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Figure 16. Non-metric multidimensional scaling plot based on the Biolog results of DN04 and similar genera from a 
16S rRNA BLAST and availability in culture collections. Isolate information in supplemental Table 20. 

Table 16 further identifies some of the specific differences between D. callidus 

and three of the most similar isolates from the Biolog results: Duganella zoogloeoides 

IAM 12670, Massilia dura 16, and Massilia albidiflava 45. Table 16 shows that D. callidus 

was able to utilize sources such as D-turanose, N-acetyl-D-glucosamine, inosine, and L-

pyroglutamic acid that two or all three of the most similar isolates were unable to 

metabolize. N-acetyl-D-glucosamine degradation through N-acetyl-D-glucosamine 

kinase (nagK) has been found to play a role in cell wall murein recycling (Uehara & Park, 

2004), and we identified in the genome of DN04 the nagK_1-3 genes. The genome of 

DN04 shows also putative inosine-5’-monophosphate dehydrogenase (guaB_1-4) genes 

which plays a role in inosine utilization. Inosine phosphate is converted to xanthosine 

monophosphate by the guaB enzyme, which is essential for the purine nucleotide 

biosynthetic pathway (Leyssen, Charlier, Paeshuyse, Clercq, & Neyts, 2003). DN04 also 
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possesses the glutathione-specific gamma-glutamylcyclotransferase gene (chaC) which 

is one component of the glutathione metabolization pathway. The protein is involved in 

the synthesis and break down of glutathione with L-pyroglutamic as an intermediate 

component (Niehaus, Elbadawi-Sidhu, de Crecy-Lagard, Fiehn, & Hanson, 2017). In 

contrast, D. callidus was unable to utilize several carbon and amino acid sources that 

two or all three of the reference strains were able to utilize, such as L-fucose, glycerol, L-

alanine, pectin, and α-keto-glutaric acid (Table 16). In addition to these 

chemotaxonomic differences, DN04 differed from the reference strains in its sensitivity 

testing. DN04 was not able to grow in the presence of the oxidant tetrazolium blue, and 

the antibiotics lincomycin and aztreonam (Table 16).    

Table 16. Differing Biolog results between Duganella callidus DN04, and Duganella zoogloeoids IAM 12670, Massilia 

albidiflava 45, Massilia umbonata LP01. All plates were incubated for four days, and the proper growth medium and 
inoculation fluid is indicated in the supplemental Table 21. 

 

 

 

Biochemical Test
Duganella 

callidus

Duganella 

zoogloeoids

Massilia 

albidiflava

Massilia 

umbonata

Description DN04 ATCC 25935 DSMZ 17472 DSMZ 26121

D-Turanose + - - -

N-Acetyl-D-Glucosamine + - + -

L-Fucose - ± + +

Inosine + + - -

Glycerol - + - +

L-Alanine - + + +

L-Pyroglutamic Acid + - + -

Pectin - + + +

α-Keto-Glutaric Acid - ± + +

Tetrazolium Blue - ± + +

Linocomycin - + + +

Aztreonam - + + +

Utilization of:

Resistance to:
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MALDI-TOF 

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) is a tool utilized to identify bacteria based on isolates spectra and 

comparing it to a database using bioinformatics pattern profiling (Singhal et al., 2015). 

The MALDI-TOF MS analysis is carried out on the Bruker microflex instrument, utilizing 

the flexControl v3.4 (Bruker Daltonics Inc., Billerica, MA). Spectra were attained using 

the direct transfer protocol indicated by the manufacturer, and FlexAnalysis v3.4 

software was used for the spectral analysis. DN04 cells were preparted for analysis by 

growing the colonies overnight, then the cells as well as a bacterial test standard were 

spread on a polished steel target plate and treated with formic acid. They were then 

applied to the matrix which is made up of α-Cyano-4 hydroxycinnamic acid (HCCA). After 

the plates were dry, the spectra were collected and analysied using the flexControl v3.4 

software over the 2 to 20 kiloDalton range. Two replications were conducted on DN04.  

Once the spectra were obtained it can be compared to a reference spectra 

database using the flexAnalysis software. The strain similarity score is calculated based 

on the log of the spectra score. The scores help indicate how similar DN04 is to other 

strains in the database, as well as if it is a novel isolate. Generally, a score of greater 

than 2.0 is considered to be from the same species, and a score of 1.7 to 2.0 is 

considered to be a match at the genus level. Scores lower than 1.7 suggest there are no 

similar bacterial spectra in the database, and the bacteria in question is suggested to be 

a novel bacterium. When DN04 was analyzed, it was compared against itself as a 

control, as well as the MALDI-TOF database. The results indicate that D. calliuds is most 
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likely a novel isolate based on the highest MALDI-TOF score being 1.44 which is below 

the threshold for a new isolate.  

Genome Features 

Genomic DNA was sequenced as previously described using Illumina NextSeq and 

assembled using SPAdes 3.11.0 (Bankevich et al., 2012). Initial genome annotation was 

performed with the PATRIC platform and confirmed with RAST (Overbeek et al., 2005; 

Wattam et al., 2017). According to this pipeline, the genome length of Duganella callidus 

DN04 was 6,562,230 bp. The sequencing data resulted in a total of 11,788,390 reads, with 

a total read length of 1,738,895,421 bp, and an average length of 148 bp. This produced 

281 contigs, with a N50 value of 40,161 (range: 671 to 141,855 bp), a L50 value of 49, and 

a GC content of 64.4%. After annotation we identified a total of 6,039 protein coding 

sequences with 2,150 hypothetical genes, and 3,889 genes that could be functionally 

assigned. In the genome of DN04 48 tRNA genes, 4 rRNA genes, and 43 antibiotic 

resistance genes were identified. 

The Galaxy platform was used to annotate and identify individual genes (Afgan et 

al., 2018). DN04 has several putative plant-growth promoting genes including genes used 

to catalyze the decomposition of hydrogen peroxide (katE), urease biosynthesis (ureA-G), 

biofilm production (bdcA, and wspC), biotin synthesis (bioA-D, bioF), and several 

phosphorus regulatory genes (phoR, phoB, phoD, pstS,C,A,B, phoU, ppK). Using RAST 2.0 

(Overbeek et al., 2005), we also identified 60 putative virulence genes, including 45 

antibiotic and toxic compound resistance genes. DN04 has 15 invasion and intracellular 
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resistance genes, and 109 flagella motility genes. Due to the flagella genes and the 

invasion/intracellular resistance genes, Duganella callidus is a potential plant endophyte 

(Czaban et al., 2007).  

We used the prokaryotic pipeline of MiGA to determine taxonomic ranking and 

novelty (M. et al., 2018). MiGA uses average amino acid identity (AAI) to determine the 

closest related strain in the NCBI database. Based on AAI, DN04 is most similar to 

Janthinobacterium sp. 1 2014 MBL MicDiv NZ CP011319 and Janthinobacterium sp. LM6 

NZ CP019510 with an AAI of 68.93% and 68.82% respectively. This is similar to additional 

whole genome comparisons in literature, where the analysis revealed a novel strain of 

Janthinobacterium was most similar to a member of the genus Duganella (Valdes et al., 

2015). These AAI values are just above the novel genus cutoff value of 65%. Since 

Janthinobacterium sp. 1 2014 MBL MicDiv NZ CP011319 had the highest AAI score it was 

used as the reference sequence for the p-value comparisons in Table 17. The taxonomic 

novelty uses p-values to indicate the probability of getting an AAI less than or equal to 

the query AAI value. The analysis demonstrates that DN04 belongs to the 

Oxalobacteraceae family, and that Duganella callidus DN04 is a novel species (p-value of 

0.00924 for species) (Table 17). 

Table 17. Taxonomic classification and novelty based on p-values of sequence AAI comparison using the MiGA tool 
with Duganella callidus DN04 as the query and Janthinobacterium sp. 1 2014 MBL MicDiv NZ CP011319 as the 
reference sequence. 

 

Taxonym
Taxonomic 

classification p-value

Taxonomic 

novelty p-value

Order 0.000 0.875

Family 0.000 0.739

Genus 0.111 0.519

Species 0.374 0.00924

Subspecies 0.422 0
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Average Nucleotide Identity by Orthology (OrthoANI) utilizes the original Average 

Nucleotide Identity (ANI) algorithm but expands it to also evaluate the reciprocal best 

hits. Once the genomes of interest are divided into 1020 bp-long fragments and a search 

is conducted using NCBI BLASTn the two sequences are compared. The OrthoANI 

identifies the reciprocal best hits (orthologous relationship), by running reciprocal BLASTn 

searches with each fragment (Lee et al., 2016). OrthoANI is used to compare the two 

sequences using EzBioCloud (Yoon, Ha, Lim, et al., 2017). The cutoff boundary for a new 

bacteria species using OrthoANI on EzBioCloud is ~95-96% (Goris et al., 2007). The 

OrthoANI values of the six closed related species to DN04 using NCBI BLASTn are shown 

in Table 18. All six of the closest related species have an OrthoANI value lower than the 

95-96% novel species cutoff value. The two highest OrthoANI values correspond to 

Duganella sacchari Sac22 and Duganella sp. HH101 with values of 83.79% and 82.92% 

respectively. Based on these results DN04 most likely belongs to the Duganella genus but 

is a novel species within this genus.  

Table 18. OrthoANI values from EZBioCloud of six genetically similar strains compared to Duganella callidus DN04. 

 

This is also confirmed by genome-to-genome distance-calculations (GGDC) which 

is able to measure intergenomic distance, much like the traditional wet-lab DNA-DNA 

hybridization (DDH) values  (Meier-Kolthoff et al., 2013). GGDC was calculated based on 

Isolate OrthoANIu value (%)

Duganella sacchari Sac22 83.79

Duganella  sp. HH101 82.92

Massilia sp. NR4 -1 78.73

Massilia armeniaca  ZMN-3 77.94

Janthinobacterium  sp. 1-2014MBL MicDiv 77.22

Massilia violaceinigra  B2 76.94
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the intergenomic distance between D. callidus and eight of the most similar full genomes 

based on a NCBI BLAST using the 16S rRNA contig. GGDC produces three different 

formulas for calculating intergenomic distances, and formula 2 is shown in Table 19. 

Formula 2 is calculated by taking the sum of all identities found in high-scoring segment 

pairs (HSPs) divided by overall HSP length, and it is the most robust formulation because 

it is independent of genome length (A. F. Auch et al., 2010). Table 19 results show that all 

8 of the genomes had a DDH probability below the 70% threshold which predicts DN04 is 

a new species. This is also enforced by the model confidence intervals, as well as the G+C 

differences that are close to or greater than 1 for most of the reference genomes (Meier-

Kolthoff, Klenk, & Goker, 2014). The closest related genomes to DN04 based on the GGDC 

distance calculation from formula 2 are: Duganella sacchari Sac-22, Duganella 

phyllosphaerae T54 DUPY, and Duganella zoogloeoides ATCC 25935.  

Table 19. GGDC formula 2 values based on DN04 as the query, compared to the top eight most similar full genomes 
based on BLAST results from the 16S rRNA contig. 

 

 

Proposal of Duganella Callidus sp. nov. DN04 

Due to the morphological, phenotypic, and genomic differences that were 

identified, we conclude that DN04 is a novel species of the Duganella genus. DN04 has 

Query genome Reference genome DDH Model C.I. Distance Prob. DDH >= 70% G+C difference

Duganella callidus DN04 Duganella sacchari  Sac-22 (GCA_900143065) 27.1 [24.8 - 29.6%] 0.1593 0.03 2.74

Duganella callidus DN04 Duganella phyllosphaerae  T54 DUPY (GCA_001758785) 23.9 [21.6 - 26.4%] 0.1828 0 1.19

Duganella callidus DN04 Duganella zoogloeoides  ATCC 25935 (GCA_000383895) 23.1 [20.8 - 25.5%] 0.1895 0 0.3

Duganella callidus DN04 Massilia albidiflava DSM 17472 (GCA_004322755) 21.5 [19.3 - 23.9%] 0.2041 0 1.36

Duganella callidus DN04 Janthinobacterium  sp.1-2014MBL MicDiv (GCA_001865675) 21.4 [19.2 - 23.9%] 0.2048 0 0.79

Duganella callidus DN04 Massilia umbonata  DSMZ 26121 (GCA_005280315) 21.4 [19.1 - 23.8%] 0.2056 0 0.9

Duganella callidus DN04 Janthinobacterium agaricidamnosum  BHSEK (GCA_003667705) 21.3 [19.1 - 23.8%] 0.2059 0 1.54

Duganella callidus DN04 Massilia violaceinigra B2 (GCA_002752675) 20.9 [18.7 - 23.3%] 0.2102 0 0.91

Formula 2: Sum of all identities found in HSPs divided by overall HSP length
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different color and texture of colonies on R2A media than two similar isolates based on 

16S rRNA, D. zoogloeoidis, and Massilia albidiflava. The Biolog Gen III results indicate the 

chemotaxonomic phenotype of DN04 is most similar to D. zoogloeoidis, M. albidiflava, 

and M. umbonata. However, DN04 has distinct phenotypic differences from these 

reference isolates (Table 16), and many of these differences are supported by the 

annotation of the genome. The phylogenetic tree shows that DN04 is most closely related 

to D. sacchari Sac-22 but forms its own branch. Based on the MALDI-TOF results, D. 

callidus is a novel isolate, due to there being no similar spectra in the database. The 

highest score that was obtained was 1.44 which is below the threshold for a novel isolate. 

The AAI taxonomic novelty p-value of 0.00924 also indicates that DN04 is distinctly 

different on a species level from other bacterial genomes in the NCBI database. According 

to the OrthoANI calculation, the closest related genome sequence is D. sacchari Sac22, 

but the OrthoANI value of 83.79% is much below the novel species cutoff value of ~95-

96%, indicating DN04 is most likely in the Duganella genus but a novel species. This finding 

is also confirmed by the GGDC values, when comparing the genome of DN04 to D. sacchari 

Sac22, the DDH value is 27.1, distance value is 0.1593, GC difference above 1, and a 0.03% 

probability that the two genomes would have a DDH below the new species threshold. 

These analyses indicate that DN04 is a novel species in the Duganella genus.  

Description of Duganella Callidus sp. nov. DN04 

Duganella callidus sp. nov. [kal.li.dus adj. meaning clever/cunning, as initially it 

was not depicted by a single genus but rather several, until in depth analyses were run 

to determine it was a Duganella genus] 
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Duganella callidus DN04 was isolated from a maize field in North Carolina, U.S.A. 

Its colony morphology is circular, flat, margins are entire, medium in size, yellow colored 

and opaque in appearance. Cells are gram negative rods in singles and doubles. It grows 

on R2A media, with a temperature range of 21-30°C. Based on the Biolog results, it can 

grow at a pH of 6 but it cannot grow at a pH of 5 or at a salt concentration of 1% or 

higher. DN04 metabolizes sugars such as; Dextrin, D-Maltose, D-Trehalose, D-Cellobiose, 

Gentiobiose, D-Turanose, a-D-Lactose, D-Salicin, N-Acetyl-D-Glucosamine, N-Acetyl-D- 

Galactosamine, a-D-glucose, D-Mannose, D- Fructose, D-Galactose, L-Rhamnose, and 

Inosine. D. callidus can assimilate various amino acids such as; Gelatin, Glycyl-L-Proline, 

L-Glutamic Acid, L-Histidine, and L-Pryoglutamic Acid. DN04 does not seem to be 

resistant to many antibiotics. D. callidus has sever putative endophytic and plant-growth 

promoting genes; (katE), (ureA-G), (bdcA, and wspC), (phoR, phoB, phoD, pstS,C,A,B, 

phoU, ppK), as well as 60 putative virulence genes, 45 antibiotic and toxic compound 

resistance genes, 15 invasion and intracellular resistance genes, and 109 flagella motility 

genes. The genome is 6.56 Mbp and GC content is 64.4%. 

 

 

 

 

 

 



121 
 

 Table 20. Information on cultures purchased for Biolog Gen III comparison. 

Isolate 

Accession 

number 

Culture 

Collection 

Collimonas arenae strain NCCB 100031 NR_042824.1 DSMZ 21398 

Herminiimonas contaminans strain CCUG 53591 NR_108871.1 DSMZ 28178 

Janthinobacterium agaricidamnosum strain W1r3 NR_026364.1 DSMZ 9628 

Duganella zoogloeoides strain IAM 12670 NR_025833.1 ATCC 25935 

Undibacterium terreum strain C3 NR_109599.1 DSMZ 102222 

Oxalicibacterium faecigallinarum strain YOx NR_112834.1 DSMZ 21641 

Telluria mixta strain ACM 1762 NR_044833.1 ATCC 49107 

Glaciimonas singularis strain A2-57 NR_109670.1 DSMZ 100199 

Massilia aerilata strain 5516S-11 NR_044355.1 DSMZ 19289 

Massilia umbonata strain LP01 NR_125569.1 DSMZ 26121 

Noviherbaspirillum denitrificans TSA40 NR_157007.1 ATCC TSD-69 

Massilia dura strain 16 NR_043307.1 DSMZ 17513 

Massilia alkalitolerans YIM 31775 NR_0430941 VTT 032361 

Herbaspirillum seropedicae Z 78 AJ238361 DSMZ 6446 

Massilia albidiflava 45 AY965999 DSMZ 17472 
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Table 21. Biolog results for Duganella callidus DN04 and all comparable species from supplemental Table 16. Plates 
were incubated for four days and the growth medium and inoculation fluid is identified on the table. 

 

 

Author statement 

All authors approved the submission of this manuscript to the International Journal of 

Systematic and Evolutionary Microbiology. The authors contributed as follows: RR and VP 

conducted the experiments, RR, VP and HB conceptualized the project, analyzed the 

experiments, and validated the results, and wrote, reviewed and edited the manuscript, 

Biochemical Test

Duganella 

Callidus

Massilia 

albidiflava Collimonas arenae

Herminiimonas 

contaminans

Janthinobacterium 

agaricidamnosum

Naxibacter (Massilia) 

alkalitolerans

Herbaspirillum 

seropedicae

Duganella 

zoogloeoids

Undibacterium   terr

eum

Oxalicibacterium f

aecigallinarum Telluria mixta

Glaciimonas 

singularis Massilia aerilata

Massilia 

umbonata

Noviherbaspirillum 

denitrificans Massilia dura

Reactions DN04 DSMZ 17472 DSMZ 21398 DSMZ 28178 DSMZ 9628 VTT 032361 DSMZ 6446 ATCC 25935 DSMZ 102222 DSMZ 21641 ATCC 49107 DSMZ 100199 DSMZ 19289 DSMZ 26121 ATCC TSD-69 DSMZ 17513

Inoculation Fluid B A A A A A B A B A B A A A B B

Media R2A R2A Nutrient TSA Nutrient TSB Nutrient TSA R2A Nutrient Nutrient R2A R2A R2A R2A TSA

Negative Control - - - - - - - - - - - - - - - -

Dextrin + + - - + ± ± + - - + - + + + +

D-Maltose + + - - + ± - + - - + - + + + +

D-Trehalose + + - + + + - + - - + - - + + +

D-Cellobiose + + - - + + - + - - ± - + + - +

Gentiobiose + + - + + + - + - + - - + + - +

Sucrose - + - - + + - - - - - - - + + +

D-Turanose + - - - + ± - - - - - - ± - + +

Stachyose - - - - + + - - - - - - - + + -

Positive Control + + + + + + + + + + + + + + + +

pH 6 + + + - + + + + - ± + + + + + +

pH 5 - - + - + + + - - - - - - - - -

D-raffinose - - - - + + - - - - - - - + - -

a-D-Lactose + + - ± + - - - - - - - - ± + -

D-Melibiose - + - - + ± - - - - - - - + + -

B-Methyl-D-Glucoside - + - - + + - - - - + - - - - -

D-Salicin + + - - + + - + - - + - - ± - -

N-Acetyl-D-Glucosamine + + + - + + ± - - - + + - - + -

N-Acetyl-B-D-Manosamine - - - - + - - - - - ± - - - + -

N-Acetyl-D- Galactosamine + + - - + - - - - - ± - - + - -

N-Acetyl-D- Galactosamine - - - - + - - - - - ± - - - - -

1% NaCl - - - - + + + + - + + - - - + +

4% NaCl - - - - + + ± - - - + - - - - -

8% NaCl - - - - + + - - - - - - - - - -

a-D-glucose + + + - + + + + + - + + + + + +

D-Mannose + + + - + + ± + - - - - + + + +

D- Fructose + + + - + + ± + - - + ± - + + +

D-Galactose + + + - + + + + + - ± - + + + +

3-Methyl Glucose - + ± - + ± - - - - ± - - + - -

D-Fucose - + + - + - ± - - - ± - - ± - -

L-Fucose - + + - + - + ± - - ± - - + - -

L-Rhamnose + + - - + + + + - - ± - ± + - +

Inosine + - + - + + - + - - + - - - - +

1% Sodium Lactate - - + + + + + + - + + ± - + + -

Fusidic Acid - - - - - - + - - - - - - - - -

D-Serine - - - - - + - - - - + - - - - ±

D-Sorbitol - - + - + - + - - - - - - - - +

D-Mannitol - - + - + + + - - - ± - - + + +

D-Arabitol - ± + - + ± + - - - ± - - ± - -

Myo-Inositol - + + - + + + - - - + + - ± - -

Glycerol - - + - + + + + - - + + - + + +

D-Glucose-6-PO4 + + + - + - ± ± + - + - + + + -

D-Fructose-6-PO4 + + + - + ± ± ± - - + - ± + + -

D-Aspartic Acid - - + - + + + - - - - ± - - - -

D-Serine - - - - + - - - - - + - - - - -

Troleandomycin - - - - - - + - - - - + - - - -

Rifamycin SV - - + + + + + + - + - + + + - +

Minocycline - - - - - - - - - - - - - - - -

Gelatin + + ± - + + - + - - + - + + - -

Glycyl-L-Proline + + + - + + + + + + ± - - + - -

L-Alanine - + + - + + ± + - - - + - + - -

L-Arginine ± + ± - + + - + - - ± + - ± - -

L-Aspartic Acid ± + + - + + + + - - + + + + - -

L-Glutamic Acid + + + - + + + + + ± + + + + - -

L-Histidine + + + - + - - + - - ± + - ± - -

L-Pryoglutamic Acid + + + - + ± + - - - ± - - - - -

L-Serine - + + - + + - ± - - + + - - - -

Linocomycin - + + - - + + + + + - + + + - +

Guanidine HCl - - - - + + + - - - + - - - - +

Niaproof 4 - - - - - - ± - - - - - - - - -

Pectin - + - - + + - + - - - - - + + +

D-Galacturonic Acid + + - - + - + + - - - - + + - -

L-Galactonic Acid Lactone + + ± - + - ± - - - - - + + - -

D-Gluconic Acid + + + - + + + + + - + - - + - +

D-Glucuronic Acid + + + - + + + + - - - - - + - -

Glucuronamide + + + + + - ± ± - ± ± ± - + - -

Muric Acid + + + - + ± + + - - ± - + - - -

Quinic Acid - - + - + + + - - - ± + - + - -

D-Saccharic Acid + + + - + + + + - - ± - + + - -

Vancomycin - - + + - + + - - + - + - - - ±

Tetrazolium Violet - - + - - - + - - - - - - + - ±

Tetrazolium Blue - + + - + - + ± - + - + - + - -

p-Hydroxy-Phenylacetic Acid - - - - + - + - - - - - - - - -

Methyl Pyruvate + + + + ± ± + + - + + + + ± - +

D-Lactic Acid Methyl Ester - ± - - + - - - - - ± - - - - -

L-Lactic Acid + + + + + ± + - + + + + - + - +

Citric Acid - - + - + + + + + - - - + + - -

a-Keto-Glutaric Acid - + + - + - + ± + + + - + + - +

D-Malic Acid - + - - + - + - - - ± - + + - -

L-Malic Acid + ± + + + + + + + + + + + + - -

Bromo-Succinic Acid + + ± ± + + + + - - + - - + - -

Nalidixic Acid - - + ± - + + - - - - - + - - +

Lithium Chloride - - - - + + - - - - + - - - + +

Potassium Tellurite - - ± - + + + - - - + + - - + +

Tween 40 + + + - + ± - ± ± - + - + + - -

y-Amino-Butyric Acid - - + - + + + - - - - + - - - -

a-Hydroxy-Butyric Acid - - ± - ± - ± - - - - ± - ± - +

b-Hydroxy-D, L-Butyric Acid + + + + ± - + + - - ± + + + - -

a-Keto-Butyric Acid + + + - ± - + + - - ± ± - + - +

Acetoacetic Acid - - - ± + + ± ± ± - + + ± + - +

Propionic Acid - - + + + - ± + - - ± + ± + - -

Acetic Acid - - + + + - + + + + + + + + - -

Formic Acid - - + + ± - + - ± - + - - - - -

Aztreonam - + - - + + + + + + + - + + - +

Sodium Butyrate - - - - + + ± ± - ± + - - - + +

Sodium Bromate - - - - + + - - - - + - - - - -
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Abstract 

Phosphorus is an essential macronutrient required for plant growth and development. 

It is central to many biological processes, including nucleic acid synthesis, respiration, 

and enzymatic activity. However, the strong adsorption of phosphorus by minerals in 

the soil decreases its availability to plants, thus reducing the productivity of agricultural 

and forestry ecosystems. This has resulted in a complete dependence on non-renewable 

chemical fertilizers that are environmentally damaging. Alternative strategies must be 

identified and implemented to help crops acquire phosphorus more sustainably. In this 

review, we highlight recent advances in our understanding and utilization of soil 

microbes to both solubilize inorganic phosphate from insoluble forms and allocate it 

directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, 

ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major 
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role in natural and agroecosystems, and their use as bioinoculants is an increasing trend 

in agricultural practices. 

Introduction 

Phosphorus (P) is a major element that is present in all soils worldwide in both 

inorganic and organic forms. The inorganic forms are derived from the weathering of 

primary mineral rock, including various forms of apatite (Rodriguez & Fraga, 1999). Upon 

weathering, inorganic P (Pi) exists in the soil solution as orthophosphates, including 

H2PO4
− and HPO4

2−. Depending on soil conditions, orthophosphates can be adsorbed to 

mineral complexes, converting them into insoluble forms (Kruse et al., 2015). In acidic 

soils, they are bound to both iron and aluminum oxides as well as clay minerals; however, 

in alkaline soils, they are bound mainly to calcium carbonate (Hinsinger, 2001; Matar, 

Torrent, & Ryan, 1992). In addition, soluble orthophosphates that are not adsorbed are 

often assimilated into various biological systems; hence, approximately 30–80% of the P 

present in soil is immobilized in various organic forms (Dalai, 1977). The most common 

form of organic P is inositol phosphate, which makes up approximately 60% of the total 

organic P in the soil (Dalai, 1977). Inositol phosphate is stable and is formed by a series of 

phosphate esters ranging from monophosphates to hexaphosphates. Phytate, or inositol 

hexakisphosphate, is the most abundant form of inositol phosphate (Turner, Paphazy, 

Haygarth, & McKelvie, 2002). Additional forms of organic P include glycerol phosphates, 

phospholipids, nucleic acids, and sugar phosphates; all of these are mainly contained in 

soil microbial biomass and combined make up less than 2% of the total soil organic P (J. 

W. Stewart & Tiessen, 1987). All forms of organic P in the soil are not bioavailable, i.e. not 
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readily available for plant uptake, because they have inherently high molecular weights 

and therefore must be hydrolyzed into soluble inorganic forms, such as orthophosphate 

(J. W. Stewart & Tiessen, 1987). To summarize, although the soil contains large quantities 

of P, most of it is not available for plants, forcing them to develop different strategies to 

acquire P, including the establishment of symbiotic associations with soil microbes (Figure 

17). 

 

 

 

 

 

 

 

Figure 17. Schematic model showing the acquisition of phosphorus in plants, facilitated by arbuscular mycorrhizal 
fungi, ectomycorrhizal fungi, and P-solubilizing bacteria. (A) Root hairs on the roots of plants are able to acquire 
inorganic phosphate (Pi) from soil that is within close proximity (e.g., within the rhizosphere). This method of Pi 
acquisition is known as the direct uptake pathway. Insoluble forms of phosphate and free Pi that are outside of the 
rhizosphere cannot be reached by the plant (red cross). (B) Spores of arbuscular mycorrhizal fungi germinate, and 
emerging hyphae make contact with and penetrate roots in order to form arbuscules and sometimes vesicles in plant 
cortical cells. Extraradical hyphae exploring the soil can extract Pi from insoluble forms of phosphate (e.g., minerals 
and organic matter) and acquire it. Pi is then transported through the hyphae colonizing the roots and delivered to 
plant cells. (C) Specific plant–fungal structures called ectomycorrhizas can be formed on woody plant roots. As with 
arbuscular mycorrhizas, extraradical hyphae exploring the soil extract Pi from insoluble forms and acquire it. These 
hyphae can sometimes form rhizomorphs that are highly differentiated structures (not represented here). Pi is 
transported towards the roots and then delivered to plant cells. (D) Insoluble forms of phosphate are actively 
degraded by P-solubilizing bacteria. The resulting free Pi can either be taken up by the roots or other organisms, 
including mycorrhizal fungi. The improvement of P acquisition through direct or indirect microbial pathways leads to 
the increase of P content in aboveground tissues (e.g., seeds and fruits), thus increasing plant growth and yield. 

 

In plants, P is a fundamental component of nucleic acids, phospholipids, and energy-

shuttling nucleotide triphosphates. As such, P plays a crucial role in many molecular 
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processes, including nucleic acid synthesis, membrane synthesis and stability, respiration, 

signal transduction pathways, enzymatic activity, and redox reactions (Cade-Menun, 

Carter, James, & Liu, 2010; Ha & Tran, 2014). P is also vital for supporting photosynthesis, 

embryo and seed formation, and biological nitrogen fixation (Ha & Tran, 2014; Kouas, 

Labidi, Debez, & Abdelly, 2005). Due to the pivotal role of P in plants, its optimal 

concentration often exceeds 60 µmol g−1 of dry mass (Vance, Uhde-Stone, & Allan, 2003). 

However, as described above, the concentration of P in the soil that is bioavailable to 

plant roots is quite low, ranging from 1 to 10 µM in the form of Pi (Bieleski, 1973). Thus, 

when the soil P supply falls short of the plant P demand, it results in multiple adverse 

effects on plant growth and development, including defoliation, intolerance to biotic and 

abiotic stressors, and significant yield reduction (Jain et al., 2007; Sanchez-Calderon et al., 

2005).  

To combat yield reduction and meet the demand for food of the growing human 

population, chemical fertilizers, including monoammonium phosphonate, diammonium 

phosphate, superphosphate, and different formulations of NPK, have been used 

extensively worldwide since the 1960s to provide additional P (Carvalho, 2006). Although 

this practice has proven effective in temporarily treating the symptoms of P nutrient 

deficiency in crops, frequent applications of excess P fertilizers have detrimental 

environmental impacts, including the eutrophication of aquatic ecosystems due to the 

leaching and runoff of residual P from agricultural fields (Cade-Menun et al., 2010; P. 

Gyaneshwar et al., 2002). In addition, P is a non-renewable resource, and the known rock 

phosphate reserves that currently feed the agronomic P fertilizer demand are 
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unsustainable and estimated to be depleted within 50–100 years (Cordell et al., 2009). 

Furthermore, rock phosphate also contains heavy metal residues such as arsenic, 

chromium, lead, mercury, nickel, vanadium, and cadmium, thus contributing to the 

accumulation of heavy metals in arable land (Rutherford et al., 1995). Finally, between 75 

and 90% of the applied P is precipitated by iron, aluminum, or calcium complexes present 

in the soil, making it unavailable to the plant in the first year of application (Cade-Menun 

et al., 2010; Gyaneshwar et al., 2002). Poor soil fertility and high P applications also 

directly inhibit microorganisms that can naturally improve P availability in soils (Garcia, 

Delaux, Cope, & Ane, 2015). 

Plants adapted to P-deficient soils improve their P acquisition and use efficiency by 

1) changing root architectural traits, 2) increasing the rate of P mineralization of rock 

minerals, 3) remobilizing organic sources of P via hydrolysis, 4) replacing phospholipids in 

membranes with sulfo- and galactolipids, or 5) employing metabolic pathways that can 

conserve P (Duff, Sarath, & Plaxton, 1994; Hinsinger, 2001; Jones, 1998). The most 

important adaptation to P limiting soil conditions, however, is the development of 

interactions with soil microbes, particularly mycorrhizal fungi (Raven, Lambers, Smith, & 

Westoby, 2018). In this review, we describe how plant-associated soil microbes mobilize 

and deliver P to their host plants. In particular, we summarize key information about how 

arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, as well as phosphate 

solubilizing bacteria contribute to plant P nutrition. We also describe how these microbes 

could serve as a sustainable alternative to synthetic P fertilizers used in agricultural and 

forestry production. 
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The Use of Arbuscular Mycorrhizal Symbiosis in Agriculture to Improve 

Phosphate Uptake 

Plants are able to acquire Pi from the soil solution either directly via their own root 

system, particularly through root hairs (Figure 17A), or indirectly via their symbiotic 

association with mycorrhizal fungi (Figures 17B,C). Due to the slow rate of Pi diffusion in 

soils, the direct uptake pathway only allows plants to access Pi from the rhizosphere 

(Kraus, Fusseder, & Beck, 1987; S. E. Smith, Anderson, & Smith, 2015). Root hairs play a 

crucial role in expanding the root surface area involved in nutrient uptake, especially 

under low P conditions (Bates & Lynch, 1996). High-affinity transport proteins localized to 

the outer surface of root epidermal cells absorb Pi from the soil solution against the 

concentration gradient. The activity of these transporters is dependent on the active 

acidification of the soil solution by the plant, which allows the simultaneous co-transport 

of Pi with hydrogen ions into the plant cell (Rausch & Bucher, 2002).  

In natural ecosystems, most land plants also acquire P through the indirect or 

mycorrhizal uptake pathway via the extension of their root system through associations 

with various classes of mycorrhizal fungi. One class includes AM fungi, which are 

ubiquitous in soils around the globe. They belong to the phylum Mucoromycota, sub-

phylum Glomeromycotina, and form a symbiotic association with more than 70% of land 

plant species, including many agronomically important crops (Sawers et al., 2017; S. E. 

Smith & Smith, 2011). Among these major crop cereals, legumes, grasses, and trees can 

be found colonized by AM fungi in the field (B. Wang & Qiu, 2006). Many key plant 

genes required to form AM associations, and absent from non-mycorrhizal plants, have 
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been identified in model angiosperms in the past few decades (Vigneron, 

Radhakrishnan, & Delaux, 2018). Although AM fungi are ubiquitous, obligate and 

facultative mycorrhizal host plants vary in their degree of specificity when recruiting AM 

fungal partners (Sepp et al., 2019). AM fungi explore the soil for water and mineral 

nutrients through the development of an extensive extraradical mycelium. The 

collective soil volume surrounding all extraradical hyphae is referred to as the 

“mycorrhizosphere”(Timonen & Marschner, 2006). Compared to the rhizosphere, the 

volume of the mycorrhizosphere is orders of magnitude larger, given that the 

extraradical hyphal networks of AM fungi can extend up to 25 cm from the plant root 

into the soil (S. E. Smith et al., 2015). Inside the root, AM fungi form a network of 

intercellular hyphae and intracellular nutrient exchange structures in the root cortex, 

called arbuscules (Harrison, 2005) and, in some cases, storage structures called vesicles. 

Plants transfer photosynthetic carbon in the form of sugars (Baier et al., 2010) and lipids 

(Luginbuehl et al., 2017) across the periarbuscular and mycorrhizal interface to the 

fungal partner (Kiers et al., 2011; C. Y. Zheng, Ji, Zhang, Zhang, & Bever, 2015). In return, 

AM fungi provide the plants with water and various nutrients, such as P, nitrogen, 

sulfur, and trace elements (Garcia, Doidy, Zimmermann, Wipf, & Courty, 2016). It is well 

documented that AM fungi contribute significantly to the Pi nutrition of their host plant, 

particularly under Pi limitation (S.E Smith & Read, 2008). Soil exploring hyphae excrete 

enzymes that mineralize or mobilize plant unavailable organic and inorganic forms of 

phosphate (Figure 17B). As soon as Pi is taken up into the fungal cytoplasm, it can 

replenish the metabolically active P pool within the hyphae, or it is further polymerized 
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into polyphosphates that are stored in vacuoles, transported towards the intraradical 

hyphae, and delivered to the plant host through specific fungal and plant transport 

proteins at the arbuscular interface (Guerrero-Galan et al., 2018). Most of the Pi 

transporters involved in the direct pathway are downregulated when roots are 

colonized by AM fungi, and instead mycorrhiza inducible Pi transporters are expressed 

in the periarbuscular membrane, indicating a shift from the direct P uptake pathway 

towards the mycorrhizal one (Paszkowski, Kroken, Roux, & Briggs, 2002). 

Among all crops, only legumes have the ability to interact with both AM fungi and 

the symbiotic nitrogen-fixing bacteria rhizobia. This dual association results in the 

formation of a unique and highly beneficial tripartite interaction (Afkhami & 

Stinchcombe, 2016). Rhizobia are housed by plants in specialized root nodules that 

provide an environment conducive for bacteria to convert atmospheric nitrogen (N2) 

into a plant usable form (i.e., ammonium), which is then provided to the plant 

(Desbrosses & Stougaard, 2011). In return, host plants allocate photosynthetic carbon to 

rhizobia residing in the nodules (Paul & Kucey, 1981). Biological nitrogen fixation can 

satisfy more than 70% of a host plants’ nitrogen demand (Herridge, Peoples, & Boddey, 

2008) and contributes to one third of our global agricultural nitrogen needs (J. G. Liu, 

Ma, Ciais, & Polasky, 2016). Converting one molecule of N2 into plant assimilable 

ammonium is an energy-expensive reaction requiring 16 molecules of ATP (Udvardi & 

Poole, 2013). Therefore, roots with functional nodules need substantially more Pi than 

non-nodulated roots (Sulieman, Schulze, & Tran, 2013). Legumes growing in Pi-limited 

environments are only poorly nodulated or have reduced nodule growth (Schulze, 
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2004). In sub-Saharan Africa field experiments, Pi supplements increased soybean seed 

yields after an inoculation with rhizobia, highlighting the need for proper Pi nutrition in 

legume cultivation (Thuita, Vanlauwe, Mutegi, & Masso, 2018). Due to their positive 

impact on P nutrition, AM fungi facilitate biological nitrogen fixation in P-deficient soils 

(Bournaud et al., 2018; Puschel et al., 2017). Thus, legumes forming tripartite 

interactions have accelerated growth, increased photosynthetic and biological N2 

fixation rates, and higher nutrient contents than plants colonized by only one root 

symbiont (Ibiang, Mitsumoto, & Sakamoto, 2017; Mortimer et al., 2013; X. R. Wang, 

Pan, Chen, Yan, & Liao, 2011). 

The majority of agricultural crops develop symbiotic associations with AM fungi; as 

such, it is crucial for breeding programs to retain this trait within the germplasm of crop 

species. Retaining the ability of crop species to associate with AM fungi is particularly 

important, because recent studies revealed that the application of AM fungi to field 

conditions can improve the growth response and seed yield of some crops, including 

alfalfa and soybean (Eulenstein et al., 2017; Ortas, 2012). For example, soybean plants 

that were inoculated with AM fungi, showed similar P contents and seed yields, and had 

a higher fertilization efficiency than fertilized control plants (Cely et al., 2016). The 

identification of highly compatible AM fungal strains, in combination with management 

choices, will make the fungal communities durable, thus conferring continuous benefits 

to host plants; in contrast, when chemical fertilizers are applied to a field, they provide 

short-term benefits necessitating annual application (Verbruggen, van der Heijden, Rillig, 

& Kiers, 2013). Although AM fungi can be seen as an exciting alternative to minimize crop 
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dependency on P fertilizers, their actual impact is currently strongly debated by several 

groups since contrasting effects of AM colonization on plant P nutrition have been 

reported (Ryan & Graham, 2018). Indeed, many uncontrolled factors, including native AM 

fungal communities, can lead to a high variability in plant growth, nutritional or yield 

responses (Niwa et al., 2018). Nutritional and yield benefits of AM fungi also depend on 

the crop species or its variety, or the AM species or its fungal isolate (X., S., & Bucking, 

2016). For instance, due to its large root system, wheat typically has a lower 

responsiveness to AM fungi than other crop species (H. Y. Li, Smith, Dickson, Holloway, & 

Smith, 2008). Altogether, this reflects the importance of intensifying our research efforts 

to identify crop and fungal combinations that lead to maximum benefits in agricultural 

systems. 

The Use of Ectomycorrhizal Fungi to Improve Phosphate Uptake for 

Lignocellulosic Biofuel Crops 

From an agronomic standpoint, woody plants are not traditionally grown as crops; 

however, extensive research has shown that some fast-growing species of woody plants 

(e.g., Populus) can be grown as feedstock for the production of lignocellulosic biofuels 

(Somerville, Youngs, Taylor, Davis, & Long, 2010). For this reason, here we consider the 

production of lignocellulosic biofuels from an agronomic perspective. Breeding programs 

have already developed cultivars within the genus Populus that are optimized for biomass 

yield (M. Guo et al., 2015). In addition, genetically modified Populus lines have been 

developed with decreased cell wall recalcitrance, thus allowing for greater biomass 

conversion to bioethanol (Macaya-Sanz et al., 2017). Although breeding and molecular 



134 
 

approaches have increased biomass yield and improved its conversion to biofuel, 

respectively, the agroecological context in which perennial biofuel crops will be grown 

has not been fully evaluated. The term “marginal lands” is used to describe low quality 

land that is not suitable for the production of food or feed from an economic standpoint, 

but that could serve as land where adapted biofuel crops can be produced (Richards, 

Stoof, Cary, & Woodbury, 2014). Although the unsuitability can be due to many edaphic 

factors, one crucial factor is nutrient availability (Alteri, 2002). To produce sufficient 

biomass for biofuel production, adequate access to nutrients is essential, particularly 

since the short rotation coppices used for woody plant biofuel production can rapidly 

deplete mineral nutrient reserves in the soil (Mitchell, 1995). In temperate and boreal 

forest ecosystems, trees are often dependent on ECM fungi for obtaining mineral 

nutrients from the soil via the mycorrhizal uptake pathway (Figure 17C; (Becquer et al., 

2019)). In this section, we describe how ECM fungi specifically contribute to P nutrition in 

forests and can therefore be used to promote the sustainable agronomic production of 

woody plant biomass for lignocellulosic biofuel production. 

In contrast to AM fungi, ECM fungi belong to the fungal phyla Basidiomycota, 

Ascomycota, and Mucoromycota (sub-phylum Mucoromycotina) (Spatafora et al., 2016). 

ECM fungi only colonize 2% of plant species, the majority of which are woody plants. 

However, ECM woody plants are the primary flora of forest ecosystems that cover 

approximately 30% of the global terrestrial surface (Pan, Birdsey, Phillips, & Jackson, 

2013). In temperate and boreal forest ecosystems, up to 95% of tree short roots are 

colonized by ECM fungi (Martin et al., 2001). These mycobionts can substantially improve 
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the ability of trees to acquire water and nutrients (Becquer et al., 2019) and actively 

participate in nutrient cycling and carbon sequestration (Clemmensen et al., 2013). In 

addition, ECM fungi contribute significantly to the abiotic and biotic stress resistance of 

their host. Due to the mycorrhizosphere, trees colonized by ECM fungi can extend their 

exploration in the soil up to multiple meters, depending on the species (S. E. Smith et al., 

2015). In many cases, a large percentage of the nutrient absorbing and actively growing 

part of the root system is colonized with ECM fungi and enclosed by a fungal sheath that 

can represent an apoplastic barrier, thus limiting the tree’s ability to acquire nutrients via 

the direct plant uptake pathway (Figure 17C). The hyphae developed by ECM fungi inside 

tree roots form a network called the Hartig net, where nutrients are exchanged between 

both partners. As with AM fungi, ECM fungi acquire Pi from the soil through specialized 

transporters (Garcia et al., 2013; Tatry et al., 2009), store it in the vacuoles in the form of 

polyphosphates (Torres-Aquino et al., 2017), transport it towards the Hartig net, and 

release it into the mycorrhizal interface through transport proteins (Becquer et al., 2018). 

ECM plants also express specific transporters to absorb Pi directly from the mycorrhizal 

interface (Loth-Pereda et al., 2011). The filamentous nature of the mycelia formed by ECM 

fungi, which sometimes aggregate into highly differentiated structures called 

rhizomorphs, makes them more efficient than the roots of trees at foraging for mineral 

nutrients, such as P (Rousseau, Sylvia, & Fox, 1994). Multiple studies with multiple tree 

and fungal species grown at varying P concentrations have demonstrated that plants 

colonized with ECM fungi acquire significantly more Pi than non-mycorrhizal plants 

(Aquino & Plassard, 2004; Jentschke, Brandes, Kuhn, Schroder, & Godbold, 2001). 
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Furthermore, while foraging in nutrient-rich patches within the soil substrate, tree species 

that associate with ECM fungi allocate more carbon towards the formation of extraradical 

hyphae than towards the production of roots (Chen et al., 2016). 

ECM fungi are capable of mobilizing P from both inorganic and organic sources within 

the soil (Figure 17C). Previous studies under controlled laboratory and field conditions 

have shown that ECM fungi dissolve inorganic sources of P (e.g., the calcium phosphate-

enriched clay apatite) via the excretion of organic acids (e.g., oxalic acid) that they 

produce using plant-derived carbon (Rineau et al., 2013). These studies indicate that the 

weathering of apatite by the fungus is driven by the allocation of photosynthates from 

the host plant to the fungus that facilitates the mobilization and uptake of P that can be 

delivered to the host plant.  

In addition to inorganic sources of P, ECM fungi can also extract phosphate from 

various organic sources and can enzymatically digest inositol hexaphosphate through the 

production of phosphatases (Antibus, Sinsabaugh, & Linkins, 1992) (Figure 17C). 

Phosphatase activity increases as the concentration of Pi decreases in the soil substrate 

(Colpaert, VanLaere, VanTichelen, & VanAssche, 1997). In other studies, even more 

complex sources of organic P (e.g., leaf litter (Perez-Moreno & Read, 2000), pollen (Perez-

Moreno & Read, 2001a), necromass from dead nematodes (Perez-Moreno & Read, 

2001b), and even seeds (Tibbett & Sanders, 2002) were exploited by ECM fungi to liberate 

Pi and subsequently deliver it to the host plant. Interestingly, ECM fungi can also obtain P 

directly through cooperative associations with both living saprotrophic fungi—which 

decompose dead organic matter (Lindahl, Stenlid, Olsson, & Finlay, 1999)—and 
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mycorrhiza helper bacteria—which efficiently solubilize P and increase the colonization 

of the plant (Fontaine, Thiffault, Pare, Fortin, & Piche, 2016). 

Due to the ability of ECM fungi to improve P availability for their host plant, ECM 

fungal inoculants have been used in the horticultural production of woody plants and for 

reforestation efforts (Trappe, 1977). The application of ECM fungal inoculants could be a 

sustainable approach to improve P availability when growing woody plants for 

lignocellulosic biofuel production, particularly on marginal lands with limited P. Future 

studies should focus on identifying ECM fungal species that provide multiple benefits to 

crop species used for lignocellulosic biofuel production on marginal lands with limited 

mineral nutrients such as P. 

Phosphate Solubilizing Bacteria and Their Potential to Increase the 

Phosphate Acquisition of Crops 

Besides mycorrhizal fungi, certain soil bacteria can also play a key role in the soil P 

cycle (Figure 17D). According to estimates, up to 50% of the bacteria in the soil are 

considered phosphate solubilizing bacteria (S. B. Sharma et al., 2013). The diversity of 

bacteria having phosphate solubilizing capabilities is quite high and includes one or more 

bacterial species from the following genera: Bacillus (Banik & Dey, 1982, 1983; Vazquez 

et al., 2000), Pseudomonas (Tani et al., 2011), Arthrobacter (Yi et al., 2008) Enterobacter 

(Hwangbo et al., 2003), Kluyvera, Chryseomonas (Vazquez et al., 2000), Vibrio, 

Xanthobacter, Micrococcus, Klebsiella, and more (Ohtake et al., 1996). These bacterial 

species act on different sources of P and have diverse mechanisms for solubilizing P in 

soils.  
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The primary method that soil bacteria use to liberate Pi from complex sources is by 

producing organic acids (Halder & Chakrabartty, 1993; Katznelson & Bose, 1959). There 

are several ways by which organic acids can convert insoluble forms of P into bioavailable 

forms. These include creating acidic microsites that lower the pH thus releasing P from 

calcium ions, chelating metal ions that typically immobilize P, and occupying exchange 

sites on soil and mineral ions. Each of these methods increases the levels of Pi in the soil 

solution (Gyaneshwar, Kumar, & Parekh, 1998). Soil bacteria can also solubilize inorganic 

sources of P by releasing inorganic acids, protons, hydroxyl ions, siderophores, and CO2 

(Jiang et al., 2018). 

Soil bacteria primarily mineralize organic P with extracellular enzymes. The main 

groups of enzymes include non-specific phosphohydrolases (also called phosphatases), 

phytases, phosphonatases, or C-P lyases. Phosphatases are divided into two groups, acidic 

or alkaline, and soil bacteria release the optimal phosphatase to solubilize organic P, 

depending on soil pH. Non-specific phosphatases are the most abundant type and can 

mineralize the majority of organic P in the soil (Ragot et al., 2017). Phytase functions in 

releasing P from phytic acid (inositol), and phosphonatases and C-P lyases facilitate the 

release of P bound in organophosphonates (Richardson & Hadobas, 1997). Higher levels 

of nitrogen or carbon lead to increases in the phosphatase activity, most likely due to an 

increase in microbial activity (Wei, Sun, Tian, Chen, & Chen, 2018); meanwhile, higher P 

availability leads to a decrease in phosphatase and phytase activity (Spohn, Treichel, 

Cormann, Schloter, & Fischer, 2015). 
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There is a growing interest in using P solubilizing bacteria as biofertilizers to increase 

the bioavailability of P in soils used for crop production and to enhance the efficiency of 

P fertilizer applications (Figure 17D). Increases in plant performance and/or yield after an 

inoculation with P-solubilizing bacteria have been shown for many agronomically 

important crop species, including corn (Zhao et al., 2014), soybean (Ku et al., 2018), wheat 

(Kumar, Bauddh, Barman, & Singh, 2014), rapeseed (Valetti et al., 2018), mung bean 

(Biswas et al., 2018), and tomatoes (Nassal et al., 2018). While the periodic application of 

P fertilizer has adverse effects on the structure and function of phosphate-solubilizing 

bacterial communities, the opposite is true when little or no superphosphate is applied 

(Samaddar et al., 2019). 

In 2016, market researchers estimated that the global biofertilizer market was worth 

787.8 million USD. Phosphate solubilizing bacteria accounted for approximately 15% of 

the global biofertilizer revenue, which was the second largest and fastest growing sector 

(Grand, 2018). These figures indicate that phosphate solubilizing bacteria have proven to 

be another viable option as biofertilizers and are increasingly being used commercially to 

increase the abundance of plant available P in the rhizosphere. 

Conclusion 

In this review, we described three major groups of microbes that participate in the 

cycling of P within the soil and that have the potential to enhance the plant P acquisition 

efficiency in agricultural and forestry ecosystems. However, the variability in responses 

after inoculation with different fungi or bacteria justifies the need to pursue additional 

research focused on identifying soil microbes that improve plant phosphate efficiency in 
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cropping systems. More importantly, AM fungi, ECM fungi, and phosphate solubilizing 

bacteria do not act independently, but affect each other’s activities. For example, Populus 

trees associate simultaneously with AM and ECM fungi, and both fungal partners could 

benefit from P that is made available by phosphate solubilizing bacteria. In addition, the 

presence of these symbioses can also have an effect on the activity of other root 

symbioses, for example symbiotic nitrogen fixing rhizobia in the tripartite interactions of 

legumes (reviewed in (Kafle et al., 2018)). Interestingly, additive effects on plant 

performance due to multiple symbioses is currently under debate (Gibert, Tozer, & 

Westoby, 2019), showing the importance of pursuing efforts towards the investigation of 

these complex plant–microbe relationships. These types of studies increase our 

understanding of the microbial systems that exist in nature and will likely facilitate the 

development of microbial inocula that are more efficient and optimized for the nutritional 

needs of plants. In parallel, the knowledge gathered from studying multi-partite 

mutualistic associations must be considered in breeding programs in order to create crop 

cultivars that can interact more efficiently with soil microbes and thereby maximize the 

sustainable use of mineral resources in agricultural and forest ecosystems. Finally, with 

the current frantic race for the production of bioinoculants produced by an increasing 

number of start-up companies, there is a need for more stringent quality control checks 

that should be instituted along with comprehensive field trials to ensure the efficiency, 

reliability, and sustainability of these commercial products. 
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CHAPTER CHAPTER CHAPTER CHAPTER 7777    

Identification of Phosphate Solubilizing Biofertilizers and the Key Organic 

Acid Utilized 

Abstract 

Phosphorous (P) fertilizer is a nonrenewable resource and the mining sources have been 

estimated to be depleted within a hundred years. The majority of P within the soil is in 

an insoluble form, and the P fertilizer applied to fields can become immobilized and tied 

up, making it unavailable to plants. Phosphate solubilizing bacteria (PSB) and plant 

growth promoting bacteria have been investigated as potential bioinoculants to help 

increase P solubility and plant growth, respectively. PSB have several mechanisms to 

solubilize soil P, however one of the most common methods is by producing organic 

acids. Bacterial isolates were cultured from three corn fields and screened for PSB 

capabilities as well as additional plant growth promoting abilities. Three cultures; 

Enterobacter cloacae, Raoultella ornithinolytica, and Kosakonia sp. were found to be 

strong phosphate solubilizers. E. cloacae and Kosakonia sp. increased plant growth and 

P uptake compared to the control. These two species produced the highest levels of 

succinic acid compared to the other isolates tested, suggesting that this organic acid 

played a key role in solubilizing the inorganic P. E. cloacae and Kosakonia sp. are 

promising bioinoculant candidates.  

Introduction 

Phosphorus (P) is the second most needed plant nutrient. It is needed in 

numerous life processes such as respiration, photosynthesis, energy transfer and 
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storage, signal transduction, cell division and elongation, nitrogen fixation, and much 

more (Kouas et al., 2005; Sashidhar & Podile, 2010; Zaidi et al., 2009). There is an 

adequate amount of P in the soil to sustain crop growth, however in some soil only 0.1% 

of the phosphorus is in a readably available form (Zou et al., 1992). Due to the low levels 

of soluble P, heavy rates of fertilizer are typically applied. Chemical fertilizers have 

played a significant role in increasing crop yields to secure food production increases; 

however, fertilizers have begun to reach their theoretical maximum potential for yield 

increases (Gyaneshwar et al., 2002). In addition, there are several negative impacts of 

mining, distributing, and applying of P fertilizer. First of all, phosphorus is a non-

renewable resource and the current phosphorus reserves are estimated to be depleted 

within 100 years (Steen, 1998). Additionally, heavy metal contaminants are carried over 

from the mining process into the fertilizers that are applied to agricultural land 

(Rutherford et al., 1995). Furthermore, up to 75-90% of the P fertilizer becomes bound 

in the soil and is not able to be used by the plant (Gyaneshwar et al., 2002). Phosphorus 

in the soil can be found in organic and inorganic forms, but the plant typically only 

assimilates inorganic orthophosphate forms (Beever & Burns, 1980).  

Phosphorus that is bound to inorganic material can be found in stratum rock 

such as apatite, hydroxyapatite and oxyapatite, and these forms are highly insoluble 

(Rodriguez & Fraga, 1999). Phosphorus is moderately insoluble when it complexes with 

cations in soil particles such as Fe, Al, and Ca (Richardson et al., 2009). The soil pH 

greatly affects what cation P binds to, for example in alkaline soils P complexes with Ca 

and in acidic soils P forms complexes with Al, Fe, or Mn (Goldstein, 1986). Phosphate 
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solubilizing bacteria (PSB) have the ability to solubilize by several different mechanism, 

however the most commonly accepted and researched method is through secreting low 

molecular mass organic acids (OA) (Rodriguez & Fraga, 1999). Specific organic acids that 

can solubilize P are gluconic, formic, malic, succinic, acetic, oxalic, citric, and lactic acid 

(Bakri, 2019; Topolska et al., 2013; Wei et al., 2018). OA have a couple different 

mechanisms to solubilize the P; either through chelation of the metal ions to release the 

phosphate, and/or lowering the pH and releasing the P-ion from the mineral by H+ 

substitution (Goldstein, Braverman, & Osorio, 1999; Pradhan & Sukla, 2005). There are 

two main membrane bound enzymes in the glucose metabolism pathway; glucose 

dehydrogenase (gcd) and gluconate dehydrogenase (gad) (Miller et al., 2010). The Gcd 

protein requires a pyrroloquinoline quinone cofactor (pqq). Further genetic testing 

needs to be conducted to determine additional organic acid production genes, or a 

universal PSB molecular marker.  

Approximately 50% of the P in the soil is in an organic form (Yadav & Verma, 

2012). When the P is in an organophosphorus compound it needs to be mineralized by 

extracellular or transmembrane enzymes by PSB. Some of the exoenzymes used to 

mineralize organic P are phosphatase, phytase, and C-P lyase (Prabhu et al., 2018). 

These enzymes are able to hydrolyze organophosphorus compounds such as phytate, 

glycerol phosphates, phospholipids, nucleic acids, and sugar phosphates (Stewart & 

Tiessen, 1987; Turner et al., 2002). The Pho regulon is most commonly involved in the 

mineralization of the organic P. When the Pho regulon is activated due to low soluble P 

levels, it activates approximately 90 phosphate-starvation-inducible proteins (Wanner & 
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Chang, 1987). The two-component regulatory system of the Pho regulon are named 

PhoR-PhoB in Escherichia coli (Tommassen et al., 1982) or PhoR-PhoP in Bacillus subtilis 

(Hulett et al., 1994). Some of the key exoenzymes are; alkaline phosphatase (phoA) 

(Yagil, Bracha, & Silberstein, 1970), Phospholipase (phoD) (Yang & Roberts, 2002), 

phytase (phyC) (Zou et al., 2006), glycerophosphodiester (glpQ) (Larson & 

Vanloobhattacharya, 1988), 5’-nucleotidases (ushA) (Innes et al., 2001). The phoU gene 

plays a role in the regulation of internal levels of phosphate within the cell, by 

interacting with the PhoR-PhoP/B two-component regulatory system (Willsky & MH., 

1980). The pstSCAB genes encodes a high-affinity, ABC-type, P transport systems (Yuan 

et al., 2006), and polyphosphate kinase (ppk) is responsible for the storage of inorganic 

P, by activating the reversible polymerization of the terminal phosphate of ATP into a 

long-chain polyphosphate (Masahiro et al., 1992). 

Plant growth promoting bacteria (PGPB) have been shown to increase plant 

performance by several methods such as nitrogen fixation (Shabanamol et al., 2018), 

indole-3-acetic acid production (Nutaratat, Monprasit, & Srisuk, 2017), fungal 

suppression (Etesami & Alikhani, 2016), phosphate solubilization (Muthukumarasamy, 

Revathi, Vadivelu, & Aruri, 2017), and much more. Considering the inefficiencies and 

negative effects of additional fertilizer to cultivated land, we are proposing to harness 

the beneficial mechanisms of PGPB and utilize them as bioinoculants. The objectives of 

this study were to isolate and characterize phosphate solubilizing bacteria, as well as 

their additional plant growth promoting capabilities. Additionally, we examined the 
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mechanisms used by PSB to solubilize insoluble inorganic phosphorus and assessed if 

the PSB were able to promote soybean plant growth. 

Methods 

Sample Collections and Isolation 

Maize plants were collected in October 2017 from three different locations. The 

roots were conserved with the soil remaining intact. The location of the three plants 

were 44.273262 -95.877869, 44.245564 -95.656073, and 44.243411 -95.996360. 

Cultures were isolated from the plant tissue, the bulk root soil, and the rhizosphere soil.  

Endophyte isolates were extracted from the shoot, leaves, and maize kernels. 

Tissue samples were cut to ≤ 2 mm in size and placed into a metal enclosed strainer. 

Tissue samples were then emerged under 70% ethanol solution and dipped for 1 min, 

sterile water for 30 sec, 5% bleach for 1 min, and then four washes with sterile water for 

30 sec each. Tissue samples were then removed from the metal strainer and cut into 

smaller pieces aseptically. A small amount of the cut and surface sterilized tissue was 

placed on the surface of Tryptic Soy Broth (TSB) semi-solid media. Isolates were 

incubated at 30 °C for 24 h, then streaked onto a Tryptic Soy Agar (TSA) plate and re-

incubated as before. Colonies were continually streaked onto new plates and incubated 

until individual colonies were isolated.  

Bacteria from bulk root soil were isolated by adding 1 g of soil to 9 ml of 

phosphate buffered saline (PBS), vortexing and then 10 µl of the solutions were spread 
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onto TSA. Plates were incubated at 30 °C for 48 h and colonies were re-streaked and 

incubated to isolate pure colonies. 

The rhizosphere soil isolates were bacteria that were present directly on the root 

surface. Roots were cut from plants and soaked in water for 1 min and rinsed to remove 

any excess soil on the roots. The roots were then placed in tubes with 10 ml of PBS. The 

tubes were placed in the sonicator for 60 s, and then the roots were removed and 

placed into another tube with 10 ml of PBS and placed in the sonicator for another 60 s, 

and once more were placed in a clean tube of 10 ml PBS and placed in the sonicator for 

1 min. The solution from the third tube was used for isolation, by spreading 100 µl onto 

TSA followed by incubation for 48 h at 30 °C. Isolates were continually re-streaked until 

individual colonies were formed. 

16s Sequencing 

Twenty bacteria were selected for 16S rRNA sequencing based on the phosphate 

plate assay results, and their variety in colony morphology. Isolates were prepared in a 

1:1 mix of Lysogeny Broth (LB) and 65% glycerol and frozen at -80°C. GENEWIZ (South 

Plainfield, NJ) conducted the 16S rRNA sequencing using Applied Biosystems BigDye 

version 3.1. The reactions were then run on Applied Biosystem’s 3730xl DNA Analyzer.  

Phosphate Plate Screening 

Pikovskayas agar (PVK) (HiMedia Mumbai, India) was used for the plate assay 

test. A total of 70 isolates were screened for their phosphate solubilizing abilities. 

Individual bacterial colonies were stabbed onto a PVK plate five times in a star 
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formation. Plates were incubated at 30 °C for five d. Colony diameter and clearing zones 

were measured to determine the phosphate solubilizing index using the following 

calculation: Phosphate Solubilizing Index = ((colony diameter + halo zone diameter) / 

(colony diameter)). 

Phosphate solubilization quantification screening 

The molybdate-blue phosphate quantification test (J. Murphy, 1962) was used to 

determine the amount of phosphate solubilization from each of the eight isolates. 

Isolates were grown in LB for 24 h in the 30 °C shaker at 150 rpm. After incubation 10 µl 

of each isolate was re-inoculated into three new 5 ml LB tubes and incubated as stated 

before. Each culture was washed three times by centrifuging 2 ml in the microcentrifuge 

at 6,000 rpm for 10 min, removing the supernatant and re-suspending in National 

Botanical Research Institute’s Phosphate growth media, modified to remove any 

phosphorus sources (NBRIP(-P)). After the three washes, 2 ml of NBRIP(-P) was added to 

re-suspend the bacteria. Bacteria were normalized by diluting with phosphate buffer 

saline (PBS), modified with no phosphate, to an OD density of 0.10 at 600 nm. A 1L 

mixture of the NBRIP media (Nautiyal, 1999) was prepared and modified as follows; 

glucose (10.0 g), MgCl26H20 (5.0 g), MgSO47H20 (0.25 g), KCl (0.2 g), (NH4)2SO4 (0.2g), 

Ca3(PO4)2 (3.8 g), FePO4 (0.1 g), and AlPO4 (0.1 g). Then it was washed three times to 

remove any access soluble phosphate by centrifuging, pouring off the supernatant, and 

resuspending in NBRIP(-P). Then 100 µl of the normalized bacteria were added to 15 ml 

of NBRIP. Tubes were vortexed and incubated in the 30 °C shaker at 150 rpm for 48 h. 

After vortexing tubes, 1 ml was centrifuged at 10,000 rpm for 10 min. The supernatant 
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was used to measure the amount of soluble P colorimetrically in 96 well plates. Each 

well received 40 µl of the reagent and 10 µl of the isolate, instead of the typical 200 µl 

to ensure the values were within the linear curve, then the values were multiplied by 20. 

The molybdate blue reagent is composed of the following; 5N sulfuric acid (12.5 ml), 10 

g ammonium molybdate in 250 ml of H2O mix and add (3.75 ml), 0.132 g L-Ascorbic acid 

0.1M in 7.5 ml H2O and add (7.5 ml), 0.2743 g potassium antimonyl tartrate (PAT) in 100 

ml of H2O and add (1.25 ml). A standard curve was made by using KH2PO4 as the soluble 

P source with levels of 0, 0.5, 1.0, 2.0, 5.0, 8.0, 10.0 mg P/L. The 96 well plate was then 

measured at 882 nm and mg P/L was calculated based on the standard curve. The pH 

was measured from a composite of 3 technical replications for every biological replicate. 

Motility screening 

Motility was evaluated by utilizing the Motility Test Medium (Fisher Scientific 

Lenexa, KS) and 0.05 g/L of 2,3,5-Triphenyltetrazolium chloride (TCC) (Fisher Scientific 

Lenexa, KS). Sterile media was poured into tubes and cooled to harden. Tubes were 

inoculated with fresh, overnight, pure cultures. Sterile inoculation needles were used to 

stab the semi-solid media, in the center of the tube and halfway down the length of the 

tube. The isolates were incubated at room temperature for 5 d. If the bacteria were 

motile, there was pink/red growth throughout the media (++). If the color change only 

occurs in the area of the inoculation needle, then the bacterium is immobile (-). When 

the color pigment moved slowly and had minimal growth from the stab line, the 

organism was weakly motile (+).   
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Nitrogen Fixing Plate Assay 

The nitrogen fixing plate assay was conducted utilizing Nitrogen Free Agar (NFa) 

(Kirchhof et al., 1997), modified by an addition of 15 g/L agar using a nitrogen free agar 

source. Each of the selected eight isolates were streaked onto the NFa and incubated at 

30 °C for 24 h. The isolate was considered to be able to fix nitrogen if the bacteria grow 

on the nitrogen free plate and the bromothymol in the media changed from green to 

blue, indicating a pH change in the medium. 

Indole-3-Acetic Acid Biosynthesis Assay 

The biosynthesis of indole-3-acetic acid (IAA) was quantified for the isolates. 

Isolates were cultured overnight at 30 °C in the shaker incubator at 200 rpm. We mixed 

500 µg/ml of L-tryptophan in sterilized LB broth and filtered the solution through a 1 L 

filter system (0.22 µm). Bacterial isolates were normalized to an OD of 0.10 at 600 nm, 

by diluting them with PBS. Then 100 µl were inoculated into 5 ml of the LB / L-

Tryptophan solution and placed in the shaker incubator at 30 °C rotating at 200 RPM for 

4 d. Three technical replicates of each isolate were made at this time. After 4 d, the 

tubes were then centrifuged at 10,000 rpm for 10 min at 4 oC, and the supernatant was 

transferred to new tubes. A 96-well plate was used to measure the absorbance, by 

pipetting 100 µl of supernatant into the wells and 200 µl of Salkowski’s reagent (35% 

perchloric acid and 2% 0.5M FeCl3). Then 1-1.5 drops of 85% phosphoric acid was added 

to each well and incubated at room temperature in open air for 30 min in the dark. 

Absorbance was measured at a wavelength of 530 nm, and standards were made by 
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dissolving IAA (MP Biomedicals Shanghai, China) in 1N NaOH and creating concentration 

of 0, 5, 10, 20, 50, 100, and 200 µg/ml. The IAA concentrations were then based on the 

standard curve. 

Fungal Suppression 

Fungal suppression was assessed by a plate assay for the isolates. The four fungal 

pathogens used in the plate assay were Fusarium oxysporum, Fusarium proliferatum, 

Fusarium graminearum, and Bipolaris sorokiniana. The fungi were grown on potato 

dextrose agar (PDA) plates and cores were taken from the outer edge of the mycelia. 

The plugs were placed in the center of a fresh PDA plate and each isolate was streaked 

with parallel lines 2 cm on either side of the fungal core. The plates were incubated at 

30 °C for 24 h and then at room temperature for 24 h. Fungal suppression was scored 

visually measuring the fungal inhibition zones.  

Phytase Plate Screening 

A plate assay was used to determine if the selected eight isolates can mineralize 

phytate. The media was composed of 1.5% glucose, 0.1% phytic acid sodium salt 

hydrate (Sigma-Aldrich Darmstadt, Germany), 0.2% NH4NO3, 0.05% KCL, 0.05% MgSO4, 

0.03% MnSO4, 0.03% FeSO4, 2.0% agar. A straight line was streaked across the width of 

the plate for each isolate and incubated at 30 °C for 48 h. If the culture created a 

clearing zone around the bacterial growth, then the isolate was able to solubilize the 

phytic acid. If the clearing zone was greater than the width of the isolate growth it was 

designated (++), if the isolate created a clearing zone but it was narrower than the 
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bacterial growth diameter it was designated (+), and if there was no clearing zone it was 

negative for phytase production (-). 

Acid Phosphatase Screening 

To determine if the selected isolates could produce acid phosphatases in the 

presence of an organic compound phenolphthalein diphosphate. The method used was 

(Matos et al., 2017), but modified to use the National Botanical Research Institute’s 

Phosphate growth media (NBRIP) (Nautiyal, 1999), with the phosphorus source removed 

(NBRIP(-P)). NBRIP(-P) was used instead of the TSB as stated in the method, due to the 

excess levels of P in TSB. To determine if the isolates could produce acid phosphatases 

to solubilize the phenolphthalein diphosphate, ammonium hydroxide was added, and 

the color change was observed. If the isolate turned pink as well as a pink clearing zone 

around the isolate it was considered positive for acid phosphatase (++), if the isolate 

turned pink but there was no pink clearing zone around the growth that isolate was 

considered borderline (+), and if the isolate did not turn pink at all it was negative for 

acid phosphatase production (-). 

Full Genome Sequencing 

Due to the high phosphate quantification values, Enterobacter cloacae and 

Raoultella ornithinolytica had their full genomes sequenced by isolating the DNA using 

the method in Current Protocols in Molecular Biology (K. Wilson, 2001) amended by 

adding 0.5 µL of 100 mg/mL RNase with 10% SDS and proteinase K and three DNA wash 

steps with 70% ethanol. Samples were centrifuged at 4°C. The DNA extraction quality 
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was determined by gel electrophoresis on 1% agarose. Nextera DNA flex library prep kit 

(Illumina, Inc., San Diego, CA, USA) was used to make the genomic DNA library. The 

Illumina’s MiSeq platform producing 2 x 300 bp paired end reads were utilized for the 

DNA sequencing. Raw reads were downloaded from the Illumina BaseSpace and 

uploaded to Galaxy (Afgan et al., 2018). The FastQC v0.11.7 was used for quality control, 

Trimmomatic v0.36.5 to trim the adapters and to eliminate the reads below Q25 (paired 

end reads) (Bolger, Lohse, & Usadel, 2014), and Unicycler v0.4.1.1 for genome assembly 

(Wick, Judd, Gorrie, & Holt, 2017). The assembly quality was determined using QUAST 

v4.6.3 (Gurevich, Saveliev, Vyahhi, & Tesler, 2013), and the annotation was done using 

the Prokka v1.12.0 pipeline (Seemann, 2014) set to a minimum contig length of 200 bp. 

Galaxy (Afgan et al., 2018) was used for annotation and individual gene identification, 

and RAST (Overbeek et al., 2005) was used for annotation and identification of 

subsystem features.  

HPLC 

Samples from the phosphate solubilizing quantification screening assay were 

used to determine the organic acid levels. In the phosphate solubilizing assay each 

isolate had 3 biological replications and 3 technical replications. For the HPLC testing the 

three technical replications were combined equally, resulting in a total of 3 biological 

replications per isolate that were tested for organic acids. An UltiMate 3000 UHPLC 

chromatographic system (Thermo Scientific Dionex, USA) equipped with an autosampler 

and a Diode Array detector was used. The separation was carried out using a reversed-

phase Zorbax Rx- C8 column (5 µm particle size, 4.6 × 150 mm) (Rockland Technologies 
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Inc., USA). The injection volume was 5 µl and the column oven temperature was 

programmed at 30 °C. The mobile phase was 0.01M H3PO4 with an isocratic program for 

10 minutes at a flow rate of 1.0 ml/min. The chromatographic data were recorded and 

processed using Theromo Scientific Chromeleon 7.2 software. Quantification was 

achieved by the absorbance recorded at 205 nm. 

The following standards were used; L -(-)-malic acid (≥99%), succinic acid (≥99%), citric 

acid (≥99.5%), formic acid (≥95%) and L -(+)-lactic acid (≥98%) (Sigma-Aldrich Darmstadt, 

Germany). For HPLC mobile phase, deionized water was used and o-Phosphoric acid, 

85% (certified ACS) was purchased from Fisher Scientific.  

Standard stock solutions of L -(-)-malic acid (1000 ppm) succinic acid (1000 ppm), 

citric acid (2000 ppm), formic acid (2000 ppm) and L - (+)-lactic acid (2000 ppm) were 

prepared in deionized water. Calibration standards were prepared using the standard 

addition method with the solution that was used as control. Malic, citric, formic and 

lactic acid calibration standards were prepared in concentrations of 5, 10, 25, 50, 100, 

200 and 300 ppm in the solution that was used as control. Succinic acid calibration 

standards were prepared in concentrations of 50, 100, 200, 300, 400 and 500 ppm. 

Calibration curves for formic, malic and lactic acid were constructed using the 

concentrations ranging from 10 ppm to 300 ppm (for malic acid the area of the control 

peak (as zero ppm) was also included in the calibration range), while for citric acid the 

concentrations range was from 5 ppm to 300 ppm. For succinic acid the concentration 

range was from 50 ppm to 500 ppm. The calibration curve for each compound was 
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made using the peak area (y) versus the concentrations. For formic acid, instead of using 

area height was used, due to peaks overlapping. For malic acid, the concentration in the 

sample was corrected using linear extrapolation. For other acids, no correction was 

required. 

Soybean Greenhouse Phosphorus Test 

The eight selected isolates were grown in TSB overnight and normalized to 0.05 

at 600 nm. South Dakota Foundation Seed, lot# 416, soybean seeds were sterilized using 

bleach and chlorine gas for 12-14 hours. Then the normalized bacteria were added to 

the soybean seeds at a rate of 3 µL/seed and inverted several times to coat the seeds. 

The potting material was 70% washed sand and 30% perlite, with 0.078 gm Ca3(PO4)2/L 

of growth media, mixed thoroughly. Potting material was pasteurized utilizing a steam 

cart. Three seeds were planted 3.5 cm deep per each 3 L pot, and after the majority of 

seeds had emerged pots were thinned to one plant per pot. Plants received water 

through an irrigation system every hour for twelve seconds. The trial had two controls, a 

full phosphate 0.5 mM P rate (highP) and a 10% phosphate fertilizer 0.05 mM P rate 

(lowP). The Hoagland fertilizer (Hoagland & Arnon, 1950) was used for both controls but 

amended for the low P rate control to only have 0.05 mM 1M KH2PO4, and an additional 

0.45 mM of 1M KCL to compensate for the lower K rate. The plants received 10 ml of 

the appropriate Hoagland fertilizer rates twice throughout the trial, three weeks after 

planting and two weeks before harvest. Pots were randomized and there were 10 

replications per treatment. After a month and a half, the plants were harvested. Plants 
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were dried in the oven for 4 d at 70 °C then dry shoot and root biomass was 

determined. 

We repeated the soybean greenhouse trial exactly as previously stated, however 

there were 15 replications instead of 10.  Root structure from this trial was conserved to 

acquire root architecture values.  Roots were scanned for root architecture parameters 

using the WinRhizo software and Epson Dual Lens System Scanner.  

Plant phosphorus levels 

To determine the level of phosphorus in the plant the 

vanadomolybdophosphoric acid colorimetric method was use (Greenberg et al., 1992). 

The five largest plants from each treatment were tested. For shoot P levels, two top 

leaves and two bottom leaves were ground together, and for the root P levels a vertical 

section was removed from one half of the root. The samples were ground using a 

Precellys 24 tissue homogenizer (Bertin technologies Montigny-le-Bretonneux, France) 

and then a 30-60 mg sample was weighed out and 1 ml of 2N HCL was added and 

incubated for 2 h in a digital heatblock (VWR Radnor, PA) at 95 °C. Samples were 

vortexed and centrifuged at the highest setting for 10 min. The reaction is formed in a 

cuvette by combining 475 µl H2O, 500 µl ammonium molybdate-vanadate reagent 

(RICCA Chemical Company Arlington, TX), and 25 µl of the sample supernatant. 

Phosphate standards (Ricca Chemical Company, Arlington, TX) were used to create a 

standard curve. The absorbance was determined at 436 nm, and the phosphorus levels 

were based on the standard curve and normalized to the amount of sample used.    
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Statistical analysis 

To compare means, all data were statistically analyzed by two-way analysis of 

variance (ANOVA) using Minitab 16 Tukey’s (honest significant difference) post-hoc non-

parametric test. Normality of the data was assessed using the Anderson-Darling 

Normality Test in Minitab 16. was performed to test for nonnormality. Significant 

differences were calculated at the P≤0.05 significance level to compare means, results 

were considered to be statistically significant when P ≤ 0.05. And to determine if there 

were any correlations between parameters, the Pearson correlation coefficient was 

determined using Minitab 16. Linear regression was used to determine the 

concentration of the organic acids, IAA biosynthesis, and P solubilization quantities. 

Results  

Isolating and screening PSB 

Seventy isolates were cultured from the three corn plants. Of those 70 bacteria, 

20 were from the rhizosphere, 22 from the bulk soil, and 28 were endophytic bacteria. 

Of the 28 endophytes, 5 were from isolated kernels, 12 from leaf, and 11 from shoot 

tissue. All 70 isolates were screened for P-solubilizing abilities by the PVK plate assay, 

and the phosphate solubilizing index was calculated. On PVK media, 3 of the rhizosphere 

samples were able to solubilize Ca3(PO4)2 and create clearing zones, 10 from bulk soil 

isolates, and 6 endophytes. Table 22 shows the PVK phosphate solubilizing index from 

the 21 isolates that were selected for 16S rRNA sequencing.  
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Table 22. Identities of the soil and endophytic isolates based on 16SrRNA and running a BLAST on the sequence, and 
phosphate solubilizing index values based on the PVK plate assay. 

ID Closest related organism Isolation Query 

Coverage 

Identity Accession PVK 

Index 

M1So2-2 Pantoea agglomerans Soil 88 99.47 NR 041978.1 3 

M2So2-3 Paenibacillus intestini Soil 88 98.93 NR 156979.1 2 

M3So1* Pantoea agglomerans Soil 88 99.25 NR 116751.1 3 

MSH4 Pantoea ananatis Shoot 91 99.47 NR 026045.1 3 

M2R1* Bacillus safensis Rhizosphere 88 98.93 NR 113945.1 1 

Tc1R1 Ochrobactrum pseudogrignonense Rhizosphere 90 99.36 NR 042589.1 1 

Tc3R1 Pantoea agglomerans Rhizosphere 94 98.83 NR 116751.1 3 

Tc2So2-1* Bacillus velezensis Soil 87 99.12 NR075005.2 0 

Tc3So1 Pantoea agglomerans Soil 88 99.25 NR 116751.1 3 

Tc3So2* Kosakonia radicincitans Soil 92 98.1 NR 117704.1 0 

TcK4 Curtobacterium flaccumfaciens Kernel 94 99.46 NR 025467.1 1 

TcL2 Kosakonia radicincitans Leaf 94 98.1 NR 117704.1 0 

TcL4 Pantoea ananatis Leaf 91 99.26 NR 026045.1 3 

TcSH4 Pantoea agglomerans Shoot 92 99.16 NR 041978.1 3 

Tr1R2* Bacillus cereus Rhizosphere 92 99.06 NR 115714.1 0 

Tr1So1 Pantoea agglomerans Soil 88 98.94 NR 116751.1 3 

Tr3R2 Ochrobactrum pseudogrignonense Rhizosphere 95 99.57 NR 042589.1 1 

Tr3R3* Enterobacter ludwigii Rhizosphere 87 99.36 NR 042349.1 0 

Tr3So1 Bacillus proteolyticus Soil 89 99.15 NR 157735.1 0 

TrSH1 Pantoea agglomerans Shoot 88 99.57 NR 116751.1 0 

TrSH4* Klebsiella michiganensis Shoot 83 99.19 NR 118335.1 2 

* Isolates selected for further testing 

Identifying isolates 

Twenty-one isolates were selected for 16S rRNA sequencing, we selected a 

variety of isolates with positive and negative clearing zones on the PVK media. Table 22 

shows the closest related organism in the NCBI database based on the 16S rRNA 

sequence. The following genera were identified from the sequenced isolates; Pantoea, 

Paenibacillus, Bacillus, Ochrobactrum, Kosakonia, Curtobacterium, Enterobacter, 

Klebsiella. Of these bacteria, 7 isolates were selected for further PSB and PGPB testing, 

based on PVK clearing zones and genetic variability. The 7 selected isolates are 

identified in Table 22, and Pseudomonas aeruginosa ATCC 27853 was used in all tests as 

a positive control.  
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Motility screening 

Using the Motility Media and the colorless dye TCC, we were able to determine if 

the bacteria were motile or not, based on the bacteria reducing the TCC to form 

formazan, an insoluble red pigment. There was a clear difference between the motile 

and non-motile bacteria as indicated in Table 23. Tc3So2, M3So1, Tr3R3and TrSH4 were 

motile, and M2R1, Tc2So2-1, and Tr1R2 were not motile. P. aeruginosa did not appear 

to be motile after 2 d but after 5 d weak motility was observed.  

Table 23. Nitrogen growth on NFa media (+ or -), motility screening on Motility media (++) indicates strong motility, 
(+) indicates weak motility, and (-) indicates no motility, and IAA biosynthesis. 

ID Isolate 
Nitrogen 

Fixing 
Motile 

µg IAA/ mL                            

change from 

control 

Tc3 So2 Kosakonia sp. + ++ 0.72 d 

M3 So1 Pantoea sp. + ++ 14.81 c 

M2 R1 Raoultella ornithinolytica + - 36.36 b 

Tr3 R3 Enterobacter cloacae + ++ 10.52 c 

Tc2 So2-1 Bacillus sp. - - 54.7 a 

Tr1 R2 Bacillus sp. - - 15.31 c 

TrSH4 Klebsiella sp. + ++ 0.67 d 

ATCC 27853  Pseudomonas aeruginosa + + 0.18 d 

 

Nitrogen fixation 

Nitrogen fixation was assessed on nitrogen free media with bromothymol blue 

as a pH color indicator. All the isolates were able to grow on the media and increased 

the pH due to production of ammonia as indicated by the color change from green to 

blue, with the exception of the two Bacillus strains Tc2So2-1 and Tr1R2. The bacteria 

that grew on NFa and increased the pH are shown in Table 23.  
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 Indole-3-Acetic Acid biosynthesis assay 

IAA biosynthesis was quantified after 4 d of growth in LB containing L-

tryptophan. After 4 d Tc2So2-1 produced a statistically (P≤0.05) higher amount of IAA 

than the other isolates. M2R1 then produced the second highest amount, which was 

statistically (P≤0.05) greater than the rest of the isolates. Based on the statistical results 

of the IAA quantification, Tc3So2, TrSH4, and P. aeruginosa are unable to produce IAA 

relative the negative control. The quantities of IAA biosynthesis after 4 d are shown in 

Table 23.  

Fungal suppression 

The fungal suppression plate assay was able to show the degree of inhibition 

each isolate had on the fungal growth of the four species. Table 24 indicates if the 

isolate was able to strongly suppress the growth (++), partially suppress the growth (+), 

and had no effect on the fungal growth (-). Only two bacteria had the ability to suppress 

the growth of all four fungal isolates, Tc2So2-1 and Tr1R2 the two Bacillus isolates. The 

Kosakonia (Tc3So2) and Klebsiella (TrSH4) isolates were not able to suppress any of the 

pathogens.  
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Table 24. Fungal suppression plate assay results, depicted by strong suppression (++), partial suppresion (+), and no 
suppression (-). Fungal isolates tested were Fusarium oxysporum, Fusarium proliferatum, Fusarium graminearum, and 
Bipolaris sorokiniana. 

ID Isolate F. graminearum  F. proliferatum F. oxysporum B. sorokiniana 

Tc3 So2 Kosakonia sp. - - - - 

M3 So1 Pantoea sp. + - - - 

M2 R1 Raoultella ornithinolytica + - ++ - 

Tr3 R3 Enterobacter cloacae - + - + 

Tc2 So2-1 Bacillus sp. ++ ++ ++ ++ 

Tr1 R2 Bacillus sp. ++ ++ ++ ++ 

TrSH4 Klebsiella sp. - - - - 

ATCC 27853  Pseudomonas aeruginosa - - - + 
 

Phytase plate screening 

The ability to mineralize phytic acid was assessed by a plate assay with phytic 

acid as the only P source. Clearing zones around the bacterial growth indicate that the 

isolated can produce phytase to mineralize organophosphorus. Table 25 shows that 

three isolates were unable to mineralize phytic acid; Tr3R3, Tc2So2-1, and Tr1R2. P. 

aeruginosa was able to mineralize the greatest amount of phytic acid in the plate assay, 

while the other isolates only mineralized a moderate amount.  

Table 25. Phytase and acid phosphatase production based on plate screening. Organic phosphate mineralization 
depicted by strong mineralization (++), week mineralization (+), and no mineralization (-). 

Isolate Isolate 
Phytase 

Production 

Acid 

Phosphatase 

pH of triP 

solubilization assay 

Tc3 So2 Kosakonia sp. + ++ 4.53 ef 

M3 So1 Pantoea sp. + ++ 4.35 g 

M2 R1 Raoultella ornithinolytica + ++ 4.49 f 

Tr3 R3 Enterobacter cloacae - ++ 4.52 f 

Tc2 So2-1 Bacillus sp. - - 5.18 c 

Tr1 R2 Bacillus sp. - + 6.07 b  

TrSH4 Klebsiella sp. + ++ 4.65 d  

ATCC 
27853 

Pseudomonas aeruginosa ++ - 4.62 de 

Control   - - 6.18 a 
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Acid phosphatase screening 

The ability for the isolates to mineralize phenolphthalein diphosphate was 

assessed in a plate assay. Acid phosphatase biosynthesis was determined based on the 

pH change causing a color change and a clearing zone. Only two isolates were unable to 

mineralize any phenolphthalein diphosphate; Tc2So2-1 and P. aeruginosa (Table 25). 

Tr1R2 was the only borderline acid phosphatase producing isolate, and the rest created 

evident clearing zones indicated by pink halos around the isolates.  

Phosphate solubilization quantification screening 

Quantification of phosphate solubilization was conducted with the molybdate-

blue colorimetric method for the eight selected isolates. The insoluble phosphorus 

source was 0.38% Ca3(PO4)2, 0.01% FePO4, and 0.01% AlPO4. Bacteria were grown in 50 

ml tubes to allow for enough surface area for the bacteria to be in contact with the 

phosphorus. All media and bacteria were washed three times before inoculation to 

ensure there was no excess soluble phosphorus in the growth medium. The two Bacillus 

species (Tc2So2-1 and Tr1R2) were unable to solubilize any phosphorus, they were 

statistically (P≤0.05) the same as the negative control (Figure 18). Whereas Kosakonia 

(Tc3So2), Enterobacter (Tr3R3), and Raoultella (M2R1) were able to solubilize a 

statistically (P≤0.05) greater amount than all the other isolates including the positive 

control P. aeruginosa. The final pH of each isolate is shown in Table 25. The pH of all 

isolates was lower than the control, additionally the two isolates with the highest pH 

were Tr1R2 and Tc2So2-1. 
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Figure 18. Boxplot of phosphate solubilizing quantification in mgP/L by the molybdate-blue method. Medians are 
indicated by horizontal lines and means indicated by crossed circle. 

 

Full genome sequencing 

Two or the three isolates (Tr3R3 and M2R1) that solubilized the greatest amount 

of phosphate had their full genomes sequenced. Through annotation using Galaxy 

(Afgan et al., 2018), we were able to identify if the two isolates of question possessed 

genes that could contribute to phosphate solubilization. We also used Rapid Annotation 

using Subsystem Technology (RAST) SEED Viewer (Overbeek et al., 2005) to annotate 

the genome and identify subsystem features within the genome contributing to the 

detected plant growth promoting abilities. Table 26 gives an overview of the identified 
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phosphate metabolizing genes in each genome depicted by Galaxy, and Table 27 

identifies the plant growth promoting subsystem features assessed by RAST. 

 

Table 26. Phosphate solubilizing genes annotated and identified using GALAXY for isolates Tr3R3 and M2R1. Tr3R3 
represents species Enterobacter cloacae and M2R1 represents species Raoultella ornithinolytica. 

 

Isolate Description Gene Function Product Presence 

Tr3R3, 
M2R1 

Organic Acid 
production 

Gcd 
oxidize glucose to form 

gluconic acid 
glucose dehydrogenase  Presence 

Tr3R3, 
M2R1 

Organic Acid 
production 

Gad 
oxidize glucose to form 

gluconic acid 
gluconate dehydrogenase  

Not 
Present 

Tr3R3, 
M2R1 

Organic Acid 
production 

pqq A-F 
Gad gene resides in the 

gene cluster pppA-F 
pyrroloquinoline quinone  

Not 
Present 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PhoR-
PhoP 

two main regulatory 
proteins of the Pho 

regulon 

PhoR=Phosphate regulon sensor 
protein PhoR,  PhoP= 

Transcriptional regulatory protein 
PhoP 

Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PhoR-
PhoB 

two main regulatory 
proteins of the Pho 

regulon 

PhoR=Phosphate regulon sensor 
protein PhoR, PhoB= Phosphate 

regulon transcriptional regulatory  
Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PstS 
Pi-specific transporters, 
most conserved of Pho 

Phosphate-binding protein PstS Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PstC 
Pi-specific transporters, 
most conserved of Pho 

Phosphate transport system 
permease protein  

Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PstA 
Pi-specific transporters, 
most conserved of Pho 

Phosphate transport system 
permease protein  

Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PstB 
Pi-specific transporters, 
most conserved of Pho 

Phosphate import ATP-binding 
protein PstB 

Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PhoU 
homeostasis of cellular 

phosphate modulation by 
the PstSCAB transporter 

Phosphate-specific transport 
system accessory  

Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

ppk storage of inorganic P  Polyphosphate kinase Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PhoA 
phosphatase released by 

Pho 
Alkaline phosphatase Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PhoD 
Phospholipases released 

by Pho 
Phospholipases 

Not 
Present 

Tr3R3, 
M2R1 

Exoenzyme 
production 

PhyC Phytase released by Pho Phytase 
Not 

Present 

Tr3R3, 
M2R1 

Exoenzyme 
production 

GlpQ 
Glycerophosphodiester 

released by Pho 
Glycerophosphodiester 

phosphodiesterase, periplasmic 
Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

UshA 
5' nucleotidases released 

by Pho 
Protein UshA Presence 

Tr3R3, 
M2R1 

Exoenzyme 
production 

aphA acid phosphatase Class B acid phosphatase Presence 
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Table 27. Counts of plant growth promoting subsystem features annotated and identified using RAST SEED Viewer for 
isolates Tr3R3 and M2R1. Tr3R3 represents species Enterobacter cloacae and M2R1 represents species Raoultella 

ornithinolytica. 

 

 

 

 

 

 

 

 

 

 

HPLC 

Organic acid levels are shown in Table 28, based on the HPLC results. Succinic 

was the most frequently produced organic acid. Formic acid was produced at a relatively 

low levels for all isolates. Malic acid was only produced by Tr3R3 and P. aeruginosa, 

however P. aeruginosa produced more OA, potentially due to the width of the peak. 

Lactic and citric both had wide ranges of acid concentrations, with M3So1 and Tc3So2 

showing the highest lactic acid values, and Tr3R3 the highest citric acid value.  Of the 

isolates that produced succinic acid, Tr3T3 and Tc3So2, produced significantly (P≤0.05) 

higher levels than the other isolates. Statistical differences based on linear regression 

estimates from the calibration curve.  

 

Isolate Subsystem Feature Count 

Tr3R3 Motility 15 

M2R1 Motility 0 

Tr3R3 Invasion and intracellular resistance 17 

M2R1 Invasion and intracellular resistance 17 

Tr3R3 Siderophores 27 

M2R1 Siderophores 29 

Tr3R3 Quorum sensing and biofilm formation 14 

M2R1 Quorum sensing and biofilm formation 9 

Tr3R3 Auxin biosynthesis 5 

M2R1 Auxin biosynthesis 5 

Tr3R3 Nitrogen Metabolism 36 

M2R1 Nitrogen Metabolism 36 
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Table 28. Concentration of organic acids in ppm based on HPLC analysis. 

 

 

Soybean Greenhouse Test 

A soybean greenhouse trial was conducted to see if the phosphate solubilizing 

abilities and the plant growth promoting characteristics were beneficial to soybean 

growth. By utilizing insoluble P and by only applying 10% of the Hoagland phosphorus 

fertilizer rate, we were able to assess if the isolates could help the plant to overcome 

the phosphate stress in vivo. The only treatment that received the full Hoagland 

phosphate fertilizer level was the highP treatment. Plant growth responses were based 

on plant biomass, root architecture, and phosphorus levels within the plant. Plant shoot 

and root biomass are shown in Figure 19. Enterobacter (Tr3R3) was the only isolate that 

had a statistically (P≤0.05) greater shoot biomass than the lowP treatment. Tr3R3 and 

Tc3So2 had numerically greater shoot masses than the highP treatment which received 

90% more phosphate than the isolates. Two isolates (Tr3R3 and Tc3So2) had statistically 

(P≤0.05) great root mass than the lowP, highP, and P. aeruginosa isolate. All 7 of the 

isolates had statistically (P≤0.05) greater root biomasses than the lowP control. 

ID Isolate

Estimated 

Totals

Tr1R2 Bacillus sp. ND ND

Below detection limit 

(6.26) b ND ND 6.26

Tr3R3
Enterobacter cloacae

Below detection limit 

(3.22) a 54.18 b ND 104.69 a 384.49 a 546.58

TrSH4
Klebsiella sp.

Below detection limit 

(5.29) a ND ND 9.56 b 192.25 b 207.10

M2R1 Raoultella ornithinolytica ND ND ND 72.85 d 122.24 c 195.09

M3So1
Pantoea sp.

Below detection limit 

(9.44) a ND 210.75 a ND 192.81 d 413.00

Tc2So2-1
Bacillus sp.

ND ND

Below detection limit 

(7.13) b ND ND 7.13

Tc3So2 Kosakonia sp. ND ND 136.25 a 39.13 c 365.25 a 540.63

ATCC 27853
P. aeruginosa

ND

In excess of 300 ppm 

(661.57) a 121.61 ab ND

Below detection l imit 

(24.87) d 808.05

Concentration of acids in ppm

Formic Malic Lactic Citric Succinic

Values in parenthesis are estimated based on the calibration curve 

ND= None Detected 
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The phosphorus level within the plant and shoot portions were determined using 

the vanadomolybdophosphoric acid colorimetric method. Utilizing this method, we 

were able to assess if the PSB isolates were able to make the insoluble P source 

available to the soybean plant in vivo. Figure 20 shows both the shoot and root 

phosphorus levels within the plant. There was no statistical difference in the shoot P 

levels, however similar to the shoot biomass values in Figure 19, Tr3R3 and Tc3So2 had 

the greatest numerical values. The root phosphorus levels are also shown in Figure 20, 

indicating that the lowP treatment did indeed have the lowest P level within the roots. 

The lowP treatment had a statistically (P≤0.05) lower level of P than Tr3R3, Tc3So2, 

Tr1R2, and M2R1. Once again Tr3R3 and Tc3So2 had the highest numerical levels of P 

which is representative of the isolates with the greatest root biomass as well.  

The additional soybean greenhouse trial produced root architecture values as 

well, indicated in Table 29. Additional information from that greenhouse trial can be 

found in the supplemental material. The same parameters and treatments were used in 

this trial, with the exception of additional replications. Table 29 shows root surface area 

and root volume parameters from the architecture scans. The root surface area data 

shows that all treatments, with the exception of M3So1, highP, and TrSH4, were able to 

increase the root area compared to the lowP treatment. Table 29 also shows that Tr3R3, 

M2R1, Tc2So2-1, Tr1R2, and P. aeruginosa had statistically (P≤0.05) greater root volume 

than the lowP treatment. For both the root surface area and root volume Tr3R3 had the 

largest values.  
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Figure 19. Soybean shoot and root biomass after 1.5 months of growth in the greenhouse. Shoot biomass is indicated 
in green and root biomass is indicated in orange. 

 

 

 

Figure 20. Phosphorus levels in the shoot and root of soybeans after 1.5 months of growth in the greenhouse. Shoot P 
(ppm) is indicated in green and root P (ppm) is indicated in orange. 
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Table 29. Root architecture measurements, such as root surface area (cm2) and root volume (cm3), from the second 
soybean greenhouse trial, determined by the WinRhizo scanning program. 

 

 

 

 

 

 

 

Discussion 

The majority of the PSB isolates were cultured from the loose root soil. To assess 

the phylogeny of the subset of the isolates, 16S rRNA sequences were determined for 

21 of the isolates. Based on the 16S rRNA, most of the isolated bacteria were from the 

Pantoea genus, with 42.9% of the 21 isolates being that genus. The down selection of 

the 7 isolates were based on a selection of variation in both phylogeny and the 

phosphate solubilizing index. In addition to the 7 isolates, we utilized Pseudomonas 

aeruginosa ATCC 27853 as a positive control, due to the P-solubilizing abilities of P. 

aeruginosa in literature (Buch, Archana, & Kumar, 2008; Kothamasi, Kothamasi, 

Bhattacharyya, Kuhad, & Babu, 2006; Nautiyal, 1999). It is recorded that P. aeruginosa 

ATCC 27853 had strong growth on Pikovskayas agar and was positive for clearing zones 

around the growth (HiMedia, 2015). These 8 isolates were tested for numerous 

characteristics related to phosphate solubilizing abilities and plant growth promoting 

Treatment Root Surface Area (cm2) Root Volume (cm3) 

LowP 155.79 b 1.69 b 

HighP 216.41 ab 2.54 ab 

ATCC 27853 229.18 a 2.84 a 

Tr3R3 268.75 a 3.20 a 

M2R1 240.14 a 2.85 a 

M3So1 217.91 ab 2.50 ab 

Tc2So2-1 243.91 a 2.90 a 

Tc3So2 228.80 a 2.59 ab 

Tr1R2 233.67 a 2.95 a 

TrSH4 208.84 ab 2.39 ab 
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characteristics to determine if any of the isolates would potentially be suitable as a 

bioinoculant.  

First the isolates were characterized using several plant growth promoting 

assays. Motility of soil and endophytic bacteria is a key advantage to colonize the plant 

and move to nutrients within the soil (Bohm, Hurek, & Reinhold-Hurek, 2007). P. 

aeruginosa was slow to grow within the media, however there has been reports of this 

due to some strains of P. aeruginosa being strictly aerobic (Armitage & Evans, 1983). 

The three isolates that were not motile were M2R1, Tc2So2-1, and Tr1R2. This is further 

backed up by the full genome annotation of M2R1, there are no motile genes based on 

the RAST motile subsystem features. Considering, Tr1R2 and Tc2So2-1, the two Bacillus 

species, were not motile and the only isolates that did not solubilize any of the P sources 

of the quantification assay, these isolates may not be as efficient in colonizing the 

insoluble surface area as the other isolates. Similarly, Tr1R2 and Tc2So2-1 were the only 

isolates that were not able to grow on nitrogen free media or increased the pH of the 

agar. Both Tr3R3 and M2R1 do not possess nif genes but based on the RAST annotation, 

they do have 36 reported nitrogen metabolism subsystem features. Indole-3-acetic acid 

biosynthesis is a common component of selecting an effective bioinoculant, due to the 

positive impact on plant growth (Tao et al., 2008). The three isolates Tc2So2-1, Tr1R2, 

and M2R1 had the highest levels of IAA production, and Tc2So2-1 had a statistically 

(P≤0.05) greater amount of IAA produced than all the other isolates. And finally, fungal 

suppression is an important feature to look for in a bioinoculant due to the detrimental 

effects it has on food production worldwide and the negative effects of fungicides on 



171 
 

human and environmental health (Lorenz, 2017; Wegulo et al., 2015). The only two 

isolates that suppress all four of the fungal species were the two Bacillus strains Tc2So2-

1 and Tr1R2. The isolates that caused the lowest level of fungal suppression were T3So2 

and TrSH4.  

Phosphate solubilizing biofertilizers are the fastest growing sector of the 

bioinoculant industry, and this is due to the plant’s critical need for P as well as the finite 

nature of the resource (Grand, 2018). All 8 isolates were screened for phytase and acid 

phosphatase production, as well for their ability to solubilize inorganic P. When 

comparing the results of the phytase and acid phosphatase plate assays, Tr3R3 and 

Tr1R2 did not produce phytase but did produce acid phosphatases, whereas P. 

aeruginosa did produce phytase but not acid phosphatase. In fact, P. aeruginosa 

mineralized a substantially greater amount of phytic acid than all other isolates. The 

plate assays show that M2R1 was able to mineralize a moderate amount of phytic acid 

and was a strong mineralizer of phenolphthalein diphosphate, when comparing these 

findings to the annotated genome M2R1 does not possess the phytase gene but does 

contain an acid phosphatase gene. Similarly, when comparing Tr3R3’s plate assay results 

that was negative for phytic acid, but positive for phenolphthalein diphosphate 

mineralization, Tr3R3 in fact does not possess the phytase gene and does contain an 

acid phosphatase gene, correlating to its functional abilities.  The qualitative inorganic P 

assay was conducted on PVK agar, showing P. aeruginosa with one of the largest 

clearing zones, substantiating the selection of that species as the positive control. The 

only other isolate that had a phosphate solubilizing index as great as P. aeruginosa was 
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M3So1. However, when quantifying the amount of phosphate made soluble by the 

isolates, these results did not correspond to the P-solubilizing index, this is similar to 

other findings. Previously, it has been shown that bacteria that do not create a clearing 

zone on agar plates can solubilize inorganic phosphate in broth assays, and vise-versa 

(Nautiyal, 1999). Isolates Tc3So2, Tr3R3, and M2R1 solubilized significantly (P≤0.05) 

more phosphate than the other isolates. The two Bacillus species, Tc2So2-1 and Tr1R2, 

did not solubilize any phosphate compared to the control level. Based on these findings 

Tr3R3 and M2R1 were selected for whole genomic sequencing. 

The full genomes made it possible to look for key phosphate solubilizing genes as 

well as additional plant growth promoting genes. Tr3R3 and M2R1 possess the same 

genes relating to phosphate solubilizing and metabolism based on the Galaxy 

annotation.  A lot of the genetic work on the inorganic solubilizing organic acids has 

been focused on gluconic acid, it has been difficult to find a homologous gene that could 

be used to help identify a universal selector of a PSB based on organic acid production 

(Zheng, Hao, et al., 2017). With that in mind we were only able to look for the gluconic 

acid producing genes. Glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad) 

are key genes in that system, however Tr3R3 and M2R1 possessed the gcd gene but not 

the gad gene. The genes typically identified on the organophosphate mineralization and 

metabolism side are the two-component regulatory system (phoR-phoP or phoR-phoB), 

the phosphate specific transporters (pstSCAB), regulation of the Pho regulon (phoU), 

storage of inorganic P (ppk), and several exoenzymes (phoA, phoD, phyC, glpQ, ushA, 

aphA). Both Tr3R2 and M2R1 contain all the above mentioned genes, with the exception 
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of the phospholipases (phoD) and phytase (phyC). RAST SEED Viewer was also used to 

identify potential additional subsystem features used in plant growth promoting 

abilities. As previously stated M2R1 does not possess motility genes, whereas Tr3R3 

contains 15 subsystem features. Both species possess 17 invasion and intracellular 

resistance features, putatively used by endophytic bacteria (Tharek, Sim, Khairuddin, 

Ghazali, & Najimudin, 2017). Tr3R3 has 27 subsystem feature counts for siderophores 

and M2R1 has 29. Siderophores are beneficial in acquiring iron but have also been 

related to the ability to solubilize phosphate (Sharma et al., 2013). Fourteen Tr3R3 and 9 

M2R1 subsystem features of quorum sensing and biofilm formation were identified, 

helping the bacteria to attach to plants surfaces. Auxin, a plant growth hormone 

produced by some microbes can help increase plant growth (Prikryl, Vancura, & Wurst, 

1985), and in both species 5 auxin features were identified. As stated before the two 

species do not possess the majority of the nif genes, they only contain the pyruvate-

flavodoxin oxidoreductase (nifJ) gene. However, they both contain 36 nitrogen 

metabolism subsystem features.  

The organic acids formic, malic, lactic, citric, and succinic were measured to 

determine the mechanism of solubilizing the inorganic insoluble phosphorus. Based on 

Table 28 we can conclude, based on these 8 isolates, that formic acid was not a 

dominant acid in the solubilizing ability due to the very low levels. It appears that P. 

aeruginosa produced a substantially greater amount of malic acid compared to all the 

other isolates and acids, however it needs to be noted that the peaks for these samples 

were much wider than the other analyzed peaks, producing a seemingly higher 
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concentration. Lactic acid had a range of 6.26 ppm to 210.75 ppm, and the two highest 

values were produced by M3So1 and Tc3So2. Citric was produced by Tr3R3, TrSH4, 

T2R1, and Tc2So2; however, it was significantly highest in the Tr3R3 isolate. And finally, 

the most frequently produced acid and the highest concentration was succinic acid. 

Tr3R3 and Tc3So2 had significantly higher levels of succinic acid than the other isolates. 

Tr3R3 and Tc3So2 solubilized the greatest amount of phosphate in the P-solubilizing 

quantification assay, and they also produced the greatest amount of succinic acid. Also, 

Tr1R2 and Tc2So2-1 were the only isolates that did not solubilizing any phosphate in the 

quantification assay compared to the control, and they were also the only isolates that 

did not produce succinic acid. With these two findings in mind, we would conclude that, 

from the five acids measured, succinic acid has the greatest effect on solubilizing 

phosphate. The total acid concentration is also a good indicator that the organic acids 

are the key P-solubilizing mechanisms. Tr3R3 and Tc3So2 produced the highest total 

concentration of acid, only after P. aeruginosa, potentially due to the width of the 

peaks. Tr1R2 and Tc2So2-1 produced the lowest concentration of acids, which directly 

corresponds to the amount of phosphate each isolate was able to solubilize. Also, Tr1R2 

and Tc2So2-1 had the highest pH of the isolates, corresponding to the two isolates 

producing substantially lower levels of organic acids that the other isolates.    

To determine which plant growth promoting and phosphate solubilizing effects 

were most beneficial in vivo, a soybean greenhouse experiment was conducted. Due to 

the plants receiving insoluble phosphorus in the potting medium and only 10% of the 

Hoagland fertilizer levels, the bacteria that quantitively solubilized the greatest amount 
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of phosphate, performed the best in the greenhouse trial. Tr3R3 and Tc3So2 had 

statistically greater root biomass than both the highP and lowP levels, and Tr3R3 had a 

significantly greater shoot biomass than the lowP treatment. These results correspond 

to the in vitro quantitative phosphate test. Most likely indicating the two isolates are 

able to release organic acids or other mechanisms that solubilizing inorganic phosphorus 

forms in the soil, making the P available for the plant to utilize. The additional 

greenhouse trial provided in the supplemental data, also shows Tr3R3 to have a 

statistically greater root biomass than the highP and lowP. The root architecture 

parameters from this trial, shown in Table 29, indicate Tr3R3 to have the greatest root 

surface area and root volume values compared to all the treatments. Following Tr3R3 

for root surface area are Tc2So2-1 and M2R1 which had the two highest IAA 

biosynthesis values. IAA is reported to impact lateral and primary roots and root hair 

growth and formation (Uggla et al., 1996). These isolates, Tc2So2-1 and M2R1, 

potentially increased root surface area and volume compared to the lowP control due to 

their significantly high IAA production. The ranking of the isolates for the root 

phosphate levels corresponds to the ranking of isolate for the root biomass values. 

Tr3R3 seems to have the greatest impact on the soybean growth and phosphate levels, 

and when comparing that to the screening assays and genomic information, we 

conclude that the benefit is most likely due to the high levels of phosphorus it is able to 

solubilize. Tr3R3, Tc3So2, and M2R1 all solubilized a statistically similar amount of 

phosphorus, however Tr3R3 and Tc3So2 seemed to have a greater impact on plant 

growth and plant phosphate levels. This potentially is due to the fact that Tr3R3 and 
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Tc3So2 are motile where M2R1 is not, making it more difficult to access the same 

amount of nutrients and colonize the plant. And finally, due to Tr3R3 and Tc3So2 

producing the highest levels of succinic acid which seemed to have the greatest impact 

of P solubilization. Overall it would appear that T3R3 and Tc3So2 are the best candidates 

for bioinoculants.  

These results are validated by others research showing that Enterobacter cloacae 

is an optimum phosphate solubilizer and plant growth promoting bacteria. It was found 

that E. cloacae was a strong P-solubilizing abilities and increase wheat growth, 

chlorophyll levels, and yield (Borham, Belal, Metwaly, & El-Gremy, 2017). Additionally, 

when a strain of E. cloacae was applied to sugarcane and low levels of P fertilizer were 

applied, the E. cloacae strain improved P uptake into the plant, whereas the non-

inoculated plants had a diminishing P uptake effect over time (Safirzadeh, Chorom, & 

Enayatizamir, 2019). 

Conclusions  

Of the 8 isolates tested, Enterobacter cloacae (Tr3R3) seemed to have the 

greatest potential as a bioinoculant. This isolate is motile, was able to grow on nitrogen 

free media, have putative plant growth promoting genes such as siderophore 

production, biofilm and quorum sensing, auxin biosynthesis, and nitrogen metabolism 

genes, it produced acid phosphatases, and is a strong phosphate solubilizers. Tr3R3 was 

able to solubilize the greatest amount of inorganic phosphate from the 8 isolates tested. 

The organic acid levels produced by the isolate appeared to be the mechanism used to 
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solubilize the phosphate. The key organic acid in the solubilizing process was succinic 

acid, and Tr3R3 produced the greatest amount of succinic acid. The isolates proved to 

be beneficial to the growth of soybean plants, and the assimilation of phosphate into 

the plant. We conclude that Enterobacter cloacae (Tr3R3) is an optimal and promising 

bioinoculants.  
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ConclusionConclusionConclusionConclusion    

Due to the need for a safe and abundant food supply, researchers have strived to 

find new ways of increasing crop producing while sustaining the land we have for 

production purposes. Bioinoculants have many beneficial characteristics that have been 

proven to increase plant growth while maintaining the arable label. Due to the increases 

in culture-independent techniques and genomic analysis, a large library of potential 

bioinoculants have been growing over the years. 

We identified and characterized four novel bacteria in the Oxalobacteraceae 

family; Pseudoherbaspirillum sperare, gen. nov., sp. nov. OM1, Massilia arenosa, sp. nov. 

MC02, Massilia hortus, sp. nov. ONC3, and Duganella callidus, sp. nov. DN04. These 

were identified as novel bacteria based on phenotypic and genomic analysis. These 

isolates can potentially be utilized as bioinoculants due to their culturing locations from 

agricultural soils as well as their beneficial genomic information. Some of the putative 

plant growth promoting genes that were identified were; nitrate reductase, urease, 

phosphatase, biotin production, decomposition on hydrogen peroxide, biofilm 

biosynthesis, and intracellular invasion genes which suggests these are potential 

endophytic bacteria. 

Phosphate solubilizing capabilities was more specifically investigated by isolated 

70 bacteria from maize plants. All the isolates were screened for P-solubilizing abilities, 

and further testing was conducted on 8 isolates. Several of the 8 cultures were able to 

grow on nitrogen free media, produce IAA from tryptophan, and suppress the growth of 

fungal pathogens, suggesting these bacteria were potentially causing plant growth 
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promoting benefits in the rhizosphere and within the maize plant. When quantifying the 

amount of inorganic P these isolates were able to solubilize, Tc3So2, Tr3R3, and M2R1 

solubilized the greatest amounts (79.2, 75.68, and 72.16 mg P/L respectively), and Tr1R2 

and Tc2So2-1 did not solubilize any phosphate. When comparing that to the HPLC 

organic acid assay, Tc3So2 and Tr3R3 produced the greatest amount of succinic acid 

(365.25 and 384.49 ppm respectively) and Tr1R2 and Tc2So2-1 did not produce any 

succinic acid, concluding that succinic was the key organic acid utilized in the 

solubilization process. These benefits correlated to an increase in plant biomass, root 

architecture and P uptake concentrations. Tr3R3 had a statistically greater root biomass 

than the high and low phosphate controls, a statistically greater shoot biomass than the 

low phosphate control, and a statistically great root surface area and volume than the 

low phosphate control. Tc3So2 had a statistically greater root biomass than the low 

phosphate control.  Tr3R3 and Tc3So2 both had a statistically greater phosphate level 

within the root than the low phosphate control. These results show that when a plant is 

stressed with low levels of available phosphorus, PSB are able to solubilize the P in the 

soil and make it available to the plant.  

By isolating and characterizing novel bacteria from agricultural soils and testing 

phosphate solubilizing bacteria, we have seen that rhizosphere and endophytic bacteria 

have a great capacity to increase plant performance. We propose the use of plant 

growth promoting bacteria and phosphate solubilizing bacteria as bioinoculants to 

increase food production in a sustainable way. This can be further studied by large scale 

field trials as well as genomic analyzing. There has been little genomic research done on 



180 
 

the different organic acids produced by PSB. The more this area is elucidated, the faster 

the screening process will be for plant growth promoting and PSB bacteria. 
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