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ABSTRACT 

DEVELOPMENT OF COMPUTATIONAL TECHNIQUES FOR IDENTIFICATION 

OF REGULATORY DNA MOTIF  

CANKUN WANG 

2019 

Identifying precise transcription factor binding sites (TFBS) or regulatory DNA 

motif (motif) plays a fundamental role in researching transcriptional regulatory 

mechanism in cells and helping construct regulatory networks for biological 

investigation. Chromatin immunoprecipitation combined with sequencing (ChIP-seq) and 

lambda exonuclease digestion followed by high-throughput sequencing (ChIP-exo) 

enables researchers to identify TFBS on a genome-scale with improved resolution. 

Several algorithms have been developed to perform motif identification, employing 

widely different methods and often giving divergent results. In addition, these existing 

methods still suffer from prediction accuracy.  

Thesis focuses on the development of improved regulatory DNA motif 

identification techniques. We designed an integrated framework, WTSA, that can reliably 

combine the experimental signals from ChIP-exo data in base pair (bp) resolution to 

predict the statistically significant DNA motifs. The algorithm improves the prediction 

accuracy and extends the scope of applicability of the existing methods. We have applied 

the framework to Escherichia coli k12 genome and evaluated WTSA prediction 

performance through comparison with seven existing programs. The performance 
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evaluation indicated that WTSA provides reliable predictive power for regulatory motifs 

using ChIP-exo data.  

An important application of DNA motif identification is to identify transcriptional 

regulatory mechanisms. The rapid development of single-cell RNA-Sequencing (scRNA-

seq) technologies provides an unprecedented opportunity to discover the gene 

transcriptional regulation at the single-cell level. In the scRNA-seq analyses, a critical 

step is to identify the cell-type-specific regulons (CTS-Rs), each of which is a group of 

genes co-regulated by the same transcription regulator in a specific cell type. We 

developed a web server, IRIS3 (Integrated Cell-type-specific Regulon Inference Server 

from Single-cell RNA-Seq), to solve this problem by the integration of data pre-

processing, cell type prediction, gene module identification, and cis-regulatory motif 

analyses. Compared with other packages, IRIS3 predicts more efficiently and provides 

more accurate regulon from scRNA-seq data. These CTS-Rs can substantially improve 

the elucidation of heterogeneous regulatory mechanisms among various cell types and 

allow reliable constructions of global transcriptional regulation networks encoded in a 

specific cell type. 

Also presented in this thesis is DESSO (DEep Sequence and Shape mOtif 

(DESSO), using deep neural networks and the binomial distribution model to identify 

DNA motifs, DESSO outperformed existing tools, including DeepBind, in 690 human 

ENCODE ChIP-Sequencing datasets. DESSO also further expanded motif identification 

power by integrating the detection of DNA shape features. 
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CHAPTER 1. Introduction 

1.1 DNA sequence motif 

 A DNA sequence motif (DNA motif) is defined as a nucleic acid sequence 

pattern that is short and recurring and has some biological significance such as 

being DNA binding sites for a regulatory protein, i.e., a transcription factor (TF) [1]. 

Sequence motifs are short (usually 5 to 20 base-pairs (bp) long), recurring patterns 

in DNA that are presumed to have a biological function. Often they indicate 

sequence-specific binding sites (TFBS) for proteins such as nucleases and 

transcription factors [2], [3], TFBS are frequently located near the transcription start 

site (TSS) of the gene (i.e. proximal promoter region) or further apart (enhancers, 

silencers, etc.)[4]–[6] (Figure 1). With the progress of molecular biology, particular 

types of DNA motifs are recognized: palindromic motifs and spaced dyad (gapped) 

motifs. The palindromic motif was discovered during the study of restriction 

endonucleases the late 1960s [7]–[10], known to serve functionalities such as the 

formation of DNA[11], RNA transcription[12]. From the structure perspective, the 

palindromic motif is a subsequence that is precisely the same as its reverse 

complement, and exist in double-stranded and not the single-stranded DNA, for 

example, the two palindromic sequences recognized by restriction enzyme Eco RI. 

They are usually referred to as "reverse palindromes"[13]: 

G A A T T C 

C T T A A G 



2 
 

The spaced dyad motif consists of two smaller conserved sites separated by a 

spacer (gap) of fixed length but might be slightly variable [14], [15]. In this case, the 

TF forms a dimer, and each unit that binds to the DNA are conserved but are 

typically rather small (3–5 bp). Such spaced dyad elements are common to a large 

class of transcription factors [1]. 

1.2 Representation of DNA motif 

 A single TF can recognize dozens to hundreds of DNA binding site sequences 

over a range of binding affinities. Hence, the TF binding specificity cannot be 

adequately represented using any one DNA sequence. Instead, TF binding 

specificities are often represented as binding site motifs, which summarize the 

collection of preferentially bound sequences [16]. The most straightforward model 

to denote the binding preference of a TF on each position along a motif is the 

consensus sequence, which is composed of the concatenation of the most frequent 

nucleotide on each position. Pribnow et al.  discovered the ‘TATAAT box’ in 1975, a 

well-conserved sequence centered around 10 bp upstream of the transcription 

initiation site of Escherichia coli promoters [17]. In such case, we can denote a set of 

TFBSs with a single oligonucleotide, and the standard ambiguity codes are 

introduced by International Union of Pure and Applied Chemistry (IUPAC) to 

indicate possible nucleotides to occur at a given position [18]. For example, 𝑉𝑉 means 

this binding site position could be recognized as either 𝐺𝐺,𝐶𝐶 or 𝐴𝐴; the complete 

mapping of the IUPAC nucleotide codes are available in Table 1. A case-sensitive 

extension to the IUPAC codes is proposed to assist in the representation of the 
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rapidly growing space of information in human genetic variation by considering 

more interrelationships of nucleic acids [19]. However, a set of exactly matched 

consensus sequences are actually extremely rare, most positions of binding sites do 

not show a definite preference for a nucleotide. Thus, one of the main restrictions of 

consensus sequence is that it presents distorted pictures of binding sites [20], for 

example, a position that is always ‘A’ is treated the same as the position has 70% ‘A’ 

in an aligned set of DNA sequence motifs. 

 Although the consensus presents the characteristics of a motif in each 

position in a simple and clear way, the variations in this motif are absent in this 

model. A more accurate and most commonly used model is the position weight 

matrix (PWM) model  [21]–[23], it describes the probability of a given nucleotide's 

occurrence at each position in the DNA binding site [16]. The standard PWM model 

assumes that each position of the nucleotide contributes independently to the 

binding. The model first obtains a position frequency matrix (PFM) on each 

nucleotide position, and a normalized position probability matrix (PPM) is obtained 

by calculating the relative frequencies of each nucleotide at each position, 

pseudocounts are usually applied when calculating PPMs in order to avoid matrix 

entries have a value of 0 [24]. Finally, the PWM is obtained by logarithmic 

transformation of the PPM divided by the nucleotides’ background probabilities. We 

calculate the Information Content (IC) [25]–[28] to measure how different a given 

PWM is from a uniform distribution. It corresponds to the Kullback–Leibler 

divergence or relative entropy [29], the IC can be calculated as the sum of the 

expected self-information of every element: 
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𝐼𝐼(𝑖𝑖) = −�𝑝𝑝𝑏𝑏,𝑖𝑖 log2
𝑝𝑝𝑏𝑏,𝑖𝑖

𝑏𝑏𝑖𝑖𝑏𝑏

 

Where 𝑏𝑏𝑖𝑖 is the background frequency of base 𝑖𝑖. 

 With the PWM model, the intuitive visualization method called sequence logo 

[30] has widely replaced the earlier consensus-based DNA motif representation 

method, the four possible nucleotides are stacked at each position where the height 

is scaled with the IC of the base frequencies at that position. The sequence 

conservation at a particular position in the alignment is defined as the difference 

between the maximum possible entropy and the entropy of the observed symbol 

distribution: [30], [31] 

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑜𝑜𝑏𝑏𝑠𝑠 = log2 𝑁𝑁 − �−�𝑝𝑝𝑛𝑛 log2 𝑝𝑝𝑛𝑛

𝑁𝑁

𝑛𝑛=1

� 

Where 𝑛𝑛 is the particular sequence position among all the distinct symbols for the 

given sequence type 𝑁𝑁, 𝑝𝑝𝑛𝑛 is the observed frequency of symbol 𝑛𝑛. In terms of the 

DNA motifs with 4 possible letters, the maximum sequence conservation per site is 

log2 4 = 2 bit for DNA motifs. Figure 2 shows an example of motif consensus 

sequences and its logo generated from WebLogo[31]. 

 The PWM model does not to provide a true picture of the sequence 

specificity, as PWM assumes the base positions of the sequence motif are 

independent of each other and studies have shown such independent assumption is 

not true [32], [33], for example, in the binding sites of zinc finger in proteins. 
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Numerous methods that model dependencies in DNA motifs have been developed, 

including learning mixture of PWM [34]–[36], HMM-based method [37]–[39], Tree-

Based PWM method [40], feature-based method [41], [42], Markov Chain based 

method [43], Bayesian Markov based method [44]. However, the usefulness of such 

more complex models has been controversially discussed, most transcription 

factors PWMs performed as well as more complex models to predict PBM binding 

strength [32], [45], [46]. 

1.3 ChIP techniques 

The rapid development of show chromatin immunoprecipitation (ChIP) 

technologies [59]–[71] permit the genome-wide identification of protein–DNA 

interactions and massive yields of data in recent years provide an unprecedented 

opportunity to discover DNA motif [60], [61]. The most widely used technique is the 

chromatin immunoprecipitation followed by sequencing of the immuno-precipitated 

DNA (ChIP-seq), the overview of ChIP-seq protocol is shown in Figure 3, the 

chromatin is isolated from cells or tissues and fragmented. Antibodies against 

chromatin-associated proteins are used to enrich for specific chromatin fragments. 

The DNA is recovered, sequenced and aligned to a reference genome to determine 

specific protein binding location [62], [63]. Peaks are generated from the alignment 

results, referring to the site where multiple reads have mapped a pileup, that indicate 

a higher possibility of identifying a potential DNA motif [64]. An extensive amount 

of ChIP-Seq data has been generated and is available in the public domain, i.e. 

ENCODE [65], [66], ChIP-Atlas [67], GTRD [68].  
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The chromatin immunoprecipitation combined with lambda exonuclease 

digestion followed by high-throughput sequencing (ChIP-exo) [48] is developed as a 

variation of ChIP-seq assay to improve sensitivity and positional resolution by up to 

two orders of magnitude. Compared with ChIP-seq protocol, shown in Figure 4, it 

uses lambda exonuclease to digest sonicated chromatin to the formaldehyde-induced 

protein-DNA cross-linking point [69]. By providing near base pair (bp) resolution of 

protein-DNA interactions, ChIP-exo can identify almost single-nucleotide-resolution 

binding sites of TFs [70], [71], the binding resolution is significantly better than the 

ChIP-seq protocol (Figure 5). 

1.4 Motif identification techniques 

Identifying de novo DNA motifs has been an essential and challenging task in 

bioinformatics. The basic computational assumption of motif identification is that 

they are overrepresented conserved patterns in given sequences, and once identified 

will show significant conservation compared to background sequences [72], and the 

researchers understand gene regulatory networks[73], [74]. Over the past decades, 

numerous DNA motif identification techniques have been developed, Figure 6 

displays some of these methods. The methods mainly fall into two categories: word-

based methods (i.e., word-based) and profile-based methods[1], [33], [75]. The word-

based methods usually use the (𝑙𝑙,𝑑𝑑)-motifs, where where 𝑙𝑙 is the width of a motif 

and 𝑑𝑑 is the maximum number of mutations between a motif instance and the 

consensus sequence, such as DREME [76], FMotif [77], RSAT [78], [79], CisFinder 

[80], SIOMICS[81], Discrover [82], and BoBro [83], additional tools and their brief 
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descriptions are shown in Table 2, For a given motif consensus sequence collection 

of all possible occurences (with allowed mismatches) could be formalized and 

significance determined.  While used in the early stages of bioinformatics with real 

case studies, the method is considered too time-consuming for large scale motif 

identification as it has an exponential complexity [84]–[86]. The word-based methods 

search the sequences with a fixed length and a tolerance of mutations since several 

TFs are already known from the accumulations of research studies. The identified 

candidate motifs can be compared to known motifs databases with tools like 

TOMTOM [87] and obtain a similarity score. The word-based strategy can identify 

optimal global solutions but suffers from high false-positive ratio issue and high 

computational complexity when applied to large biological datasets. Profile-based 

methods usually take from the motif profile score [88], [89], i.e. IC from PWM, or 

randomly selected [90], the profile-based methods try to find a collection of DNA 

segments, giving rise to a motif profile with the highest score among all the 

combinations of candidates. The profile-based methods have better performance 

when predicting motifs with complex mutations. However, profile-based methods 

are limited in detecting multiple motifs when the data size is large.  

 DNA motif identification techniques have been applied to different types of 

data. Recently, studies show that ChIP techniques can be effectively integrated into 

the motif discovery, the provided high-throughput peak signals bound by the TF 

investigated are the ones showing enrichment over a control sample, expressed as 

the difference between the number of times each base pair of the genome has 
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appeared in the sequenced IP sample versus the control [64]. The DNA sequence 

sets obtained from ChIP-enriched peak regions of the input is significantly larger 

than thr traditional approaches which use a provided set of DNA promoter 

sequences, typically a few hundred sequences. Some widely used motif 

identification tools, i.e. MEME and RSAT [91], [92] cannot directly use ChIP peak 

data. Recently, new tools that are specially designed to handle the large volumes of 

data generated from high-throughput technologies, i.e. MEME-ChIP [93] and 

HOMER [94]. MEME-ChIP combines two different motif identification algorithms 

MEME (Multiple expectation maximization (EM) for Motif Elicitation, an extension 

of the EM algorithm [95], [96]) and DREME (Discriminative Regular Expression 

Motif Elicitation), to discover novel DNA sequence motifs. To detect enrichment of 

previously characterized functional motifs for TF or RBP binding sites in the 

sequences, MEME uses a Fisher’s exact test [93] for calculating the significance of 

relative enrichment of each motif in two sets of sequences. One set is the set of 

ChIP-Seq peak regions and the other is either similar data from a different ChIP-Seq 

experiment or shuffled versions of the first sequences (central motif enrichment 

analysis or CentriMo [97]). Finally, to ease interpretation of the results, MEME-ChIP 

applies AME algorithm [93] to group the discovered and enriched motifs by 

similarity to each other [99]. MEME-ChIP used MAST [100] and AMA [101] 

algorithms for visualizing motifs as well as for binding strength analysis. HOMER 

(Hypergeometric Optimization of Motif EnRichment) is a suite of tools for DNA 

motif discovery, Motif scanning, and next-generation sequencing data analysis. 

HOMER supports various popular assays like ChIP-seq, GRO-Seq, RNA-Seq, 
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DNase-Seq, Hi-C. HOMER provides the de novo motif discovery algorithm that 

designed to find DNA motifs in a large scale genomics data with about 10,000 targets 

sequences. The input of HOMER suite requires a target and background sequences, 

promoters of genes that are likely to be co-regulated and promoters of genes that are 

not regulated, respectively, or a standard peak file that allows HOMER to extract 

target and background sequences from a reference genome and a set of known-

motif profile from the motif database. When the target and background sequences 

are set, HOMER starts scanning the specific length and over-represented motif 

patterns in the target sequences relative to the background sequences, the 

enrichment score of each motif is calculated using the cumulative hypergeometric 

distribution, or cumulative binomial distribution for motif scoring if the user specify 

a large number of input sequences, which is faster to calculate and gives essentially 

a same results. The latest HOMER version adds a procedure in the workflow by 

revisiting the input sequences to remove the oligos that are slightly offset from the 

original motifs, which makes it more sensitive to co-enriched motifs. 

 In terms of usage, the command-line version of the program provides full 

control by the researchers and can be integrated into larger workflows, researchers 

are interested in developing a web server, users with limited computational 

knowledge or computational resources can efficiently perform DNA motif analysis 

and visualization through their web browsers. The implementation of motif 

identification web server generally falls into two categories either a pipeline 

implementation that incorporates a suite of existing tools into a web server, or 
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implementing novel algorithms into a web server [102]. Generally, DNA motif 

identification web server requires users to upload input sequences of DNA, RNA, 

proteins or custom alphabet datasets, and provide an E-mail address so they can be 

notified when the submitted job is done. However, as bioinformatics web servers 

continue to grow, the challenge of service maintenance increases, only 45% of all 

services published on Nucleic Acids Research Web Server Issues between 2003 and 

2009 are now positively confirmed functional [103],  and over 95% of sites were 

running in the first 2 years, but this rate declined to 84% in the third year and 

continued to decrease gradually [104]. 

1.5 Single-cell RNA sequencing 

 For the last decades, RNA sequencing (RNA-seq) has been a popular method 

to study global gene expression changes using next-generation sequencing (NGS) 

technique to reveal the presence and quantity of RNA in a biological sample at a 

given moment [105], [106], providing tens to hundreds of millions of sequence read 

fragments and information on billions of individual bases. The rapid development of 

single-cell RNA sequencing (scRNA-seq) technologies has provided massive 

amounts of data.  Mining the activity of thousands of individual cells has allowed 

researchers to identify gene transcriptional regulation at the single cell level[107], 

[108]. This technology can be summarized as follows: Isolating the single-cell from 

the system of interest, this is one of the significant challenges for performing high-

throughput and unbiased single cell experiment [109]; reverse transcription (RT); 

amplification; library generation and sequencing [110], [111]. After obtaining the 
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scRNA-seq data, a typical single-cell RNA-seq analysis workflow can be processed 

as pre-processing (quality control, normalization, data correction, feature selection, 

dimensionality reduction, and visualization) and cell-level, gene-level downstream 

analysis [112]. Relative to traditional profiling methods that assess bulk cell 

populations, this research direction holds promising potential for providing an 

unprecedented opportunity to allow researchers to uncover unexpected biological 

discoveries [113], including but not limited to, predicting cell types [114], analyzing 

cell trajectory paths [115], and revealing the heterogenous regulatory mechanism 

[116] in various cell states. Regulon is a maximal group of co-regulated genes by the 

same TF or the same set of TFs spread out in a genome [117]. The successful 

identification of regulons at the single-cell level can substantially improve the 

elucidation of heterogeneous gene regulation mechanisms across various cell types 

and allow reliable constructions of global transcription regulation networks encoded 

in a specific cell type. 

 The higher resolution of cellular differences detected by single-cell 

sequencing also raises a host of new questions. Performing successful scRNA-seq 

experiments requires that the expertise from various disciplines, although the data 

obtained from scRNA-seq are often structurally identical to those from a bulk 

expression experiment [118], scRNA-seq data is extremely sparse (There is no 

expression measured for many genes in most cells). Simply applying traditional 

RNA-seq analysis methods to scRNA-seq data may not obtain a satisfied result, new 

methods specially design for scRNA-seq are proposed at an astonishing rate, the 
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number of available tools nearly doubled in one year (2018), which increased from 

165 to 337 [119]. 

1.6 Outline 

The rest of this thesis is organized as follows: Chapter 2 introduces a novel 

method, WTSA, for identifying DNA motifs from ChIP-exo data. Chapter 3 

introduces a web server, IRIS3, which performs cell-type-specific regulon inference 

from scRNA-seq. Chapter 4 briefly introduces DESSO, a new method for DNA 

motif prediction using deep neural networks and the binomial distribution model. 
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CHAPTER 2. WTSA - An integrative framework using ChIP-exo data for accurate 

prediction of DNA motifs 

2.1 Introduction 

Identifying DNA motif has been a major challenge to unravel the regulation 

of gene expression mechanism, the recent development of high throughput 

sequencing technologies have revolutionized our understanding of transcriptional 

regulation by providing an unprecedented opportunity to interrogate in vivo 

transcription factor binding [120]. ChIP-Seq provided a view of genome-wide 

interactions between DNA and DNA-associated proteins and employed extensively 

to discover motifs from overrepresented sequences in ChIP-seq peaks [121]. 

Although a variety of popular methods have been developed for ChIP-Seq data 

mining and modeling, both computational and experimental challenges remain for 

the accurate and exhaustive identification of DNA motifs. The ChIP-seq assay 

requires a large amount of sample material and output a relatively low resolution 

(200–500 bp) due to the size of DNA fragments generated by chromatin sonication. 

Recent studies show the observations that ChIP-seq peak scores fail to differentiate 

between bound versus unbound genomic sequences [122]–[124], the question of 

what constitutes the minimal sequence determinants for DNA motifs in vivo has 

become increasingly uncertain. 

 A Higher resolution mapping of bound genomic sequences has been 

facilitated by the development of ChIP with lambda exonuclease digestion and 

sequencing (ChIP-exo), by performing several enzymatic reactions including the 



14 
 

lambda exonuclease digestion step while protein-DNA complexes are still on the 

beads prior to sequencing [125], ChIP-exo has significantly improved the resolution 

of the ChIP-based technologies.  

 Although numerous DNA motif finding algorithms and tools have been 

developed for ChIP assays, current methods rely exclusively on DNA sequences 

extracted from ChIP-enriched regions, and look for DNA motifs of a specific length 

from an input parameter; the optimal motif lengths was simply obtained by the 

strategy of iterating the method multiple times for a vector of fixed length [93], [94], 

[126]–[133], and filter the result based on the significance values. Thus, the results 

suffer from both lack of specificity (false predictions) and high computation time. 

To push the prediction accuracy further, compared with ChIP-seq that ChIP-exo 

achieves near base pair resolution and a piece of structural information on genome-

wide binding proteins [134], we hypothesized such nucleotide level sequencing 

reads information from ChIP-exo can be integrated as an enhancement in the DNA 

motif identification process.  

 We designed a weighted two-stage alignment (WTSA) tool by specifically 

obtaining each nucleotide level weight score from the enriched ChIP-exo regions 

and inheriting the two-stage alignment and graph-theory based model from BoBro 

[83]. WTSA has the following unique features to improve the state-of-the-art 

performance: (i) developed a binomial distribution scoring model to handle the 

unquantifiable scoring preference when dealing with by motif length window (ii) 

integrated a weight matrix extracted from the normalized ChIP-exo reads, to assess 
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the probability of nucleotides to be within a DNA motif (iii) employed a dynamic 

extension strategy to optimize the motif length to be more closely to the actual DNA 

motif length. 

2.2 Methods 

The WTSA workflow (Figure 7) can be described as follows: 

Step 1: data pre-processing. To obtain a nucleotide level weight score from ChIP-exo 

enriched regions, WTSA requires two input file, reference genome file (FASTA 

format) and ChIP-exo read alignment file (SAM/BAM), two integrated tools, MACE 

[135] and BEDTOOLS, are used to perform ChIP-exo peak calling and extract the 

DNA sequences and weight scores, respectively. We select flanking regions 100 bp 

centered on each ChIP-exo peak, we define a format with the file extension ‘wtsa’ as 

the WTSA input. Similar to the FASTA format, the wtsa format begins with a single-

line description, followed by lines of sequence data, while the third line represents 

the weighted scores extracted from BEDTOOLS. 

Step 2: weighted two-stage alignment. Read the previous defined WTSA format file, 

initialize with a normalized ChIP-exo weight scores matrix 𝑀𝑀ℎ, and two auxiliary 

matrix 𝑀𝑀1 and 𝑀𝑀2 with the duple size of 𝑀𝑀ℎ (the even rows represent the reversed 

complementary sequences), and set all elements equal to 0. For all segment pairs 

𝑠𝑠𝑖𝑖𝑖𝑖and 𝑠𝑠𝑝𝑝𝑠𝑠 of length 𝑙𝑙 with k position identity in the input sequences and their 

reversed complementary reversed sequences, we calculate 𝑓𝑓and 𝑓𝑓′ also, store the 

𝑓𝑓′to 𝑀𝑀1: 
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𝑓𝑓′ = 𝑓𝑓(𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑝𝑝𝑠𝑠) × (𝑀𝑀𝑖𝑖𝑖𝑖
ℎ + 𝑀𝑀𝑝𝑝𝑠𝑠

ℎ ) 

where 𝑓𝑓(𝑠𝑠, 𝑡𝑡) = −lg (∑ 𝐵𝐵(𝑙𝑙,𝑘𝑘, 𝑝𝑝)𝑙𝑙
𝑘𝑘 ), B(.) is binomial distribution and p=0.25.  

And set 𝑓𝑓 = 0 if ∑ 𝐵𝐵(𝑙𝑙,𝑘𝑘, 𝑝𝑝)𝑙𝑙
𝑘𝑘 > 0.01. 𝑓𝑓′ is among the top t in this alignment between 

two sequences or f >3, add 1 or 0.5 (if the two nucleotides before 𝑠𝑠𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑝𝑝𝑠𝑠 are 

identical) to 𝑀𝑀𝑖𝑖𝑖𝑖
1  𝑎𝑎𝑛𝑛𝑑𝑑 𝑀𝑀𝑝𝑝𝑠𝑠

1 .  

Similarly, we calculate 𝑓𝑓and 𝑓𝑓′ also, store the 𝑓𝑓′to 𝑀𝑀2: 

𝑓𝑓′ = 𝑓𝑓(𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑝𝑝𝑠𝑠) × max
𝑖𝑖−2≤𝑖𝑖′≤𝑖𝑖+2
𝑠𝑠−2≤𝑠𝑠′≤𝑠𝑠+2

(𝑀𝑀𝑖𝑖𝑖𝑖′
1 + 𝑀𝑀𝑝𝑝𝑠𝑠′

1 ) 

Step 3. Graph construction and optimize clique finding. For each segment pair, if 𝑓𝑓′ is 

among the top t in this alignment between two sequences, we build a graph 𝐺𝐺 with  

𝑠𝑠𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑝𝑝𝑠𝑠 be vertex, and edge between 𝑠𝑠𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑝𝑝𝑠𝑠 with weight 𝑓𝑓′ if and only if:  

𝑓𝑓′ = 𝑓𝑓(𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑝𝑝𝑠𝑠) × max
𝑖𝑖≤𝑖𝑖′≤𝑖𝑖
𝑠𝑠≤𝑠𝑠′≤𝑠𝑠

(𝑀𝑀𝑖𝑖𝑖𝑖′
2 + 𝑀𝑀𝑝𝑝𝑠𝑠′

2 ) 

For an empty set 𝐶𝐶, choose an edge (𝑢𝑢, 𝑣𝑣) with the largest 𝑁𝑁𝐺𝐺(𝑢𝑢) ∩ 𝑁𝑁𝐺𝐺(𝑣𝑣) with 

 𝑁𝑁𝐺𝐺(𝑥𝑥) representing all the vertices incident to vertex 𝑥𝑥; add 𝑢𝑢 and 𝑣𝑣 to the current 

clique 𝐶𝐶; Repeat the above on the sub-graph induced by  𝑁𝑁𝐺𝐺(𝑢𝑢) ∩ 𝑁𝑁𝐺𝐺(𝑣𝑣) until the 

subgraph is empty; remove the current clique from 𝐺𝐺, and repeat this step on the 

remaining graph for 𝑤𝑤 times (the default is 𝑤𝑤=10). To obtain an optimized motif 

length, for a set 𝐶𝐶 of motif candidates of 𝑙𝑙 bp length long, calculate overlapped region 

frequency from candidate motif, and obtain an optimized length 𝑙𝑙′ from the 

combined overlapped regions with the maximum frequency, repeat the process of 

constructing set 𝐶𝐶 with the length 𝑙𝑙′. 
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Step 4. Motif evaluation. We found p(x) is very close to a Poisson distribution, we 

define a profile matrix  𝑃𝑃𝐶𝐶  of  𝐶𝐶 as 

 𝑃𝑃𝐶𝐶 = �log
𝑃𝑃(𝑖𝑖, 𝑗𝑗)
𝑞𝑞(𝑖𝑖) �4×𝑙𝑙′

 

Where 𝑃𝑃(𝑖𝑖, 𝑗𝑗) is the probability of nucleotide type 𝑖𝑖 appearing at position 𝑗𝑗 in the 

alignment, and 𝑞𝑞(𝑖𝑖) is the probability of 𝑖𝑖 appearing in the simulated background 

sequence. Define the match score between a candidate motif and a profile matrix as 

the sum of corresponding values of the matrix based on the specific nucleotide in 

each position of the motif. Let 𝑥𝑥 be a random variable denoting the number of 

sequence segments of length 𝑙𝑙′ from a set of random nucleotide sequences, 𝑝𝑝(𝑥𝑥) is 

the probability distribution of 𝑥𝑥, we found  𝑝𝑝(𝑥𝑥) is very close to a Poisson 

distribution, we calculate the 𝑃𝑃-value of a set of candidate motif by summing up 

𝑝𝑝(𝑥𝑥) if 𝑥𝑥 is larger than the average match score over all the sequence segments 𝐶𝐶, 

where 

𝑝𝑝(𝑥𝑥) ≈
𝑒𝑒−𝜇𝜇𝜇𝜇𝑚𝑚

𝑥𝑥!
 

Finally, the motif closures are sorted in the increasing order of their 𝑃𝑃-values, and 

output top 𝑜𝑜 results, with 𝑜𝑜 being a parameter set by the user with default value 10. 

2.3 Dataset  

We have extracted publicly available SRA datasets for 10 different TFs from 

experiments performed in Escherichia coli (E. coli) K-12 by ChIP-exo (Fur, Cra, 

ArgR, GadE, GadW, GadY, OxyR, UvrY, SoxR and SoxS), 3 of them (Fur, Cra and 
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ArgR) were used for the evaluation as others have limited annotations on 

RegulonDB [136]  or TOMTOM motif database and cannot used for evaluation, 

details of the used datasets are described in Table 3.  

To assess the motif-finding performance of our method, we compared the 

prediction results of WTSA with six de-novo motif finding tools: BoBro[83], 

Bioprospector [130], MEME-ChIP [93], HOMER [94], rGADEM [137] (Genetic 

Algorithm guided the formation of spaced Dyads coupled with EM for Motif 

identification) and ChIPMunk [138]. BoBro is the previous version of WTSA; The 

Bioprospector is a well-known conventional motif discovery program; MEME-ChIP 

integrated the classic MEME program, HOMER, rGADEM and ChIPMunk are 

designed able to handle the large volumes of data generated from these high-

throughput technologies. The goal of the proposed algorithm is to precisely identify 

the TFBS location from 100 bp long DNA sequence at single nucleotide resolution 

and binding site resolution. That is, for each nucleotide of the input sequence, we 

aim to determine whether the base-pair categorizes to the binding sites from the 

RegulonDB and TOMTOM Prodoric database, we have compared the performance 

of WTSA and other tools in terms of precision, recall and F-score. We use default 

parameters for each of them. 

2.4 Result  

For each target binding site with overlapping predicted binding sites in an 

input sequence, we use the following values previously defined as the DNA motif 

evaluation matrics: nTP (true positive), the number of target binding site positions 



19 
 

predicted as binding site positions; nTN (true negative), the number of non-target 

binding site positions predicted as non-binding site positions; nFP (false positive), 

the number of non-target binding site positions predicted as binding site positions; 

nFN (false negative), the number of target binding site positions predicted as non-

binding site positions. sTP is the number of known sites overlapped by predicted 

sites; sFN is the number of known sites not overlapped by predicted sites; sFP is the 

number of predicted sites not overlapped by known sites; [73], [139] 

The sensitivity on nucleotide level nSN and site level sSN are defined as: 

𝑛𝑛𝑛𝑛𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛𝑁𝑁

  𝑠𝑠𝑛𝑛𝑁𝑁 = 𝑠𝑠𝑛𝑛𝑛𝑛
𝑠𝑠𝑛𝑛𝑛𝑛+𝑠𝑠𝑛𝑛𝑁𝑁

 

specificity on nucleotide level nSN and site level sSN are defined as: 

𝑛𝑛𝑛𝑛𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛𝑛𝑛𝑁𝑁+𝑛𝑛𝑛𝑛𝑛𝑛

  𝑠𝑠𝑛𝑛𝑃𝑃 = 𝑠𝑠𝑛𝑛𝑁𝑁
𝑠𝑠𝑛𝑛𝑁𝑁+𝑠𝑠𝑛𝑛𝑛𝑛

 

positive prediction value on site level is defined as: 

𝑠𝑠𝑃𝑃𝑃𝑃𝑉𝑉 =
𝑠𝑠𝑠𝑠𝑃𝑃

𝑠𝑠𝑠𝑠𝑃𝑃+ 𝑛𝑛𝑛𝑛𝑃𝑃 

We also used the F-score or F1-score as the overall accuracy measurement. 

Compared with geometric or arithmetic mean, it tends to penalize more the 

imbalance of sensitivity and specificity. The nucleotide and TFBS level F-score are 

defined as 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑒𝑒 and 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑒𝑒, respectively: 

𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑒𝑒 =
2 × 𝑛𝑛𝑛𝑛𝑁𝑁 × 𝑛𝑛𝑃𝑃𝑃𝑃𝑁𝑁
𝑛𝑛𝑛𝑛𝑁𝑁 + 𝑛𝑛𝑃𝑃𝑃𝑃𝑉𝑉

 

𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑒𝑒 =
2 × 𝑠𝑠𝑛𝑛𝑁𝑁 × 𝑠𝑠𝑃𝑃𝑃𝑃𝑁𝑁
𝑠𝑠𝑛𝑛𝑁𝑁 + 𝑠𝑠𝑃𝑃𝑃𝑃𝑉𝑉
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The combined motif logo from all methods, including the reference logo 

from RegulonDB, is shown in Figure 8. We began by making similarity 

comparisons between motifs predicted by WTSA from ArgR, Fur, Cra TF ChIP-exo 

datasets and the experimentally confirmed, strongly validated and weakly validated 

motifs in the RegulonDB databases. These comparisons were extended to the other 

seven existing methods described previously. Figure 9A shows that WTSA achieved 

a stable high motif prediction performance on the TFBS level F-score comparisons,  

the rGADEM program outperforms on the Cra TF data at the TFBS level F-score, 

while WTSA has the best positive prediction value on the Cra TF data (Figure 9B). 

The nucleotide level performance comparison shows WTSA achieved the highest F-

scores, sensitivity and positive prediction value on all three datasets, indicating the 

integration of base pair resolution ChIP-exo data weight scores enhances the ability 

to accurately predict the actual DNA motif region (Figure 10A and Figure 10B).  

To assess the similarity of query motifs against validated motifs, TOMTOM 

was used to compare the statistical significance (i.e., E-value, and q-value) across 

JASPAR and Prodoric database for DNA motifs that were predicted by all the 

methods in comparison. Figure 11 shows WTSA provides stable prediction results 

on the −𝑙𝑙𝑜𝑜𝑙𝑙2(E-value) and −𝑙𝑙𝑜𝑜𝑙𝑙2(Q-value) metrics, WTSA outperforms on Fur and 

ArgR TF than all other methods, MEME-ChIP slightly performed better than WTSA 

on Cra TF (Figure 10). 
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2.5 Summary  

The combination of large-scale ChIP-exo data holds a promising potential in 

the DNA motif identification. However, existing DNA motif identification tools fail 

to generate satisfactory results from high-resolution ChIP-exo data due to the lack of 

full consideration of the intrinsic characteristics of ChIP-exo data. Validation using 

comprehensive data sets showed that WTSA reliably identifies the correct DNA 

motifs with improved base pair level quality. 
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CHAPTER 3. IRIS3 - Integrated Cell-type-specific Regulon Inference Server from 

Single-cell RNA-Seq 

3.1 Introduction 

 One of the major challenges in molecular biology is reverse-engineering the 

cis-regulatory logic that plays a significant role in the control of gene expression, 

application of DNA motif identification has limitedly applied in parallel with 

methods used in underlying gene regulatory mechanisms that induce the identity of 

cell types or physiological states usually uncovered in the scRNA-seq analyses. A 

critical step in this process is to identify the cell-type-specific regulons (CTS-Rs), 

defined to denote a group of genes controlled by the same transcription regulator 

(e.g., TF and long non-coding RNA) in a specific cell type. Intuitively, the 

component genes of a CTS-R tend to be co-expressed in the specific cell type and 

share the same conserved cis-regulatory motif (DNA motif) of the underlying 

regulator. The identification of CTS-Rs is non-trivial and essential in characterizing 

the transcriptomic heterogeneity of cell components in tissues.  

 For the first time, the SCENIC pipeline identified 151 regulons and, based on 

which, predicted eight cell types from 3,005 adult mouse brain cells [140]. 

Specifically, this pipeline identified TF based on co-expression analysis, identified 

the gene modules significantly enriched with TF-binding motifs as regulons and 

predicted cell types by clustering of a regulon-cell matrix containing regulon 

enrichment values in each cell. Based on a modified SCENIC pipeline, a Mouse Cell 

Network Atlas was built in 2018 to construct a global gene regulatory network of 
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202 cell-type-specific regulons (CTS-Rs), containing 8,461 genes in 61,637 cells 

sampled from 98 cell types [141]. More regulon inference methods that are 

specifically designed for scRNA-seq data have been developed: SCODE [142], PIDC 

[143], recent studies have shown both bulk RNA-seq and scRNA-seq methods 

perform poorly on predicting gene regulatory structures from scRNA-seq data 

[144]. There is still a room for the regulon prediction performance considering the 

false positive issues in cell type prediction, gene module identification, and motif 

discovery; The practical usage of SCENIC pipeline requires substantial 

programming experience in R, even with a detailed tutorial; and the identified CTS-

R are not intuitively and comprehensively represented through a web server. 

 We have developed IRIS3, the Integrated Cell-type-specific Regulon 

Inference Server from Single-cell RNA-Seq, as the first-of-its-kind web server for 

CTS-R inference for multiple species, described in the pipeline overview (Figure 

12), IRIS3 solve the problem computationally by the integration of data pre-

processing, cell type prediction, gene module identification, and DNA motif 

analyses. 

3.2 Overview 

IRIS3 requires one input file, which is a gene expression matrix (GEMAT) 

with unique gene IDs (rows) and cell names (columns). Both Gene Symbols [145] 

(e.g., HSPA9) and Ensembl [146] Gene IDs (e.g., ENSG00000113013) are allowed in 

the GEMAT file, and their expression values can be raw/normalized reads counts or 

10x Genomics feature-barcodes matrices. Optionally, a two-column-cell-label file 
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can be used for evaluating the predicted cell types from SC3/Seurat and CTS-R 

inference. The first column of this cell label file being the cell names exactly match 

the columns of the GEMAT file and the second column being experimentally 

validated cell type labels.  

3.3 Methods 

IRIS3 integrates five widely-used tools: Seurat [147], [148], SC3 [149], 

QUBIC [150], [151],DMINDA2.0 [152], [153] and MEME [126] for CTS-R inference 

from the scRNA-seq GEMAT, Additionally, several powerful tools and databases 

such as Enrichr [154], [155] , Clustergrammer [156], Plotly, Ensembl, and 

GeneCards [157] are implemented in support of the comprehensive interpretation of 

the identified CTS-Rs. As shown in Figure 12, six steps are included in the IRIS3 

pipeline: (i) pre-processing, (ii) gene module detection, (iii) cell type prediction, (iv) 

CTS-gene-module assignment, (v) CTS-R inference and (vi) Quantifying CTS-R 

specificity. More details of the six steps and the outputs of IRIS3 have been listed in 

below: 

Step I: Pre-processing. The uploaded GEMAT is first pre-processed for universal 

low-quality gene and cell filtering by removing genes with zero values in more than 

95% cells and cells with zero values in 99% genes. Both filtrations are optional but 

highly recommended to obtain reliable and robust analytical performances [158]. 

Data normalization, PCA, t-SNE [159], UMAP [160] and marker genes detection are 

performed on the filtered GEMAT by Seurat. 
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Step II: Gene module detection. The pre-processed GEMAT in Step I is then analyzed 

by our in-house biclustering tool, QUBIC, for co-expressed gene module detection. 

Each of the identified biclusters represents a group of co-expressed genes in a 

specific subset of cells. QUBIC has been proven to be one of the top performing 

methods in capturing a high proportion of biclusters effectively and efficiently 

[161], [162], which are enriched with functional biological pathways. All the 

identified biclusters in this step will be saved in support of the following steps. 

Step III: Cell type prediction. Based on the GEMAT from Step I, if the total cell 

numbers are less than 5000, the cell types are predicted in SC3 by gene distance 

calculation, PCA dimension reduction, tSNE-k-means clustering, and consensus 

clustering, all SC3 parameters are set to default, and the optimal number of clusters 

(k) is estimated based on the Tracy-Widom theory on random matrices; Otherwise, 

the cell types are predicted using Seurat. The output of this step is a two-column-

cell-label file with the same format as described above regarding the optional input 

cell label file.  

Step IV: CTS gene module assignment. We consider the component genes of a 

bicluster respond to the regulatory signal in a specific cell type if the cells in the 

bicluster are highly consistent with the cells in the cell type. To determine the 

consistency, a hypergeometric enrichment test is performed using the cell 

components of identified biclusters from Step II, and the cell types predicted from 

SC3 from Step III (or the uploaded ground-truth cell types). To infer CTS-gene 

modules, the probability of having x cells of the same cell type in a bicluster of size 
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n from the dataset with a total of N cells can be computed using the following 

hypergeometric function: 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑁𝑁,𝑝𝑝,𝑛𝑛) = �𝑝𝑝𝑁𝑁𝑥𝑥 � �(1 − 𝑝𝑝)𝑁𝑁
𝑛𝑛 − 𝑥𝑥

� �𝑁𝑁𝑛𝑛��  

where 𝑝𝑝 is the percentage of that cell type among all cell types in the data set. The p-

value of getting such enriched bicluster is calculated as: 

𝑝𝑝-𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑒𝑒 = 𝑃𝑃(𝑋𝑋 ≥ 𝑥𝑥) = 1 − 𝑃𝑃(𝑋𝑋 − 𝑥𝑥) = 1 −�
�𝑝𝑝𝑁𝑁𝑖𝑖 � �

(1 − 𝑝𝑝)𝑁𝑁
𝑛𝑛 − 𝑖𝑖

�

�𝑁𝑁𝑛𝑛�

𝑚𝑚−1

𝑖𝑖=0
 

The p-value of a bicluster corresponding to a specific cell type is Bonferroni-

adjusted by multiplying by the total number of cell types, and such bicluster is 

assigned as a CTS-gene module if its adjusted p-value to that cell type is significant 

(adj.p<0.05). The functional enrichment analysis between genes in the CTS-R and 

databases, such as KEGG, GO, ProteomicDB, etc. uses the same hypergeometric test 

and p-value adjustment shown above but compares genes instead of cells. All the 

enrichment analysis in IRIS3 are performed using EnrichR.  

 A bicluster is a so-called CTS-gene-module if its cell components are 

significantly consistent with a cell type (p-value < 0.05, Bonferroni adjusted). Thus, 

a CTS-gene module is possibly found in multiple cell types, as long as it is 

significantly enriched in those cell types. The output of this step is the CTS-gene-

modules, if present, of each of the identified cell types, which lays a solid foundation 

of the CTS-R identification.  
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Step V: CTS-R inference. The genes from all the CTS-gene-modules in one cell type 

are grouped into a nonredundant list, and their 1,000-bp upstream promoter 

sequences are extracted based on the DMINDA2.0 web server. These sequences are 

used for DNA motif prediction using both DMINDA2.0 and MEME, with the default 

parameters. All the identified motifs in a specific cell type are clustered into 

subgroups using the motif comparison functionality (BBC on DMINDA2.0 or 

TOMTOM on MEME). For each of the motif clusters, the corresponding 

nonredundant gene list is named as a CTS-R. Users with developed gene modules 

that they are interested in or identified by their preferred module detection methods 

can also upload these modules to IRIS3 and have them analyzed to identify the 

“module-specific regulon”. 

Step VI: Quantifying CTS-R specificity. To quantify cell-type specificity of a regulon, 

Suo et al. defined a regulon specificity score (RSS) [141], we modified this 

procedure by adopting an entropy-based strategy [163] and gene set variation 

analysis (GSVA) [164] that were previously used for gene expression data analysis. 

For each CTS-R, we use GSVA to calculate the regulon activity score (RAS). To 

filter non-significant CTS-Rs, we perform Wilcoxon rank sum test on each regulon, 

the null hypothesis states that the medians from the two RAS populations (whether 

the cell of that RAS belongs to the specific cell type) are the same. We use the 

Benjamini-Hochberg procedure to control the false discovery rate, CTS-Rs with 

adjusted p-value > 0.05 are removed. 
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For each filtered CTS-Rs, we use a vector to represent the distribution of 

RAS in the cell population: 

𝑃𝑃𝑅𝑅 =  (𝑝𝑝1𝑅𝑅 ,⋯ ,𝑝𝑝𝑛𝑛𝑅𝑅) 

where 𝑛𝑛 is the total number of the cells, and RAS are normalized so that: 

  

 � 𝑝𝑝𝑖𝑖𝑅𝑅
𝑛𝑛

𝑖𝑖=1
= 1 

Then we use a vector to indicate whether a cell belongs to a specific cell type: 

𝑃𝑃𝐶𝐶 =  (𝑝𝑝1𝐶𝐶 ,⋯ , 𝑝𝑝𝑛𝑛𝐶𝐶) 

where  

𝑃𝑃𝑖𝑖𝐶𝐶 = �1,       𝑠𝑠𝑒𝑒𝑙𝑙𝑙𝑙 𝑏𝑏𝑒𝑒𝑙𝑙𝑜𝑜𝑛𝑛𝑙𝑙𝑠𝑠 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠 𝑠𝑠𝑒𝑒𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑝𝑝𝑒𝑒
0,                                                            𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒 

The vector is also normalized so that: 

� 𝑝𝑝𝑖𝑖𝐶𝐶
𝑛𝑛

𝑖𝑖=1
= 1 

Next, we evaluate the Jensen-Shannon Divergence (JSD), which is a commonly 

used metric for quantifying the difference between two probability distributions, 

defined as: 

𝐽𝐽𝑛𝑛𝐽𝐽(𝑃𝑃𝑅𝑅,𝑃𝑃𝐶𝐶) = 𝐻𝐻�
𝑃𝑃𝑅𝑅 + 𝑃𝑃𝐶𝐶

2
� −

𝐻𝐻(𝑃𝑃𝑅𝑅) + 𝐻𝐻(𝑃𝑃𝐶𝐶)
2
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where 𝐻𝐻(𝑃𝑃) = −∑𝑝𝑝𝑖𝑖 log 𝑝𝑝𝑖𝑖, represents the Shannon entropy of a probability 

distribution 𝑃𝑃. The range of JSD values is between 0 and 1, where 0 means identical 

distribution and 1 means extreme difference. Finally, the RSS is defined by 

converting JSD to a similarity score: 

𝑅𝑅𝑛𝑛𝑛𝑛(𝑅𝑅,𝐶𝐶) = 1 −�𝐽𝐽𝑛𝑛𝐽𝐽(𝑃𝑃𝑅𝑅,𝑃𝑃𝐶𝐶) 

 The identified CTS-Rs are first compared with the marker genes list 

generated from Seurat, and ranked by the number of overlapped marker genes in 

that CTS-R, next ranked by the RSS in the decreasing order.  

3.4 Regulon analytical interpretation 

 IRIS3 provides detailed analyses for an individual CTS-R to interpret detailed 

information for the associated genes and motifs. As shown in Figure 15, six co-

regulated genes are included in the CT1S-R1, and each of the Gene Symbol and 

Ensembl Gene ID was linked to its corresponding profiles on the GeneCards and 

Ensembl datasets, respectively. A local heatmap can be achieved by clicking the 

“Show Heatmap” button to display the expression level of the eight genes among 

cells in Cell Type 1. To better illustrate the expression value of the gene sets, we 

applied a log-transformed for heatmap interpretation: 

𝑉𝑉𝑁𝑁𝑖𝑖 = lg(1 + 𝑉𝑉𝑉𝑉𝑖𝑖) −� lg(1 + 𝑉𝑉𝑉𝑉𝑖𝑖) /𝑛𝑛
𝑛𝑛

𝑖𝑖=1
 

where 𝑉𝑉𝑁𝑁𝑖𝑖 indicates the normalized value for gene 𝑖𝑖, 𝑉𝑉𝑉𝑉𝑖𝑖indicates the expression 

value of gene 𝑖𝑖, and 𝑛𝑛 is the total number of cells. 
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The gene enrichment analysis for the genes can be performed using the 

enrichment function integrated into the heatmap as described above, or by clicking 

the "Send gene list to Enrichr" button to view the complete enrichment results on the 

Enrichr website. The additional ATAC-Seq validation function can be achieved by 

clicking on the “Show ATAC-Seq peak enrichment” button for human (74 tissues) 

and mouse (117 tissues) using peak files downloaded from CistromeDB [165]. The 

TAD supported supplementary gene function can be achieved by clicking on the 

“Show TAD covered genes” button. Considering that each CTS-R is inferred from 

CTS-gene modules that may be assigned to multiple cell types, it is likely to have 

CTS-Rs found in other cell types holding similar motifs that regulating a similar 

group of genes. To find such similar CTS-Rs in other cell types, IRIS3 performs the 

motif comparison between selected CTS-R and all CTS-Rs in other cell types. A user 

can click on the “Show similar CTS-Rs” button under each CTS-R to achieve the 

result of this function. 

Using all default parameters of IRIS3, 678 CTS-Rs were identified in a total of 

six predicted cell types from the above example data. To interpret all CTS-Rs in each 

cell type, we integrated Clustergrammer, a powerful and interactive heatmap 

visualization tool, for the CTS-cell-gene-regulon heatmap display. Both gene 

compositions of these CTS-Rs and their expression values across different cell types 

can be intuitively displayed in such a heatmap (Figure 14A). Due to space limitation, 

only the top 15 CTS-Rs and their corresponding genes are showcased. The CTS-Rs 

are ranked in the increasing order of the overlapped marker genes and regulon 

specificity score as described above, and each specific CTS-R is renamed as CTnS-



31 
 

Rm, where n represents the ID of a cell type and m represents the rank ID of a CTS-

R. The green rectangles under a CTS-R indicate the presence of its component 

genes. The heatmap shows the log-transformed expression level of each gene across 

all cells. The representative motif shown on the right panel and the interactive motif 

logo (the 12-bp consensus sequence) can direct users to a detailed motif mapping 

result page, including the motif p-value, related genes, binding site occurrences, and 

motif position weight matrix. Performed by Seurat, for each CTS-R, IRIS3 generates 

two t-SNE plot, Colored by cell type or level of regulon activity, respectively (Figure 

17). 

Further motif validations can be carried out by comparing the sequence to 

the JASPER [166] and HOCOMOCO [167] databases using TOMTOM. For the user’s 

convenience, we directly listed the top five matched TFs in the two databases in the 

table below the two buttons (Figure 15), more DNA motif details can be accessed 

from clicking the motif logo, including motif logo, motif length, P-value, number of 

motif instances, and detailed information of motif instances, motif positions on the 

promoters (Figure 16). Besides the above interpretations of the identified CTS-Rs, 

IRIS3 provides visualizations and evaluations of the predicted cell types. IRIS3 

provides a detailed tutorial page for users who need more information about the web 

server (Figure 17).  

3.5 Web server implementation 

IRIS3 runs on a Red Hat Enterprise seven Linux system with 16 core Intel 

Xeon E5-2650 CPU and 48GB RAM, and each task is assigned to four cores and 
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scalable based on the server load. The front-end builds on top of technologies such 

as JQuery and Bootstrap, the interactive tables and figures are generated utilizing 

libraries such as DataTables, Plotly.js, and Clustergrammer. We employed PHP for 

the back-end server implementation, and the data parser workflow is aggregated 

using the R programming language. All data are stored and managed using a 

MySQL database.  

3.6 Summary 

The IRIS3 web server is a highly powerful and easy-to-use platform for CTS-

R inference with interactive and informative result interpretations. The identified 

CTS-Rs can substantially improve the elucidation of heterogeneous gene regulation 

mechanisms across various cell types and allow reliable constructions of systematic 

transcription regulation networks encoded in a specific cell type. IRIS3 supports the 

analysis of multiple species, including but not limited to human and mouse, hence, 

users can upload integrated expression data formed by dual species, e.g. one matrix 

containing genes from both human and mouse. However, the time complexity might 

be a limitation in the practical application and usage of IRIS3, when more than 

10 cell types provided. In such a situation, IRIS3 tends to identify a relatively large 

number of regulons and their visualization and interpretations based on multi-omics 

data are usually time-consuming.  

To facilitate more users in scRNA-seq data analysis, we plan to develop a 

more integrative CTS-R inference pipeline capable of adapting raw sequencing data 

and providing more functionalities based on the current IRIS3 framework and an in-
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house RNA-Seq data analysis Shiny server IRIS-EDA (http://bmbl.sdstate.edu/iris-

eda) (29). On the other hand, an integrated computational model is under 

development to handle dropout issue in scRNA-seq, gene module detection, and cell 

types prediction using an iterative manner in support of more accurate CTS-R 

inference. The ultimate goal of IRIS3 is to build up a web database consisting of both 

cell types and the CTS-Rs and link these predictions and their interpretations with 

specific tumors or other diseased cells. This will lay a solid foundation to infer the 

underlying global and local gene regulatory networks and their impact on disease 

development and treatment. It can be further combined with studies in biomedical 

research such as therapeutic research, cell trajectory analysis, and cancer treatment.  

  

http://bmbl.sdstate.edu/iris-eda
http://bmbl.sdstate.edu/iris-eda
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CHAPTER 4. DESSO – a new method for DNA motif prediction using deep neural 

networks and the binomial distribution model 

4.1 Introduction  

 The identification of transcription factor binding sites and cis-regulatory 

motifs is a frontier whereupon the rules governing protein-DNA binding are being 

revealed. Here, we developed a new method (DEep Sequence and Shape mOtif or 

DESSO) for cis-regulatory motif prediction using deep neural networks and the 

binomial distribution model. DESSO outperformed existing tools, including 

DeepBind, in predicting motifs in 690 human ENCODE ChIP-Sequencing datasets. 

Furthermore, the deep-learning framework of DESSO expanded motif discovery 

beyond the state-of-the-art by allowing the identification of known and new protein-

protein-DNA tethering interactions in human TFs. Specifically, 61 putative tethering 

interactions were identified among the 100 TFs expressed in the K562 cell line. In 

this work, the power of DESSO was further expanded by integrating the detection of 

DNA shape features. We found that shape information has strong predictive power 

for TF-DNA binding and provides new putative shape motif information for human 

TFs. Thus, DESSO improves in the identification and structural analysis of TF 

binding sites by integrating the complexities of DNA binding into a deep-learning 

framework. 

4.2 Methods  

The DESSO framework is composed of (i) a CNN model for extracting motif 

patterns from given ChIP-Seq peaks, and (ii) a statistical model based on the binomial 
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distribution for optimizing the identification of motif instances (i.e., TFBSs). This 

framework can accept both DNA sequences and DNA shape features as input to 

identify sequence and shape motifs, respectively. DESSO enables the extraction of 

more complex motif patterns compared to existing motif prediction methods owing 

to its multi-layer network architecture. We designed a binomial-based model in 

DESSO to identify all the significant TFBSs under the statistical hypothesis that the 

number of random sequence segments that contain the motif of interest in the human 

genome is binomially distributed (Figure 19). 

The first layer of the CNN model contains multiple convolutional filters, which 

were used to identify low-level features from given ChIP-Seq peaks. A subsequent 

max pooling layer and a fully connected layer were used to extract high-level features 

based on the output from the convolutional layer. Specifically, the CNN model takes 

DNA sequences centered on the ChIP-Seq peaks as input query sequences and learns 

motif patterns using convolutional filters (denoted as motif detectors). Then, a large 

set of background sequences was selected from the human genome, considering GC 

content, CpG frequency, and promoter and repeat overlap to eliminate biases created 

by these features. Both the query and background sequences were then aligned as 

sequence matrices, where each row represents a distinct sequence. For each 

optimized motif detector, two motif signal matrices were derived by sliding the 

detector along the query sequence matrix and background sequence matrix, 

respectively. Each element of a signal matrix represents the occurrence probability 

of the corresponding motif detector on a sequence segment in the corresponding 

sequence matrix. These two motif signal matrices were then used to generate motif 
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candidates by varying a motif instance signal cutoff in a predefined interval. For each 

value of the motif signal cutoff, the motif instance candidates in the query sequence 

matrix and background sequence matrix were obtained and then used to calculate a 

p-value according to the binomial distribution. The optimal motif instances for a motif 

detector were finally determined as the motif instance candidates in the query 

sequence matrix that correspond to the minimum p-value. 

4.3 Results  

We began by making similarity comparisons between motifs predicted by 

DESSO from 690 ENCODE TF ChIP-Seq datasets and experimentally validated motifs 

in the human JASPAR and TRANSFAC databases using TOMTOM. These 

comparisons were extended to other five existing methods in this field, i.e., DeepBind, 

Basset, MEME-ChIP, KMAC, and gkm-SVM. The results showed that DESSO 

significantly improved the motif prediction performance on 161 TFs in 91 cell lines 

(Figure 20A), covered by the above ChIP-Seq datasets. Known motifs and 

undocumented motifs are grouped by whether motif can be matched in TOMTOM 

databases (Figure 20B). 

DESSO also outperform of DNA shape in predicting TF-DNA binding 

specificity (Figure 21). DESSO was applied to five different inputs, i.e., HelT, MGW, 

ProT, Roll, and DNA shape combination. (b) The AUC of the five inputs above using 

single and two convolutional layers based on the 690 ChIP-Seq datasets. The Wilcoxon 

test p-values between one-layer and two-layer model. (c) The contribution of HelT 

(32%), MGW (9%), ProT (22%), and Roll (37%) in DNA shape combination in 
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predicting TF-DNA binding specificity. (d) The heat map is a more detailed analysis 

of diagram (c), indicating the contribution of each DNA shape feature on the 690 

datasets, where each column represents a dataset. Those columns were organized by 

hierarchical clustering based on Pearson correlation and complete linkage. The 

structural class of ChIP-ed TF in each dataset was showcased at the bottom. (e) A 

performance comparison between sequence and the combination of sequence and 

shape (Sequence + DNA Shape) against structural classes in terms of AUC. The red 

two red boxes indicate the classes with the most significant AUC improvement by 

combining Sequence and Shape compared to Sequence only. 

 

4.4 Conclusion  

DESSO improved the state-of-the-art performance of cis-regulatory motif 

prediction and TFBSs identification and showcased the potential of a DL framework 

for identification and rationalization of results. Results demonstrate that DESSO was 

able to identify a number of previously unidentified DNA motifs and shape factors 

that contribute to TF-DNA binding mechanisms and can infer the indirect regulation 

mechanisms through tethering binding activities and co-factor motifs predictions. 
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Figure 1. DNA transcription initiation. 
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Figure 2. Example of DNA sequence motif 
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Figure 3. ChIP-seq protocol overview  
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Figure 4. The difference of TF harvested result from ChIP-seq and ChIP-exo 
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Figure 5. Resolution comparison between ChIP-seq and ChIP-exo 
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Figure 6. Summary of existing DNA motif identification tools and techniques 
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Figure 7. WTSA workflow. This workflow consists of five steps: data pre-processing, 

weighted two-stage alignment, Matrix approximation, graph construction and clique 

finding, motif expansion, optimization and evaluation.  
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Figure 8. Fur, ArgR, Cra TF motif logo identified by WTSA and other tools, RegulonDB 

shows the reference ArgR TF motif logo. 
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Figure 9. Performance comparison of motif prediction results on TFBS level. 
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Figure 10. Performance comparison of motif prediction results on nucleotide level. 
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Figure 11. Performance of WTSA, MEME-ChIP, rGADEM, HOMER, Bioprospector, 

ChIP-monk on TOMTOM profile level comparison. 
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Figure 12. IRIS3 overview. 
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Figure 13. IRIS3 workflow. 
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Figure 14. IRIS3 System-level CTS-R inference and performance comparison. 
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Figure 15. Example of CT1S-R1 interpretation. 
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Figure 16. Result page of identified CTS-R motif details, including motif logo, motif 

length, P-value, number of motif instances, and detailed information of motif instances, 

motif positions on the promoters. 
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Figure 17. Example t-SNE plot. Colored by cell type or level of regulon activity, 

respectively. 
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Figure 18. Result page of IRIS3 tutorials  
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Figure 19. Schematic overview of DESSO framework 
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Figure 20. Performance comparison of sequence motif identification accuracy.  
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Figure 21. The performance of DNA shape in predicting TF-DNA binding specificity. 

 

 

  



80 
 

Table 1. IUPAC nucleotide code 

Symbol Mnemonic Translation 
A  A (adenine) 
C  C (cytosine) 
G  G (guanine) 
T  T (thymine) 
U  U (uracil) 
R puRine A or G (purines) 
Y pYrimidine C or T/U (pyrimidines) 
M aMino group A or C 
K Keto group G or T/U 
S Strong interaction C or G 
W Weak interaction A or T/U 
H not G A, C or T/U 
B not A C, G or T/U 
V not T/U A, C or G 
D not C A, G or T/U 
N aNy A, C, G or T/U 
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Table 2. Summary of DNA motif identification tools, citations were collected via Google 

Scholar as of July 2019. 

Tool Platform Citations Published 
year Approach PMID 

Bioprospector Command-line tool 979 2001 Zero to third-order Markov background models 11262934 

MEME Web server/ 
command-line tool 1783 2006 Probabilistic method with expectation-maximization 16845028 

DREME Web server/ 
command-line tool 634 2011 Discriminative Regular Expression Motif Elicitation 

on ChIP-seq data 21543442 

BoBro Command-line tool 27 2011 Two stage alignment and graph based motif finding 23846744 

rGADEM R package 43 2011 Genetic Algorithm guided formation of spaced Dyads 
coupled with EM for Motif identification 21358819 

MEME-ChIP Web server/ 
command-line tool 

799 2011 
Integrated existing tools: MEME (Multiple EM) and 

DREME(Discriminative Regular 
Expression Motif Elicitation algorithm) 

20513432 

HOMER Command-line tool 3904 2010 Hypergeometric Optimization of Motif EnRichment 20513432 

RSAT peak-
motifs 

Web server, 
command-line tool 178 2011 Implemented RSAT oligo-analysis, RSAT dyad-

analysis, RSAT local-word analysis,MEME, ChlPMunk, 22156162 

BammMotif Web server 2 2018 Bayesian Markov Models 29846656 

ChIPMonk 
Command-line tool 

129,  49, 
25 

2010, 
2013, 2014 

Gapless multiple local alignment (GMLA) using the 
Discrete Information Content (with the Kullback term) 

20736340, 
23427986, 
24472686 

DRAF Web server 4 2018 Human database based machine learning model 29617876 

DMINDA2 Web server 18 2017 Integrated BoBro 28419194 

CisFinder Web server 116 2009 Estimating position frequency matrices (PFMs) 
directly from n-mer word counts 19740934 

DiNAMO Command-line tool 2 2018 An exhaustive and efficient algorithm for IUPAC 
motif discovery 29890948 

SIOMICS Command-line tool 19 2014 Systematic Identification of Motifs In Chip-Seq data 24322294 

Fmotif Web server 22 2014 Suffix Tree 24475069 

DeepBind TF database/ 
command-line tool 891 2015 Deep learning based using subjective motifs signals 26213851 

BEEML-PBM TF database/ 
command-line tool 144 2011 Position and effects estimation and modelling 

weighted regression 21654662 
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Table 3. Summary of the dataset used for WTSA evaluation 

TF 
GEO 

accession 
ID 

Publish 
Date Data ID #of 

Bases 

#of 
Identified 

Sites 
Description 

Fur GSE54901 2014.9 GSM1326335 193.4M 556 From Fur TF with  Fe 

Cra GSE65643 2018.4 GSM1602341 88.6M 387 From cra-8myc TF 
tagged strain_glucose 

ArgR GSE60546 2015.3 GSM1482120 768.7M 462 From ArgR (+arg) 
rep1 and rep2 

 

 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1482120
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