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ABSTRACT
AUGMENTING LAND COVER/LAND USE CLASSIFICATION BY
INCORPORATING INFORMATION FROM LAND SURFACE PHENOLOGY: AN
APPLICATION TO QUANTIFY RECENT CROPLAND EXPANSION IN SOUTH

DAKOTA

LAN HOANG NGUYEN

2019

Understanding rapid land change in the U.S. NGP region is not only critical for
management and conservation of prairie habitats and ecosystem services, but also for
projecting production of crops and biofuels and the impacts of land conversion on water
quality and rural transportation infrastructure. Hence, it raises the need for an LCLU dataset
with good spatiotemporal coverage as well as consistent accuracy through time to enable
change analysis. This dissertation aims (1) to develop a novel classification method, which
utilizes time series images from comparable sensors, from the perspective of land surface
phenology, and (2) to apply the land cover/land use dataset generated from the

phenometrically-based classification approach to quantify crop expansion in South Dakota.

A novel classification approach from the perspective of land surface phenology
(LSP) uses rich time series datasets. First, surface reflectance products at 30 m spatial
resolution from Landsat Collection-1, its newer structure—Landsat Analysis Ready Data,
and the Harmonized Landsat Sentinel-2 (HLS) data are used to construct vegetation index
time series, including the Enhanced Vegetation Index (EVI), and the 2-band EVI (EV12),

and various spectral variables (spectral band and normalized ratio composites). MODIS
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Level-3 Land Surface Temperature & Emissivity 8-day composite products at 1 km spatial
resolution from both the Aqua and Terra satellites are used to compute accumulated
growing degree-days (AGDD) time series. The EVI/EVI2 and AGDD time series are then
fitted by two different land surface phenology models: the Convex Quadratic model and
the Hybrid Piecewise Logistic Model. Suites of phenometrics are derived from the two
LSP models and spectral variables and input to Random Forest Classifiers (RFC) to map
land cover of sample areas in South Dakota. The results indicate that classifications using
only phenometrics can accurately map major crops in the study area but show limited
accuracy for non-vegetated land covers. RFC models using the combined spectral-
phenological variables can achieve higher accuracies than those using either spectral
variables or phenometrics alone, especially for the barren/developed class. Among all
sampling designs, the “same distribution” models—proportional distribution of the sample
is like proportional distribution of the population—tends to yield best land cover
prediction. A “same distribution” random sample dataset covering approximately 0.25%

or more of the study area appears to achieve an accurate land cover map.

To characterize crop expansion in South Dakota, a trajectory-based analysis, which
considers the entire land cover dataset generated from the LSP-based classifications, is
proposed to improve change detection. An estimated cropland expansion of 5,447 km2
(equivalent to 14% of the existing cropland area) occurred between 2007 and 2015, which
matches more closely the reports from the National Agriculture Statistics Service—NASS
(5,921 km2) and the National Resources Inventory—NRI (5,034 km2) than an estimation
from a bi-temporal change approach (8,018 km2). Cropland gains were mostly

concentrated in 10 counties in northern and central South Dakota. An evaluation of land
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suitability for crops using the Soil Survey Geographic Database—SSURGO indicates a

scarcity in high-quality arable land available for cropland expansion.



CHAPTER 1

INTRODUCTION



1.1  Background

Despite low population, the US Northern Great Plains (NGP) region has been
undergoing substantial land cover/land use change (LCLUC) over the past two decades.
Federally mandated policies spurring the demand for biofuels, particularly corn-based
ethanol and biodiesel from soybean (Schnepf & Yacobucci, 2013), coupled with federally
subsidized crop insurance led to a tripling in market prices for corn and soybean between
2002 and 2012 (Johnston, 2013). Increases in commaodity prices resulted in one of the most
significant land change episodes in recent US history: the conversion of grasslands and
wetlands to croplands, primarily in the eastern Dakotas, western Minnesota, and southern
lowa (Faber et al., 2012; Johnston, 2013, 2014; Wright & Wimberly, 2013). Johnston
(2013) estimated wetlands losses of 5,000-6,000 ha per year since 1979 due to cropland
expansion. Wright & Wimberly (2013) estimated a net loss of 530,000 ha in grass-
dominated lands in the Western Corn Belt from 2006 to 2011 based on analysis of the
USDA’s Cropland Data Layer (CDL). Remaining intact grassland habitats are also at risk
of conversion to cropland under projected future demands for food and fuel since ~84% of
the area is privately owned (WWF, 2016).

Several efforts have been made to characterize land change dynamics in the Great
Plains. Much of the extant literature has used either the National Resources Inventory
(NRI), a periodic statistical survey of land use and natural resource conditions on US non-
federal lands (Claassen et al., 2011; Rashford et al., 2011) that lacks spatial detail, or post-
classification change detection methods using publicly available LCLU databases,

especially the USDA Cropland Data Layer (Faber et al., 2012; Wright & Wimberly,



2013a,b; Johnston, 2013, 2014; Lark et al., 2015; WWF, 2016) due to its finer
spatiotemporal resolution and high number of thematic classes.

The use of CDL can be justified by its high overall accuracy of 85% to 95% for
major crops, and often 97% producer’s and user’s accuracies for corn and soybean (Boryan
et al., 2011). However, it is important to realize that the CDL is meant to monitor
agricultural land cover annually; and it has undergone substantial methodological changes
over time (Mueller & Seffrin, 2006; Boryan et al., 2011). In addition, the conventional
classification methods, such as ones first applied to the CDL and the more general National
Land Cover Database (NLCD), were developed in an era of data scarcity and limited
computational power and thus focused on using just a few cloud/snow-free scenes.

Understanding rapid land change is not only critical for management and
conservation of prairie habitats and ecosystem services, but also for projecting production
of crops and biofuels and the impacts of land conversion on rural infrastructure, such as
roads and water quality. Hence, there is a need for a land cover/land use dataset with good
spatiotemporal coverage as well as consistent accuracy through time. In the current era of
abundant earth observations, a better approach would be able to take advantage of all
available useful data to accurate map different land cover types.

Late fall 2016, the U.S. Geological Survey (USGS) announced a science initiative
called Land Change Monitoring, Assessment, and Projection (LCMAP) to fulfill the
demand of “‘even higher quality data, additional land cover and land change variables, more
detailed legends, and most importantly, more frequent land change information” (Young,
2017). LCMAP utilizes the global Landsat archive that dates back to 1972 to characterize

historical, near real-time land change at any location across the entire Landsat record using



the Continuous Change Detection and Classification algorithm (Zhu & Woodcock, 2014).
Although the future of LCMAP is bright, it will be quite some time before those data
become generally available. Furthermore, LCMAP s restricted to the few classes of
Anderson Level 1 plus a “transition” class; thus, it will not be suitable for studies needing
higher levels of detail, for example, monitoring crop types and rotation.

Shifts in land cover or environmental conditions, management practice, disturbance
may lead to a spatiotemporal variation of land surface phenology (LSP), i.e., seasonal
patterns of reflectance from the vegetated land surface as observed using remote sensing
(Henebry & de Beurs, 2013). Several methods have been used to simulate the temporal
variation of vegetation index time series (Jonsson & Eklundh, 2003; Zhang et al., 2003; de
Beurs & Henebry, 2004; Beck et al., 2006; Qader et al., 2016; Roy & Yan, 2018). Among
those, the double logistic curve (and its modifications) is one of the more commonly used
fitting methods. Application of the logistic curve seems better suited to landscapes
dominated by woody vegetation (Zhang et al., 2003; Ahl et al., 2006; Beck et al., 2006;
Baumann et al, 2017). However, characterizing phenology for herbaceous vegetation is
more difficult than for woody vegetation due to strong interannual variation in grasslands
and croplands (Schwartz & Reed, 1999). Another LSP fitting approach originates from
traditional phenological models that relate to the progression of thermal time during the
growing season to events in plant development. Studies have shown that the temporal
development of remotely sensed vegetation indices in temperate and boreal ecosystems can
be well approximated as a quadratic function of accumulated growing degree-days

(AGDD) because AGDD captures well the seasonal course of insolation at middle to higher



latitudes (de Beurs & Henebry, 2004; Henebry & de Beurs, 2013; Krehbiel & Henebry
2016; Krehbiel et al., 2016, 2017).

Modeled vegetation index time series can provide a larger number of sequentially
related predictor variables to be exploited by classification techniques. Zhong et al. (2011)
mapped multiple crops in San Joaquin Valley, California using phenometrics derived by
fitting the double asymmetric sigmoid functions to the smoothed 8-d NDVI at 250-m
resolution calculated from MODO09Q1 product. The classification accuracies were between
70% to 80% for all study years. Xue et al. (2014) computed “phenological markers”
(timings of phenological events) from the seasonal and trend components of the 16-d
EVI/NDVI time series at 250-m from MOD13Q1 product. Using only those time markers,
the authors were able to map land covers in Nanjing City, China using different classifiers
with overall accuracies of between 88% and 98%. Also using MODIS EVI/NDVI time
series, Yan et al. (2015) calculated various statistical composites as well as amplitude and
phase information of harmonic components derived from Fourier transform to be used in
LCLU classification. The entire Northeast China was classified with an overall accuracy
of 84% and kappa statistics of 0.79. Using similar data and method to Zhong et al. (2011),
Qader et al. (2016) accurately mapped broad dominant cover classes in lIraq and
characterized changes from 2002 to 2012. The overall accuracy for 2003, 2006, and 2013
classifications were 94%, 91% (using Google Earth images), and 88.5% (ground truths),
respectively. Both Jia et al. (2014) and Kong et al. (2016) attempted to produce land cover
maps at finer resolution by fusing Landsat NDVI at 30-m and GF-1 NDVI at 16-m
resolution, respectively, with MODIS NDVI at 250-m resolution. Phenometrics were then

computed from the fused datasets to be used in land cover classifications with spectral data.



Both studies found that phenometrics significantly improved classification accuracy
compared to those using only spectral data (overall accuracy increased approximate 10%).
So far, all extant studies were based on MODIS surface reflectance or vegetation index
time series which have fine temporal but coarse spatial resolution (250 m), and none of
those study used thermal data. A convex quadratic (CxQ) LSP model linking a vegetation
index, such as the NDVI or the enhanced vegetation index (EVI), to thermal time as
measured by accumulated growing degree-days (AGDD) was first applied to compare
spring green-up dynamics before and after the collapse of the Soviet Union (de Beurs &
Henebry, 2004) to detect significant change in a noisy AVHRR time series. Krehbiel et al.
(2016, 2017) using a similar approach with Landsat (for NDVI) and MODIS (for AGDD)
time series detected the conversion of croplands to residential areas near Omaha, NE and
Minneapolis-St. Paul, MN. Although de Beurs & Henebry (2004) and Krehbiel et al. (2016,
2017) successfully detected land cover changes in their study area through significant shifts
in phenological metrics, these studies did not quantify areal changes or generate spatially
explicit LCLU change maps.
1.2 Research questions

Understanding rapid land change is not only critical for management and
conservation of prairie habitats and ecosystem services, but also for projecting production
of crops and biofuels and the impacts of land conversion on water quality and rural
transportation infrastructure. Hence, it raises the need for an LCLU dataset with good
spatiotemporal coverage as well as consistent accuracy through time to enable change

analysis. There are four major questions | want to address:



First, how well does land cover mapping perform if phenological metrics alone are
used for input to the classification algorithm? Multi-temporal classification has proved
superior to classification relying on just a few scenes (Franklin et al., 2015). Therefore, a
current rapid increase of accessible Earth Observation data (particularly from the Landsat
archive and its augmentation by newer sensors, such as Sentinel 2A and 2B) coupled with
improved computing power is leading to the emergence of methods for generation annual
land cover products from time series data. Generally, vegetation index (V1) time series at
different pixels are often not observed at the same set of days due to variation in data
quality. This limitation prevents a direct comparison between annual VI patterns to
distinguish between land cover types. Thus, a common approach to utilize multi-temporal
images is to generate composited images (Hansen et al., 2011; Zhang & Roy, 2017;
Teluguntla et al., 2018). However, since the composites images may still contain gaps (if
the composited period is too short) and mixed spectral signals (from multiple observations),
the use of composited images in LCLU classification is generally limited to one of two
options: (1) use multi-year data of short-period composites (e.g., monthly) to generate a
single land cover map with fairly high details (e.g., NLCD Level-2 land cover/land use
classes; Zhang & Roy, 2017), or (2) use long-period composites (e.g., quarterly) or statistics
from multiple short-period composites to generate annual land cover map with only few
broad categories (Hansen et al., 2011; Teluguntla, 2018).

To exploit multi-temporal data more fully, | propose a novel approach to map land
cover map accurately in a timely manner using land surface phenology modeling. First, |
filtered the entire annual vegetation index and AGDD time series using simple functional

forms (e.g., Convex Quadratic Model; de Beurs & Henebry 2004 or Hybrid Piecewise



Logistic Model; Zhang, 2015) so that land surface phenology at every pixel was described
by a set of phenological metrics (phenometrics). Those phenometrics then were used as the
only input for land cover/land use classification. | hypothesized that classification using
only phenometrics could produce consistent and accurate land cover maps. Output of this
study was cross-compared with the CDL. The newly generated land cover maps were also
validated using point reference data and compared with reports from the U.S. Department
of Agriculture.

Second, what is the rate and spatial pattern of crop expansion in South Dakota over
the past decade? Agriculture is the leading industry in South Dakota, contributing
approximate $21 billion to the State’s economy each year (about 20% of our state’s
economic activity, SDDA, 2018). Over the past decade, the growing demand for biofuel
production increased agricultural activities in South Dakota, leading to the conversion of
grassland to cropland. Although shifts in land cover may impact a wide range of
stakeholders and interest groups, and society in general (Reitsma et al., 2014), there is not
yet a comprehensive land change analysis available for South Dakota. Most extant studies
take a “bi-temporal snapshot” approach (Decision Innovation Solutions, 2013; Wright &
Wimberly, 2013; Reitsma et al., 2014) that only compares data between two isolated points
in time and disregards intermediate-year data. The bi-temporal approach does not capture
the regular rotation of lands into and out of cultivation and the approach can be affected by
misclassification error at either or both time points. Thus, bi-temporal change detection can
potentially inflate (or deflate) reported rates of conversion. On the other hand, Lark et al.
(2015) and Arora & Wolter (2018) provided a continuous picture of land change in South

Dakota. However, while Lark et al. (2015) only examined changes from 2008 to 2012, the



long-term analysis from Arora & Wolter (2018) covered only a portion of the state (Landsat
WRS-2 Path 30, Rows 28-29). Comprehensive land change analysis in South Dakota over
the past decade will be critical for management and conservation of prairie habitats and
ecosystem services, as well as for projecting production of crops and of biofuels and
assessing the impacts of conversion on rural infrastructure, such as roads and water use and
water quality.

LSP-based classification is a simple and consistent way to map land cover/land use.
However, from initial results, three major challenges of the LSP-based classification were
identified. First, the proposed method only performs well with vegetated land covers,
especially crops. Estimated areas for non-crop covers can be unreliable (e.g.,
overestimation of grassland and underestimation of urban/built up area). A better land
cover map would enable detection of changes not in only cropland but in other cover types.
Second, LSP model fitting may fail due to few valid observations being available as a result
of obscuring cloud cover and/or sensor artifacts. Those failed models create gaps in the
outputs preventing direct comparison of land cover maps for change detection. Although
the gaps can be filled using temporal and/or spatial context, the filling process itself can be
complicated. The gap filling often works only for small gaps, and/or when classification
task only retrieves a few broad land cover classes (e.g., I only mapped three land covers in
South Dakota: cropland, grassland, and others). For example, if before- and after-year
covers are crop, current-year cover is very likely crop. However, if before- and after-year
covers are corn, it still not enough information to confirm that current-year cover is corn
since rotation with soybean is likely but not guaranteed. Finally, the classification accuracy

may vary due to the chosen model as one may be more suitable for some certain vegetation
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types than others. Above challenges of LSP-based classification prohibit the creation of
complete, high detailed land cover maps over a large area with diversity land cover. Thus,
it will significantly reduce the use of those maps in change analysis as it only able to focus
on the most accurate class and in small area where coverage is complete (or gaps are small
enough to be filled). An effort to overcome those limitations leads me to ask the third and
fourth research questions. Third, how will the classification accuracy be impacted by
selecting different LSP models to fit annual time series? Fourth, can LSP-based
classification be improved for non-vegetated surfaces by incorporating information from
all other spectral bands?
1.3 Data and Method
1.3.1 Study Area

Among the States composing the NGP region, we selected South Dakota as our
study area for four reasons: (1) it has continental climate with high seasonal and interannual
variation, pronounced gradients in precipitation (east-west) and temperature (north-south);
(2) the State has strong livestock, dairy, and row crop production industries that make it
economically viable to convert grasslands to croplands (Reitsma et al., 2015); (3) unique
high resolution reference datasets were available for training and validation; and (4) South
Dakota is the hot spot of grassland conversion to cropland between 2006 and 2011 as
reported by Wright and Wimberly (2013).
1.3.2 Input Data

Several satellite products were used in this research. Surface reflectance products
at 30 m resolution from Landsat Collection-1 (from Landsat 5, 7 & 8) (USGS, 2016), its

newer structure—Landsat Analysis Ready Data (ARD) (USGS, 2018), and Harmonized
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Landsat Sentinel-2 (HLS) (Claverie et al., 2018) were used to construct vegetation index
time series, including Enhanced Vegetation Index (EVI) and 2-band EVI (EVI2), and
spectral variables (spectral band and normalized ratio composites). Collections 5 and 6 of
the MODIS level-3 global Land Surface Temperature (LST) & Emissivity 8-day composite
products at 1 km resolution (from both Aqua and Terra satellites) (NASA LP-DAAC, 2013;
Wan et al., 2015a&b) were used to compute accumulated growing degree-days (AGDD)
time series. The Cropland Data Layer (CDL; Boryan et al., 2011) was used to generate
sample datasets and cross-compare with outputs from this study. Beside the CDL, a rich
reference point dataset derived from high spatial resolution imagery (only cover 3 years:
2006, 2012 & 2014; Reitsma et al, 2015; 2016) was also used to evaluate accuracy of the
land cover maps newly generated in this study.
1.3.3 Technical Approach

Research question #1

First, an annual time series of accumulated growing degree-days (AGDD) was built
from MODIS 8-day composites of land surface temperatures. Using the EVI time series
derived from Landsat Collection 1’s surface reflectance, a downward convex quadratic
model to each year’s progression of AGDD (derived from Collection 5 LST) was then fit
at each pixel (i.e., EVI = a+BxAGDD—yxAGDD?). Phenological metrics derived from
fitted model and the goodness of fit then are submitted to a random forest classifier (RFC)
to characterize LCLU for four sample counties (Roberts, Bon Homme, Codington,
Walworth: located within the Landsat’s sidelaps to achieve more observations) in South
Dakota in three years (2006, 2012, 2014) when reference point datasets are available for

training and validation. To answer research question #1, accuracy of RFC models and
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predicted land cover maps were evaluated by testing data generated from the CDL. To
examine the sensitivity of the RFC to sample size and design, land cover classifications
were performed under different sample selection scenarios.

Research question #2

To characterize land changes in the study area, a fine spatiotemporal resolution land
cover dataset with just three broad categories (“cropland”, “grassland”, and “others™) was
generated using the phenometrically-based classification developed to answer the research
question #1. To overcome the limitations of the bi-temporal change detection, a trajectory-
based approach—centers on the logistic regression—was proposed that considers the entire
land cover/land use time series to determine if there was actual land change at a particular
location. Crop expansion in South Dakota between 2007 and 2015 were then summarized
for each county or each NASS reporting district to answer research question #2. The results
were compared against various official data sources released by the United States
Department of Agriculture.

Research questions #3 and #4

First, several annual time series of remotely sensed data were built, including:
accumulated growing degree-days from the Collection 6 MODIS 8-day land surface
temperature product, 2-band Enhanced Vegetation Index (EVI12), and spectral statistics
from the Harmonized Landsat Sentinel-2 as well as from the U.S. Landsat Analysis Ready
Data surface reflectance products. Then at each pixel, EVI2 time series were simulated
using two land surface phenology models: Convex Quadratic model (CxQ) and Hybrid
Piecewise Logistic Model (HPLM). Phenometrics and spectral variables were submitted

separately and together to Random Forest Classifiers to depict land cover/land use in
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Roberts County, South Dakota. Four classification scenarios using different sets of input
variables were performed: (1) only CxQ phenometrics, (2) only HPLM phenometrics, (3)
only spectral variables, and (4) the combined spectral-phenological variables. Comparisons
between classification scenarios, which answer research questions #3 and #4, were
conducted based on conventional accuracy (Congalton & Green, 2008) metrics and two
alternatives of kappa statistic (Pontius & Millones, 2011).
1.4 Significance of the research

My dissertation research will advance the researcher’s toolkit for land cover
mapping and change analysis as well as shine fresh light on what has been a controversial
issue since 2013: the conversion of mixed-grass prairie to commodity crops, particularly
to corn and soybean, due to the increasing demand for biofuels, animal feed, and exports
1.5  Thesis structure

This research dissertation has five chapters, including this introductory first
chapter. Chapter Two explores the accuracy of land cover classification using
phenometrics generated from the Convex Quadratic model solely (research question #1).
The chapter also examined performance of Random Forest Classifiers (RFC) under
multiple sampling designs (no-controlled versus controlled samples) and increasing sample
sizes. Chapter Three provides a comprehensive analysis of cropland expansion in South
Dakota between 2007 and 2015 (research question #2). To overcome the limitation of the
conventional bi-temporal method, the trajectory-based change detection approach, which
utilized the entire land cover time series to separate between true changes and mis-
classifications as well as rotations of land use, was proposed. Chapter Four further explores

land surface phenology-based classification demonstrated in Chapter Two. In the chapter,
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| evaluated performance of land cover classification using (1) only phenological metrics

derived from two different land surface phenology models, (2) only spectral composited

bands and ratios, and (3) combined phenological-spectral variables. Finally, Chapter Five
presents the main research summaries and recommendations.
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CHAPTER 2

CHARACTERIZING LAND COVER/LAND USE FROM MULTIPLE YEARS OF
LANDSAT AND MODIS TIME SERIES: A NOVEL APPROACH USING LAND

SURFACE PHENOLOGY MODELING AND RANDOM FOREST CLASSIFIERS

Paper #1.
Nguyen, L.H.; Joshi, D.R.; Clay, D.E; Henebry, G.M. 2019. Characterizing land cover/land use from multiple
years of Landsat and MODIS time series: a novel approach using land surface phenology modeling and

random forest classifiers. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2018.12.016.

2.0  Abstract

Over the last 20 years, substantial amounts of grassland have been converted to
other land uses in the Northern Great Plains. Most of land cover/land use (LCLU)
assessments in this region have been based on the U.S. Department of Agriculture -
Cropland Data Layer (USDA - CDL), which may be inconsistent. Here, we demonstrate
an approach to map land cover utilizing multi-temporal Earth Observation data from
Landsat and MODIS. We first built an annual time series of accumulated growing degree-
days (AGDD) from MODIS 8-day composites of land surface temperatures. Using the
Enhanced Vegetation Index (EVI) derived from Landsat Collection 1’s surface reflectance,
we then fit at each pixel a downward convex quadratic model to each year’s progression
of AGDD (i.e., EVI = a+pfxAGDD—yxAGDD2). Phenological metrics derived from fitted
model and the goodness of fit then are submitted to a random forest classifier (RFC) to

characterize LCLU for four sample counties in South Dakota in three years (2006, 2012,



Table S4.5. Accuracy assessment of RFC models summarized by sample pool scenarios.

2016 2017
ARD HLS ARD HLS

Metrics Cls CIM C28 C2M C1S CIM C28 C2™m Cls CiM C28 C2M C1S CiM C2s C2M
PA_Corn 946 953 953 957 912 921 923 926 939 945 947 954 918 932 934 940
PA_Wheat 754 779 783 786 702 729 731 744 500 634 638 663 570 625 613 633
PA_Alfalfa 735 803 791 826 693 771 772 799 742 802 782 827 712 801 764 828
PA_Soybean 954 961 961 966 903 911 918 921 953 957 957 962 936 946 946 951
PA_Other Crops 11.2 354 197 509 153 439 252 550 156 212 223 297 156 251 212 332
PA_Water 974 984 982 983 962 979 978 982 964 971 976 975 954 968 973 973
PA_Barren/Dev. 551 58.6 59.7 60.9 474 472 543 56.1 543 556 576 585 486 446 508 519
PA_Forest 87.7 895 931 940 843 878 931 945 833 842 875 883 816 844 889 908
PA_Grassland 930 941 938 949 936 950 951 96.1 934 942 942 949 940 947 952 958
PA_Wetland 66.8 744 721 792 739 804 820 87.7 67.7 728 746 789 699 767 798 84.2
UA_Corn 948 955 954 959 898 906 913 915 947 953 953 959 918 930 931 934
UA_Wheat 844 893 876 902 820 865 855 891 80.6 842 831 861 804 828 833 843
UA_Alfalfa 83.7 888 877 912 798 872 866 896 879 910 909 929 850 915 900 936
UA_Soybean 936 947 947 952 904 916 917 922 927 931 934 939 915 926 929 934
UA_Other Crops 358 613 499 702 466 670 540 710 410 438 503 528 404 476 450 551
UA_Water 975 976 977 976 963 962 964 969 964 960 962 965 959 96.0 958 96.3
UA_Barren/Dev. 770 802 771 790 724 741 740 759 770 785 777 786 757 734 762 771
UA_Forest 86.7 885 904 911 848 875 906 924 80.7 829 854 866 824 843 883 897
UA_Grassland 849 872 864 886 856 876 889 904 855 874 880 893 853 875 886 90.0
UA_Wetland 742 795 801 844 763 8l6 834 875 739 777 788 821 751 795 816 849
OA 88.8 90.7 904 918 868 887 894 90.7 89.0 902 905 916 879 896 903 91.3
k_ L 0.904 0.923 0.921 0.935 0.884 0.904 0.909 0.922 0.909 0.921 0.923 0.933 0.898 0.915 0.922 0.932

k Q

0.917 0.926 0.924

0.932 0.906 0.914 0.921 0.927

0.913 0.920 0.924 0.929 0.908 0.917 0.920 0.927
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Table S4.6. The nonparametric Mann—-Whitney U test and the TOST equivalence test for the (P01
versus P25 RFC models) and (C1S versus C2M RFC models) comparison. The null hypothesis is
that a random accuracy metric of the first scenario will be less than a random accuracy metric of
the second scenario (or the first population has smaller values than the second population).
Significance level of the U test are indicated by ***, ** and * for p-values of less than 0.001, 0.01,
0.05 and NS for “not significant”. Results of the TOST equivalence test are highlighted in light

blue for “not equivalent” and light yellow for “equivalent”.

P01 versus P25 C1S versus C2M
2016 2017 2016 2017

Metrics ARD HLS ARD HLS ARD HLS ARD HLS
P A_CO m *kk *kx *kk *k*k *k*k *kk *k*k *kk
PA Wheat *kk *kx *kk *k*k *k*x *kk *k*k *k*k
PA Alfalfa *k*k *k*k *kk *kk *k*k *kk *k*k *kk
PA Soybean *kk *kx *kk *k*k *k*k *kk *k*k *kk
PA Other Crops *Kkk *kk *Kkk *kk *kk *kk *kk *kk
PA_ Water NS NS NS NS Kok Kk Kok Kk
PA Barren/Dey. ***  *x%  dkk o dokk Kk kkk Akk *x
PA_Forest NS NS NS NS Kk *kk Kk Kk
PA Grass | and *hk *kk *hk *Khk *kk *kk FAkk kK
PA Weﬂ and *hk *kk *hk *Khk *kk *kk FAkk kK
U A_CO m *k%k *kx *k%k *k%k *kx *k%k *kx *kx
UA_Wheat NS NS NS NS KAk *hKk KAk KAk
UA_Alfalfa NS NS NS NS Kk Kkk Kk Kk
UA Soybean *hk *kk *hk *Khk *kk *Khk Kk kK
UA Other Crops *Kkk *kk *kk *kk *kk Fokk Fedek Sk
UA Water NS NS NS NS Kk Kk * *kx
UA Barren/Dev. ** S * *x Kkk KKk Hx ok
UA_Forest NS NS NS NS *kk Fkk *kk *kk
UA G rassl an d *Kkk *kk *Kkk *Kkk *kk *hk JERERn *kk
UA Wetland *kk *kk *kk *kk *kk Fokk Tkk Sk
OA *k*k *k*x *k*k *k*k *k*x *k*k *kk *kk
k L *k*k *kx *k*k *kk *kx *kk *kx *kk

k Q *k*k *k*k *k*k *k*k *k*k *k*k *k*k *k*k




Table S4.7. Accuracy assessment of RFC models summarized by sample size scenarios.

2016 2017
ARD HLS ARD HLS
Metrics PO1 P05 P15 P25 P01 P05 P15 P25 P01 P05 P15 P25 P01 P05 P15 P25
PA_Corn 941 948 958 962 898 918 931 936 93.3 944 952 956 90.7 932 941 945
PA_Wheat 581 792 853 874 496 737 824 850 458 640 703 725 444 624 674 699
PA_Alfalfa 619 799 857 879 550 779 842 865 56.8 814 875 89.7 550 800 871 885
PA_Soybean 946 962 966 968 885 916 925 9238 933 958 967 971 921 944 955 96.0
PA_Other Crops 7.1 218 40.0 483 91 272 473 559 0.0 166 316 406 0.0 188 332 430
PA_Water 975 981 983 985 970 974 979 979 963 969 976 978 960 963 97.1 974
PA_Barren/Dev. 49.6 582 624 642 388 50.7 565 589 470 558 608 625 361 480 548 570
PA_Forest 86.6 914 928 934 845 903 920 9238 779 867 890 897 791 870 894 903
PA_Grassland 926 940 945 947 937 949 955 957 93.1 941 945 949 939 948 954 956
PA_Wetland 648 737 764 776 745 813 836 845 644 738 773 786 692 783 810 822
UA_Corn 93.0 956 964 967 874 911 922 926 928 954 964 967 899 928 940 946
UA_Wheat 845 875 894 902 806 856 88.0 89.0 705 849 887 898 676 820 899 913
UA_Alfalfa 752 912 921 929 699 901 911 920 813 928 940 946 791 924 939 947
UA_Soybean 922 943 956 961 879 913 93.0 936 910 93.0 943 948 898 926 938 943
UA_Other.Crops 7.0 480 776 847 90 55.8 843 895 00 271 739 869 00 294 732 855
UA_Water 974 976 977 978 961 962 96.6 96.8 949 962 969 971 950 96.0 964 96.5
UA_Barren/Dev. 725 783 807 817 660 737 779 789 705 781 810 822 671 757 791 804
UA_Forest 853 89.0 908 916 847 882 908 916 80.0 834 856 867 821 858 879 889
UA_Grassland 837 869 879 885 848 881 895 901 845 876 888 893 848 878 892 89.7
UA_Wetland 728 796 824 835 746 827 852 863 722 777 807 819 738 799 831 842
OA 871 905 918 923 848 89.0 906 91.2 871 902 917 922 863 89.7 913 919
k L 0.906 0.919 0.927 0.931 0.883 0.903 0.914 0.919 0.907 0.918 0.928 0.932 0.899 0.914 0.924 0.929

k Q

0.877 0.929 0.944

0.949 0.862 0.922 0.940 0.945

0.871 0.926 0.942 0.947 0.866 0.923 0.939 0.944
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Table S4.8. Producer’s and user’s accuracies in percent (%) of 2017 RFC models summarized by sets of
input variables. A particular scenario (current column) was compared to a scenario on the left (Ieft column)
using the nonparametric Mann—-Whitney U test and the TOST equivalence tests. The null hypothesis of the
U test is that a random accuracy metric of the first scenario (left column) will be less than a random accuracy
metric of the second scenario (current column). Significance level of the U test are indicated by ***, **
and * for p-values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST

equivalence test are highlighted in light blue for “not equivalent” and light yellow for “equivalent”.

ARD HLS
Metrics CxQ HPLM SPL CMB CxQ HPLM SPL CMB
PA_Corn 922 952 " 940 M 971 "™ 915 942 " 909 N 959
PA_Wheat 812 777 NS 147 N 790 T 749 811 T 81 N 800
PA_Alfalfa 715 862 7 759 NS 819 " 704 888 7 699 N 814

PA_Soybean 945 927 NS 970 "™ 988 ™" 925 93.0 T 946 7 978
PA_Other Crops 34.6 254 NS 59 N 229 ™ 317 293 N 46 ™ 294 ™

PA_Water 938 961 T 994 T 994 NS 931 947 T 995 " 993 NS
PA Barren/Dev. 434 435 ™ 695 ™ 697 N 401 351 N 593 77 614 7
PA_Forest 737 787 7T 948 T 961 " 752 807 7 944 7" 954 7

PA_Grassland 921 932 ™ 950 "™ 963 ™ 930 932 ° 962 ™ 973
PA_Wetland 71.0 714 NS 727 " 789 U 777 722 NS 775 7 832

UA_Corn 95.1 947 NS 933 NS 982 " 928 944 T 872 NS 970
UA_Wheat 89.8 90.7 NS 614 NS 921 " 887 911 " 575 NS 936
UA_Alfalfa 873 914 NS 897 * 944 ™ 867 933 N 860 N 941

UA_Soybean 929 942 ™ 894 NS 966 " 922 937 T 883 N 961
UA_Other Crops 55.0 515 NS 284 NS 529 ™ 528 537 NS 247 NS 569 ™

UA_Water 923 932 ™ 99.9 ™ 998 NS 912 933 " 99.8 ™ 996 M
UA_Barren/Dev. 62.2 63.8 ™ 933 ™ 924 NS 592 630 ™ 918 ™ 883 NS
UA_Forest 720 771 7T 931 7Y 934 NS 767 828 U 913 7Y 940 7

UA_Grassland 86.2 86.4 NS 881 ™ 896 ™ 87.6 852 NS 888 ™ 899 ™
UA_Wetland 707 745 T 810 " 8.3 7 730 745 ™ 855 " 879 ™
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Table S4.9. The nonparametric Mann—Whitney U test and the TOST equivalence test for the comparison
between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a
random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the
second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-
values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are

highlighted in light blue for “not equivalent” and light yellow for “equivalent”.

CxQ versus SPL HPLM versus SPL
2016 2017 2016 2017
Metrics ARD HLS ARD HLS ARD HLS ARD HLS
PA Corn **k* **k* *kx NS *kx **k* NS NS
PA_Wheat NS NS NS NS NS NS NS NS
PA Alfalfa Fxk Fxk NS NS NS NS NS NS
PA_SOybean *k*k *k*k *kx *k*k *k*x *k*k *k*x ***
PA_Other Crops NS NS NS NS NS NS NS NS
PA Water *k*k *k*k *kx *k*k *k*x *k*k *k*x ***
PA Barren/DeV **k* **k* *kx **k* *kx **k* *kx **kx
PA Forest **k*k *k*k *kx *k*k *k*x **k*k *k*x ***x
PA Grassland **k* **k* *kx **k* *kx **k* *kx **kx
PA Wetland *k*k *k*k *kx NS *k*x **k*k *k*k ***
UA_Corn Hxk Hxk NS NS Fhk ARk NS NS
UA Wheat NS NS NS NS NS NS NS NS
UA_Alfalfa Hxk ** NS NS Fhk ARk * NS
UA_Soybean FHx FHx NS NS NS NS NS NS
UA_Other Crops NS *** NS NS NS *** NS NS
UA Water **k* **k* *kx **k* *kx **k* *kx **k*
UA Bal’l’en/DeV. **k*k **k*k *kx **k*k **k* **k*k **k* **k*k
UA Forest **k* **k* *kx **k* *kx **k* *kx **k*
UA Grassland **k*k **k*k *kx **k*k **k* **k*k **k* **k*k
UA Wetland **k* **k* *kx **k* *kx **k* *kx **k*
OA **k* **k* *kx **%* *kx **%* *kx NS
k L **k* **k* *kx **k*k *kx **k* *kx **k*
k_Q **k*x **k* N S N S *kx **%* N S N S
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Table S4.10. The nonparametric Mann—Whitney U test and the TOST equivalence test for the comparison
between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a
random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the
second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-
values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are

highlighted in light blue for “not equivalent” and light yellow for “equivalent”.

CxQ versus HPLM SPL versus CMB
2016 2017 2016 2017

Metrics ARD HLS ARD HLS ARD HLS ARD HLS
PA_Corn * k% * k% *k*k *k*k *k* *k* *** ***
PA Wheat NS N S N S *k*k *k*k *k*k *k*k *k*k
PA_AIfaIfa *x* *x* *k*k *k*k *k*k *k*k **k%* ***
PA Soybean *k*k *k*k N S ** *k*k *k*k *k*k *k*k
PA OtherCrops NS NS NS NS A
PA_Water FHE R ek ek NS NS NS NS

PA_Barren/Dev. *** *** NS NS NS NS NS **

PA FOI‘eSt *k*k *k*k *k*k *k*k * N S *k*k **k*k
PA_G rassland *x* NS *k*k * *k*k *k* *** ***
PA_Wetland NS NS NS NS vt
UA Corn *k*k *k*k NS **k*k *k*k *k*k *** ***
UA_Wheat * N S N S **k*k **k* **k* **%* **x%*
UA_Alfalfa NS NS NS NS ikl
UA Soybean * k% * k% **k*k **k*k **k* **k* **%* **x*
UA_Other Crops *** NS NS NS ol * FrE Kk
UA_Water R IS NS NS NS NS

UA_Barren/Dey.  *** ok dokk Hok NS NS NS NS

UA Forest * k% * k% ***k **k*k *%* **k* NS **k*
UA_Grassland *»>* NS NS NS NS  **x  dx
UA Wetl and NS N S **k*k **k*k **k* **k* **%* **x*
OA **k* NS *** *** **k* **k* **k%* ***
k L *k*k NS **k*k **k*k *k*k *k*k ***k **k*
k Q NS NS NS NS **k* **k* **k%* ***
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Table S4.11. The nonparametric Mann—Whitney U test and the TOST equivalence test for the comparison
between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a
random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the
second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-
values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are

highlighted in light blue for “not equivalent” and light yellow for “equivalent”.

CxQ versus CMB HPLM versus CMB
2016 2017 2016 2017

Metrics ARD HLS ARD HLS ARD HLS ARD HLS
PA Corn *kk *kk *kk *kk *kk kK *kk Kk
PA Wheat *kk *kk *% Kkk Kkk Kkk Kkk *%

PA_Alfalfa AR R e ek NS NS NS NS

P A_S oybean *kk *kk *kk *kk Kkk Kkk Kkk Fkk
PA_Other Crops NS NS NS NS NS NS NS NS

PA Water *khx *khx KKk *k*k *kx FkKk Fkk Kkk
PA_Barren/Dey.  ***  *kx  kkk kekk Xkk kkk kkk kR
PA Forest *kk *kk *kk KKk Kkk Kkk Kkk Fkk
PA Grassland *kk *kk *kk *kk *kk kK *kk Kk
PA Wetland *khx *khx *Kk*k *k*k *kx Fokk *kk Fokk
UA Corn *hk *hk *kk *kk *kk *kKk Kk Kk
UA Wheat *xk *xk EE *kk kK Fkk KKhk Kk
UA Alfalfa *hk *hk *kk *kk *kk *kKk Kk Kk
UA_SOybean *kx *kx *k% *k%k *kx *kx FhKk Hokk
UA_Other Crops  ***  *** NS  *** Kk KAk * ok
UA Water *xk *xk *kk *kk kK Fkk Khk kK
UA _Barren/Dey.  *** k% ok ok I
UA Forest *xk *xk *kk *kk kK Fkk Kk Kk kK
UA Grassland *hk *hk *kk *kk *kk Fodkk *kk Kkk
UA Wetland *xk *xk *kk *kk kK Fkk Khk kK
OA e e EE EE EE e *kk *kk
k L Fkk Fkk KKk KKk Fkk Fkk KKk *kx
k_Q e e EE *Kk e e *kKk *kk
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Table S4.12. Pixel-based comparison between 2016 predicted land cover maps and the CDL

summarized by sample pools. Areal units are km?.

ARD HLS
Land Cover Info. CDL C1S CIM C2S C2M ClsS CIM C(C2S C2M
Corn Area 662 643 639 643 639 668 666 670 670
UA 927 929 926 927 86.2 86.0 859 858
PA 90.2 896 90.0 895 87.0 866 87.0 86.8
Wheat Area 103 100 104 103 105 97 101 102 105
UA 825 802 809 797 795 771 761 741
PA 80.6 815 812 816 751 756 757 76.1
Alfalfa Area 45 30 32 31 33 31 33 31 35
UA 765 740 751 726 695 66.1 683 64.4
PA 510 525 521 537 472 488 476 495
Soybean Area 746 730 721 721 714 712 696 696 688
UA 909 914 914 918 87.3 882 882 887
PA 88.9 884 883 879 83.3 822 823 817
Other Crops  Area 13 0 0 0 0 0 1 1 1
UA 0.0 0.0 0.0 0.0 0.0 0.0 89.1 0.0
PA 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0
Water Area 154 127 123 121 119 131 126 125 125
UA 96.7 972 974 975 930 941 944 945
PA 79.7 777 763 756 792 771 76,6 76.5
Barren/Dev.  Area 131 51 50 47 51 47 53 48 58
UA 51.0 486 495 46.6 416 363 387 331
PA 20.1 18.6 17.8 18.4 15.0 14.8 14.2 14.7
Forest Area 64 62 64 64 67 63 65 63 65
UA 68.3 67.1 66.7 64.8 629 616 622 610
PA 65.7 66.2 66.1 67.2 611 618 60.6 61.3
Grassland Area 761 923 918 924 916 933 939 944 955
UA 746 746 745 747 729 725 719 712
PA 905 90.1 904 90.0 895 895 89.2 895
Wetland Area 262 274 290 288 295 259 262 262 240
UA 48.0 455 453 439 519 503 504 512
PA 50.0 50.3 49.7 495 51.3 50.2 50.3 46.9
OA 80.8 804 804 801 779 774 774 770
k_loc 0.820 0.819 0.819 0.817 0.782 0.777 0.779 0.780

k_quan 0.878 0.868 0.867 0.863 0.875 0.871 0.866 0.857
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Table S4.13. Pixel-based comparison between 2017 predicted land cover maps and the CDL

summarized by sample pools. Areal units are km?.

ARD HLS
Land Cover Info. CDL C1S CIM C2S C2M ClsS CIM C(C2S C2M
Corn Area 685 607 597 601 595 616 602 606 602
UA 954 958 958 95.9 920 929 926 927
PA 846 836 841 833 828 816 819 815
Wheat Area 87 63 65 65 65 63 63 63 63
UA 88.0 877 876 877 876 875 875 874
PA 643 656 654 65.8 63.8 639 639 638
Alfalfa Area 50 37 36 39 38 36 36 38 38
UA 838 822 81.0 80.2 80.1 79.1 784 76.8
PA 614 601 640 61.1 579 566 59.6 57.8
Soybean Area 803 817 806 811 803 820 811 812 808
UA 89.7 903 901 905 871 876 875 877
PA 91.3 90.7 909 904 89.0 885 885 882
Other Crops  Area 8 0 0 1 0 0 0 0 0
UA 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0
PA 0.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0
Water Area 153 121 120 116 115 125 122 119 119
UA 97.0 972 978 978 937 942 951 95.1
PA 76.7 759 738 737 76.2 752 738 73.6
Barren/Dev.  Area 111 46 50 48 53 44 49 46 51
UA 524 500 51.3 487 46.2 434 433 407
PA 216 225 225 235 183 19.1 181 188
Forest Area 63 66 69 72 73 60 63 62 61
UA 63.6 624 607 595 63.2 616 618 62.0
PA 67.0 682 692 69.4 60.3 616 60.6 60.0
Grassland Area 744 920 914 911 905 938 937 946 949
UA 73.6 737 737 738 720 718 713 709
PA 91.1 906 90.3 89.8 90.7 904 90.6 90.5
Wetland Area 237 263 283 277 293 239 258 248 250
UA 48,7 456 461 438 505 47.0 475 463
PA 540 545 540 543 50.9 513 49.9 489
OA 812 808 808 804 795 79.0 789 786
k_loc 0.841 0.838 0.838 0.833 0.814 0.811 0.810 0.806

k_quan 0.852 0.846 0.848 0.843 0.858 0.851 0.851 0.851
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Table S4.14. Pixel-based comparison between 2016 predicted land cover maps and the CDL

summarized by sample sizes. Areal units are km?.

ARD HLS
Land Cover Info. CDL P01 P05 P15 P25 P01 P05 P15 P25
Corn Area 662 651 638 640 642 690 661 661 662
UA 91.0 928 93.0 931 829 863 87.0 87.1
PA 895 895 90.0 90.3 865 863 86.9 87.2
Wheat Area 103 75 103 111 112 66 100 111 113
UA 876 790 774 774 86.3 750 728 731
PA 644 796 837 84.6 55,7 73.0 79.1 80.6
Alfalfa Area 45 24 31 34 34 23 32 35 35
UA 822 741 729 729 758 663 646 64.9
PA 433 519 544 558 395 478 50.0 509
Soybean Area 746 724 722 721 722 683 702 704 706
UA 90.0 912 916 918 86.7 876 88.2 885
PA 87.3 882 886 888 794 824 833 837
Other Crops  Area 13 0 0 0 0 0 0 1 1
UA 0.0 0.0 0.0 0.0 0.0 00 879 834
PA 0.0 0.0 0.0 0.0 0.0 0.0 4.2 6.4
Water Area 154 119 121 123 125 125 126 127 128
UA 97.3 974 973 971 939 943 942 941
PA 756 766 776 78.6 76.2 769 77.7 78.0
Barren/Dev.  Area 131 46 49 53 55 44 50 52 54
UA 448 498 507 511 328 372 40.2 407
PA 15.7 187 207 216 11.0 14.2 16.0 16.7
Forest Area 64 64 65 64 64 62 65 64 64
UA 65.8 66.0 669 67.3 61.8 610 620 623
PA 65.1 ©66.6 66.8 66.8 59.0 618 619 619
Grassland Area 761 966 917 903 897 988 949 930 925
UA 719 746 755 76.0 69.6 717 729 733
PA 91.3 90.0 89.7 897 904 895 89.2 892
Wetland Area 262 272 294 291 289 260 256 255 253
UA 435 447 464 473 478 505 519 52.7
PA 450 500 515 521 474 492 504 50.8
OA 78.9 80.1 80.7 81.0 755 772 780 783
k loc 0.808 0.817 0.821 0.823 0.776 0.776 0.783 0.786

k_quan 0.853 0.866 0.872 0.876 0.828 0.868 0.874 0.876
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Table S4.16. Pixel-based comparison between 2017 predicted land cover maps and the CDL

summarized by sets of input variables. Areal units are km?.

ARD HLS
Land Cover Info. CDL CxQ HPLM SPL CMB CxQ HPLM SPL CMB
Corn Area 685 597 625 602 604 613 627 641 608
UA 91.6 90.7 909 95.1 88.3 884 827 921
PA 79.9 82.8 800 839 79.1 810 774 8138
Wheat Area 87 64 66 14 70 59 70 2 67
UA 81.7 845 552 834 80.9 816 767 847
PA 60.0 64.5 8.7 67.1 55.4 66.2 18 6538
Alfalfa Area 50 38 42 39 36 34 43 35 36
UA 81.2 73.6 69.0 821 80.2 706 679 7838
PA 62.3 61.3 53.7 59.0 54.9 61.0 477 56.9
Soybean Area 803 765 755 912 816 769 762 910 812
UA 88.2 89.5 80.2 89.6 85.7 87.1 777 874
PA 84.1 84.0 911 91.0 82.1 826 881 884
Other Crops  Area 8 0 0 0 0 0 0 0 0
UA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Water Area 153 118 121 119 116 119 115 124 120
UA 91.6 91.7 975 978 89.1 923 941 949
PA 70.5 721 755 742 69.5 69.0 763 745
Barren/Dev.  Area 111 71 64 53 57 65 46 46 61
UA 25.1 311 555 529 24.8 284 506 436
PA 16.1 17.9 26.6 27.1 14.7 119 211 24.1
Forest Area 63 56 73 76 74 37 65 73 67
UA 46.2 48.1 605 61.0 55.7 497 550 60.1
PA 40.9 55,7 730 721 32.4 511 639 641
Grassland Area 744 833 886 906 915 866 927 931 938
UA 76.1 73.8 725 733 73.9 704 704 715
PA 85.2 87.9 882 90.1 86.0 87.6 881 901
Wetland Area 237 399 310 220 253 377 286 178 231
UA 33.7 385 510 499 35.4 388 56.1 4938
PA 56.7 50.4 474 533 56.4 469 421 486
OA 75.7 771 773 80.9 74.6 755 74.8 78.9
k loc 0.778 0.787 0.810 0.834 0.766 0.767 0.780 0.805

k_quan 0.831 0.845 0.818 0.857 0.826  0.842 0.811 0.861
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Figure S4.4. Number of valid observations (cloud/snow/shadow-free, EV12>0) over the study area

for each combination of year and data source.
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CHAPTER 5

RESEARCH SUMMARY AND RECOMMENDATIONS
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5.1  Summary and Key Findings

Understanding rapid land change in the U.S. Northern Great Plains region is not
only critical for management and conservation of prairie habitats and ecosystem services,
but also for projecting production of crops and biofuels and the impacts of land conversion
on water quality and rural transportation infrastructure. Hence, it raises the need for an
LCLU dataset with good spatiotemporal coverage as well as consistent accuracy through
time to enable change analysis. This dissertation aimed (1) to develop a novel classification
method from the perspective of land surface phenology, which utilizes time series images
from comparable sensors, and (2) to apply the land cover/land use dataset generated from
the phenometrically-based classification approach to quantify crop expansion in South
Dakota. My dissertation research advances the researcher’s toolkit for land cover mapping
and change analysis as well as shines fresh light on what has been a controversial issue
since 2013: the conversion of mixed-grass prairie to commaodity crops, particularly to corn
and soybean, due to the increasing demand for biofuels and animal feed. The primary
results of this research are summarized below

Chapter 2: The main focus of Chapter 2 was to evaluate “how well does land cover
mapping perform if phenological metrics alone are used as input to the classification
algorithm” (research question #1). In addition, responses of RFC models to different
sample sizes and sampling designs were also examined to identify which sampling scenario
yielded the most accurate classification.

The classification based only on phenometrics derived from the Convex Quadratic
model could accurately differentiate major commodity crops with PA/UA of above 0.7 and

0.9 for 2012 and 2014 RFC models, respectively. However, accuracy of non-vegetated
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classes, especially for developed, are limited. Among sampling designs, the “same
distribution” RFC models (proportional distribution of the sample is like proportional
distribution of the population) tend to yield best land cover prediction. Without control on
sample dataset, larger sample sizes did not necessary lead to better RFC models. The “same
distribution” sample dataset covering 0.25% of the study area seems to be adequate to
achieve accurate classification.

Chapter 3: The objective of Chapter 3 was to quantity the rate of cropland
expansion and its spatial pattern in South Dakota over the past decade (research question
#2). | proposed a trajectory-based approach that considers the entire land cover/land use
time series to determine if there was actual land change at a particular location, to overcome
the limitations of the bi-temporal change detection.

Between 2007 and 2015, the trajectory-based change detection approach estimated
a cropland expansion of 5,447 km? in South Dakota (equivalent to 14% of the existing
cropland area), which matches much more closely the reports from the National
Agriculture Statistics Service (5,921 km?) and the National Resources Inventory (5,034
km?) than an estimation from the bi-temporal approach (8,018 km?). Cropland gains were
mostly concentrated in 10 counties in northern and central South Dakota. Urbanizing
Lincoln County, part of the Sioux Falls metropolitan area, is the only county in South
Dakota with a net loss in cropland area over the study period. An evaluation of land
suitability for crops using the Soil Survey Geographic Database indicated a scarcity in
high-quality arable land available for cropland expansion in South Dakota.

Chapter 4: The goal of Chapter 4 was further exploration of the phenometrically-

based classification approach presented in Chapter 2 by addressing two questions: (1) how
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the selection of different LSP models used to fit annual time series impacts classification
accuracy (research question #3) and (2) how LSP-based classification can be improved by
incorporating information from spectral variables (research question #4). Similar to
Chapter 2, land cover classifications in Chapter 4 were also evaluated with alternative
sampling scenarios to examine which sampling scenario yielded the most accurate
classification. The assessment was conducted for two years 2016 and 2017 using two
different sources for the imagery: Landsat ARD and HLS data.

There was no obvious choice between the 2016 RFC models using CxQ versus
HPLM: the HPLM RFC models performed better with the ARD and the CxQ RFC models
were better with the HLS data. For 2017 data, HPLM RFC models slightly edge CxQ with
about 1% higher overall accuracy, mostly due to more precise allocation of land cover.
Indeed, the TOST test of equivalence indicated that overall accuracies of the 2017 HPLM
and CxQ RFC models exhibited equivalent performance. The spectrally-based RFC
models were more accurate than the phenometrically-based RFC models, especially for
non-crop cover types. However, the spectrally-based RFC models could not classify the
wheat class accurately. The combined spectral-phenological variables RFC models
consistently overcame weaknesses of both phenometrically-based classification (low
accuracy for non-vegetated covers) and spectrally-based classification (low accuracy for
wheat).

A sample pool with a minimum correction of land cover information yielded the
most accurate predicted map despite its lowest RFC models’ accuracy. A random stratified

sample dataset should cover at least 0.25% of the study area to achieve accurate land cover
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map. In case of data scarcity, smaller datasets would yield acceptable for classification but
ought not be smaller than 0.05% of the study area.
5.2 Multi-temporal land cover classification and change detection: a synthesis

A rapid increase of available Earth observations and advances in computer science
led to an emergence of land cover classification (see Gomez et al, 2016; Chapters 2 & 4)
based on time series data, starting in 2010s. Compared to the conventional land cover
classification approaches, the phenology-based method exploits the rich temporal
information from time series to map land cover more accurately (Mitchell et al., 2013;
Franklin et al., 2015). The phenology-based method is also fully compatible for an
operational process, which is a critical advantage for generating land cover maps at very
large scale. Beside those advantages, phenology-based classification (or classification
using time series data, in general) are still facing several challenges that need to be

addressed by future studies.

A substantial number of good quality observations required for the fitting of land
surface phenology model poses the greatest challenges in application of the
phenometrically-based classification (Zhong et al., 2011; Jia et al., 2014; Kong et al.,
2016; Chapter 2). Thus, most extant studies focused on using MODIS NDVI or EVI time
series, which are available with higher temporal coverage but at a coarser spatial resolution
(Zhong et al., 2011; Xue et al., 2014; Yan et al., 2015; Qader et al., 2016). My research
has shown that land cover can be mapped accurately at finer spatial resolution using data
from Landsat and Sentinel satellites. However, data gaps might be created during the fitting
process arising from model failure due to low number of good observations in some years

and over some areas. Because the gaps were produced in different places across the years,
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a direct comparison between yearly RFC outputs was not appropriate, in most cases,
without spatiotemporal interpolation. Even within the Landsat sidelap zone, it was not
always able to retrieve a sufficient number of good observations to fit the land surface

phenology model.

The temporal density of observations, however, could be increased by bringing
together complementary sensors. For example, results from my research demonstrated that
Sentinel-2 data can be used with Landsat ARD in the phenometrically-based classification.
Another feasible solution is to leverage very high spatiotemporal but low spectral
resolution data from a small satellite constellation to infill gaps (Houborg & McCabe,
2018). The temporal resolution of Landsat-like data can also be improved for
phenometrically-based classification by fusing with data that has lower spatial but
substantial higher temporal resolution, such as MODIS (Jia et al., 2014; Kong et al., 2016).
Nevertheless, it is important to note that the use of multi-sensor time series would require
a huge preprocessing effort. In addition, in areas with persistent cloud cover, such as in the
moist tropics, it may be impractical to collect a sufficient number of good observations
spanning the growing season, regardless how many optical sensors are observing. In those
areas, land cover classification would benefit from leveraging Synthetic Aperture Radar

(SAR) data (Waske & Braun, 2009; Qi et al, 2012 )

Extant phenology-based land cover classification studies, including my dissertation
research, only focus on the annual pattern of vegetation index time series. It is possibly due
to the long use of NDVI (or other vegetation indices) in land cover classification study
(Tucker et al., 1985; DeFries & Townshend, 1994) and availability of well-developed land

surface phenology models (see Henebry & de Beurs, 2013). Phenometrics derived from
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time series can complement the spectral information to improve classification accuracy
(Chapter 4; Jia et al., 2014; Kong et al., 2016). However, the use of spectral data in my
dissertation research, Jia et al. (2014) and Kong et al. (2016) was limited to the generation
of spectral variables, partly due to a lack of a well-studied tool to simulate annual pattern
of spectral data (excepts for vegetation indices). Temporal trajectory of spectral bands and
their related variables proved to be useful in land cover classification (Zhu & Woodcock
2014) and should be utilized more in the future classification study. However, a robust land
surface seasonality model is needed to simulate annual pattern of different spectral variable

time series (bands and ratios) and to extract seasonality information from the fitted curves.

Number of variables in phenometrically-based classification can increase
significantly when combining features from different land surface phenology models or
incorporating additional information from other spectral bands and ratios. Although RFC
models are not sensitive to correlated or noise variables (Biau, 2012), a larger number of
input variables would increase the computational complexity. In addition, some input
variables may be linked to the same biogeophysical property of the land surface. Including
all of those variables in land cover/land use classification may weaken a contribution of
the underlying biogeophysical process to the classification. Thus, future land cover
classification studies with high dimensional data, such as those using phenology-based
approach, would consider applying dimension reduction techniques (Fodor, 2002) or
variable selection methods (Degenhardt et al., 2013) to achieve efficient computation and

clear understanding of variable importance.

Land cover/land use classifications in my dissertation study were limited to a few

simple cover classes. Cropland mapping in this study was constrained to a few commodity
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crops (partly due to the homogeneous crop planting in the study area) with a single growing
seasonal per year, including corn, soybean, wheat, sunflower, alfalfa. In addition, forest
and grassland were not broken into smaller classes (partly due to the focus on cropland of
the study). To demonstrate fully the capability and advantage of the phenology-based
classification, future studies should be conducted in areas with more complex land
cover/land use, e.g., multiple cropping in California’s Central Valley or different types of

forest in the eastern US region.

Compared to the traditional bi-temporal approach, the land cover change detection
exploring time series data with the trajectory-based approach (Chapter 3) yielded a closer
estimation of cropland expansion in South Dakota to the USDA’s reports. However, my
study only quantified changes in cropland area, partly due to limited accuracy of non-
cropland classes in the input land cover datasets. Thus, exact quantification of grassland or
wetland losses due to cropland expansion, another information of interest for conservation
purposes, was not available. In addition, the land cover dataset for South Dakota generated
from my study does not offer crop-specific categories like the CDL (only mapped three
broad categories: cropland, grassland and others), preventing identification of the crops
were planted on the newly cultivated lands. Applying the trajectory-based change detection
approach on a land cover dataset with more detailed classes, such as CDL, could yield

valuable information about changes in the study area.

54 Future Research
Examine capability of land cover/land use classification using time series
My next research would further explore capability of LSP-based classification by

performing classification in areas with complex land cover such as: multiple cropping in
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California’s Central Valley or different types of forest in the eastern US region. 1 would
use surface reflectance from Landsat 7, 8 and Sentinel-2 together to obtain more good
quality observations. As comparable classification accuracies were achieved from ARD
and HLS data, the combination of Landsat 7, 8 and Sentinel-2 for land cover/land use
classification is feasible. Evaluating classification performance (based on similar sets of
input variables) for those areas would further confirm robustness of the proposed approach.

High spatiotemporal dataset from Planet for land cover classification

In another future study, | would want to explore a private dataset from PlanetScope
(Planet, 2018)—a constellation of approximate 130 small satellites—available at 3 meter
spatial resolution and up to daily coverage since 2017. Although the PlanetScope dataset
has several limitations, such as a maximum of 10,000 km? of free data each month per user,
only offers four spectral bands—RGB and NIR and observed at different times (some
satellites have a sun-synchronous orbit and others have an international space station orbit),
a very high spatiotemporal resolution of the archive make it a great data source for land
cover/land use classification, especially when a high spatial resolution land cover map is
needed at local scale. Using a very dense time series of PlanetScope could also allow to
examine how well existing land surface phenology models work on other spectral bands
and ratios. It would be a good start for developing a new generation of land surface
seasonality models.
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