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ABSTRACT 

 

NOVEL HYBRID ANALOGS OF ESTRONE ORIGIN EXHIBITS CYTOTOXIC 

EFFECTS AGAINST EGFR-DEPENDENT CANCERS 

 

FELIX ACHEAMPONG 

 

2019 

 

Cancer is second only to cardiovascular illnesses as the deadliest human disease globally. 

Currently, non-small cell lung cancer (NSCLC) and triple negative breast carcinoma 

(TNBC) are the most frequent types of cancer and have the highest mortalities. Epidermal 

growth factor receptor (EGFR), a central regulator of tumor progression, is frequently 

overexpressed in both cancers and is a key clinical target for therapeutic intervention. 

Natural products and their synthetic analogs have been utilized as EGFR tyrosine kinase 

inhibitors (TKIs) with potent antitumor effects. However, acquired resistance limits the 

long-term efficacy of these drugs. Estrone has been used as a scaffold in some studies 

where pharmacophores with antitumor properties were introduced to generate lead 

candidates with improved efficacy and safety. In our research group, estrone is employed 

as a starting material to synthesize novel hybrid analogs. Many of our estrone analogs, 

especially those bearing cucurbitacin pharmacophores have been documented to exhibit 
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potent cytotoxic effects against distinct cancers. However, these hybrid analogs have never 

been explored as potential agents targeting EGFR-dependent cancers. Here, we describe 

the cytotoxic effects of novel estrone analogs: a hybrid of estrone base-scaffold and 

modified cucurbitacin (MMA series) or triazole (Fz series) pharmacophores as potent 

agents against EGFR-dependent cancers, viz. NSCLC (NCIH226) and TNBC (MDA-MB-

231, MDA-MB-468) tumor models. Molecular docking studies were carried out with 

OpenEye software. The MTT cell viability and trypan blue stain assays were used to 

perform cytotoxicity studies. Morphological changes and cell cycle arrest were carried out 

by microscopy and flow cytometric techniques, respectively. Annexin V assay was utilized 

to evaluate initial apoptosis induction in all cells and In-cell western assay was used to 

detect protein expression levels associated with mitochondrial apoptosis, cell cycle, EGFR 

and its downstream AKT and ERK1/2 pathways. Molecular docking studies revealed that 

most estrone analogs exhibited improved potency and binding compared to the positive 

controls, erlotinib and sorafenib when docked against the EGFR kinase-domain (pdb 

codes: 2ITW, 1M17). Subsequently, several estrone analogs exhibited significant cytotoxic 

effects against the different cancer cell lines in vitro. Notably, MMA307 and MM320 

recorded lower IC50 molarities of 2.88 ± 0.21 and 9.68 ± 0.24 µM compared to the positive 

control, sorafenib, IC50 value of 20.62 ± 1.32 µM in NCIH226 cells. Similarly, 

administration of MMA307 and MMA321 to MDA-MB-468 cells yielded potent IC50 

concentrations of 0.85 ± 0.00 and 0.56 μM ± 0.01 μM, respectively, when compared to 

sorafenib, IC50 value of 10.09 ± 0.68 μM. Furthermore, Fz25 recorded IC50 dose of 8.13 ± 

0.15 μM in MDA-MB-231 cell lines when compared to sorafenib, 12.21 ± 0.96 μM. 

Treatment with the MMA307 and MMA320 resulted in downregulation of Dyrk1B (dual-
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specificity tyrosine phosphorylation-regulated kinase B), cyclin D1 and concomitant 

upregulation of phospho-cyclin D1 and p21waf1/cip1 contributing to cell cycle arrest in the 

G1 phase. Also, downregulation of EGFR and phospho-EGFR levels as well as suppression 

of activated MAP kinase signaling proteins-phospho-B-Raf, phospho-MEK1/2 and 

phospho-ERK1/2 were observed after NCIH226 cells were exposed to estrone analogs. 

Similarly, MMA307 and MMA321 downregulated cyclin D1 expression levels resulting 

in G1 phase cell cycle arrest in MDA-MB-468 cells. Also, these compounds halted the 

MAPK and AKT signaling pathways due to their ability to downregulate EGFR and 

activated EGFR expressions. Moreover, mitochondrial apoptosis was induced in the TNBC 

model, MDA-MB-468, upon MMA307 and MMA321 exposures. In a different study, 

treatment of MDA-MB-231 cells with Fz25 induced mitochondrial apoptosis and 

contributed to the G1 phase of cell cycle arrest due to decreased expressions of cyclin D1 

and Dyrk1B. Interestingly, this compound impacted the MAPK and AKT signaling 

pathways due to its ability to decrease EGFR and activated EGFR expressions. To 

conclude, the present study is the first to report on the cytotoxic potential of novel estrone 

analogs and provide evidence that MMA307, MMA320, MMA321 and Fz25 are 

promising novel lead compounds. Further investigations are needed to develop these potent 

compounds as the next generation anti-EGFR therapies for treating serious EGFR-

dependent lung and breast cancers. 
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Chapter 1 

 

 

1.1 Introduction and Background 

  

 

Cancer is a complex genetic disease or group of diseases characterized by the 

uncontrolled growth and spread of nonhealthy cells. The spread of malignant cells (a 

phenomenon called metastasis) is responsible for patient’s death. The disease incidence 

and mortality are rapidly growing globally; ageing, unhealthy lifestyle, family history, 

chemical and environmental factors, and genetic susceptibility are the major risk 

factors proposed for developing cancer. In the past cancers were classified based on 

histology and primary site (location in the body), therefore, six major categories, 

namely carcinoma, sarcoma, myeloma, leukemia, lymphoma, and mixed types have 

been established based on histology alone. According to primary site lung, breast, 

prostate, liver, stomach, head and neck, etc. cancers have all been identified (Figure 

1.1).  
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Figure 0.1. Cancer incidence and mortality. Lung and breast cancers have the highest 

incidence in both males and females. Lung cancer has the highest mortality rate followed 

by stomach, liver and breast cancers in both sexes. However, in females, breast cancer has 

the highest mortality. Data adapted from Bray et al., 2018. 
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1.2 Lung and Breast cancers as serious illnesses worldwide 

 

Lung cancer is the most common cause of cancer mortality worldwide with an 

estimated 1.8 million deaths yearly (Bray et al., 2018). Also, it accounts for more than 

a quarter of all cancer-related deaths (Siegel et al., 2017). Usually, lung cancer is 

classified into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). 

“Small cell or non-small cell” refers to the type of cell within the lung where the cancer 

originated. About 85% of lung cancer cases are NSCLC (the most frequent type), of 

which lung adenocarcinoma and lung squamous cell carcinoma are the most common 

subtypes (Herbst et al., 2018). Large cell carcinoma is the less common type. The 

remaining 15% represent SCLC cases, four subtypes have been identified: oat cell 

carcinoma, small cell carcinoma of the intermediate cell type, combined oat cell 

carcinoma, and undifferentiated carcinoma of the small cell type (Nomori et al., 1986). 

Many lung cancer patients have locally advanced disease at the time of initial diagnosis 

and about 7-10% of patients present with brain metastases (Ali et al., 2013). The key 

cause of lung cancer is attributed to tobacco smoking, accounting for more than 80% 

of the cases in countries where smoking is common (Alberg et al., 2013). However, 

nonsmokers also develop lung cancer when exposed to conditions like second-hand 

smoking, pollution and occupational carcinogens, and with inherited genetic 

susceptibility (Herbst et al., 2018).  

 

Breast cancer has the second highest incidence rate globally after lung cancer and 

accounts for the fourth highest mortality after lung, stomach and liver cancers. In 
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females, breast cancer records the most deaths every year (Bray et al., 2018). This 

disease is usually classified into four subtypes, luminal A-like (ER-positive (ER+) 

and/or PR-positive (PR+), HER2-negative (HER2–)), luminal B-like (ER+ and/or PR+, 

HER2-positive (HER2+)) HER2-enriched (ER-negative (ER–)/PR-negative (PR–

)/HER2+), and triple-negative breast cancer (TNBC; ER–/PR–/HER2–) based on 

immunohistochemistry studies on estrogen receptor (ER), progesterone receptor (PR), 

and human epidermal growth factor receptor-2 (HER2) (Ma et al., 2017). The luminal 

A-like subtype is the most frequently occurring subtype and accounts for 62–67% of 

invasive cases; TNBC is the second most common subtype and accounts for 10–25% 

of invasive cases and is more aggressive with poor prognosis (Dai et al., 2015; 

Uscanga-Perales et al., 2016; Lee and Djamgoz, 2018). In comparison to non-TNBC 

(luminal A-like, luminal B-like and HER2-enriched) tumors, TNBC tumors are 

frequently larger and less differentiated and are almost 2.5-fold more likely to 

metastasize within five years of diagnosis (Uscanga-Perales et al., 2016). Moreover, 

TNBC metastasizes preferentially to the viscera and nervous system in contrast to non-

TNBC which spreads mostly to the bone. Also, it is more often associated with breast 

cancer type 1 (BRCA1) mutation and to a less extent, BRCA2 mutations (Podo et al., 

2016). In the past, TNBC was subclassified into six types based on gene expression 

profiling (Lehmann et al., 2011), however, currently, these have been narrowed down 

or refined into four subclasses: basal-like 1 (BL1), basal-like 2 (BL2), luminal 

androgen receptor (LAR) and mesenchymal (M) (Lehmann et al., 2016). These TNBC 

subtypes are known to activate different signaling pathways. BL1 shows elevated 

expression of Ki67, BL2 presents with elevated expression of TP63, MET and activate 
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glycolysis and gluconeogenetic pathways. On the other hand, LAR increases the 

expression of androgen receptors and M activates mTOR and angiogenesis signaling 

(Uscanga-Perales et al., 2016). It must be noted that racial ancestry, gestation, lack of 

lactation, high body mass index, metabolic syndrome, type 2 diabetes, obesity and/or 

insulin resistance are all risk factors to developing the TNBC phenotype (Ma et al., 

2017; Kim et al., 2015).  

 

Recent breakthroughs in molecular and cellular biology have allowed the use of 

biomarkers or genetic markers to classify cancers into distinct phenotypes and to 

identify druggable targets. In the past 30 years, important molecular markers associated 

with several mechanisms including proliferation, growth, survival, angiogenesis, cell 

death, metastasis, etc. pathways have all been reported for both NSCLC and TNBC. 

The most reported and targeted biomarker is the epidermal growth factor receptor 

(EGFR), a central regulator of tumor progression. 
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1.3 Key molecular drivers associated with NSCLC and TNBC progression 

 

 

NSCLC and TNBC are molecularly heterogeneous disease and understanding their biology 

is crucial for the development of effective therapies. Molecular profiling studies have led 

to the identification of driver mutations in more than 50% of patients with NSCLC 

(Baumgart, 2015) and an almost equal number in TNBC cases (Annunziato et al., 2019). 

From variant mutation analyses, alterations in the Kirsten rat sarcoma (KRAS), BRAF and 

EGFR genes have been associated with NSCLC initiation and represent attractive targets 

for therapeutic intervention. In TNBC, mutations in BRCA1/2 (germLine), TP53, MYC 

and driver-genes associated with growth pathways like EGFR, MEK have been reported 

(Santoro et al., 2019; Sabatier et al., 2019). KRAS is frequently mutated in NSCLC and is 

found in approximately 32.2% of patient cases (Ha et al., 2015; Anguera and Majem, 

2018). The RAS genes encode for membrane-bound GTP binding proteins, which are part 

of the RAS/MAPK signaling pathway linking EGFR activation to cell proliferation and 

survival. Mutations in the KRAS gene tend to be mutually exclusive from EGFR mutations 

and ALK translocations and are believed to be a negative prognostic factor for survival 

(Baumgart, 2015). Also, BRAF, a downstream mediator of KRAS, activates the MAP 

kinase pathway involved in cell proliferation. Mutations in BRAF are found in about 4% 



7 
 
 

of patients with NSCLC adenocarcinoma; specifically, BRAFV600E represents about 

56.7% of the identified mutations within the gene (Anguera and Majem, 2018).  

 

On the other hand, TNBC tumors show different mutation characteristics compared to 

NSCLC tumors. Loss of BRCA1/2, because of either germLine or somatic mutations or 

due to promoter hypermethylation, has been suggested in about 50% of patient cases 

(Garrido-Castro et al., 2019). BRCA1/2 genes are crucial for error-free repair of DNA 

double-strand breaks via homologous recombination, and loss of or reduced expression of 

these genes results in elevated levels of chromosomal instability and a specific mutator 

phenotype. Also, mutations in TP53 tumor suppressor gene, occur in more than 80% of 

TNBC cases (Bae et al., 2018). This gene is frequently mutated in basal-like TNBC, with 

nonsense and frameshift mutations enriched. TP53 regulates several genes and is involved 

in DNA-damage response and cell-cycle regulation mechanisms. In addition, next-

generation sequencing (NGS) data shows that MYC amplification was noted in about 26% 

of TNBC group (Shi et al., 2018). MYC (an oncogenic transcription factor) regulates the 

transcriptional activity of multiple genes involved in cell proliferation, metabolism, and 

survival. It is suggested that MYC conjoins with RAS–MAPK to drive tumor progression 

in TNBC cell lines, and MEK inhibition potently inhibits tumor growth in MYC-

overexpressed breast cancer (Balko et al., 2014). 

 

EGFR is expressed on the cell surface of a substantial percentage of NSCLC and TNBC 

cells. This member of the receptor tyrosine kinase class of receptors is important in 
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transducing extracellular signals from the cell surface to the cell interior, mediating crucial 

processes such as cell proliferation, differentiation, migration, and apoptosis. Dysregulated 

expression of these receptors can lead to the aberration of homeostatic cellular processes, 

resulting in malignant transformation of cells. Activating EGFR mutations have been 

reported in cancers such as NSCLC, TNBC and head and neck cancers. These EGFR 

mutations are predictive of response to anti-EGFR therapy (Teng et al., 2011). These 

mutations often are associated with poor prognosis. In NSCLC, EGFR overexpression or 

alterations in the kinase domain have been observed in 40-80% of primary cases and 

around 88% in patients with metastatic disease (Sim et al., 2018). When compared to 

KRAS, EGFR mutations in smokers and non-smokers varies irrespective of racial 

background. Non-smokers tend to have higher expression of somatic EGFR mutations 

compared to smokers. It is noteworthy to mention that, among the identified EGFR kinase 

domain mutations, over 90% appear as short in-frame deletions in exon 19 or as point 

mutations in exon 18-21, the latter resulting in arginine replacing leucine at codon 858 

(L858R) (Jorge et al., 2014). Thus, patients with NSCLC are classified as either being 

EGFR mutants (having mutations within the kinase domain) or EGFR wild-type 

(exhibiting EGFR overexpression or amplification). Based on this, different treatments are 

recommended for the unique NSCLC patient population. 

 

Though TNBC lacks the expressions of ER, PR, and HER2, studies have revealed that 

EGFR is highly expressed or amplified in TNBC (50-75% of cases), especially in the 

advanced state (Dent et al., 2007). According to Teng et al., 2011, TNBC cells harbor 
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EGFR mutations, including exon 19 deletions, inversions and exon 21 missense 

substitutions. However, TNBC patients have not been well classified based on EGFR status 

as found in the case of NSCLC. The same study predicted that these EGFR mutations may 

sensitize TNBC towards tyrosine kinase inhibitors (TKIs) and may enhance the potential 

use of anti-EGFR therapy.  

 

1.3.1 Role of EGFR and its downstream pathways in tumor progression 

 

 

EGFR is a receptor tyrosine kinase (RTK) and a member of the HER family of receptors 

composed of EGFR/HER1/ERB1, HER2/ERB2, HER3/ERB3, and HER4/ERB4. There 

are 11 different growth factors associated with the receptors which can be broadly divided 

into those that specifically bind with EGFR (EGF, TGF-α, Amphiregulin), those that bind 

with EGFR and HER4 (BTC, HB-EGF, Epidermal regulators), and those that bind with 

HER3 and HER4 (Neuregulin). EGFR structurally consists of a C-terminus intracellular 

region that possesses the kinase activity, an N-terminus extracellular ligand-binding site, 

and a hydrophobic transmembrane domain (Liu et al., 2017). Downstream signaling from 

these receptors proceeds via tyrosine phosphorylation which activates multiple 

downstream signaling pathways including RAS/MAPK and PI3K/Akt cascades that lead 

to transcriptional regulation of genes involved in cell proliferation, motility, and survival 

(Figure 1.2). Phosphorylation on serine and threonine residues within the kinase domain 

leads to its sequestering and degradation (Liu et al., 2017). 
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1.3.1.1 Mitogen-activated protein (MAPK) kinase signaling 

  

 

The mitogen-activated protein kinases (MAPK) pathway, often known as a cascade of 

protein kinases, composed of RAS, RAF, mitogen-activated protein/extracellular signal-

regulated kinase (MEK) and the extracellular signal-regulated kinase (ERK), is a highly 

conserved signal transduction pathway in all eukaryotic cells. The MAPK pathway is one 

of the best-characterized signaling cascades that regulates a variety of normal cellular 

functions, such as cell proliferation, differentiation, survival and apoptosis, by transmitting 

signals from upstream extracellular growth factors to diverse downstream effectors located 

in the nucleus (Molina and Adjei, 2006). The RAS/MAPK pathway is initiated through the 

promotion of Ras binding to guanosine triphosphate (GTP), which in turn activates RAF 

kinases MAPK/extracellular signal-regulated kinases (MEK), and ERK. Activated ERK is 

thought to translocate into the nucleus, where it phosphorylates and activates numerous 

targets such as elk-1, c-jun, fos, etc. involved in cell cycle progression and proliferation 

(MacCorkle and Tan, 2005). Moreover, activated ERK phosphorylates multiple substrates 

ranging from kinases to transcription factors and is positioned as a key kinase that controls 

multiple cellular processes due to its rather broad nature of substrate recognition.  

               

1.3.1.2 Phosphatidylinositol-3 kinase (PI3K) signaling 

 

 

Upon EGFR autophosphorylation on tyrosine residues, PI3K is recruited to the membrane 

by directly binding to phosphotyrosine consensus residues of EGF receptors or by binding 
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to adaptors through p85 regulatory subunit. PI3K activation leads to the production of the 

second messenger phosphatidylinositol-3,4,5-triphosphate (PIP3) from the substrate 

phosphatidylinositol-4,4-bisphosphate. PIP3 then recruits a subset of signaling proteins 

with pleckstrin homology (PH) domains to the membrane, including protein 

serine/threonine kinase-3′-phosphoinositide-dependent kinase 1 (PDK1) and Akt/protein 

kinase B (PKB) (Portia et al., 2014). The constitutively active PDK1 then induces the 

phosphorylation of AKT kinase domain at Thr308 and Ser473 at the carboxyl-terminal 

position to initiate the complete activation of AKT. Subsequently, AKT can indirectly 

inhibit (phosphorylate) tuberous sclerosis complex 1/2 (TSC1/2 - hamartin and tuberin), 

thereby activating the mammalian target of rapamycin (mTOR) signaling. mTOR activity 

is carried out by two distinct complexes: mTORC1 and mTORC2 that act downstream and 

upstream of AKT, respectively. As a key signaling node, the mTORC1 complex contains 

the regulatory protein, raptor which regulates the phosphorylation of p70S6 kinase and 4E-

binding protein 1 (4EBP1), and controls their downstream functions in protein translation, 

cell growth, and cell proliferation (Fruman et al., 2017). Also, mTORC2 is known to 

activate AKT, thereby promoting cell proliferation and survival. Previous research 

suggested that malfunctioning of the EGFR-RAS-MAPK and EGFR-Akt-mTOR signaling 

axes play important roles in NSCLC and TNBC progression. Particularly, overexpression 

of EGFR and phosphorylated EGFR as well as overexpression of phosphorylated MAPK, 

AKT and mTOR is documented in the advanced stages both cancers (Ignacio et al., 2018; 

Chen and Costa, 2018; Foidart et al., 2019; Liu et al., 2017; Sato et al., 2018). It is also 

reported that increased expression of phosphorylated mTOR and MAPK leads to G1 to S-
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phase cell cycle entry by modulating cyclin and cyclin-dependent kinases expression 

(Foidart et al., 2019; Nagata et al., 2010; Gridelli et al., 2008). 

 

1.3.1.3 G1 phase cell cycle progression 

 

The increased expression of cyclins, particularly cyclin D, activates cyclin-dependent 

kinase (CDK) 4/6 activity and inactivates retinoblastoma tumor suppressor (Rb) activity, 

resulting in the activation of the transcription factor E2F and the upregulation of target 

genes that are essential for progressing from the G1 to S phase of the cell cycle. On the 

other hand, the expression levels of the cyclin-dependent kinase inhibitors, p21cip1 and 

p27kip1, are decreased when the RAS/MAPK and PI3K/AKT pathways are activated (Nagata 

et al., 2010). Dyrk1B-(dual-specificity tyrosine phosphorylation-regulated kinase B), a G1-

S phase checkpoint kinase, is amplified or overexpressed in certain human cancers 

signifying that it may be an oncogene (Ashford et al., 2014; Gao et al., 2013). It is thought 

to arrest damage tumors in the G0/G1 phase to allow their repair in the quiescent state while 

maintaining the clonogenicity of tumors via mediating cyclin D1 turnover and stabilizing 

p21cip1. Gao et al., 2013, suggested that increased expression of activated MAPK positively 

correlated with Dyrk1B expression in NSCLC and ovarian cancers.  
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Figure 0.2. EGFR signaling pathway. EGFR is a receptor protein that spans the cell 

membrane. Binding of EGF to the receptor leads to the formation of an asymmetric dimer. 

Autophosphorylation of tyrosine residues activates the RAS-RAF-MAPK and PI3K-AKT 

pathways. Figure adapted from Liu et al, 2017. 
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1.3.1.4 Apoptosis pathways 

 

 

Activation of RAS/MAPK and PI3K/AKT/mTOR pathways in NSCLC and TNBC tumors 

is suggested to override apoptosis by activating antiapoptotic proteins and suppressing 

proapoptotic proteins. Apoptosis occurs through two distinct molecular pathways, which 

are regulated by caspases. The intrinsic or mitochondrial pathway is activated by 

intracellular events and depends on the release of pro-apoptotic and anti-apoptotic factors 

from the mitochondria, such as the B-cell lymphoma 2 (Bcl-2) family proteins, cytochrome 

c and APAF-1, among others. The released cytochrome c from the mitochondrial to the 

cytoplasm binds and activate apoptotic protease activating factor 1 (APAF-1). Activated 

APAF-1 apoptosome then activates caspase-9 which subsequently activates caspase-3 

(Winter et al., 2014). The extrinsic pathway is initiated by the binding of an extracellular 

death ligand to its cell-surface death receptor. This leads to the activation of caspase 8, 

which also activates the effector caspase 3 (Winter et al., 2014). The extrinsic pathway can 

crosstalk with the intrinsic pathway through caspase-8-mediated cleavage of BID (a 

member of the Bcl2 family of proteins) (Billen et al., 2008). Finally, caspase-3 cleaves and 

inactivates PARP-poly (ADP-ribose) polymerase-which is important for damaged DNA 

repair, thereby inducing apoptosis (Figure 1.3) (Soldani and Scovassi, 2002). 

 

EGFR and its downstream pathways represent attractive therapeutic targets, and the 

inhibition of multiple pathways is likely to prevent the compensatory effect of the feedback 

loop which is a major issue for molecular targeted therapy in many types of cancer. 
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Figure 0.3 Apoptosis pathways. Apoptosis can occur through the intrinsic (mitochondrial) 

pathway or extrinsic pathway. Intrinsic apoptosis is characterized by cytochrome c release, 

apoptosome formation by APAF1 and activation of caspase 9. Extrinsic mechanism occurs 

via ligands binding to the death receptor and activating caspase 8. Both mechanisms 

crosstalk through truncation of the protein called BID. Figure adapted from Manoto et al, 

2017.  

 

 

 

 



16 
 
 

 

1.4 Therapies for NSCLC and TNBC 

 

 

Most patients with NSCLC or TNBC are diagnosed with metastatic disease. In NSCLC, 

the five-year overall survival in the advanced stage of the disease is 5% (Baxevanos and 

Mountzios, 2018) whereas in TNBC the 5-year survival in advanced stage tends to be about 

22% (American Cancer Society, 2019). Chemotherapy has been the mainstay of treatment 

in patients with metastatic NSCLC or TNBC for a long time and since no cure can be 

achieved, it is given with palliative intent. It must be mentioned that treatments such as 

surgery, radiation, immunotherapy, among others are also recommended for NSCLC and 

TNBC patients. 

 

1.4.1 Chemotherapy as a treatment modality for TNBC and NSCLC-success and 

challenges 

 

 

1.4.1.1 Chemotherapy as a superior treatment for wild-type NSCLC 

 

 

Chemotherapy is the application of chemicals or drugs to kill cancer cells, and its effects 

are systemic. In NSCLC, chemotherapy is the recommended first line treatment for patients 

with overexpressed (wild-type) EFGR whereas targeted agents such as EGFR-TKIs are 

used as second- or third-line agents. However, the treatment order is reversed for NSCLC 

patients carrying mutant EGFR. Platinum-based doublet therapy (for example, cisplatin in 

combination with another cytotoxic therapy) has been the standard therapy for patients with 
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advanced stage NSCLC and shows a superior performance status (Herbst et al., 2018). 

Particularly, adjuvant cytotoxic therapy with a cisplatin-based doublet administrated to 

patients in stages II and IIIA NSCLC yielded improved survival with complete resection. 

Also, Hotta et al., 2004, analyzed eight clinical trials and reported a higher response rate 

for cisplatin compared with carboplatin treatment with no survival difference. In the same 

study, subgroup analyses revealed that patients treated with cisplatin alone had longer 

survival than those receiving a third generation TKI in conjunction with carboplatin. 

Moreover, from the FLEX and BMS099 studies, it was revealed that cetuximab (anti-

EGFR monoclonal antibody) used as monotherapy after prior administration of TKIs 

yielded no response (Wang et al., 2013). However, cetuximab addition to platinum doublet 

cisplatin/vinorelbine demonstrated a significant improvement in overall survival benefit of 

1.2 months in NSCLC patients with EGFR-positive tumors (Wang et al., 2013). Overall, 

the above reports have demonstrated that cytotoxic chemotherapy regimens or their 

combinations administered to patients with EGFR-wild-type NSCLC produced a better 

response. Nonetheless, it must be mentioned that the median overall survival for EGFR-

wild-type NSCLC patients after chemotherapy treatment remains less than 1 year and the 

progression-free survival is 6 months at the most (Lin et al., 2016). This indicates that 

newer therapies with improved outcomes are needed for this unique NSCLC patient’s 

population. 

 

1.4.1.2 Chemotherapy as a successful treatment for TNBC 
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The standard of systemic treatment for TNBC follows the same general principle with other 

types of breast cancer. Therefore, neoadjuvant or adjuvant chemotherapy remains a key 

component of systemic treatment in early and advanced TNBC, which is determined 

primarily by its clinical or pathologic stage (Park et al., 2018). In previous pivotal 

neoadjuvant trials, patients with TNBC showed significantly higher response rates to 

anthracycline and taxane-based chemotherapy than those of other subtypes, achieving 

pathologic complete response (pCR) rates of approximately 40% (Cortazar et al., 2014). 

Subsequent clinical trials of metastatic TNBC showed a modest efficacy of platinum-based 

monotherapy, consistently suggesting a greater benefit in BRCA1/2 mutation carriers. In 

early TNBC, patients with stage II–III treated with neoadjuvant cisplatin alone showed a 

22% pCR rate in a small retrospective study, in which only 7% of patients carried germLine 

BRCA mutations (Byrski et al., 2014). Further phase II studies exclusively for patients 

with BRCA1 mutation demonstrated markedly higher pCR rates from 61-90% after 

neoadjuvant cisplatin monotherapy, which validated the significance of BRCA gene in 

predicting platinum sensitivity in TNBC (Silver et al., 2010). Despite, the effectiveness of 

single-agent chemotherapy, some TNBC non-responders were identified and that called 

for the use of combinatorial chemotherapy. Masuda et al., 2017 report that the CREATE-

X trial demonstrated a potential survival benefit of adding capecitabine to the standard 

adjuvant chemotherapy regimen in early TNBC with a residual tumor burden after 

neoadjuvant treatment. Also, a meta-analysis by Natori and colleagues, 2017, provided 

some justification for combining capecitabine with either neoadjuvant or adjuvant standard 

chemotherapy in patients with TNBC. In a different phase II clinical trial, BRCA1/2-

mutant TNBC patients achieved the highest pCR rate of about 56% after neoadjuvant 
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combination chemotherapy with gemcitabine, carboplatin, and the PARP inhibitor iniparib 

(Telli et al., 2015). Despite the effectiveness of these treatment modalities, patients who 

do not respond to chemotherapy develop resistance, and a more aggressive recurrent 

disease results which then becomes virtually incurable (Székely et al., 2017; Wahba and 

El-Hadaad, 2015). 

 

Over the past three decades, targeted agents have been developed as a replacement therapy 

to treat cancer patients with the idea of achieving selectivity, specificity, efficacy and 

safety, as well as preventing adverse side effects. Some of these agents have already been 

approved by the Food and Drugs Administration (FDA) for treating different cancers. 

Targeted agents against EGFR are the most abundant in clinical use (Imai and Takaoka, 

2006). Examples include monoclonal antibodies - (cetuximab and panitumumab) and 

tyrosine kinase inhibitors - (erlotinib and gefitinib).  

 

1.4.2 EGFR targeted therapy for TNBC and NSCLC patients-success and 

challenges 

 

1.4.2.1 EGFR targeted therapy as a successful treatment for NSCLC 

   

 

In NSCLC, EGFR has been exploited as a molecular target for two distinct kinds of 

molecules, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKI). mAbs, 

which are thought to be efficacious in EGFR wild-type NSCLC patients and target the 
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extracellular domain of EGFR. On the other hand, TKIs which are effective in NSCLC 

patients with mutations in the EGFR kinase domain, target the intracellular domain of 

EGFR (Figure 1.4) (Imai and Takaoka, 2006). Usually, EGFR wild-type NSCLC patients 

with advanced disease receive chemotherapy as a first-line of treatment, while TKIs 

(gefitinib, erlotinib, afatinib) or mAbs (cetuximab, panitumumab and necitumumab) serve 

as second line (Zhang et al., 2014) of treatment. EGFR wild-type NSCLC patients have 

responded better to a chemotherapy regimen compared to anti-EGFRs. Notably, the 

TAILOR trial (Tarceva Italian Lung Optimization Trial), which compared the efficacy of 

erlotinib in patients with wild-type EGFR to that of docetaxel as a second-line therapy, 

showed that the progression-free survival (PFS) was significantly better with docetaxel 

than with erlotinib: median PFS was 2.9 months with docetaxel versus 2.4 months with 

erlotinib (Morales-Espinosa and Rosell, 2015). In a similar Chinese trial, which compared 

pemetrexed to gefitinib in wild-type EGFR non-squamous NSCLC patients, it was 

observed that progression-free survival was significantly better with pemetrexed than 

gefitinib and there was a trend for an improvement in overall survival in favor of docetaxel 

(Sculier et al., 2015). Other studies have also reported that the combination of 

chemotherapy and anti-EGFRs administered to EGFR wild-type NSCLC patients leads to 

a superior overall response. Particularly, the FLEX trial demonstrated improved overall 

survival for chemotherapy plus cetuximab in patients who harbored overexpressed (wild-

type) EGFR in their tumors (Pirker, 2012). Similarly, the Sculier et al., 2015 study reported 

that the addition of cetuximab to chemotherapy significantly improved the overall survival 

and progression-free survival compared with chemotherapy alone. However, anti-EGFR 

administered alone to this patient population is deemed ineffective by these same reports. 
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Therefore, in terms of evidence-based medicine, these studies are strongly against the use 

of TKIs in wild-type EGFR NSCLC. In EGFR mutant NSCLC, two common mutations 

observed are the L858R mutation in exon 21 and the exon 19 deletions. Both are found 

within the tyrosine kinase domain and are drug-sensitizing mutations. These mutations 

activate the kinase action increasingly and sustain the activated receptor in a gain-of-

function manner through ligand binding. Therefore, it has been observed that del 19 and 

L585R are gain-of-function mutations because they cause activation of the EGFR signaling 

pathway in the mutant EGFR-positive oncogenic cells, and some of these mutations also 

lead to greater sensitivity to EGFR TKIs compared to cases with wild-type EGFR (Pirker, 

2012). TKIs are mainly recommended as either first- or second-line therapies for advanced 

stage NSCLC patients with EGFR-mutations. TKIs are suggested to covalently bond to the 

ATP binding sites of the tyrosine kinases, causing permanent inhibition to this site, whilst 

also inhibiting the HER2 receptor. Many reports suggest that anti-EGFRs are highly 

recommended for treating EGFR-mutant NSCLC patients due to improve overall response 

rate and the significant increase in progression-free survival when compared to 

chemotherapy. In support of this, the IPASS clinical study reported that tumor response 

rate in patients with EGFR activating mutations was about 71.2% in the gefitinib group 

which was statistically significant compared to 47.3% in the chemotherapy arm. The 

primary endpoint of progression-free survival (PFS) was significantly prolonged in the 

gefitinib treatment group (9.8 vs 6.4 months) (Yi-Long et al., 2012). In a similar study, 

researchers randomized 173 NSCLC patients with EGFR mutations to erlotinib and 

chemotherapy; The median PFS was 9·7 months in erlotinib set which was significantly 

longer than 5·2 months in chemotherapy set (Nan et al., 2017). Despite the huge success 
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reported for anti-EGFR targeted therapies for NSCLC patients, the overall survival after 

anti-EGFR therapy, especially after TKIs administration, is less than 15% (Lin et al., 

2016), probably due acquired resistance, and a more aggressive disease phenotype develop 

after a patient’s remission to treatment (Lin et al., 2016). 

  

1.4.2.2 EGFR targeted therapy as a clinical need for TNBC 

 

 

In cancers like NSCLC and colorectal cancer, anti-EGFR agents, small molecule tyrosine 

kinase inhibitors and monoclonal antibodies, have been developed and are currently being 

used to treat these diseases. Cetuximab and panitumumab are two mAbs that are approved 

for the treatment of EGFR-expressing metastatic colorectal cancer with KRAS wild-type 

phenotype. Osimertinib, gefitinib, afatinib, and erlotinib are few selective EGFR-TKIs 

used as therapy for patients with metastatic NSCLC who carry activating EGFR mutations 

(Rosa et al., 2015; Bartholomew et al., 2017). In TNBC, there is no classification for 

patients based on their EGFR status, thus patients are not represented as harboring wild-

type EGFR or mutant EGFR phenotypes. As reported above, chemotherapy is the preferred 

treatment for TNBC patients. Nonetheless, several clinical trials report the use of already 

discovered anti-EGFR agents, either alone or in combination with chemotherapy, as a 

treatment option for TNBC patients (Baselga et al., 2005; Dickler et al., 2009; Nakai et al., 

2016). The use of anti-EGFRs mostly yielded partial responses. Juggling through previous 

reports, in a phase II clinical trial, gefitinib and erlotinib used as monotherapies in 

metastatic and recurrent TNBC patients returned only a partial response of about 3% 
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(Baselga et al., 2005; Dickler et al., 2009). In another phase II clinical trial with second-

generation irreversible EGFR TKI, afatinib, no objective responses were produced in 

patients with metastatic TNBC (Nakai et al., 2016). However, the combination of anti-

EGFR TKI and chemotherapy generated improved responses as suggested by some recent 

studies. Noticeably, in a phase II clinical study, the combination of cetuximab plus 

carboplatin or irinotecan or ixabepilone or docetaxel showed an improved response rate 

compared to the single agents alone (Carey et al., 2012; Trédan et al., 2015; Crozier et al., 

2016; Nabholtz et al., 2016). In the same phase 2 trial, gefitinib, an EGFR TKI, was 

reported to have minimal activity in patients' with advanced TNBC, and modest activity 

when combined with standard chemotherapy in the patients population (Bernsdorf et al., 

2011). From all the above reports, it is evident that no anti-EGFR agents are currently 

approved for TNBC treatment, as results from clinical trials are disappointing. This is often 

attributed to the existence of compensatory pathways that confer resistance to EGFR 

inhibition, thus allowing continued cancer cell growth and survival (Diluvio et al., 2018). 

Therefore, the need for a more effective treatment modality is imminent and natural 

products have proven to be the main source for the discovery of anticancer therapies.  
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Figure 0.4 Anti-EGFR targets in NSCLC. Monoclonal antibodies target the extracellular 

domain of EGFR. TKIs, small molecules, target the kinase domain of EGFR. Figure 

adapted from Farhat and Houhou, 2013. 
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1.5 Natural products as a rich source of discovering novel anticancer therapies 

 

 

Natural products are often regarded as sources of phytochemicals or drug leads for the 

discovery of novel drugs. Phytochemicals are naturally occurring secondary metabolites, 

i.e. biologically active compounds found in plants, animals, microorganisms, and marine 

organisms, that are able to inhibit various diseases including cancer. Notable examples 

include the vinca alkaloids (vincristine and vinblastine) isolated from Catharanthus roseus, 

as well as taxol isolated from Taxus brevifolia for the treatment of various cancers 

(Acheampong et al, 2017; Larbie et al, 2015; Acheampong et al, 2015). In the face of 

worldwide disease challenges, natural products research and development potentially play 

a key function in innovative drug discovery. About 33% of FDA-approved drugs over the 

past two decades are based on natural products or their derivatives and these have 

transformed medicine (Thomford et al, 2018). 

 

1.5.1 Cucurbitacins as important antitumor agents 

 

 

Numerous successful anticancer drugs in clinical use are either natural products or their 

synthetic analogs. For this reason, cucurbitacins (cucs) and their analogs have become a 

focus of research because of their ability to significantly inhibit the growth of distinct 

cancers. Cucs belong to a large family of triterpenoids present in Cucurbitaceae plants, and 

possess many biological activities, with the most relevant a without doubt being anticancer 

properties toward different cancers (Sikander et al., 2016; Hall et al., 2015). There are 

about 18 members in this family. Notably, cucurbitacin B, its derivative and semisynthetic 
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analogs are documented to induce apoptosis by suppressing Akt and MAPK signaling as 

well as inhibiting metastasis and invasion in A549 lung cells (Silva et al., 2016). Moreover, 

Wang et al., 2016 reported that cucurbitacin A inhibited the growth of A549 lung cells via 

arresting the G2/M phase of the cell cycle and modulating Akt signaling. Furthermore, the 

outcome of the studies by Shukla et al., 2016 revealed that Cuc B demonstrated strong anti-

migratory and anti-invasive capabilities against metastatic NSCLC at nanomolar 

concentrations; This inhibition of metastasis and angiogenesis was attributed to the 

downregulation of the Wnt/β-catenin signaling axis. In TNBC, findings by Kong et al., 

2014, showed that Cuc E significantly inhibited the growth of the MDA-MB-468 and 

SW527 cell models by inducing cell cycle arrest within the G2/M phase, inducing 

apoptosis, and inhibiting ERK and AKT expressions. Also, Sinha et al., 2016, 

demonstrated that treatment with Cuc B significantly inhibited the migratory and invasive 

potential of MDA-MB-231 and 4T1 cells; Cuc B significantly inhibited the vascular 

endothelial growth factor (VEGF)-induced phosphorylation of focal adhesion kinase and 

MMP-9 signaling. The important anticancer activity of the Cuc compounds is as a result 

of unique pharmacophores present on each member. Despite the promising anticancer 

activities of Cucs, some challenges have been identified that limits their usefulness. These 

compounds are secreted in minute quantities in plants and isolating substantial amount 

remains a challenge. Also, low doses of Cucs administered to mammals elicit adverse 

toxicity effects. Moreover, the total synthesis of Cucs is challenging due to the complexity 

of their structure. Interestingly, Cucs possess a similar base-scaffold to estrone with a minor 

difference. To overcome the challenges identified, a simple solution would be to use 



27 
 
 

estrone as a starting material and then introducing the anticancer pharmacophores of Cucs 

to synthesize novel hybrid. 

  

1.5.2 Estrone analogs as effective anticancer small molecules 

 

 

Estrone, a major mammalian estrogen, is naturally converted from androstenedione or from 

testosterone via estradiol and estrone sulfate. Estrone is in high demands nowadays as most 

synthetic or medicinal chemists use it as a starting material to synthesize novel derivatives. 

Some studies suggest that derivatives of estradiol, an isomer of estrone, exert significant 

antimitotic effects against various cancers including breast cancer. In particular, Stander et 

al., 2011 report that 2-methoxyestradiol (2ME), an endogenous metabolite of 17β-

estradiol, possess both antiangiogenic and anti-breast cancer effects in vitro and in vivo. 

This compound exerts its cytotoxic effect independently of the cellular estrogen receptors 

and has no significant systemic hormonal effects (Leese et al., 2006). Estradiol, however, 

promotes the proliferation of various cancers (Verwey et al., 2016). The above studies also 

report on the limited bioavailability of 2ME (Panzem®) due to its fast-metabolic 

breakdown during phase II clinical studies. Recently, a sulfamate derivative of 2ME has 

been found to possess potent antitumor activity against breast cancer cells due to its 

increased bioavailability by avoiding hepatic first-pass metabolism (Visagie et al., 2013; 

Verwey et al., 2016). A similar study reports the induction of mitochondrial apoptosis as 

the underlying mechanism for the observed cytotoxicity of 2ME sulfamate derivative 

against the NSCLC model, A549 (Nolte et al., 2018). This suggests that estrone maybe a 
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privileged scaffold upon which modifications can be added to generate lead candidates 

with improved potency, pharmacokinetic properties and reduced toxicities. Discovering 

new drugs through research and development in the pharmaceutical industry is traditionally 

a tedious process which involves high cost. Novel approaches are always needed to reduce 

time and cost. Molecular docking is one means to provide a fast prediction of the proposed 

compounds' behavior against a biological target with a low cost (Csermely et al, 2013). 

 

1.5.3 Molecular docking studies as first steps toward drug discovery 

 

 

Molecular docking is a process where small organic compounds or large macromolecules 

like antibodies are fitted into the active site of target molecules, usually proteins to predict 

the molecules desirable properties. The main goal of this process is to find the most stable 

(lowest energy) conformer that interacts with the active site of the molecular target. Thus, 

molecular modeling is a powerful technique that can predict the characteristics of a set of 

compounds with specific pharmacophores based on their interaction with the targeted 

protein. This has often led to the identification of promising hits and novel lead candidates. 

The entire molecular docking process begins with building a library of compounds, then 

generating the appropriate conformation of the receptor of interest and finally performing 

the docking simulations to identify the hit compounds with better binding affinity and 

potency. Afterward, the large compound library is narrowed down into predicted active 

compounds, enabling optimization of lead compounds by improving the biological 
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properties, like affinity and absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) (Osakwe and Rizvi, 2016).  

 

It is noteworthy to mention that the drug discovery process has improved since 

computational approaches emerged over three decades ago (Osakwe and Rizvi, 2016). 

Several computational methods have been used in the drug discovery process. These 

include but are not limited to computer-aided drug design (CADD) and fragment-based 

drug discovery (FBDD). CADD entails a vast number of computational methodologies 

including virtual screening. Virtual screening technique can be divided into ligand- and 

structure-based drug design techniques (LBDD and SBDD).  LBDD usually takes 

advantage of information from known bioactive compounds (ligand) and are essential tools 

when structural information of a biological target is missing or when the molecular design 

is not directed toward a target-centric approach but intended to modulate cellular pathways 

or phenotypic traits without a precise knowledge of the mechanism of action (Del Rio and 

Varchi, 2016). SBDD usually exploits the three-dimensional (3D) structure of the 

biological target (protein) to identify putative modulators of the protein activity. The 

compounds that show high binding affinity to the target protein, called "hits", are screened 

in a high-throughput bioassay screening (HTS) to identify the lead compound (Wolber and 

Sippl, 2015). 

  

1.6 Research strategy and objectives 
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In our research group, estrone analogs are designed in silico for superior pharmacokinetics 

and virtually screened against different receptors including the EGFR kinase domain. The 

virtual hit compounds are subsequently synthesized using estrone as a starting material 

(Figure 1.5) and further tested for their cytotoxic effects before elucidating their 

mechanism of action. Many of our estrone derivatives, especially those bearing 

cucurbitacin pharmacophores have previously demonstrated potent cytotoxic effects 

against distinct cancers in vitro (Kopel et al., 2013; Ahmed et al., 2017; Ahmed et al., 

2014). Recently, a new series of estrone analogs (bearing either a modified cucurbitacin 

(MMA series) or triazole (Fz series) pharmacophores) have been synthesized and found to 

be potent against EGFR’s kinase domain in silico and cytotoxic against EGFR dependent 

cancers, viz models of NSCLC and TNBC in vitro compared to the TKIs, erlotinib and 

sorafenib. This raises the question, “could these novel estrone analogs be more effective in 

the treatment of EGFR-dependent cancers than the current EGFR TKIs? We, therefore, 

hypothesized that the lead candidates will have a superior set of qualities for preclinical 

and clinical development compared to the current EGFR TKIs.  
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Figure 0.5 Design strategy for hybrid estrone derivatives. Estrone is used as a scaffold 

upon which modifications are made to obtain MMA or Fz series of compounds. 

 

 

 

 

 

 



32 
 
 

Objective 1: Screen a library of estrone analogs against EGF receptor in silico using a 

computer-aided molecular modeling (CAMM) to identify potential virtual hits. 

To address the goal of our study, we first performed molecular docking studies to identify 

hits from our drug libraries. The co-crystallized structure of the EGFR kinase domain (PDB 

code: 2ITW, 1M17) was prepared and the three-dimensional structures of the estrone 

analogs constructed using Chem. 3D ultra 12.0 software. Virtual screening was carried out 

using the FRED application (version 2.2.5) of OpenEye® software. A lower consensus 

score indicated better potency and binding affinity of the ligands toward the receptor. For 

objective 1, the following research questions were investigated: I. Do the estrone analogs 

show better potency and binding compared to the co-crystallized compounds? II. What are 

the key molecular interactions utilized by estrone analogs to achieve drug potency? 

 

Objective 2: Investigate the cytotoxic effects of estrone analogs against cancer cell lines 

using cell viability assays in vitro. 

During the research and development process, to predict the therapeutic use of a new 

compound, one must know its biological activity and corresponding toxicity. Cell-based 

assays in the form of monolayer cell culture screens are usually the first approach used to 

confirm a compounds biological activity and cytotoxicity. In this objective, cell viability 

assays, including MTT and trypan blue cell counting, were employed to establish the 

cytotoxicity of the compounds. This allowed us to answer the question, are our hit 

compounds were more potent against NSCLC and TNBC cell lines compared to known 

TKIs in vitro? 
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Objective 3: Elucidate the estrone analogs molecular mechanism of action in cancer 

cells using cell-based and immuno assays in vitro. 

When elucidating the mechanism of action of antitumor drugs, the extent of the 

compound’s ability to inhibit cell proliferation, induce the death of a cell, or both are 

considered. There are diverse ways of determining inhibition of cell proliferation, but 

usually, inhibition of cell cycle progression depicted by an accumulation of DNA within 

distinct phases of the cell cycle is widely exploited by scientists. Also, programmed cell 

death (apoptosis) investigation is the most popular cell death mechanism studied by many 

researchers. In the third objective, both cell-based assays and immuno-assays were adopted 

to characterize the compound’s mechanism of action that underlies their observed 

cytotoxicity. For this objective, we asked, “do estrone analogs inhibit NSCLC and TNBC 

cells proliferation or induce apoptotic cell death or both?” 

 

1.7 Research relevance and innovation 

 

Chemotherapy and anti-EGFRs are the current treatment modalities recommended for 

TNBC and NSCLC patients, respectively. Chemotherapy is effective and non-selective in 

its action whereas anti-EGFRs either irreversibly bind to the ATP binding site of EGFR 

kinase domain or EGFR extracellular domain in their mode of action. Despite the 

significant success of these therapeutic interventions over the years, acquired resistance 

and aggressive recurrent disease have been reported. Therefore, the search for potent and 
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safe next generation anti-EGFRs is imperative. Estrone analogs have shown great promise 

in various preclinical and clinical studies. These compounds exert their cytotoxic effect 

either dependently or independently of the cellular estrogen receptors. Particularly, Visagie 

et al., 2013; Verwey et al., 2016 report on a sulfamate derivative of 2ME that has been 

found to possess potent antitumor activity against breast cancer cells due to its increased 

bioavailability by avoiding hepatic first-pass metabolism. Also, a similar study reports 

induction of mitochondrial apoptosis as the underlying mechanism for the observed 

cytotoxicity of 2ME sulfamate derivative against the NSCLC model, A549 (Nolte et al., 

2018). The above studies made modifications to the C-2 (ethyl group), C-3 (sulfamoyl or 

methoxy moieties) and C-17 (ketone or hydroxy functionalities) positions of the estrone 

skeleton. Amr et al., 2019 reports on the synthesis of estrone derivatives using estrone aryl 

methylenes as a starting material. This study reports that the most effective compounds 

showed better binding towards EGFR, VEGFR-2 and induced p53 ubiquitination in MCF-

7 cells. Amr and colleagues, 2019 in their design strategy made modifications (attached a 

heterocyclic ring) to C-16 and C-17 of the estrone scaffold.  

It is interesting to note that during the pathogenesis of lung cancer, a type of non-hormonal 

cancer, estrogen receptor and aromatase enzyme which are important for estradiol 

biosynthesis and modulation are overexpressed. These proteins together with EGFR helps 

lung cancer cells to use estradiol for their growth and survival through the non-genomic 

pathway. Even though hormone receptors under expression have been observed in TNBC, 

EGFR overexpression persists especially in the advanced stage of the disease. Therefore, 

targeting EGFR, a central regulator of cell proliferation, is a promising strategy to 

inhibiting various downstream signaling pathways and ultimately inhibiting the growth of 
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cancer. We have designed a different series of estrone analogs against EGFR by installing 

unique potent pharmacophores onto the estrone base scaffold yielding the MMA and Fz 

series of compounds. The positions on the estrone skeleton targeted by our research group 

are C-3 (various functionalities including methoxy, sulfamoyl, hydroxy, phenyl, etc.) and 

C-17 (cucurbitacin pharmacophores or their modifications, triazole pharmacophore or its 

modifications, etc.). The pharmacophores we introduced onto the estrone scaffold make 

our design and synthesis approach very novel. We suggest that our new analogs may hold 

the key to treating serious EGFR-specific cancers like NSCLC and TNBC. The current 

research is novel and innovative because for the first time these estrone analogs have been 

synthesized and their cytotoxic effects evaluated against EGFR-dependent cancers, viz. 

NSCLC and TNBC monolayer models. 
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2 Chapter 2 

 

Novel estrone analogs inhibit NCIH226 cells proliferation by suppressing EGFR 

and ERK1/2 pathway as well as arresting G1 phase of the cell cycle. 
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2.1 Abstract 

 

 

Lung cancer is the deadliest human cancer globally, with non-small cell lung cancer 

(NSCLC) being the most frequent type. Epidermal growth factor receptor (EGFR), a 

central regulator of tumor progression is frequently overexpressed in NSCLC and is a key 

drug target. Here, we describe the in-silico design and synthesis of novel estrone analogs: 

a hybrid of modified cucurbitacin (Cucs) pharmacophore and estrone base-scaffold as 

potent inhibitors of NCIH226 cells. Molecular docking studies revealed that most estrone 

analogs exhibited better potency and binding than the positive controls, erlotinib and 

sorafenib, when fitted into wild-type EGFR ATP binding site (pdb code: 2ITW). Moreover, 

two of the analogs, MMA307 and MM320, significantly inhibited the proliferation of 

NCIH226 cells with IC50 dose of 2.88 ± 0.21 and 9.68 ± 0.24 µM respectively, compared 

to the positive control, sorafenib, IC50 molarity of 20.62 ± 1.32 µM. Exposing NCIH226 

cells to IC50 concentration of MMA307 and MMA320 resulted in downregulation of EGFR 

and phospho-EGFR expression levels, and suppression of activated MAPK-ERK1/2 

signaling proteins; phospho-B-Raf, phospho-MEK1/2 and phospho-ERK1/2. Furthermore, 

downregulation of cyclin D1 and concomitant upregulation of phospho-cyclin D1 and 

p21waf1/cip1 were observed after the compounds’ addition to NCIH226 cells resulted in G1 

phase cell cycle arrest. MMA320 but not MMA307 downregulated the expression levels 

of Dyrk1B, a checkpoint kinase at the G1-S phase transition of the cell cycle. To conclude, 

the present study is the first to report on the antiproliferative potential of novel estrone 

analogs and provide evidence that MMA307 and MMA320 are promising novel lead 

candidates for the development of anti-lung cancer drugs. 
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2.2 Introduction 

 

 

Lung cancer has the highest mortality rate worldwide and accounts for more than a 

quarter of all cancer-related deaths (Siegel et al., 2018). Among patients with lung cancer, 

25-40% have brain metastases at some point during their disease (Siegel et al., 2018). Non-

small cell lung cancer (NSCLC) (~85%) is the most frequent type; “non–small cell” refers 

to the type of cell within the lung where the cancer originated. In the last few years, the 

discovery of EGFR as a key driver of NSCLC has led to the classification of patients as 

either harboring mutations in EGFR kinase domain-mutant EGFR or overexpressed EGFR- 

EGFR wild-type NSCLC. An estimated 45-70 % of NSCLC cases have EGFR frequently 

overexpressed (Forcella et al., 2017). 

  

EGFR amplification is an important oncogenic strategy that drives cancer cell 

proliferation. EGFR is a member of the human epidermal growth factor receptor (HER) 

family of receptor tyrosine kinases that consists of four members: HER1, HER2, HER3 

and HER4. Activation of EGFR through ligand binding promotes receptor dimerization 

and autophosphorylation which initiates various signaling cascades, one of which is the 

RAS/RAF/MEK/ERK network. The ERK-MAPK pathway is initiated through the 

promotion of Ras binding to guanosine triphosphate (GTP), which in turn activates RAF 

kinases MAPK/extracellular signal-regulated kinases (MEK), and ERK (MacCorkle and 

Tan, 2005). Activated ERK is thought to translocate into the nucleus, where it 

phosphorylates and activates numerous targets, elk-1, c-jun, fos, etc. (MacCorkle and Tan, 

2005). These transcription factors control the expression of downstream cell cycle 
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regulators, including cyclin D and p21waf1/cip1 as well as Dyrk1B (dual-specificity tyrosine 

phosphorylation-regulated kinase 1B), a checkpoint kinase important for G1 to S phase cell 

cycle transition (MacCorkle and Tan, 2005). Cyclin D overexpression and p21waf1/cip1 

downregulation are often associated with cancer development. Cyclin D1, a D-type cyclin 

and well-characterized oncogenic protein, forms active complexes with cyclin-dependent 

kinases (CDK) 4/6, which phosphorylate and inactivate retinoblastoma tumor suppressor 

(Rb), leading to the activation of the transcription factor E2F and upregulation of target 

genes essential for progression from G1 to S phase of the cell-cycle (Torii et al., 2006). On 

the other hand, p21waf1/cip1 causes G1 phase cell cycle arrest through phosphorylation of 

cyclin D1 that leads to its ubiquitination and degradation. Dyrk1B, a G1-S phase checkpoint 

kinase, is amplified or overexpressed in certain cancers including NSCLC signifying that 

it may be an oncogene (Gao et al., 2013; Ashford et al.,2014). Dyrk1B is thought to arrest 

damage tumors in the G0/G1 phase to allow their repair in the quiescent state and maintain 

the clonogenicity of tumors via mediating cyclin D1 turnover and stabilizing p21waf1/cip1 

(Gao et al., 2013; Ashford et al.,2014). 

  

In the past three decades, EGFR has been exploited as a molecular target for two 

distinct kinds of molecules, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors 

(TKI). mAbs were thought to be efficacious in EGFR wild-type NSCLC patients while 

TKIs are effective in NSCLC patients with mutations in the EGFR kinase domain (Imai 

and Takaoka, 2006). Usually, EGFR wild-type patients with advanced disease are treated 

with chemotherapy as first-line, and TKIs (gefitinib, erlotinib, afatinib) or mAbs 

(cetuximab, trastuzumab) as second-line treatment (Nun et al., 2017; Zhang et al., 2014). 
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It is noteworthy to mention that some clinical trials report that TKIs and mAbs are effective 

first line agents like chemotherapy in treating EGFR wild-type NSCLCs. Notably, studies 

by Gridelli et al., 2012; Shepherd et al., 2005 conveyed TKIs or mAbs as beneficial agents 

against unselected NSCLC patients in terms of response rate and overall survival. 

Moreover, Zhao et al., 2017 and Scholl et al., 2010 documented that EGFR wild-type 

NSCLC patients with advanced disease are sensitive to TKIs or mAbs or a combination of 

TKIs and mAbs. However, recent studies report that most patients eventually experience 

recurrent disease within 12 to 14 months after anti-EGFR treatment and patients five-year 

survival after anti-EGFRs exposure is approximately 15% (Wu and Shih, 2018; Ali et 

al.,2013). Additionally, the long-term administration of anti-EGFR therapy accompanies 

with acquired resistance which limits the treatment efficacy, leading to aggressive tumors 

and rapid metastasis (Inoue et al.,2016; Qi et al., 2018). Thus, in addition to exploring the 

in-depth drug resistance mechanism of existing drugs, as well as the relationship between 

EGFR-mediated signaling pathways and tumor specificity, discovering a novel type of 

targeted agents with improved efficacy and lower toxicity as an alternative therapy to treat 

these unique patient population is a promising strategy. 

 

Numerous successful anticancer drugs in clinical use are either natural products or 

their synthetic analogs. In this perspective, cucurbitacins (cucs) and their analogs have 

become a focus of research because of their capability to significantly inhibit the growth 

of distinct cancers. Cucs belong to a large family of triterpenoids present in Cucurbitaceae 

plants, and possess many biological activities, with the most relevant without a doubt is 

anticancer properties toward different cancers (Sikander et al., 2016; Hall et al., 2015; 
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Chung et al., 2015; Zhang et al., 2014). Notably, cucurbitacin B, its derivative and 

semisynthetic analogs are documented to induce apoptosis through suppressing Akt and 

MAPK signaling as well as inhibiting metastasis and invasion in A549 lung cells (Silva et 

al., 2016). Moreover, Wang and colleagues, 2017 report that cucurbitacin A inhibited the 

growth of A549 lung cells via arresting the G2/M phase of cell cycle and modulating Akt 

signaling. Cucs are secreted in minute quantities in plants and isolating substantial amount 

remains a challenge. Also, the total synthesis of Cucs is difficult due to the complexity of 

Cucs structure. Interestingly, there is as structure similarity between Cucs and estrone with 

a minor difference. Estrone, a major mammalian estrogen, is naturally converted from 

androstenedione or from testosterone via estradiol and estrone sulfate. Previous studies 

report that estradiol derivatives possess antimitotic activity. Particularly, a sulphamoylated 

analog of 2-methoxyoestradiol has been found to be effective against NSCLC due to its 

increased bioavailability (resist first pass of liver metabolism) (Stander et al., 2013; Stander 

et al., 2012; Stander et al., 2011). These and similar studies suggest that estrone may be a 

privileged skeleton upon which pharmacophores can be introduced to generate hybrid 

analogs with superior pharmacokinetics and improved toxicity. In our research group, 

estrone analog- a hybrid of modified cucs pharmacophores and estrone base-scaffold are 

in silico designed against important clinical targets including EGFR. In the present study, 

we report on the design and synthesis of novel estrone analogs, and the compounds 

inhibition of NCIH226 cells proliferation. We found that two novel analogs labeled as 

MMA320 and MMA307 inhibited the proliferation of NCIH226 cells. Modulation of 

EGFR and multiple MAPK-ERK1/2 pathway proteins, as well as deregulation of G0/G1 

phase cell cycle regulators, were observed in response to the compound’s treatment. The 
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results presented herein suggest that lung tumors can be successfully targeted with the 

novel estrone analogs, MMA320 and MMA307. 

 

2.3 Experimental section 

 

 

2.3.1 Reagents and chemicals 

 

 

Antibodies against EGF Receptor (D38B1) XP®, Phospho-EGF Receptor (Tyr1173) 

(53A5), B-Raf (55C6), Phospho-B-Raf (Ser445), p44/42 MAPK (Erk1/2) (137F5), 

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (197G2), MEK1/2 (L38C12), 

Phospho-MEK1/2 (Ser217/221) (41G9), β-Actin (8H10D10), p21Waf1/Cip1 (12D1), Cyclin 

D1 (92G2) and anti-rabbit DyLight 680 conjugate (5366) secondary antibody were 

purchased from Cell Signaling Technology (Danvers, MA, USA); phospho-cyclin D1 

(Thr286) (A537487) and anti-mouse DyLight 800 conjugate (W10815) from Thermo 

Fisher Scientific (Waltham, MA, USA);  p-EGFR Antibody (Y1068) (15A2), Dyrk1B 

(A2309) and GAPDH (D1613) were from Santa Cruz Biotechnology Inc. (Dallas, Texas, 

USA). The bicinchoninic acid (BCA) protein assay reagent kit, Vybrant® DyeCycle™ 

Green Stain, phosphate buffered saline (PBS) and trypan blue solution were from Thermo 

Fisher Scientific (Waltham, MA, USA). Compound cytotoxicity was evaluated through 

measurement of mitochondrial dehydrogenase activities with 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma-Aldrich, St. Louis, MO, USA). 

Sorafenib (positive control) (Selleckchem, Houston, TX, USA) and novel synthetic 



60 
 
 

cucurbitacin inspired estrone analogs were dissolved in dimethyl sulfoxide (DMSO) 

(Fisher Chemical/Fisher Scientific). All other chemicals were of analytical grade. 

 

2.3.2 Design and synthesis of estrone analogs 

 

 

2.3.2.1 Molecular modeling 

 

 

Molecular docking of novel estrone analogs into the three-dimensional X-ray structure of 

wild-type EGFR ATP binding site (PDB code: 2ITW) was carried out using the FRED 

application (version 2.2.5) as implemented through the graphical user interface of 

OpenEye® software. The 3D structure of the above protein was downloaded from Protein 

Data Bank. The three-dimensional structures of the hybrid analogs were constructed using 

Chem. 3D ultra 12.0 software [Chemical Structure Drawing Standard; Cambridge Soft 

Corporation, USA (2010)]; compounds were energetically minimized using MMFF94 

application with 5000 iterations and minimum RMS gradient of 0.10. All bound water 

molecules and ligands were eliminated from the proteins. Furthermore, multi-conformers 

were generated using OMEGA application (version 2.5.1.4) and VIDA application 

(version 4.1.2) was used as a visualization tool to show the potential binding affinity and 

binding interactions of the ligands to the receptor (Elshaier et al., 2017).  This software 

package generates consensus scoring which is a filtering process to obtain virtual binding 

affinity. The lower the consensus score, the better potency and binding affinity of the 

ligands towards the receptor. 
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2.3.2.2 Synthesis of MMA307 and MMA320 

 

 

2.3.2.2.1 General procedure for the preparation of MMA307 

  

 

Steps 1 to 9 has been previously reported by our research group (Mahnashi, 2017; Kopel 

et al.,2013). Preparation of 10 was carried out as follows: 0.15 g of 9 was dissolved in N, 

N-dimethylacetamide (0.8 mL) and incubated with sulfamoyl chloride (0.12 g, 0.945 

mmol) at 0ºC. Subsequently, the reaction mixture was stirred at room temperature for 18 

hrs and the resulting solution extracted with 1:1 mixture of ethyl acetate and water. The 

residue was purified using silica gel column chromatography (ethyl acetate: n-hexane, 3:7) 

to isolate compound 10 which was labeled as MMA307 (0.16 g, 91%). MMA307 was 

characterized by 1H and 13C NMR and high-resolution mass spectroscopies (Mahnashi, 

2017). 

MMA307 1H NMR (600 MHz, Chloroform-d) δ 8.21 – 8.18 (m, 2H), 7.77 (d, J = 15.7 Hz, 

1H), 7.71 – 7.67 (m, 2H), 7.25 – 7.21 (m, 1H), 7.10 (d, J = 15.7 Hz, 1H), 7.01 (dd, J = 8.6, 

2.6 Hz, 1H), 6.95 (d, J = 2.6 Hz, 1H), 5.03 (s, 2H), 3.98 – 3.89 (m, 1H), 3.83 (s, 1H), 2.78 

(qd, J = 10.4, 9.7, 4.3 Hz, 2H), 2.29 – 2.21 (m, 2H), 2.16 (dq, J = 12.0, 4.2 Hz, 1H), 1.84 

– 1.77 (m, 2H), 1.64 – 1.56 (m, 2H), 1.56 – 1.53 (m, 2H), 1.50 (s, 3H), 1.41 – 1.31 (m, 2H), 

0.88 (s, 3H). 

MMA307 13C NMR (151 MHz, CDCl3) δ 203.04 (C21), 148.81 (C3), 147.90 (C27), 

142.60 (C23), 140.35 (C24), 139.64 (C5), 138.92 (C10), 129.26 (C25, C29), 126.73 (C1), 
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124.25 (C26,C28), 122.29 (C22), 121.93 (C4), 118.95 (C2), 79.54 (C19), 55.66 (C14), 

54.98 (C17), 44.31 (C8), 43.97 (C13), 40.51 (C12), 37.65 (C15), 29.51 (C6), 27.26 (C11), 

26.43 (C7), 24.22 (C9), 23.64 (C20), 22.09 (C16), 13.65 (C18). 

HR-FT-MS calcd for C29H34O7N2SNa 577.1979 found 577.19790. 

 

2.3.2.2.2 General procedure for the preparation of MMA320 

 

 

Steps 1 to 9 has been previously reported by our research group (Mahnashi, 2017; Kopel 

et al.,2013). Synthesis of 10 was carried out as follows: to a stirred solution of the 9 (0.3 

g, 0.847 mmol), a mixture of tetrahydrofuran and lithium diisopropylamine (LDA) (1.5 

mL, 3.05 mmol) were added and the reaction kept at -78 ºC. After that, the reaction mixture 

was initially stirred for 1 hr, before para-trifluoromethyl benzaldehyde (0.206 mL, 1.7 

mmol) dissolved in THF added and the resulting mixture warmed to room temperature for 

24 hrs. Subsequently, the reaction was quenched with ammonium chloride and the aqueous 

layer extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtrated, and 

concentrated under vacuo. Silica gel column chromatography was used to purify the crude 

material (ethyl acetate: n-hexane, 1:9) to obtain 10 (0.21 g, 61.7%). Pure compound 10 was 

characterized by NMR and mass spectroscopies and labelled as MMA320 (Mahnashi, 

2017). 

MMA320    1H NMR (600 MHz, Chloroform-d) δ 7.77 (d, J = 15.8 Hz, 1H), 7.61 – 7.57 

(m, 4H), 7.04 – 6.99 (m, 2H), 6.59 (dd, J = 8.6, 2.7 Hz, 1H), 6.53 (d, J = 2.7 Hz, 1H), 6.02 

– 5.88 (m, 1H), 4.32 (s, 1H), 3.67 (d, J = 2.3 Hz, 3H), 2.78 (dtd, J = 34.0, 17.3, 6.5 Hz, 
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2H), 2.21 (ddd, J = 15.4, 6.3, 3.4 Hz, 1H), 2.11 (dt, J = 12.8, 3.7 Hz, 1H), 2.03 – 2.00 (m, 

1H), 1.81 (dt, J = 12.2, 3.3 Hz, 2H), 1.52 (dd, J = 10.8, 2.4 Hz, 1H), 1.47 – 1.43 (m, 2H), 

1.30 (dt, J = 12.2, 6.2 Hz, 1H), 1.11 (td, J = 12.7, 4.4 Hz, 2H), 0.97 (s, 3H). 

MMA320 13C NMR (151 MHz, CDCl3) δ 200.68 (C21), 157.44 (C3), 155.17 (C17), 

142.95 (C23), 137.84 (C24), , 132.75 (C5), 132.41 (C10), 132.20 (C27), 129.74 (C1), 

128.81 (C25, C29), 126.02 (C22) , 124.66 (C26,C28), 122.86 (C30), 121.09 (C16), 113.83 

(C4), 111.37 (C2) , 78.81 (C19) , 57.48 (C31) , 55.18 (C14), 47.86 (C9), 43.93 (C8), 37.09 

(C13), 34.49 (C12), 31.23 (C15), 29.69 (C6), 27.59 (C11), 26.27 (C7), 25.26 (C9), 17.21 

(C20), 14.16 (C18). 

HR-FT-MS calcd for C31H33O3F3Na 533.2274 found 533.22544. 

 

2.3.3 Cell culture 

 

 

NCIH226 cell line (a model of EGFR wild-type and p53 mutant NSCLC) was a kind gift 

from Prof. Xiangming Guan (College of Pharmacy and Allied Health Professions, South 

Dakota State University, USA). The cells were cultured in Rose Park Memorial Institute 

(RPMI)-1640 medium supplemented with 10% (v/v) fetal bovine serum (FBS), 100 IU/mL 

penicillin and 100 μg/mL streptomycin (American Type Culture Collection (ATCC)) at 

37˚C equilibrated with 5% (v/v) CO2 in humidified air. The cells for the assays were 

detached using a solution of trypsin with EDTA (ThermoFisher Scientific). 
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2.3.4 Cell proliferation assays 

 

 

2.3.4.1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay 

 

 

The effect of 25 novel synthetic estrone analogs on cell viability was tested with MTT 

reagent as described by Wang et al., 2010 with slight modifications. Briefly, to measure 

mitochondrial dehydrogenase activities, cells were seeded in 96-well plates at an initial 

density of 30,000 cells per well. After overnight incubation, cells were treated with 

different concentrations of compounds in a dose range of 0 - 100 μM. The final DMSO 

concentration was 0.05%. After 48 hrs of incubation, 20 μL   of MTT reagent (5 mg/mL) 

was added to each well and the formed formazan crystals were dissolved in 250 μL   of 

dimethyl sulfoxide (DMSO). Four independent experiments were completed to determine 

the mean optical density referred to as cell viability, using a Hidex Sense Beta Plus plate 

reader (Turku, Finland). Cell viability was expressed as a percentage of DMSO-treated 

controls. 

 

2.3.4.2 Trypan Blue Exclusion Assay 

 

  

Cells were seeded in six-well plates at a density of 300,000 cells/well in 3 mL RPMI media 

and were treated with MMA320, MMA307 and Sorafenib at IC50 concentrations for 24 hrs 

after overnight incubation. Afterward, cells were then detached using trypsin/EDTA and 

counted with Countess II Automated Cell Counter (ThermoFisher Scientific, USA). At 
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least two independent experiments were performed to determine the mean value, which is 

presented as a percentage compared to the DMSO-treated controls. 

 

2.3.5 Flow cytometry for cell cycle analysis 

 

 

Cells were seeded into six-well plates at a concentration of 300,000 cells/well and allowed 

to attach in culture overnight, then treated with IC50 values of compounds or positive 

control (sorafenib) for 48 h. Afterward, cells were washed with PBS and harvested. Cell 

cycle analysis was investigated by adding Vybrant® DyeCycle™ Green Stain (Thermo 

Fisher Scientific) to 1 mL of cell suspension at a final concentration of 0.0625 μM. After 

45 minutes incubation at 37˚C, the samples were analyzed by flow cytometry and 

compared to DMSO-treated cells. All these experiments were performed on BD Accuri™ 

C6 flow cytometer (BD Biosciences, San Jose, CA, USA) using BD Accuri™ C6 software, 

version 1.0. 

 

2.3.6 Protein expression analysis 

 

 

2.3.6.1 Western Blot 

 

 

Western blotting was done as previously described by Shin et al., 2008 with slight 

modification. Briefly, 80% confluent cells were washed three times with PBS prior to 
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treatment with IC50 values of compounds for indicated times. Subsequently, cells were 

lysed using lysis buffer containing 1% Triton X-100 and 1% Halt™ Protease Inhibitor 

Cocktail (Thermo Fisher Scientific). Aliquots of lysates containing 20-60 μg of proteins 

were boiled for 7 min in SDS-PAGE sample buffer supplemented with 5% β-

mercaptoethanol, separated on 10% polyacrylamide electrophoresis gels and transferred to 

nitrocellulose membranes (Bio-Rad Laboratories). After transfer, membranes were 

incubated with relevant antibodies against EGF Receptor, Phospho-EGF Receptor, B-Raf, 

Phospho-B-Raf, MEK1/2, Phospho-MEK1/2, ERK1/2, Phospho-ERK1/2, p21Waf1/Cip1, 

Cyclin D1, Phospho-Cyclin D1, Dyrk1B, and either β-actin or GAPDH, loading control, 

followed by incubation with anti-mouse or anti-rabbit DyLight conjugated (680 or 800 nm) 

secondary antibodies. Membranes were scanned with LICOR Odyssey® Fc Imaging 

System (Lincoln, Nebraska, United States) and blots analyzed by Fiji software (Image J, 

Java 1.8.0). 

  

2.3.6.2 In-Cell Western (ICW) Assay 

 

 

ICW was carried out in accordance with manufacturers instruction with slight 

modifications. Briefly, about 40,000 cells per well were seeded in 96-well black walled 

plate with clear bottom for overnight attachment. Cells were then washed three times with 

PBS prior to treatment with MMA307 (IC50 value) for indicated times. Subsequently, cells 

were fixed with 3.7% formaldehyde solution, permeabilized with 0.1% Triton X-100 

solution and blocked with fish gel buffer (1×) prior to primary antibody addition. Wells 



67 
 
 

were then incubated with the relevant antibodies EGF Receptor, Phospho-EGF Receptor, 

MEK1/2, Phospho-MEK1/2, ERK1/2, Phospho-ERK1/2, Dyrk1B, and GAPDH, loading 

control, overnight followed by incubation with anti-mouse or anti-rabbit DyLight 

conjugated (680 or 800 nm) secondary antibodies. Images were acquired using LICOR 

Odyssey® Fc Imaging System (Lincoln, Nebraska, United States) and image quantification 

done by Fiji software (Image J, Java 1.8.0). 

  

2.3.7 Statistical Analysis 

 

 

Microsoft® Excel® for Windows, version 16.0., was used for the calculation of mean and 

standard deviation values of different experiments and plotting of bar or line graphs.  Mean 

IC50 values were compared by one-way Analysis of Variance (ANOVA) using GraphPad 

Prism 5.01 (San Diego, USA) and values with p<0.05 were considered statistically 

significant. 

 

2.4 Results and Discussion 

 

 

Installing various modified cucurbitacin functionalities and other pharmacophores 

onto the estrone scaffold resulted in unique hybrid analogs. To validate the potential of 

these designed estrone analogs against wild-type NSCLC, molecular docking was 

performed by fitting the designed hybrid analogs and reference compounds (erlotinib and 
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sorafenib) into the ATP binding site of EGFR (PDB codes: 2ITW) crystallized from wild-

type NSCLC. The results were plotted as a line-scatter graph (Figure 2.1), which mainly 

displays the corresponding consensus scores of the molecular docking studies. Compared 

to erlotinib and sorafenib, it was clearly observed that most estrone analogs showed lower 

consensus scores (a measure of better binding and potency) against the wild-type EGFR 

ATP binding site. Furthermore, Figure 2.2 and 2.3 showed EGFR with the binding mode 

of compounds MMA307, containing sulfamoyl and paranitrophenyl groups, and 

MMA320, with para-trifluoromethylphenyl and methoxy substituents that exhibited potent 

antiproliferative activity in vitro compared to sorafenib. Previous studies by Yun et al., 

2007 suggested that hydrogen bonding towards the amino acid residue, MET793A, in the 

EGFR kinase domain may be a key interaction in achieving effective drug potency. We 

observed that the positive controls, erlotinib (Tarceva) showed hydrogen bonding from the 

pyrimidine-N2 towards MET793A and sorafenib (Nexavar) showed hydrogen bonding 

from pyridine-N, methyl-H and carbonyl-O towards THR854A and THR790A, 

respectively but registered a higher consensus score (Figure 2.4 and 2.5). Analyzing 

compound MMA320 in the EGFR-binding site revealed hydrogen bonding from the 

methoxy carbonyl-O on the substituent group towards the amino acid residue THR854A 

(Figure 2.3). However, examining MMA307 enriched with functionalities capable of 

hydrogen bonding within the EGFR kinase domain demonstrated hydrophobic-

hydrophobic (cation-π) interactions towards the amino acid residue, LYS745A (Figure 

2.2). Both MMA320 and MMA307 recorded lower consensus scores compared to the 

positive controls. The hydrogen bonding exhibited by MMA320 toward THR854A and the 

cation-π interactions exhibited by MMA307 toward LYS745A demonstrate a strong and 
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unique binding mode and suggest that interactions between the compounds pharmacophore 

and THR854A and LYS745A residues in the EGFR ATP binding site may be key in estrone 

analogs achieving drug potency. These results could provide a molecular-level foundation 

to illustrate that MMA307 and MMA320 can bind well at the active site of activated EGFR. 

These findings are supported by their lower IC50 concentration compared to sorafenib from 

the in vitro antiproliferative assays. Directed sulfamoylation on compound 9 afforded 10 

(MMA307) in 91% yield after column chromatography (scheme 2.1) and the addition of 

para-trifluoromethyl benzaldehyde to the hydroxyl methyl ketone diastereomeric mixture 

yielded 61.7% of MMA320 after purification with silica gel column chromatography 

(Scheme 2.2). These pure compounds were characterized by NMR and mass spectrometry 

techniques with the 1H and 13C chemical shifts as well as accurate masses documented in 

the method section. MMA307 was named as (8S,9S,13S,14S,17S)-

7,8,9,11,12,13,14,15,16,17-decahydro-17-((R,E)-2-hydroxy-5-(4-nitrophenyl)-3-oxopent-

4-en-2-yl)-13-methyl-6H-cyclopenta[a]phenanthren-3-yl sulfamate and MMA320 named 

as (R,1E)-1-(4-(trifluoromethyl)phenyl)-4-((8S,9S,13S,14S)-7,8,9,11,12,13,14,15-

octahydro-3-methoxy-13-methyl-6H-cyclopenta[a]phenanthren-17-yl)-4-hydroxypent-1-

en-3-one (Figure 2.6). 

 

Subsequently, estrone analogs effect on the proliferation of NCIH226 cells were 

determined by the MTT assay after 48 hrs. Overall, the compounds showed a significant 

growth inhibitory effect toward the NCIH226 cells. Particularly, MMA287, MMA306, 

MMA307, MMA320 and MMA321 showed significant (p < 0.001 to p < 0.05) 

antiproliferative activity against NCIH226 cells at IC50 doses of 11.82 ± 0.65, 17.41 ± 1.56, 
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2.88 ± 0.21, 9.68 ± 0.24 and 14.57 ± 0.31 μM, respectively (Table 2.1). MMA307 and 

MMA320 were at least two to seven-fold more potent than the standard anticancer drug 

sorafenib and were chosen for further studies. Morphological changes were evaluated after 

NCIH226 cells were treated with IC50 concentrations of MMA307, MMA320, and 

sorafenib (positive control). Compared with DMSO-control cells, the majority of the 

compound-treated NCIH226 cells changed from spindle to either round- (observed for 

MMA307 and sorafenib) or rod-shaped (observed for MMA320) (Figure 2.7 A) showing 

the compounds growth modulatory effects. Furthermore, the growth inhibitory effects of 

MMA307 and MMA320 at their IC50 doses were confirmed by the trypan blue exclusion 

assay; shows increased cell membrane permeability for trypan blue dye by dead cells. 

NCIH226 cells were treated for 24 hrs and no significant cell death as measured by trypan 

blue stained cells were observed for MMA307 (Figure 2.7 B). A slight but statistically 

insignificant increase in NCIH226 cell death was observed for both MMA320 and 

sorafenib. It is well known that several cucurbitacin classes and their derivatives, estrone 

analogs as well as anti-EGFRs with anticancer properties exhibit their cytotoxic effects on 

tumor cells by inhibiting cell proliferation or inducing cell death (Wang et al., 2017; 

Ahmed et al., 2017; Ahmed et al., 2014; Kutkowska et al., 2017). Comparing data obtained 

through cell viability (MTT, trypan blue and morphological changes) and Vybrant® Dye 

Cycle™ Green staining, we were able to distinguish between the two possible effects of 

the estrone analogs: inhibition of cell proliferation and induction of cell death. Our findings 

showed that, even though treatment with MMA320 leads to some amount of cell death, the 

predominant effect of estrone analogs administration to NCIH226 cells is the inhibition of 

cell proliferation. These results are supported by initial apoptosis (annexin v staining of 



71 
 
 

phosphatidyl serine) detection using propidium iodide staining where no significant cell 

death (data not shown) induced by MMA307 and MMA320 treatments are detected. These 

observations were not unexpected considering the fact that NCIH226 cells (EGFR wild-

type and p53 mutant) overexpress EGFR which is mainly involved in cell proliferation 

pathways instead of cell death pathways. Moreover, the significant G1 phase cell cycle 

arrest (Figure 2.8) induced by MMA307 and MMA320 treatment against NCIH226 cells 

offer support to the idea that these compounds inhibit cell proliferation rather than induce 

cell death. Our findings are in line with studies by Ahmed et al., 2017, Ahmed et al., 2014 

and Kutkowska et al., 2017 that report the antiproliferative effects of different estrone 

derivatives and anti-EGFRs against distinct cancer cell lines in vitro. 

  

As a result of significant (p < 0.05) G1 phase cell cycle arrest (results are 

summarized in Figure 2.8) induced by MMA307 and MMA320 compared to sorafenib, we 

analyzed the expression levels of known downstream G1 cell cycle regulators. It has been 

reported that Dyrk1B phosphorylates cyclin D1 to promote its ubiquitination and 

degradation in the proteasome whereas p21Waf1/Cip1 is stabilized, impacting the G1 phase 

cell cycle (Gao et al., 2013; Ashford et al., 2014; Visagie et al., 2017). We observed that 

cyclin D1 levels were decreased while p21Waf1/Cip1 levels were increased following 

treatment with IC50 amounts of MMA307 and MMA320 in a time-dependent manner 

(Figure 2.11 – 2.12). Moreover, treatment with the compounds lead to increased 

phosphorylation of cyclin D1 (at phosphorylation site T286) in a time-dependent manner 

(Figure 2.11 – 2.12). Cyclin D1 overexpression and p21waf1/cip1 downregulation have been 

shown to be important for cancer progression through the G1-S phase transition. 
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Alternatively, phosphorylation of cyclin D1 leads to its turnover, marked by its 

ubiquitination and degradation in the proteasome. We report for the first time that, 

MMA307 and MMA320 treatments to NCIH226 cells lead to significant downregulation 

of cyclin D1 levels, whereas the opposite effect was seen for phospho-cyclin D1 (T286) 

and p21waf1/cip1. Aside p21waf1/cip1, Dyrk1B can phosphorylate cyclin D1 on either T286 or 

T288 (Gao et al., 2013; Ashford et al., 2014) to arrest damaged tumor cells and to allow 

cellular repair in a quiescent state, to ultimately maintain cell survival. Interestingly, the 

above studies report that Dyrk1B performs dissimilar functions in arresting G1 phase of the 

cell cycle in distinct cancer types. Of note, in a panel of NSCLC cell lines, Dyrk1B 

overexpression was associated with colony formation and cell survival whereas its 

knockdown leads to opposing effect (Chen et al., 2017; Friedman, 2007; Gao et al., 2009). 

Along with other studies by Deng et al., 2006 and Mercer and Friedman, 2006, it has been 

suggested that pharmacological inhibition of Dyrk1B sensitizes cancer cells to various 

chemotherapeutic agents and maybe an ideal strategy for treating cancers. Consistent with 

our findings we observed that MMA320 but not MM307 administration to NCIH226 cells 

resulted in Dyrk1B inhibition over the 24 hr time course (Figure 2.11 – 2.12). While the 

status of selected G1 phase cell cycle regulators was analyzed in this study, the functions 

of other proteins are likely modulated, and therefore, the antiproliferative effects of the 

estrone analogs reported here may not be solely due to these proteins alone. 

 

Furthermore, we demonstrated that MMA307 and MMA320 inhibit NCIH226 cell 

proliferation by targeting directly the expression levels of EGFR, suppressing its 

phosphorylation in a time-dependent manner, followed by inhibition of its downstream 
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MAPK (ERK1/2) pathway proteins which are dependent on activated EGFR. Genetic 

analyses of various NSCLC revealed that EGFR and its immediate downstream targets, the 

MAPK signaling cascades, are frequently overexpressed or mutated during cell 

proliferation (Scrima et al., 2017). Constitutive EGFR-mediated signaling and the extent 

of ERK1/2 activation are usually correlated with poor prognosis and aggressiveness of 

NSCLC, respectively (Scrima et al., 2017). Previous studies by Iida et al., 2013 and 

Wheeler et al., 2008 reported that sym004 (a mixture of antibodies) or TKIs impacted 

EGFR phosphorylation at tyrosine 1173 (Y1173), and this position is important in 

activating the MAPK pathway. Therefore, this phosphorylation site was chosen for further 

analysis. We observed that treating NCIH226 cells with MMA320 and MMA307 resulted 

in significant inhibition of EGFR and activated EFGR (Y1173) expression levels in a time-

dependent pattern (Figure 2.9 – 2.10). Concomitantly, activated ERK1/2 pathway proteins, 

specifically, BRaf (S445), MEK1/2 (S217/221) and ERK1/2 (T202/Y204) expression 

levels (Figure 2.9 – 2.10), were downregulated in a time-dependent manner when 

NCIH226 cells were treated with MMA307 and MMA320. Our findings agree with that 

made by earlier reports (Abou-Salim et al., 2019; Elgazwi, 2018). It must be acknowledged 

that EGFR is a major receptor that triggers numerous downstream pathways, and therefore 

it is likely that other proliferation pathways that are activated by EGFR were equally 

inhibited by MMA307 and MMA320 administration. 

 

2.5 Conclusion 
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We report for the first time the synthesis of novel estrone analogs-a hybrid of 

modified Cucs pharmacophore and estrone-base scaffold. These analogs were initially 

designed against wild-type EGFR ATP binding site in silico. Among these, MMA307 and 

MMA320 demonstrated better potency and binding towards EGFR kinase domain in silico, 

and significantly inhibited the proliferation of NCIH226 cells in vitro. The antiproliferation 

effect could be ascribed in part to suppression of EGFR and its downstream ERK1/2 

signaling pathway, and to the arrest of the G1 phase of the cell cycle. Derivatives of estrone 

have been reported to be multitargeted antitumor agents (Solum et al., 2015), and such 

types of anticancer agents are of current interest towards the potential development of 

remedies against cancer, including NSCLC. The results presented herein provide novel 

information on such lead compounds. Taken together, the present study suggest that 

estrone analogs may be the potential novel therapeutic agents that can be beneficial to wild-

type NSCLC patients. 
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Tables and Figures 

 

 

 

 

 

Figure 2.1  Molecular docking study of designed estrone analogs against EGFR binding 

site (Pdb: 2ITW). Scatter plot of compounds consensus scores generated by VIDA 

application. 
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Figure 2.2 3D visual representation of MMA307 docked against EGFR binding site (Pdb: 

2ITW). There is a cation-π interaction between LYS745A of 2ITW and para-nitrophenyl 

aromatic ring of MMA307 
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Figure 2.3  3D visual representation of MMA320 docked against EGFR binding site (Pdb: 

2ITW). The dashed green line shows hydrogen bonding from the carbonyl-O of MMA320 

towards THR854A of 2ITW. Also, there is a cation-π interaction between LYS745A of 

2ITW and para-trifluoro phenyl ring of MMA307. 

 

 

 

 



86 
 
 

 

 

 

 

 

 

Figure 2.4 3D visual representation of erlotinib docked against EGFR binding site (Pdb: 

2ITW). The dashed green line shows hydrogen bonding from the pyrimidine-N2 of erlotinib 

towards MET793A of 2ITW binding site. 
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Figure 2.5. 3D visual representation of sorafenib docked against EGFR binding site (Pdb: 

2ITW). The dashed green line shows hydrogen bonding from the pyridine-N and methyl-

H of sorafenib towards THR854A as well as from the carbonyl-O towards THR790A of 

2ITW binding site. 
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Scheme 2.1 Synthesis route of MMA307. 
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Figure 2.6 Structures of MMA307 and MMA320. MMA307 was named as 

(8S,9S,13S,14S,17S)-7,8,9,11,12,13,14,15,16,17-decahydro-17-((R,E)-2-hydroxy-5-(4-

nitrophenyl)-3-oxopent-4-en-2-yl)-13-methyl-6H-cyclopenta[a]phenanthren-3-yl 

sulfamate and MMA320 named as (R,1E)-1-(4-(trifluoromethyl)phenyl)-4-

((8S,9S,13S,14S)-7,8,9,11,12,13,14,15-octahydro-3-methoxy-13-methyl-6H-

cyclopenta[a]phenanthren-17-yl)-4-hydroxypent-1-en-3-one. 
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Table 2.1  Inhibitory effects of estrone analogs against NCIH226 cell proliferation. 

  

 

 

   

 Compound IC50 (μM)  

 MMA228 99.8 ± 0.28c  

 MMA269 10.41 ± 0.46b 

 MMA270 > 100c  

 MMA271(R) 19.43 ± 0.79d 

 MMA271(S) 40.39 ± 1.65b 

 MMA287 11.82 ± 0.65b 

 MMA290 >100c  

 MMA292 >100c  

 MMA300 17.41 ± 1.56a 

 MMA306 17.42 ± 0.56a 

 MMA307 2.88 ± 0.21c  

 MMA308 >100c  

 MMA309 >100c  

 MMA310 >100c  

 MMA311 45.46 ± 0.71b 

 MMA312 20.64 ± 1.66d 

 MMA313 >100c  

 MMA316 >100c  

 MMA319 >100c  

 MMA320 9.68 ± 0.24b  

 MMA321 14.57 ± 0.31b 

 MMA323 >100c  

 MMA327 >100c  

 MMA334 42.02 ± 1.57b 

 Sorafenib 20.62 ± 1.32  
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Figure 2.7 Growth inhibitory effects on NCIH226 after treatment with IC50 values of 

estrone analogs. (A) Morphological changes in NCIH226 cells after treatment with 0.05% 

DMSO, MMA320, MMA307 and sorafenib. Images were acquired with ×4 objective lens 

of Evos XL cell imaging system (ThermoFisher Scientific), scale bar = 200 µm. (B). 

Trypan blue cell counting after 24 hrs. The number of cells was determined by counting 

and expressed as mean % ± SD of two independent experiments with n=2 per condition in 

each experiment. 
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Figure 2.8 Estrone analogs exposure resulted in G1-phase cell cycle arrest. NCIH226 cells 

were treated with IC50 values of estrone analogs and analyzed after 48 hrs by flow 

cytometry. (A) Distribution of cells in distinct phases of the cell cycle. MMA320 shows 

the highest arrest of G0/G1 phase of the cell cycle compared to the negative control, DMSO. 

(B) The bar graphs show Mean ± SD of the percentages of NCIH226 cells in the indicated 

phases of the cell cycle (G0/G1, S and G2/ M). At least three independent experiments were 

performed. *p < 0.05, **p < 0.01, ***p < 0.001 significant differences in cell cycle arrest 

compared to DMSO control. 
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Figure 2.9 EGFR and multiple MAPK-ERK1/2 effector molecules are inhibited in 

NCIH226 cells by MMA307 treatment. (A) MMA307 inhibited EGFR and pEGFR, as well 

as multiple downstream MAPK-ERK1/2 effector molecules, detected through In Cell 

Western (ICW) assay. After treatment with MMA307 (2.88 μM), fixed cells were 

incubated with specific antibodies for each protein. The cells were washed and incubated 

with DyLight conjugated (680 or 800 nm) detection antibodies, and plates scanned with 

LICOR Odyssey® Fc imaging system to measure the levels of total and phosphorylated 

proteins. Quantitation of proteins was completed using scanned images from Fiji software. 

(B) Cell extracts were also fractionated on SDS-PAGE, followed by immunoblot analysis 

for the indicated proteins. β-Actin was examined as a loading control for each immunoblot 

analysis. (C-F) Data points are represented as the mean of duplicate and SD of two 

independent experiments. 
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Figure 2.10 Effects of MMA320 treatments on EGFR and multiple MAPK-ERK1/2 

effector molecules in NCIH226 cells. (A) Cells were treated for indicated times with 9.68 

μM MMA320. Cell lysates were analyzed by SDS-PAGE, transferred to nitrocellulose 

membranes and use of the corresponding primary antibodies against specific proteins and 

GAPDH as loading controls. Blots are representative examples of at least two independent 

experiments. LICOR Odyssey® Fc imaging system analysis of bands comparing the 

relative levels of proteins after time-course treatment with MMA320 as compared to 

DMSO control. (B-E) Bar graphs are means ± SD from at least two independent 

experiments. 
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Figure 2.11 Effects on G1 phase cell cycle regulators after treatment with MMA307 in 

NCIH226 cells. (A-B) Cells were treated for indicated times with 2.88 μM MMA307. Cell 

lysates or fixed cells were analyzed by western blot or ICW and use of the corresponding 

primary antibodies against specific proteins and β-Actin or GAPDH as loading controls. 

LICOR Odyssey® Fc imaging system analysis of bands comparing the relative levels of 

proteins after time-course treatment with MMA320 as compared to DMSO control. Blots 

or ICW images are representative examples of at least two independent experiments. (C-

D) Line graphs are means ± SD from at least two independent experiments. 
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Figure 2.12 Effects on G1 phase cell cycle regulators after treatment with MMA320 in 

NCIH226 cells. (A) Cells were treated for indicated times with 9.68 μM MMA320 for 

indicated times. Cell lysates were analyzed by SDS-PAGE gels, transferred to 

nitrocellulose membranes and use of the corresponding primary antibodies against 

Dyrk1B, cyclin D1, p-cyclin D1, p21waf1/cip1 and β-actin as loading controls. LICOR 

Odyssey® Fc imaging system analysis of bands comparing the relative levels of proteins 

after time-course treatment with MMA320 as compared to DMSO control. Blot images are 

representative examples of at least two independent experiments. (B) Line graphs are 

means ± SD from at least two independent experiments. 
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3 Chapter 3 

 

Estrone hybrids with modified cucurbitacin pharmacophores induce growth 

inhibition and apoptosis via suppressing EGFR, Akt/mTOR and ERK1/2 pathways 

in triple negative breast cancer cells. 
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3.1 Abstract 

 

 

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with an aggressive 

phenotype which shows high metastatic capability and poor prognosis. The aggressive 

behavior of TNBC may involve aberrant EGFR expression and activation of its 

downstream PI3K/Akt/mTOR and RAF/ERK signaling which has received considerable 

attention as druggable targets in recent times. Currently, no targeted therapy has been 

approved for treating TNBC. Previous studies from our research group showed that estrone 

analogs with cucurbitacin pharmacophores and nitric oxide releasing properties inhibited 

the proliferation of several type of cancers. In this study, we report that novel estrone 

analogs with modified cucurbitacin pharmacophores exhibited cytotoxic killing towards 

TNBC cells through multiple mechanisms, inhibition of cell proliferation and induction of 

mitochondrial apoptosis. Molecular docking studies were carried out with OpenEye 

software. The MTT cell viability assay was used to perform cytotoxicity studies. 

Morphological changes and cell cycle arrest were carried out by microscopy and flow 

cytometric techniques, respectively. Annexin V assay was used to evaluate initial apoptosis 

induction in MDA-MB-468 cells, and In-cell western assay was used to detect the 

expression levels of apoptotic, cell cycle and EGFR and its downstream AKT and ERK1/2 

pathways associated proteins. We demonstrated that MMA307 and MMA321 showed 

strong potency towards the EGFR kinase domain (pdb code: 1M17) in silico and exhibited 

cation-π and hydrogen bonding interactions towards amino acid residues within the ATP 

binding site. MMA307 was over tenfold more cytotoxic than sorafenib when dosed to 

MDA-MB-468 cells and MMA321 was almost twenty-fold more potent than sorafenib. 
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Moreover, condensed nuclei with fragmented chromatin, phosphatidylserine flip and 

modulated expression of proteins within the intrinsic apoptosis pathway (Apaf1, 

cytochrome c, caspases 3 and 9) confirms mitochondrial apoptosis and suggest MMA307 

and MMA321 induced apoptosis via caspase-dependent pathways. Also, MMA307 and 

MMA321 downregulated cyclin D1 expression levels contributing to G1 phase cell cycle 

arrest. Furthermore, both compounds inhibited the expression of EGFR and activated 

EGFR (Y1068); Activated proteins within the RAF/ERK and AKT/mTOR pathways were 

downregulated upon MMA307 and MMA321 treatment. Particularly, pARaf, pERK1/2, 

pAKT, pmTOR and p70S6Kα were all suppressed. Taken together, we report for the first 

time that estrone analogs with modified cucurbitacin pharmacophores may be an effective 

therapy for TNBC, which urgently needs novel treatment options. Further studies are 

needed to develop these novel candidates as targeted agents for TNBC. 

 

Keywords: TNBC; EGFR; Estrone analogs; MDA-MB-468; Apoptosis; Cell cycle 
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3.2 Introduction 

 

 

Breast cancer is the most common invasive cancer in women globally and the leading cause 

of cancer‑related death (Bray et al., 2018). Breast cancers can be categorized into four main 

subtypes in accordance to the pattern of genetic profiling. Two are derived from hormone 

receptor expression, thus estrogen receptor (ER)‑positive tumors, luminal A and B, and the 

remaining two are derived from lack of hormone receptor expression, thus ER‑negative 

tumors, basal‑like and HER2 positive (Berrocal, 2017). Triple-negative breast cancer 

(TNBC) is a basal‑like subtype of breast cancer that accounts for about 20% of all breast 

cancers (Dai et al., 2015; Uscanga-Perales et al., 2016; Lee and Djamgoz, 2018). In 

comparison with other breast cancer subtypes, TNBC is a heterogeneous disease with a 

higher metastasis rate, worse prognosis, and higher relapse risk (Uscanga-Perales et al., 

2016, Podo et al., 2016). Also, brain metastasis is mainly the results of TNBC progression 

(Feng et al, 2018). This disease stage has no effective therapeutic option partially due to 

the poor penetration of drugs across the blood-brain barrier. Therefore, TNBC has attracted 

increasing amounts of attention in oncology research. Currently, the major therapies for 

breast cancer include surgery, radiation therapy, hormone therapy and chemotherapy. 

Surgery and radiotherapy are local therapy methods for the treatment of cancer. Because 

of the high metastasis and relapse rates of TNBC, new therapeutic modalities need to be 

discovered for TNBC treatment. Contrary to this, TNBC cannot be treated by hormone 

therapy because it lacks or has low expression of estrogen receptor (ER), progesterone 

receptor, and human epidermal growth factor receptor 2 (HER2) (Ma et al., 2017). Despite 
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several possible targeted agents been studied in the last two decades, currently, there are 

no targeted therapies approved by the FDA and other agencies around the globe for treating 

TNBC (Yue et al, 2018). Hence, standard chemotherapy, especially anthracycline‑based 

agents, remains the first option of current TNBC treatment strategies (Cortazar et al., 

2014), but there is still a substantial risk for recurrence and aggressive disease progression 

(Székely et al., 2017; Wahba and El-Hadaad, 2015). Thus, it is urgent to discover highly 

effective and low toxic targeted treatment strategies for TNBC. 

 

Natural products are often regarded as sources of phytochemicals or leads for the discovery 

of novel drugs. Phytochemicals are naturally occurring secondary metabolites-biologically 

active compounds found in plants, animals, microorganisms and marine organisms which 

have capabilities of inhibiting various diseases including cancer. Notable examples include 

the vinca alkaloids vincristine and vinblastine isolated from Catharanthus roseus, as well 

as taxol isolated from Taxus brevifolia, for the treatment of various cancers (Acheampong 

et al, 2017; Acheampong et al, 2015; Larbie et al, 2015). In the face of worldwide disease 

challenges, natural products research and development potentially play a key function in 

innovative drug discovery. About 33% of FDA-approved drugs over the past two decades 

are based on natural products or their derivatives and these have transformed medicine 

(Thomford et al, 2018). In particular, Stander et al, 2011, Botes et al, 2018, report that 2-

Methoxyestradiol (2ME), an endogenous metabolite of 17β-estradiol, and its 

sulphamoylated derivative (Visagie et al, 2013; Verwey et al, 2016; van Vuuren et al, 

2019) possess both antiangiogenic and anti-breast cancer effects in vitro and in vivo. 
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However, 17β-estradiol promotes the proliferation of various cancers (Verwey et al, 2016). 

This suggests that estradiol may be a privileged scaffold upon which modifications can be 

done to generate lead candidates with improved potency and pharmacokinetic properties 

as well as reduced toxicities. In our research group, estrone, an isomer of estradiol, is used 

as a starting material to synthesize novel estrone analogs. Many of our estrone derivatives, 

especially those bearing cucurbitacin side chains have been documented to exhibit potent 

cytotoxic effects against distinct cancers (Ahmed et al, 2017; Elshaier et al, 2017; Ahmed 

et al, 2014; Kopel et al, 2013). Also, Sara et al, 2018 reported on the cytotoxic effect and 

EGFR/MAPK pathway suppression capabilities by the novel estrone analogs with 

cucurbitacin side chains against wild-type and resistant HepG2 cell lines. In addition, Amr 

and colleagues, 2019, reported that novel estrogen analogs effectively bind to EGFR in 

vitro and in vivo and were cytotoxic against MCF-7 cells but not towards MCF-10A cells 

alluding to their selectivity. 

 

In the current research, we showed that several estrone analogs were effective in inducing 

growth inhibition, cell cycle arrest and apoptosis in the TNBC model MDA‑MB‑468 cells. 

Also, we determined the effect of MMA307 and MMA321 on EGFR and its downstream 

PI3K/Akt/mTOR (PAM) and RAF/ERK pathways, because both represent the main 

signaling pathways responsible for cell metabolism, survival and proliferation and are often 

activated in TNBC (Ignacio et al., 2018; Chen and Costa, 2018; Foidart et al., 2019). We 

revealed that MMA307 and MMA321 suppression of MDA-MB-468 cells growth could 

be as a result of multiple factors including inhibition of EGFR and its downstream PAM 



104 
 
 

and MAPK pathways; induction of mitochondrial apoptosis and suppression of cell cycle 

progression. 

 

3.3 Materials and methods 

 

 

3.3.1 Reagents and chemicals 

 

 

Antibodies against EGF Receptor (D38B1) XP®, Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (197G2), Cyclin D1 (92G2), Phospho-Akt (Ser473) were purchased from 

Cell Signaling Technology (Danvers, MA, USA); goat anti-rabbit and goat anti-mouse 

horseradish peroxidase conjugate (HRP) secondary antibodies, phospho-cyclin D1 

(Thr286) (A537487), Phospho-A-Raf (Ser299) were from Thermo Fisher Scientific 

(Waltham, MA, USA);  Phospho-EGF Receptor (Tyr1068), Phospho-p70S6 Kinase α, 

Dyrk1B, caspase 9, caspase 3, PARP1, cleaved PARP1, Bcl-2, APAF1, cytochrome C and 

GAPDH were from Santa Cruz Biotechnology Inc. (Dallas, Texas, USA). Phosphate 

buffered saline (PBS) and trypan blue solution were from Thermo Fisher Scientific 

(Waltham, MA, USA). RealTime-Glo™ Annexin V apoptosis and necrosis assay (JA1011) 

kit was from Promega (Madison, WI, USA). PI/RNase staining buffer was purchased from 

BD Biosciences (San Jose, CA, USA). Compounds cytotoxicity was evaluated through 

measurement of mitochondrial dehydrogenase activities with 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma-Aldrich, St. Louis, MO, USA). 

Hoechst 33342 stain for evaluating chromatin condensation and nuclear fragmentation was 
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purchased from Thermo Fisher Scientific (Waltham, MA, USA). Sorafenib (positive 

control) (Selleckchem, Houston, TX, USA) and novel triazole derived estrone analogs 

were dissolved in dimethyl sulfoxide (DMSO) (Fisher Chemical/Fisher Scientific). 

Western Lightning Plus-ECL, Enhanced Chemiluminescence Substrate for protein 

detection was purchased from PerkinElmer (Waltham, Massachusetts, USA). All other 

chemicals were of biological and analytical grade. 

 

3.3.2 Design and synthesis of estrone analogs 

 

 

3.3.2.1 Molecular modeling 

 

  

Fitting novel estrone analogs into the 3D X-ray structure of EGFR kinase domain (PDB 

code: 1M17) was carried out using the FRED application (version 2.2.5) as implemented 

through the graphical user interface of OpenEye® software. The 3D structure of the above 

protein was downloaded from Protein Data Bank (pdb) and prepared with the make 

receptor software. The three-dimensional structures of the estrone analogs were 

constructed using Chem. 3D ultra 12.0 software [Chemical Structure Drawing Standard; 

Cambridge Soft corporation, USA (2010)], then they were energetically minimized with 

MMFF94 application with 5000 iterations and minimum RMS gradient of 0.10. All bound 

water molecules and ligands were eliminated from the proteins. Furthermore, multi-

conformers were generated using OMEGA application (version 2.5.1.4) and the VIDA 

application (version 4.1.2) was used as a visualization tool to show the potential binding 
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affinity and binding interactions of the ligands to the receptor (Elshaier et al, 2017).  This 

software package generates consensus scoring which is a filtering process to obtain virtual 

binding affinity. The lower the consensus score, the better binding affinity of the ligands 

towards the receptor. 

3.3.2.2 Synthesis of MMA307 and MMA320 

 

 

3.3.2.2.1 General procedure for the preparation of MMA307 

 

  

Steps 1 to 9 has been previously reported by our research group (Ahmed et al, 2014; Kopel 

et al, 2013). Preparation of 10 was carried out as follows: 0.15 g of 9 was dissolved in N, 

N-dimethylacetamide (0.8 mL) and incubated with sulfamoyl chloride (0.12 g, 0.945 

mmol) at 0ºC. Subsequently, the reaction mixture was stirred at room temperature for 18 

hrs and the resulting solution extracted with 1:1 mixture of ethyl acetate and water. The 

residue was purified using silica gel column chromatography (ethyl acetate: n-hexane, 3:7) 

to isolate compound 10 which was labeled as MMA307 (0.16 g, 91%). MMA307 was 

characterized by 1H and 13C NMR and high-resolution mass spectroscopies (Mahnashi, 

2017). 

MMA307 1H NMR (600 MHz, Chloroform-d) δ 8.21 – 8.18 (m, 2H), 7.77 (d, J = 15.7 

Hz, 1H), 7.71 – 7.67 (m, 2H), 7.25 – 7.21 (m, 1H), 7.10 (d, J = 15.7 Hz, 1H), 7.01 (dd, J = 

8.6, 2.6 Hz, 1H), 6.95 (d, J = 2.6 Hz, 1H), 5.03 (s, 2H), 3.98 – 3.89 (m, 1H), 3.83 (s, 1H), 

2.78 (qd, J = 10.4, 9.7, 4.3 Hz, 2H), 2.29 – 2.21 (m, 2H), 2.16 (dq, J = 12.0, 4.2 Hz, 1H), 
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1.84 – 1.77 (m, 2H), 1.64 – 1.56 (m, 2H), 1.56 – 1.53 (m, 2H), 1.50 (s, 3H), 1.41 – 1.31 

(m, 2H), 0.88 (s, 3H). 

MMA307 13C NMR (151 MHz, CDCl3) δ 203.04 (C21), 148.81 (C3), 147.90 (C27), 

142.60 (C23), 140.35 (C24), 139.64 (C5), 138.92 (C10), 129.26 (C25, C29), 126.73 (C1), 

124.25 (C26,C28), 122.29 (C22), 121.93 (C4), 118.95 (C2), 79.54 (C19), 55.66 (C14), 

54.98 (C17), 44.31 (C8), 43.97 (C13), 40.51 (C12), 37.65 (C15), 29.51 (C6), 27.26 (C11), 

26.43 (C7), 24.22 (C9), 23.64 (C20), 22.09 (C16), 13.65 (C18). 

HR-FT-MS calcd for C29H34O7N2SNa 577.1979 found 577.19790. 

 

3.3.2.2.2 General procedure for the preparation of MMA321 

 

 

Steps 1 to 9 has been previously reported by our research group (Ahmed et al, 2014; Kopel 

et al, 2013). Synthesis of 10 was carried out as follows: to a stirred solution of the 9 (0.4g, 

1.13 mmol), a mixture of tetrahydrofuran and lithium diisopropylamine (LDA) (2.034mL, 

4.068 mmol) were added and the reaction kept at -78 ºC. Afterwards, the reaction mixture 

was initially stirred for 1 hr, before para-nitrobenzene (0.242mL, 2.26mmol) dissolved in 

THF added and the resulting mixture warmed to room temperature for 24 hrs. 

Subsequently, the reaction was quenched with ammonium chloride and the aqueous layer 

extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtrated, and 

concentrated under vacuum. Silica gel column chromatography was used to purify the 

crude material (ethyl acetate: n-hexane, 1:9) to obtain 10 (0.29g, 52.7%). Pure compound 
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10 was characterized by NMR and mass spectroscopies and labeled as MMA321 

(Mahnashi, 2017). 

MMA321   1H NMR (400 MHz, Chloroform-d) δ 8.14 (m, 2H), 7.75 (m, 1H), 7.61 (m, 

2H), 7.12 (s, 1H), 7.08 – 6.96 (m, 2H), 6.59 – 6.52 (m, 1H), 6.49 (d, 1H), 5.95 (d, 1H), 

4.24 (s, 1H), 3.64 (s, 3H), 2.79- 2.73 (m, 2H), 2.20-2.10 (m, 2H), 2.01 (m, 1H), 1.79 (d, 

1H), 1.48 – 1.35 (m, 1H), 1.32 – 1.13 (m, 3H), 1.08 (m, 1H), 0.94 (s, 3H), 0.85- 0.76 (m, 

4H). 

MMA321  13C NMR (101 MHz, Chloroform-d) δ 200.45, 157.40, 154.95, 148.73, 141.74, 

140.35, 137.79, 132.62, 129.97, 129.24, 125.96, 124.20, 122.58, 113.78, 111.35, 78.89, 

57.48, 55.14, 47.83, 43.91, 37.05, 34.67, 34.54, 31.60, 31.24, 29.65, 27.57, 26.25, 25.29, 

25.18, 22.67, 17.19, 14.16. 

HR-FT-MS calcd for C30H33O5N1Na1 510.2251 found 510.22454. 

 

3.3.3 Cell culture 

 

 

MDA-MB-468 (a model for TNBC with amplified EGFR) was a kind gift from Dr. Rachel 

Willand Charnley (South Dakota State University, Department of Chemistry and 

Biochemistry). The cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum (FBS), antibiotic-antimycotic (Gibco™, 

ThermoFisher Scientific) at 37˚C equilibrated with 5% (v/v) CO2 in humidified air. The 
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cells for the assays were detached using a solution of trypsin with EDTA (ThermoFisher 

Scientific). 

 

3.3.3.1 Cytotoxicity assay 

 

 

3.3.3.1.1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

Assay 

 

 

The effect of novel synthetic estrone analogs on cell viability was tested with MTT reagent 

as described by Wang et al, 2010, with slight modifications. Briefly, to measure 

mitochondrial dehydrogenase activities, cells were seeded into wells on 96-well plates at 

an initial density of 30, 000 cells per well. After overnight incubation, cells were treated 

with different concentrations of compounds in a dose range of 0 - 100 μM. The final DMSO 

concentration was 0.05%. After 48 hrs of incubation, 20 μL   of MTT reagent (5 mg/mL) 

was added to each well and the formed formazan crystals were dissolved in 250 μL   of 

dimethyl sulfoxide (DMSO). Four independent experiments were completed to determine 

the mean optical density referred to as cell viability, using a Hidex Sense Beta Plus plate 

reader (Turku, Finland). Cell viability was expressed as a percentage of DMSO-treated 

controls. 

 

3.3.3.2 Flow cytometry for cell cycle analysis 
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MDA-MB-468 cells were seeded into six-well plates at a concentration of 300, 000 cells/ 

well and allowed to attach in culture overnight, then treated with IC50 molarity of 

compounds or positive control (sorafenib) for 48 h. Afterward, cells were washed with PBS 

and harvested. Cell cycle analysis was investigated by adding propidium iodide (PI) stain 

(Thermo Fisher Scientific) to 1 mL of cell suspension. Briefly, harvested cells were fixed 

in 70% ethanol and incubated at 4ºC for 4hrs. Subsequently, the cells were cleaned of 

alcohol and stained with RNase free PI solution, the cell suspension was incubated in the 

dark for 45 minutes at room temperature. The samples were analyzed by flow cytometry 

and compared to DMSO-treated cells. All these experiments were performed on 

CytoFLEX flow cytometer, serial no. AW35216 (Beckman Coulter Life Sciences, 

Indianapolis, IN, USA) using CyExpert software, version 1.2. 

 

3.3.3.3 Apoptosis analysis 

 

 

3.3.3.3.1 Annexin V assay 

 

 

The annexin v assay was performed in accordance with the manufacturers’ protocol with 

slight modifications. Briefly, MDA-MB-468 cells were seeded into wells on a 96-white 

plate with a clear bottom at an initial density of 30,000 cells for overnight attachment. 

Afterward, the cells were incubated with the IC50 concentrations of compounds for 12 hrs. 

Subsequently, the RealTime-Glo™ Annexin V Apoptosis reagent (Promega, Madison, WI) 

was prepared (sequentially mix Annexin NanoBiT® Substrate, CaCl2, Annexin V-SmBiT 
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and Annexin V-LgBiT in a prewarmed media) and added to the reaction set up before 

incubating for additional 1 hr. Luminescence was measured afterward using Hidex Sense 

Beta Plus plate reader (Turku, Finland). Apoptosis was expressed as a percentage relative 

to DMSO-treated controls. 

 

3.3.3.3.2 Morphological analysis with fluorescence microscopy 

 

 

To further evaluate the apoptotic activity of the estrone analogs, nuclear staining with the 

DNA-binding dye Hoechst-33342 was performed in accordance with the manufacturers’ 

protocol. In brief, MDA-MB-468 cells were plated into wells on 96-well plates and treated 

with IC50 concentrations of compounds for 12 hrs. Cells were washed with PBS and 

incubated with Hoechst-33342 (10μg/mL) for 15 min in the dark, then images were 

acquired using Cytation 3 imaging multi-mode reader (BioTek Instruments, Inc., Waltham, 

MA, USA) with 4× objective lens (excitation 352 nm, emission 461 nm). Apoptotic cells 

were identified by condensation of chromatin and fragmentation of nuclei with Gen5 

software version 3.03. 

  

3.3.3.4 Protein expression analysis 

 

 

3.3.3.4.1 In-Cell Western (ICW) Assay 
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Proteins involved in apoptosis, cell cycle progression, EGFR, and its downstream MAP 

kinase and Akt pathways were quantified by ICW. This technique was carried out in 

accordance with the manufacturer’s instruction with slight modifications. Briefly, about 

50,000 cells per well were seeded into 96-well white-walled plate with clear bottom for 

overnight attachment. Afterward cells were washed three times with PBS and depleted of 

serum for six hours. Cells were then treated with varying concentrations of compounds in 

serum-free media for six hours before stimulating with 100nM of EGF for one hour. 

Subsequently, cells were fixed with 3.7% formaldehyde solution, permeabilized with 0.1% 

Triton X-100 solution and blocked with fish gel buffer (1×) prior to primary antibody 

addition. Wells were then incubated with the relevant antibodies EGF Receptor (D38B1) 

XP®, Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (197G2), Cyclin D1 (92G2), 

Phospho-Akt (Ser473), Phospho-A-Raf (Ser299), Phospho-EGF Receptor (Tyr1068), 

Phospho-p70S6 Kinase α, caspase 9, caspase 3, PARP1, cleaved PARP1, Bcl-2, APAF1, 

cytochrome C and GAPDH (loading control) overnight followed by an hour incubation 

with goat anti-mouse or goat anti-rabbit horseradish peroxidase conjugated secondary 

antibodies. Finally, the cell mixture was incubated with enhanced chemiluminescence 

substrate (Western Lightning Plus-ECL) for a few minutes before chemiluminescence was 

measured using Hidex Sense Beta Plus plate reader (Turku, Finland). Protein expression 

levels were normalized to the housekeeping gene, GAPDH, and expressed as a percentage. 

 

3.3.4 Statistical Analysis 
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Microsoft® Excel® for Windows, version 16.0., was used for the calculation of mean and 

standard deviation values of different experiments and plotting of bar or line graphs.  Mean 

IC50 values were compared by one-way analysis of variance (ANOVA) and multiple 

comparisons were done by the Dunnett Test using GraphPad Prism 5.01 (San Diego, USA) 

and values with p < 0.01 or p < 0.001 were considered statistically significant. 

3.4 Results 

 

 

3.4.1 Docking simulations 

 

 

To demonstrate whether the designed estrone analogs can target EGFR dependent breast 

cancers, an initial in silico molecular docking studies were carried out by fitting the 

designed analogs and reference compound (erlotinib) into the ATP binding site of the 

EGFR kinase domain (PDB codes: 1M17). The obtained results were plotted as a line-

scatter graph (Figure 3.1), which mainly displays the corresponding consensus scores of 

the molecular docking studies. Compared with the reference drug, erlotinib, it was clearly 

observed that most estrone analogs showed lower consensus scores (a measure of better 

binding and improved potency) when fitted into the EGFR kinase domain. Furthermore, 

the binding mode of MMA307 and MMA321 revealed that MMA307 fitted into the 

hydrophobic pocket of the EGFR kinase domain and demonstrated hydrophobic interaction 

towards the ATP binding site. However, MMA321 demonstrated hydrogen bonding 

towards THR830A, ASP831A and LYS721A residues within the ATP binding site of 

1M17 (Figures 3.3 – 3.4). Also, these compounds exhibited potent cytotoxic effects against 
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MDA-MB-468 cells in vitro compared to sorafenib. The addition of a sulfamoyl moiety to 

compound 9 afforded 10 (MMA307) in 91% yield after column chromatography (scheme 

3.1), and the addition of para-nitrobenzene to the hyroxyl methyl ketone diastereomeric 

mixture yielded 52.7% of MMA321 after purification with silica gel column 

chromatography (Scheme 3.2). These pure compounds were characterized by NMR and 

mass spectrometry techniques with the 1H and 13C chemical shifts as well as accurate 

masses reported above. In terms of IUPAC nomenclature, MMA307 was named as 

(8S,9S,13S,14S,17S)-7,8,9,11,12,13,14,15,16,17-decahydro-17-((R,E)-2-hydroxy-5-(4-

nitrophenyl)-3-oxopent-4-en-2-yl)-13-methyl-6H-cyclopenta[a]phenanthren-3-yl 

sulfamate and MMA321 named as 4-Hydroxy-4-(3-methoxy-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1-(4-nitro-

phenyl)-pent-1-en-3-one (Figure 3.5). 

 

3.4.2 Estrone analogs exhibit cytotoxic effects against MDA-MB-468 cells 

 

  

To determine the cytotoxic effects of the estrone analogs against TNBC cell lines, the 

viability of MDA-MB-468 cells initially treated with a dose range of 0 – 100 µM was 

analyzed using the MTT cell viability assay after 48 hrs. Overall, the compounds did show 

a significant cytotoxic effect toward the MDA-MB-468 cells within the dose range tested 

after 48 hrs and therefore IC50 values were calculated. Most of the compounds were very 

effective than the positive control-sorafenib in exhibiting cytotoxic killing towards MDA-

MB-468 cells. Particularly, MMA300, MMA307, MMA320 and MMA321 recorded IC50 

concentrations of 0.89 ± 0.10, 0.85 ± 0.00, 1.71 ± 0.01 and 0.56 ± 0.01 μM, respectively 
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compared to sorafenib IC50 molarity of 10.09 ± 0.68 μM (Table 3.1). MMA321 was almost 

twenty fold more potent whereas MMA307 was more than tenfold more potent compared 

to sorafenib in exhibiting their cytotoxic effect. Therefore, in the subsequent experiments 

the IC50 concentrations of MMA307 and MMA321, a highly effective and low toxicity 

dose was used. Mechanisms pertaining to programmed cell death, apoptosis, and that 

involved in inhibition of proliferation were investigated. 

 

3.4.3 Estrone analogs induce apoptosis in TNBC cells 

 

 

3.4.3.1 RealTime-Glo™ Annexin V assay 

 

 

The apoptosis-inducing effect of MMA307 and MMA321 in MDA-MB-468 cells were 

evaluated by RealTime-Glo™ Annexin V apoptosis and necrosis luminescent assay. The 

detection reagent contains Annexin V-LgBiT and Annexin V-SmBiT (NanoBiT) fusion 

proteins and a profluorescent DNA dye. In healthy cells, most of the phosphatidylserine 

(PS) is confined to the inner leaflets of the cell membrane, fewer fusion proteins bind to 

PS and less luminescence is recorded. In apoptotic cells, PS is exposed to the outer leaflet 

of the cell membrane, more fusion proteins bind to PS and increased luminescence is 

measured. Increased luminescence corresponds to increased apoptosis. Exposing MDA-

MB-468 cells to MMA307 and MMA321, resulted in increased apoptosis in a dose-

dependent manner (Figure 3.6 A). Notably, both compounds induced apoptosis in MDA-

MB-468 cells within 12 hrs of drug incubation similar to the positive control, camptothecin. 
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3.4.3.2 Morphological analysis with fluorescence microscopy 

 

 

The morphological changes in cell nuclei of MDA-MB-468 cells within 12 hrs after 

treatment with MMA307 and MMA321 showed significant shape alterations when 

compared to 0.05% DMSO control. As shown in Figure 3.6 B, the control or untreated 

cells appeared as intact oval shape and the nuclei were stained with a less bright blue 

fluorescence (due to the Hoechst 33342 dye). Cells treated with tested compounds 

exhibited typical features of apoptosis such as cell shrinkage, chromatin condensation, and 

nuclear fragmentation in multiple, segregated bodies, the formation of apoptotic bodies, 

and cell decrement. The apoptotic nuclei clearly showed highly condensed or fragmented 

chromatin that was uniformLy fluorescent. MMA307 and MMA321, as well as sorafenib 

treatments, resulted in increased apoptotic cells (condensed chromatin, indicated by 

arrows) compared to the DMSO control. 

 

3.4.3.3 Estrone analogs induce apoptosis via the mitochondrial pathway 

 

 

To further study the effects of MMA307 and MMA321 on apoptosis, ICW assay was 

performed to detect changes in protein expression involved in the apoptosis pathway. As 

shown in Figure 4 and 5, exposure of MDA-MB-468 cells to the compounds resulted in 

increased expressions of cytochrome C and apoptotic protease activating factor 1 (APAF1), 

which are markers of mitochondrial apoptosis. Furthermore, we observed decreased 
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expression of B-Cell Lymphoma 2 (Bcl-2) protein when TNBC cells were treated with 

both compounds (Figure 3.7). Also, when the compounds were administered to cells an 

elevated expression caspase-3 and -9 were increased post-treatment with MMA307 and 

MMA321 (Figure 3.8). All these results indicate that MMA307 and MMA321 could 

effectively induce apoptosis in MDA-MB-468 cells via the mitochondrial pathway and in 

a caspase-dependent manner. 

 

3.4.4 Estrone analogs inhibit the proliferation of MDA-MB-468 cells through G1 

phase cell cycle arrest 

 

 

To elucidate the antiproliferative effects of MMA307 and MMA321 on MDA-MB-468 

cells, the cell cycle distribution was the first mechanism examined by propidium iodide 

(PI) stain and distinct populations analyzed by flow cytometry. Cell-cycle population 

distribution of MDA-MB-468 cells exposed to DMSO (Figure 3.9 A) showed an average 

of 3% in the G0/G1 phase, 1.5% in the S phase, and 95.5% in the G2/M phase. Treating 

MDA-MB-468 cells with sorafenib resulted in enrichment of cells within G0/G1 phase, 

15.43%. Also, accumulation of cells in the S phase was 4.35% and G2/M phase 81.59%. 

Exposure of cells to MMA307 resulted in significant accumulation of cells within G0/G1 

phase, an average of 42.3%; there was decrease enrichment of cells in the G2/M phase, an 

average of 47.2% was observed. Similarly, exposure of MDA-MB-468 cells to MMA321 

resulted in significant enrichment of cells within the G0/G1 phase of the cell cycle. It 

arrested an average of 58.11% of cells in the G0/G1 phase and a lower number of cells (an 

average of 29%) in the G2/M phase. 
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3.4.4.1 G1 phase cell cycle associated proteins are modulated post estrone analogs 

exposure 

 

 

As a result of the significant (p < 0.05) cell cycle arrest induced by the estrone analogs, we 

analyzed the expression levels of known G0/G1 phase cell cycle proteins. In-Cell Western 

approach was adopted to establish our findings. Cyclin D1 plays a vital role in regulating 

the progression of cell cycle within the G1 phase. We observed that MMA307 and 

MMA321 administration towards MDA-MB-468 cells resulted in the suppression of cyclin 

D1 expression levels in a concentration-dependent manner within 12 hrs (Figure 3.9B). 

These findings are in line with the significant G0/G1 phase cell cycle arrest recorded above. 

 

3.4.5 EGFR and its downstream signaling pathways are inhibited after TNBC 

exposure to estrone analogs 

  

 

We evaluated the expression levels of total and activated (phosphorylated) forms of EGFR 

by ICW (Figure 3.10).  Higher levels of EGFR were detected in the EGF only treated cells 

compared to the compound plus EGF treated cells, depicting EGFR downregulation. 

Similarly, levels of phosphorylated EGFR (Y1068) were also increased in the EGF only 

treated cells compared to EGF plus compound treated cells.  EGFR and phosphorylated 

EGFR (Y1068) expression levels were downregulated in a concentration-dependent 

manner post MMA307 and MMA321 exposure. The purpose of EGFR 

autophosphorylation within tyrosine residues, especially Y1173 and Y1068, is to activate 
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signaling pathways such as PI3K/AKT and RAS/MAPK pathways involved in cell 

proliferation, survival and angiogenesis (Romano et al, 2011). Next we investigated the 

activation of these pathways by quantifying activated (phosphorylated) forms of ERK1/2- 

and AKT-associated pathway proteins. Decreased amounts of phospho-ARaf (S299) and 

phospho-ERK1/2 (T202/Y204) (Figure 7) were clearly detected in MDA-MB-468 cells 

when exposed to MMA307 and MMA321 together with 100 nM of EGF in a dose-

dependent manner. Similarly, phospho-AKT (S473), phospho-mTOR (S2448) and 

phospho-p70S6Kα (S411) expression levels (Figure 3.11) were downregulated in 

concentration-dependent manner in the presence of estrone analogs and 100nM of EGF. 

Based on the low expression levels of activated ERK- and AKT-associated proteins, 

RAS/MAPK and PI3K/AKT signaling pathways were downregulated in MDA-MB-468 

cell line upon estrone analogs treatment. This could be one of the key reasons underlying 

the observed growth inhibition in TNBC cells. 

 

3.5 Discussion 

 

 

This study revealed that estrone analogs exhibit cytotoxic killing in TNBC cells through 

inhibition of cell proliferation and induction of apoptosis. The mechanisms of 

antiproliferation involved cell cycle arrest, suppression of EGFR and blocking of its 

downstream RAS/MAPK and PI3K/AKT pathways whereas the mechanism of cell death 

studied was that of mitochondrial apoptosis. Therefore, MMA307 and MMA321 have a 

good antitumor effect against TNBC cells in vitro. 
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Installing various modified cucurbitacin pharmacophores and other moieties onto the 

estrone scaffold yielded unique hybrid analogs. Among these MMA307, containing 

sulfamoyl and paranitrophenyl groups, and MMA321, possessing paranitrophenyl and 

methoxy substituents, exhibited acceptable potency in silico and stronger cytotoxic effects 

in vitro. Previous studies by Stamos et al, 2002 suggested that hydrogen bonding towards 

the amino acid residue, MET 769A, alongside other hydrophobic interactions in the EGFR 

kinase domain are important for a drug to elicit cytotoxic effects. Our findings revealed 

that the reference compound, erlotinib, showed hydrogen bonding from the pyrimidine-N2 

towards MET 769A (Figure 3.2) and registered a lower consensus score (a measure of 

effective binding and drug potency). However, examining the analog MMA307, enriched 

with pharmacophores capable of donating and accepting hydrogen bonds within the EGFR 

kinase domain, we observed hydrophobic-hydrophobic (cation-π) interactions between the 

steroidal aromatic ring and the amino acid residue, LYS721A (Figure 3.3). Also, analyzing 

the analog MMA321 within the EGFR binding site revealed hydrogen bonding from the 

nitro-O on the substituent group towards the amino acid residue THR830A (Figure 3.4). 

The hydrogen bonding exhibited by MMA321 towards THR830A and the cation-π 

interactions exhibited by MMA307 towards LYS721A demonstrate a strong and unique 

binding mode and suggest that interactions with THR830A and LYS721A residues in the 

EGFR kinase domain may be key in the estrone analogs achieving in vitro and in vivo drug 

potency. These results could provide a molecular level foundation to illustrate that 

MMA307 and MMA320 can bind well towards the EGFR kinase active site. These findings 
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are further supported by their lower IC50 concentrations compared to sorafenib from the 

cell viability assay in vitro. 

 

Estrone analogs have been exploited as anticancer agents in clinical trials and basic 

research for some time now. Nolte et al, 2018 report that 2-methylestradiol and its 

sulfamoyl derivative induced mitochondrial apoptosis in radiation-exposed MCF-7 (model 

for estrogen positive breast cancer) cells. Also, studies by Sara, 2018 documented that 

estrone analogs with cucurbitacin pharmacophores inhibited the proliferation of 

hepatocellular carcinoma via induction of apoptosis and suppression of EGFR and its 

downstream MAP kinase signaling. In addition, estrone derivatives synthesized by our 

research group, especially those bearing cucurbitacin side chains and that possessing nitric 

oxide-releasing capabilities have been documented to exhibit potent cytotoxic effects 

against distinct cancers (Ahmed et al, 2017; Elshaier et al, 2017; Ahmed et al, 2014; Kopel 

et al, 2013; Abou-Salim et al, 2019). Also, Felix and colleagues (unpublished data) 

revealed that these new estrone hybrids inhibited the proliferation of EGFR-wild-type 

NSCLC (NCIH226 cells) via suppressing EGFR and MAP kinase signaling. Furthermore, 

Verwey et al, 2016 reported that sulphamoylated estradiol derivative exhibited cytotoxic 

effects through the induction of autophagy in MCF-7 and MDA-MB-231 cells. From all 

the studies involving the use of estrone analogs, only Verwey and colleagues, 2016 have 

tested estradiol analogs against MDA-MB-231 cells (a model for TNBC cells) for their 

autophagic cell death effects. The current study sought to investigate the anticancer 

potential of novel estrone hybrids against MDA-MB-468 cells. MDA‑MB‑468 cell line is 
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a typical TNBC model that possesses stronger drug resistance and has higher rates of 

recurrence and metastasis due to overexpression of EGFR. Currently, there is no targeted 

agent approved for the treatment of TNBC. From this research, we showed for the first 

time that most of our estrone hybrids were more potent that reference compound sorafenib. 

Especially, MMA307 and MMA321 were over 10-fold and 20-fold, respectively potent 

than the positive control sorafenib (Table 3.1). 

  

Apoptosis mechanism is a complex process of programmed cell death that is regulated by 

different cell signals. This mechanism is initiated and executed through two major 

pathways, namely, the extrinsic and intrinsic pathways (Elmore, 2007). The extrinsic 

pathway is triggered by extracellular ligands binding to cell surface death receptors. The 

intrinsic pathway is initiated by a variety of intracellular factors generated when cells are 

stressed. The BCL‑2 family of proteins play a key role in regulating the intrinsic pathway. 

BCL‑2 protects the cell against apoptosis, but BAX and the BCL‑2 homologous killer, 

BAK, induce cellular apoptosis through the mitochondria (Alberts et al, 2002). This 

requires the release of cytochrome c which activates APAF1 through the formation of an 

apoptosome. Both the intrinsic and extrinsic pathways have a final common pathway, 

which involves activation of the effector caspases (caspase‑3/7) by initiator caspases 

(caspase 8 for extrinsic pathway and caspase 9 for intrinsic pathway) (Dewangan et al, 

2018). Finally, caspase 3 cleaves and inactivates PARP-poly (ADP-ribose) polymerase-

which is important for damaged DNA repair (Soldani and Scovassi, 2002). Therefore, the 

expression of BCL‑2, cytochrome c, active caspase‑3 and 9, cleaved PARP become 
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important mitochondrial apoptosis indicators. In this research, we first analyzed PS flipping 

which occurs during early apoptosis. Viable cells contain phosphatidylserine (PS), located 

within the inner leaflet of the cell membrane. PS flips to the outer leaflet of the lipid bilayer 

and becomes exposed on the cell surface during apoptosis. This allows for the binding of 

annexin V dye. Analyzing MDA-MB-468 treated cells with real-time annexin V assay, it 

was observed that MMA307 and MMA321 induced PS translocation within 12 hrs in a 

dose-dependent fashion when compared to camptothecin, positive control (Figure 3.6A). 

Subsequently, morphological changes, thus chromatin condensation, induced by the 

estrone analogs were analyzed by fluorescence microscopy after staining cells with 

Hoechst 33342. Chromatin condensation paralleled by DNA fragmentation is one of the 

most important criteria which are used to identify apoptotic cells. Both MMA307 and 

MMA321 as well as sorafenib, clearly induced chromatin condensation within 12 hrs of 

drug treatment (Figure 3.6 B). Furthermore, we demonstrated that cytochrome c, APAF1, 

active caspase‑3 and -9 expression levels were increased (Figures 3.7 and 3.8) but BCL‑2 

expression levels were decreased (Figure 3.7) in MMA307 and MMA321 treated cells. 

These findings suggest that these compounds induced mitochondrial or intrinsic apoptosis 

in MDA‑MB‑468 cells. 

 

Altered cell division is a hallmark of cancer. Targeting the cell cycle has proven to be a 

key strategy in treating breast cancer, and several drugs targeting this pathway have been 

approved by the FDA (Lo et al, 2017). The interaction among cyclins, cyclin-dependent 

kinases (CDKs) and cyclin-dependent kinase inhibitors (CKIs) play a fundamental role in 
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cell cycle progression (Uroz et al, 2018). Cyclin D and its specific CDKs are the crucial 

regulators in the G1 phase of cell division. It has been documented that cyclin D is an 

oncogene whose overexpression may be associated with poor prognosis in TNBC (Ly et 

al, 2017). Cells will usually synthesize cyclin D in response to the mitogenic stimulation. 

An increased amount of cyclin D interacts with CDK4/6 to phosphorylate the inhibitory 

protein retinoblastoma (Rb) in the G1 phase, which leads to the dissociation of Rb from the 

transcription factor E2F and promote E2F-dependent transcription. E2F activation could 

promote a series of subsequent events that favor DNA replication and expression of cyclin 

E and CDK2 (Bertoli et al, 2013) which transitions cells into the G2/M phase. 

Phosphorylating cyclin D by cyclin-dependent kinase inhibitors, p21 and p27, leads to cell 

cycle arrest within the G1 phase. In the present study, the expression levels of cyclin D1 

were downregulated in MDA-MB-468 cells after MMA307 and MMA321 treatment 

(Figure 3.9 B), suggesting that their significant G0/G1 phase cell cycle arrest (Figure 3.9 A) 

was at least partially mediated via suppression of cyclin D1. It must be mentioned that 

while the status of selected G1 phase cell cycle activator, cyclin D1, was analyzed in this 

study, the functions of other G1 phase proteins were likely modulated as well, and therefore, 

the antiproliferative effects of the estrone analogs reported here may not be solely due to 

these proteins. 

 

EGFR is a central regulator of cell proliferation through multiple downstream targets. 

Dysregulation of EGFR signaling has been implicated in cancer. Phosphorylation of EGFR 

on Y1068 creates docking sites for the adaptor protein, Grb2, leading to activation of the 
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MAPK/ERK cascade, and a binding site for Gab1, which recruits the p85 subunit of 

phosphatidylinositol 3-kinase (PI 3-kinase), leading to AKT activation (Yamaoka et al, 

2011). EGFR is overexpressed and genetically amplified in one-third of metastatic or 

recurrent breast cancers, and this has been inversely correlated with relapse-free survival 

(Nagaria et al, 2017). The Ras/MAPK pathway is initiated through the promotion of Ras 

binding to guanosine triphosphate (GTP), which in turn activates RAF kinases 

MAPK/extracellular signal-regulated kinases (MEK), and ERK (Slomovitz and Coleman, 

2012). Activated ERK is thought to translocate into the nucleus, where it phosphorylates 

and activates transcription factors like elk-1, c-jun, fos, etc. that regulate the cell cycle. The 

PI3K/Akt pathway is an important regulator of cell growth and survival through multiple 

downstream targets and it has been shown that AKT could promote the activation of mTOR 

through either mTORC1 or mTORC2 complex, which in turn, activates the p70S6 kinase 

and promote cell growth (Manning and Toker, 2017). In the present study, MMA307 and 

MMA321 decreased the expression of EGFR and activated EGFR (Y1068) (Figure 3.10). 

Also, the expression levels of phosphorylated ARaf, phosphorylated ERK1/2, 

phosphorylated AKT, phosphorylated mTOR and phosphorylated p70S6 kinase were 

reduced upon MDA-MB-468 cells exposure to MMA307 and MMA321 (Figures 3.10 and 

3.11). Our findings reveal that MMA307 and MMA321 might have inhibited TNBC cells 

growth via impacting EGFR, Raf/MAPK, and Akt/mTOR signaling pathway. 

 

3.6 Conclusion 
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The present study gives preliminary convincing results on novel estrone analogs favorable 

cytotoxic effects against TNBC in vitro. However, the mechanisms by which these novel 

estrone analogs show anticancer effects and its direct target have never been exploited 

before, which prompted further investigations. This study revealed that the estrone analogs 

induced mitochondrial apoptosis, arrested G1 phase of the cell cycle, suppressed activated 

EGFR and its downstream MAPK and AKT signaling. To the best of our knowledge, there 

was no report about estrone analogs with modified cucurbitacin side chains having 

potential applications in treating TNBC which possesses a high risk of brain metastasis. 

Our work lays a foundation for using these new estrone analogs to treat TNBC, which 

currently lacks any effective treatment options. Therefore, our results suggested that 

MMA307 and MMA321 might be potential therapeutic agents for treating TNBC, which 

deserves further investigation. 
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Tables and Figures 

 

 

 

 

 

 

 

 

Figure 3.1 Molecular docking study of designed estrone analogs against EGFR binding 

site (Pdb: 1M17). Scatter plot of compounds consensus scores generated by VIDA 

application. 
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Figure 3.2 3D visual representation of reference drug, erlotinib, docked against EGFR 

binding site. There is hydrogen bonding from the pyrimidine-N2 of erlotinib towards 

MET769A of 1M17 binding site. 
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Figure 3.3 3D visual representation of MMA307 docked against EGFR binding site (Pdb: 

1M17). There is cation-π interactions between LYS721A of 1M17 and the steroidal 

aromatic ring of MMA307.   
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Figure 3.4  3D visual representation of MMA321 docked against EGFR binding site (Pdb: 

1M17). The dashed green line shows hydrogen bonding from the Nitro-O of MMA321 

towards THR830A of 1M17. 
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Table 3.1 Cytotoxic effects of estrone analogs against the viability of MDA-MB-468 cells 

in vitro. 

 IC50 Values (μM) 

Compound MDA-MB-468 

MMA228 44.51 ± 2.06*** 

MMA271(R) 4.39 ± 0.07 

MMA271(S) 4.06 ± 0.00 

MMA287 2.51 ± 0.12** 

MMA290 24.95 ± 0.05*** 

MMA292 > 50*** 

MMA294 5.48 ± 0.18 

MMA295 2.98 ± 0.17** 

MMA300 0.89 ± 0.10*** 

MMA305 27.00 ± 3.56*** 

MMA306 9.43 ± 0.07 

MMA307 0.85 ± 0.00*** 

MMA308 34.68 ± 0.59*** 

MMA311 8.82 ± 0.08 

MMA312 7.45 ± 0.09 

MMA320 1.71 ± 0.01*** 

MMA321 0.56 ± 0.01*** 

MMA323 > 50 

MMA327 49.81 ± 4.50*** 

MMA334 9.98 ± 0.30 

Sorafenib 10.09 ± 0.68 

  
Cytotoxic activities (IC50, μM) of estrone analogs against MDA-MB-468 cells in vitro. IC50 

values were calculated by non-linear regression analysis. Values represent Mean ± SD of 

quadruplicate experiment (n = 4). *** represent the significant differences in cytotoxic 

effects of estrone analogs compared to sorafenib (positive control). *** p < 0.001 was 

considered as statistically significant. 
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Scheme 3.1 Synthesis route for MMA307. 
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Scheme 3.2 Synthesis route for MMA321. 
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Figure 3.5 Structures of MMA307 and MMA321. MMA307 was named as 

(8S,9S,13S,14S,17S)-7,8,9,11,12,13,14,15,16,17-decahydro-17-((R,E)-2-hydroxy-5-(4-

nitrophenyl)-3-oxopent-4-en-2-yl)-13-methyl-6H-cyclopenta[a]phenanthren-3-yl 

sulfamate and MMA321 named as 4-Hydroxy-4-(3-methoxy-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1-(4-nitro-

phenyl)-pent-1-en-3-one. 
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 Figure 3.6 Initial apoptosis induction and chromatin condensation observed in MDA-MB-

468 cells assayed by Annexin V and Hoechst staining, respectively. (A) Cells were treated 

with 0.5IC50 and IC50 of MMA307, MMA321 or positive control, camptothecin for 12 

hrs. The cells were then incubated with Annexin V reagent and luminescence measured by 

a luminometer. At least two independent experiments were performed in triplicate. (B) 

MDA-MB-468 cells were treated with 0.05% DMSO, IC50 doses of MMA307, MMA321 

or positive control, sorafenib. Apoptotic cells exhibited chromatin condensation. 
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Figure 3.7 Expression levels of cytosolic BCl2 and APAF1 in MDA-MB-468 cells assayed 

by In-Cell Western (ICW). After treatment with MMA307 and MMA321 in a dose-

dependent manner, fixed cells were incubated with specific primary antibodies for each 

protein. The cells were washed and incubated with goat anti-rabbit horseradish peroxidase 

conjugated secondary antibodies, and cell mixture was incubated with enhanced 

chemiluminescence substrate (Western Lightning Plus-ECL) for few minutes before 

chemiluminescence was measured using a Hidex Sense Beta Plus plate reader (Turku, 

Finland). Quantitation of proteins was completed with Excel and expression levels of 

APAF1 and BCl2 normalized to GAPDH. At least two independent experiments were 

performed. (A) BCl2 (B) APAF1. 
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Figure 3.8 Expression levels of cytosolic BCl2 and APAF1 in MDA-MB-468 cells assayed 

by In-Cell Western (ICW). After treatment with MMA307 and MMA321 in a dose-

dependent manner, fixed cells were incubated with specific primary antibodies for each 

protein. The cells were washed and incubated with goat anti-rabbit horseradish peroxidase 

conjugated secondary antibodies, and cell mixture was incubated with enhanced 

chemiluminescence substrate (Western Lightning Plus-ECL) for few minutes before 

chemiluminescence was measured using Hidex Sense Beta Plus plate reader (Turku, 

Finland). Quantitation of proteins was completed with Excel and expression levels of 

caspase 3, 9 and cytochrome C normalized to GAPDH. At least two independent 

experiments were performed. (A) MMA307 (B) MMA321 
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Figure 3.9 Estrone analogs exposure resulted in G1 phase cell cycle arrest. MDA-MB-468 

cells were treated with IC50 concentrations of estrone analogs and analyzed after 48 hrs by 

flow cytometry. (A) Distribution of cells in distinct phases of the cell cycle. MMA307, 

MMA321 and sorafenib, positive control, showed G0/G1 phase cell cycle arrest compared 

to the negative control, DMSO. (B) Cells were treated with indicated concentrations, fixed 

and analyzed by ICW. Wells were incubated with appropriate primary antibodies and 

subsequently incubated with Western Lightning Plus-ECL for few minutes before 

chemiluminescence was measured using Hidex Sense Beta Plus plate reader (Turku, 

Finland). The expression levels of cyclin D1 was normalized to GAPDH. The bar graphs 

for cell cycle distribution show Mean ± SD of the percentages of MDA-MB-468 cells in 

the indicated phases of the cell cycle (G0/G1, S and G2/ M). At least three independent 

experiments were performed. ***p < 0.001 significant differences in cell cycle arrest 

compared to DMSO control. 
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Figure 3.10 Effect of estrone analogs treatment on EGFR and downstream ERK1/2 

effector molecules in MDA-MB-468 cells. Cells were treated with varying IC50 

concentrations for 6 hrs followed by 100 nM of EGF for 1 hr, fixed and analyzed by ICW. 

Wells were incubated with appropriate primary antibodies, washed and incubated with goat 

anti-rabbit or goat anti-mouse horseradish peroxidase conjugated secondary antibodies, 

and cell mixture was incubated with enhanced chemiluminescence substrate (Western 

Lightning Plus-ECL) for few minutes before chemiluminescence was measured using 

Hidex Sense Beta Plus plate reader (Turku, Finland). Quantitation of proteins was 

completed with Excel and expression levels of EGFR, pEGFR (Y1068), pARaf (S299) and 

pERK1/2 (T202/Y204) normalized to GAPDH. At least two independent experiments were 

performed. (A) MMA307 (B) MMA321. 
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Figure 3.11 Effect of estrone analogs treatment on Akt signaling in MDA-MB-468 cells. 

Cells were treated with varying IC50 concentrations for 6 hrs followed by 100 nM of EGF 

for 1 hr, fixed and analyzed by ICW. Wells were incubated with appropriate primary 

antibodies, washed and incubated with goat anti-rabbit or goat anti-mouse horseradish 

peroxidase conjugated secondary antibodies, and cell mixture was incubated with 

enhanced chemiluminescence substrate (Western Lightning Plus-ECL) for few minutes 

before chemiluminescence was measured using Hidex Sense Beta Plus plate reader (Turku, 

Finland). Quantitation of proteins was completed with Excel and expression levels of 

EGFR, pEGFR (Y1068), pARaf (S299) and pERK1/2 (T202/Y204) normalized to 

GAPDH. At least two independent experiments were performed. (A) MMA307 (B) 

MMA321. 
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4 Chapter 4 

 

Exposure of Triple Negative Breast Cancer cells to Novel Triazole Derived Estrone 

Analogs Enhance Mitochondrial Apoptosis Induction and EGFR Suppression. 
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4.1 Abstract 

 

 

Previously estrone analogs have been examined as effective clinical agents targeting 

cancers including triple negative breast cancer (TNBC). However, no estrone analog nor 

other agent is currently approved as targeted therapy for TNBC. In this study we describe 

the synthesis and biological activity of novel triazole derived estrone analogs (Fz series) 

targeting EGFR in MDA-MB-231 (a model for TNBC) cells in vitro; knowledge that will 

pave a way for future clinical applications for these cytotoxic compounds. Molecular 

docking studies were carried out with OpenEye software. The MTT assay was used to 

perform cytotoxicity studies. Morphological changes and cell cycle arrest were carried out 

by microscopy and flow cytometric techniques. Annexin V assay was used to evaluate 

initial apoptosis induction in MDA-MB-231 cells and In-cell western assay was used to 

detect the expression levels of apoptotic, cell cycle and EGFR and its downstream AKT 

and ERK1/2 associated proteins. We demonstrated that Fz25 showed strong binding 

affinity towards the EGFR kinase domain (pdb code: 1M17) in silico, like the reference 

compound, erlotinib, but exhibited hydrogen bonding towards different amino acid 

residues. Fz200 showed medium binding affinity whereas Fz57 showed weak binding 

affinity. Fz25 was slightly cytotoxic than sorafenib when dosed to MDA-MB-231 cells; 

Fz200 had similar IC50 value as sorafenib whereas the IC50 value of Fz57 was higher. 

Moreover, condensed nuclei with fragmented chromatin, phosphatidylserine flip, and 

changes in mitochondrial membrane potential clearly indicated the role of mitochondria in 

estrone analogs induced apoptosis. Also, an increase in the expression of proteins of the 
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intrinsic pathway (Apaf1, cytochrome c, cleaved PARP1, caspase-3, -9) confirms 

mitochondrial apoptosis and suggest estrone analogs induced apoptosis via caspase 

dependent pathways. Fz25 downregulated DyrK1B and cyclin D1 expression levels 

contributing to G1 phase cell cycle arrest; Fz200 and Fz57 inhibited the expression of cyclin 

E impacting S-phase of the cell cycle. All the compounds inhibited the expression of EGFR 

and activated EGFR (Y1068); Activated proteins within ERK1/2 and AKT pathways were 

downregulated upon compound treatment. These results for the first time indicate that 

triazole derived estrone analogs may be an effective therapy for MDA-MB-231 cells and 

further studies are needed to develop these novel candidates as targeted agents for TNBC. 

 

 

Keywords: Estrone analogs; TNBC; EGFR; cytotoxic studies; Apoptosis; Cell cycle 
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4.2 Introduction 

 

 

Breast cancer continues to be the most common solid tumor affecting women and is the 

leading cause of cancer-associated mortality in females worldwide (Bray et al, 2018). Also, 

it is a heterogeneous disease with multiple subtypes including triple-negative breast cancer 

(TNBC). TNBC, which is clinically defined by the absence of estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal growth factor receptor (HER2) 

expressions, forms about 20% of all breast cancer cases (Guerrab et al, 2016). According 

to molecular classification, about 75% of TNBC belong to the basal-like subtype and share 

a great similarity with infiltrating carcinomas carrying constitutional BRCA1 mutations 

(Santonja et al, 2018; Omarini et al, 2018). Its pattern of spread is distinct from that for 

non-TNBC; TNBC has a greater propensity for brain and lung metastases, and a lower 

prevalence of bone metastases (Lebert et al, 2018). Systemic chemotherapy including 

anthracyclines, taxanes and platinum compounds remains the most effective treatment for 

TNBC patients with advanced disease. Despite the effectiveness of these treatment 

modalities, patients who do not respond to chemotherapy develop resistance, and a more 

aggressive recurrent disease results which become virtually incurable (Székely et al, 2017; 

Wahba and El-Hadaad, 2015). In contrast to other cancers, no targeted therapy is currently 

approved for treating TNBC. 
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Previous studies report that the epidermal growth factor receptor (EGFR), a central 

regulator of tumor progression, is frequently overexpressed and aberrantly activated in 

TNBC (Yan et al, 2018; Nakai et al, 2016). This is associated with aggressiveness and poor 

prognosis of the disease. EGFR is a transmembrane tyrosine kinase receptor member of 

the HER family. Autophosphorylation of the intracellular EGFR domain activates multiple 

downstream signaling pathways including RAS/MAPK and PI3K/Akt cascades that lead 

to transcriptional regulation of genes involved in cell proliferation, motility and survival. 

As such, EGFR is considered a key clinical target for therapeutic intervention in TNBC. 

PI3K/Akt pathway regulates diverse cellular functions such as cell cycle progression and 

apoptosis whereas deregulation of its activity contributes to cell transformation (Ornelas et 

al, 2013). Cell cycle progression is initiated by the activity of phase-specific kinase 

complexes comprised of cyclins and cyclin-dependent kinases (CDKs) and the role of 

PI3K/Akt pathway in G1 to S phase transition was proposed. Also, during cell cycle 

progression, Akt prevents cyclin A, D and E degradation by regulating the activity of GSK3 

and can negatively influence the expression of the CDK-inhibitors, p21 and p27 (Wang et 

al, 2015; Ornelas et al, 2013). In addition to the cell cycle, apoptosis induction of cancer 

cells is one of the most important and direct ways to contribute to the suppression of 

malignant transformation and eliminate tumors. Phosphorylated Akt inhibits apoptosis and 

promotes cell survival by phosphorylation and inactivation of several target proteins 

including the proapoptotic proteins, Bad, Bax, and the tumor suppressor p53, a regulator 

of Bcl-2 as well as initiator caspases-8 and -9 and effector caspase-3 (Hossini et al, 2016). 
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In cancers like non-small cell lung cancer and colorectal cancer, anti-EGFR agents, small 

molecule tyrosine kinase inhibitors and monoclonal antibodies, have been developed and 

currently been used to treat these diseases. Monoclonal antibodies (mAbs) target the 

extracellular domain whereas EGFR tyrosine kinase inhibitors (EGFR-TKIs) 

competitively block the binding of adenosine 5′ triphosphate (ATP) to the intracellular 

catalytic domain of EGFR. In both cases, mAbs and EGFR-TKIs are able to inhibit EGFR 

activation and thus suppress its downstream signal transduction (Imai, 2006). Cetuximab 

and panitumumab are two mAbs that are approved for the treatment of EGFR-expressing 

metastatic colorectal cancer with KRAS wild-type. Osimertinib, gefitinib, afatinib and 

erlotinib are few selective EGFR-TKIs used as therapy for patients with metastatic non-

small-cell lung cancer who carry activating EGFR mutations (Rosa et al, 2015; Nakai et 

al, 2016; Bartholomew et al, 2017). Several clinical trials report the use of already 

discovered anti-EGFR inhibitors, either alone or in combination with chemotherapy or 

other therapies, as a treatment option for TNBC patients. In phase II clinical trial, gefitinib 

and erlotinib used as monotherapies in metastatic and recurrent breast cancer patients 

yielded only a partial response of 0-3% (Baselga et al, 2005; Dickler et al, 2009). Also, in 

another phase II clinical trial with second-generation irreversible EGFR TKI, afatinib, in 

patients with metastatic TNBC, no objective responses were observed (Nakai et al, 2016). 

In a different phase II clinical studies, the combination of cetuximab plus carboplatin 

showed an improved response rate than cetuximab or carboplatin alone (Carey et al, 2012). 

In light of this, only minimal success has been achieved and therefore the need to discover 

newer effective anti-EGFR agents is imperative. 
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Currently, natural endogenous metabolites of mammalian origin have become an alternate 

source for the discovery of anticancer agents for therapeutic intervention. In this regard, 

estradiol analogs have turned out to be the focus of research due to their ability to exert 

significant antimitotic effects against various cancers including breast cancer. In particular, 

Stander et al, 2011 report that 2-Methoxyestradiol (2ME), an endogenous metabolite of 

17β-estradiol, possess both antiangiogenic and anti-breast cancer effects in vitro and in 

vivo. This compound exerts its cytotoxic effect independently of the cellular estrogen 

receptors and has no significant systemic hormonal effects (Leese et al, 2006). Estradiol, 

however, promotes the proliferation of various cancers (Verwey et al, 2016). The above 

studies also report on the limited bioavailability of the 2ME (Panzem®) drug due to its 

fast-metabolic breakdown during phase II clinical studies. Recently, a sulfamate derivative 

of 2ME has been found to possess potent antitumor activity against breast cancer cells due 

to its increased bioavailability by avoiding hepatic first-pass metabolism (Visagie et al, 

2013; Verwey et al, 2016). This suggests that estradiol may be a privileged scaffold upon 

which modifications can be done to generate lead candidates with improved potency and 

pharmacokinetic properties as well as reduced toxicities. In our research group, estrone, an 

isomer of estradiol, is used as a starting material to synthesize novel estrone analogs. Many 

of our estrone derivatives, especially those bearing cucurbitacin side chains have been 

documented to exhibit potent cytotoxic effects against distinct cancers (Ahmed et al, 2017; 

Elshaier et al, 2017; Ahmed et al, 2014; Kopel et al, 2013). On the other hand, a set of 

novel compounds carrying 1,2,3-triazole scaffold has been reported as cytotoxic agents 

against different cancers (Prachayasittikul et al, 2015; El-Sherief et al, 2018). Recently, 
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our research group has synthesized a new series of estrone analogs (bearing modified 

triazole side chains) targeting EGFR dependent cancers using pharmacophore-docking-

based virtual screening. In this study, we report on the synthesis and biological evaluation 

of novel estrone analogs bearing triazole side chains as potent compounds against EGFR 

dependent breast cancer cells. These compounds inhibited the MAP kinase and Akt 

signaling as a result of deregulating EGFR expression and induced apoptosis. 

 

4.3 Materials and methods 

 

 

4.3.1 Reagents and chemicals 

 

 

Antibodies against EGF Receptor (D38B1) XP®, Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (197G2), Cyclin D1 (92G2), Phospho-Akt (Ser473) and anti-rabbit 

DyLight 680 conjugate (5366) secondary antibody were purchased from Cell Signaling 

Technology (Danvers, MA, USA); phospho-cyclin D1 (Thr286) (A537487), Phospho-A-

Raf (Ser299) and anti-mouse DyLight 800 conjugate (W10815) from Thermo Fisher 

Scientific (Waltham, MA, USA);  Phospho-EGF Receptor (Tyr1068), Phospho-p70S6 

Kinase α, Dyrk1B, caspase 9, caspase 3, PARP1, cleaved PARP1, Bcl-2, APAF1, 

cytochrome C, Cyclin E and GAPDH were from Santa Cruz Biotechnology Inc. (Dallas, 

Texas, USA). Phosphate buffered saline (PBS) and trypan blue solution were from Thermo 

Fisher Scientific (Waltham, MA, USA). RealTime-Glo™ Annexin V apoptosis and 
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necrosis assay (JA1011) kit was from Promega (Madison, WI, USA). PI/RNase staining 

buffer was purchased from BD Biosciences (San Jose, CA, USA). Compound cytotoxicity 

was evaluated through measurement of mitochondrial dehydrogenase activities with 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma-

Aldrich, St. Louis, MO, USA). Hoechst 33342 stain for evaluating chromatin condensation 

and nuclear fragmentation was purchase from Thermo Fisher Scientific (Waltham, MA, 

USA). Sorafenib (positive control) (Selleckchem, Houston, TX, USA) and novel triazole 

derived estrone analogs were dissolved in dimethyl sulfoxide (DMSO) (Fisher 

Chemical/Fisher Scientific). All other chemicals were of analytical grade. 

 

4.3.2 Design and synthesis of estrone analogs 

 

 

4.3.2.1 Molecular modeling 

 

  

Molecular docking of novel estrone analogs into the EGFR binding domain (PDB code: 

1M17) was carried out using the FRED application (version 2.2.5) as implemented through 

the graphical user interface of OpenEye® software. The 3D structure of the above protein 

was downloaded from Protein Data Bank. The three-dimensional structures of the 

aforementioned compounds were constructed using Chem. 3D ultra 12.0 software 

[Chemical Structure Drawing Standard; Cambridge Soft corporation, USA (2010)], then 

they were energetically minimized by using MMFF94 with 5000 iterations and minimum 

RMS gradient of 0.10. All bound water molecules and ligands were eliminated from the 
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proteins. Furthermore, multi-conformers were generated using OMEGA application 

(version 2.5.1.4) and VIDA application (version 4.1.2) was used as a visualization tool to 

show the potential binding affinity and binding interactions of the ligands to the receptor 

[24].  This software package generates consensus scoring which is a filtering process to 

obtain virtual binding affinity. The lower the consensus score, the better binding affinity 

of the ligands towards the receptor. 

 

4.3.2.2 Synthesis of MMA307 and MMA320 

 

 

Fz25, Fz57, and Fz200 were synthesized as previously described by Faez, 2017. 

 

4.3.3 Cell culture 

 

 

MCF-7 (a model for ER+, PR+, HER2- breast cancer) and MDA-MB-231 (a model for 

TNBC with amplified EGFR and KRAS mutant) were purchased from American Type 

Culture Collection (ATCC, Manassas, VA). The cells were cultured in Dulbecco's 

Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), 

antibiotic-antimycotic (Gibco™, ThermoFisher Scientific) at 37˚C equilibrated with 5% 

(v/v) CO2 in humidified air. The cells for the assays were detached using a solution of 

trypsin with EDTA (ThermoFisher Scientific). 
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4.3.4 Cytotoxicity assay 

 

 

4.3.4.1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay 

 

 

The effect of novel synthetic estrone analogs on cell viability was tested with MTT reagent 

as described by Wang et al, 2010 with slight modifications. Briefly, to measure 

mitochondrial dehydrogenase activities, cells were seeded in 96-well plates at an initial 

density of 30,000 cells per well. After overnight incubation, cells were treated with 

different concentrations of compounds in a dose range of 0 - 100 μM. The final DMSO 

concentration was 0.05%. After 48 hrs of incubation, 20 μL   of MTT reagent (5 mg/mL) 

was added to each well and the formed formazan crystals were dissolved in 250 μL   of 

dimethyl sulfoxide (DMSO). Four independent experiments were completed to determine 

the mean optical density referred to as cell viability, using a Hidex Sense Beta Plus plate 

reader (Turku, Finland). Cell viability was expressed as a percentage of DMSO-treated 

controls. 

 

4.3.5 Flow cytometry for cell cycle analysis 

 

 

MDA-MB-231 and MCF-7 cells were seeded into six-well plates at a concentration of 

300,000 cells/ well and allowed to attach in culture overnight, then treated with IC50 of 



160 
 
 

 

compounds or positive control (sorafenib) for 48 h. Afterward, cells were washed with PBS 

and harvested. Cell cycle analysis was investigated by adding propidium iodide (PI) stain 

(Thermo Fisher Scientific) to 1 mL of cell suspension. Briefly, harvested cells were fixed 

in 70% ethanol and incubated at 4ºC for 4hrs. Subsequently, the cells were cleaned of 

alcohol and stained with RNase free PI solution, the cell suspension was incubated in the 

dark for 45 minutes at room temperature. The samples were analyzed by flow cytometry 

and compared to DMSO-treated cells. All these experiments were performed on BD 

Accuri™ C6 flow cytometer (BD Biosciences, San Jose, CA, USA) using BD Accuri™ 

C6 software, version 1.0. 

 

4.3.6 Apoptosis analysis 

 

 

4.3.6.1 Annexin V assay 

 

 

The annexin v assay was performed in accordance with the manufacturers’ protocol with 

slight modifications. Briefly, MDA-MB-231 and MCF-7 cells were seeded in wells on a 

96-white plate with clear bottom at an initial density of 30,000 cells for overnight 

attachment. Afterward, the cells were incubated with the IC50 of compounds between 6 to 

48 hrs. Subsequently, the RealTime-Glo™ Annexin V Apoptosis reagent (Promega, 

Madison, WI) was prepared (sequentially mix Annexin NanoBiT® Substrate, CaCl2, 

Annexin V-SmBiT and Annexin V-LgBiT in a prewarmed media) and added to the reaction 
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set up before incubating for additional 1 hr. Luminescence was measured afterward using 

Hidex Sense Beta Plus plate reader (Turku, Finland). Apoptosis was expressed as a 

percentage relative to DMSO-treated controls. 

 

4.3.6.2 Morphological analysis with fluorescence microscopy 

 

 

To evaluate the apoptotic activity of the estrone analogs, nuclear staining with the DNA-

binding dye Hoechst-33342 performed in accordance with manufacturers protocol. In brief, 

MDA-MB-231 and MCF-7 cells were plated into 6-well plates and treated with IC50 of 

compounds for 24 hrs. Cells were washed with PBS and incubated with Hoechst-33342 

(10μg/mL) for 15 min in the dark, then observed under a fluorescence microscope 

(excitation 352 nm, emission 461 nm; NIKON TE2000-E). Apoptotic cells were identified 

by condensation of chromatin and fragmentation of nuclei. Pictures were obtained using a 

video camera Q-imaging (Burnaby, BC, Canada). 

 

4.3.7 Protein expression analysis 

 

 

4.3.7.1 In-Cell Western (ICW) Assay 

 

 

Proteins involved in apoptosis, cell cycle progression, MAP kinase and Akt pathways were 

quantified by ICW. This technique was carried out in accordance with the manufacturer’s 
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instruction with slight modifications. Briefly, about 50,000 cells per well were seeded into 

96-well black walled plate with clear bottom for overnight attachment. Cells were then 

treated with IC50 of compounds for 24 hrs. Subsequently, cells were fixed with 3.7% 

formaldehyde solution, permeabilized with 0.1% Triton X-100 solution and blocked with 

fish gel buffer (1×) prior to primary antibody addition. Wells were then incubated with the 

relevant antibodies EGF Receptor (D38B1) XP®, Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (197G2), Cyclin D1 (92G2), Phospho-Akt (Ser473), phospho-cyclin D1 

(Thr286) (A537487), Phospho-A-Raf (Ser299), Phospho-EGF Receptor (Tyr1068), 

Phospho-p70S6 Kinase α, Dyrk1B, caspase 9, caspase 3, PARP1, cleaved PARP1, Bcl-2, 

APAF1, cytochrome C, Cyclin E and GAPDH, control, overnight followed by an hour 

incubation with anti-mouse or anti-rabbit DyLight conjugated (680 or 800 nm) secondary 

antibodies. Images were acquired using LICOR Odyssey® Fc Imaging System (Lincoln, 

Nebraska, United States) and image quantification done by Fiji software (Image J, Java 

1.8.0). 

  

4.3.8 Statistical Analysis 

 

 

Microsoft® Excel® for Windows, version 16.0., was used for the calculation of mean and 

standard deviation values of different experiments and plotting of bar or line graphs.  Mean 

IC50 values were compared by one-way analysis of variance (ANOVA) using GraphPad 
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Prism 5.01 (San Diego, USA) and values with p<0.05 were considered statistically 

significant. 

 

4.4 Results 

 

 

4.4.1 Docking simulations 

 

 

To validate whether these designed estrone analogs can target EGFR dependent breast 

cancers, molecular docking was performed by fitting these designed compounds and 

reference compound (erlotinib) into the ATP binding site of the EGFR kinase domain (PDB 

codes: 1M17) crystallized from breast cancer cells. Then, the obtained results plotted as a 

line-scatter graph (Figure 4.1), which mainly displays the corresponding consensus scores 

of the molecular docking studies. Compared with the positive control drug, erlotinib, it was 

clearly observed that most estrone analogs showed lower consensus scores (a measure of 

better binding and potency) against EGFR kinase domain. Furthermore, Figure 4.3 – 4.5 

show the binding mode of Fz25, Fz57 and Fz200 that exhibited potent cytotoxic activities 

compared to sorafenib and estrone in vitro. Directed addition of trimethylsilyl azide to 

compound 5 afforded Fz25 in 51% yield after column chromatography and the addition of 

phenylacetamide substituted triazole to compounds 4 and 5 yielded Fz200 (73%) and Fz57 

(69%), respectively, after silica-gel column chromatography purification. These pure 

compounds were characterized by 1H- and 13C-NMR and mass spectrometry techniques. 
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The chemical shifts and accurate masses are documented in the method section. Fz25 was 

named as 3-Obenzyl Estra-17 (-1H-1,2,3-triazol), Fz57 as 3-Obenzyl Estra-17 (1H-1,2,3-

triazol-1-yl)-N-phenylacetamide and Fz200 as 3-Oacetate estra-17 (1H-1,2,3-triazol-1-yl)-

N-phenylacetamide. 

  

4.4.2 Estrone analogs exhibit cytotoxic effects and affect the morphology of breast 

cancer cells 

 

  

To evaluate the cytotoxic effects of the estrone analogs against MDA-MB-231 and MCF-

7 cells, the cells were initially treated with different concentrations of the compounds, a 

dose range of 0-50 μM. Subsequently, effects on cell viability were determined by the MTT 

assay after 48 hrs. Overall, the compounds did show a significant cytotoxic effect toward 

the MDA-MB-231 and MCF-7 cells within the dose range tested after 48 h and therefore 

IC50 values were calculated. Most of the compounds were equally effective as the positive 

control-sorafenib but very potent than estrone in reducing the viability of MDA-MB-231 

and MCF-7 cells. Particularly, we observed that Fz25, Fz57, Fz200, Fz300 and Fz400 

recorded IC50 values of 8.12 ± 0.85, 21.18 ± 0.23, 10.86 ± 0.69, 14.95 ± 1.85 and 21.21 ± 

0.76 μM, respectively (Table 4.1) against MDA-MB-231 cells. Also, Fz25, Fz57, Fz200, 

Fz300 and Fz400 recorded IC50 values of 8.13 ± 0.15, 11.94 ± 0.19, 20.86 ± 3.16, 18.38 ± 

1.97 and 21.49 ± 0.95 μM, respectively towards the MCF-7 cells. Fz25 recorded which 

similar IC50 values in both cell lines was slightly better than the positive control, sorafenib-

recorded an IC50 values of 10.62 ± 0.02 μM in MDA-MB-231 cells and 12.21 ± 0.96 μM 
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in MCF-7 cells. Because this research was focused on EGFR dependent breast cancer, 

further studies were conducted using the MDA-MB-231 cells. Morphological changes in 

MDA-MB-231 cells induced by Fz25, Fz57, Fz200 and sorafenib (positive control) were 

observed in Figure 4.6. Light microscope was used to evaluate the morphological response 

when the cells were treated with IC50 doses of compounds for 48 h. The cells exposed to 

0.05% of DMSO showed no signs of cell stress and confluent cell growth was seen. 

Compared with DMSO control cells, the majority of the compound-treated MDA-MB-231 

cells were stressed, and the confluency of the cells reduced. Particularly, the cells changed 

from regular spindle-shape to an increased proportion of either round-shaped (observed for 

Fz57) or rod-shaped (observed for Fz25, Fz200 and sorafenib) adding to the compound’s 

cytotoxic effects. 

  

4.4.3 Increased G1- or S-phase cell cycle arrest in response to estrone analogs 

exposure 

 

 

The quantification of cells at various stages within the cell cycle was determined with 

propidium iodide stain and analyzed by flow cytometry. Cell cycle distribution of MDA-

MB-231 cells exposed to DMSO (Figure 4.11) showed an average of 40% in the G0/G1 

phase, 2% in the S phase and 53% in the G2/M phase. The exposure of cells to Fz25 resulted 

in significant accumulation of cells within G0/G1 phase, an average of 63%; there was 

decreased enrichment of cells in the G2/M phase, an average of 29% was calculated. Fz57 

and Fz200 treatments against MDA-MB-231 cells resulted in significant enrichment of 
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cells within the S-phase of the cell cycle. Fz57 recorded an average of 47% of cells in the 

S-phase and a lower number of cells (an average of 13%) in the G2/M phase. Similarly, 

Fz200 recorded an average of 36% of cells within the S-phase and concomitant lesser 

number of cells in the G2/M phase (an average of 22%). 

 

4.4.3.1 Cell cycle activators and regulators are modulated post estrone analogs 

exposure 

 

 

As a result of the significant (p < 0.05) cell cycle arrest induced by the estrone analogs, we 

analyzed the expression levels of known G1- and S-phase cell cycle proteins. In-Cell 

Western approach was adopted to establish our findings. Cyclin D1 and Dyrk1B play 

important roles in regulating the progression of the cell cycle within the G1 phase whereas 

cyclin E is associated with controlling the S-phase of the cell cycle. We observed that Fz25 

administration to MDA-MB-231 cells resulted in the suppression of cyclin D1 and Dyrk1B 

in a concentration-dependent manner with 24hrs (Fig 4.12A). On the other hand, exposure 

of Fz57 and Fz200 to the TNBC cell model resulted in downregulation of cyclin E in a 

dose-dependent fashion (Fig 4.12B-C). These findings are in line with the significant cell 

cycle arrest recorded in Figure 7. 

 

4.4.4 Estrone analogs induce apoptosis in breast cancer cells 
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4.4.4.1 RealTime-Glo™ Annexin V assay 

 

 

The cell death inducing effect of the estrone analogs in MDA-MB-231 cells were evaluated 

by RealTime-Glo™ Annexin V apoptosis and necrosis luminescent assay. The detection 

reagent contains Annexin V-LgBiT and Annexin V-SmBiT (NanoBiT) fusion proteins and 

a profluorescent DNA dye. In healthy cells, most of the phosphatidylserine (PS) is confined 

to the inner leaflets of the cell membrane, fewer fusion proteins bind to PS and less 

luminescence is recorded. In apoptotic cells, PS is exposed to the outer leaflet of the cell 

membrane, more fusion proteins bind to PS and increased luminescence is measured. 

Increased luminescence corresponds to increased apoptosis. Treating MDA-MB-231 cells 

with the estrone analogs, increased apoptosis was observed in a dose-dependent manner 

(Figure 4.7). Notably, Fz25 and Fz57 induced apoptosis in MDA-MB-231 cells within 6 

hrs (Fig 4.7A) whereas the apoptotic effect recorded by Fz200 was observed within 48 hrs 

of treatment (Figure 4.7B), all compared the positive control, camptothecin. 

  

4.4.4.2 Morphological analysis with fluorescence microscopy 

 

 

The morphological observation in the cell nuclei of MDA-MB-231 cells for 24 h after 

treatment with estrone analogs or sorafenib showed significant morphological alterations 

when compared to 0.05% DMSO control. As shown in Figure 4, the control or untreated 

cells appeared to be intact oval shape and the nuclei were stained with a less bright blue 
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fluorescence (due to the Hoechst 33342 dye). Cells treated with tested compounds 

exhibited typical features of apoptosis such as cell shrinkage, chromatin condensation, and 

fragmentation in multiple, segregated bodies, the formation of apoptotic bodies, and cell 

decrement. The apoptotic nuclei clearly showed highly condensed or fragmented 

chromatin that was uniformLy fluorescent. Fz25, Fz57, Fz200 and sorafenib treatments 

resulted in increased apoptotic cells (condensed chromatin, indicated by arrows) compared 

to the DMSO control (Figure 4.8). 

 

4.4.4.3 Estrone analogs induce cell death via mitochondrial apoptosis pathway 

 

 

In order to determine whether the compounds modulated proteins involved in cell death, 

ICW assay was performed to detect changes of protein expression in the mitochondrial 

apoptosis pathway. As shown in Figure 4.9, exposure of MDA-MB-231 cells to compounds 

resulted in increased expressions of cytochrome C and apoptotic protease activating factor 

1 (APAF1), which are markers of mitochondrial apoptosis. Furthermore, we observed 

decreased expression of B Cell Lymphoma 2 (Bcl-2) protein when MDA-MB-231 cells 

were treated with Fz57 and Fz200 (Figure 4.10 B-C) but not Fz25 (data not shown). Also, 

all three compounds when administered to cells resulted in an increased expression of 

cleaved PARP1 but had no effect on PARP1 in a dose-dependent fashion. However, the 

expression levels of caspases-3 and -9 were decreased post-treatment with Fz57 and Fz200. 

No change in the expression levels of caspases-3 and -9 were noted when MDA-MB-231 
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cells were exposed to Fz25. In summary, these results reveal that the estrone analogs 

induced apoptosis in MDA-MB-231 cells via the mitochondrial pathway and in a caspase-

dependent manner. 

 

4.4.5 EGFR signaling pathways are inhibited after estrone analogs exposure 

 

 

We evaluated the expression levels of total and activated (phosphorylated) forms of EGFR 

by ICW (Figure 4.13).  Higher levels of EGFR were detected in the DMSO treated cells 

compared to compound treated cells, depicting EGFR downregulation. Similarly, levels of 

phosphorylated EGFR (Y1068) were also increased in the DMSO treated cells compared 

to compound-treated cells.  EGFR and phosphorylated EGFR (Y1068) expression levels 

were downregulated in a concentration-dependent manner. The purpose of EGFR 

autophosphorylation is to activate signaling pathways, such as PI3K/AKT and 

RAS/MAPK pathways (Romano et al, 2011). We next investigated the activation of these 

pathways by quantifying activated (phosphorylated) forms of ERK1/2- and AKT-

associated pathway proteins. Decreased amounts of phospho-ARaf (S299) and phospho-

ERK1/2 (T202/Y204) were clearly detected in MDA-MB-231 cells when exposed to the 

estrone analogs in a dose-dependent manner (Figure 4.13). Also, phospho-AKT (S473), 

phospho-mTOR (S2448) and phospho-p70S6Kα (S411) expression levels were 

downregulated in concentration-dependent manner (Figure 4.14). Based on the levels of 
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ERK- and AKT-associated proteins phosphorylation, RAS/MAPK and PI3K/AKT 

signaling pathways were downregulated in MDA-MB-231 cell line. 

 

4.5 Discussion 

 

 

Estrone derivates, especially 2ME and its sulphamoylated analogs, have been proven to be 

cytotoxic against various cancers including TNBC (Verwey et al, 2016, Nolte et al, 2018). 

Mechanistically, the observed cytotoxicity has been attributed to inhibition of 

angiogenesis, actin depolymerization, autophagy induction, and the modulation of both 

intrinsic and extrinsic apoptosis. However, only a few studies have investigated estrone 

analogs inhibitory effects against EGFR and its downstream signaling pathways. EGFR is 

known to be overexpressed in TNBC. Previously, our research group has reported on 

estrone analogs EGFR inhibitory effects in different cancers in vitro. Notably, studies by 

Sara, 2018 documented that estrone analogs with cucurbitacin pharmacophores inhibit the 

proliferation of hepatocellular carcinoma via induction of apoptosis and suppression of 

EGFR and its downstream MAP kinase signaling. Also, Felix and colleagues (unpublished 

data) revealed that these compounds inhibit the proliferation of EGFR-wild-type NSCLC 

(NCIH226 cells) via inhibiting EGFR and MAP kinase signaling. Currently, we have 

synthesized a new series of estrone analogs (bearing triazole or substituted triazole at 

position 17 of the estrone scaffold-Fz series) using pharmacophore-docking-based virtual 

screening. In this study, we report for the first time that the triazole substituted estrone 
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analogs are potent cytotoxic agents against the MDA-MB-231 cell line. Also, these class 

of compounds mechanistically elicited mitochondrial apoptosis induction and suppressed 

EGFR expression as well as downregulate Akt and ERK1/2 pathways. 

 

Previous co-crystallization studies by Stamos et al, 2002 revealed that hydrogen bonding 

between the amide nitrogen of MET769A within the EGFR kinase domain (1M17) and the 

pyrimidine N2 of erlotinib (reference compound) was a key molecular interaction achieving 

drug potency (Figure 4.2). From our virtual screening studies in silico, we observed that 

most of our estrone analogs had a similar or lower consensus score (a measure of drug 

potency) compared to the reference compound, erlotinib (Figure 4.1). The lower the 

consensus score, the stronger the binding and the better the compound’s potency. Fz25 and 

Fz200 had similar consensus score compared to erlotinib whereas Fz57 had a higher 

consensus score. These compounds showed interesting cytotoxic effects against MDA-

MB-231 cells in vitro. In contrast to the findings published by Stamos et al, 2002, we report 

for the first time that Fz25, Fz57 and Fz200 showed hydrogen bonding towards different 

amino acid residues within EGFR kinase domain (Figure 4.3 and 4.5). Fz25 displayed 

hydrogen bonding from N1, N2 and N3 of the triazole ring and hydroxy group towards 

ASP831A, GLU738A and THR766A amino acid residues, respectively, within the EGFR 

kinase domain. Also, Fz200 showed hydrogen bonding from N2 and N3 of the triazole ring 

towards the amide nitrogen of CYS773A. Similarly, Fz57 showed a single hydrogen 

bonding from N3 of triazole towards the amide nitrogen of CYS773A. These different 

interactions may be key to these compounds eliciting their cytotoxic effects against MDA-
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MB-231 cells. Next, the triazole substituent was installed onto the estrone scaffolded at 

position 17 to produce Fz25 whereas the addition of phenylacetamide substituted triazole 

onto the estrone nucleus afforded Fz200 and Fz 57 (Faez, 2017). 

 

In the past our lab has designed several estrone analogs with enhanced cytotoxicity. These 

and other estrone analogs (Stander et al, 2012) have demonstrated cytotoxicity within 

nanomolar or micromolar concentrations against multiple cancer cell lines, including 

MDA-MB-231 cells. The cytotoxic effect of Fz25, Fz57 and Fz200 was confirmed in the 

current study revealing IC50 concentrations of 8.12 ± 0.85, 21.18 ± 0.23, 10.86 ± 0.69 μM, 

respectively, compared to sorafenib, IC50 value of 10.62 ± 0.02 μM (Table 4.1). All except 

Fz25 showed a different trend of cytotoxicity when MCF-7 cells were exposed to the 

estrone analogs. However, MDA-MB-231 cells were considered for further investigations 

because our hypothesis sought to test the estrone analogs cytotoxic effect against EGFR 

dependent breast cancers. MCF-7 is a model for estrogen receptor (ER) positive breast 

cancer and therefore does not fit into our hypothesis. 

 

Cell cycle analysis suggested that the compounds inhibit cell growth via blocking cell 

division at the G0/G1 and S phases. In addition, treatment of MDA-MB-231 cells resulted 

in increased apoptosis (Figure 4.11). These results are in good agreement with previous 

findings demonstrating that different estrone analogs also induced a G0/G1 cell cycle arrest 

and apoptosis in human cancer cell lines in vitro (Verwey et al, 2016, Nolte et al, 2018; 
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Wolmarans et al, 2014; Boyd et al, 2018). To better understand the mechanism of triazole 

derived estrone analogs-induced cell cycle arrest and apoptosis, we firstly investigated the 

status of key proteins known to regulate G0/G1 and S phases transition and cell death. 

Dyrk1B, a checkpoint kinase important for G1 to S phase cell cycle transition is aberrantly 

activated in many cancers, including breast cancer. In addition, Dyrk1B is responsible for 

modulating the expression of several cell cycle activators (eg. Cyclin D1) and regulators 

(eg. p27) (Chen et al, 2017). Our previous studies suggest that estrone analogs with 

modified cucurbitacin pharmacophores induce inhibitory effects against human EGFR-

wild-type NSCLC cell lines via suppression of Dyrk1B expression (Unpublished Data). In 

the current study, it was clearly demonstrated that the levels of Dyrk1B and cyclin D1 

proteins were decreased in MDA-MB-231 cells treated with Fz25 (Figure 4.12), suggesting 

that G0/G1 cell cycle arrest was at least partially mediated via suppression of cyclin D1 and 

Dyrk1B expressions. Similarly, the levels of cyclin E were decreased when TNBC cells 

were treated with Fz57 and Fz200 depicting that the S-phase cell cycle arrest was partially 

mediated by downregulating cyclin E expression.  

 

The apoptotic nature of cell death in triazole-derived estrone analogs-treated cells was 

verified by different assays, including annexin V, chromatin condensation, and some 

markers involved in the mitochondrial apoptosis cascade. Viable cells contain 

phosphatidylserine (PS), located on the inside of the cell membrane. When apoptosis 

occurs, PS flip will occur. PS moves to the outside surface of cells to which annexin V 

binds. Analyzing MDA-MB-231 treated cells with real-time annexin V assay, it was 
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observed that Fz25 and Fz57 induced PS translocation within 6 hrs whereas Fz200 

exhibited PS translocation after 48 hrs in a dose-dependent fashion when compared to 

camptothecin, positive control (Figure 4.7). Subsequently, morphological changes-

chromatin condensation, induced by the estrone analogs were analyzed by fluorescence 

microscopy after staining cells with Hoechst 33342. Chromatin condensation paralleled by 

DNA fragmentation is one of the most important criteria used to identify apoptotic cells. 

All estrone analogs (Fz25, Fz57 and Fz200) and sorafenib, clearly induced chromatin 

condensation within 24 hrs of drug treatment (Figure 4.8). These results are in line with 

studies by (Verwey et al, 2016, Nolte et al, 2018) where different estrone analogs induced 

PS translocation and chromatin condensation in the estrogen negative and metastatic breast 

cancer cells, MDA-MB-231. Furthermore, the estrone analogs effect on markers involved 

in the mitochondrial apoptosis were investigated. The Bcl-2, an antiapoptotic protein, 

family consists of proapoptotic and antiapoptotic proteins. Bcl-2 binds to various 

proapoptotic family members and inhibits their insertion into the mitochondrial membrane. 

Upon receiving an apoptotic signal, Bcl-2 releases proapoptotic proteins, allowing them to 

form a complex on the mitochondrial membrane. Cytochrome c is consequently released 

into the cytoplasm, triggering increased caspase activity which leads to cell death. In 

apoptotic cells, cytochrome c binds to Apaf-1 to induce apoptosome formation. The Apaf-

1 apoptosome catalyzes the autocatalytic activation of the caspase-9 zymogen (initiator 

caspase), which subsequently cleaves and activates caspase 3 (Hu et al, 2014). Finally, 

caspase 3 cleaves and inactivates PARP-poly (ADP-ribose) polymerase, which is 

important for damaged DNA repair (Soldani and Scovassi, 2002). Estrone analogs 
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administration to MDA-MB-231 cells resulted in mitochondrial apoptosis induction where 

increased expressions of cytochrome c and Apaf-1 were observed whereas the expression 

of Bcl-2 was decreased (Figure 4.9 and 4.10). Also, dosing Fz25 to MDA-MB-231 cells 

resulted in stable expression of PARP 1 whereas the expression levels of caspase 9, caspase 

3 and cleaved PARP 1 were increased. However, the levels of caspases-3 and -9 decreased 

upon Fz57 and Fz200 treatment, but the levels of cleaved PARP1 increased (Figure 4.10). 

These findings partially concur with studies by Nolte et al, 2018 where different estrone 

analogs addition to MCF-7 cells decreased the expression of Bcl-2. This study is the first 

to report on triazole derived estrone analogs mitochondrial-induced apoptosis in a TNBC 

model. 

 

Furthermore, we demonstrated that triazole derived estrone analogs can target directly the 

epidermal growth factor receptor (EGFR), suppressing its phosphorylation at the docking 

site Y1068 in a concentration-dependent manner in EGFR-expressing MDA-MB-231 cells, 

followed by inhibition of its secondary PI3K/AKT and RAS/ERK signaling pathways. 

Phosphorylation of EGFR on Y1068 creates binding sites for the adaptor protein, Grb2, 

leading to activation of the MAPK/ERK cascade, and a binding site for Gab1, which 

recruits the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase), leading to AKT 

activation (Yamaoka et al, 2011). EGFR is overexpressed and genetically amplified in one-

third of metastatic or recurrent breast cancers, and this has been inversely correlated with 

relapse-free survival (Nagaria et al, 2017). EGFR has been implicated in numerous 

processes including promoting tumor cell development and proliferation, and survival by 
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activating the MAPK/ERK and AKT pathways, respectively (Nagaria et al, 2017).  

MAPK/ERK activation leads to the induction of target proteins, including Bcl-2, caspase-

9, and cyclin D1, regulating growth and proliferation of cells (Nagaria et al, 2017). 

Similarly, activated AKT exerts its survival and protein synthesis activities by directly 

activating mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 

(p70S6K) (Manning and Toker, 2017). Therefore, considerable attention has been given to 

targeting the EGFR pathway for anticancer therapy. It must be noted that currently no anti-

EGFR agent has been approved for treating TNBC clinically. Treating MDA-MB-231 cells 

with estrone analogs resulted in decreased expression of EGFR in a dose dependent manner 

within 24 hrs. Similarly, activated EGFR (Y1068) expression levels were downregulated 

after estrone analogs administration (Figure 4.13). Furthermore, MAPK/ERK pathway was 

inactivated as the compounds downregulated the expression levels of phospho-ARaf 

(Ser299) and phospho-ERK1/2 (T202/Y204) (Figure 4.13) in a dose-dependent fashion. 

The AKT pathway was also inactivated as the expression levels of activated proteins, 

phospho-AKT (Ser473), phospho-mTOR (Ser2448) and phospho-p70S6Kα (Ser411) 

(Figure 4.14) were decreased when the TNBC model was treated with triazole derived 

estrone analogs. 

 

It must be mentioned that while the status of selected cell cycle activators  (cyclin D1, 

cyclin E and Dyrk1B), apoptosis initiator and effector proteins and EGFR dependent 

proteins were analyzed in this study, the functions of other proteins associated with these 
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pathways were likely modulated as well, and therefore, the cytotoxic effects of the estrone 

analogs reported here may not be solely due to these proteins. 

  

4.6 Conclusion 

 

 

We report for the first time on the synthesis of a new series of estrone analogs (a hybrid of 

estrone scaffold and triazole or modified triazole pharmacophores). Fz25, Fz57 and Fz200 

showed good binding affinity towards EGFR kinase domain in silico and were cytotoxic 

against MDA-MB-231 cells in vitro. Fz25 arrested the TNBC model within the G1 phase 

whereas Fz57 and Fz200 induced cell cycle arrest within the S phase. Dyrk1B, cyclin D1 

(G1 phase) and cyclin E (S phase) expression levels were downregulated by the estrone 

analogs accounting for the observed G1- and S-phase cell cycle arrest. Furthermore, 

morphological studies showed that the compounds induced apoptosis and modulated key 

apoptotic proteins. BCl2 expression level was decreased whereas cytochrome c and Apaf1 

expression levels were increased indicating mitochondrial apoptosis induction. Also, 

cleaved PARP1 levels were elevated along with caspase 3 and 9 activations. EGFR and its 

downstream ERK1/2 and AKT pathways were downregulated suggesting that the estrone 

analogs inhibit proliferation and induce cell death. Taken together, the present study offers 

initial evidence that triazole derived-estrone analogs are effective agents that can be 

developed as novel therapies for TNBC. 
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Tables and Figures 

 

 

 

 

 

 

 

 

Figure 4.1 Molecular docking study of designed estrone analogs against EGFR binding 

site (Pdb: 1M17). Scatter plot of compounds consensus scores generated by VIDA 

application.  
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Figure 4.2. 3D visual representation of reference drug, erlotinib, docked against EGFR 

binding site. There is hydrogen bonding from the pyrimidine-N2 of erlotinib towards 

MET769A of 1M17 binding site. 
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Figure 4.3 3D visual representation of Fz25 docked against EGFR binding site. The 

dashed green lines show hydrogen bonding from the triazole, N1, N2 and N3, and hydroxy 

group towards ASP831A, GLU738A and THR766A, respectively of 1M17.  
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Figure 4.4. 3D visual representation of Fz200 docked against EGFR binding site. The 

dashed green lines show hydrogen bonding from the triazole-N1 and N2 of Fz200 towards 

CYS773A of 1M17 binding site.  
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Figure 4.5 3D visual representation of Fz57 docked against EGFR binding site. Fz57 

shows hydrogen bonding from the triazole-N1 towards CYS773A of 1M17 binding site.  
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Table 4.1 Cytotoxic effects of estrone analogs against breast cancer cells. 

   
  IC50 (µM)   

Compound MDA-MB-231 cells MCF-7 cells 

Sorafenib 10.62 ± 0.02 12.21 ± 0.96 

Fz 25 8.12 ± 0.85 8.13 ± 0.15 

Fz 200 10.86 ± 0.69 20.86 ± 3.16 

Fz 57 21.18 ± 0.23 11.94 ± 0.19 

Fz 60 28.88 ± 0.86 25.21 ± 0.87 

Fz 300 14.95 ± 1.85 18.38 ± 1.97 

Fz 400 21.21 ± 0.76 21.49 ± 0.95 

Fz 100 >100 >100 

Fz 516 >100 >100 

Fz 313 >100 >100 

Fz 600 >100 >100 

Fz 518 >100 >100 

Fz 60 >100 >100 

Fz 552 > 100  > 100 

Fz 550 50.00 ± 0.20 100.00 ± 0.00 

Fz 514 > 100 ± 0 > 100 ± 0 

Estrone 80.07 ± 0.85 >100 

  
 

 
In vitro cytotoxic activities (IC50, μM) of estrone analogs against breast cancer cells. IC50 

values were calculated by non-linear regression analysis. Values represent Mean ± SD of 

the quadruplicate experiment (n = 4).  
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Figure 4.6 Morphological changes in of MDA-MB-231 cells after treatment with 0.05% 

DMSO, Fz25, Fz57, Fz200 and sorafenib. Images were acquired with ×4 objective lens of 

Evos XL cell imaging system (ThermoFisher Scientific), scale bar = 1000 µm. 
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Figure 4.7 Initial apoptosis induction in MDA-MB-231 cells assayed by Annexin V. Cells 

were treated with IC50, 2IC50 and 3IC50 of estrone analogs or positive control, 

camptothecin. The cells were then incubated with Annexin V reagent and luminescence 

measured by a luminometer. At least two independent experiments were performed in 

triplicate. (A) Quantification of apoptotic cells after 6 hrs of incubation of drug treatments 

(B). Quantification of apoptotic cells after 48 hrs of incubation with the compounds. 
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Figure 4.8  Apoptotic cells observed by Hoechst 33342 staining. MDA-MB-231 cells were treated 

with 0.05% DMSO (A), IC50 of estrone analogs (B-Fz25, C-Fz57 and D-Fz200) or positive control, 

sorafenib (E). Apoptotic cells exhibited chromatin condensation and nuclear fragmentation. 
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Figure 4.9 Expression levels of cytosolic cytochrome C and APAF1 in MDA-MB-231 cells 

assayed by In-Cell Western (ICW). After treatment with estrone analogs in a dose-

dependent manner, fixed cells were incubated with specific antibodies for each protein. 

The cells were washed and incubated with DyLight conjugated (680 nm) detection 

antibodies, and plates scanned with LICOR Odyssey® Fc imaging system to measure the 

levels of APAF1, cytochrome C and GAPDH. Quantitation of proteins was completed 

using scanned images from Fiji software, and expression levels of APAF1 and cytochrome 

C normalized to GAPDH. At least two independent experiments were performed. (A) Fz25 

(B) Fz57 and (C) Fz200. 
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Figure 4.10 In-Cell Western quantification of apoptosis-associated proteins. After 

treatment with estrone analogs in a dose-dependent manner, fixed cells were incubated 

with specific antibodies for each protein. The cells were washed and incubated with 

DyLight conjugated (680 nm) detection antibodies, and plates scanned with LICOR 

Odyssey® Fc imaging system to measure the levels of each protein. Quantitation of 

proteins was completed using scanned images from Fiji software, and expression levels of 

the proteins normalized to GAPDH. At least two independent experiments were performed. 

(A) Fz25 (B) Fz57 and (C) Fz200 
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Figure 4.11 Estrone analogs exposure resulted in G1- or S-phase cell cycle arrest. MDA-

MB-231 cells were treated with IC50 values of estrone analogs and analyzed after 48 hrs 

by flow cytometry. Distribution of cells in distinct phases of the cell cycle. Fz25 and 

sorafenib, positive control, showed G0/G1 phase cell cycle arrest compared to the negative 

control, DMSO. Fz57 and Fz200, on the other hand, showed an S-phase cell cycle arrest. 

The bar graphs show Mean ± SD of the percentages of MDA-MB-231 cells in the indicated 

phases of the cell cycle (G0/G1, S and G2/ M). At least three independent experiments were 

performed. *p < 0.05, **p < 0.01, ***p < 0.001 significant differences in cell cycle arrest 

compared to DMSO control. 
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Figure 4.12 Effects on G1- or S-phase cell cycle regulators after treatment of MDA-MB-

231 cells with estrone analogs. Cells were treated for indicated concentrations, fixed and 

analyzed by ICW. Wells were incubated with appropriate primary antibodies and 

subsequently incubated with appropriate DyLight conjugated (680 or 800 nm) detection 

antibodies. LICOR Odyssey® Fc imaging system was used to scan wells. Protein 

quantification was completed using scanned images from Fiji software, and expression 

levels of the proteins normalized to GAPDH.  Bar graphs are means ± SD from at least two 

independent experiments. (A) Fz25 (B) Fz57 and (C) Fz200. 

 

 

 

 

 

 

 

0

0.
25

IC
50

0.
5I

C
50

1I
C
50

2I
C
50

0

50

100
Cyclin D1

Dyrk1B

Treatments (uM)

In
h

ib
it

io
n

 (
%

)

0

0.
25

IC
50

0.
5I

C
50

1I
C
50

2I
C
50

0

50

100

Treatments (uM)

In
h

ib
it

io
n

 (
%

)

 

0

0.
25

IC
50

0.
5I

C
50

1I
C
50

2I
C
50

0

50

100

Treatments (uM)

In
h

ib
it

io
n

 (
%

)

 

A B 

C 



198 
 
 

 

 

 

 

Figure 4.13 Effect of estrone analogs treatment on EGFR and downstream ERK1/2 

effector molecules in MDA-MB-231 cells. Cells were treated for indicated concentrations, 

fixed and analyzed by ICW. Wells were incubated with appropriate primary antibodies and 

subsequently incubated with appropriate DyLight conjugated (680 or 800 nm) detection 

antibodies. LICOR Odyssey® Fc imaging system was used to scan wells. Protein 

quantification was completed using scanned images from Fiji software, and expression 

levels of the proteins normalized to GAPDH.  Bar graphs are means ± SD from at least two 

independent experiments. (A) Fz25 (B) Fz57 and (C) Fz200. 
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Figure 4.14 Effect of estrone analogs treatment on Akt pathway proteins in MDA-MB-

231 cells. Cells were treated for indicated concentrations, fixed and analyzed by ICW. 

Wells were incubated with appropriate primary antibodies and subsequently incubated with 

appropriate DyLight conjugated (680 or 800 nm) detection antibodies. LICOR Odyssey® 

Fc imaging system was used to scan wells. Protein quantification was completed using 

scanned images from Fiji software, and expression levels of the proteins normalized to 

GAPDH.  Bar graphs are means ± SD from at least two independent experiments. (A) Fz25 

(B) Fz57 and (C) Fz200. 
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5 Chapter 5 

 

 

 

5.1 General Conclusions and Recommendation 

  

 

In conclusion, we have demonstrated that a new series of estrone analogs have been 

synthesized and have been investigated against EGFR-dependent cancers. Using molecular 

docking studies, these analogs were first designed, the receptor of interest, the EGFR 

kinase domain was prepared, and the docking simulations carried out to identify hits. The 

hit compounds showed key interactions like hydrogen bonding, cation-π interaction, and 

other hydrophobic interactions towards amino acid residues within the EGFR kinase 

domain. These compounds were synthesized, and their biological activity evaluated.  The 

cytotoxic effects of the novel analogs were established and the mechanisms of action 

underlying the cytotoxic effect were elucidated (inhibition of cell proliferation and /or 

induction of cell death). Cell cycle arrest, modulation of EGFR, and its downstream MAPK 

and AKT signaling were investigated as the mechanisms underlying inhibition of cell 

proliferation. The mitochondrial apoptosis pathway was investigated as the mechanism 

responsible for cell death. 

 

In our first study where estrone hybrids with modified cucurbitacin size chains (MMA 

series) were tested against NCIH226 (model for EGFR wild-type NSCLC), we came to the 

conclusions that novel estrone analogs (a hybrid of modified cucs pharmacophore and 
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estrone-base scaffold) were potent and bind better to wild-type EGFR ATP binding site in 

silico. Among these, MMA307 and MMA320 significantly inhibited the proliferation of 

NCIH226 cells in vitro. This effect could be ascribed in part to the suppression of EGFR 

and its downstream ERK1/2 signaling pathway and to the arrest of G1 phase the cell cycle.  

In our second study, we demonstrated that some MMA series of compounds were very 

effective against the TNBC model MDA-MB-468. Molecular docking studies revealed that 

MMA307 and MMA321 were very potent against EGFR kinase domain (pdb code: 1M17) 

in silico. Moreover, this study revealed that MMA307 and MMA321 induced 

mitochondrial apoptosis, arrested G1 phase of the cell cycle, suppressed activated EGFR 

and its downstream MAPK and AKT signaling. 

  

Finally, we showed that the estrone analogs with modified triazole pharmacophores (Fz 

series) were potent against the TNBC model MDA-MB-231. Fz25 showed better binding 

and potency in silico towards EGFR kinase domain. This compound induced mitochondrial 

apoptosis, arrested G1 phase of the cell cycle, and suppressed activated EGFR and its 

downstream MAPK and AKT signaling. 

  

To the best of our knowledge, there was no report about estrone analogs with modified 

cucurbitacin or triazole pharmacophores having potential therapeutic applications in 

treating NSCLC and TNBC cancers which possess a high risk of brain metastasis. The 

results presented herein provide novel information on such lead compounds. Taken 
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together, the present results suggest that estrone analogs may be the next generation of 

small molecules anti-EGFR targeting multiple types of EGFR-dependent cancers. 

  

Further studies are needed to progress these compounds into clinical trials. Monolayer cell 

culture screens are often the initially applied methods for cytotoxic studies. Even though 

these procedures represent a fast and convenient approach to determine drug bioactivity, 

they do not mimic the heterogeneity of three-dimensional growth in vivo. As such, the 

toxicity and predictions of off-target effects of small molecules cannot be properly 

evaluated by 2D monolayer cellular screens. On the contrary, in vivo and primary in vitro 

3D tumor models used in preclinical drug development are more closely related to the 

three-dimensional growth of a patients tumor in clinical settings. Moreover, these tumor 

models are better at predicting clinical effects when compared with in vitro 2D tumor 

models because several parameters including pharmacokinetics, efficacy and safety of lead 

candidates are monitored in parallel. We propose that these compounds should first be 

tested in 3D models of NSCLC and TNBC primary tumors to establish their dosing and 

toxicity. Secondly, the compounds physicochemical profiles should be predicted in vitro. 

Finally, these compounds should be tested in appropriate preclinical settings. Based on the 

compound’s toxicity profiles and pharmacokinetics, a lead optimization step may be 

conducted to improve their efficacy and safety be performing clinical trial studies. 
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Figure 5.1 Graphical summary of design, synthesis and biological evaluation of estrone 

analogs. Estrone analogs were designed and screened with CAMM to identify hits. The 

hits were synthesized using estrone as a starting material to obtain MMA or Fz series of 

compounds. The cytotoxic effects of the compounds were tested and mechanisms of 

induction of apoptosis and/or inhibition of cell proliferation elucidated. 
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