utilizes time series images 

from comparable sensors, and (2) to apply the land cover/land use dataset generated from 

the phenometrically-based classification approach to quantify crop expansion in South 

Dakota. My dissertation research advances the researcher’s toolkit for land cover mapping 

and change analysis as well as shines fresh light on what has been a controversial issue 

since 2013: the conversion of mixed-grass prairie to commodity crops, particularly to corn 

and soybean, due to the increasing demand for biofuels and animal feed. The primary 

results of this research are summarized below  

Chapter 2: The main focus of Chapter 2 was to evaluate “how well does land cover 

mapping perform if phenological metrics alone are used as input to the classification 

algorithm” (research question #1). In addition, responses of RFC models to different 

sample sizes and sampling designs were also examined to identify which sampling scenario 

yielded the most accurate classification. 

The classification based only on phenometrics derived from the Convex Quadratic 

model could accurately differentiate major commodity crops with PA/UA of above 0.7 and 

0.9 for 2012 and 2014 RFC models, respectively. However, accuracy of non-vegetated 
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classes, especially for developed, are limited. Among sampling designs, the “same 

distribution” RFC models (proportional distribution of the sample is like proportional 

distribution of the population) tend to yield best land cover prediction. Without control on 

sample dataset, larger sample sizes did not necessary lead to better RFC models. The “same 

distribution” sample dataset covering 0.25% of the study area seems to be adequate to 

achieve accurate classification. 

Chapter 3: The objective of Chapter 3 was to quantity the rate of cropland 

expansion and its spatial pattern in South Dakota over the past decade (research question 

#2). I proposed a trajectory-based approach that considers the entire land cover/land use 

time series to determine if there was actual land change at a particular location, to overcome 

the limitations of the bi-temporal change detection. 

Between 2007 and 2015, the trajectory-based change detection approach estimated 

a cropland expansion of 5,447 km2 in South Dakota (equivalent to 14% of the existing 

cropland area), which matches much more closely the reports from the National 

Agriculture Statistics Service (5,921 km2) and the National Resources Inventory (5,034 

km2) than an estimation from the bi-temporal approach (8,018 km2). Cropland gains were 

mostly concentrated in 10 counties in northern and central South Dakota. Urbanizing 

Lincoln County, part of the Sioux Falls metropolitan area, is the only county in South 

Dakota with a net loss in cropland area over the study period. An evaluation of land 

suitability for crops using the Soil Survey Geographic Database indicated a scarcity in 

high-quality arable land available for cropland expansion in South Dakota. 

Chapter 4: The goal of Chapter 4 was further exploration of the phenometrically-

based classification approach presented in Chapter 2 by addressing two questions: (1) how 
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the selection of different LSP models used to fit annual time series impacts classification 

accuracy (research question #3) and (2) how LSP-based classification can be improved by 

incorporating information from spectral variables (research question #4). Similar to 

Chapter 2, land cover classifications in Chapter 4 were also evaluated with alternative 

sampling scenarios to examine which sampling scenario yielded the most accurate 

classification. The assessment was conducted for two years 2016 and 2017 using two 

different sources for the imagery: Landsat ARD and HLS data. 

There was no obvious choice between the 2016 RFC models using CxQ versus 

HPLM: the HPLM RFC models performed better with the ARD and the CxQ RFC models 

were better with the HLS data. For 2017 data, HPLM RFC models slightly edge CxQ with 

about 1% higher overall accuracy, mostly due to more precise allocation of land cover. 

Indeed, the TOST test of equivalence indicated that overall accuracies of the 2017 HPLM 

and CxQ RFC models exhibited equivalent performance. The spectrally-based RFC 

models were more accurate than the phenometrically-based RFC models, especially for 

non-crop cover types. However, the spectrally-based RFC models could not classify the 

wheat class accurately. The combined spectral-phenological variables RFC models 

consistently overcame weaknesses of both phenometrically-based classification (low 

accuracy for non-vegetated covers) and spectrally-based classification (low accuracy for 

wheat). 

A sample pool with a minimum correction of land cover information yielded the 

most accurate predicted map despite its lowest RFC models’ accuracy. A random stratified 

sample dataset should cover at least 0.25% of the study area to achieve accurate land cover 
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map. In case of data scarcity, smaller datasets would yield acceptable for classification but 

ought not be smaller than 0.05% of the study area. 

5.2 Multi-temporal land cover classification and change detection: a synthesis 

A rapid increase of available Earth observations and advances in computer science 

led to an emergence of land cover classification (see Gomez et al, 2016; Chapters 2 & 4) 

based on time series data, starting in 2010s. Compared to the conventional land cover 

classification approaches, the phenology-based method exploits the rich temporal 

information from time series to map land cover more accurately (Mitchell et al., 2013; 

Franklin et al., 2015). The phenology-based method is also fully compatible for an 

operational process, which is a critical advantage for generating land cover maps at very 

large scale. Beside those advantages, phenology-based classification (or classification 

using time series data, in general) are still facing several challenges that need to be 

addressed by future studies. 

A substantial number of good quality observations required for the fitting of land 

surface phenology model poses the greatest challenges in application of the 

phenometrically-based classification (Zhong et al., 2011; Jia et al., 2014; Kong et al., 

2016; Chapter 2). Thus, most extant studies focused on using MODIS NDVI or EVI time 

series, which are available with higher temporal coverage but at a coarser spatial resolution 

(Zhong et al., 2011; Xue et al., 2014; Yan et al., 2015; Qader et al., 2016). My research 

has shown that land cover can be mapped accurately at finer spatial resolution using data 

from Landsat and Sentinel satellites. However, data gaps might be created during the fitting 

process arising from model failure due to low number of good observations in some years 

and over some areas. Because the gaps were produced in different places across the years, 
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a direct comparison between yearly RFC outputs was not appropriate, in most cases, 

without spatiotemporal interpolation. Even within the Landsat sidelap zone, it was not 

always able to retrieve a sufficient number of good observations to fit the land surface 

phenology model.  

The temporal density of observations, however, could be increased by bringing 

together complementary sensors. For example, results from my research demonstrated that 

Sentinel-2 data can be used with Landsat ARD in the phenometrically-based classification. 

Another feasible solution is to leverage very high spatiotemporal but low spectral 

resolution data from a small satellite constellation to infill gaps (Houborg & McCabe, 

2018). The temporal resolution of Landsat-like data can also be improved for 

phenometrically-based classification by fusing with data that has lower spatial but 

substantial higher temporal resolution, such as MODIS (Jia et al., 2014; Kong et al., 2016). 

Nevertheless, it is important to note that the use of multi-sensor time series would require 

a huge preprocessing effort. In addition, in areas with persistent cloud cover, such as in the 

moist tropics, it may be impractical to collect a sufficient number of good observations 

spanning the growing season, regardless how many optical sensors are observing. In those 

areas, land cover classification would benefit from leveraging Synthetic Aperture Radar 

(SAR) data (Waske & Braun, 2009; Qi et al, 2012 ) 

Extant phenology-based land cover classification studies, including my dissertation 

research, only focus on the annual pattern of vegetation index time series. It is possibly due 

to the long use of NDVI (or other vegetation indices) in land cover classification study 

(Tucker et al., 1985; DeFries & Townshend, 1994) and availability of well-developed land 

surface phenology models (see Henebry & de Beurs, 2013). Phenometrics derived from 
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time series can complement the spectral information to improve classification accuracy 

(Chapter 4; Jia et al., 2014; Kong et al., 2016). However, the use of spectral data in my 

dissertation research,  Jia et al. (2014) and Kong et al. (2016) was limited to the generation 

of spectral variables, partly due to a lack of a well-studied tool to simulate annual pattern 

of spectral data (excepts for vegetation indices). Temporal trajectory of spectral bands and 

their related variables proved to be useful in land cover classification (Zhu & Woodcock 

2014) and should be utilized more in the future classification study. However, a robust land 

surface seasonality model is needed to simulate annual pattern of different spectral variable 

time series (bands and ratios) and to extract seasonality information from the fitted curves. 

Number of variables in phenometrically-based classification can increase 

significantly when combining features from different land surface phenology models or 

incorporating additional information from other spectral bands and ratios. Although RFC 

models are not sensitive to correlated or noise variables (Biau, 2012), a larger number of 

input variables would increase the computational complexity. In addition, some input 

variables may be linked to the same biogeophysical property of the land surface. Including 

all of those variables in land cover/land use classification may weaken a contribution of 

the underlying biogeophysical process to the classification. Thus, future land cover 

classification studies with high dimensional data, such as those using phenology-based 

approach, would consider applying dimension reduction techniques (Fodor, 2002) or 

variable selection methods (Degenhardt et al., 2013) to achieve efficient computation and 

clear understanding of variable importance. 

Land cover/land use classifications in my dissertation study were limited to a few 

simple cover classes. Cropland mapping in this study was constrained to a few commodity 
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crops (partly due to the homogeneous crop planting in the study area) with a single growing 

seasonal per year, including corn, soybean, wheat, sunflower, alfalfa. In addition, forest 

and grassland were not broken into smaller classes (partly due to the focus on cropland of 

the study). To demonstrate fully the capability and advantage of the phenology-based 

classification, future studies should be conducted in areas with more complex land 

cover/land use, e.g., multiple cropping in California’s Central Valley or different types of 

forest in the eastern US region. 

 Compared to the traditional bi-temporal approach, the land cover change detection 

exploring time series data with the trajectory-based approach (Chapter 3) yielded a closer 

estimation of cropland expansion in South Dakota to the USDA’s reports. However, my 

study only quantified changes in cropland area, partly due to limited accuracy of non-

cropland classes in the input land cover datasets. Thus, exact quantification of grassland or 

wetland losses due to cropland expansion, another information of interest for conservation 

purposes, was not available. In addition, the land cover dataset  for South Dakota generated 

from my study does not offer crop-specific categories like the CDL (only mapped three 

broad categories: cropland, grassland and others), preventing identification of the crops 

were planted on the newly cultivated lands. Applying the trajectory-based change detection 

approach on a land cover dataset with more detailed classes, such as CDL, could yield 

valuable information about changes in the study area. 

5.4  Future Research 

Examine capability of land cover/land use classification using time series 

My next research would further explore capability of LSP-based classification by 

performing classification in areas with complex land cover such as: multiple cropping in 
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California’s Central Valley or different types of forest in the eastern US region. I would 

use surface reflectance from Landsat 7, 8 and Sentinel-2 together to obtain more good 

quality observations. As comparable classification accuracies were achieved from ARD 

and HLS data, the combination of Landsat 7, 8 and Sentinel-2 for land cover/land use 

classification is feasible. Evaluating classification performance (based on similar sets of 

input variables) for those areas would further confirm robustness of the proposed approach. 

High spatiotemporal dataset from Planet for land cover classification 

In another future study, I would want to explore a private dataset from PlanetScope 

(Planet, 2018)—a constellation of approximate 130 small satellites—available at 3 meter 

spatial resolution and up to daily coverage since 2017. Although the PlanetScope dataset 

has several limitations, such as a maximum of 10,000 km2 of free data each month per user, 

only offers four spectral bands—RGB and NIR and observed at different times (some 

satellites have a sun-synchronous orbit and others have an international space station orbit), 

a very high spatiotemporal resolution of the archive make it a great data source for land 

cover/land use classification, especially when a high spatial resolution land cover map is 

needed at local scale. Using a very dense time series of PlanetScope could also allow to 

examine how well existing land surface phenology models work on other spectral bands 

and ratios. It would be a good start for developing a new generation of land surface 

seasonality models. 
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