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ABSTRACT

RIGID EQUILIBRIUMS OF A ROTATING STRING

TEDDRICK SCHAFFER

2019

This paper describes some possible equilibrium configurations of a string ro-

tating in a certain class of force fields, which have properties motivated by the

inverse square gravitational force. Specifically it is shown that for a given num-

ber n, there exists a sufficient rotational rate such that any equilibrium configu-

ration with no more than n zeros is guaranteed to exist for any force field in the

class considered.
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Chapter 1

INTRODUCTION

1.1 A Physical Phenomenon

If a string suspended in Earth’s gravitational field by one end is rotated at a

constant rate it will appear to settle into an equilibrium in which its shape is no

longer changing, but instead it is rotating rigidly. Furthermore, it will appear to

the naked eye that this configuration remains in a plane which rotates with the

string. Our goal will be to mathematically investigate the truth of these obser-

vations using Newton’s Laws of physics, however we will not restrict ourself

to the gravitational field, but will instead consider arbitrary force fields satis-

fying some properties motivated by the gravitation example. If one were to

experiment more with the gravitational example, it will also become apparent

that depending on the rate of rotation different configurations may form with

varying numbers of nodes. Later we will make these statements precise in a

mathematical theorem, but first we must establish the mathematics to describe

our physical situation.
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1.1.1 Properties of the Force Field

We elaborate on several of the key properties of the gravitational field which

makes the rigid rotational configurations possible. First off, at every point in the

field, there is a rotational symmetry about the line along which the force acts,

i.e. if you move along any direction orthogonal to that line, the resulting change

in force depends only on the distance from the line, and not the direction you

choose. The string points its axis of rotation along this line (because it is pulled

in that direction), and because of the rotational symmetry, if a string was in

just the right configuration for the field to provide the rotational acceleration

then the string would purely rotate, fixing the rotationaly symmetric field and

holding the string in a rigid configuration. We can think of a configuration in

which the field is just right as to rigidly rotate the string as a sort of fixed point

configuration, one whose motion produces the same configuration indefinetly.

Therefore, we begin by assuming our field acts in a single direction on the axis

of rotation (which we will think of as the downward direction), and is rotation-

ally symmetric about that axis. Therefore, it either attracts the string towards

the axis or it repels it, so it must vanish on the axis of rotation itself, since the

force points along the axis for all points on the axis (another way to think of it is

that it pulls or pushes evenly from all sides so they all cancel out in the middle).

1.1.2 Mathematical Results

We will prove with a few additional requirements, in every field of this type,

rigidly rotating planar equilibriums of a string exist for all strings (as we later

define them) which satisfy certain requirements. Furthermore, it is also demen-

strated that solutions which oscillate more and more times are guaranteed to

exist when certain rotational rates are exceeded, and once a given number of
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oscillations is achieved, any solution with fewer oscillations is also guaranteed.

However, it is not established whether the requirements on the rotational rate

are neccesary or if they are simply sufficient conditions. In addition, it is not

determined whether there is only one unique solution for a given number of

oscillations, just that there is at least one. We will first develope our mathe-

matical model of the problem, whcih we will then use to precisely prove these

claims, and then we will offer some numerical validation of our results before

concluding with what we showed and what is left to be shown. Most of the

results of this paper rely on common and famous mathematical results and are

therefore stated without reference, however some of the more specific mathe-

matical theorems will be referenced.

1.2 Similar Problems

There are many similar problems involving strings in the mathematical lit-

erature. The catenary (the shape of a power line hanging between two poles) is

a well known and famously studied curve which is one of the simplest string

curves to understand since it does not move. Another similar problem which

has been studied is the small vibrations of a dangling string, which has iden-

tical solutions to the rotating case in the linear approximation, and one such

recent example is given by Verbin, 2014. Even more specific considerations

have been made of rotating configurations of a string by other authors such as

Kolodner, 1955, who considered a constant force field approximation to gravity

with a uniformly dense string (a simplified model of the example we used to

introduce our problem). Different aspects of this same problem have been stud-

ied, such as the stability of the equilibrium configurations, one such example of
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which was performed by Dmitrochenko, Yoo, and Pogorelov, 2006. In addition,

studies with modifications to the problem have been performed as well, such

as those which consider nonuniform densities. One such example of which is

the study by Gómez et al., 2007, who considered strings with masses concen-

trated at discrete points. Another similar modification investigated by Noël et

al., 2008 assumed a mass attached to the bottom end of an elastic string and

also that both endpoints of the string were fixed to the axis of rotation. Many

other modifications have been considered in which specific forces were either

added or removed from the analysis, most of which are based on the same con-

stant force approximation to gravity, most likely due to the fact that the extra

complications of an inverse square force law far outway the negligible differ-

ences in solutions obtained in the case of Earth’s gravitational field, wich is well

approximated as constant near the surface of the Earth. We show more general-

ized results which consider strings of nonuniform density rotating in a certain

class of force fields with properties motivated by the gravitational example, and

which include the inverse square force representation of the gravitational field

as well as many other fields. The basic idea was to determine what properties

a force field needs to have in order for these equilibrium configurations to be

possible, and it is a consequence of our results that the configurations are pos-

sible in an inverse square force field. We have given reference to these works

for the readers own interest, but none of their methods were used and there-

fore no other reference of them is required throughout this paper. We note also

that any similarities in methods used between our work and those of others

is merely based on the similarities of the problems studied, and all of the work

(aside from the referenced mathematical theorems) is completely original work.
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Chapter 2

DEVELOPEMENT OF MODEL

2.1 Mathematical Definitions

In ordert to develop a mathematical model of our physical system we will

need to make some assumptions as well as some definitions. First we assume

our string is one-dimensional and that it cannot be stretched or compressed.

This suggests we may mathematically define a string as a function and real

number pair

ρ : [0, Lc]→ R+; Lc ∈ R+,

where the real number Lc describes the length of the string, and the function ρ,

which we assume to be differentiable, describes the mass per unit length (i.e.

density), of each point along the string and depends only on the point on the

string and not time. Now we define a string motion to be a twice differentiable

function:

~r : [0, Lc]× [0, ∞)→ R3,

where~r(s, t) is the position vector for the point on the string at s ∈ [0, Lc] and

time t. We say a string motion is a rigid rotation if there exists a vector ~ω ∈ R3
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such that

~rt(s, t) = ~ω×~r(s, t) ∀(s, t) ∈ [0, Lc]× [0, ∞)

where ~ω points along the axis of rotation and has magnitude equal to the rate

of rotation, the × between vectors refers to the vector cross product in R3 and

we use the subscript notation for partial derivatives. The motion is said to be

planar if for each fixed t ∈ [0, ∞) the curve:

~r : [0, Lc]→~r(s, t)

lies in a plane.

2.1.1 Newton’s Law for Strings

Now to determine the relationships between these definitions we must make

some assumptions about the physical nature of our system. We assume the

string motion obeys Newton’s Law of motion, which states that the rate of

change of a body’s momentum with respect to time is equal to the sum of

the forces acting on that object (note that momentum and force are both vec-

tor quantities), and can be expressed by the following mathematical equation:

~F = (m~rt)t = m~rtt

where the second equality is the usual form of this law, but only applies if the

mass is constant. This equation is oftentimes interpreted as describing the law

of motion for a mass that is entirely concentrated to a single point in space~r,

however, it is more realistic to interpret it as describing the motion of a point on

a massive body that moves in such a way that the velocity is the same for every
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point on the mass. If the mass is deforming or rotating the assumption about

the velocities is no longer valid, in which case we define the momentum of a

body to be the integral of the velocity over the mass distribution. Now before

we write out the resulting equation for string motions, we must perform an in-

vestigation of forces. This equation of motion is actually the definition of force

and mass, which seems quite circular since we cannot determine one without

the other. However, fortunately enough for us, some special forces exhibit cer-

tain properties which allow us to determine their form by other means than

this definition. For example the realtionship between gravity and acceleration

is known to be independent of the object it is acting on (think falling bowling

balls and feathers) and therefore we determine that the force of gravity is equal

to the product of this acceleration with whatever mass it acts on i.e. it depends

on the mass it acts on. This means describing gravity as a field of force does not

capture the intrinsic nature of gravity since the field would be different for ev-

ery particle of different mass it acted on. Simalarly, there are other forces which

have different descriptions, such as the electrical force which depends not on

the mass of the object but the electrical charge of the object. In this case the

force field would look different relative to every particle of differing electrical

charge and so the force field again does not describe the intrinsic nature of this

field, but instead the force per unit charge field (the definition of the electric

field) gives the description of this force invariant to the particle which it acts

on. These facts may be generalized to consider forces which depend on some

physical property of an object (such as mass or electrical charge, etc) which we

will describe by the force per unit of this quantity and assume it to be a vector

field denoted by

~f : R3 → R3.
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Now if we define

σ : [0, Lc]→ R

to be the density of this physical property per unit length of our string as a

function of the position on the string (we assume this property does not change

with respect to time), then we may determine the total force applied to the

section of string between s1 and s2 by this field to be the line integral

∫ s2

s1

σ(s)~f (~r(s, t))ds,

and we oftentimes will abreviate by dropping the functional arguments.

However, Newton’s Laws of physics also state that when a force is applied

there is a reaction force equal in magnitude and opposite in direction (think

of a rocket, whose downward thrust is counteracted by an upward lift). In

the case of a string the reaction force is the tension which counteracts forces

which try to pull the string apart by pulling back (we assume strings can only

be pulled along their length and not pushed due to their flexible nature they

simply deform under compression). Under these assumptions we find the ten-

sion is equal to the force required to hold the string together and it acts at the

endpoints of the string pointing outward from the section along the tangent

line (since the rest of the string pulls on this section of string). Thus in terms of

the string motion, which is parameterized by path length along the string and

time, we find that the unit tangent pointing along the string in the direction of

the path is given by~rs Next, since the tension may vary along the string as well

as with respect to time, we define the tension to be a scalar function of path
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length and time denoted by:

T : [0, Lc]× [0, ∞)→ [0, ∞).

These facts imply that the sum of the two tension forces on a section of string is

given by: (
T(s2, t)~rs(s2, t)

)
+

(
T(s1, t)(−~rs(s1, t))

)
,

since the tension at the starting point is opposite to the direction along the path.

We recognize this as the difference of the product T~rs between two points, and

therefore assuming the tension is differentiable we may rewrite this expression

as ∫ s2

s1

∂

∂s

(
T(s, t)~rs(s, t)

)
ds

Now that we have determined the forces acting on this section of string we will

determine its momentum from which we can express Newton’s law of motion

for strings. Using our definition of momentum we find for the string the mo-

mentum is given by: ∫ s2

s1

ρ(s)~rt(s, t)ds

which by the Leibniz integral rule has a time derivative equal to

∂

∂t

( ∫ s2

s1

ρ(s)~rt(s, t)ds
)
=
∫ s2

s1

ρ(s)~rtt(s, t)ds

since the density is constant in time. Therefore Newton’s Law of motion for

strings takes the form:

∫ s2

s1

ρ~rttds =
∫ s2

s1

∂

∂s

(
T~rs

)
ds +

∫ s2

s1

σ~f ds



Chapter 2. DEVELOPEMENT OF MODEL 10

and because this equation must hold for every section of string (s1, s2) we find

it must hold for the integrands and therefore we find:

ρ~rtt =
∂

∂s
(T~rs) + σ~f (2.1)

2.1.2 The Shape of the String in the Rotating Plane

Now under the assumption of a rigidly rotating and planar string motion it

is convenient to define a coordinate system as follows. Let x̂ be the constant unit

vector pointing along the axis of rotation and let r̂(s, t) be the unit vector point-

ing from the axis of rotation to a point on the string such that it is orthogonal to

the axis of rotation. Then we may write:

~r(s, t) = r(s, t)r̂(s, t) + x(s, t)x̂

where r and x are the projections of~r onto their respective basis elements. Using

our definition of planar string motion we find that for each fixed t the plane

with normal direction equal to:

x̂× r̂(s, t)

must be constant with respect to s and therefore we conclude that r̂ = r̂(t) is

constant with respect to s and we define

θ̂(t) = x̂× r̂(t),

which is also a unit vector, and since it is orthogonal to both x̂ and r̂ these three

vectors form an orthonormal basis for R3. Now using our definition of rigidly
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rotating string motion we find there exists a vector ~ω which can be expressed

as

~ω = ωx̂,

where ω is the scalar magnitude of the rotational rate, such that:

~rt(s, t) = ~ω×~r(s, t),

which we can calculate according to our orthonormal basis to see:

~rt(s, t) = ωx̂×
(

r(s, t)r̂(t) + x(s, t)x̂
)
= ωr(s, t)x̂× r̂(t) = ωr(s, t)θ̂(t),

where we used the distributive property of cross products along with the fact

that a vector crossed with itself gives the zero vector. However, we also could

have simply differentiated our expression for~r(s, t) to obtain:

~rt(s, t) = rt(s, t)r̂(t) + rr̂t(t) + xt(s, t)x̂,

which we can equate to our previous expression to conclude

rt(s, t) = 0

xt(s, t) = 0

r̂t(t) = ωθ̂(t)

These facts make sense for a purely rotational motion, since they imply there is

no motion up or down along the axis of rotation as well as inwards or outwards

from it. We can now differentiate our velocity expression to derive an equation
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for the acceleration of the string

~rtt = (~ω×~r)t

= ~ω×~rt

= ~ω× (~ω×~r)

= −ω2rr̂

where the last line follows by expanding the vectors in terms of our orthonor-

mal basis and applying the triple vector product identity. Next we compute the

spatial derivatives of the string motion:

~rs = rsr̂ + xs x̂ ~rss = rssr̂ + xss x̂

Finally, we substitute these expressions into Newton’s Law for string motion to

obtain the component equations

r̂-equation − ρω2r = Trss + Tsrs + σEr

x̂-equation 0 = Txss + Tsxs + σEx

Now focusing on the x̂ - equation, we integrate along s to yield:

0 = T(s, t)xs(s)− T(0, t)xs(0) +
∫ s

0
σEx

which we can differentiate with respect to time to yield:

0 = Tt(s, t)xs(s)− Tt(0, t)xs(0) +
∫ s

0
0
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and therefore:

Tt(s, t) = Tt(0, t)
xs(0)
xs(s)

where Tt(0, t) is the tension at an endpoint of the string, but tension results from

the internal forces which hold a string together, and since there is nothing to be

held together at a boundary point this tension can only be the result of an exter-

nal force applied to the end of the string. If we assume s = 0 corresponds to the

free end of the string then the tension at this point should vanish, however as

we will soon see this results in some complications, so for now we assume only

that the tension at this point is a constant which we denote as T0. This implies

that Tt(0, t) = 0 and therefore upon substituting into our previous expression

we see Tt(s, t) = 0 as well. This fact is also informally verified by our intuition

since a rigid rotation of the string is a sort of equilibrium where the tension

is just right to provide the rotational acceleration and counteract the external

field, so changing the tension at any point would disturb this equilibrium and

cause the string to change shapes. This also means that our equations are ODE’s

(Ordinary Differential Equations) which describe the unchanging shape of the

string in the plane of rotation.

We continue our analysis of the x̂ equation by noting that the assumption

that Ex < 0 < σ along with the physical restraint that T0 ≥ 0 and the fact that

we may assume without loss of generality xs0 > 0 (it simply corresponds to

reorienting the positive direction for x̂) imply that

Txs = T0xs0 −
∫ s

0
σEx ≥ 0,

where equality happens only at s = 0. Therefore, neither T nor xs can vanish

for s > 0, which immediately implies xs > 0 for all s ≥ 0 and from this fact and
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the previous inequality we see that T ≥ 0 for all s ≥ 0 as well, with equality

only possible at s = 0.

This result implies x is strictly monotone in s, so we may reparameterize our

solutions in terms of x rather than s. We therefore solve our equation for T to

obtain:

T = T0
Sx

Sx0

− Sx

∫ x

x0

σExSx

where x0 is the value of x corresponding to s = 0. The physical interpretation

of this expression is that the tension at each point is such that its component in

the x-direction is equal to the x-component of the applied tension T0 plus the

x-component of force the field applies to the section of string below that point

(which can be thought of as the weight of string below this point). Next we de-

rive an important relation by solving for T in another manner and equating our

two expressions. First we take the inner product of (2.1) with the unit tangent

vector~rs

< ρ~rtt,~rs >=< T~rss,~rs > + < Ts~rs,~rs > + < σ~∇E,~rs >

and apply the fact that it is orthogonal to~rss (since it always has unit length it

may only change by a rotation so the direction of change is orthogonal to it) to

simplify

−ρω2rrs = Ts + σExxs + σErrs,

and then we integrate along s to obtain:

∫ s

0
−ρω2rrs =

∫ s

0
Ts +

∫ s

0
σExxs +

∫ s

0
σErrs.
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We may then transform these into integrals in terms of x and solve for T to

obtain:

T = T0 −
∫ x

x0

ρω2rr′ −
∫ x

x0

σEx −
∫ x

x0

σErr′

which we may equate to our other expression to find:

T0 −
∫ x

x0

ρω2rr′ −
∫ x

x0

σEx −
∫ x

x0

σErr′ = T0
Sx

Sx0

− Sx

∫ x

x0

σExSx

and upon rearanging we obtain an important equation:

−
∫ x

x0

(
ρω2 + σ

Er

r

)
rr′ = T0

(
Sx

Sx0

− 1
)
− Sx

∫ x

x0

σExSx +
∫ x

x0

σEx

Furthermore, from the second expression for tension we find by use of the chain

rule and the Fundamental Theorem of Calculus that

Ts = (−ρω2rr′ − σEx − σErr′)
1

Sx
,

which can be substituted back into (2.1) to yield the equation for the r compo-

nent

−ρω2r =
(

T0
Sx

Sx0

− Sx

∫ x

x0

σExSx

)
r′′

S4
x
+

(
− ρω2rr′ − σEx − σErr′

)
1

Sx

r′

Sx
+ σEr

−ρω2rS2
x =

(
T0

1
Sx0

−
∫ x

x0

σExSx

)
r′′

Sx
+

(
− ρω2rr′ − σEx − σErr′

)
r′ + σErS2

x

0 =

(
T0

Sx0

−
∫ x

x0

σExSx

)
r′′

Sx
+ ρω2r(S2

x − r′2)− σExr′ + σEr(S2
x − r′2)

0 =

(
T0

Sx0

−
∫ x

x0

σExSx

)
r′′

Sx
+ ρω2r− σExr′ + σEr
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0 =

(
T0

Sx0

−
∫ x

x0

σExSx

)
r′′ − Sx

(
σExr′−

(
ρω2 + σ

Er

r

)
r
)

. (2.2)

We note a useful property of (2.2) is that it may also be written in the form

0 =

[(
T0

Sx0

−
∫ x

x0

σExSxdx
)

r′′+
(
− σExSx

)
r′
]
+ Sx

(
ρω2 + σ

Er

r

)
r

0 =
d

dx

[(
T0

Sx0

−
∫ x

x0

σExSx

)
r′
]
+ Sx

(
ρω2 + σ

Er

r

)
r, (2.3)

which can be viewed as a nonlinear analogue of a Sturm-Liouville Equation,

a fact we will later take advantage of. Now we note that we may specify any

value we wish for x0 since it simply results in shifting the origin of our coordi-

nate system up or down along the axis of rotation such that the bottom of the

string (s = 0) has an x coordinate equal to x0, and therefore for the sake of sim-

plicity we choose our coordinate system such that x0 = 0. However, because

the bottom of the string can move freely in space depending on the string mo-

tion, we do not actually where this point is in our rotating plane. It may seem as

though we can place it anywhere and just use the resulting coordinate system

with no problems, but moving the coordinate system around would change our

expression for the external field, and if we do not know where it is then we do

not know the new formula for the field. To handle this we use the expression

for the field relative to the top end of the string at s = Lc, which is fixed in space

at a known point and transform to our new coordate system as follows: Let L be

the length of the string’s projection onto the x axis (a value we will determine

later), then in our coordinate system corresponding to x0 = 0 we find the new

expression for the field is given by

E = E(x− L, r)
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which we will henceforth write as

E = E(x, r, L)

Another fact we can extract from this equation is that if r is a solution then so

too is −r. Physically this makes sense, since our solution has rotational sym-

metry and this corresponds to flipping the solution which is equivalent to a 180

degree rotation, however to verify this fact mathmatically we note the follow-

ing properties of the functions in (2.2):

Ex(x,−r, L) = Ex(x, r, L),

Er(x,−r, L) = −Er(x, r, L),

Sx =
√

1 + (r′)2 =
√

1 + (−r′)2.

The last fact also implies s is unchanged by this substitution, which then implies

neither are ρ or σ, so using these facts and substituting −r into (2.3) we find:

d
dx

[(
T0

Sx0

−
∫ x

x0

σExSxdx
)
(−r′)

]
+ Sx

(
ρω2 + σ

−Er

−r

)
− r

= − d
dx

[[(
T0

Sx0

−
∫ x

x0

σExSxdx
)

r′
]′
+ Sx

(
ρω2 + σ

Er

r

)
r
]

,

so if r satisfies the equation, then so too does−r. We therefore can assume with-

out loss of generality that the initial value of r is positive. This fact also raises the

question, what should the initial conditions be? It is possible that many differ-

ent configurations of the string are possible and therefore there would be many

different physically meaningful initial conditions. Let us consider what phys-

ical constraints a solution must satisfy in order to describe our string motion.

First of all our string has a fixed length, so if a solution to (2.2) is to describe our
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string, then the path length of the solution must equal the length of our string.

Mathematically this is expressed by the following equation:

∫ L

0

√
1 + (r′)2dx = Lc

and furthermore since we assumed the top end of the string is fixed to the axis

of rotation our solution must also vanish at this point so therefore

r(L) = 0.

This is a strange set of conditions, where the latter is some sort of boundary

condition only expressed at the unknown point x = L, and the former is a

somewhat complicated integral relation, so for now we arbitrarily specify initial

values

r(0) = r0 and r′(0) = r′0,

which we will attempt to vary such that the physical constraints are satisfied.

We previously mentioned if we allow T0 to vainish, as would be the case for

a free endpoint of a string, it creates some issues, let us now investigate. The

resulting ODE would read

d
dx

[(
−
∫ x

0
σExSxdx

)
r′
]
+ Sx

(
ρω2 + σ

Er

r

)
r = 0, (2.4)

which is singular, since the coefficient of the highest order term vanishes at

x = 0. This complicates our investigation into the existence of solutions, but

another consequence is that if a solution does exist and if it and its derivatives
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remain finite at x = 0 then at this point the differential equation reads

−Sx0

(
σ0Ex0r′0−

(
ρ0ω2 + σ0

Er0

r0

)
r0

)
= 0,

and because Sx cannot vanish it must be true that the other facter does, which

implies

r′0 =
ρ0ω2r0 + σ0Er0

σ0Ex0

.

Therefore, we adopt this along with r0 as our initial conditions for (2.2).



20

Chapter 3

PROOF OF THEOREM

3.1 Proof of Main Result

Our main result states that for any functions Ex, Er, ρ, and σ satisfying con-

ditions we soon specify, and for any Lc and natural number n, if ω is chosen

such that the conditions

ω2 >
2π2(n + 1)2

Lc inf ρ
sup |Ex|(1 + nζn)

ω2 > sup
∣∣∣∣ 2Er

r inf ρ

∣∣∣∣
hold, then there exist n solutions to (2.4) for the corresponding pairs of values

(r1, L1), . . . , (rn, Ln),

each of which satisfy the conditions that Li is the ith zero of its corresponding

solution φ(x, ri, Li), and the path length of the solution up to that point is equal

to the length of the string

s(Li, ri, Li) = Lc.
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Our approach to proving this claim will be to first consider nonzero values

of T0, for which case (2.2) is nonsingular and standard ODE theory applies.

We will then show solutions exist which are continuous in all parameters, and

establish bounds on the solutions which show they can be extended infinitely

along x. Furthermore, we establish bounds which apply universally to certain

ranges of parameters which allows us to trap solution curves in a box, which

helps us to show the functions oscillate. Basically, we consider two cases, one

in which the length of the curve is bounded for all paramters, in which case

we can use a comparison theorem on (2.3) to show it can be made to oscillate

any number of times within our box, and if it can be made arbitrarily large,

then because the solution is trapped in the box, the only way to make longer

and longer paths is to oscillate (and we prove a result which describes how

this oscillation must occur with alternating zeros of r and r′). Then we use

continuity arguments to find paramters which satisfy the physical constraints

for each solution in our class of oscillating solutions. And finally we use our

universal bounds on these classes of solutions to establish the existence of a

uniformly convergent sequence of such functions, whose limit function satisfies

(2.4), and satisfies the same constraints as the functions in the sequence.

We begin our analysis of (2.2) with some results from standard ODE theory.

Specifically we display existence, uniqueness, and continuity properties of so-

lutions. The theory on ODE’s is usually specified in terms of first order systems

of ODE’s, so we begin by transforming our equation into a first order system as
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follows. First we define:
u1 = r

u2 = r′

u3 = s

u4 = −
∫ x

0
ExSxdx

which converts (2.2) to the following system of equations

u′1 = u2

u′2 =

√
1 + u2

2
T0√
1+r2

0
+ u4

[
Ex(x, u1, L)u2 − ρ(u3)ω

2u1 − σ(u3)Er(x, u1, L)
]

u′3 =
√

1 + u2
2

u′4 = −Ex(x, u1, L)
√

1 + u2
2

and our first goal will be to show that this system has the existence, uniqueness,

and continuity properties on a set of paramters and initial conditions. Before

we begin we must handle the fact that ρ(s) and σ(s) are both only defined

on [0, Lc], but it will be convenient in our theory to allow s to become arbitrarily

large. Therefore, since they are both Lipschitz continuous on [0, Lc] we may ex-

tend them to Lipschitz continuous functions on [0, ∞) such that they still satisfy

the requirement

inf ρ, inf σ > 0.

Next we define the following sets

J = R×R× [0, ∞)× [0, ∞)

D = [0, ∞)× J × [0, ∞)× [0, ∞)× (0, ∞)× (0, ∞)



Chapter 3. PROOF OF THEOREM 23

and rewrite our system of equations in vector form

~u′ = ~F(x,~u, L, r0, T0, ω),

defining F1, F2, F3, F4 to be the component equations of ~F which define our sys-

tem of equations. We see immediately that F1 and F3 are continuously differ-

entiable on D and therefore they are both locally Lipschitz in ~U on D. Further-

more, by assumption we have that the functions Ex , Er , ρ , and σ are

all locally Lipschitz in ~u on D and therefore F4 is a product of locally Lipschitz

functions on D so it follows that so too is F4. Similarly for F3, the factor

[
Ex(x, u1, L)u2 − ρ(u3)ω

2u1 − σ(u3)Er(x, u1, L)
]

is sums and products of locally Lipschitz functions on D, so it is locally Lips-

chitz on D as well, and the other factor,

√
1 + u2

2
T0√
1+r2

0
+ u4

is easily verified to be continuously differentiable on D so it too is locally Lips-

chitz, and therefore F3 is a product of locally Lipschitz functions on D, so it too

is locally Lipschitz on D. It follows then that ~F is locally Lipschitz on D. We

also have that F3 and F4 are both positive on D, so it is true that ~F maps D

into J and therefore for any point (x0,~u0) ∈ [0, ∞)× J the famous Picard itera-

tion has a convergent sequence of functions whose limit is the unique solution

to the IVP

~u′ = ~F(x,~u, L, r0, T0, ω) , ~u(x0) = ~u0
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defined on some interval

~u : [0, d]→ J.

Next we prove an oscillating nature of the solutions which helps us to extend

our solutions to all of D as well as to show later on that the solutions can be

made to oscillate with arbitrarily many zeros in a given interval. We must first

impose the condition that

ω >

√
sup

2σEr

r inf ρ
, (3.1)

in which case we can see that

(
ρω2 + σ

Er

r

)
>

(
inf ρ−

∣∣∣∣ σEr

sup | 2σEr
r inf ρ |r

∣∣∣∣
)

ω2 ≥
(

inf ρ− inf ρ

2

)
ω2 =

inf ρ

2
ω2 > 0,

and by a similar argument we can bound it from above as well, so that

inf ρ

2
ω2 <

(
ρω2 + σ

Er

r

)
<

2 sup ρ + inf ρ

2
ω2. (3.2)

In addition, the following properties that we assume will come up quite often

as well:

sup Ex < 0; |σEr

r
| ≤ M; Ex, Er are locally Lipschitz with respect to r,

(3.3)

for some bound M. We assume all of the conditions (3.1) , (3.2) , and (3.3) hold

hereafter.

Proposition 1. For any nontrivial solution to (2.2), with ω chosen to satisfy (3.1), the

zeros of r(x) and r′(x) all have multiplicity one and they alternate, where a zero of r(x)

must come first.

Proof. If either r(x) or r′(x) had a zero of greater multiplicity, then r(x) and
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r′(x) would vanish at a point, or else r′(x) and r′′(x) would, and in either case

we can see from (2.2) we would have only the trivial solution. To show the ze-

ros alternate we consider two cases.

Case 1: r(x)r′(x) < 0

In this case we claim the only way for r(x)r′(x) to change signs is if r(x) changes

signs. Assume instead that r′(x) changes signs, then there is a point a at which

r′(x) must vanish. Also the fact that Ex < 0 and (3.2) holds, we see from the

(2.2) that

sgn(r′′) = −sgn(|Ex|r′ + |ρω2 +
Er

r
|r)

and thus at a we find

sgn(r′′) = −sgn(|ρω2 +
Er

r
|r)

= −sgn(r)

This implies in some left neighborhood of the point a, sgn(r′′) = −sgn(r) =

sgn(r′) so that r′(x)r′′(x) > 0 in this neighborhood. However this is a contra-

diction since it implies |r′(x)| is increasing as x approaches a, the point at which

it must vanish. Therefore r′(x) cannot change signs in case 1, so r(x)r′(x) can

only change from negative to positive if r(x) changes signs, which leads to the

next case.

Case 2: r(x)r′(x) > 0

This would imply that |r(x)| is increasing, so it could not vanish, and thus the

only way to go from Case 2 back to Case 1 is if r′(x) were to change signs.

Finally, the initial conditions show we begin in case 1 and any zeros of r(x)
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or r′(x) must therefore alternate through the cases beginning with a zero of

r(x).

Next we show we can continuously extend our solutions on all of D through

the following series of propositions, which are also useful for later results.

Proposition 2. The solution ~u can be extended to all x > 0.

Proof. We show it is true for u1 and u2, and this fact along with our conditions

(3.3) would imply it holds for u3 and u4 as well. Standard ODE theory tells us

we can extend in x from [0, d] to the right to an open interval, so either we can

extend to [0, ∞) or else there is some finite value a such that the function cannot

be extended to this point. The latter condition can only occur if either function

becomes unbounded as x approaches a. We first show that u2 cannot become

unbounded unless u1 does simultaneously. Recall our sign relation we used

in Proposition 1, which states in terms of our transformed system of equations

that

sgn(u2u′2) = −sgn(|σEx|u2
2 + |ρω2 + σ

Er

u1
|u1u2).

From which we can see

|Ex|u2
2 + |ρω2 + σ

Er

u1
|u1u2| ≥ |σEx|u2

2 − |ρω2 + σ
Er

u1
||u1||u2|,

which is positive whenever

|u2| >
|ρω2 + σ Er

u1
||u1|

|σEx|
,
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and therefore in this case u2u′2 would be negative, i.e. |u2|would be decreasing.

This implies that

|u2| <
sup |ρω2 + σ Er

u1
||u1|

inf |σEx|

<
sup |ρω2 + σ Er

u1
|

inf |σEx|
sup |u1|

< C sup |u1|,

|u2| < C sup |u1|, (3.4)

since |u2| would be decreasing if not, so it would never have been able to in-

crease in magnitude beyound C sup |u1|. This implies if |u1| is bounded then so

too is |u2|. Therefore, we only need to show u1 remains bounded. Consider the

case where u1 has a vertical asymptote at x = a. In this case it is clear by the

mean value theorem that there is an increasing sequence of values converging

to a where u′1 = u2 must diverge in the same direction simultaneously with

u1, so without loss of generality assume they diverge in the positive direction.

Then u1 has no zeros in a left neighborhood of a so by Proposition 1 neither

does u2 on the same interval, which implies they are both positive on this inter-

val and we may assume our sequence lies in an interval where both u1 and u2

are positive. Now note that using the sign relation in Proposition 1 along with

(3.1) we have that

sgn(u′2) = −sgn(|Ex|u2 + |ρω2 + σ
Er

u1
|u1)

must be negative whenever both u1 and u2 are positive. However, this is a

contradiction since u2 cannot diverge on an increasing sequence of points in

an interval where it is decreasing. This fact then implies that if u1 diverges

at a, then it must vanish infinitely many times as x approaches a to avoid the
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asymptotic impossibility. However, we show that the function can only vanish

finitely many times in any finite interval. Our assumptions imply that initially

u1u2 < 0, so by Proposition 1 we find every zero of u1 is preceeded by an

interval where u1u2 < 0, and u1 decreases from a local max (including r0) to

zero. Furthermore, from (3.4) it is clear that on any of these intervals, if rk is the

associated critical value with corresponding interval [ak, bk], then

|u2| < C|rk|.

Thus by the fundamental theorem of calculus we see

|rk| =
∫ bk

ak

|u2|dx

≤ (bk − ak)C sup |u1|

= (bk − ak)C|rk|,

which we may rearrange to yield the inequality

(bk − ak) >
1
C

,

so that x increases by an amount greater than 1
C everytime |u1| vanishes, which

is a contradiction since x would surpass a after the max was increased more

than
a− 0

1
C

= aC

times. Therefore, no such value a exists and the funciton can be extended in x

to [0, ∞).
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3.1.1 Bounding Solutions

The next two propositions serve to establish a useful bound on the solutions

to (2.2). The first proposition shows that a weighted average of rr′, over any

bounded interval [0, Lc] for which the functions are defined, is negative, where

rr′ =
(r2)′

2

describes the rate of change of the magnitude of r. Depending on the weighting

function it may turn out that r is increasing even though the corresponding

weighted average of rr′ is negative, however, as we will see this fact will limit

the extent to which r can grow. First we prove the proposition regarding this

weighted average.

Proposition 3. For every r0, Lc > 0 there exist a value δ such that for 0 < T0 < δ the

corresponding solution to (2.2) is such that the equation

−
∫ x

0

(
ρω2 + σ

Er

r

)
rr′ = T0

(
Sx

Sx0

− 1
)
− Sx

∫ x

0
σExSx +

∫ x

0
σEx (3.5)

is greater than zero for all x with 0 < x < Lc.

Proof. From the condition (3.2), we see that

ρω2 + σ
Er

r
> 0

and since r0 > 0 > r′0, Proposition 1 tells us that rr′ < 0 up to the first zero of r.

These two facts show that (3.5) is positive at least until r vanishes. Assume

there is a point

0 < a < Lc



Chapter 3. PROOF OF THEOREM 30

where r vanishes (This point may depend on r0 and/or any other parameters

in the ODE). Then for a < x < Lc we write

−
∫ x

0

(
ρω2 + σ

Er

r

)
rr′ = T0

(
Sx

Sx0

− 1
)
− Sx

∫ x

0
σExSx +

∫ x

0
σEx

= T0

(
Sx

Sx0

− 1
)
− Sx

∫ a

0
σExSx +

∫ a

0
σEx − Sx

∫ x

a
σExSx +

∫ x

a
σEx

> −T0 −
∫ a

0
σExSx +

∫ a

0
σEx − Sx

∫ x

a
σExSx +

∫ x

a
σEx

where the inequality follows from the fact that Sx, Sx0 ≥ 1. This fact along with

the assumption that sup Ex < 0 implies we may continue as follows

= −T0 −
∫ a

0
σEx(Sx − 1)− Sx

∫ x

a
σExSx +

∫ x

a
σEx

= −T0 −
∫ a

0
σEx(Sx − 1) + γ2

≥ −T0 + inf |Ex|
∫ a

0
(Sx − 1) + γ2

= −T0 + inf |σEx|(s(a)− a) + γ2

for some γ(x) ≥ 0. Furthermore, because a straight line is the shortest path

between two points we find the path length s(a) between the initial value (0, r0)

and the first zero (a, 0) is such that s(a) ≥
√

r2
0 + a2 and therefore we continue

again to show

≥ −T0 + inf |σEx|(
√

r2
0 + a2 − a) + γ2

≥ −T0 + inf |σEx|(
√

r2
0 + L2

c − Lc) + γ2
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where the second inequality follows from the fact that
√

r2
0 + x2 − x is strictly

decreasing (the derivative x√
r2

0+x2
− 1 < 0 for all x), and a < L < Lc where

Lc is an upper bound on L for all solutions considered. Finally it is clear that

δ = inf |σEx|(
√

r2
0 + L2

c − Lc) will work since if

T0 < δ = inf |σEx|(
√

r2
0 + L2

c − Lc)

then the last inequality above will be greater than zero and the result follows.

With this result along with Proposition 1 we are now ready to prove a certain

bound on certain solutions r to (2.2).

Proposition 4. Let rn be the nth local extreme value of r(x) or rn = r(Lc) if no such

value exists, then if (3.1) holds then there exists a value α > 0 such that |rn| ≤ ζnr0

for all n.

Proof. We assume (3.2) holds, and therefore

inf ρ

2
ω2 < ρω2 + σ

Er

r
<

2 sup ρ + inf ρ

2
ω2,

and we claim that α =
√

2 sup ρ+inf ρ
inf ρ will work. We begin with the result of

Proposition 2 which showed

∫ x

0
(ρω2 + σ

Er

r
)rr′ < 0
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and note that with the following definitions

(rr′)+ =


rr′, rr′ > 0

0, rr′ ≤ 0

(rr′)− =


0, rr′ > 0

rr′, rr′ ≤ 0

it is true that rr′ = (rr′)+ + (rr′)− and therefore we may write

∫ x

0

(
ρω2 + σ

Er

r

)
rr′ =

∫ x

0

(
ρω2 + σ

Er

r

)
(rr′)+ +

∫ x

0

(
ρω2 + σ

Er

r

)
(rr′)−

≥ inf ρ

2
ω2
∫ x

0
(rr′)+ +

2 sup ρ + inf ρ

2
ω2
∫ x

0
(rr′)−

So we find the equation in the last line must also be negative which implies that

∫ x

0
(rr′)+ < −2 sup ρ + inf ρ

inf ρ

∫ x

0
(rr′)− = α2

∣∣∣∣ ∫ x

0
(rr′)−

∣∣∣∣ (3.6)

Now we proceed by induction: for n = 0 it is clear that |r0| ≤ α0r0 = r0 =

|r0|. Assume the result holds for n = k and consider rk+1. There are two cases:

sgn(rk+1) = sgn(rk) or sgn(rk+1) = −sgn(rk)

In the former case the definition of rk+1 implies that |rk+1| ≤ |rk|. Therefore our

induction hypothesis along with the fact that

α =

√
2 sup ρ + inf ρ

inf ρ
≥
√

2 inf ρ + inf ρ

inf ρ
=
√

3 > 1

implies that

|rk+1| ≤ |rk| ≤ αkr0 < αk+1r0
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In the case where the signs are opposite, Proposition 1 implies that there is ex-

actly one zero of r between any two ri and ri+1 for i = 0, . . . , k and furthermore,

that between ri and each respective zero the quantity rr′ ≤ 0 and also rr′ ≥ 0

from that zero to ri+1. Therefore a direct computation of the inequality (3.6)

along with our induction hypothesis shows that

r2

2

∣∣∣∣r=r1

r=0
+ · · ·+ r2

2

∣∣∣∣r=rk+1

r=0
< α2|r

2

2

∣∣∣∣r=0

r=r0

+ · · ·+ r2

2

∣∣∣∣r=0

r=rk

|

r2
1 + · · ·+ r2

k+1 < α2(r2
0 + · · ·+ r2

k)

r2
k+1 < α2r2

0 + (α2 − 1)(r2
1 + · · ·+ r2

k)

< α2r2
0 + (α2 − 1)(α2r2

0 + · · ·+ α2kr2
0)

= α2r2
0 + (α2 − 1)(1 + · · ·+ α2(k−1))α2r2

0

= α2r2
0 + (α2 − 1)

α2k − 1
α2 − 1

α2r2
0

= α2(k+1)r2
0

where the second-to-last step follows from the partial sum formula for a geo-

metric series. Finally, upon taking the square root of the total inequality we find

the result is true.

The last three propositions imply that for a compact set of initial data (con-

ditions and paramters) since C and r0 will both be bounded, it will be true on

any given finite interval that the number of zeros of u1 is uniformly bounded,
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which uniformly bounds u1 in terms of r0 by Proposition 4, which then uni-

formly bounds u2 by (3.4), and therefore ~u is uniformly bounded on this set, so

it follows (using the Gronwall indequality method) that it can be extended to a

continuous function on all of D.

3.1.2 Oscillation

Now as we described in the beginning of this chapter, we will show that

we can squeeze arbitrarily many zeros into a given interval simply by choosing

large enough values of ω. This is consistent with our physical intuition that

twirling the string faster should cause it to become more wavy, and is made

precise with the following proposition.

Proposition 5. For any 0 < L < Lc and for any Natural number n and assuming

(3.1) , (3.2) , and (3.3) all hold, there exists a value ωn such that for ω > ωn the

corresponding solution to (2.2) will have at lease n zeros in [0, L].

Proof. We begin with the solution r(x) of (2.2) and using the fact that this solu-

tion and its derivative are both continuous functions as well as ρ, Er, and Ex we

construct the following continuous functions:

P(x) =
T0

Sx0

−
∫ x

0
σExSx , Q(x) = Sx(ρω2 + σ

Er

r
)

Now we note with these functions the solution r(x) to (2.2) is also a solution to

the linear Sturm-Liouville equation:

(P(x)r′(x))′ + Q(x)r(x) = 0

r(0) = r0 ; r′(0) =
ρ0ω2r0 + σ0Er0

σ0Ex0
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Next we define

B =
T0

Sx0

+ sup |σEx|[L + nζnr0] , R =
π2(n + 1)2

L2 B,

and note by assumption

Q > ω2 inf ρ

2

which means we may choose ω such that Q > R. Now we proceed by cases:

Case 1: 0 < P(x) ≤ B

Consider the Sturm-Liouville equation

(By′(x))′ + Ry(x) = 0

with the same initial conditions as the former Sturm equation. Using the in-

equalities on the coefficients of the equations we may apply the Sturm Compar-

ison Theorem (We offer reference to the textbook by Teschl, 2012 which outlines

the theorem) which specifies that between any two zeros of y(x) there must be

a zero of r(x). Where the general solution for y(x) is

y(x) = c1 sin

√
R
B

x + c2 cos

√
R
B

x

= c1 sin
π(n + 1)

L
x + c2 cos

π(n + 1)
L

x

which is easily verified to have n + 1 zeros in [0, L], implying r(x) must have at

least n zeros in [0, L].
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Case 2: P(x) > B

We begin by noting that

P(x) ≤ T0

Sx0

+ sup |σEx|
∫ L

0
Sx

=
T0

Sx0

+ sup |σEx|s(L)

implying the later expression is also greater than B which yields the result

s(L) > L + nζnr0 (3.7)

Now let k be the number of local extreme values of r(x), including r0. Propo-

sition 1 implies r(x) is monotone between any consecutive extreme values and

therefore we find

s(L) =
∫ L

0

√
1 + (r′(x))2

≤
∫ L

0
1 + |r′(x)|

≤ L + r0 + r1 + · · ·+ rk−1

where r0, r1, . . . , rk−1 are the extreme values, and upon applying proposition 3

and the fact that α > 1 we find

s(L) ≤ L + r0 + αr0 + · · ·+ αk−1r0

< L + kζkr0

which when combined with (3) yields the result that k > n. Finally we apply

proposition 1 to show that r(x) must have more than k (and therefore n) zeros

in the interval [0, L] which concludes the proof.
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3.1.3 Satisfying the Contraints

The next series of propositions serves to show the existence of paramaters

and initial conditions which produce solutions to (2.2) that satisfy the physical

constraints. The basic idea is to first show that the zeros of a given solution have

continuous dependence on the parameters and initial conditions, which implies

the length of the curve up to any zero also has continuous dependence. Then

we show that there exist parameters which produce curve lengths on either side

of Lc and apply the continuity to find a point in between, such that the length

is exactly equal to Lc. We begin with the continuity of the zeros.

Proposition 6. Let A be a set, Lc > 0 and let φ(x,~λ) be a continuous function such

that ∀~λ ∈ A there are at least n values of x, α1(~λ), . . . , αn(~λ) ∈ [0, Lc] where the

function vanishes with multiplicity one, then they are all continuous functions of~λ on

A.

Proof. Let r, L ∈ (0, Lc] and~λk be any sequence which converge to~λ, and let

α
(k)
1 , . . . , α

(k)
n

be the first n zeros of each corresponding φ(x,~λk). By assumption we know

each of these sequences is contained in [0, Lc] and therefore they all have con-

vergent subsequences. Our strategy will be to show that every convergent sub-

sequence of α
(k)
i converges to α1, which would imply the sequence itself con-

verges to αi. To accomplish this we begin by reindexing k such that we have a

convergent subsequence of α
(k)
i , next we reindex k, n− 1 more times such that

we have convergent subsequences of all other α
(k)
j ’s while preserving the limit
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of our original subsequence of α
(k)
i . Define these respective limits to be

β1, . . . , βn

then by the continuity of φ(x,~λ) and the fact that

φ(α
(k)
j ,~λk) = 0

we find that,

φ(β j,~λ) = 0

i.e. each β j is a zero of φ(x,~λ). Next we show that

0 < β1 < · · · < βn

and there are no other zeros of φ(x,~λ) between any two of these values. By

definition of our sequences we know that

0 ≤ β1 ≤ · · · ≤ βn

and since φ(0,~λ) = r 6= 0 we find 0 < β1. Now assume β j = β j+1, then by

Rolle’s Theorem there exists a sequence of values γk such that

φx(γk,~λk) = 0 , α
(k)
j < γk < α

(k)
j+1

but then by continuity and the squeeze theorem we find

φx(β j,~λ) = 0
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which is a contradiction, since all zeros of φ(x,~λ) have multiplicity one. There-

fore we find

0 < β1 < · · · < βn

Now to show there are no other zeros in this chain, define β0 = 0 and assume

there is another zero, α, between any two consecutive values of β j. Then since

each rk is positive and there are the same number of sign changes of φ(x,~λk)

from 0 to any point in the interval

(
α
(k)
j , α

(k)
j+1

)

we may assume without loss of generality that

φ(x,~λk) > 0 ∀x ∈
(

α
(k)
j , α

(k)
j+1

)

as well as that we have indexed k such that

α
(k)
j < β j + ε < α < β j+1 − ε < α

(k)
j+1

for some ε > 0. Therefore

φ(x,~λk) > 0 ∀x ∈
(

β j + ε, β j+1 − ε

)

and in the limit we find

φ(x,~λ) ≥ 0 ∀x ∈
(

β j + ε, β j+1 − ε

)
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but this is a contradiction since α is in this interval it would imply it was a zero

of higher multiplicity. This implies

β1 = α1 , . . . , βn = αn

and therefore we can conclude the limit of our original sequence α
(k)
i is αi, where

i is arbitrary, so we find each other original sequence converges to its corre-

sponding zero as well so the continuity of the zeros follows.

Next we show that for any natural number n we may find parameters such

that L is the nth zero of r and the path length of the solution s(L) = Lc. Let

φ(x, r, L) be the solution to (2.2) with its dependence on the initial value r(0) =

r and the paramater L, let s(x, r, L) be the path length function for the same

corresponding solution, and let αi(r, L) be the x value of the ith zero of φ(x, r, L).

Proposition 7. For any family of solutions to (2.2) such that ∀r, L ∈ (0, Lc], φ(x, r, L)

has n zeros α1(r, L), . . . , αn(r, L) ∈ [0, LM] ⊂ [0, Lc] there exists values ri, Li ∈

(0, Lc), i = 1, . . . , n such that Li = αi(ri, Li) and s(Li, ri, Li) = Lc.

Proof. We find these values as fixed points of an iterative process. Begin with

any L(1)
i ∈ (0, Lc) and choose r(1)i such that s

(
αi

(
r(1)i , L(1)

i

)
, r(1)i , L(1)

i

)
= Lc

which is possible since

√
r2 + (αi (r, L))2 ≤ s(αi(r, L), r, L) ≤ αi(r, L) + iζ ir

from the fact that the straight line distance between two points is a minimal

path length and also from (3.7). Therefore if r = Lc then

Lc ≤
√

r2 + (αi (r, L))2 ≤ s(αi(r, L), r, L)
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and if

r =
Lc − LM

2iζ i

then

s(αi(r, L), r, L) ≤ αi(r, L) + iζ ir < LM + 2iζ ir = Lc

and because αi and s are both continuous functions, their composition is con-

tinuous in r and therefore by the Intermediate Value Theorem there exists an r1

such that

s(αi(r1, L1), r1, L1) = Lc.

Then define L2 = αi(r1, L1) and then repeat the previous process with L2, and

continuing in this manner, we generate the bounded sequences of values

rk, Lk ∈ (0, Lc)

which we assume to converge without loss of generality. Define ri and Li to be

the respective limits and note by definition the sequences satisfy the following

recursive relations:

Lk+1 = αi(rk, Lk) and s(Lk+1, rk, Lk) = Lc.

Therefore by the continuity of s and αi, we find in the limit:

Li = αi(ri, Li) and s(Li, ri, Li) = Lc.
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3.1.4 Solution to the Singular IVP

The next set of propositions we prove shows that given a collection of solu-

tions which satisfy the criteria of the previous propositions, we may construct

a convergent sequence of solutions such that the limit is a solution to (2.4). Fur-

thermore, this limit will also satisfy the physical constraints we imposed on

each solution in the sequence. We begin with

Proposition 8. There exists a convergent sequence of solutions whose limit function

is a solution to (2.4).

Proof. Let Tk be a sequence of positive numbers which converges to 0 and let

φ(x, 0, rk, Lk, Tk)

be a corresponding sequence of solutions from the family described in propo-

sition 6 with initial data specified at x = 0, and rk, Lk chosen as in proposition 6

so that its conclusion holds for each of these pairs. Now since these sequences

of parameters are bounded we assume without loss of generality that the se-

quences converge. Then we first show that there is a uniformly convergent

subsequence of solutions by showing the functions and derivatives are univer-

sally bounded which together with the continuity implies equicontinuity and

therefore the existence is guaranteed by the Arzelá–Ascoli theorem, which is

outlined in an ODE textbook by Teschl, 2012. Proposition 3 tells us that

|φ(x, 0, rk, Lk, Tk)| ≤ ζnrk < ζnLc

so we only need to show the derivatives are universally bounded. To this end

we note that each derivative is continuous in their respective domains [0, Lk], so
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they must take on a max value. At the endpoint where the function vanishes,

we find from (2.2) that

sgn(r′′) = −sgn(|Ex|r′) = −sgn(r′)

which implies r′r′′ < 0 in a neighborhood of this point, i.e. |r′| is decreasing in

this neighborhood, and therefore the max value does not occur here. The other

endpoint as well as any critical points in the interior will all occur when

r′ =
ρω2r + σEr

Ex

so

r′ ≤ sup |ρω2r + σEr|
inf |Ex|

= M

which shows the derivatives are universally bounded. Now assume without

loss of generality that the sequence of functions converges. This fact also im-

plies

r = |
∫ αi

0
φx(x, 0, r, L, T)dx| ≤ Mαi

so for any zero of any solution to (2.2) we find

αi ≥
r
M

= δ

This implies that δ is in the nontrivial domain of these functions. We therefore

consider the sequences of values

r(k)δ = φ(δ, 0, rk, r′k, Lk, Tk) and r(k)xδ
= φx(δ, 0, rk, r′k, Tk)

where the former sequence converges since the function converges uniformly,
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and the second sequence is bounded so we assume without loss of generality

that it converges. Now we note that by the uniqueness theorem of differential

equations we have that

φ(x, 0, rk, r′k, Lk, Tk) = φ(x, δ, r(k)δ , r(k)xδ
, Tk)

everywhere that their domains overlap. Furthermore, because φ is a continuous

function and because F is continuous for all x with the parameters δ, rδ, rxδ
, 0 we

find from ODE theory that the solution is continuous in a neighborhood of this

point and therefore

φ(x, δ, r(k)δ , r(k)xδ
, Tk) converges uniformly to φ(x, δ, rδ, rxδ

, 0)

but then so does φ(x, 0, rk, r′k, Lk, Tk) which shows this equation satisfies (2.4)

everywhere on the interval of overlap and since it also satisfies the initial con-

ditions at x = 0 it is a solution to the singular I.V.P.

Proposition 9. The limit solution to (2.4) described in proposition 7 inherits the prop-

erties described in proposition 6.

Proof. Define the set A to be the closure of

{(Lk, rk, r′k, Tk)|k = 1, 2, . . . },

and note that for every isolated point~λ in A

φ(x,~λ)

is a solution of (2.2) such that Lk is equal to the nth zero, and we claim the
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limit point of A also has n zeros. To see this we note that for each k the corre-

sponding n zeros are all bounded, so we assume we have chosen convergent

sequences. Then the fact that the images of these sequences are all sequences of

zeros implies each of these sequences converges to a zero of the singular solu-

tion corresponding to the limit point of A. Furthermore by the same argument

used in Proposition 6 these must all converge to unique zeros, so there are at

least n of them. Thus we may apply Proposition 5 to see that the first n zeros

are all continuous functions of~λ on A. So if~λk is a sequence in A converging to

the limit point of A then the corresponding sequence of values for the nth zero

αn(~λk), must converge to the nth zero of the singular solution, but αn(~λk) = Lk,

so Lk converges to the nth zero of the singular solution.

Next we show that the path length of the function from x = 0 to x = L is

equal to Lc. To see this note that the path length function S is continuous by

Proposition 1, and since

s(Lk,~λk) = Lc,

and the function s itself converges, in the limit we see that

s(L,~λ) = Lc

which concludes the proof.

We are now ready to prove our main result.

Main Theorem. For any functions Ex, Er, ρ, and σ satisfying their respectively de-

fined conditions, and for any Lc and natural number n, if ω is chosen such that the
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conditions

ω2 >
2π2(n + 1)2

Lc inf ρ
sup |Ex|(1 + nζn)

ω2 > sup
∣∣∣∣ 2Er

r inf ρ

∣∣∣∣
hold, then there exist n solutions to (2.4) for the corresponding pairs of values

(r1, L1), . . . , (rn, Ln),

each of which satisfy the conditions that Li is the ith zero of its corresponding solution

φ(x, ri, Li) and the length of the curve up to Li is equal to Lc.

s(Li, ri, Li) = Lc.

Proof. Let

Ex Er ρ σ

all sitisfy their associated constraints, and let Lc be any positive number and n

any natural number. Next define the value

δ = ω2 − 2π2(n + 1)2

Lc inf ρ
sup |Ex|(1 + nζn),

which is positive for any ω satisfying the conditions of the theorem, and let Tk

be any sequence of positive numbers converging to zero, with the additional

property that

Tk < max
{

L2
c δ2 inf ρSx0

2π2(n + 1)2 , inf |Ex|

√( δ

2nζn

)2

+ L2
c − Lc

} = T.
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Define the function

f (x) =
2π2(n + 1)2

x2 inf ρ

(
Tk
Sx0

+ sup |Ex| [x + nζnLc]

)

which is clearly continuous for all x ∈ (0, ∞), and note that for every value Tk

it is true that

f (Lc) =
2π2(n + 1)2

L2
c inf ρ

sup |Ex| [Lc + nζnLc] +
2π2(n + 1)2

L2
c inf ρ

Tk
Sx0

<
2π2(n + 1)2

L2
c inf ρ

sup |Ex| [Lc + nζnLc] + δ

= ω2.

Furthermore, because this function diverges to positive infinity as x converges

to 0 there are values of x for which f (x) > ω2, so by the continuity of f , we find

a value

LM ∈ (0, Lc)

such that

f (LM) = ω2.

Now assume we only consider intial values r0 such that

r0 ∈ [
Lc − LM

2nζn , Lc),

then if we substitute the lower bound for r0 into the following expression

inf |Ex|
(√

r2
0 + L2

c − Lc

)
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we see that it equals T, so therefore

Tk < inf |Ex|
(√

r2
0 + L2

c − Lc

)

for all k and all such values of r0. Finally note that

f (LM) =
2π2(n + 1)2

L2
M inf ρ

sup |Ex| [LM + nζnLc] +
2π2(n + 1)2

L2
M inf ρ

Tk
Sx0

>
2π2(n + 1)2

L2
M inf ρ

sup |Ex| [LM + nζnr0] +
2π2(n + 1)2

L2
M inf ρ

Tk
Sx0

but f (LM) = ω2, so it follows that

ω2 >
2π2(n + 1)2

L2
M inf ρ

sup |Ex| [LM + nζnr0] +
2π2(n + 1)2

L2
M inf ρ

Tk
Sx0

and therefore we may apply Propositions 5 and 6 to show that for any values

of L, any Tk in our sequence and all

r0 ∈ [
Lc − LM

2nζn , Lc),

the corresponding solutions to (2.2) will have at least n zeros in [0, LM] and they

are all continuous functions of these values. Now consider a solution for fixed

Tk, and for every value i = 1, . . . , n apply Proposition 7 to find the associated

values

r(k)i and L(k)
i

such that the corresponding solutions all satisfy the conditions

αi

(
r(k)i , L(k)

i , Tk

)
= L(k)

i and s
(

α
(k)
i , r(k)i , L(k)

i

)
= Lc.
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Then we may apply Propositions 8 and 9 to show that there are convergent

subsequence of each of these solutions, which converge uniformly to solutions

of the (2.4), and furthermore the limit solutions will inherit the properties

αi (ri, Li, 0) = Li and s (αi, ri, Li, 0) = Lc.
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Chapter 4

NUMERICAL VALIDATION

4.1 Gravitaional Example

We now wish to see what these solutions look like for a particular force

field. We will show the numerical solution curves for constant force field (which

approximates gravity on the surface of the Earth). In this case the force depends

on mass so that

σ = ρ.

For a constant field pointing downwards with acceleration g = 9.81 (units are

not important for mathematical verification, so assume any units you want) we

find the components of the field are simply

Ex = −9.81 and Er = 0,

which can easily be verified to satisfy the requirements from the theory. Finally

we define our string to have length Lc = 1 and density function

ρ = 1.
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FIGURE 4.1: n = 1

These functions as well can be verified to satisfy the requirements of the the-

orem and for a fixed value of T0 = 0.000001 and ω = 20.944 they produce

the following curves for all n up to 4. The resulting values of r and L which

make these solutions satisfy the physical constraints were (0.9974, 0.0311) for

n = 1, (0.3211, 0.3326) for n = 2, (0.1610, 0.6663) for n = 3, and (0.0631, 0.9256)

for n = 4. These solutions were generated using a fourth order Runge-Kutta

method with a step size of 0.0001. The following figures display these curves,

which are the rigid shapes a string with the given density function and length

would form in this given field.
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FIGURE 4.2: n = 2
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FIGURE 4.3: n = 3
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FIGURE 4.4: n = 4
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Chapter 5

CONCLUSION

5.1 Overview of Results

We have demonstrated that for any force field satisfying certain conditions

there are rigid equilibriums of rotating strings. Furthermore, we demonstrated

that there exist sufficient conditions on the rotational rate of the string which

will guaruntee solutions of any number of oscillations along the length of the

string. Next we elaborate on the results which we did not cover in this paper.

5.1.1 The Closing Picture

The results of this paper display sufficient conditions for the rigid equilibri-

ums, and therefore there is the question of whether or not these conditions are

necessary. It turns out that the results of Proposition 2, which showed a given

solution can only vanish finitely many times in any finite interval, shows that

depending on the radial component of the force field, there exist certain neces-

sary conditions on the rotational rate required for configurations with a given

number of nodes. We did not have time to cover these results as they depend

on the radial component of the field for this thesis, so we do not offer a proof

of this claim. Another question is whether or not the solutions are unique for a



Chapter 5. CONCLUSION 56

given number of oscillations of a particular string in a particular field. One idea

for how this may be added to our argument, would be to show that the path

length to any one of the zeros of a solution is a monotone function of the initial

value r0. This would imply for any fixed parameters there would be only one

value at which r0 would be the right size to yield the correct path length Lc of

the solution, but since we are also varying T0, and L in the process of creating

solutions, it is not clear whether we could find multiple values of L and/or T0

such that there were seperate (and unique to their corresponding parameters)

values of r0 which each produced different curves with the same number of

oscillations. Other areas this could be extended would be to investigate fields

where the force is allowed to vanish or even change directions. It would also be

interesting to consider the case in which the bottom end of the string was not

free (i.e. T0 6= 0) which could describe a string with a weight attached to the

end or some kind of force being applied directly. In this case we would gain

an extra degree of freedom in our initial conditions, since the singular condi-

tion specified r′0, and therefore it seems more likely that there could be more

than one configuration with a given number of oscillations (although physical

intuition also seems to suggest they should behave similarly to the T0 case just

with the endpoint pulled down farther). Also the stability of these sort of fixed

points of the PDE could be investigated in order to determine which configu-

ration it was most likely to settle into under given conditions. There are many

directions which this paper could be extended, indeed strings have served as a

fruitful source of mathematics for eager minds of past and present.
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