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ABSTRACT 

DESIGN, SYNTHESIS AND BIOLOGICAL SCREENING OF NOVEL CUCS-

INSPIRED ESTRONE ANALOGS TOWARDS TREATMENT OF PANCREATIC 

ADENOCARCINOMA 

KHALED MOHAMMED ALSEUD 

2019 

Pancreatic cancer is currently the fourth most deadly type of cancer globally. It is expected 

to become the second by 2030, due to its poor prognosis and its resistance to the current 

standard treatment, Gemcitabine. Moreover, the survival rate after treatment is low 

compared to other cancer types, which suggests an urgent need for new potent and safe 

treatment agents. Recently, the triterpenoid, cucurbitacin, has shown promising 

antiproliferative activity against human pancreatic cancer cells in a dose- and time-

dependent manner, and decreased pancreatic tumor size in combination with gemcitabine 

in vivo. However, the use of cucurbitacin in clinical studies has been hindered by its low 

yield from natural sources and challenging total chemical synthesis. In order to overcome 

this obstacle, we have developed molecular-modeling based strategy that resulted in the 

installation of cucurbitacin pharmacophores onto an estrone scaffold to generate novel 

hybrid analogs that showed a promising antiproliferative activity. In-silico drug design 

results showed that modification of these compounds at C11 possessing high binding 

affinity towards more than one of pancreatic molecular targets such as EGFR, and Erk, 

kinase domains. Based on that total of 25 novel analogs have been synthesized by adopting 

multiple step organic synthesis. The ant proliferation activities of the novel analogs were 

biologically investigated against PANC-I, AsPC-I, and BXPC-3 pancreatic cell lines in 2D 
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and 3D models using MTT and CellTiter assays, respectively. Five analogs showed potent 

IC50 values compared to gemcitabine and cucurbitacin B, and were further studied for cell 

cycle inhibition, EGFR signaling and caspase 3/7 activity in 2D models. Additional studies 

showed these analogs arrested the cell cycle in the G1 phase, inhibited activation of EGFR 

and the downstream MAP kinase Erk. The present study shows, for the first time, that C11 

modified cucurbitacin-estrone hybrid analogs possess more antiproliferative activities than 

the standard chemotherapy regimen against pancreatic cancer cell lines and provide 

potential drug candidates for preclinical application.
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Chapter One 

General Introduction 

 

1.1. Drug Discovery and Development 

Drug discovery research has contributed to the progress of medicine more than the research 

in other medical fields.1 The drug discovery process is very complicated and requires a 

development period of 10-15 years and a cost estimated to be more than $1-3 billion 

dollars.2 Moreover, 95% of these drug candidates fail to receive approval from NIH during 

the early or late stages of drug discovery or during the clinical phases.3 The drug discovery 

process starts with the identification of a medical problem that needs to be treated, followed 

by identification of the molecular targets used to treat that disease and the screening of 

many compounds in vitro against these targets. Thousands of compounds are produced 

during this screening stage. Following this stage, the drug candidates undergo a preclinical 

studies where they are tested in vivo. Many disciplines contribute to this long process 

where the pharmacological activity and toxicity profile of these drugs are tested, mostly in 

mice. This stage will determine if the drug will be moved to clinical trials after approval 

from the FDA; at that point, it will obtain an investigational new drug (IND) license that 

allows researchers to start the clinical trial process. In the clinical trial stage, the 

pharmacological and toxicity effects are studied in healthy human subjects, as well as in 

human subjects who are affected by the targeted disease. This stage is divided into four 

phases.4  
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Figure 1.1. Timeline for the general stages of drug discovery and development.5 

 

By benefiting from the failed drugs, medicinal chemists develop drug design concepts 

through which they can identify the functional groups that increase the binding to the 

targets compared to existing groups and groups that are known to be toxic, such as nitro 

groups. Also, an understanding of molecular targets facilitates the drug discovery process, 

especially since the advancements in bioinformatics. Through bioinformatics and genetic 

sequences, the researcher is able to identify the genetic mutations in biological molecules 

in different cancer types before they are overexpressed in vitro, and use them as targets for 

screening small molecules.5 Through NMR spectroscopy, x-ray crystallography, and 

computational in-silico design programs, a better understanding of ligand-target 

interactions is gained and the first stage of the drug discovery process has been effectively 

minimized.6  

One of the strategies used in the drug discovery process is in-silico drug design, where a 

library of small molecules is screened against a three-dimensional structure of a 
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macromolecule. In this strategy, small molecules are fitted into the space that is docked by 

the original ligand that crystalized with that macromolecule.7 The first step in molecular 

docking includes the generation of a large library of small molecules and all possible 

conformers of these ligands by rotating the angles between their atoms. Then, the most 

stable conformer is chosen by using one of the force fields, such as UFF, GAFF or 

MMFF94.8 After the preparation of the virtual library, docking programs with different 

parameters rank the binding of the molecules.9 Docking programs such as FRED, Surflex 

and DOCK will run the exhaustive docking process that is used to rank the ligands based 

on different functions, such as shapeguass, PLP, chemgauss3, chemscore, and screenscore. 

These functions rank the ligands based on the molecular interactions between the ligand 

and the macromolecule. For example, all of these mentioned forces consider the fitting of 

the molecule in the pocket and the hydrogen bonding between the ligand and the target 

(with the exception of the chemguass function). Some interactions are unique to a specific 

function, such as desolvation which is used by chemguass3 but not the others. These 

scoring functions also vary in terms of their speed, exhaustive docking and optimization. 

After running the docking experiments, these compounds will be ranked according to a 

calculated consensus score that depends on the functions used in the docking. The lowest 

consensus score will be the ligand that best binds to the target. The promising candidates 

will be obtained either by purchasing, if they are commercially available, or by 

synthesizing them chemically.  

After synthesizing the candidate compounds and testing their biological activity in vitro, 

another important step is necessary to gain information that might not be predicted by 

molecular modeling. Information such as the transport of the drug to the cell or the export 
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of the drug by a certain resistance mechanism requires that other kinds of optimization are 

performed to overcome the obstacles found in the biological evaluations of these 

candidates. These optimizations have different aspects, including changing the polarity of 

some functional group or completely changing the pharmacophores.  

Many aspects of optimization have been carefully studied, leading to the development of 

drug discovery rules. For example, the Lipinski rule of five suggests that a compound 

should not exceed 5 hydrogen bond donors and 10 hydrogen bond acceptors, and its 

molecular weight should be less than 500 Daltons with a partition coefficient in terms of 

log P less than 5.10 These rules are focused on the chemical and physical properties of the 

compound which affect its binding to the target and its bioavailability. Although these rules 

are not essential in determining if a drug will be a good candidate, it is important to take 

them into consideration and use them as an initial guide in designing drugs, thus keeping 

synthesized compounds within the mentioned ranges.  

Another aspect of drug optimization uses a bioisosterism concept where a chemical group 

can be substituted with a different group having similar chemical properties to obtain better 

pharmacological activity or less toxic effects. Bioisosterism is based on the biological 

activity derived from a biological evaluation of previously known lead compounds and 

their derivatives.11 Sometimes, bioisosterism is applied not only to change the biological 

activity of compounds, but to change their physical properties to improve their 

bioavailability, thus maintaining or improving the potency of the drug.    
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1.2. Natural products as an inspired source for drug discovery 

Statistical studies regarding approved drugs indicate that natural products play an important 

role in drug discovery. Natural products contain unique pharmacophores, as noted through 

their complex stereochemistry. An example of a natural product-inspired drug is 

temsirolimus, which is an mTOR inhibitor with anticancer activity against renal cell 

carcinoma. It was developed from the natural product rapamycin.12  

     

 

Figure 1.2. a diagram for the sources of the approved from the period of 1981-2011 

shows that almost two thirds are derived from natural products.13 

                

1.3. Cucurbitacins as Potential Natural Compounds Targeting Different Molecular 

Targets 

Cucurbitacins are four-ring tetraterpenoid compounds that exist in very small amounts in 

Cucurbitaceae plants, such as Cayaponia tayuya, and Citrillus colocynthis.14 This group of 

compounds, which consists of 18 types, was traditionally used as an anti-inflammatory and 
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anticancer agent are example of natural products that has been used for different 

pharmacological uses till today.15 

1.3.1. Chemistry of Cucurbitacins 

Cucurbitacins are tetracyclic triterpenes are characterized by high number of oxygen atoms 

and similar to steroids in structure (Figure 1.3). One of the common features of 

cucurbitacins and steroids, such as cholesterol and estrone, is the presence of the four ring 

system.16 However, some differences and additional functional groups are found in 

cucurbitacin (cuc) that result in its unique pharmacological activities compared to steroids, 

such as the gem-dimethyl group at ring A, C4, the methyl that exists between rings B and 

C, and C9. In some cuc types, such as cuc A, C11 is hydroxylated, which is thought to be 

responsible for the selectivity of cuc A as it loses its anti-STAT3 inhibition activity.17 

Another feature of cucurbitacins is the presence of α-β-unsaturated ketone in the side chain, 

which is one of the major pharmacophores responsible for the antiproliferative activity of 

cucurbitacins. Upon comparing nine commonly found cucs compounds, common 

functional groups can be used to distinguish cuc family of compounds from the other four-

membered ring steroidal compounds. These characteristics include the double bond 

between C5 and C6 and ring B, α-hydroxyl group at ring D, C16, the hydroxyl group at C2, 

and the ketone at C3 of ring A. In all cucs compounds, except for cucs C and F, the ketone 

group is reduced to hydroxyl groups, while C2 of cuc C is attached to hydrogen instead.  
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Figure 1.3. General structures of cucurbitacin and steroid. 

 

 

The α-β-unsaturated ketone side chain of cucurbitacins either contains the tertiary 

hydroxylated group, as in cucs D and F-J, or are acetylated, as in the rest of cucs. 

Experimental data confirms the presence of acetyl-transferase enzyme as expressed in the 

gene biosynthetic cluster of these cucs types.18  

1.3.2. Pharmacological Activities of Cucurbitacins 

The unique oxygenated and unsaturated four rings of cucurbitacins, which differentiate 

them from the other steroidal scaffolds, give them unique biological and pharmacological 

activities.19 Cucs were traditionally known for their anti-inflammatory activity, but 

recently, they became efficient antiproliferative agents for the treatment of different cancer 

types, such as lung, breast, colon, and pancreatic cancers.17 Moreover, cucs have been 

reported to have antiviral activity, which opened another avenue of investigation for 

pharmacological uses for cucurbitacins.20  
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Cucurbitacins have been traditionally used as an anti-inflammatory agent by applying it 

topically. In this type of application, it has been proved to inhibit cyclooxygenase 2 (COX-

2). Cyclooxygenase enzymes are involved in the biosynthesis of prostaglandins and 

thromboxane, so their inhibition relieves the symptoms of inflammation and pain.21 

Comparing cucs with the non-steroidal anti-inflammatory (NSAIDs) COX inhibitors, 

Recio et al. indicated that the COX-2 inhibitory rate of cucs is lower than NSAIDs. On the 

other hand, cucs are more selective COX-2 inhibitors. Other reports demonstrated that the 

saturation of carbons 23, 24 of cucs increased the inhibitory COX-2 activity.22  

Cuc B has demonstrated comparable antiviral activity to acyclovir when it was examined 

against the enveloped-DNA virus Herpesviridae, with IC50 values of 0.94 and 1.74 μM, 

respectively.23 The anti-HSV-1 activity of cucs against enveloped-DNA viruses, which are 

responsible for many antiviral infections, indicate other potential antiviral activities for 

these compounds. Moreover, cuc B showed a mono- and synergistic effect with 

tetracycline and oxacillin against Staphylococcus aureus (S. aureus). As a result, cucs may 

be used in combination with antibiotics for the treatment of staphylococcal infections.23 

Currently, cucs are being investigated for their anticancer activity in different cancer cell 

lines. Moreover, many in-vivo studies demonstrate the antiproliverative activity of cucs in 

combination with other drugs, as well as in monotherapy.  

1.3.3. Cucurbitacins Anti-proliferative Activities 

The anticancer activity of cucs have been investigated in many cancer cell lines, including 

lung, leukemia, hepatocellular carcinoma, breast, ovarian, colon, brain, and pancreatic 

cancers.23 Generally, cucs as antiproliferative activity can be divided into four mechanisms: 

proapoptosis, induction of autophagy, cell cycle arrest, and inhibition of cancer invasion 
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and migration.24 Cucs have been demonstrated to interfere with important signaling 

pathways involved in tumor growth, such as EGFR, PI3K/Akt, mTOR, STAT3 and ERK 

signaling.25 Epidermal growth factor receptor (EGFR) is a transmembrane protein that has 

extracellular and intracellular domains.26 Two mechanisms are used to inhibit EFGR 

activity. One mechanism competitively inhibits the extracellular binding site of EGF, 

prevents the dimerization of two EGFR monomers and inhibits the initiation of the 

downstream cascade. The second mechanism involves the inhibition of kinase activity by 

which EGFR can phosphorylate the downstream proteins. EGFR is found to be 

overexpressed in many cancer types, such as breast, lung, pancreatic and liver cancers.27 

The inhibition of EGFR can restrain the pathways of (Ras/Raf/MEK/ERK) that are 

significant in many cancer types. Another important target for cucs is signal transducer and 

activator of transcription 3 (STAT3), which is phosphorylated by receptor-associated Janus 

Kinases (JAK).28 Moreover, cuc B was reported to inhibit the PI3K/Akt/mTOR pathway. 

Through inducing p53, p21, and caspase-3, cucs inhibit the growth of tumors through 

apoptosis29 and interact with the microtubules and cycloskeleton of the cell, which leads to 

cell cycle arrest at the G2/M phase.30   

Upon investigation of the structure activity relationship (SAR) of cucs, studies proofed that 

the α-β-unsaturated C22-C24 enone side chain is the main pharmacophore for cuc anticancer 

activity. This was demonstrated by decreasing the antiproliferative activity of dihydro-cucs 

B and D. Moreover, the glycosylated cucs showed less cytotoxic activity than the non-

glycosylated cucs. Also, the  acetylation of C25 of cuc B increased its antiproliferative 

activity by 1000 fold, compared to cuc D.31 
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Cuc D also demonstrated antiproliferative activity against the PrCa prostate cancer cell 

line, with an IC50 of 0.1 μM to 1μM. This was accomplished by decreasing the GLUT1 

expression, which led to a decrease in glucose uptake and lactate secretion.  Cuc D affect 

cell cycle arrest in the G2/M phase, and upon treatment using a PrCa xenograft mouse 

model, it inhibited tumor growth.32  

Upon investigation against the gemcitabine-resistant AsPC-I pancreatic cell line, cuc D 

displayed antiproliferative activity by inhibiting the Muc13 expression, EGFR, and AKT 

activation, along with enhancing miR-145 expression. Compared to a control group, cuc 

D reduced tumor size in SCID mice injected with pancreatic cells.  
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Figure 1.4. Anticancer activity mechanism of cucurbitacin on different pathways. 

 

1.3.4. Mechanism of Antiproliferative Activity of Cucurbitacins 

1.3.4.1. Inhibition of MAPK/ERK pathway 

The MAPK/ERK (or Ras/B-Raf/MEK/ERK) (Figure 1.5.) pathway is a group of proteins 

that act as a chain when the receptor, which is the transmembrane protein (EGFR), is 

activated. This initiates and activate a cascade that ends in the nuclear DNA and regulates 

vital biological functions such as cell division, differentiation, survival and cell death. This 

pathway has been considered as one of the successful strategies to treat cancer, although 

resistance is created by mutation, mainly in the proteins of this pathway.33  

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj15OW74YDgAhUL0YMKHY2UDbAQjRx6BAgBEAU&url=http://www.phcogrev.com/article.asp?issn=0973-7847;year=2018;volume=12;issue=24;spage=157;epage=165;aulast=Alsayari&psig=AOvVaw2wjFe8JRv2JEOH6pi24pEX&ust=1548224927295775
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Figure 1.5. The major downstream targets of ERK1/2 in the MAPK pathway. 

1.3.4.2. Epidermal Growth Factor Receptors (EGFR) and Cancer 

EGFR (ERB1) is one of the four types of the ErbB receptor family. This tyrosine receptor 

kinase consists of an extracellular binding domain, a hydrophobic transmembrane domain, 

and a cytosolic domain that causes kinase (phosphorylation) activity for the downstream 

proteins.34 When the growth factors, such as transforming growth factor α (TGF- α), binds 

to the extracellular domain of EGFR, the dimerization or activation of the receptor occurs, 

resulting in phosphorylation of specific tyrosine residues in the intracellular cytosolic 

domain of EGFR. This leads to a subsequent activation of the downstream proteins.34, 35  

Liovet et al. showed that the deactivation of EGFR increased the survival rate of patients 
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in the late stages of hepatocellular carcinoma.36 This occurs through the inhibition of EGFR 

phosphorylation in pancreatic cancer cells.25  

1.3.4.3. Rat Sarcoma (RAS) Protein Family and Cancer 

Ras gene was discovered in the 1960’s in a study that was focused on Harvey sarcoma and 

Kristen sarcoma viruses originally found in rats, thus named Rat sarcoma.37 Ras proteins 

consist of six beta strands and five α-helices, which form GTP, a GDP-binding domain and 

a C-terminal region. Ras proteins are activated when GTP is bound to it, and deactivated 

after phosphorylation of the downstream proteins with GDP bound to it.38 Mutations of 

RAS proteins, mainly K-RAS mutation, have recently been identified in many cancer cells, 

such as small intestine, colon, pancreatic, and biliary tract cancers.39 Due to the ability of 

phosphorylated RAS to rewire and activate different pathways, it is challenging to inhibit 

its downstream activity.40 For example, one of these important pathways is the 

posttranslational modification of C-MYC, which results in the increased activity of MYC, 

which is one of the critical pathways of RAS-driven activity.40 Shukla et al. reported that 

cuc B downregulated C-MYC/K-RAS at the protein level.41  

1.3.4.4 Rapidly Accelerated Fibrosarcoma (RAF) and Cancer 

RAF proteins are activated by RAS-GTPases and consist of three family members. This 

family of receptors are characterized by the presence of serine/threonine-specific kinases. 

After phosphorylation by RAS proteins, the A-C proteins phosphorylate the downstream 

MEK1/2 proteins.42 
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1.3.4.5. Mitogen-Activated Protein Kinase and Cancer (MEK1/2) 

Currently, seven types of MAP kinases have been identified; however, MEK1 and 2 are 

the only known substrates of RAF kinases. These consist of C- and N- terminal domains 

and an ERK-binding region. RAF phosphorylates MEK/2 at tandem serine residues at a 

site called an activation loop. Phosphorylated MEK1/2 regulates different cell functions, 

such as the ERK activation.43  

1.3.4.6. Extracellular Signal–Regulated Kinases (ERKs) 

ERK proteins are involved in the regulation of many cellular functions, such as cell 

division. The mechanism of activating ERK1/2 by RAF kinases involves phosphorylation. 

Evidence has been found to show that the phosphorylated ERK2 activated by MEK1 is 

transferred to the nucleus where it activates the proliferation process, while ERK2 activated 

by MEK2 is transferred to the cytosol and promotes cell survival.44 The inhibition of ERK 

proteins is an important mechanism by which anti-cancer agents act. 

1.3.4.7. Cucurbitacins Effect on Filamentous-Actin 

Actins are protein components found in all eukaryotic cells and have many important 

functions. These structures are either globular (G-actin) or filamentous (F-actin). F-actin 

type maintain many functions in eukaryotic cells, such as maintaining the cytoskeleton and 

facilitating cell migration.45 It has been reported that cuc E selectively inhibits F-actin 

depolymerization (without inhibiting the monomeric globular G-actin) by covalently 

binding with CYS 257 amino acid residue.46 Another study proved that cuc E stimulates 

the actin cytoskeleton disturbance in the prostate cancer cell line.47  
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1.3.4.8. Cucurbitacins' Effect on STAT3 Signaling Pathway 

Signal transducers and activators of transcription are a family of cytosolic transcription 

activators that stimulate the biosynthesis of cell surface receptors and transmit the signal 

into the nucleus. Several reports indicate that this pathway is key to tumor growth. The 

most important of the seven member family is STAT3, which promotes the initiation and 

progression of cancer by several mechanisms, including inhibiting apoptosis and inducing 

cell proliferation.48 Activation of STAT3 is carried out by IL-6 and EGF proteins using 

several mechanisms.49 After the activation of STAT3, dimerization occurs in the 

cytoplasm, and subsequently activates the Janus-kinase (JAK) phosphorylation, which 

leads to phosphorylation of other STAT3 monomers. Phosphorylated STAT3 also induces 

transcription by binding to DNA.50  

The activity of cucs in inhibiting the STAT3/JAK pathway has been studied and the 

structure activity relationship has been demonstrated according to the different 

functionalities of cucs compounds. For example, cuc I acts by inhibiting the 

phosphorylation of STAT3 in lung cancer,51 while cuc A inhibits the activation of JAK2, 

and cucs B and E act by inhibiting both STAT3 and JAK2.52 

1.3.4.9. Cucurbitacins' Effect on mammalian target of rapamycin (mTOR) Pathway 

mTOR is one of the downstream proteins in PI3K/AKT/mTOR that affects the cell 

proliferation cycle.53 The up regulation of this pathway has been observed in cancer cells 

such as osteosarcoma. Cuc B has been shown to inhibit mTOR directly as a single agent, 

as well as in combination with methotrexate, although the authors suggest that the exact 

mechanism by which cuc B inhibits mTOR needs further investigation.54  
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1.3.4.10. Hepatoprotective activity of cucurbitacins 

Interestingly, cuc D and dihydrocuc D at lower than the antiproliferative dose indicate a 

hepatoprotective effect against carbon tetrachloride-induced toxicity on HepG2 cell line. 

An investigation of the underlying mechanism indicates that cuc D and its dihydro form 

decrease the production of tumor necrosis factor-alpha and interleukin-6 in hepatocellular 

carcinoma cell line HSC-T6.55  

1.4. Pancreatic Cancer 

1.4.1 Background 

Cancer is a disease that is characterized by abnormal growth of cells. These uncontrolled 

cells have the ability to invade surrounding tissues when the disease reaches the metastasis 

stage.56 Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor among 

pancreatic cancer types and represents about 85% of the diagnosed pancreatic cancer 

cases.57 Anatomically, the pancreas, which is about 6 inches long in a normal adult, is 

characterized by three main parts. The first part is the head, which is located on the right 

side of the abdomen in front of the small intestine where the duodenum and stomach meet. 

The larger part of the pancreas, the body, is behind the stomach, while the tail lies on the 

left site of the abdomen beside the spleen.58 Histologically, the pancreas contains two types 

of cells: endocrine and exocrine cells. Exocrine cells excrete digestive enzymes into ducts 

that merge with bile ducts, then secrete fluid into the duodenum. The endocrine ducts, 

which secrete less than the exocrine ducts, biosynthesize important hormones such as 

insulin and glucagon.58 The tumors that occur with exocrine cells, acinar cells, is called 

pancreatic ductal adenocarcinoma, which represent the majority of pancreatic cancer types. 
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The mortality statistics on pancreatic ductal carcinoma (pancreatic cancer) cases indicate 

it has the fourth highest mortality among cancer types in United States.59 

                

Figure 1.6. Anatomy and histology of the pancreas.60  

 Pancreatic cancer mortality data indicates an increasing number of deaths,61 and it is 

expected to be ranked as the second cause of death among cancer types in the near future.62 

The estimate for the number of patients with pancreatic cancer in 2016 is 53,070, and 

according to the current mortality rate, most of them will have a survival period of 5 years 

or less.63 Of the previous cases, 75% of the pancreatic ductal adenocarcinoma patients were 

between the ages of 55 and 84 years and the majority of them were men. This indicates that 

the age of 55 is one of the risk factors.64 Other risk factors are related to lifestyle, including 

smoking, alcohol usage, and a high cholesterol diet.65 Based on its pathology, PDAC can 

be divided into three main stages. The initiation stage begins when the mutation occurs due 

to the environment effect or a failure in DNA repair after cell division. It is estimated that 



18 

 

the first cell that has the mutation of the drive gene for PDAC occurs 20 years before the 

disease can be diagnosed.66 In the second stage, the mutated cell begins to divide and 

proliferate until it reaches the third stage, where the mutated population of cells spread to 

the surrounding cells and break the basement membrane.67  

Molecular biology and genetic sequencing indicate that four common types of mutations 

occur in PDAC. Mostly KRAS mutation, which encodes the RAS family of GTP-binding 

proteins, are responsible for cell proliferation and cell survival.68 Of the analyzed PDAC 

cases, the KRAS mutation is found in about 95% of the cases.69 Other mutations include 

the tumor gene suppressor CDKN2A, the transcription factor TP53, and the co-

transcription factor SMAD4.69  

The symptoms of PDAC include jaundice, dark urine, greasy stool, itchy skin and back 

pain. The reason for the high mortality rate with pancreatic cancer is the absence of 

biomarkers that can be detected in the early stages.70 Moreover, the progress in developing 

pancreatic anticancer agents is very slow.71  

The treatment of PDAC differs according to the stage of the disease and the health of the 

patient. The surgical option is the first choice of treatment if the patient is diagnosed to 

have stage I, II, or III PDAC. In stage I, the tumor is restricted to the pancreas, while in 

stage II, the tumor is 2-4 cm in size. By stage III, the tumor has spread to the major blood 

vessels or nerves close to the pancreas.59 However, if the patient is diagnosed to have stage 

IV PDAC, where the cancer has spread to other organs, chemotherapy is the best option. 

The current standard treatment for pancreatic cancer is gemcitabine; it has an 18% 1-year 

survival rate, which is much better than the former standard treatment, 5-fluorouracil (5-
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FU), that had only a 2% 1-year survival rate. The six-month survival rates for gemcitabine 

and 5-FU are 23.8% and 4.8%, respectively, which indicates that there is an urgent need to 

find novel agents for pancreatic cancer treatment.   

 
 

1.4.2. Current Treatment of Pancreatic Ductal Adenocarcinoma 

1) Surgical Resection 

Because PDAC is usually diagnosed in the late stages in more than 95% of the patients, 

the surgical option is only used in 10-15% of the patients. However, several cases have 

been found in which the surgical resection cannot be performed. These cases include the 

presence of metastasis on the liver, distant metastasis or lymph node enlargement. 

Moreover, the mortality rate is approximately 3-5% in the cases in which surgery was 

performed.72 Also, the statistical studies indicate that the survival rate after surgery is 3-

16% of patients for 5 or more years.73 

2) Radiotherapy 

Applied radiotherapy has been used alone or in combination with surgery or chemotherapy. 

A Gastrointestinal Tumor Study Group (GITSG) indicated that the survival rate increased 

to 19% after 10 years of radio chemotherapy.74 

3) Chemotherapy:  

Since the majority of pancreatic cancer patients are diagnosed in the late stage of the 

disease, chemotherapy is the first option used. Administration of gemcitabine 

chemotherapy as a single agent is tried first.75 Gemcitabine has an 18% one-year survival 

rate compared to the former standard 5-fluorouracil (5-FU) that has only a 2% 1-year 
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survival rate. The six-month survival rates for gemcitabine and 5-FU are 23.8% and 4.8%, 

respectively.76 Several studies have been conducted in which gemcitabine is combined with 

other drugs, such as cisplatin. In this combination, cisplatin induced DNA lesions, while 

gemcitabine enhanced this effect by inhibiting DNA repair, resulting in apoptosis of the 

cells.77 Colucci et al. conducted a clinical study in which two groups of pancreatic ductal 

adenocarcinoma patients were administered either gemcitabine or the 

gemcitabine/cisplatin combination weekly for 7 weeks, followed by 1 week rest, then 

interrupted doses for a period of 4 weeks at days 1, 8, and 15. In this study, no improvement 

was seen in the combination treatment group. Rather, hematologic toxicity cases were 

observed in the group administered combination therapy.75 

After its uptake by human nucleoside transporters (hNTs), gemcitabine is metabolized to 

2՛, 2՛-difluoro-2՛-deoxycytidine triphosphate before it is phosphorylated by deoxycytidine 

kinase and pyrimidine nucleoside monophosphate kinase to produce gemcitabine 

diphosphate (dFdCDP). At this point, it is incorporated into DNA chain biosynthesis by 

the DNA polymerase, which results in its termination.78 However, due to the steps needed 

for gemcitabine to reach its target, several mechanisms of resistance are adopted by cancer 

cells to avoid DNA termination. These mechanisms include lack of transporters and 

phosphorylation enzymes, along with overexpression of gemcitabine deactivating 

enzymes, such as cytidine deaminase, that convert gemcitabine into its inactive metabolite 

dFdU.79 The low survival rate of PDAC patients compared to other cancer types has 

inspired researchers to investigate novel, more effective anti-pancreatic cancer drugs. 
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1.5. Cucurbitacin-Inspired Estrone (CIE) Analogs 

Chemically, cucurbitacins are characterized by the presence of a cucurbitane nucleus and 

an α,β-unsaturated ketone side chain that is responsible for the anticancer activity of 

cucurbitacin.80 Cuc B was the first cuc that was made biosynthetically. From a biosynthetic 

point of view, cucs E and B are considered the precursors of all cucs compounds, based on 

the studies of their biosynthetic gene cluster. For instance, cucurbitacins A, D, C, F, G and 

H can be synthesized via biotransformation of cuc B, whereas cucs I, K, J and L can be 

biosynthesized from cuc E.81 However, due to the low yield of cucs from their natural 

sources and the challenge of total chemical synthesis, cucs could not be advanced to clinical 

studies. However, the core of the cucurbitacins was synthesized via a highly regio- and 

stereoselective Diels-Alder Reaction. 82 Moreover, chemical modifications of cuc B were 

carried out to study the anticancer activity of cuc B derivatives.83  

In order to overcome this obstacle, we developed a molecular-modeling dependent novel 

strategy with cucs pharmacophores, using the triterpenoid four-membered rings estrone as 

a scaffold. One important pharmacophore of cucs is 23, 24 α, β- unsaturated ketone side 

chain that is responsible for the anticancer activity of cucs. Interestingly, when we installed 

this side chain on estrone, it showed comparable anticancer activity to that of 

cucurbitacin.84 These cucurbitacin-inspired estrone analogues (CIEA’s) opened the door to 

more investigations regarding the functionalization of this compound at different positions. 

We searched for more potent anticancer compounds through in-silico molecular modeling 

of these analogs against known cucurbitacin molecular targets. Currently, we have proven 

that the functionalization of rings A, C and D of CIE analogs can lead to more potent 

anticancer agents than the currently available standard treatments. Previously, we reported 
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that the dehydrogenation of C9-C11 and C16-C17 generally increased the potency of this 

group of compounds.85 Moreover, methylation and sulfamoylation of C3 increased the 

potency relative to the originally found phenol.86 One of the recent modification strategies 

for the anticancer drugs which currently induce resistance from cancer cells is the 

introduction of a nitric oxide releasing group, such as NCX-1000, that shows effective 

hepatoprotective activity. Recently, our investigation shows promising anticancer activity 

for NO-CIE analogs containing nitric oxide releasing functional groups, such as the 

furoxan moiety. In this instance, a furoxan moiety was installed at ring C3 through an ether 

linker. The IC50 of the hybrid with phenyl para-trifluoromethyl side chain against HepG2 

cell line was 4.69µM. 87 Another modification included the introduction of many functional 

groups instead of a cucurbitacin side chain through aldol condensation; one such group was 

phenyl para-trifluoromethyl, which showed potent anticancer activity.  

One of the arguments regarding CIE analogs is the presence of an aromatic ring instead of 

ring A in the cucurbitacins. However, the aromatic ring at this position did not decrease 

the anticancer activity, as previous studies mentioned. Moreover, fevicordin A is an anti-

cancer agent that has an aromatic ring as an estrone scaffold and the cucs general structure 

as well, indicating that the presence of an aromatic ring is not a drawback for CIE analogs.88 
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1.6. Project Objectives 

Based on the previous studies that were conducted in our lab and the molecular docking 

studies, this project focuses on the modification of cucurbitacin-inspired estrone analogs 

(CIEA’s) that target pancreatic cancer. Based on molecular docking data a library of virtual 

compounds will be designed and the candidates with high binding affinity to the molecular 

targets will be chemically synthesized and their inhibitory effects will be investigated on 

EGFR and downstream signaling pathways, including Mitogen Activated Protein Kinase 

(MAPK) pathway comprised of RAS/ RAF/ MEK/ ERK proteins and PI3K/Akt/mTOR 

pathway.  Moreover, a structure activity relationship study will be conducted in order to 

sum up the data obtained over 5 years of work on the development and optimization of 

CIEA’s as promising anticancer agents for the treatment of different cancer types. 

The main objectives of this project are:  

 Molecular modeling study of different CIE analogs modified in rings A, C and D 

on potential molecular targets of pancreatic cancer cells. 

  Synthesis of  CIE analogs that have a promising calculated binding affinity to the 

used molecular targets, according to the molecular modeling study. 

 Biological evaluation of the synthesized CIE analogs against three pancreatic 

cancer cell lines using 2D and 3D cell viability assay using 2D and 3D models. 

 Study the cell cycle arrest of CIE analogs that have promising IC50 value compared 

to the currently available drug of choice for pancreatic cancer (gemcitabine). 

 Study the effect of these compounds in caspas-3 activity and inducing cell 

apoptosis. 
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 Study the inhibitory effect of the promising analogs 

using the potential molecular targets that were used in the first objective to the rank the 

virtually designed CIE analogs using In-Cell Western (ICW) assay.  
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Chapter two                              

Molecular Modeling of Novel Cucurbitacin-Inspired Estrone Analogs Against 

Molecular Targets of Pancreatic Adenocarcinoma 

 

2.1. Introduction  

Computer-based drug design is one of the fundamental tools in modern drug discovery due 

to the time, effort and cost minimization facilitated by computational drug design 

programs.1 The main purpose of the docking study is to predict the binding of a ligand 

towards an active site of a molecular target based on the most stable conformer of a 

designed ligand and a 3-D structure of a crystalized molecular target using a computational 

docking tool.2  

There are many approaches in drug discovery focusing in investigation for novel potent 

drugs. Among these approaches is pharmacophore approach which include linking the 

active pharmacophores in small molecules to result in one entity that have most or similar 

potency to that of the parent molecule.3 Based on the kind of the modification, two 

strategies are adopted in pharmacophore approach.4 The first approach where the 

modification of the ligand is hypothesized based on the active compound and  is called 

ligand-based approach. On the other hand, the receptor-based modification utilize the 

binding pocket for the agonist and the antagonist in order to modify novel ligands.4 

However, each strategy has its challenges and drawbacks. For example, ligand flexibility 

represents a challenge in ligand-based drug discovery because based on the predicted 

conformation the molecular docking against the target pocket will be conducted. In order 

to minimize the error caused by the variations exist in 3D conformation prediction, two 
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strategies have been used. The first strategy is creating different conformers of each ligand 

and screen them against the target pocket or conducting an extensive modeling process to 

each ligand to calculate the most stable conformer against specific pocket which is time 

consuming.5 One of the challenges that limit the use of receptor-based drug discovery 

approach is availability of 3D structure of the macromolecule crystallized with its ligand 

which is fundamental to build the modified ligands based on the features of the original 

ligand and the arrangement of the amino acids in the binding pocket.5 

 An example of a drug developed using computational drug design is the development of 

carbonic anhydrase II inhibitor, dozolamide that is used for treatment of glaucoma. Based 

on cone-shape pocket of X-ray crystallography of carbonic anhydrase II, dorzolamide was 

developed by introducing sulfamoyl moiety that  show a significant coordination with 

zinc.6  

Another example of rational drug design is neuraminidase (NA) enzymes inhibitors used 

as antiviral agents. NA enzymes are essential macromolecules of influenza virus envelops 

that catalyze the breakdown of glycosidic linkage between the virus sialic acid and 

hemagglutinin residues and the host cell wall followed by spreading the virus all around 

the body. Inhibition of this enzyme will restrict the virus and force it to remain connected 

to the cells and prevent its spread.95 After reporting the crystal structure of neuraminidase 

II, antiviral agents were developed based on the conservative sites in NA II enzyme using 

GRID software and utilizing NA II inhibitor 2-deoxy-2, 3-dehydro-N-acetylneuraminic 

acid (DANA). Subsituting 4-hydroxy group in DANA with amine led to a potent inhibitor 

for NA which was called zanamivir.8 
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Nolatrexed dihydrochloride is a phase I anticancer agent showed anticancer activity against 

hepatocellular carcinoma was developed based on the crystal structure of E.coli 

thymidylate synthase that catalyze the conversion of deoxyuridine monophosphate to 

deoxy thymidylate by methylation and reduction of thymidyl ring which is an essential in 

DNA synthesis.8, 9  

Molecular modeling programs are used in many aspects to improve drug design including 

pharmacodynamics data such as potency, affinity, and efficacy along with pharmacokinetic 

properties, which are absorption, distribution, metabolism, and excretion which lead 

eventually to structure activity relationship (SAR) for different groups of compounds.1 

Generally, there are three main approaches of conducting molecular dockings including 

flexible ligand docking where the molecular target is rigid and a library of different 

conformers of ligands are docked against that rigid target. In rigid docking, both the target 

and ligands are rigid molecules which is opposite to the flexible docking where both the 

screened ligands and the target molecules are flexible.10 The molecular modeling that we 

utilized in our investigation is a semiflexible modeling, meaning that the pocket of the 

molecule is fixed while different conformers of the designed compound that were designed 

using ChemBio3D Ultra 12.0 11 are screened against the pocket of the protein that was 

downloaded from protein data bank12 and processed using Make Receptor® software. This 

approach led to decrease the cost and effort of the medicinal chemists in drug discovery 

and result in increasing discovery of huge number of small molecules to be used 

pharmacologically in treatment of different diseases.2 

OpenEye® Scientific Software is one of the molecular docking software that uses FRED 

software which docks multi-conformers database of molecules against a putative binding 
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pocket of a rigid receptor using exhaustive search algorithm.13 Our molecular modeling 

studies was carried out using two OpenEye Softwares, (Omega) that generates the 

conformers of the compounds and rigid exhaustive docking (FRED). The targets for the 

previously mentioned proteins were processed and generated using Make Receptor® 

software.  

ChemBio3D Ultra 12.0 utilizes two force fields to predict the bond angles, MM2 and 

MMFF94, where the later uses different equations to estimate  the intramolecular Van der 

Waals interactions and contain more parameters.14 Calculating the most minimized form 

of the compound based on its total energy is conducted following the equation: 

                    Esteric energy = Estr + Ebend + Estr-bend + Eoop + Etor + EVdW + Eqq 

Where Estr is the energy needed to stretch or compress the bond between two atoms and 

Ebend is the energy required to bend a bond from its equilibrium angle, θo. Estr is the 

energy needed to stretch or compress the bond when the bond is bent because the energy 

required at this case is affected by that bent. Eoop estimates the energy required for an 

atom to move of that angle of planar plane. While Eoop is used with the atoms that form 

planar geometry such as in sp2 hybridized carbons and is called improper torsion, Etor is 

used to calculate the energy required to torsion rotate bonds, which means that this 

calculation is used in single bonds but not the double or the triple rigid bonds. EVdW and 

Eqq are the two interactions that exists between the non-bonded atoms and are important 

in the formation of the molecule geometry. Eqq are the electrostatic energy which exists 

when there are polar or partial electrostatic charges bonds in the molecule.14 The main 

difference between MM2 (2nd generation Molecular Mechanics) and MMFF94 (Merck 
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Molecular Force Field) is that the constants used to predict EVdW in MM2 are derived 

from hydrocarbons and is not reliable in calculating the field force for the compounds that 

contain oxygen or in compounds containing nitrogen or sulfur.14 
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Figure 2.1. The promising C11 functionalized CIE analogs. 

 

Previously, utilizing OpenEye® Scientific Software we developed a molecular-modeling 

strategy to design hybrid antiproliferative compounds consists of estrone as a carrier and 

cucurbitacin main pharmacophore 23, 24 α, β- unsaturated ketone side chain that is 

responsible for its anticancer activity. Based on cell viability assays, Cucurbitacin-Inspired 

Estrone compounds were found to have anticancer activity comparable to that of 

cucurbitacins.15 Following that, several modifications have been conducted on these 

compounds led to increase the antiproliferative potency dramatically against many cancer 

cell lines. These modifications include dehydrogenation of C9-C11 in ring C,  and C16-C17  

in ring D, 16  and modifications in ring A including methylation, sulfamoylation and the 

nitric oxide releasing moiety furoxan at C3 which was proofed to have promising 

antiproliferative activity against hepatocellular carcinoma.17,18 The other modifications 

include introducing of many 23, 24 α, β- unsaturated ketone side chains other that  of 
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cucurbitacin side chain through aldol condensation such as para-trifluoromethyl, which 

dramatically increased the anticancer potency.  

These results inspired us to investigate more for novel cucurbitacin-inspired estrone (CIE) 

analogs modified at C11 on ring C of CIE analogs in order to develop more potent 

antiproliferative compounds. In this study different functional groups were introduced 

virtually to C11 of CIE analogs including halogens, hydroxyl, ketone, amine, amide, ethers, 

hydrazine, and methyl ketone functional groups. Our molecular-docking study 

demonstrates that there are three promising functional groups have high calculated affinity 

to pancreatic ductal adenocarcinoma targets such as EGFR, Erk, STAT3, and JAKI. These 

modifications include dehydrogenation of C9-C11 in ring C that showed cucurbitacin-like 

conformation upon docking in Erk active pocket. Another modifications include 

introducing hydroxyl and ketone groups at C11 which show low consensus scores upon 

docking to EGFR ATP binding site.  

2.2. Results and Discussions 

More than 400 analogs were generated using Chem3D with different functional groups at 

rings A, D, and ring C at C11 in order to investigate for the effect of functionalization of 

ring C in binding affinity calculations. Previously, our molecular modeling studies and the 

biological evaluation of CIE analogs indicated that the functionalization of ring C can lead 

to increase in the anticancer activity on melanoma cancer cells.7  

In order to conduct the molecular modeling study, each designed virtual compound was 

energy minimized using MMFF94 application to calculate the most stable conformer. The 

target proteins were downloaded from protein data bank using the following codes from 
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the protein data bank (PDB) database (EGFR PDB ID # 1M17, STAT3 PDB ID #  4ZIA, 

3LJ2, RAF PDB ID # 3OMV, MAPK PDB ID # 2YO8, RAS PDB ID # 4DTS, ERK PDB 

ID # 2OJJ, Akt PDB ID # 3MV5, PI3K PDB ID # 3L54) 

The processing of the proteins was achieved by selecting the required pockets with the 

crystalized original ligand followed by removing of the water molecules and determining 

the margins of the box where it contains the pocket where the designed compounds will be 

screened against. In order to conduct the docking experiment, the designed compounds 

must be compiled onto one file which is achieved by the required command according to 

OPENEYE® instruction manual.101 The file after that was converted into the required 

OEB format using OMEGA® software (one of included softwares). FRED® software 

conduct the exhaustive molecular docking using the required command and VIDA is used 

to analyze the final results where the tested ligands are arranged from the ligand that has 

the highest affinity or the lower consensus score followed by the lower affinity, while the 

compounds that cannot be fitted in the pocket are excluded. The scoring function that are 

mathematical calculations used to predict the binding affinity of the pocket toward certain 

molecule are different from software to another. Generally, the binding affinity are 

calculated by different functions which calculate the difference the total energy of the 

protein-ligand complex and the free energy of each of the compound and the protein 

separately. The scoring functions initially was optimized based on the known ligand 

erlotinib that was crystalized with EGFR ATP binding pocket. Using the following scoring 

functions shapegauss, chemgauss3, oechemscore, screenscore and PLP optimization of the 

docking for erlotinib in its binding pocket was conducted and compared to the published 

data. These scoring functions differ from each other in certain functions while they are 
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similar in some. Table 2.1 indicates the various intermolecular interactions that the scoring 

functions available in FRED® use to rank the compounds during the docking experiment. 

The used scoring functions differ in the used parameters to rank the compounds. For 

example, screenscore and PLP scoring functions show similar parameters which indicate 

that their results are close to each other, while Chemgauss3 is assumed to calculate different 

results due to the presence of the algorithm of desolvation calculation. 16 Based on these 

values, VIDA rank the compounds using the consensus score which represents the total 

energy difference of the complex compared to the binding free energy of the protein and 

ligand before binding. The negative free energy is preferable because it means that the 

protein has a good affinity to the binding pocket of the protein. 

After conducting the molecular docking against EGFR, we used the reported data for 

erlotinib on its crystallization with EGFR that is available in protein data bank to confirm 

the validity of the docking study where it has a hydrogen bonding with methionine 

MET:769: A as it has been reported (figure 2.2).  

Molecular modeling results against EGFR, JAK, STAT3, Raf, Ras, Erk, Akt and PI3K 

proteins, indicate that the dehydrogenation of C9 and C11 and introducing of hydroxyl, 

carbonyl functional groups at C11 with methylation of ring A at C3 lead to high consensus 

scores compared to erlotinib cucurbitacin B, and D which were used as standards for the 

molecular docking. introducing of hydroxyl, carbonyl functional groups at C11 with 

methylation of ring A at C3 Show promising virtual binding affinity towards molecular 

targets such as EGFR and STAT3, while dehydrogenation of C9 and C11  showed a better 

binding affinity to ERK binding pocket compared to the C-11 functionalized analogs 

(Figure 2.1).  
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A. A diagram indicates the amino acid binding to erlotinib through hydrogen bonding.       

      

B. Docking of erlotinib to ATP binding site of EGFR mimic the crystallization reported data.  
Figure 2.2. Comparison between the reported crystallization data and the molecular 

modeling results for erlotinib in EGFR validate the conducted molecular docking 

experiment and the used docking scores. 
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Table 2.1. The interactions that scoring functions of FRED® calculate.16  

Scoring Function Shape H Bonds Metal Aromatic Desolvation 

Shapegauss Yes No No No No 

Chemgauss3 Yes Yes Yes No Yes 

Chemscore Yes Yes Yes No No 

Screenscore Yes Yes Yes No No 

PLP Yes Yes Yes No No 

 

The molecular modeling study shows that most of these compounds are ranked high in 

other molecular targets that are inhibited by previously synthesized CIE analogs such as 

ERK.  

The molecular docking experiment indicate that there are 3 set of compounds 

functionalized at C11 CIE. The first group of compounds which include KA20, KA22, 

KA19, KA23, and KA21 are dehydrogenated at C9 and C11, where the other analogs with 

hydroxyl group and ketone groups which show good binding affinities in ATP binding site 

of EGFR, while the desaturated compounds show a better binding affinity to ERK biding 

pocket.  
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A. The docking of KA2 in ATP binding site of EGFR.  

  

B. The binding of KA9 in ATP Binding pocket of EGFR.  

Figure 2.3. The binding of KA2 and KA9 in ATP binding site of EGFR.  
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An example of C11-hydroxyl compounds are KA1 and KA2, containing para-

trifluoromethyl and cucurbitacin side chains, respectively, which show high binding 

affinities toward ATP binding site of EGFR binding pocket (Figure 2.3A and 2.4). KA2 

shows a hydrogen bonding with proline 770 in chain A of EGFR which occurs with the 

hydroxyl group of the side chain. 

Generally, para-trifluoro side chain indicate a good binding affinity such as KA1 and KA9 

with C11 hydroxyl and ketone, respectively as it is indicated in Figure 2.3.  

From the indicated results, the docking profiles of the two compounds are close to each 

other; however, KA9 show a better fitting in the pocket compared KA1 which show a space 

between the compound and the amino acids.  

One the other hand the third modification that show constant pattern is the desaturated C9-

C11 compounds where they score better than the other compounds including C11 

oxygenated-CIE analogs in Erk and RAS proteins which indicate the importance of this 

modification to be investigated more by modifying it with different side chains. In terms 

of functional groups,        hydroxyl group containing compounds score more higher than 

the compounds desaturated at C9 and C11 and C11-ketone containing analogs.  
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 Figure 2.4. The hydrogen bonding of hydroxyl group of isopropyl alcohol side chain 

of KA2 to proline 770: A in ATP binding site of EGFR. 

 

The docking results of the same library against ERK binding pocket indicate the 

importance of the double bond introduced in C9 and C11 which lead to change the 

conformation of the whole molecule to adopt the structure of cucurbitacin D as indicated 

from figure 2.5 (A and B). For example, phenyl para-nitro side chain adopts the similar 

binding conformation of cuc D in ERK binding pocket as it was indicated previously. This 

conformation is one of the modifications that led to increase the calculated binding affinity 

of CIE analogs in Erk binding pocket. 
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A. The curve-like structure of KA19 in ERK binding pocket.  

 

B. Similarity of KA19 with cuc D structure in fitting into ERK binding pocket.  

Figure 2.5. The similarity of KA19 and cuc D binding in ERK pocket.  
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Table 2.2. The consensus scores obtained from VIDA software for the virtually 

designed CIE analogs docked in different potential molecular targets.  

VIDA 

Name EGFR       STAT3 RAF RAS ERK PI3K 

KA9_57 18 0 183 59 84 41 

KA13_53 25 31 97 49 82 84 

KA11_43 26 19 
 

93 28 60 

KA8_153 31 13 22 56 54 55 

KA3_126 32 60 
 

35 47 87 

KA6_73 35 111 150 47 50 111 

KA1_72 36 79 62 77 37 72 

KA7_143 37 1 162 33 37 68 

KA4_156 42 61 99 82 31 53 

KA14_3 51 78 53 45 98 49 

KA5_62 52 23 78 74 63 84 

KA12_127 54 52 50 58 72 88 

KA20_31 57 75 37 14 44 123 

KA22_55 59 42 15 17 17 126 

KA19_112 60 42 37 9 9 17 

CucD_197 67 100 99 98 106 59 

Iso B_113 73 303 116 80 94 135 

KA10_64 74 62 55 26 75 67 

KA23_55 76 50 70 36 36 32 

IsoCucD 82 100 99 108 82 96 

KA21_29 83 54 252 83 7 104 

Erl_38 126 63 30 100 162 89 
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2.3. Methods of Molecular Modeling 

All computer works were conducted on Gateway Computer with Windows XP and 

OpenEye.6  

2.3.1. Preparation of the virtual ligands  

A virtual library of 400 CIE analogs containing 23, 24 α, β- unsaturated ketone side chain 

assembled in C17 of estrone and different functional groups at C11 with hydroxy-, methoxy-

, at C3 skeleton with  cucurbiracins B and D and the inhibitors of the used receptors as 

standards were generated and energy minimized utilizing Chem3D office 2012, using 

MMFF94 force field function for energy minimization process in order to acquire similar 

structural confirmation mimic that of the existed 3-D structure adopted by the designed 

molecules. 

The energy minimized compounds were compiled in one folder and through OMEGA 

software were converted from .pdb format to .oeb format which is compatible with FRED 

software. Omega produce different conformers of each single compound in the virtual 

library. Some of Omega settings were modified from the default settings such as highest 

number of output conformers 400 (GP-NUM-OUT-CONFS), rejecting conformers that has 

energy differences compare to standards minimum ˃ 0.5 Kcal/mole (GP-ENERGY-

WINDO) and choosing the conformers with lowest energy from the final calculations (GP-

SELECT-RANDOM false). Furthermore, increase the number of free rotatable bonds in 

each ligand to be 30 (GP-MAX-ROTORS) to create different conformers for all molecules 

in our library. 
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2.3.2. Preparation of the molecular targets  

Receptor preparation started by choosing the receptor of interest and processing it using 

make receptor application which convert the .pdb file into 3-D view of the receptor chains 

including its binding ligands and co-factors. Then the next step is pointing to the binding 

pocket that the co-crystalized ligand binds to. Then mode selection window of the 

application will allow the generation of the grid box which should be in specific size of 

60,000 Ao or lower. However, if a large grid box needed to be form (larger than 60.000 

Ao), the box can be divided to two sites, otherwise the docking process will not be 

conducted smoothly. Final step is specifying the pocket shape so the docking program can 

recognize the inner and outer contour. After conducting all the previous steps, the protein 

will be ready for executive molecular docking.     

2.3. 3. Conducting Molecular Docking Process Using FRED 

FRED program locates the 3D area where the algorithmic search conducted and recognize 

the possible shape for docking calculations that is called shape fitting step. The shape fitting 

step determines the 3D area for the ligand best binding pocket avoiding unnecessary 

binding with other components of the protein and at the same time reserving the area for 

optimal interactions. In the last step, both files of the combined ligands and the files of the 

prepared receptor are put into FRED to conduct the molecular docking simulations. Scoring 

functions perspective can be optimized by different available optimization steps including 

torsion optimization, rigid skeleton optimization and hydroxyl group rotamers 

optimization. Consensus scores of the docking study can be acquired by various scoring 

functions at the final stage such as shapegauss, chemgauss3, oechemscore, screenscore and 

PLP. All the functional commands for OpenEye® FRED can be found in electronic manual 
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(link www.eyesopen.com/products). 3D structure of the docked ligands with protein can 

be visualized utilizing OpenEye® VIDA application where 3D picture of the ligand-protein 

complex can be taken.   

 

2.4. Conclusion 

Theoretical modification conducted in C11 indicates the importance of investigation of this 

position experimentally. Different groups show different affinities to the MAPK signaling 

pathway. For instance, C9-C11 unsaturated CIE analogs score better in Erk and RAS 

proteins compared to the other modifications. One of the important challenges in treatment 

of pancreatic ductal adenocarcinoma is KRAS mutation which is responsible about 90% of 

the resistance against gemcitabine. Moreover, Ketone containing compound KA9 is the 

highest scoring compound among CIE analogs in EGFR. However, the hydroxyl 

containing compounds generally score in all the used proteins better than any other C11 

functionalized compounds except Erk and RAS.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



54 

 

 

2.5. References 

1. Gibbs, J. B. J. S., Mechanism-based target identification and drug discovery in 

cancer research. 2000, 287 (5460), 1969-1973. 

2. Dar, A.; Mir, S. J. J. A. B. T., Molecular docking: approaches, types, applications 

and basic challenges. 2017, 8, 2. 

3. Cui, F.;  Yang, K.; Li, Y. J. P. O., Investigate the binding of catechins to trypsin 

using docking and molecular dynamics simulation. 2015, 10 (5), e0125848. 

4. Mills, N., ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, 

Cambridge, MA 02140. www. cambridgesoft. com. Commercial Price: 

1910fordownload, 2150 for CD-ROM; Academic Price: 710fordownload, 800 for CD-

ROM. ACS Publications: 2006. 

5. Berman, H. M.;  Westbrook, J.;  Feng, Z.;  Gilliland, G.;  Bhat, T. N.;  Weissig, 

H.;  Shindyalov, I. N.; Bourne, P. E. J. N. a. r., The protein data bank. 2000, 28 (1), 235-

242. 

6. SCINTIFIC, O., 2018, https://www.eyesopen.com/. 

7. Ahmed, M. S.;  Halaweish, F. T. J. J. o. e. i.; chemistry, m., Cucurbitacins: 

potential candidates targeting mitogen-activated protein kinase pathway for treatment of 

melanoma. 2014, 29 (2), 162-167. 

8. Alsayari, A.;  Kopel, L.;  Ahmed, M. S.;  Pay, A.;  Carlson, T.; Halaweish, F. T. J. 

S., Design, synthesis, and biological evaluation of steroidal analogs as estrogenic/anti-

estrogenic agents. 2017, 118, 32-40. 

https://www.eyesopen.com/


55 

 

9. Ahmed, M. S.;  Kopel, L. C.; Halaweish, F. T. J. C., Structural optimization and 

biological screening of a steroidal scaffold possessing cucurbitacin‐like functionalities as 

B‐raf inhibitors. 2014, 9 (7), 1361-1367. 

10. Cousins, K. R., Computer review of ChemDraw Ultra 12.0. ACS Publications: 

2011. 

11. Stéphan, E.;  Zen, R.;  Authier, L.; Jaouen, G. J. S., Improved synthesis of a 

protected 11-oxoestrone. 1995, 60 (12), 809-811. 

12. Shattuck, T. W. J. D. o. C., Colby College, Waterville, Maine, Colby College 

Molecular Mechanics Tutorial. 2008, 4901. 

13. Lensink, M. F.;  Méndez, R.;  Wodak, S. J. J. P. S., Function,; Bioinformatics, 

Docking and scoring protein complexes: CAPRI 3rd Edition. 2007, 69 (4), 704-718. 

14. Du, X.;  Li, Y.;  Xia, Y.-L.;  Ai, S.-M.;  Liang, J.;  Sang, P.;  Ji, X.-L.; Liu, S.-Q. 

J. I. j. o. m. s., Insights into protein–ligand interactions: mechanisms, models, and 

methods. 2016, 17 (2), 144.  

15. Ahmed, M. S.;  Kopel, L. C.; Halaweish, F. T. J. C., Structural Optimization and 

Biological Screening of a Steroidal Scaffold Possessing Cucurbitacin‐Like 

Functionalities as B‐Raf Inhibitors. 2014, 9 (7), 1361-1367. 

16. OpenEye Scientific Software, I., FRED Fast Rigid Exhaustive Docking OpenEye 

Scientific Software, Inc. : 9 Bisbee Ct, Suite D Santa Fe, NM 87508  2008 

17. Ahmed, M. S.;  Kopel, L. C.; Halaweish, F. T. J. C., Structural Optimization and 

Biological Screening of a Steroidal Scaffold Possessing Cucurbitacin‐Like 

Functionalities as B‐Raf Inhibitors. 2014, 9 (7), 1361-1367. 



56 

 

18. Mahnashi, M. H., Design, Synthesis and Biological Screening of Novel 

Cucsinspired Estrone Analogues Towards Treatment of Hepatocellular Carcinoma. 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

CHAPTER THREE 

Synthesis and Biological Activity of 9, 11 dehydrogenated Cucurbitacin Inspired 

Estrone Analogs Targeting Pancreatic Cancer 

 

Abstract 

Pancreatic cancer is expected to be the second leading cause of death in Untied States by 

2030. The standard treatment is Gemcitabine as a mono-chemotherapy; this is currently 

used in combination with other anticancer drugs. However, the survival rate range after 

treatment is low compared to other cancer types, which suggests an urgent need to search 

for new treatment agents. Recently, the triterpenoid natural product, cucurbitacin B, 

showed promising antiproliferative activity against human pancreatic cancer cells. This 

activity involved decreasing the expression levels of pSTAT3 and pEGFR in a dose- and 

time-dependent manner by inducing cell apoptosis via inhibition of STAT3 

phosphorylation. Additionally, in an in vivo study, it decreased the pancreatic tumor size 

in combination with gemcitabine. Due to the low yield of cucurbitacin from its natural 

sources and the challenging chemical synthesis of its highly stereochemical complexity, 

we developed a novel strategy that facilitates the use of cucurbitacin pharmacophores with 

estrone as a scaffold. We virtually installed the cucurbitacin pharmacophores on estrone, 

then used molecular modeling software to identify the best candidates for chemical 

synthesis and in-vivo study. The molecular docking study showed promising binding 

affinity for the cucurbitacin-inspired estrone analogues (CIEAs) unsaturated in C9 and C11; 

this group of compounds show better calculated affinity than the saturated analogs, due to 

cis conformation at the juncture of rings B and C. Moreover, the molecular docking study 

displayed similar conformation for all the analogs upon docking in the EGFR and Erk 
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binding sites. Based on that result, 8 analogs were synthesized and biologically screened 

against PANC-I and AsPC-I pancreatic cancer cell lines. Two analogs showed promising 

IC50 values compared to cucurbitacin B, so they were further studied through in-cell 

western analysis to confirm the inhibition of pErk overexpression as the mechanism of 

action. KA19 and KA20 inhibited the phosphorylation of Erk and the inhibition increase 

up on increasing the treatment concentration, which confirmed the theoretical result 

obtained from the previously conducted molecular modeling study.  
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3.1. Introduction 

Pancreatic adenocarcinoma (PDAC) is one of the leading causes of death in both men and 

women. The understanding of its pathology is advancing, since more cases are now found 

in Europe, North America and Australia. In the United States PDAC is expected to be the 

second leading cause of death by 2030.1,2 Pancreatic cancer is the only cancer type that has 

a stable rate of mortality in both men and women, reported to be 3.5% for women in 2017.3 

The reason for the high mortality rate for pancreatic cancer is the absence of biomarkers 

with to detect the disease in its earlier stages.4 The risk factors for pancreatic cancer include 

type II diabetes mellitus, smoking, and obesity.5,6 Studies have reported that an increase in 

the waist to hip ratio increases the risk of PDAC by 70%. Inversely, a decrease in weight 

and exercise can reduce the PDAC risk.7 In addition to the late diagnosis for pancreatic 

cancer, the anti-pancreatic cancer drug discovery process has been slow compared to other 

cancer types.8 The nucleoside analog gemcitabine is the drug of choice for the treatment of 

PDAC, either as a monotherapy or in combination with other anticancer drugs such as 

cisplatin. The one-year survival rate is 18% for patients treated with gemcitabine, 

compared with 2% for the previously used anti-pancreatic cancer drug 5-fluorouracil (5-

FU).9 Recently, it was reported that a combination of gemcitabine and capecitabine 

increased the 25-month survival rate from 22.7-27.9 to 95% in terms of 28 months.10 After 

its uptake by human nucleoside transporters (hNTs), gemcitabine is metabolized to 2՛,2՛-

difluoro-2՛-deoxycytidine triphosphate before it is phosphorylated by deoxycytidine kinase 

and pyrimidine nucleoside monophosphate kinase to produce gemcitabine diphosphate 

(dFdCDP). At this point, it is incorporated into the DNA chain biosynthesis by DNA 

polymerase and results in its termination.11 However, due to the numerous steps that 
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gemcitabine has to pass through to reach its target, several mechanisms of resistance have 

been adopted by cancer cells to avoid DNA termination. These mechanisms include lack 

of transporters and phosphorylation enzymes, along with overexpression of gemcitabine 

deactivating enzymes, such as cytidine deaminase, that converts gemcitabine into its 

inactive metabolite, dFdU.12  

The low patient survival rate compared to other cancer types has inspired researchers to 

search for novel, more effective anti-pancreatic cancer drugs. Overexpressed proteins such 

as pEGFR and pERK, which leads to effects such as tumor growth, overexpression of fatty 

acid synthase enzyme and a disturbance in lipid metabolism and cell migration have been 

reported in pancreatic cancer patients.13 

The natural anticancer triterpenoid, cucurbitacin B, in combination with gemcitabine at 

low doses, led to the inhibition of pancreatic tumor growth.14 Recent studies have indicated 

that cucurbitacin works mainly by inhibiting the JAK-STAT and MAPK pathways, which 

play an important role in tumor growth and survival.14 

Among the promising, new compounds that demonstrate significant inhibition of cancer 

growth and the MAPK pathway are the semisynthetic estrone analogs that mimic 

cucurbitacin compounds. Cucurbitacin-inspired estrone (CIE) analogs were initially 

designed based on molecular modeling against cucurbitacin's potential targets, such as 

EGFR and ERK proteins.15One of the reported targets for CIE analogs is epidermal growth 

factor receptor (EGFR), where CIE analogs inhibit its phosphorylation, along with that of 

extracellular signal-regulated kinase (ERK).16  
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A recent target-based drug discovery has developed more potent CIE analogs targeting 

different cancer types. Molecular modeling studies have been utilized to synthesize three 

major groups of compounds so far. The first group contain a 23, 24 α, β- unsaturated ketone 

side chain that mimics cuc compounds.17 Additional compounds were designed based on 

molecular modeling results and verified biologically by replacing the cuc side chain with 

different side chains that improved the activity of these compounds against hepatocellular 

carcinomas, both resistant and non-resistant HepG2.18,19 The second group included the 

dehydrogenation of C16 and C17, which dramatically increased its activity compared to the 

previously synthesized analogs. The third modification to this group was the synthesis of 

CIE analogs that contain a sulfamoyl moiety instead of methyl at C3; that modification 

showed promising anticancer activity.20 The dramatically increased activity of this group 

was attributed to the ability of sulfamoyl-modified compounds to bypass the first phase 

metabolism, as noted in a study that showed anticancer activity on a 3-sulfamoyl estrone.21 

 

3.2. Molecular Modeling Design Strategy 

A molecular modeling study using the biological screening data of the first group of 

compounds indicated that the dehydrogenation of C9 and C11 cucurbitacin-inspired estrone 

analogs (CIEA’s) increased the anticancer activity of MSA-8 to 12.2 µM, compared to that 

of MSA-7, which is saturated at the previously mentioned positions22 (Figure 3.1). Thus, 

this modification shows great promise for improving the activity of CIE analogs. This 

increase in anticancer activity is attributed to the configuration of the compound, changing 

ring B from the chair to half-chair configuration. Moreover, the substitution of a 23, 24 α, 

β- unsaturated ketone side chain was reported to increase anticancer activity; however, the 
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effect of substituting this side chain with a different side chain is yet to be investigated in 

depth. The modification of ring A resulted in blocking the estrogenic activity of the CIE 

analogs.22  

Considering the findings from the biological studies, as well as the molecular docking 

studies, different CIE analogs were virtually designed with various substituted side chains 

and modeled against CIE potential analogs using OpenEye® scientific software. The study 

used novel designed CIE analogs with an alkene group at C9 and C11 and various 23, 24 α, 

β- unsaturated ketone side chains with lower consensus scores and show promising binding 

calculations against potential molecular targets of pancreatic cancer, including EGFR, 

ERK, STAT3, JAK2, P53, B-RAF. 

 

 

                

Figure 3.1. The dehydrogenation of MSA-8 at C9 and C11 increased the anticancer 

activity of MSA-7 due to a change in the configuration of the molecule.20 
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3.3. Results and Discussions 

3.3.1. In-silico molecular modeling 

A virtual library of CIE analogs was designed to mimic cucurbitacin compounds with 

different functional groups in positions 9 and 11, and different enon side chains at position 

17. Cucurbitacins B and D, with erlotinib and NCX-1000 were used as standards and 

designed through in ChemDraw software, followed by energy minimization by Chem3D 

using the force field MMFF94. The catalytic domains for EGFR and ERK proteins were 

downloaded from the protein data bank using their PDB codes, 1M17 and 2OJJ, 

respectively.23 Various OpenEye® software applications were used to perform the 

molecular modeling experiment. OMEGA application generated different conformers, 

while the docking was conducted using FRED software. The output of the molecular 

modeling process was visualized using VIDA application, which ranked the compounds 

based on their consensus scores, where the lower score indicates a better binding affinity 

of the compound toward an active site of the protein that was processed and determined 

using MAKE RECEPTOR®. Based on this process, 8 compounds were selected to be 

synthesized and biologically tested against PANC-I and AsPC-I pancreatic cancer cell 

lines. All the selected ligands (Figure 3.3) showed better binding than the previously 

mentioned standards, based on consensus score calculations, (Table 3.1). The molecular 

modeling process was validated by using the binding profile of the standard erlotinib to 

EGFR. Among the high scoring ligands, KA19 showed promising binding affinity to ERK 

binding site where it adopts the same profile as cuc D binding to the same pocket. This 

explains the increased anticancer potency of this group compared to the previously 

synthesized CIE analogs (Figure 2.3 A, B).  
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A. KA19 docking profile in ERK binding pocket.  

              

B. KA19 shows a cuc-like docking profile in the Erk binding pocket.  

Figure 2.3. The docking profile of the highest scoring CIE analog in Erk docking.  
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Figure 3.3. The structures of the promising C9-C11 dehydrogenated cucurbitacin-

inspired analogs.  
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Table 3.1. The consensus scores of the docked C9-C11 dehydrogenated CIE analogs on 

Erk binding pocket. 

VIDA Name PLP Chemgauss3 OEChemscore Screenscore 

Consensus 

Score 

KA19_59 

-

57.9087 -64.6093 -46.7819 -140.123 9 

KA17_117 

-

61.5173 -60.1572 -44.8431 -143.464 14 

KA22_64 

-

53.9205 -62.8396 -44.9295 -126.344 17 

KA23_66 

-

52.4111 -57.3973 -44.7099 -117.968 36 

KA20_37 

-

55.5477 -51.1163 -41.5947 -125.192 44 

KA18_182 

-

45.3341 -59.6018 -45.5775 -104.68 47 

ISo D_68 

-

38.3577 -61.9525 -42.9418 -87.7898 70 

Cucurbitacin I_22 

-

35.6603 -58.9337 -41.6845 -99.3021 76 

KA21_37 

-

41.3433 -37.2141 -42.7684 -105.011 76 

Iso B_88 

-

39.4889 -28.2737 -43.2004 -104.984 80 

KA26_9 

-

38.9837 -39.097 -33.543 -114.729 90 

KA25_28 

-

29.1705 -42.2166 -35.7163 -101.308 97 

CucD_53 

-

36.6245 -36.1404 -39.0127 -97.0475 98 

CucurbitacinE_21 

-

25.1026 -42.2368 -33.4445 -83.312 108 
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3.3.2. Chemical synthesis   

As described in Scheme 1, the key intermediate C9-C11 desaturated α-hydroxy methyl 

ketone (KI9) was synthesized from estrone in 10 steps. Intermediate KI9 was used to 

synthesize the target compounds by installing the required side chains at C21. The key 

intermediate synthesis began by protecting the estrone phenolic ring A at C3 with tert-

butyldimethylsilyl chloride (TBSCl). Wittig reaction was carried out on the estrone TBS 

ether (KI1) on ring D to produce alkene intermediate (KI2). Hydroboration oxidation was 

used to obtain KI3 using 9-borabicyclo [3.3.1] nonane (9-BBN) at 60 ℃, followed by 

oxidation using PCC to produce intermediate KI4.   

The reaction of (KI4) with TMSCN in DCM, in the presence of a catalytic amount of zinc 

iodide, resulted in nitrile intermediate KI5 at an 84% yield. Intermediate KI5 was moved 

to the next reaction where the nucleophilic addition of MeLi was carried out in ether at 0 

℃ to generate imine, which was converted into α-hydroxy methyl ketones by the addition 

of glacial acetic acid. After the separation of intermediate KI6, it was deprotected using 

TBAF to yield (KI7). The desaturation of C9 and C11 was carried out at 45℃ in the presence 

of DDQ in methanol. This was followed by the methylation of crude extract KI8 by MeI 

in acetonitrile in the presence of CsCO3 to produce the key intermediate (KI9).  

In order to synthesize the required product at C21, the key intermediate was reacted with a 

suitable aldehyde, as indicated in Scheme 1, by conducting aldol condensation in THF in 

the presence of NaOH. The synthesized analogs include aromatic aldehydes with different 

substituents at the para position of the benzene ring. Moreover, the CIE analogs, KA23 

and KA24, contained the heterocyclic rings 4-chloro-furan and 4-methylthiophen. 
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Although the yield of the DDQ reaction with intermediate KI8 was 53%, which is lower 

than that of estrone (80%), Reaction DDQ with KI8 was preferred to avoid the side reaction 

that occurred upon the reaction of C9-C11 dehydrogenated estrone with 9-BBN after Wittig 

product. One of the challenges is the separation of the final products, as they have an Rf 

value close to key intermediate KI9. 

 

Scheme 1. The synthetic route for KA17-KA24. 
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3.3.3. Biological evaluation 

In order to evaluate the antiproliferative activity against pancreatic ductal adenocarcinoma, 

MTT assay was conducted against two pancreatic cancer cell lines PANC-I and AsPC-1. 

Five concentrations ranging from 3.125 µM to 50 µM quadruplicate was treated from each 

compounds in 10,000 cells/ well with –ve control wells that contain 0.05 % of DMSO. 

Based on the absorbance, the percent of the viable cells was calculated after normalization 

by the number of cells in the wells containing the –ve control.  After treatment of each 

compounds for 48 hrs., KA19 and KA20 containing phenyl para-nitro and para-trifluoro 

side chains showed promising antiproliferative activities with IC50s of 11.23 and 7.674 μM, 

respectively, upon treatment of PANC-I and with IC50 values of 11.68 and 9.67 μM upon 

treatment against AsPC-I (Table 2.3).  

Table 3.2. IC50 values of the synthesized CIE analogs on PANC-1 and AsPC-I cell 

lines. 

Compound      PANC-I (μM)      AsPC-I (μM) 

                  KA17 NA NA 

                 KA18 NA NA 

                 KA19      11.22±0.38        11.68±1.1  

     KA20      7.674 ±1.34       9.674±0.68 

     KA21 NA NA 

     KA23 NA NA 

     KA24 NA NA 

          Gemcitabine >100 >100 
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These promising results are correlated to some extent with the molecular docking data in 

which Para-trifluoromethyl and para-nitro scored higher than various side chains, as well 

as the cucurbitacin compounds previously mentioned in the docking experiments. In Erk 

molecular modeling, KA19 showed a lower consensus score than KA20. However, when 

focusing on molecular docking against multiple targets, such as EGFR, STAT3, RAF, 

RAS, and PI3K, KA20 scored higher than KA19 (Table 2.2 in chapter 2), which can be 

correlated with the results obtained by MTT cell viability assay.  

Previous published results by our group indicate that Erk phosphorylation is inhibited by 

CIE analogs. In order to confirm whether this is the same mechanism of action adopted by 

KA19 and KA20 on pancreatic cancer cells, in-cell western analysis was conducted on 

PANC-I cells. During this test, the cells were treated with four different concentrations of 

each compound (¼, ½, 1, and 2 of IC50 values). In the case of KA19, significant inhibition 

of Erk phosphorylation was noted, compared to the negative control and the lower 

concentrations of the same compound. Similar results were obtained with KA20, although 

less inhibition was noted than with KA19.  The anticancer activity of KA19 and KA20 act 

through inhibition of the pErk activation, as indicated in Figures 3.4 and 3.5, based on in-

cell western analysis.  
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A.  

   
B.  

 

 

Figure 3.4. In-Cell Western analysis of potential KA19 targets. (A) ICW plate image 

(p-Erk intensity in 800 channels was normalized to total Erk intensity in 

700channel) (B) Analysis of Erk phosphorylation in PANC-I cells.  
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A.  

   
B.  

Figure 3.5. In-Cell Western analysis of potential KA20 targets. (A) ICW plate image 

(p-Erk intensity in 800 channels was normalized to total Erk intensity in 

700channel) (B) Analysis of Erk phosphorylation in PANC-I cells.  
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3.4. MATERIAL AND METHODS 

 

3.4.1 Chemistry experiment section 

General 

All chemicals and solvents (ACS grades) were purchased from Fisher Scientific or Sigma 

Aldrich and used without any additional treatment. Before conducting the experiments, all 

the glassware and tools were cleaned, washed and dried in a 120 °C oven, and before 

conducting the reaction according to the mentioned conditions, closing and introducing 

nitrogen gas to the reaction vessel for all the reaction period was performed, except when 

mentioned during the experiment. TLC plates (Silica gel, 0.2-mm thick, polyester backed, 

Sorbtech) were used to analyze the reaction conditions under UV254. All synthetic 

intermediates and final compounds were purified using column chromatography packed 

with silica gel 60A, 40-63 μm.  1H and 13C NMR spectra were carried out using Bruker 

AVANCE-400 MHZ and 600 MHZ NMR spectrometers, while the solvents used for the 

compounds are CDCl3. NMR chemical shifts were presented in 𝛿(PPM) using residual 

solvent peaks as standards (CDCl3, 7.26 (1H), 77.16 (13C)). High resolution mass (HRMS) 

was performed using a Thermofinnigan MAT 95XL mass spectrometer at the Buffalo mass 

spectroscopy facility. X-ray crystallography was conducted at the University of South 

Dakota on KI 9 using a Bruker APEXᴵᴵ diffractometer.  
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KII 

        

 

 

 

To a stirred solution of estrone (5 g, 18.5 mmol) in DMF (75 ml), imidazole (3.5 g, 50.85 

mmol) and tert-butyldimethylsilyl chloride (TBSCl) (4.2 g, 27.75 mmol) were added. The 

reaction was stirred overnight at room temperature. The result mixture were evaporated to 

provide the crude extract that was purified using column chromatography and eluted using 

80 % hexane: ethyl acetate produce the white solid estrone tert-butyldimethylsilyl ether 

KI1 (6.75 g, 95%).18 

 

 1H NMR (400 MHz, Chloroform-d) δ 6.91 (dd, J = 8.6, 1.0 Hz, 1H), 6.47 – 6.33 (m, 2H), 

2.72 – 2.59 (m, 3H), 2.28 (dd, J = 18.7, 8.7 Hz, 1H), 2.16 (dt, J = 14.0, 3.7 Hz, 1H), 2.08 

– 1.65 (m, 5H), 1.48 – 1.14 (m, 7H), 0.79 (s, 9H), 0.75 – 0.65 (m, 4H), 0.00 (s, 6H). 

13C NMR (101 MHz, Chloroform-d) δ 219.97, 153.47, 137.57, 132.47, 126.17, 120.02, 

117.35, 50.44, 47.98, 44.04, 38.34, 35.87, 31.65, 29.54, 26.62, 25.85 21.63, 18.20, 13.90, 

-4.30. 
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KI 2 

 

 

 

 

To prepare the ylide, (4 g, 35.9 mmol) of potassium tert-butoxide was added to a solution 

of ethyl triphenylphosphonium bromide (18 g, 38.52 mmol) in THF (33.83 ml) at room 

temperature to result in an orange mixture that was stirred for 1 hr. A solution of KI 1 (6.5g, 

16.9 mmol) in THF (15 ml) was added to the prepared ylide and the orange mixture was 

stirred for 6 hrs. at 70 0C. After that, the reaction mixture was allowed to cool to room 

temperature and quenched with saturated ammonium chloride (NH4Cl) solution, followed 

by extraction of the aqueous layer by ethyl acetate (3×100 ml), dried over sodium sulfate 

anhydrous (Na2SO4), filtrated and concentrated. The crude extract was purified by silica 

gel column chromatography 80 % hexane: ethyl acetate) to obtain KI 2 (4.8 g, 82%).18 

1H NMR (400 MHz, CDCl3) δ 7.06 (d, J = 8.4 Hz, 1H), 6.56 (dd, J = 8.4, 2.5 Hz, 1H), 

6.50 (d, J = 2.4 Hz, 1H), 5.10 (dtd, J = 7.1, 5.1, 2.1 Hz, 1H), 2.87 – 2.69 (m, 2H), 2.45 – 

2.11 (m, 6H), 1.93 – 1.81 (m, 1H), 1.57 – 1.16 (m, 9H), 0.93 (s, 10H), 0.13 (d, J = 3.1 Hz, 

6H).  

13C NMR (101 MHz, Chloroform-d) δ 153.33, 150.30, 137.87, 133.32, 126.11, 126.11, 

119.99, 117.18, 113.45, 55.33, 44.63, 43.93, 38.40, 37.32, 31.51, 29.77, 27.66, 26.96, 

25.80, 24.24, 18.24, 17.03, 13.23, -4.31. 



76 

 

KI3 

 

 

To the purified mixture of KI 2 (4.8 g, 12.184 mmol), 9-BBN (0.5 M in THF, 107.4 ml, 

53.72 mmol) was added at room temperature. The reaction mixture was stirred for 18 hrs., 

then cooled down to 0 0C and 200 ml of 10%NaOH and 200 ml of 30% H2O2 were added 

drop wisely. The reaction mixture was stirred for 1 hr. at 0 0C followed by extraction by 

ethyl acetate (3×100 ml) and the mixture was washed with 100 ml of saturated sodium 

thiosulfate, dried over sodium sulfate anhydrous (Na2SO4) and concentrated. Column 

chromatography was used to purify the crude extract with 70 % hexane: ethyl acetate to 

provide alcohol KI 3 (3.7 g, 75 %).18 

1H NMR (400 MHz, CDCl3) δ 6.92 (t, J = 6.9 Hz, 1H), 6.41 (dd, J = 8.4, 2.5 Hz, 1H), 

6.36 (d, J = 2.3 Hz, 1H), 3.63 (ddd, J = 12.0, 8.2, 3.8 Hz, 1H), 3.52 (tt, J = 12.3, 6.3 Hz, 

1H), 2.73 – 2.54 (m, 2H), 2.25 – 1.93 (m, 5H), 1.79 (ddd, J = 15.0, 11.4, 7.7 Hz, 3H), 

1.71 – 1.58 (m, 5H), 1.50 (dddd, J = 15.6, 11.1, 4.9, 2.0 Hz, 7H), 1.11 – 1.02 (m, 5H), 

0.79 (s, 9H), 0.51 (s, 17H), -0.00 (s, 6H). 

13C NMR (101 MHz, Chloroform-d) δ 153.25, 137.82, 133.23, 126.03, 119.95, 117.12, 

72.01, 58.59, 55.38, 43.79, 42.03, 38.41, 34.66, 27.47, 26.42, 25.75, 23.59, 22.76, 18.17, 

12.60, -4.36. 
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KI 4 

 

 

KI 3 (3.7 g, 9 mmol) was dissolved in 50 ml of dried DCM, followed by addition of 40 A 

powdered molecular sieves (3.5 g), and 2.9 g, 43 mmol of sodium acetate (NaOAc) and 

pyridinium chlorochromate (PCC) (3.87 g, 17.8 mmol). The reaction mixture was stirred 

at room temperature for 5 hrs. The crude extract was filtered over a silica gel pad using 

ethyl acetate to elute the material and trap the pyridinium. The collected material was then 

concentrated and the crude extract was purified by column chromatography (80 % hexane: 

ethyl acetate) to yield ketone KI 4 (2.85 g, 76 %).18 

1H NMR (400 MHz, CDCl3) δ 6.92 (t, J = 6.9 Hz, 8H), 6.41 (dd, J = 8.4, 2.5 Hz, 9H), 

6.36 (d, J = 2.3 Hz, 8H), 3.63 (ddd, J = 12.0, 8.2, 3.8 Hz, 10H), 3.52 (tt, J = 12.3, 6.3 Hz, 

9H), 2.62 (t, J = 7.9 Hz, 15H), 2.23 – 1.94 (m, 44H), 1.79 (ddd, J = 15.0, 11.4, 7.7 Hz, 

21H), 1.71 – 1.59 (m, 38H), 1.55 – 1.42 (m, 62H), 1.06 (t, J = 4.9 Hz, 33H), 0.79 (s, 72H), 

0.51 (s, 20H), -0.00 (s, 51H), -0.10 (d, J = 3.0 Hz, 6H) 

13C NMR (101 MHz, Chloroform-d) δ 209.31, 153.36, 137.72, 132.80, 126.05, 119.99, 

117.20, 67.01, 63.81, 55.69, 44.38, 43.71, 39.01, 38.70, 31.49, 29.64, 27.74, 26.62, 25.75, 

24.16, 22.88, 18.17, 13.45, -4.35. 
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KI5 

 

 

 

To a stirred solution of KI 4 (2.85 g, 6.8 mmol) in DCM (20 ml), zinc iodide (ZnI2) (0.07 

g, 0.2 mmol) was added, followed by addition of (0.85 g, 8.8 mmole) of trimethylsilyl 

cyanide (TMSCN) and the mixture was stirred at room temperature for 2 hrs. The reaction 

was quenched with water and extracted with DCM (3 X 30 ml), dried over sodium sulfate 

anhydrous (Na2SO4) and concentrated. Column chromatography was used to purify the 

crude material (90 % hexane :ethyl acetate) to yield KI 5 (2.8 g, 84 %).18  

1H NMR (400 MHz, CDCl3) δ 6.95 (d, J = 8.5 Hz, 8H), 6.45 (dd, J = 8.3, 2.3 Hz, 10H), 

6.40 (s, 8H), 2.80 – 2.58 (m, 20H), 2.16 – 1.96 (m, 30H), 1.77 – 1.67 (m, 20H), 1.68 – 1.55 

(m, 41H), 1.39 – 1.24 (m, 32H), 1.25 – 1.11 (m, 43H), 1.11 – 1.02 (m, 15H), 0.84 (s, 82H), 

0.13 (s, 49H), 0.05 (s, 33H). 

13C NMR (101 MHz, Chloroform-d) δ 151.69, 136.09, 131.52, 124.45, 120.47, 120.47, 

118.33, 115.57, 70.79, 58.92, 53.30, 42.25, 42.16, 38.41, 36.52, 29.21, 28.02, 26.13, 24.87, 

24.16, 23.26, 22.26, 16.58, 11.23, 0.00, 0.23, -5.95. 
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KI 6 

 

   

 

 

 A solution of KI 5 (5.6  g, 11.2 mmole) in ether (34 ml) was stirred at 00 C, and (1.6 M in 

ether, 21 ml, 34 mmole) of methyl lithium (MeLi) was added in drop wisely and the 

reaction mixture was stirred for 2 hrs. at 0 0C. After that, reaction was quenched by adding 

glacial acetic acid (4.2 ml) at 0 0C and stirred for 30 min. Saturated sodium bicarbonate 

solution was added to neutralize the acidic mixture. The mixture was extracted with ethyl 

acetate (3X50ml) and dried with sodium sulfate anhydrous (Na2SO4) and concentrated. 

The resulting mixture were purified by silica gel column chromatography using 95 % 

hexane: ethyl acetate to result in α-hydroxyl ketone 6 (3.07 g, 59 %).18 

1H NMR (400 MHz, CDCl3) δ 6.92 (d, J = 8.5 Hz, 1H), 6.42 (dd, J = 8.4, 2.6 Hz, 1H), 

6.36 (d, J = 2.5 Hz, 1H), 3.79 (s, 1H), 2.69 – 2.54 (m, 2H), 2.12 – 2.05 (m, 2H), 2.02 (s, 

3H), 1.71 – 1.59 (m, 2H), 1.53 (ddd, J = 14.6, 8.6, 4.6 Hz, 2H), 1.45 – 1.33 (m, 4H), 1.28 

(s, 3H), 0.81 – 0.79 (m, 8H), 0.75 (s, 3H), 0.08 – -0.04 (m, 6H). 

13C NMR (101 MHz, Chloroform-d) δ 211.69, 153.32, 137.78, 133.10, 126.05, 119.99, 

117.18, 80.10, 55.79, 55.15, 44.25, 43.88, 40.73, 38.08, 31.65 , 25.74, 24.62, 23.73, 23.24, 

22.70, 18.18, 13.54, -4.38. 
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KI7 and KI8 

 

 

       

 

Tetra-butyl ammonium fluoride (TBAF) (14.3 ml, 14.13 mmol) was added to a stirred 

solution of KI 6 (2.08 g, 4.56 mmol) in 70.7 THF and stirred for 48 hrs. before the 

reaction was quenched by the addition of an NH4Cl solution. The aqueous layer was 

extracted by ethyl acetate (3 X 50 ml). The organic layer was dried using Na2SO4, 

concentrated in vacuo.  

The crude extract was dissolved in 152 ml of methanol at a temperature of 45 0C, 

followed by addition of 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) (1.6 g, 

6.83 mmol). The reaction was stirred for 5 hrs. followed by evaporation of methanol 

using vacuu. The crude extract was moved to the next reaction. 
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KI9 

 

       

 

 

 

The crude material was dissolved in acetonitrile (90 ml), followed by the addition of 

crushed granulate potassium hydroxide (4.032 g, 86.46 mmole). Then, methyl iodide (2.24 

g, 35.94 mmole) was added to the reaction mixture. The reaction was stirred at room 

temperature for 2h and quenched by the addition of water (400 ml) and stirred for 15 

minutes. Ethyl Acetate (3 ˣ100 ml) was used to extract the aqueous layer, and the organic 

layer was dried over sodium sulfate anhydrous and concentrated in vacuo to obtain the dry 

organic portion. Next, a silica gel column was used to purify the crude material using 9:1 

(hexane: ethyl acetate) to provide KI 9 (4.3 g, 71.33 %) as a white material.  

1H NMR (400 MHz, CDCl3) δ 7.53 (d, J= 8.81 Hz, 1H, -CH (1)), 6.72 (dd, J= 8.8 

Hz, 2.7, 1H), 6.59 (d, J= 2.77 Hz, 1H), 6.09 (m, 1H), 4 (s, 

1H), 3.79 (s, 3H), 2.95-2.75 (m, 2H), 2.36-2.11 (m, 2H), 2.23 (s,2H), 

1.94-1.15 (m,10H), 1.48 (s,3H), 0.94 (s,3H) 

 

13C NMR (101 MHz, Chloroform-d) δ 211.8, 158.3, 137.5, 134.9, 127.3, 125.1, 117.5, 

113.2,112.6,80.0, 55.2, 52.7, 43.06, 42.3, 38.1, 30.0, 28.6, 24.7, 24.3, 23.3, 22.2, 13.6. 
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KA17 

 

 

1H NMR (600 MHz, CDCl3) δ 7.84 (d, J = 15.5 Hz, 1H), 7.56 (dd, J = 12.5, 8.7 Hz, 3H), 

7.28 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 15.6 Hz, 1H), 6.76 (dd, J = 8.8, 2.7 Hz, 1H), 6.63 (d, 

J = 2.4 Hz, 1H), 6.14 (s, 1H), 3.82 (s, 3H), 2.90 (d, J = 13.2 Hz, 1H), 2.84 (d, J = 17.2 Hz, 

1H), 2.60 (d, J = 16.8 Hz, 1H), 2.55 (s, 3H), 2.48 (d, J = 17.8 Hz, 1H), 2.36 (s, 1H), 2.20 

(s, 1H), 2.09 (s, 1H), 2.03 (s, 1H), 2.00 – 1.96 (m, 1H), 1.84 (s, 1H), 1.70 (s, 2H), 1.59 (s, 

3H), 1.54 – 1.47 (m, 2H), 1.01 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 201.88, 158.35, 145.30, 143.16, 137.56, 134.99, 130.67, 

129.05, 127.41, 125.89, 125.13, 117.62, 117.12, 113.27, 112.68, 78.98, 55.26, 52.75, 

43.11, 42.37, 38.21, 31.95, 30.09, 29.73, 29.39, 28.63, 24.75, 24.12, 22.72, 22.20, 15.08, 

14.15, 13.78. 
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KA18 

 

 

 

1H NMR (600 MHz, CDCl3) δ 7.86 (d, J = 15.5 Hz, 1H), 7.60 (t, J = 5.8 Hz, 2H), 7.58 

(d, J = 8.8 Hz, 1H), 6.97 (d, J = 1.9 Hz, 1H), 6.96 (d, J = 1.8 Hz, 1H), 6.95 – 6.92 (m, 

1H), 6.76 (dd, J = 8.7, 2.7 Hz, 1H), 6.63 (d, J = 2.5 Hz, 1H), 6.16 – 6.13 (m, 1H), 4.32 (s, 

1H), 3.89 (s, 3H), 3.82 (s, 3H), 2.95 – 2.81 (m, 2H), 2.61 (ddd, J = 17.4, 5.4, 1.7 Hz, 1H), 

2.48 (d, J = 17.6 Hz, 1H), 2.13 – 1.96 (m, 3H), 1.84 (ddd, J = 19.4, 11.8, 5.2 Hz, 1H), 

1.70 (ddd, J = 16.0, 12.9, 4.0 Hz, 1H), 1.63 (d, J = 8.4 Hz, 2H), 1.58 (d, J = 8.3 Hz, 3H), 

1.54 – 1.48 (m, 1H), 1.37 (dddd, J = 19.7, 13.8, 11.8, 4.6 Hz, 4H), 1.01 (d, J = 6.8 Hz, 

3H). 

13C NMR (151 MHz, CDCl3) δ 201.88, 162.06, 158.34, 145.64, 137.56, 134.98, 130.55, 

127.43, 126.99, 125.13, 117.67, 115.84, 114.48, 113.28, 112.67, 78.89, 55.48, 55.32, 

55.26, 52.76, 43.12, 42.35, 38.22, 30.10, 28.63, 24.75, 24.17, 22.19, 13.77. 
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KA19 

 

 

 

 

 

1H NMR (600 MHz, Acetone) δ 8.32 – 8.29 (m, 20H), 8.11 – 8.07 (m, 21H), 7.85 (dd, J 

= 15.7, 7.4 Hz, 11H), 7.81 – 7.77 (m, 10H), 7.56 (d, J = 8.8 Hz, 7H), 6.73 (dd, J = 8.6, 2.7 

Hz, 10H), 6.64 (d, J = 2.7 Hz, 7H), 6.14 (td, J = 3.9, 1.7 Hz, 7H), 3.78 (s, 28H), 2.90 (s, 

28H), 2.87 – 2.78 (m, 21H), 2.69 (dt, J = 20.0, 7.6 Hz, 6H), 2.55 – 2.52 (m, 16H), 2.43 

(ddd, J = 19.2, 14.5, 6.5 Hz, 8H), 2.27 – 2.21 (m, 11H), 2.17 (dtd, J = 13.8, 7.1, 2.1 Hz, 

5H), 2.07 (dt, J = 4.4, 2.2 Hz, 24H), 2.05 – 2.00 (m, 14H), 1.87 – 1.74 (m, 24H), 1.60 (d, 

J = 4.1 Hz, 29H), 1.52 – 1.44 (m, 12H), 1.37 – 1.27 (m, 32H), 0.99 (s, 21H). 

13C NMR (151 MHz, Acetone) δ 203.21, 159.46, 149.56, 142.26, 142.01, 138.25, 

135.77, 130.56, 125.97, 125.69, 124.82, 124.68, 118.31, 114.18, 113.94, 113.48, 111.58, 

80.34, 67.48, 55.60, 55.42, 53.45, 43.39, 42.95, 39.15, 30.68, 30.26, 30.13, 30.01, 29.88, 

29.75, 29.62, 29.49, 25.45, 24.45, 22.95, 14.35. 
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KA20 

 

 

 

 

1H NMR (600 MHz, CDCl3) δ 8.29 (dd, J = 9.1, 2.0 Hz, 2H), 7.88 (d, J = 15.7 Hz, 1H), 

7.78 (t, J = 5.5 Hz, 2H), 7.57 (d, J = 8.8 Hz, 1H), 7.22 – 7.18 (m, 1H), 6.76 (dd, J = 8.8, 

2.7 Hz, 1H), 6.63 (d, J = 2.6 Hz, 1H), 6.14 – 6.12 (m, 1H), 3.82 (s, 3H), 2.95 – 2.88 (m, 

1H), 2.86 – 2.81 (m, 1H), 2.61 (ddd, J = 17.3, 5.5, 1.7 Hz, 1H), 2.49 (d, J = 17.6 Hz, 1H), 

2.09 (dd, J = 11.2, 9.5 Hz, 1H), 2.06 – 1.97 (m, 2H), 1.90 – 1.83 (m, 1H), 1.76 – 1.68 (m, 

1H), 1.63 (d, J = 7.8 Hz, 3H), 1.55 – 1.48 (m, 1H), 1.36 (dddd, J = 11.6, 9.2, 6.4, 4.2 Hz, 

3H), 1.01 (s, 3H). 

 

13C NMR (151 MHz, CDCl3) δ 201.63, 158.39, 148.80, 142.55, 140.34, 137.54, 135.00, 

129.25, 127.31, 125.14, 124.24, 122.25, 117.45, 113.27, 112.71, 79.42, 55.26, 55.12, 

52.72, 43.05, 42.47, 38.18, 30.06, 28.61, 24.75, 23.97, 22.27, 13.82. 
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KA21 

 

 

 

1H NMR (600 MHz, CDCl3) δ 7.96 – 7.93 (m, 5H), 7.87 – 7.82 (m, 9H), 7.57 (dd, J = 8.7, 

5.2 Hz, 8H), 7.27 – 7.23 (m, 5H), 7.01 (s, 6H), 6.76 (dd, J = 8.7, 2.7 Hz, 7H), 6.73 – 6.67 

(m, 4H), 6.63 (d, J = 2.6 Hz, 6H), 6.15 – 6.13 (m, 6H), 4.23 (s, 6H), 3.82 (s, 19H), 2.90 

(ddd, J = 15.7, 13.8, 5.0 Hz, 11H), 2.86 – 2.76 (m, 12H), 2.61 (ddd, J = 17.3, 5.5, 1.6 Hz, 

7H), 2.48 (d, J = 17.6 Hz, 8H), 2.30 (s, 4H), 2.12 – 2.01 (m, 23H), 2.01 – 1.96 (m, 14H), 

1.91 – 1.82 (m, 13H), 1.73 – 1.67 (m, 15H), 1.60 (s, 20H), 1.53 – 1.48 (m, 11H), 1.46 (s, 

23H), 1.01 (s, 17H). 

13C NMR (151 MHz, CDCl3) δ 201.82, 190.55, 158.36, 144.51, 137.55, 134.99, 132.31, 

132.24, 130.71, 130.65, 127.38, 125.55, 125.13, 118.01, 117.57, 116.47, 116.31, 116.17, 

113.28, 112.69, 79.06, 55.25, 55.22, 52.75, 43.10, 42.39, 38.20, 34.25, 30.34, 30.08, 

29.73, 28.63, 24.74, 24.06, 22.21, 13.78. 
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KA23 

 

 

 

1H NMR (600 MHz, CDCl3) δ 7.39 (d, J = 8.7 Hz, 1H), 7.31 (dd, J = 10.9, 5.8 Hz, 1H), 

6.72 – 6.69 (m, 1H), 6.57 (dt, J = 9.3, 3.2 Hz, 2H), 6.54 (d, J = 3.5 Hz, 1H), 6.44 (d, J = 

2.7 Hz, 1H), 6.16 (d, J = 3.5 Hz, 1H), 3.63 (s, 4H), 2.76 – 2.68 (m, 2H), 2.67 – 2.65 (m, 

1H), 2.39 (dddd, J = 19.6, 17.5, 5.6, 1.9 Hz, 2H), 2.32 (d, J = 17.6 Hz, 1H), 2.23 (dd, J = 

15.4, 5.9 Hz, 1H), 2.08 (s, 1H), 1.89 – 1.83 (m, 4H), 1.53 – 1.45 (m, 3H), 1.39 (d, J = 2.5 

Hz, 3H), 1.33 (s, 1H), 1.28 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 201.67, 158.33, 150.67, 140.18, 137.53, 134.92, 130.25, 

127.45, 125.15, 118.98, 117.69, 116.09, 113.28, 112.66, 109.76, 79.04, 55.25, 55.06, 

52.70, 43.03, 42.38, 38.21, 30.33, 30.09, 29.72, 28.62, 24.76, 24.02, 22.19, 13.78. 
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3.4.2. Biological evaluations 

Cytotoxicity assay 

  Two cell lines were used to carry out the cytotoxicity assay against pancreatic 

cancer, PANC-I and AsPC-1. In a 96-well plate, a total of 10x105 cells were seeded. After 

24 hrs, a serial dilution of the synthesized compounds (from 50 μM down to 3.125 μM as 

Quadruplicate for each concentration) was added to make the total volume 200 μL /well. 

0.05% DMSO (Acros Organics) was used as a negative control and cuc B as a positive 

control. This was followed by incubation at 37 °C and 5% CO2 for 48 hrs. After 48 hrs, 20 

μL of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) (Sigma 

Aldrich) (5 mg/mL PBS) was added to each well and the plate was incubated in the same 

conditions for 2hrs. The solutions were discarded from each well and 200 μL DMSO was 

added to each well and mixed. The absorbance was measured directly at 570 nm with a 

Hidex Sense Microplate reader. 

In-cell western assay (ICW) 

PANC-I cell line was seeded in clear-bottomed, black walled 96-well plates with a density 

of 1 × 105 cells/well and allowed to grow till confluency. Next, the cells were treated with 

different concentrations of KA19 or KA20 starting from ¼ to twice IC50 for 24 hrs. and 

DMSO was used as a -ve control. The cells were then fixed with 3.7% formaldehyde in 1X 

PBS for 30 min, then washed and permeabilized with 0.1% TritonX-100 in 1X PBS. Cells 

were then blocked with 1X PBS fish gel solution and incubated with an antibody to Erk 

(cell signaling technology), Phospho-Erk (Santa Cruz Biotechnology), and GAPDH (Santa 

Cruz Biotechnology) for 2 h with gentle shaking. They were then incubated overnight at 4 
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°C without shaking (i.e.: stationary). The cells were then washed with 0.1% Tween-20 in 

1X PBS four times and incubated with secondary antibodies conjugated to IR dye for 1h 

with gentle shaking (protected from light). Cells were next washed with 0.1% Tween-20 

in 1X PBS four times. After the last wash, any residual liquid was gently pipetted out and 

the plate was blotted dry using the In-cell Western protocol on an Odyssey® imager (LI-

COR®), according to manufacturer's directions. Phospho-proteins were normalized for 

total protein signals. To correct for well-to-well variation in cell numbers, percent-

inhibition was determined relative to control wells. Data are expressed as mean values of 

at least two runs ± the standard deviation (SD). 

3.5. Conclusion 

 

Molecular modeling study against known molecular targets of pancreatic ductal 

adenocarcinoma has been conducted to filter out the best candidates to be synthesized. The 

current structure-based drug design approach enabled us to synthesize 9 promising 

cucurbitacin-inspired analogs modified desaturated at C9 and C11, followed by cell viability 

MTT assay against two pancreatic ductal adenocarcinoma cell lines, among which two 

promising candidates KA19 and KA20 show promising IC50 values against pancreatic 

cancer cell lines PANC-I, 11.2 and 7.7 µM, and ASPC-I , 11.7 and 9.7 µM, compared to 

the current standard treatment gemcitabine. Furthermore, both compounds show promising 

inhibition of Erk phosphorylation at the double concentration of IC50’s ,which support the 

obtained results from the molecular docking study that this group score higher than the 

other CIE analogs  modified at C11. Our results indicate that the modification of C11 can 

increase the antiproliferative activity compared to the non-modified CIE analogs.  
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Chapter Four 

Synthesis and Biological Activity of C-11 Hydroxy Cucurbitacin-Inspired Estrone 

Analogs Targeting Pancreatic Ductal Adenocarcinoma 

 

Abstract 

Pancreatic cancer was the fourth leading cause of cancer-related deaths in 2016. However, 

the long-term survival rate is low, compared to other cancer types, due to poor prognosis 

and low survival after treatment with the standard drug, gemcitabine. This suggests an 

urgent need to investigate for new treatment agents. Recently, the triterpenoid natural 

product, cucurbitacin B, showed promising antiproliferative activity against human 

pancreatic cancer cells in a dose- and time-dependent manner. However, the low yield of 

cucurbitacin from its natural sources and the challenging chemical total synthesis due its 

highly stereochemical complexity hindered its usage in clinical trials. In order to overcome 

this obstacle, molecular modeling studies were performed against known molecular targets 

of pancreatic cancer, using a novel strategy that uses estrone as a scaffold with cucurbitacin 

pharmacophores. More than 400 virtual compounds were designed by installing the 

cucurbitacin pharmacophores, such as various 23, 24 α, β- unsaturated ketone side chains, 

on estrone with different functionalizations at C11. This was followed by molecular docking 

against known pancreatic cancer molecular targets, such as the proteins EGFR, JAK, 

STAT3, Raf, Ras, Erk, Akt and PI3K. The molecular docking study showed a promising 

binding affinity for the cucurbitacin-estrone hybrid analogues, substituted with a hydroxy 

group at C11. Using this approach, 8 analogs were synthesized through 12 steps, followed 

by an MTT cell viability assay against PANC-I, AsPC-I, and BXPC-3 pancreatic cell lines.  
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Three C11 hydroxyl analogs KA1, KA2, and KA11 containing phenyl para-trifluoro, 

cucurbitacin, and phenyl para-methtylthio side chains, showed promising IC50 values. The 

first two were further studied in cell cycle arrest. Also, the cell cycle arrest for KA1 and 

KA2 was studied at different time points. In order to further investigate the effectiveness 

of these two analogs, they were evaluated against 2D and 3D pancreatic cancer cell line 

PANC-I using cell Titer assay. KA1 and KA2 were proven to increase caspase-3 activity 

and induce cell death. Our results indicate that KA1 and KA2 are promising 

antiproliferative agents and are possible candidates for clinical study. Moreover, our results 

indicate that additional modifications to the cucurbitacin-inspired estrone analogs may lead 

to more potent antiproliferative agents.  

4.1. Introduction 

Among cancer types, pancreatic cancer is the only type that has demonstrated a stable rate 

of mortality.1 Pancreatic cancer is currently the fourth leading cause of death among cancer 

types2, and is expected to be the second in the next twenty years.3 The reason for the high 

mortality of pancreatic cancer is the absence of biomarkers that can be detected in its early 

stages.4 Moreover, the development of pancreatic anticancer agents is still slow.5  

The current treatments for pancreatic cancer are correlated with the stage of the disease. 

Only 20% of pancreatic ductal adenocarcinoma patients can be treated with surgery, while 

the remaining patients are diagnosed after the disease reaches its late stages.6 The current 

standard chemotherapy treatment for pancreatic cancer is gemcitabine; however, it has an 

18% one-year survival rate, which is significantly better than the former standard, 5-

fluorouracil (5-FU) that has only a 2% 1-year survival rate.7 The six-month survival rates 
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for gemcitabine and 5-FU are 23.8% and 4.8%, respectively. These data highlights the 

urgent need to investigate for novel agents for pancreatic cancer treatments.  

Epidermal transmembrane factor receptor (EGFR) is a 170 kd glycoprotein and one of 

tyrosine kinase that is overexpressed in many cancer types, including pancreatic cancer. 

EGFR overexpression was found to be related to the advancement of the disease, its low 

survival rate, and metastasis.8, 9   

Natural products have been the main source for drug discovery until recent times. From 

1981 to 2010, statistics indicate that almost two-thirds of the approved drugs were related 

to natural products, either directly by using the natural products or indirectly through 

chemical modification and structure replication of the useful compounds.10 Approximately 

47% of the approved anticancer drugs were derived from natural products, which indicates 

the importance of these products in the discovery of novel anticancer agents.11 One of these 

natural products is cucurbitacins (Figure 4.1), a group of triterpenoid compounds that 

contain cucurbitane ring and are characterized by bitterness and toxicity.12, 13 Currently, 

more than 18 types of cucurbitacins have been found, among which 9 compounds have 

been reported to have anticancer activity against lung, breast, colon, and pancreatic 

cancers.14,15, 16 Moreover, cucurbitacins also have other biological effects, such anti-

inflammatory and antiviral activities.17  
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                  Figure 4.1. General structures of cucurbitacin and steroid 

 

In 2010, Lwanski et al. reported that a relatively low dose of cucurbitacin B, in combination 

with gemcitabine (0.5 mg/Kg and 25 mg/Kg, respectively), resulted in a significant 

decrease in tumor size.10 The mechanism of action for cucurbitacin B included inhibition 

of STAT3 phosphorylation, activation of caspase 3, and upregulation of p53 and p21 

expression.18 Cucurbitacin E showed antiproliverative activity against pancreatic cancer 

through inhibition of STAT3 phosphorylation and upregulation of the tumor suppressor 

p53.19,20 However, one of the challenges that prevents the use of cucurbitacins as anticancer 

remedies is the difficulty of separating the natural sources due to their polarity and the 

minute amounts that are obtained after separation. Moreover, the oxygenated A, C, and D 

and the stereochemistry of cucurbitacin represent a challenge in attempting the total 

synthesis of cucurbitacins, although successful trials have synthesized rings C and D of 
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cucurbitacin I.21 One of the important pharmacophores is the 23, 24 α, β- unsaturated 

ketone side chain that is responsible for the anticancer activity of cucurbitacin.22 

Interestingly, this side chain was installed in the four membered-rings estrone, and it shows 

a comparable anticancer activity to that of cucurbitacin.23 These cucurbitacin-inspired 

estrone analogues (CIEA’s) opened the door for further functionalization of these family 

of compound in different positions. Molecular modeling was employed to search for more 

potent anticancer compounds through the modeling of these novel analogs against known 

cucurbitacin molecular targets.  

Up to date, we have proved that the functionalization of rings B and C leads to potent 

anticancer agents which are more active than the currently available standard treatments.  

Previously, we reported that the dehydrogenation of C9-C11 and C16-C17 generally increased 

the potency of this group of compounds.24, 25 Moreover, the methylation of C3 increased 

the potency relative to the originally found phenol. The other modifications include the 

introduction of many functional groups at the cucurbitacin side chain, such as para-

trifluoromethyl through aldol condensation, which showed potent anticancer activity.26 

Here, we report molecular modeling of more than 400 virtual CIEA’s analogs with 

synthesis of a 8 CIE analogs functionalized at C11, and screening them using MTT cell 

viability assay against 3 pancreatic cancer cell lines PANC-I, AsPC-I, and BXPC-I 

followed by flowcytometric analysis of the most potent CIEA’s at different time points. 

4.2. Results and Discussions 

4.2.1. Molecular Modeling Design Strategy 

Based on the previously obtained results regarding CIE analogs, it was found that 

transferring the C3 OH group into ether can increase the anticancer activity of these 
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compounds. Also, through molecular modeling studies, we found that the introduction of 

various side chains, such as phenyl para-trifluoromethyl and phenyl para-thiomethyl at 

C17 on ring D of estrone can result in high scoring analogs against many molecular targets, 

such as EGFR. Therefore, to investigate further, we designed additional analogs with a 

hydroxy group at C11 and carried out the molecular modeling analysis on molecular targets 

reported to be expressed in pancreatic ductal adenocarcinoma.  

A virtual library of 400 CIEA compounds were designed to mimic cucurbitacin compounds 

with various functional groups in positions C3 and C11, as well as several methyl hydroxy 

enon side chains at position C17. Also, cucurbitacins B and D were used as standards for 

the molecular targets. Molecular modeling results indicate that 8 compounds (Figure 4.2) 

show a better binding affinity to EGFR and other molecular targets such as STAT3, Akt, 

PI3K, than the standards, erlotinib, cucurbitacin B and D. One of the high scoring 

compounds is KA1, a CIE analog with C11 hydroxy and a phenyl para-trifluoro enone side 

chain. This demonstrated hydrogen bonding with Pro: 770: A at EGFR binding site (Figure 

4.3 A), close to the erlotinib hydrogen binding site with Met: 769: A (Figure 4.3B). In 

addition, KA2 and KA11, containing a cucurbitacin and a phenyl para-thiomethyl side 

chains, respectively, showed promising binding affinity to EGFR compared to the 

previously mentioned standards. This indicates that the hydroxyl group modification may 

increase the binding affinity to known pancreatic cancer molecular targets.  
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Table 4.1. The consensus scores of hydroxylated C11 CIE analogs on the EGFR 

binding pocket. 

VIDA Name PLP Chemgauss3 OEChemscore Screenscore 

Consensus 

Score 

KA11_43 -51.7283 -66.5209 -39.2823 -116.575 26 

KA8_153 -48.7798 -68.3666 -40.7735 -103.059 31 

KA3_126 -51.8626 -51.2126 -41.1819 -109.046 32 

KA6_73 -55.8415 -47.2346 -42.2838 -104.658 35 

KA1_72 -47.2135 -80.9063 -35.1766 -118.451 36 

KA7_143 -48.619 -70.2779 -39.9259 -97.2335 37 

KA4_156 -45.7753 -68.0197 -40.0748 -99.0202 42 

KA5_62 -48.1965 -66.2347 -35.877 -102.4478 52 

CucD_197 -40.4721 -54.3241 -38.0069 -92.221 67 

Iso B_113 -39.2614 -50.7752 -38.6223 -89.5715 73 

KA10_64 -39.3671 -67.012 -33.2958 -89.5334 74 

Iso D_37 -35.4754 -44.8475 -41.7118 -80.8827 82 

KA15_1 -37.2535 -61.1314 -31.4152 -81.4897 88 

Cucurbitacin 

I 

-33.1051 -41.8658 -41.5028 -78.295 89 

Cucurbitacin 

E 

-35.7174 -48.0769 -38.0201 -73.3811 90 

Erl_38 -39.3291 -53.9956 -33.5598 -84.2492 90 
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Molecular docking was also carried out against the previously reported targets for 

cucurbitacin, including the MAPK signaling pathway proteins (EGFR, RAS, RAF, MEK, 

and ERK proteins. (Figure 4.4) 

 

 Figure 4.2. The structures of the synthesized oxygenated cucurbitacin-inspired 

analogs.  
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A.        

 
B.  

Figure 4.3. A) Binding of KA1 into EGFR ATP binding pocket. B) Overlay with 

erlotinib binding in the same pocket.  
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   Figure 4.4. The major targets of MAPK signaling pathway.27 

  

Generally, up on the docking against EGFR, the best-scoring compounds contained ketone, 

followed by analogs containing hydroxyl functional groups at C11, which scored better than 

the analogs desaturated at C9 and C11.  

4.2.2. Chemical Synthesis 

 

Scheme 1 shows the general route for the synthesis of the best scoring compounds. The 

chemical challenge that prevented the convergent synthesis for the CIEA analogs using 

Grignard reaction was the stereochemistry product of at C20, where the major product was 
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S instead of R, as in a cucurbitacin side chain. So, the first step was oxidation of C9-C11 of 

estrone using DDQ. The best yield for this step was obtained upon its reaction with estrone, 

rather than with methylated estrone; however, the next step was run on the crude extract 

due to the poor solubility of the product and, therefore, its purification. Following this, was 

the formation of a ketal at C17 to avoid side reactions upon the hydroboration hydroxylation 

reaction. One of the chemical challenges for the synthesis of the target analogs was the 

hindrance of position C11, as will be indicated below. Three reagents were used to carry 

out the hydroboration. With 9-BBN, no hydroboration was obtained, while hydroboration 

with BH3 yielded 28% of the hydroxylated product. However, the highest yield in this 

reaction was obtained with (CH3)2SBH3 at 60%. After the purification of KI3 and its 

deprotection was carried out using 10% HCl/ acetone mixture to obtain KI4. The protection 

of the C11 hydroxyl group was initially carried out by TBSCl in DMF in presence of 

imidazole. However, no product was obtained, although it was previously found that this 

reaction worked with C3 phenolic OH using the same conditions, which further indicates 

that this position is hindered by the stereochemistry of the compound. TMS-protection was 

performed and worked successfully, but it was not stable after Wittig reaction to produce 

KI6; some of the product was deprotected. This indicates that TBS protection was the only 

choice to proceed through the synthetic route. A convenience method for protection of the 

hindered hydroxyl groups, such as tertiary alcohols or secondary alcohols adjacent to a 

tertiary alcohol was reported, using Mg turnings as a catalyst in DMF with TBSCl. Upon 

using this condition to protect the C11 hydroxyl group, a 90% yield of KI5 was obtained. 

The installation of the cucurbitacin side chain was gained through the Wittig reaction, 

followed by hydroboration oxidation using 9-BBN as a hydroboration reagent. The 
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oxidation of the hydroxyl group and the cyanohydrin formation was performed as indicated 

in the experimental section. KI10 was obtained after methylation and the formation of a 

hydroxy-methyl ketone from the imine. In order to indicate the stereochemistry of the 

hydroxy group in C11 at the key intermediate hydroxy-methyl ketone KI10, X-ray 

crystallography for KI10a was carried out (Figure 4.5). The aldol condensation reaction 

was performed using LDA at -78 °C due to the low boiling point of the TBS protected iso-

propyl aldehyde compared to the other indicated aldehydes. This boiling point is much 

lower than the other used aldehydes that were reacted using NaOH at 105 °C. 

                                                                                                                              

 

 

  

 

 Figure 4.5.  X-ray crystal structure of KI10 indicates that the stereochemistry of C11 

is an R configuration. 

 

The products KI11-KI18 were used to synthesize the target final compounds. The general 

procedure to deprotect the hydroxylated C11 was using 12 equivalence of TBAF and 

running the reaction for 72 hrs. in order to obtain the products KA1-KA8. The high 

equivalence of TBAF and the long period of time needed is also proof for the hindrance of 

this position (Scheme 2).  
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4.2.3. Biological Evaluation 

 

All the synthesized compounds were screened against three pancreatic cell lines: BXPC3, 

PANC-I, and AsPC-I, as noted in Table 4.2. The results indicate that the compounds KA1 

and KA2, containing a phenyl para-trifluoro side chain and cuc side chain, respectively, 

are the most potent analogs. Generally, based on MTT results, the presence of a hydroxyl 

group increases the antiproliferative activity of the synthesized compounds. 

Table 4.2. IC50 results of the synthesized CIE analogs after treatment with 3 

pancreatic cancer cell lines 

        Compound PANC-I   IC50 (µM) AsPC-I   IC50 (µM)     BXPC-3 IC50 (µM) 

KA1 5.52 11.2 4.7 

KA2 12.81 16.28 10.89 

KA3 >100 NA 85.9 

KA4 44.71 49.04 49.04 

KA5 NA NA NA 

KA6 NA NA NA 

KA11 NA NA NA 

KA15 NA NA NA 

   Gemcitabine >100 >100 >100 

 

To further investigate the mechanism of action of KA1 and KA2, cell cycle analysis was 

carried out in 24, 48, and 72 hrs. periods to investigate the inhibition at different time 

points. The results confirm that both CIE analogs accumulate cells during the G1 phase in 

24 hrs; however, inhibition decreased after this point.  
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  Figure 4.6.A. Cell cycle analysis for KA1 and KA2 after 24 
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  Figure 4.6.B. Cell cycle analysis for KA1 and KA2 after 48. 
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     Figure 4.6.C. Cell cycle analysis for KA1 and KA2 after 72. 
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4.3.    Material and methods 

4.3.1. Molecular Modeling  

The molecular modeling studies were carried using two OpenEye software programs, 28 

Omega to generate the conformers of the compounds and FRED to allow rigid exhaustive 

docking.29 The targets for the previously mentioned proteins were processed and generated 

using MakeReceptor®. After the molecular docking was carried out, the consensus scores 

were visualized using VIDA software. 

4.3.2. Chemical Synthesis 

General: 

All chemicals and solvents (ACS grades) were purchased from Fisher Scientific or Sigma 

Aldrich and used without any additional treatment. Before conducting the experiments, all 

the glassware and tools were cleaned, washed and dried in a 120 °C oven. Before the 

reaction the flasks were closed and flushed with nitrogen gas for all of the reaction period, 

except when mentioned during the experiment. TLC plates (Silica gel, 0.2-mm thick, 

polyester backed, Sorbtech) were used to analyze the reaction conditions under UV254. 

All synthetic intermediates and final compounds were purified using column 

chromatography packed with silica gel 60A, 40-63 μm.  1H and 13C NMR spectra were 

carried out using Bruker AVANCE-400 MHZ and 600 MHZ NMR spectrometers. The 

solvents used for the compounds were CDCl3, as will be indicated later. NMR chemical 

shifts were presented in 𝛿(PPM) using residual solvent peaks as standards (CDCl3, 7.26 

(1H), 77.16 (13C)). High resolution mass (HRMS) was performed using Thermofinnigan 

MAT 95XL mass spectrometer at the Buffalo mass spectroscopy facility. X-ray 
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crystallography was conducted on KI9 at the University of South Dakota using a Bruker 

APEXᴵᴵ diffractometer.        

 

 

Scheme 1. Synthesis of the main intermediate, KI10.  
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Scheme 2. Aldol condensation and C11 hydroxyl deprotection for the hydroxylated 

CIE analogs.  
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 KI2            

      

 

 

 

To a stirred solution of estrone (5g, 18.49 mmole) in 600 ml of methanol at a temperature 

of 47 0C, 2, 3-Dichloro-5, 6-dicyano-1,4-benzoquinone (DDQ) (6.3 g, 27.74 mmole) was 

added. The reaction was stirred for 5 hrs. and the reaction progress was tested by TLC 

using 6:4 (hexane: ethyl acetate mixture) followed by the evaporation of methanol using a 

vacuum. The crude extract was dissolved in 308 ml of toluene to proceed to the next 

reaction. The solution was heated to 205 0C. Ethylene glycol (4.53 ml, 81.49 mmole) was 

poured into one portion, and then para-toluene sulfonic acid (0.212 g, 11.19 mmole) was 

added. The reaction mixture was stirred and refluxed for 8 hours using a Dean-Stark 

apparatus to eliminate the condensed water; this prevented it from returning to the reaction 

mixture and reversing the reaction. The reaction was cooled to room temperature, then a 

saturated NaHCO3 solution was added to quench the reaction. Ethyl acetate (3 ˣ 100 ml) 

was used to extract the aqueous layer, then the organic layer was dried over anhydrous 

NaSO4 and evaporated. The crude material was dissolved in DMSO (90 ml), followed by 

the addition of crushed granulate potassium hydroxide (4.032 g, 86.46 mmole); next, 

methyl iodide (2.24 g, 35.94 mmole) was added to the reaction mixture. The reaction was 

O

HO

H

H

2) Ethylene glycol, pTSA,
 Toluene (225 °C)

1) DDQ,MeOH (45 °C)

3) MeI, KOH, DMSO) O

H

H

O
O

H

Estrone KI2
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stirred at room temperature for 2 hours, quenched by the addition of water (400 ml) and 

stirred for 15 minutes. Ethyl Acetate (3 ˣ100 ml) was used to extract the aqueous layer, 

while the organic layer was dried over sodium sulfate anhydrous and concentrated in vacuo 

to obtain the dry organic portion. Then, the silica gel column was used to purify the crude 

material using 9:1 (hexane: ethyl acetate) to provide KI 2 (4.3 g, 71.33 %) as a white 

material.  

 

 

1H NMR (400 MHz, Chloroform-d) δ 7.52 (d, J = 8.8 Hz, 1H), 6.70 (dd, J = 8.8, 2.8 Hz, 

1H), 6.58 (d, J = 2.8 Hz, 1H), 6.12 (dt, J = 5.2, 2.3 Hz, 1H), 3.98 – 3.84 (m, 4H), 3.76 (s, 

3H), 2.84 (qdd, J = 14.8, 8.5, 3.8 Hz, 2H), 2.58 (dt, J = 17.6, 3.1 Hz, 1H), 2.15 – 1.97 (m, 

3H), 1.94 – 1.66 (m, 5H), 1.38 (dtd, J = 17.0, 12.4, 6.5 Hz, 2H), 0.89 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 158.29, 137.48, 134.50, 127.60, 125.15, 119.06, 117.90, 

113.27, 112.66, 65.27, 64.60, 55.23, 46.83, 44.33, 39.19, 33.87, 32.81, 30.17, 28.21 23.25, 

14.72. 
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KI3 

        

 

The KI2 compound (4.3 g, 13.19 mmole) was dissolved in 30 mL anhydrous THF. Then 

10 mL (~ 1.5 equivalence) of borane dimethyl sulfide complex solution in THF (2 M) was 

added portion-wise, stirring under argon, and the reaction was stirred at room temperature 

for 15 hrs. Next, 3.25 ml NaOH solution (3M) and 3.25 ml H2O2 were added portion-wise 

and the reaction was stirred for 1 hr. under air (Note: the stopper must be removed after the 

addition of NaOH and H2O2 .
30

 The aqueous layer was extracted using ethyl acetate (3 ˣ 50 

ml) and the organic layer was dried over sodium sulfate anhydrous and concentrated in 

vacuo. The crude extract was purified using a 7:3 hexane ethyl acetate mixture to obtain 

KI3 as a white material (3.13 g, 69%). 

 
 
 
 

1H NMR (400 MHz, Chloroform-d) δ 7.88 (dd, J = 8.7, 1.0 Hz, 1H), 6.69 (dd, J = 8.7, 

2.9 Hz, 1H), 6.62 (d, J = 2.8 Hz, 1H), 4.10 (d, J = 7.1 Hz, 1H), 3.95 – 3.84 (m, 5H), 3.75 

(s, 3H), 2.78 (dd, J = 8.0, 6.1 Hz, 2H), 2.13 (t, J = 10.1 Hz, 2H), 2.02 – 1.97 (m, 1H), 1.91 

– 1.83 (m, 3H), 1.72 – 1.65 (m, 2H), 1.25 (dd, J = 9.5, 4.8 Hz, 2H), 0.84 (s, 3H). 

O

H

O

H
HO
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O
O
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13C NMR (151 MHz, CDCl3) δ 157.69, 139.05, 132.56, 127.49, 118.88, 113.69, 111.06, 

70.95, 65.30, 64.58, 55.11, 50.36, 48.99, 46.96 , 41.47, 37.58, 34.28, 28.79, 26.83, 22.45, 

14.97. 

 
 

KI4 

         

 

The 3.13 g (9.10 mmole) of KI3 that was obtained from the previous step was then 

dissolved in 130 ml (1:1, 10% HCl: Acetone) and stirred at room temperature overnight. 

The next day, the reaction was quenched by the addition of NaHCO3 to neutralize the 

excess acid. The reaction mixture was extracted with ethyl acetate (3 X 100 ml) and dried 

over Na2SO3 anhydrous, followed by evaporation in vacuo. The purification process used 

a 6:4 hexane ethyl acetate mixture to yield 3-methoxy-1, 3, 5(10)-trien-11-ol-17-one (2.5 

g, 91%) as a purple solid material. 

1H NMR (400 MHz, Chloroform-d) δ 7.90 (dd, J = 8.7, 1.0 Hz, 1H), 6.74 (dd, J = 8.7, 

2.9 Hz, 1H), 6.67 (d, J = 2.9 Hz, 1H), 4.21 (ddd, J = 10.8, 9.7, 5.3 Hz, 1H), 3.79 (s, 3H), 

3.46 (s, 1H), 2.85 (t, J = 6.8 Hz, 2H), 2.54 (d, J = 3.7 Hz, 0H), 2.55 – 2.43 (m, 3H), 2.28 

(dd, J = 12.5, 5.3 Hz, 1H), 2.21 (q, J = 5.7 Hz, 1H), 2.21 – 2.12 (m, 1H), 2.09 – 1.96 (m, 

O

H
HO

KI4

10%HCl
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O

H

O
O

HO
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1H), 1.98 (s, 1H), 1.54 (ddd, J = 10.4, 8.5, 5.9 Hz, 2H), 1.40 (dd, J = 12.5, 10.9 Hz, 1H), 

1.29 (s, 2H), 1.28 (s, 1H), 0.95 – 0.80 (m, 1H), 0.87 (s, 3H). 

 

13C NMR (101 MHz, CDCl3) δ 219.88, 157.73, 138.81, 132.11, 127.62, 113.68, 111.13, 

77.48, 77.17, 76.85, 70.28, 55.18, 50.27, 49.78, 48.70, 41.71, 36.68, 35.95, 28.61, 26.27, 

21.65, 14.28. 
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 KI5 

                

The purified compound KI4 (2.5 g, 8.28 mmol) was dissolved in 40 ml DMF, followed 

by the addition of 0.6 g of magnesium turning. With regard to magnesium turnings, the 

reaction must be facilitated, since the reaction does not work in the absence of a catalyst. 

Next, 3.75 g of TBSCl was added and the color turned from purple to red. The reaction 

was run at room temperature for 14 hrs. before it was quenched with water. The reaction 

mixture was extracted with ethyl acetate (3 X 100 ml) and dried with Na2SO3 anhydrous. 

The TBS-protected compound KI5 was purified using hexane: ethyl acetate (8:2) mixture 

to obtain 3.3 g (95%). 

1H NMR (600 MHz, CDCl3) δ 7.56 (d, J = 8.7 Hz, 1H), 6.49 (dd, J = 8.7, 2.8 Hz, 1H), 

6.46 (d, J = 2.7 Hz, 1H), 4.12 (ddd, J = 10.6, 9.5, 5.1 Hz, 1H), 3.59 (d, J = 2.0 Hz, 2H), 

2.67 – 2.63 (m, 1H), 2.31 (ddd, J = 13.8, 10.7, 3.0 Hz, 1H), 2.13 (t, J = 9.7 Hz, 1H), 2.07 

(dd, J = 12.6, 5.1 Hz, 1H), 2.02 – 1.94 (m, 1H), 1.87 – 1.76 (m, 2H), 1.08 – 1.05 (m, 1H), 

0.72 (d, J = 3.2 Hz, 6H), 0.69 (s, 2H), -0.00 (s, 2H), -0.04 (d, J = 2.9 Hz, 2H). 

13C NMR (151 MHz, CDCl3) δ 159.94, 141.60, 134.92, 130.94, 115.91, 112.92, 74.61, 

57.56, 52.91, 52.34, 51.09, 44.33, 39.46, 38.48, 31.23, 28.77, 28.59, 24.17, 20.70, 16.82, 

-0.00, -1.55. 
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 KI6 

             

 

To a solution of ethyltriphenylphosphonium bromide (8.76 g, 23.58 mm) in 22 ml of 

THF, potassium tert-butoxide (2.47 g, 22 mmole) was added, resulting in an orange 

mixture that was stirred at room temperature for 1 hr. A solution of (3.3 g, 7.86mmole) 

KI5 in 15 ml THF was added and the mixture was stirred at 70 °C for 5 hrs. The reaction 

was allowed to cool to room temperature and NH4Cl solution was added to quench the 

reaction, followed by extraction with ethyl acetate (3 X 50 ml) and drying using 

anhydrous sodium sulfate. The compound KI6 (2.6 g, 80%) was purified using hexane: 

ethyl acetate (9:1).  

 

13C NMR (101 MHz, CDCl3) δ 160.05 (C3), 152.06 (C17), 141.37 (C5), 135.37 (C10), 

130.98 (C1), 116.24 (C20), 115.91 (C4), 113.04 (C2), 75.50 (C11), 57.52 (C3), 57.15 

(C13), 52.77 (C9), 50.50, 47.51(C14), 39.36(C8), 33.97(C16), 31.70 (C6), 30.01(C7), 

28.79(C12), 26.86(C15), 20.67(C24), 20.18 (C24), 15.66 (C18), -0.00(C22), -1.26(C23). 
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KI7 

                 

 

In a 1 L flask of 9-Borabicyclo [3.3.1] nonane,  9-BBN (0.5 M in THF,49 ml, 24.4 mmol) 

was added portion-wise to KI 5 (2.68 g, 6.288 mmole) at 0 °C and stirred for 30 min. at 

room temperature. The reaction mixture was run at 60 °C for 18 hr., then run at 0 °C for 

10 min., followed by the slow addition of 48 mL of 10% NaOH and 92 mL of 30% H2O. 

The reaction was then allowed to run at room temperature without closing the system. The 

mixture was extracted with ethyl acetate (3 X 100 ml) and the organic layers were washed 

with saturated sodium thiosulfate to reduce any extra H2O2. The organic layer was dried 

with (Na2SO4), and concentrated in vacuo. The crude extract was moved to the next 

reaction.  
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KI8 

          

 

2.65 g (5.97 mmole) of KI7 was dissolved in 28 ml CH2Cl2 containing 2.35 g of 4 A° 

molecular sieves, followed by the addition of (2.34 g, 28.6 mmol) of NaOAc. Next, (2.5 

g, 11.92 mmole) of pyridinium chlorochromate (PCC) was added and the reaction was 

run at room temperature for 5 hrs. The reaction mixture was filtered using normal phase 

silica to remove PCC and the resulting crude mixture was purified using hexane: ethyl 

acetate (8:2) to produce KI7 (2.3 g, 80%). 

          

13C NMR (101 MHz, Chloroform-d) δ 201.04, 158.22, 152.43, 140.38, 137.69, 132.75, 

113.87, 111.41, 72.56, 55.61, 55.20, 46.52, 44.26, 37.04, 34.84, 32.03, 29.67, 27.81, 

27.19, 26.50, 20.70, 25.89, 24.22, 22.71, 14.84, -4.31. 
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KI9 

        

 

2.11 g (4.77 mmol) of KI8 was dissolved in 10 ml of CH2Cl2, while ZnI2 (0.045 g, 0.14 

mmole) was added as a catalyst. Next, (0.83 ml, 6.142 mmole) of TMSCN was added to 

the reaction mixture and stirred at room temperature for 3 hrs. After completion of the 

reaction, H2O was added to quench the reaction and extraction was carried out using 

CH2Cl2 (3 X 50 ml). The crude extract was dried with Na2SO2 and concentrated, purified 

using hexane: ethyl acetate (9:1) to yield 2.9 g (90%) of KI9. 

Note. Due to the toxicity of TMSCN, it should be handled under the fume hood. 

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.6 Hz, 1H), 6.52 (dd, J = 8.6, 2.8 Hz, 1H), 

6.49 (d, J = 2.7 Hz, 1H), 4.15 (td, J = 10.4, 5.1 Hz, 1H), 3.98 (q, J = 7.1 Hz, 1H), 3.63 (s, 

2H), 2.67 (t, J = 6.8 Hz, 2H), 2.41 (dd, J = 12.5, 5.1 Hz, 1H), 2.11 (t, J = 9.3 Hz, 1H), 

1.95 – 1.87 (m, 2H), 1.48 (s, 2H), 1.14 – 1.11 (m, 3H), 0.84 (s, 2H), 0.78 (s, 4H), 0.18 (d, 

J = 3.2 Hz, 6H), 0.04 (s, 2H), -0.00 (s, 2H). 

13C NMR (101 MHz, CDCl3) δ 155.90, 137.27, 131.00, 126.60, 120.14, 111.58, 108.78, 

70.74, 58.63, 58.29, 53.34, 52.67, 48.66, 48.32, 42.87, 35.20, 29.02, 27.19, 24.45, 19.34, 

16.60, 12.57, 11.95, 0.04, -3.88, -5.71. 
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To synthesize the main intermediate KI10, (2.9 g, 5.37 mmol) of KI9 was dissolved in 13 

ml of Et2O and stirred for 15 min at 0 °C, followed by the drop-wise addition of MeLi (13 

ml). The reaction was run at 0 °C for 2 hrs. Next, 2 ml of glacial acetic acid was added to 

the reaction and the mixture was stirred for 30 min. before the addition of NaHCO3 to 

neutralize the acidic environment. The aqueous mixture was extracted with (3 X 50 ml) 

CH2Cl2, dried with Na2SO4, concentrated, and purified using gradient mobile phase 

hexane: ethyl acetate (9:1) then (8:2) to yield KI9 (e.e. 47 %). 

 

 

1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.7 Hz, 4H), 6.50 (dd, J = 8.7, 2.7 Hz, 4H), 

6.46 (d, J = 2.5 Hz, 3H), 4.15 (td, J = 10.2, 5.0 Hz, 4H), 3.84 (s, 4H), 3.60 (s, 13H), 2.64 

(t, J = 6.3 Hz, 8H), 2.43 (dd, J = 12.0, 4.9 Hz, 4H), 2.15 – 2.09 (m, 5H), 2.07 (s, 11H), 1.96 

– 0.99 (m, 75H), 0.78 (s, 34H), 0.75 (s, 12H), 0.70 (ddd, J = 6.4, 5.3, 2.3 Hz, 5H), 0.04 (s, 

11H), -0.00 (s, 11H). 

13C NMR (101 MHz, CDCl3) δ 211.39, 157.55, 139.07, 132.88, 128.40, 113.55, 110.43, 

79.93, 72.48, 55.13, 54.87, 51.33, 50.14, 44.88, 36.72, 29.11, 27.55, 26.26, 24.65, 23.75, 

23.19, 22.19, 18.46, 14.49, -2.47, -3.90. 

TBS – protected aldehyde was prepared as synthesized in our lab previously. 
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KI11 

    

 

At 78 °C, 0.76 ml (1.85 mm) of n-BuLi dissolved in hexane (2.5 M) was added to 1.85 

mmole (0.93 ml of 2 M) of diisopropylamine dissolved in THF, and the mixture was stirred 

for 1 hr. A solution of KI9 0.514 mmole dissolved in THF (1 mL) was then added to 

produce the enolate and the mixture was stirred for 1 hr. at -78 °C. Next came the addition 

of 0.085 g (0.44 mmole) TBS protected aldehyde (KI10) that was dissolved in 1.32 ml THF 

(0.15 M). The reaction was allowed to warm to room temperature and stirred for 24 hrs. 

After that, the reaction was quenched with the addition of saturated NH4Cl. The aqueous 

layer was extracted by ethyl acetate (3 X 50 mL), dried with Na2SO4, concentrated, and 

purified using hexane: ethyl acetate (8:2) to yield  (0.470 g, 55%) as a white powder.  

1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.7 Hz, 1H), 6.94 (d, J = 14.9 Hz, 1H), 6.63 – 

6.56 (m, 1H), 6.52 (dd, J = 8.7, 2.7 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H), 4.18 (td, J = 10.2, 

5.0 Hz, 1H), 4.02 (s, 1H), 3.63 (s, 3H), 2.66 (t, J = 6.6 Hz, 2H), 2.47 (dd, J = 12.0, 5.0 

Hz, 1H), 2.13 (dd, J = 12.4, 6.9 Hz, 1H), 1.69 (dd, J = 12.0, 6.8 Hz, 2H), 1.35 (s, 3H), 

1.26 – 1.21 (m, 8H), 1.18 (dd, J = 12.5, 6.6 Hz, 3H), 1.12 (s, 2H), 0.82 (s, 8H), 0.80 (s, 

8H), 0.78 (s, 3H), 0.06 (s, 3H), 0.02 (s, 3H), -0.00 (s, 3H), -0.01 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 204.24, 159.53, 159.52, 140.97, 134.76, 130.38, 120.10, 

115.40, 112.47, 80.87, 75.65, 74.47, 57.26, 57.12, 56.57, 53.50, 52.16, 46.86, 38.79, 

32.00, 31.87, 31.12, 29.48, 28.25, 27.93, 26.07, 25.76, 24.72, 23.97, 20.36, 20.32, 16.46, 

16.17, -0.00, -0.03, -0.70, -1.75. 
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KA2 

 

 

 

Tetra-butyl ammonium fluoride (TBAF) (8.5 ml, 8.5 mmol) was added to a stirred solution 

of 11 ml THF containing KI11 (0.470 g, 0.71 mmol) and stirred for 48 hrs. The reaction 

was then quenched by the addition of NH4Cl solution. The aqueous layer was extracted by 

ethyl acetate (3 X 50 ml). The organic layer was dried using Na2SO4, concentrated in vacuo, 

and purified using hexane: ethyl acetate (6:4) to yield (0.18 g, 59 %) as a white solid 

powder. 

 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.6 Hz, 1H), 7.08 (d, J = 15.2 Hz, 1H), 6.65 

(dd, J = 8.8, 2.7 Hz, 1H), 6.61 (d, J = 15.2 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 4.23 – 4.12 

(m, 1H), 3.70 (d, J = 2.2 Hz, 3H), 2.82 – 2.69 (m, 2H), 2.55 (dd, J = 11.9, 5.0 Hz, 1H), 

2.36 – 2.17 (m, 1H), 2.14 – 2.03 (m, 2H), 1.85 – 1.73 (m, 2H), 1.72 – 1.62 (m, 1H), 1.58 

(dd, J = 8.8, 5.2 Hz, 1H), 1.42 (d, J = 7.7 Hz, 3H), 1.39 – 1.29 (m, 9H), 1.18 (s, 3H), 1.15 

– 1.03 (m, 2H), 0.90 – 0.82 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.14, 157.66, 156.40, 139.03, 132.41, 127.31, 117.94, 

113.68, 111.12, 79.02, 71.30, 70.83, 55.20, 54.28, 50.95, 50.29, 45.41, 45.01, 36.52, 

29.72, 29.53, 29.46, 28.78, 27.37, 24.15, 23.66, 22.00, 14.50. 
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General synthesis procedure for (KI12-KI24): 

KI10 (0.3 mmol) was dissolved in 1 ml THF, then grounded in NaOH powder (0.87 mm) 

and 0.36 mmol aldehyde. The reaction mixture was heated in a 20 mL vial for 15 min under 

105 °C. After that, the reaction was quenched by water and extracted with 3 X 20 mL ethyl 

acetate, dried over NaSO4 and purified using 9:1 hexane: ethyl acetate.  

KI12 

 

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.7 Hz, 4H), 7.33 – 7.24 (m, 5H), 6.66 (d, J = 

15.2 Hz, 5H), 6.51 (d, J = 3.5 Hz, 5H), 6.49 (d, J = 2.8 Hz, 3H), 6.47 (d, J = 2.8 Hz, 3H), 

6.43 (d, J = 2.7 Hz, 5H), 6.13 (d, J = 3.5 Hz, 4H), 4.13 (td, J = 10.2, 5.0 Hz, 5H), 4.00 (s, 

3H), 3.58 (s, 12H), 2.59 (dd, J = 14.6, 7.2 Hz, 11H), 2.43 (dd, J = 12.0, 4.9 Hz, 5H), 2.11 

(t, J = 9.3 Hz, 5H), 1.71 (dd, J = 17.2, 7.8 Hz, 7H), 1.67 – 1.61 (m, 6H), 1.49 – 1.39 (m, 

17H), 1.35 (s, 13H), 1.19 (t, J = 7.9 Hz, 15H), 1.09 – 1.05 (m, 11H), 0.77 (d, J = 2.9 Hz, 

36H), 0.75 (s, 14H), 0.04 – -0.01 (m, 27H). 

13C NMR (101 MHz, CDCl3) δ 201.44, 158.31, 145.00, 140.91, 134.97, 134.59, 129.92, 

128.51, 126.00, 125.14, 122.44, 120.62, 113.45, 110.52, 79.21, 72.51, 55.14, 55.11, 

54.78, 51.38, 50.14, 45.02, 36.81, 29.18, 27.44, 26.26, 24.26, 23.68, 22.19, 18.38, 14.66, 

-2.58, -3.91. 
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KI13 

 

1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 15.1 Hz, 7H), 7.62 (d, J = 8.7 Hz, 7H), 6.99 

(d, J = 3.6 Hz, 6H), 6.57 (dd, J = 3.6, 1.0 Hz, 7H), 6.49 (d, J = 2.7 Hz, 5H), 6.47 (d, J = 

3.7 Hz, 6H), 6.44 (s, 10H), 4.13 (td, J = 10.1, 4.9 Hz, 8H), 4.05 (s, 6H), 3.59 (s, 21H), 

2.60 (d, J = 7.4 Hz, 15H), 2.47 – 2.40 (m, 9H), 2.35 (s, 20H), 2.11 (t, J = 9.1 Hz, 7H), 

1.67 (dd, J = 11.7, 7.7 Hz, 17H), 1.50 – 1.37 (m, 30H), 1.34 (s, 22H), 1.26 – 0.91 (m, 

54H), 0.77 (s, 41H), 0.75 (s, 18H), 0.02 (d, J = 12.4 Hz, 40H). 

13C NMR (101 MHz, CDCl3) δ 201.28, 157.50, 145.51, 139.04, 138.73, 137.74, 133.79, 

132.70, 128.50, 127.06, 115.61, 113.41, 110.48, 78.74, 77.39, 77.07, 76.76, 72.54, 55.16, 

55.07, 54.95, 51.35, 50.12, 44.91, 36.82, 29.20, 27.43, 26.27, 24.44, 23.67, 22.12, 18.38, 

16.01, 14.60, -2.58, -3.92. 

 

 

 

 

 

 

O

TBSO

H

H H

HO O

O

TBSO

H

H H

HO O

NaOH/THF, 105°C
S

H

O

S



129 

 

KI14 

 

1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 2.3 Hz, 3H), 7.85 (s, 2H), 7.62 (t, J = 5.7 Hz, 

4H), 7.03 (t, J = 2.2 Hz, 1H), 7.01 (d, J = 2.1 Hz, 2H), 6.98 – 6.97 (m, 3H), 6.96 (s, 2H), 

6.73 (dd, J = 8.7, 2.8 Hz, 2H), 6.67 (d, J = 2.7 Hz, 2H), 4.39 (dd, J = 10.0, 4.8 Hz, 2H), 

4.36 (s, 2H), 3.90 (s, 3H), 3.88 (s, 6H), 3.81 (s, 6H), 2.82 (d, J = 7.0 Hz, 4H), 2.70 (dd, J = 

12.0, 4.9 Hz, 2H), 2.34 (t, J = 8.9 Hz, 2H), 1.98 (t, J = 9.6 Hz, 3H), 1.91 – 1.82 (m, 3H), 

1.70 – 1.65 (m, 5H), 1.62 (s, 7H), 1.41 (d, J = 4.0 Hz, 8H), 1.30 (d, J = 5.4 Hz, 5H), 1.25 – 

1.14 (m, 5H), 1.01 (d, J = 2.7 Hz, 18H), 1.00 (d, J = 2.0 Hz, 6H), 0.97 – 0.86 (m, 9H), 0.28 

(s, 6H), 0.25 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 201.50, 162.13, 157.56, 145.83, 138.99, 132.69, 131.99, 

130.62, 128.49, 126.98, 115.77, 114.50, 114.33, 113.43, 110.52, 78.83, 77.54, 77.22, 

76.90, 72.58, 55.40, 55.08, 54.97, 51.42, 50.04, 44.94, 37.00, 31.65, 29.21, 27.48, 26.30, 

24.49, 22.72, 22.18, 18.55, 18.39, 14.65, 14.22, -2.54, -3.89. 
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KI15  

 

1H NMR (400 MHz, CDCl3) δ 7.63 (s, 1H), 7.60 (d, J = 6.5 Hz, 1H), 7.36 (d, J = 8.5 Hz, 

2H), 7.24 – 7.17 (m, 2H), 6.81 (t, J = 10.4 Hz, 1H), 6.49 (dt, J = 8.7, 4.4 Hz, 1H), 6.43 (d, 

J = 2.5 Hz, 1H), 4.13 (td, J = 10.1, 4.9 Hz, 1H), 3.98 (s, 1H), 3.58 (s, 3H), 2.60 (d, J = 6.8 

Hz, 2H), 2.44 (dd, J = 12.0, 4.9 Hz, 1H), 2.15 – 2.05 (m, 1H), 1.75 – 1.61 (m, 3H), 1.38 

(s, 3H), 0.77 (s, 8H), 0.02 (d, J = 13.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 201.45, 157.54, 144.52, 138.99, 137.03, 132.72, 132.61, 

129.90, 129.34, 128.50, 118.66, 113.45, 110.51, 79.05, 77.42, 77.10, 76.79, 72.52, 55.14, 

54.82, 51.40, 50.15, 44.99, 36.81, 29.76, 29.20, 27.45, 26.27, 24.32, 23.69, 22.75, 22.17, 

18.38, 14.66, -2.57, -3.90. 
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KI16 

 

 

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.7 Hz, 1H), 7.32 – 7.24 (m, 1H), 6.65 (t, J = 

12.5 Hz, 1H), 6.51 (d, J = 3.5 Hz, 1H), 6.48 (dd, J = 8.7, 2.8 Hz, 1H), 6.43 (d, J = 2.7 Hz, 

1H), 6.13 (d, J = 3.5 Hz, 1H), 4.13 (td, J = 10.2, 5.0 Hz, 1H), 4.02 (d, J = 19.6 Hz, 1H), 

3.59 (d, J = 2.9 Hz, 3H), 2.60 (t, J = 6.3 Hz, 2H), 2.43 (dd, J = 12.0, 4.9 Hz, 1H), 2.11 (t, 

J = 9.3 Hz, 1H), 1.72 (t, J = 9.6 Hz, 1H), 1.67 – 1.61 (m, 1H), 1.47 – 1.40 (m, 3H), 1.35 

(s, 3H), 1.19 (t, J = 7.9 Hz, 3H), 1.07 (dd, J = 11.7, 6.3 Hz, 3H), 0.77 (d, J = 2.8 Hz, 8H), 

0.75 (s, 3H), 0.71 (t, J = 2.4 Hz, 1H), 0.02 (d, J = 3.0 Hz, 3H), 0.01 (d, J = 4.5 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 201.38, 157.47, 150.75, 140.37, 139.11, 132.91, 130.36, 

128.56, 119.10, 116.18, 113.42, 110.54, 109.79, 78.91, 72.52, 55.22, 54.74, 51.27, 50.11, 

44.96, 36.86, 29.23, 27.51, 26.27, 24.33, 23.75, 22.15, 18.37, 14.67, -2.56, -3.88. 
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KI17 

 

1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 4.7 Hz, 1H), 7.60 (d, J = 0.9 Hz, 1H), 7.33 (d, 

J = 8.4 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 15.5 Hz, 1H), 6.48 (dd, J = 8.7, 2.6 

Hz, 1H), 6.43 (d, J = 2.4 Hz, 1H), 4.13 (td, J = 10.1, 4.8 Hz, 1H), 4.05 (s, 1H), 3.57 (s, 3H), 

2.58 (d, J = 6.8 Hz, 2H), 2.45 (dd, J = 12.0, 4.8 Hz, 1H), 2.30 (s, 3H), 2.10 (t, J = 8.8 Hz, 

1H), 1.72 (t, J = 9.5 Hz, 1H), 1.67 – 1.59 (m, 1H), 1.43 (d, J = 11.1 Hz, 3H), 1.37 (s, 3H), 

1.19 (d, J = 14.8 Hz, 3H), 1.11 – 0.90 (m, 3H), 0.77 (d, J = 3.7 Hz, 9H), 0.76 (s, 2H), 0.03 

(s, 3H), -0.00 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 201.54, 157.54, 156.34, 145.52, 143.29, 142.06, 139.03, 

132.68, 130.62, 129.13, 128.51, 125.87, 117.03, 113.45, 110.52, 78.95, 72.56, 55.17, 

55.11, 54.91, 51.42, 50.18, 44.97, 36.79, 29.30, 27.47, 26.24, 24.48, 24.45, 23.69, 22.23, 

18.46, 15.06, 14.68, -2.52, -3.85. 
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KA1 

  

1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 15.6 Hz, 35H), 7.61 (d, J = 8.3 Hz, 74H), 7.58 

(d, J = 8.4 Hz, 75H), 6.88 (s, 32H), 6.73 (d, J = 8.6 Hz, 36H), 6.68 (dd, J = 8.6, 2.6 Hz, 

37H), 6.63 (d, J = 2.5 Hz, 37H), 4.38 (s, 33H), 4.02 (s, 34H), 3.79 (d, J = 4.1 Hz, 7H), 3.72 

(s, 118H), 2.88 (t, J = 10.2 Hz, 37H), 2.81 – 2.68 (m, 82H), 2.48 – 2.43 (m, 43H), 2.22 

(tdd, J = 10.3, 9.6, 6.2 Hz, 60H), 2.04 (dt, J = 12.4, 3.2 Hz, 46H), 1.96 (t, J = 12.8 Hz, 39H), 

1.84 (ddd, J = 12.4, 8.6, 5.1 Hz, 96H), 1.73 – 1.57 (m, 237H), 1.56 – 1.50 (m, 73H), 1.44 

– 1.25 (m, 403H), 0.91 (s, 111H). 

13C NMR (151 MHz, CDCl3) δ 212.87, 159.21, 144.22, 142.23, 138.01, 132.39, 128.86, 

128.72, 127.49, 125.97, 125.95, 120.26, 114.43, 113.32, 78.62, 55.27, 53.71, 52.85, 47.85, 

47.60, 41.10, 30.02, 29.68, 24.73, 24.07, 23.56, 22.69, 22.27, 20.24, 14.77. 
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KA11 

 

 

1H NMR (600 MHz, CDCl3) δ 7.90 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 15.5 Hz, 1H), 7.60 

(d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 15.5 Hz, 1H), 6.76 (dd, J = 8.7, 

2.6 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 4.33 – 4.27 (m, 2H), 3.89 (s, 3H), 3.81 (s, 3H), 2.84 

(t, J = 6.6 Hz, 2H), 2.71 (dd, J = 11.9, 5.1 Hz, 1H), 2.19 (t, J = 9.2 Hz, 1H), 1.96 (t, J = 9.7 

Hz, 1H), 1.92 – 1.86 (m, 1H), 1.81 (s, 1H), 1.72 – 1.63 (m, 2H), 1.59 (d, J = 16.7 Hz, 4H), 

1.47 – 1.27 (m, 5H), 1.22 (td, J = 11.7, 6.4 Hz, 1H), 0.98 (d, J = 10.7 Hz, 3H) 
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KA5 

 

1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8.7 Hz, 1H), 7.69 (d, J = 15.6 Hz, 1H), 7.45 

(d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 15.6 Hz, 1H), 6.64 (dd, J = 8.6, 

2.7 Hz, 1H), 6.55 (d, J = 2.6 Hz, 1H), 4.18 (td, J = 10.3, 5.1 Hz, 1H), 4.06 (s, 1H), 3.68 (s, 

3H), 2.71 (d, J = 7.4 Hz, 2H), 2.58 (dd, J = 11.9, 5.1 Hz, 1H), 2.38 – 2.32 (m, 3H), 2.07 (t, 

J = 9.3 Hz, 2H), 1.85 – 1.78 (m, 2H), 1.76 (dd, J = 5.9, 3.0 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 201.52, 144.46, 139.08, 137.04, 132.68, 132.35, 129.84, 

129.34, 127.26, 118.66, 113.71, 111.12, 79.04, 70.79, 55.30, 55.19, 54.73, 53.67, 51.05, 

50.32, 45.07, 36.53, 28.77, 27.36, 24.29, 23.65, 22.74, 22.07, 20.80, 14.50, 14.16. 
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KA6 

 

 

1H NMR (600 MHz, CDCl3) δ 7.36 (d, J = 15.2 Hz, 1H), 6.73 (d, J = 8.6 Hz, 1H), 6.68 

(dd, J = 8.6, 2.7 Hz, 1H), 6.64 (s, 1H), 6.62 (s, 1H), 6.62 (d, J = 2.2 Hz, 1H), 6.24 (d, J = 

3.5 Hz, 1H), 3.72 (s, 2H), 2.89 (d, J = 12.5 Hz, 1H), 2.79 (s, 1H), 2.73 (d, J = 5.7 Hz, 1H), 

2.47 (d, J = 12.6 Hz, 1H), 2.21 (tdd, J = 13.5, 6.1, 3.3 Hz, 1H), 2.03 (dd, J = 9.5, 6.2 Hz, 

1H), 1.89 – 1.82 (m, 2H), 1.73 – 1.54 (m, 4H), 1.34 (s, 3H), 1.32 – 1.16 (m, 4H), 0.90 (s, 

3H). 

 

13C NMR (151 MHz, CDCl3) 200.78, 159.32, 150.49, 140.38, 137.94, 130.64, 128.62, 

127.39, 119.36, 115.55, 114.51, 113.35, 109.85, 78.40, 70.79, 55.23, 53.66, 52.89, 47.84, 

47.55, 41.15, 24.73, 24.05, 23.60, 22.27, 20.30, 14.65. 
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KA3 

 

 

 

1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.6 Hz, 1H), 7.08 (d, J = 15.2 Hz, 1H), 6.65 

(dd, J = 8.8, 2.7 Hz, 1H), 6.61 (d, J = 15.2 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 4.23 – 4.12 

(m, 1H), 3.70 (d, J = 2.2 Hz, 3H), 2.82 – 2.69 (m, 2H), 2.55 (dd, J = 11.9, 5.0 Hz, 1H), 2.36 

– 2.17 (m, 1H), 2.14 – 2.03 (m, 2H), 1.85 – 1.73 (m, 2H), 1.72 – 1.62 (m, 1H), 1.58 (dd, J 

= 8.8, 5.2 Hz, 1H), 1.42 (d, J = 7.7 Hz, 3H), 1.39 – 1.29 (m, 9H), 1.18 (s, 3H), 1.15 – 1.03 

(m, 2H), 0.90 – 0.82 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.14, 157.66, 156.40, 139.03, 132.41, 127.31, 117.94, 

113.68, 111.12, 79.02, 71.30, 70.83, 55.20, 54.28, 50.95, 50.29, 45.41, 45.01, 36.52, 29.72, 

29.53, 29.46, 28.78, 27.37, 24.15, 23.66, 22.79, 22.71, 22.00, 14.50. 
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KA4 

 

 

 

 

 

13C NMR (151 MHz, CDCl3) δ 201.61, 162.12, 157.72, 145.80, 139.08, 132.45, 130.58, 

127.28, 126.94, 115.77, 114.52, 113.72, 111.12, 78.84, 70.85, 55.50, 55.32, 55.20, 54.90, 

51.10, 50.34, 45.04, 36.56, 28.80, 27.38, 24.45, 23.66, 22.07, 14.50. 

1H NMR (600 MHz, CDCl3) δ 7.90 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 15.5 Hz, 1H), 7.60 

(d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 15.5 Hz, 1H), 6.76 (dd, J = 8.7, 

2.6 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 4.31 (d, J = 8.2 Hz, 2H), 3.89 (s, 3H), 3.81 (s, 3H), 

2.84 (t, J = 6.6 Hz, 2H), 2.71 (dd, J = 11.9, 5.1 Hz, 1H), 2.19 (t, J = 9.2 Hz, 1H), 1.96 (t, J 

= 9.7 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.81 (s, 1H), 1.60 (s, 3H), 1.47 – 1.16 (m, 6H), 0.98 

(s, 3H). 
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KA15 

 

 

1H NMR (600 MHz, CDCl3) δ 7.73 (d, J = 8.4 Hz, 4H), 6.60 (dd, J = 8.7, 2.8 Hz, 4H), 

6.54 (d, J = 2.8 Hz, 4H), 4.03 (q, J = 7.2 Hz, 7H), 3.68 (s, 12H), 3.29 – 3.24 (m, 15H), 2.90 

– 2.86 (m, 33H), 2.74 – 2.70 (m, 9H), 2.25 (s, 11H), 2.04 (s, 10H), 1.95 (s, 7H), 1.90 – 1.76 

(m, 21H), 1.72 – 1.65 (m, 39H), 1.58 (d, J = 7.4 Hz, 23H), 1.39 – 1.33 (m, 24H), 1.23 (s, 

11H), 1.13 (d, J = 3.1 Hz, 5H), 1.10 – 1.05 (m, 9H), 0.87 (s, 10H). 

 

13C NMR (151 MHz, CDCl3) δ 212.87, 157.68, 138.98, 132.51, 127.32, 113.56, 111.02, 

79.67, 77.33, 77.11, 76.90, 75.00, 70.35, 58.99, 55.80, 55.14, 52.12, 49.96, 48.88, 43.70, 

36.56, 29.68, 28.74, 27.36, 26.33, 25.14, 24.14, 22.85, 22.58, 20.17, 19.76, 14.11, 13.69, 

13.56. 
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4.3.3. Biological evaluations 

Cytotoxicity assay 

  Three cell lines were used to carry out the cytotoxicity assay: PANC-I, PCBX-3 

and AsPC-1. In a 96-well plate, a total of 5x105 cells were seeded. After 24 hrs. A serial 

dilution of the synthesized compounds (from 50 μM down to 3.125 μM as quadruplicate 

for each concentration) were added to make a total volume of 200 μL/well. Next, 

incubation was performed at 37 °C and 5% CO2 for 48 hrs. using 0.05% DMSO (Acros 

Organics) as a negative control and cuc B as a positive control. After 48 hrs, 20 μL of 3-

(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) (Sigma Aldrich) and 

(5 mg/mL PBS) were added to each well and the plate was incubated in the same conditions 

for 2 hrs. In each well, the solutions were discarded and 200 μL DMSO was added and 

mixed well. The absorbance was measured directly at 570 nm by Hidex Sense Microplate 

readers. 

Cell Cycle Analysis 

PANC-I cells were seeded (3×105 cells/well) in a 6-well plate (3mL/ well) and incubated 

overnight at 37 °C, 5% CO2. Next, the media were removed and replaced by 3 mL media 

containing 11.23 μM or 7.674 μM from KA19 and KA20, respectively, as a duplicate in 

each plate, along with cuc B and DMSO as duplicates. After incubating for 24 hrs, the cells 

were washed twice with ice cold 1X PBS buffer (Hyclone™ Laboratories, Inc) and 

collected after trypsinization. Then, deactivation with media was completed, by spinning 

down at 1200 rpm/5 min/4 °C, discarding the supernatant and fixating by cold 70% ethanol: 

1X PBS buffer overnight at −20 °C. Next, the cells were spinned down under the same 

conditions and the supernatant was discarded. Lastly, 500 μL propidium iodide (PI)/ RNase 
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staining solution (BD Biosciences) and 0.1%tritonx 100 were added and incubated in the 

dark at room temperature for 30min, then analyzed within 1h by a flow cytometer (BD 

Accuri C6, Becton-Dickinson, Mountain View, CA). Data was analyzed using MFLT32 

software and 10,000 events with slow flowrate were recorded for each sample. 

 

4.4. Conclusion 

Design and synthesis of 8 cucurbitacin-inspired estrone analogs functionalized hydroxy 

group at C11 have been achieved based on ligand-based drug discovery approach. 12 

synthetic steps was conducted in order to produce each final compound. The 

stereochemistry of the key intermediate KI10 was determined using crystallography. 

Molecular modeling data indicate that the calculated binding affinity for the hydroxylated 

analogs score higher than the dehydrogenated analogs in most of the used molecular targets 

such EGFR, RAS, RAF, and PI3K. Moreover, in- vitro cell viability assay indicate that 3 

hydroxylated CIE analogs show promising IC50 values. KA1, KA2, and KA4 containing 

phenyl para-trifluoromethyl, cuc, and phenyl para-thiomethyl side chains show promising 

IC50 values against 3 pancreatic cancer cell lines PANC-I, AsPC-I, and BXPC-3 with IC50,s 

lower than the dehydrogenated analogs for KA1 and KA2. However, KA4 show higher 

IC50 compared to the previously synthesized analogs. Results of cell cycle arrest analysis 

show that KA1 and KA2 arrest the cell cycle at G0/G1 phase in a time dependent matter. 

Our results indicate that hydroxylation of C11 increase the antiproliferative activity against 

three pancreatic cancer cell lines.  
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Chapter Five 

Synthesis and Biological Activity of C-11 Ketone Cucurbitacin-Inspired Estrone 

Analogs Targeting Pancreatic Ductal Adenocarcinoma 

 

Abstract 

The treatment of pancreatic cancer is one of the major unsolved health problems today. 

The high mortality rate of pancreatic cancer patients, among other cancer types, is due to 

the lack of early diagnosis and of effective treatments. Recently, cucurbitacin B has shown 

promising antiproliferative activity against human pancreatic cancer cells via decreasing 

the expression levels of pSTAT3 and pEGFR in a dose- and time-dependent manner. In 

order to overcome the low yield of cucurbitacin B that prevented its clinical use, a 

molecular-modeling based drug discovery process was undertaken to install cucurbitacin 

pharmacophores in the four-membered ring estrone as a carrier scaffold. This resulted in 

the discovery of Cucurbitacin-Inspired Estrone Analogs (CIEA’s).  

Previously, we confirmed bioinformatically and biologically that the functionalization of 

C11 of the CIE analogs can increase the anticancer effects of this group. Furthermore, the 

inhibition of pEGFR and pErk expression was demonstrated on pancreatic cancer cell lines. 

So far, two types of analogs have been synthesized to study the effects of the 

functionalization of this group. The desaturation of C9 and C11led to increased activity 

compared to the saturated analogs. Upon broader investigation, it was confirmed that the 

hydroxylation of C11can further increase the activity. In order to increase the potency, both 

a molecular modeling study and biological data were used to synthesize 8 CIE analogs with 
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a ketone group at C11. Although only the KA9 analog showed promising activity, it has a 

greater anticancer effect than previously discovered analogs. Moreover, the results of a 

Cell Titer assay showed that KA9 had greater anticancer activity on 2D and 3D models of 

pancreatic cancer cell lines than KA1 and KA2 that were synthesized previously. The 

anticancer activity was also greater than gemcitabine, since it decreased the micro tumor 

size after several days of treatment. KA9 demonstrates the inhibition of pEGFR and pErk 

overexpression, compared to the phosphorylation of mTOR and STAT3. The cell cycle 

arrest experiment indicated that KA9 inhibited the G1 phase in a time- and dose-dependent 

manner. KA9 was proven to induce cell death through increased caspase-3 activity on 

PANC-I cell lines. This result suggests that KA9 is a potential candidate for animal study 

as a promising pancreatic anticancer agent.  

5.1. Introduction 

Based on the current incidence, the availability of the treatment and the developing 

resistance of different cancer types, it is expected that pancreatic ductal adenocarcinoma 

with liver cancer will be the second and third leading causes of deaths by 2030.1 Currently, 

pancreatic cancer is the fourth leading cause of death among cancer types for both men and 

women.2 This high mortality rate is attributed to the absence of diagnostic markers in the 

early stages of pancreatic cancer.3 The slow progress in finding novel anticancer agents 

contributes to this expectation of high mortality in the future.4 Since the disease is generally 

detected in its late stages, the only option for treatment is chemotherapy, where 

gemcitabine is the first line of treatment, either alone or in combination therapy. However, 

its one-year survival rate is 18%, while the 6-month survival rate is 23.8%. The body's 

resistance to gemcitabine uses many mechanisms, such as a decreased number of 
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transporters and an overexpression of cytidine deaminase that converts gemcitabine into 

its inactive metabolite 2',2'-difluorodeoxyuridine (dFdU).5 This indicates the importance of 

finding new anticancer drugs with various mechanisms of action.  

Epidermal transmembrane factor receptor (EGFR) is a tyrosine kinase that is overexpressed 

in many cancer types, including pancreatic cancer. EGFR overexpression was found to be 

related to the advancement of the disease, its low survival rate, and metastasis.6 One of the 

important EGFR targeting compounds is Cucurbitacin-Inspired Estrone Analogs 

(CIEA’s), which were initially synthesized by installing a 23, 24 α, β- unsaturated ketone 

side chain in the four membered-rings of triterpene estrone. This compound shows 

comparable anticancer activity to that of cucurbitacin.7 CIE analogs have been through 

several modifications that increase their anticancer activities against different cancer cell 

lines, including erlotinib resistant HepG2 and multidrug resistance protein (MRP1).8 

Currently, we have shown that the functionalization of rings B and C leads to more potent 

anticancer agents than the currently available standard treatments.  

Previously, we found that the dehydrogenation of C9-C11, with the installation phenyl para-

trifluoro and para-nitro side chains, can increase their anticancer activity against pancreatic 

cancer cell lines. Moreover, the α-hydroxylation of C11 led to an increase in the anticancer 

activity with a cuc side chain and phenyl para-trifluoro.9, 10 However, upon testing these 

compounds in a 3-D model of PANC-I pancreatic cancer, these CIE analogs showed poor 

penetration and weak anticancer activity, which suggests that further modifications and 

optimization are needed before moving to an in vivo study.  
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In this study, we report on the molecular modeling of CIEA analogs with ketone C11 CIE 

analogs, a synthesis of the best scoring analogs.  We include their bioavailability assay 

results on PANC-I, AsPC-I, and BXPC-3 pancreatic cell lines, the flowcytometric analysis 

of KA9, and their inhibition of pEGFR, pER activation using In-Cell Western Analysis.  

Furthermore, the anticancer activity of KA9 was demonstrated on a 3D model of the 

PANC-I pancreatic cell line, which indicates a promising potential for KA9 compared to 

the previously synthesized CIE analogs.  

 

5.2. Results and Discussion 

5.2.1. Molecular Modeling Design Strategy 

Based on the MTT screening results of CIE analogs, transferring an OH group in C-3 into 

ether can increase the anticancer activity of MSA7 compared to the same analog with 

phenolic OH. Also, the molecular modeling studies introduced different side chains, such 

as para-trifluoromethyl phenyl, at C-17 on ring D of estrone, dramatically increasing the 

antiproliferative activity against hepatocellular carcinoma, breast cancer, colon cancer and 

others.10 Upon molecular modeling against an ATP binding site of pEGFR, the KA9 analog 

was the best scoring analog, which indicates its high affinity upon docking against a 

pEGFR binding pocket using hydrogen bonding with Ala:18: A (Figure 5.1).  
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       Figure 5.1. Docking profile of the highest scoring CIE analog KA9 on EGFR 

pocket indicate insertion of the molecule in the pocket by hydrophobic interaction.  

Moreover, KA9 demonstrated a promising binding affinity to an RAS binding pocket with 

a hydrogen bond formation between C11 ketone and Ala: 18: A (Figure 5.2). The RAS 

protein is one of the most investigated proteins in pancreatic ductal adenocarcinoma, due 

to its importance in the resistance mechanism that exists in pancreatic ductal 

adenocarcinoma patients. It has been reported that nearly 95% of PDAC patients have 

mutations in KRAS, which is one of the key signaling proteins that leads to an increase in 

tumor growth, even while inhibiting upstream proteins (KRAS: feeding pancreatic cancer 

proliferation).  
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Figure 5.2. KA9 binding in RAS binding pocket show a hydrogen bonding with Ala: 

18: A. 

 
 

5.2.2. Chemical Synthesis  

This group of compounds is characterized by the carbonyl group at C11, which contrasts 

with the previously synthesized compounds that have dehydrogenated C9 and C11 or a 

hydroxyl group. To obtain the final compounds KA9-KA16, the oxidation of the hydroxyl 

group is first carried out using the same conditions which oxidize the hydroxylated C20. 

However, this produced a very small yield of the oxidized product compared to using AlCl3 

as a catalyst with a yield of 80%.11 This confirms that the stereochemistry of the compound 

hinders the position of C11 and requires a catalyst, as in the case of hydroboration 

hydroxylation and TBS protection.  
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5.2.3. Biological evaluations:  

  Two cell lines were used to conduct the cell viability assay against 3 pancreatic 

cancer cell lines, PANC-I, AsPC-1, and PCBX-3. Most of the synthesized compounds did 

not show anticancer activity, including KA12, which contains a cuc side chain. This 

contrasts with the previously synthesized analogs that showed activity from the cuc side 

chain containing compounds with different modifications. KA9, which contains a phenyl 

para-trifluoro unsaturated side chain, shows greater anticancer potency than any 

previously synthesized C11 functionalized CIE analog. The IC50’s were 4.30, 4.17 and 5.7 

μM upon treatment of PANC-I, AsPC-1, and PCBX-3, respectively (Table 5.1).  

In order to further investigate the effects of KA1 and KA2, an MTT assay was conducted 

with the addition of HPaSteC cells, which are the main fibroblastic cells of the pancreas. 

The HPaSteC cells stimulate pancreatic cancer proliferation, inhibit apoptosis, and enhance 

angiogenesis.12 Upon co-culturing PANC-I with HPaSteC cells, no main difference was 

observed between the two results, which indicates the effectiveness of these analogs. 

Clearly, they are not affected by the inducers of pancreatic cell proliferation (Figure 5.4), 

unlike the standard treatment, gemcitabine.  

MTT assay is one of the best known experiments to study the effects of small molecules in 

terms of cell viability.13 It measures the concentration of ATP based on the luminescence 

produced by oxyluciferine after it is formed from luciferine. This assay also has a lower 

sensitivity than a CellTiter assay. Upon treating the cells with CIE analogs KA1, KA2, and 

KA9 to PANC-I and PANC-I/ HpaSteC, no noticeable difference was found in IC50 results 

(less than 3 µM), as indicated in Figure 5B and Table 5.3.  



153 

 

In order to the study the mechanism by which CEI analogs lead to the inhibition of cancer 

growth, two mechanism can occur— either inducing cell death or inhibiting cell division. 

Along with the analysis of cytotoxicity, we measured caspase 3/7 activation in cancer cells 

using different concentrations of the tested compounds. We revealed that KA1, KA2 and 

KA9 could cause a 1.5-2-fold increase in caspase activity at sub-toxic concentrations; at 

toxic concentrations, caspase activity dropped due to a drastic decrease in the cell numbers 

(Figure 5.5 B). At the same time, we observed as much as a 20% increase in caspase 

activity by GEM and no drop in the considered concentration range (up to 50 µM). 
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Figure 5.3. The structures of the synthesized oxygenated cucurbitacin-inspired 

analogs.  
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Table 5.1. IC50’s in μM of the synthesized CIE analogs upon treatment of PANC-I, 

AsPC-1, and PCBX-3. 

Compound PANC-I AsPC-I BXPC-3 

KA9 4.9± 0.3 4.17± 0.9 5.7± 0.65 

KA10 NA NA NA 

KA11 NA NA NA 

KA12 NA NA NA 

KA13 NA NA NA 

KA14 NA NA NA 

 

 

  

Figure 5.4. MTT assays of PANC-1 and PANC-1/HPaSteC co-culture cell viability 

after 48 h exposure to cucurbitacin derivatives (KA1, KA2, and KA9) and 

gemcitabine (GEM). Data are given as means±SD. 
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Figure 5.5. Cytotoxic efficacy of cucurbitacin derivatives in monolayers. (A) CellTiter 

assays of PANC-1 and PANC-1/HPaSteC co-culture cell viability after 48 h exposure 

to cucurbitacin derivatives (KA1, KA2, and KA9) and gemcitabine (GEM). (B) 

Caspase 3/7 activity in PANC-1 and PANC-1/HPaSteC 2D co-cultures after 48 h 

exposure to cucurbitacin derivatives (KA1, KA2, and KA9) and gemcitabine (GEM). 

Data are given as means±SD. 

 

 

 

We then studied the changes that the compounds caused in DNA during different phases 

of cell growth. According to the mechanism of action of the anticancer agent, a specific 

growth phase will be affected. If G1 was affected that means the mechanism that is likely 
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to be is DNA damage or affecting the growth factors; however, if the growth was affected 

in the S phase, that means the affect was in DNA synthesis.  

To further investigate for the effects of active CIE analogs, cell cycle analysis was 

conducted with these compounds against the PANC-I cell line. The results demonstrated 

that they accumulate cells at the G1 phase, which indicates that the mechanism of action is 

similar in these compounds. Moreover, KA9 induced cell cycle arrest in a time- and 

concentration-dependent manner, as indicated in Figures 5.6 and 5.7 and Tables 5.4 and 

5.5. 
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Figure 5.6. Effects of different concentrations of KA9 upon cell cycle indicates G1 

phase accumulation after 48 hrs. 

 

Table 5.2. Effects of KA9 treatment on cell cycle upon treatment with different 

concentrations 

Groups G0 – G1 S G2 - M 

Control 22.1 6.82 69.7 

KA9 (2.45 µM) 20.8 8.18 69.3 

KA9 (4.9 µM) 27.9 11 59.1 

KA9 (9.8 µM) 30.5 13.7 55 

49 

KA9 (2.45 µM)  Control  

KA9 (4.9 µM)  
  

KA9 (9.8 µM)  
  



159 

 

                      

                   

Figure 5.7. Effects of KA9 upon cell cycle indicates inhibition in a time-dependent 

manner. 

Table 5.3. Effect of KA9 upon cell cycle indicates inhibition in a time-dependent 

manner.                                                                                            

Groups G0 – G1 S G2 - M 

Control (24 hrs.) 21.8 7.10 69.6 

KA9 (24 hrs.) 26.9 12.1 60 

KA9 (48 hrs.) 27.9 11 59.1 

      KA9 (72 hrs.) 33.8 10.0 54 

Control (24 hrs.)  KA9 (24 hrs.) 

KA9 (48 hrs.) KA9 (72 hrs.) 
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The PANC-I cell line was treated with different concentrations of KA9 in order to study 

the inhibition of various protein activations. Four concentrations, starting with the fourth 

IC50 on PANC-I to twice the IC50, were used to treat the cells. After 24 hrs. KA9, in a 

concentration-dependent manner, inhibited the phosphorylation of pEGFR and pErk 

compared to mTOR and pSTAT3, which confirms that the mechanism of action is similar 

to the previously synthesized CIE analogs (Figure 5.8).  These results indicate the 

specificity of KA9 in inhibition of pEGFR and pErk phosphorylation without affecting 

different routes such as STAT3 and mTOR compared to the broad effect of cucurbitacin. 

These results indicate that KA9 might have low toxicity compared to cucurbitacin 

compounds.  

In addition to the monolayer cell viability assays, results for the heterospheroids of PANC-

1/HPaSteC (2:1) (Table 5.4) were obtained, in spite of the reported chemoprotective effect 

of myofibroblasts on pancreatic cancer cells in co-culture. 
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Table 5.4. IC50 values* for 2D and 3D cell cultures of PANC-1 cells and their co-

cultures with HPaSteC. 

 

Compound 

2D 3D 

MTT assay CellTiter 

assay 

CellTiter assay 

PANC-

1 

PANC-1/ 

/HPaSteC 

(2:1) 

PANC-

1 

PANC-1/ 

/HPaSteC 

(2:1) 

PANC-1 

120 

cells, 

2 

weeks 

PANC-1/ 

/HPaSteC 

120:60 

cells, 2 

weeks 

KA1 4.9 5.1 7.6 7.6 37.5 50.0 

KA2 11.8 11.8 13.6 15.8 37.5 39.5 

KA9 4.4 4.5 7.5 7.6 21.0 24.3 

*All concentration values are given in µM. 

Cancer spheroids are considered a more advanced cellular model for screening novel drug 

candidates, since they mimic the tumor microenvironment to a higher extent and provides 

better predictive values than cell monolayers.14 For the cytotoxicity evaluation of 

cucurbitacin-derived compounds, we used pancreatic cancer homospheroids containing 

PANC-1 cells, and heterospheroids comprised of PANC-1 and HPaSteC. Both types of 

spheroids were cultivated for two weeks, reaching a size of approximately 450-500 µm in 

diameter. 

Upon activation in a tumor microenvironment, pancreatic stellate cells play an important 

role in the progression of PDAC and significantly contribute to the development of the 

desmoplastic reaction.15Here, we studied the expression and architecture of ECM 

components in both types of spheroids. We found that heterospheroids more extensively 
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produced collagen I, which form fibrous clusters in spheroid interstitium, whereas in 

PANC-1 spheroids, it was distributed diffusely (Figure 5.8). Furthermore, PANC-

1/HPaSteC spheroids produced a fibronectin fibrillary scaffold, while homospheroids did 

not express this ECM component. 

 

 

Figure 5.8. Expression of ECM components in pancreatic cancer spheroids. Collagen 

I (green), fibronectin (red), hyaluronan (purple) and laminin (yellow) in PANC-1 and 

PANC-1/HPaSteC microtumors were defined in 10 µm-thick spheroid frozen section 

by immunofluorescent staining. Sections were obtained from spheroids incubated for 

2 weeks in growth medium. Scale bar is 100 µm. 

 

To estimate the cytotoxic effects of cucurbitacin derivatives, we used CellTiter assay to 

compare the values with those obtained for the monolayers of PANC-1 and the PANC-

1/HPaSteC co-culture. This test revealed that 3D spheroids are more resistant to all tested 

compounds than cells in 2D cultures (Figure 5.9 A, B and Table 5.4). Moreover, 

heterospheroids demonstrated slightly higher resistance to all drugs, as compared to 

homospheroids. Interestingly, in the 3D models, the cytotoxicity trend of the drugs changed 
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in comparison with the 2D models, resulting in KA9>KA1≈KA2>>GEM. According to 

our results, KA9 displayed the highest toxicity. This trend was confirmed by another 

experiment on the inhibition of the spheroid growth rate. We added drugs at final 

concentrations of 10 µM to 5-day old spheroids and measured their growth. Only KA9 was 

able to cause a regression of the spheroids, whereas other drugs, including GEM, merely 

delayed their growth (Figure 5.9 C, D). 

 

Figure 5.9. Cytotoxic efficacy of cucurbitacin-inspired estrone analogs for pancreatic 

microtumors. CellTiter analysis of PANC-1 (A) and PANC-1/HPaSteC (B) spheroid 

viability after 48 h exposure to cucurbitacin derivatives (KA1, KA2, and KA9) and 

gemcitabine (GEM). For evaluation of spheroid growth inhibition, cucurbitacin 

derivatives (KA1, KA2, KA9) or gemcitabine (GEM) were added to 5-days old 

spheroids (day 0). Volumes of PANC-1 (C) or PANC-1/HPaSteC (D) pancreatic 

tumor spheroids were calculated as L x W x W (length x width x width) every 2 days. 

All spheroid images in (C) and (D) have a size of 650×450 microns. Data are given as 

means±SD. 
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5.3. Material and Methods 

5.3.1. Molecular Modeling  

The molecular modeling studies were carried using two OpenEye software programs, 13 

Omega to generate the conformers of the compounds and FRED to allow rigid exhaustive 

docking.14 The targets for the previously mentioned proteins were processed and generated 

using MakeReceptor®. After the molecular docking was carried out, the consensus scores 

were visualized using VIDA software. 

 

5.3.2. Chemical Synthesis: 

All chemicals and solvents (ACS grades) were purchased from Fisher Scientific or Sigma 

Aldrich and used without any additional treatment. Before conducting the experiments, all 

the glassware and tools were cleaned, washed and dried in 120 °C oven, followed by 

closing and introducing nitrogen gas to the reaction vessel for all the reaction period, except 

when mentioned during the experiment. TLC plates (Silica gel, 0.2-mm thick, polyester 

backed, Sorbtech) were used to analyze the reaction conditions under UV254. All synthetic 

intermediates and final compounds were purified using column chromatography packed 

with silica gel 60A, 40-63 μm.  1H and 13C NMR spectra were carried out using Bruker 

AVANCE-400 MHZ and 600 MHZ NMR spectrometers. The solvents used for the 

compounds are CDCl3 and D-acetone, as will be indicated later. NMR chemical shifts were 

presented in 𝛿(PPM) using residual solvent peaks as standards (CDCl3, 7.26 (1H), 77.16 

(13C). High resolution mass (HRMS) was performed using a Thermofinnigan MAT 95XL 

mass spectrometer at the Buffalo mass spectroscopy facility. X-ray crystallography was 

conducted on KI 9 at the University of South Dakota using a Bruker APEXᴵᴵ diffractometer.       
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To a solution of 0.22 mm of C11 hydroxy CIE analogs in DCM (2 mL), AlO3 (0.53 g) was 

added, followed by PCC (0.659 g). The reaction mixture was heated to 45 for 4 hrs. Next, 

the reaction mixture was filtered through silica using ethyl acetate, followed by 

concentrating it under vacuu and purifying it through silica using (8:2) hexane: ethyl 

acetate.  

KA12 

  

 

 

1H NMR (600 MHz, CDCl3) δ 6.89 (s, 4H), 6.69 (d, J = 8.4 Hz, 11H), 6.66 – 6.63 (m, 

24H), 4.34 (s, 8H), 3.72 (s, 32H), 2.84 – 2.71 (m, 39H), 2.56 (t, J = 9.1 Hz, 13H), 2.47 (d, 

J = 12.5 Hz, 13H), 2.23 (tdd, J = 13.6, 6.2, 3.2 Hz, 23H), 2.19 – 2.12 (m, 25H), 2.02 (dt, J 

= 12.5, 3.2 Hz, 17H), 1.99 (s, 31H), 1.93 (td, J = 12.1, 6.8 Hz, 20H), 1.80 – 1.71 (m, 

45H), 1.31 (s, 15H), 0.62 (s, 31H). 

 

 

 

 

O

HO

H

H H

HO O

AlO3/PCC/ 45 °C

CH2Cl2

O

O

H

H H

HO O

OH
OH



166 

 

 

KA9 

 

 

 

1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 15.6 Hz, 3H), 7.62 (d, J = 8.3 Hz, 6H), 7.58 

(d, J = 8.4 Hz, 6H), 6.91 – 6.87 (m, 4H), 6.72 (s, 2H), 6.69 – 6.67 (m, 3H), 6.63 (d, J = 2.5 

Hz, 3H), 3.72 (s, 9H), 2.89 (d, J = 12.5 Hz, 3H), 2.73 (d, J = 5.7 Hz, 7H), 2.45 (d, J = 12.6 

Hz, 3H), 2.29 – 2.19 (m, 5H), 2.18 (s, 2H), 2.04 (d, J = 12.5 Hz, 4H), 2.00 – 1.96 (m, 2H), 

1.85 (dd, J = 17.1, 7.9 Hz, 8H), 1.72 – 1.68 (m, 5H), 1.67 – 1.57 (m, 11H), 1.37 (s, 9H), 

1.33 (dd, J = 10.9, 4.9 Hz, 3H), 1.30 – 1.27 (m, 5H), 0.91 (s, 9H). 

13C NMR (151 MHz, CDCl3) δ 213.04, 200.78, 159.32, 150.49, 140.38, 137.94, 130.64, 

128.62, 127.39, 119.36, 115.55, 114.51, 113.35, 109.85, 78.40, 55.23, 53.66, 52.89, 47.84, 

47.55, 41.15, 24.73, 24.05, 23.60, 22.27, 20.30, 14.65. 
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KA8 

 

 

1H NMR (600 MHz, CDCl3) δ 7.71 (d, J = 15.5 Hz, 1H), 7.47 – 7.45 (m, 2H), 7.17 (d, J 

= 8.7 Hz, 1H), 6.83 – 6.80 (m, 2H), 6.77 (d, J = 15.5 Hz, 1H), 6.64 (dd, J = 8.7, 2.8 Hz, 

1H), 6.49 (d, J = 2.7 Hz, 1H), 4.13 (s, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 3.37 (d, J = 11.5 Hz, 

1H), 2.82 (d, J = 11.5 Hz, 1H), 2.71 (dd, J = 12.5, 4.9 Hz, 1H), 2.64 (dd, J = 16.9, 3.7 Hz, 

1H), 2.59 (d, J = 11.5 Hz, 1H), 2.04 (t, J = 9.6 Hz, 1H), 1.90 – 1.84 (m, 1H), 1.80 (ddd, J 

= 7.5, 5.6, 2.8 Hz, 1H), 1.71 – 1.57 (m, 3H), 1.38 (s, 3H), 1.32 – 1.16 (m, 3H), 0.83 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 209.38, 201.26, 162.19, 158.00, 146.07, 138.47, 131.13, 

130.62, 126.87, 123.71, 115.53, 114.52, 113.76, 111.62, 78.48, 57.92, 55.72, 55.50, 55.45, 

55.23, 54.39, 49.05, 39.28, 30.05, 27.93, 24.26, 22.83, 22.52, 14.77. 
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KA13 

 

 

 

1H NMR (600 MHz, CDCl3) δ 7.73 (d, J = 15.6 Hz, 1H), 7.40 (dd, J = 8.7, 2.4 Hz, 2H), 

7.29 (dd, J = 8.7, 2.1 Hz, 2H), 6.79 – 6.76 (m, 1H), 6.64 (s, 1H), 6.61 (d, J = 1.1 Hz, 1H), 

6.55 (s, 1H), 3.69 (s, 2H), 2.98 – 2.85 (m, 2H), 2.83 – 2.68 (m, 4H), 2.58 – 2.50 (m, 1H), 

2.47 (dd, J = 15.0, 6.1 Hz, 1H), 2.24 – 2.21 (m, 1H), 2.20 – 2.08 (m, 3H), 1.67 – 1.55 (m, 

3H), 1.25 (s, 2H), 0.82 – 0.78 (m, 3H), 0.71 (s, 3H). 

 

13C NMR (151 MHz, CDCl3) δ 212.66, 201.65, 182.25, 159.19, 144.31, 137.18, 132.50, 

129.94, 129.35, 128.62, 119.15, 114.49, 113.22, 112.63, 78.75, 55.25, 54.61, 51.23, 47.39, 

46.89, 41.05, 31.14, 29.73, 26.27, 24.73, 22.94, 20.30, 14.35. 
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KA10 

 

 

 

1H NMR (600 MHz, CDCl3) δ 7.36 (d, J = 15.2 Hz, 1H), 6.73 (d, J = 8.6 Hz, 1H), 6.68 

(dd, J = 8.6, 2.7 Hz, 1H), 6.64 (s, 1H), 6.62 (s, 1H), 6.62 (d, J = 2.2 Hz, 1H), 6.24 (d, J = 

3.5 Hz, 1H), 3.72 (s, 3H), 2.89 (d, J = 12.5 Hz, 1H), 2.78 (dd, J = 13.1, 5.7 Hz, 1H), 2.71 

(dd, J = 17.5, 5.7 Hz, 1H), 2.47 (d, J = 12.6 Hz, 1H), 2.24 – 2.17 (m, 1H), 2.04 (dt, J = 12.5, 

3.3 Hz, 1H), 1.89 – 1.82 (m, 2H), 1.73 – 1.54 (m, 4H), 1.34 (s, 3H), 1.32 – 1.21 (m, 3H), 

0.90 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 213.04, 200.78, 159.32, 150.49, 140.38, 137.94, 130.64, 

128.62, 127.39, 119.36, 115.55, 114.51, 113.35, 109.85, 78.40, 55.23, 53.66, 52.89, 47.84, 

47.55, 41.15, 24.73, 24.05, 23.60, 22.27, 20.30, 14.65. 
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KA16 

                

 

 

1H NMR (600 MHz, CDCl3 δ 7.73 (d, J = 8.4 Hz, 4H), 6.60 (dd, J = 8.7, 2.8 Hz, 4H), 

6.54 (d, J = 2.8 Hz, 4H), 3.72 (s, 3H), 2.89 (d, J = 12.5 Hz, 1H), 2.78 (dd, J = 13.1, 5.7 

Hz, 1H), 2.71 (dd, J = 17.5, 5.7 Hz, 1H), 2.47 (d, J = 12.6 Hz, 1H), 2.24 – 2.17 (m, 1H), 

2.04 (dt, J = 12.5, 3.3 Hz, 1H), 1.89 – 1.82 (m, 2H), 1.73 – 1.54 (m, 4H), 1.34 (s, 3H), 

1.32 – 1.21 (m, 3H), 0.90 (s, 3H). 
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5.3.3. Biological Evaluations 

In a 96-well plate, a total of 1x106 cells were seeded. After serial dilution of each CIE 

analog (from 25 μM down to 1.625 μM as Quadruplicate for each concentration), they were 

added with 0.05% DMSO (Acros Organics) as a negative control and cuc B as a positive 

control. The mixtures were incubated at 37 °C with 5% CO2 for 48 hrs. Next, 20 μL of 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (Sigma Aldrich) (5 

mg/mL PBS) was added to each well and the plate was incubated for 2 hrs. In each well, 

the solutions were discarded and 200 μL of DMSO was added and mixed. The absorbance 

was measured at 570 nm by Hidex Sense Microplate readers. 

 

Cell Culture:  Primary human pancreatic stellate cells HPaSteC (ScienCell Research 

Laboratories, Carlsbad, CA) were cultured in an RPMI-1640 growth medium with 2% 

fetal bovine serum, while PANC-1 (ATCC® CRL-1469™) cells were cultured in a 

DMEM growth medium with 10% (v/v) fetal bovine serum. All cultured cells were 

grown at 37 °С in a humidified 5% CO2 atmosphere.15 

 

Generation of 3D Pancreatic Spheroids. To generate 3D spheroids, PANC-1 cells were 

seeded onto round-bottomed 96-well plates with an ultra-low attachment coating 

(Corning, Kennebunk, ME) at a density of 120 cells per well in a volume of 100 µL. 

Heterospheroids of PANC-1 and HPaSteC cells were grown at an initial cell ratio of 

120:60. After two weeks of incubation at 37 °С in a humidified 5% CO2 atmosphere, the 

spheroids were processed for use in other experiments.16 
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Immunostaining and Imaging of Spheroid Frozen Sections. Pancreatic cancer spheroids 

were washed with PBS and embedded in HistoPrep™ tissue embedding medium, snap-

frozen in liquid nitrogen, and kept at -80 °C. Then, the frozen tumor blocks were cut into 

10 μm sections, fixed in an acetone-methanol (1:1) mixture for 15 min, and air-dried at 

room temperature. To determine the ECM components, cryosections were immunostained 

and imaged with antibodies against collagen I, fibronectin, hyaluronan, and laminin, as 

described previously.17  

 

Cell Viability Assays. The cell viability of pancreatic cells and their co-culture with 

HPaSteC cells (in a ratio of 2:1) in either monolayers or spheroids was determined after 48 

hours of incubation with cucurbitacin derivatives (KA1, KA2 and KA9) and gemcitabine 

(GEM) at different concentrations. For monolayers, we used MTT and CellTiter assays. In 

the case of MTT assay, after exposure to the tested compounds, cells were incubated in 0.5 

mg mL-1 solution of thuazolyl blue tetrazolium bromide (Acros Organics, NJ) in PBS for 

1.5-2 hours, followed by extraction of formazan crystals by DMSO:ethanol mixture (1:1, 

v/v).  Optical density was measured at a wavelength of 560 nm using the 96-well plate 

reader SpectraMax M2 (Molecular Devices, Sunnyvale, CA). The CellTiter assay 

(Promega, Madison, WI), which measures the content of cell-associated ATP, was carried 

out in black-wall 96-well plates (Costar, Kennebunk, ME) for both monolayer and 3D cell 

cultures, according to manufacturer’s protocol. Luminescence was measured using 

GloMax-Multi Detection System (Promega, Madison, WI). 
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Caspase 3/7 Activity Assay. The Caspase-Glo 3/7 assay (Promega, Madison, WI) was 

used to measure the activation of caspase 3/7, according to the manufacturer’s protocol. 

After 48 hours of incubation, the caspase 3/7 was measured in monolayers of pancreatic 

cancer cells in the presence of different concentrations of cucurbitacin derivatives (KA1, 

KA2 and KA9) and gemcitabine (GEM) (Acros Organics, NJ). Luminescence was 

measured using the GloMax-Multi Detection System (Promega, Madison, WI). 

 

Spheroid Growth Inhibition: For the evaluation of spheroid growth inhibition, several 

cucurbitacin derivatives (KA1, KA2, KA9) or gemcitabine (GEM) in concentrations of 10 

µM were added to 5-day old spheroids (day 0). Two dimensions (length and width) of 

PANC-1 (120) or PANC-1/HPaSteC (120:60) pancreatic tumor spheroids were measured 

every two days using an inverted Axio Observer A1 microscope (Carl Zeiss, Gӧttingen, 

Germany) equipped with a ×20/0.4 objective lens microscope. The volumes of the 

spheroids were calculated as L x W x W (length x width x width). 

 

In-cell western assay (ICW): PANC-I Cell lines were seeded into clear-bottomed, black-

walled 96-well plates with a density of 0.5 × 106 cells per mL and allowed to grow to 

confluence. The next day, the cells were treated with various concentrations of KA9 (1.225, 

2.45, 4.9, and 9.8 µM) for 24 h and DMSO was used as a –ve control. Cells were then fixed 

with 3.7% formaldehyde in 1X PBS for 30 min and then washed, permeabilized with 0.1% 

TritonX-100 in 1X PBS, and blocked with 1X PBS fish gel solution. Next, they were 

incubated with an antibody to the following: EGFR (cell signaling technology), Phospho-

EGFR (Santa Cruz Biotechnology), MAPK (Erk1/ 2; Santa Cruz Biotechnology), 
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Phospho-MAPK (p-Erk1/2; Santa Cruz Biotechnology), STAT3 and pSTAT3 (Santa Cruz 

Biotechnology), mTOR and phosphorylated mTOR (Santa Cruz Biotechnology), and 

GAPDH (Santa Cruz Biotechnology). The mixtures received gentle shaking for 2 h. They 

were then incubated overnight at 4 °C without shaking (i.e: stationary). The cells were then 

washed with 0.1% Tween-20 in 1X PBS four times and then incubated with secondary 

antibodies conjugated to IR dye for 1 h with gentle shaking (protected from light). Cells 

were then washed with 0.1% Tween- 20 in 1X PBS four times. After the last wash, any 

residual liquid was gently pipetted out and the plate was blotted dry using the In-cell 

western protocol on an Odyssey® imager (LI-COR®), according to manufacturer's 

directions.17 Phospho-proteins were normalized for total protein signals. Data are 

expressed as mean values of at least two runs ± the standard deviation (SD). 

5.4. Conclusion 

Ligand-based drug discovery approach was used to synthesis 8 cucurbitacin estrone 

analogs with ketone group at C11. Molecular modeling results indicate that there are some 

of ketone-C11 CIE analogs score high in molecular targets of pancreatic ductal 

adenocarcinoma such as EGFR, RAS, RAF, PI3K, and STAT3. KA9, CIE analog score 

higher most of the previous CIE analogs modified with hydroxyl at C11 or desaturated at 

C9 and C11. However, most of the ketone C11 analogs did not show high calculated affinity 

against the used molecular targets. In-vitro MTT and was conducted for the synthesized 

CIE analogs against 3 pancreatic ductal adenocarcinoma cell lines PANC-I, AsPC-I, and 

BXPC-3. The results indicate that KA9 show IC50 value of 4.9, 4.17, and 5.7 µM’s, 

respectively, which is the lowest IC50 among the synthesized 24 analogs which support the 

conducted molecular docking against the indicated molecular targets. Comparing the best 
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synthesized analogs, KA1, KA2, and KA9 different biological evaluation assays have been 

conducted including 2D and 3D cellTiter assays, Caspase-3 activity assay, cell cycle 

flowcytometery, and  in-cell western assay. The results indicate that the cell viability assay 

on 2D cells with CellTiter assay that the IC50 values for each of these analogs is slightly 

higher compared to that of MTT assay. All the three analogs KA1, KA2, and KA9 show 

an increase in caspase-3 activity which an indicated that these analogs induce cell necrosis 

through cell apoptosis. KA9 appear to arrest cell cycle at G0/G1 phase in a time- and 

concentration- dependent manner. Interestingly, 3D cellTiter assay experiment show that 

KA9 was able to decrease the tumor size starting from day 4 of treatment compared to 

gemcitabine and the hydoxylated analogs which although it has the same analog as KA1 

which indicate that two factors is needed to achieve the highest activity through penetration 

of the tumor spheroids, presence of oxygen and higher hydrophobicity. Our results indicate 

that KA9 is candidate for in-vivo animal study and a promising novel treatment for 

pancreatic ductal adenocarcinoma.  
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Chapter Six 

General Conclusion and Future Directions 

 

In this project, a comprehensive investigation of the functionalization of C11 of cucurbitacin 

inspired-estrone analogs was undertaken. This is part of our lab's investigation into this 

novel group of compounds in relation to the natural products-based drug discovery process. 

Initially, the project was based on previous results regarding the optimization of the analogs 

that included C3 and C16. The targeted disease in this study is pancreatic ductal 

adenocarcinoma, one of the most challenging diseases since it has acquired resistance to 

the common chemotherapeutic options. This project focused on the C11 position, as it 

previously indicated that it increases the anticancer potency of CIE analogs. Moreover, this 

position was found to be critical in both CIE analogs and cucurbitacins, as it changes the 

configuration of the molecule and hence its activity.  

The molecular modeling step is an effective beginning step, utilizing putative pancreatic 

ductal adenocarcinoma's known critical targets, including EGFR, Erk, Ras, JAKI and 

STAT3 proteins. Upon docking these analogs against the known targets, it was found that 

different functionalizations offer general trends regarding the affinity to these proteins. For 

example, amine and oxygenated C11 analogs score better in EGFR and STAT3 proteins, 

while C9 C11 dehydrogenated analogs score better in Erk, compared to the other analogs. 

This difference in affinity in the functional groups at C11, although with a different 23, 24 

α-unsaturated side chain, confirms the importance of this position in the structure-activity 

relationship of CIE analogs.  
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The chemical synthesis challenge was one of the main obstacles to overcome in order to 

reach the proposed synthetic routes, as is the case in any chemical synthesis route. 

However, the challenges included the optimization of the steps, the yield, the number of 

synthetic steps, and the performance of different reactions in the hindered C11 position. 

Among these challenges, the optimization of the DDQ reaction was a critical step. Five 

conditions were tried in this regard and only one of them achieved the desired yield that 

enabled us to continue. Hydroxylation, as well as three other conditions, were used to 

achieve the desired product. Moreover, the optimizations of the steps was critical, as 

working in more than one position delays the synthetic process, since many side reactions 

can exist. The number of steps was also a challenge, since reaching the final oxygenated 

products required 13 reactions.  

After achieving the synthesis of 24 compounds, biological evaluations were conducted 

with different pancreatic cancer cell lines. The main cell line used in this biological study 

was PANC-I. Among the 24 synthesized analogs, 5 analogs indicated promising biological 

activities on the PANC-I cell line: KA1, KA2, KA9, KA19, and KA20 with IC50’s of 5.52, 

12.8, 4.3, 11.23, 7.64 μM, respectively. KA1, KA9, and KA20 all contain a phenyl para-

trifluoro enone side chain, which indicates this side chain is involved in anticancer activity. 

KA2 and KA19 contain a cuc D  and a phenyl para-nitro enone side chain, respectively. 

Since all CIE analogs containing a phenyl para-trifluoro enone side chain have 

antiproliferative activity, this can be used in their C11 functionalization. Regarding C11 

functionalization of KA9>KA1>KA20 in terms of IC50 against the PANC-I cell line, the 

order of functionalizations is as follows: Ketone>hydroxyl>alkene.  
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To further investigate the effects of active CIE analogs, cell cycle analysis was conducted 

against the PANC-I cell line. Results showed that they accumulate the cells in the G1 phase, 

which indicates that the mechanism of action is similar in these compounds. Moreover, 

KA9 was shown to induce cell cycle arrest in a time- and concentration-dependent manner.   

However, the 3D tests of KA1, KA2, and KA9 against the PANC-I cell line found that 

KA9 was better able to penetrate cell accumulation than KA1, KA2 and gemcitabine, 

which confirms the previously hypothesized data that these compounds are transferred to 

the cells through diffusion.  

In order to study the mechanism of action of these compounds in depth, in cell western 

assay was conducted for KA9 using four proteins: pEGFR, pErk, pSTAT3, mTOR. The 

results indicate that KA9 was able to inhibit the expression of pEGFR and pErk specifically 

in a concentration-dependent manner compared to cucurbitacin that has non-specific effect 

against its targets.  

According to our results, then, KA9 appears to be a good candidate for animal study, as it 

shows a promising IC50 and a promising penetration of 3D cells. Additionally, the targets 

for this compound have been identified. This amount of preliminary data is usually not 

available for the drugs that are promoted to animal study; however, with KA9, much data 

can be estimated.   

 

Future Directions and Recommendations 

Based on the anticancer activity of the previously mentioned CIE analogs and the 

molecular docking data, many further investigations are needed to address and investigate 
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the unanswered questions. These areas include the optimization of C16 and C17, based on 

the desaturation of C16 C17, which dramatically changed the anticancer activity of the 

synthesized analogs. Our current study suggests that hydroxylation, animation, and ketone 

substitutions may lead to more potent analogs against several cancer cell lines. Moreover, 

functionalization should include C11 and C16, based on the previously obtained data and the 

results from the recent study.  

Another next step based on this investigation is the study of KA9 in an animal model. This 

would allow further in-depth study of the anticancer activity and the toxicity profile, in 

order to promote it to clinical trials.  

Generally, the CIE analogs from the previously conducted studies should be investigated 

in animal models in order to broaden the data prior to further in-depth studies.   
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