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INTRODUCTION 

In recent years drainage has been recognized as essential to 

the development o f  a large-scale irrigation project. South Dakota is 

now planning for the irrigation of approximately one-half million 

acres of land through the proposed Oahe Irrigation Unit lo�ated in the 

northeastern part of  the state. There are two main bodies of land in 

the Oahe Unlt--the Lake Plain Area which is the postglacial rrLake 

Dakota" and the larger portion of the project, and the Missouri Slope 

Area which is part of the Great Plains province lying east of the 

Missouri River. A large percentage of this project's total develop­

ment.al cost will be for tile drainage. 

The principal function of tile drainage is to control water table 

levels. The Bureau of Reclamation in the 1965 Oahe Unit Report (21) 

rcco1mnends that tile drains be placed from 6 to 12 feet in depth with 

spacings from 400 to 900 feet in the Lake Plain Area to control water 

tabJ.e levels. These tile drains will range from 4 to 6 inche� in 

diameter. The soil textures prevailing at the 6 to 12 feet depth in. 

the Lake ?lain Area are silt loam, silty clay loa�, sandy loam and 

silt. Si.lt is the most predo:G1ina.nt base materiel for Li,.c. .:ile dndns. 

To ensure a longer life for the tile-drain�3e system, it is 

· "' · l ,.. · J 1 t . 1 th often rwc2ssa.ry to place a more penilc-.st•Je 02.cczi ... ma eri2,. an 

-.,·, t' , b .L r  r s1.·c1.,,� r.�':! _· 1--i_,··,'--·- _-1_-�;.,;c. l1_._ :;_�_,,·2;L1 �;_tir:l "'y J-c i.n cc111--c J ; : 1 er :: 1 ·1 c c 'f' , ,J · L c-•. 1 o t..: 0 . � - -

b · · · · 1 -: , - ., ,..., ...,. r, _·1 ;' . .-_\_ t.· �_._-.�,._-_. :.-j, ..... �
:-
_ :·1 ]. r': .t-,"'. 1 -_;,.. f)-.). _.:; i·., 1J-.L 21..l 

3.Hc!i:" .1.C.'i.i _, ..i.�� c.21. 1.1:c an eri\•-..: 1,_,�, .: • - • - - - - - - - --

envelop� i� �s follows: 



1. To exclude fine soil particles from moving into the 

drain and resulting in clogging. 

2. To increase the effective drain diameter by providing a 

highly permeable zone around the drain. 

3. To serve as a stabilizing foundation for the drain. 
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REVIEW OF LITERATURE 

This review of literature will be divided into four areas of 

discussion: South Dakota envelope research, gravel envelope design, 

mechanics of tile drainage and an analog model of tile drainage. 

South Dakota Envelope Research 

Research on envelopes for the drainage of the Oahe Irrigation 

Unit in South Dakota has been done only by the Bureau of Reclamation 

and the South Dakota State University Agricultural Experiment Station. 

The Bureau of Reclamation in the 1960 Oahe Unit Report (21) recom­

mended a 6-inch gravel envelope above and below the tile with a 6-inch 

minimum thickness on the sides. Preliminary studies indicated that 

approximately 75 percent of the envelope material may be pit-run 

gravel and can be obtained within a haul distance of 20 miles from 

the irrigation project. Then, in 1965 the Bureau of Reclamation (22) 

recommended that a· 4-inch gravel envelope be provided around the 

drain and graded to give satisfactory performance for tile drains. 

In 1963, a field drainage plot was constructed at the Redfield 

Irrigation Farm, Redf ield, South Dakota, within the proposed Oahe 

Irrigation Unit to compare predicted tile outflow rates measured 

unc er a controll2d condition. Lembke (10) sununarized tHo years of 

study after the drai.n2.ge plot was installed; tcr.t was also foun that 

a tile drain embedded in a gr·2.vel filte·r under a ponded condition 

increased in flow rate during the first two years after construction. 

3 



This increase was attributed to removal and rearrangement of fine 

particles in and around the gravel filter." 

Plot Description 

The drainage plot was constructed 75 feet by 150 feet with a 20-

foot border surrounding the plot.  A double thickness of polyethylene 

to a depth of 8.5 feet separates the plot from the bo�der. The center 

of the plot is drained by a 6-inch drain at a depth of 8 feet. The 

tile drains are all 4-foot lengths of bell and spigot concrete tile, 

loosely connected, and embedded in an envelope of at least 6 inches 

of gravel separating the drain from the surrounding soil. 

Soil Description 

The soil on the drainage plot is classified as Beotia silt loam. 

The surface texture is silt loam; but at a depth of from 4 to 7 feet, 

it consists of stratifications of lake bed sediment . At a depth of 

7 ie0t the soil changes to a loose silt which continues to a depth of 

13 fe•2t where there appears a heavy glacial till which was deposited 

prio� to the lake bee development. Table 1 summarize.s the average 

hydraulic couJuctjvity measurements, K, made with aug2r holes in the 

soil profile. Lembke (10) recommends the auger hole method for 

measu::::-ing hydr2ld ic condt ctivi ty in this soil. 

4 



Table I. Auger Hole Hydraulic Conductivity Measurements at R�dfield 
Irrigation Farm 

Average Average, 
Depth of Depth of 

Water Table Auger Holes Number of K RaE:ge 
(inches) (inches) Holes (in/hr) K 

18 4-0 10 0. 72 0.43 - 1.43 
48 68 4 0.48 0.26 - 0.66 
70 96 2 0.80 0 . 78 - 0.82 
40 (backfill) 54- 3 0.52 0.36 - 0.68 

Tile Outflow 

Tile outflow was measured from the drainage plot for the severe 

case of a ponded water surface. There was a large increase in tile 

outflow in the second year in comparison to the first year, which was 

attribu ed to a removal or rearrangement of fine particles in and 

around the gravel filter. However, after the third year of tile 

installation, the outflow started at a higher level than the second 

year, but then dec1-eased to a lower value than the second year. The 

pattern of decrease was similar to that which occurred in 1964. 

Figure I (9) shows the hydrograph of tile outflow for the first three 

years of installation. Also, the predicted tile outflows from 

hydraulic conductivity measurements by auger holes and 3-inch cores 

Ls ing an IBN 1620 computer are shmvn on the hydrograph. Lembke fou11d 

a consider-able arno�mt of sediment in the tile outflO'w; however, this 

amoun:: of seJ.·i.rLeLt has no': yst been analyzed fro'TI the sediment s2 .pl,.=-.-. 

This sedL:r:2nt ca� .... _.� d:.1ring th2 early part of the tile outflow period. 

5 
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Gravel Envelope De s ign 

A gravel envelope i s  required to faci litate groundwater entry into 

the drain , prevent erosion o f  the base material, and s erve as a s ta-

bili z ing foundation fo� th e drain . Gravel enve lope design character ­

i s tic� can generally be divided into filter-aquifer ratios,  filter 

thicknes s, filter permeabilit y, and filter placement . 
I 

Filter -Aquifer R atios 

During the 1 9 20 ' s ,  Karl Ter zaghi (17 ) o f  Austria made the fir s t  

basic envelope recormnendation: 

D15 Filter D15 F i lter 

< 4 < 
Ds 5 Aqu i fer D15 Aquifer 

where D1 5 and D35 are the particle sizes at which 15% and 85% of the 

parti.c1 e weight is smaller . The terms Filter and Aquifer re fer to the 

g·.c a.vel envelope and base  material. 

Several a ge n cies  have � ince developed des ign cr iteria . Principal 

of these are the Corps o f  Eng inee rs at the U.S . Army Waterways Exper i ­

ment S tat ion (20) and the U . S .  Department o f  Interior , Bureau o f  

Reclamat ion ( 2 3 ) .  A compo s ite o f  the s e  inve s t igations by the U . S . D . A .  

So f l  Cons e rvat ion Service ( 19 )  has resulted in th e following reccm-

mendati on .s as shown in Figure II : 

The first s tep is to de termine by me chani c al ana lysis and grada-

tion curve o f  the base materia l . From this gra dation  curve a filter 

m�t e rial ot  k nown gradation is se l ec ted to  meet the des i gn r e qv i r e ­

rnent s .  Nul t ip lying the 50% gra in s i ze o [  the b as e  mat er i a l  by 1 2  and 
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58 will give upper and lower limits of the 50% si ze o f  fi lter material. 

Dso Filter 

Dso Aquifer 

:::: 12 - 58 

Multiplying the 15% grain size of the base material by 12 and L�O gives 

the and lower limits of the 15% size of f i lter material. 

D15 Filter 

D15 Aquifer 

:::: 12 - 40 

When both filt er and base material are more or less uniformly graded , 

a �ilter -stabili zing ratio of less than 5 is reco�nended . 

Dis F i lt er 

Ds5 Aqu ifer 

C: -' 

In addition, the gradat ion curve s o f  the fi lter and bas e  ma t e r i al 

shou ld be approximately par 2.llel. The maximum s i ze o f  the f il t e r  materi ­

a l  can be about 1\ inches, and there should be  not more than 5% o f  filter 

maL: e r :i.al passi -;:-,g  the No. 200 sieve . The maximum siz e� limit ation i s  to  

ensure aga ins t t oo mu ch segregation during p l ace!Tie. nt , and the  No . 20-0 

sieve limi t at i on is  t o  prevent an excess o f  f ines  in the f i lter which 

are more easily carried by water percolation into the drain t i le. 

Fil ter  T:d cknes s ---- -----·--- -- --
Some of  the rec ommendati ons on  f ilter thickness have b een made 

by the U . S . D . A. Soil Conservation Servi c e  (19) , des Bouvrie (5 ) , and 

Edward E .  Johns on Company (7) . The So il Conservation Service recom­

mends thre � inches a s  a minimum grave l filter thickness . The Edward 

E . Johnson Comp any, manu fact ure r of well screens , recommends that the 



gravel pack have a minimum wa ll thicknes s  of  three inches and a maxi­

mum o f  nine inches .  Des Bouvrie concluded the following concerning 

filter thicknes s  and Filter -Aquifer ratios at the 50% gr ain s ize : 

1 .  A Filter -Aquifer ratio o f  around 12. 0 allows the use o f  a 

filter 0 . 5 - 1 . 0 inches thick. 

12 
I • 

Gravel filters with succes s ful combinations o f  Filter -Aqu ifer 

ratios  and standard deviations permit a filter 

a. 3 inches for Filter-Aquifer ratios = 12 . 0  

b. 6 inches for Filter -Aquifer ratio s 24. 0 

c. 9 inche s for Filter -Aquifer ratios = 28. 0 

thicknes s 

24 . 0  

28 . 0  

40. 0 

o f : 

3. Gr avel filt ers with Filter -Aquifer rat ios  between 40 and 

52 . 0  can only be useful when having a thicknes s of at least  

12  inche s. 

Filt e� Perme abil ity 

For a given hydraulic gradient , Quazi, Lockman, and Ha lderman ( 1 )  

fo�nd tha t  a n  increase  i n  Filter - Aquifer ra tio at  the 50% gr ain s ize 

produces an i ncrea s e  in dischr�rge . Lea therwood ( 1) found that  for 

Filter -Aqu i fer ratios at the 50% grain s ize f 5 the interface head 

lo s s varies linearly wi th veloc i ty and head los s  generally increas es 

as filter me an diameter decreases . Des Bouvr ie (6 ) found the permea ­

bility o f  the interface zone to generally decrease with increasing 

Filter -Aquifer ratio s at the 50% grain s ize . Des Bouvrie s tates : 

1. In general, f ilter s  with l ow Pilter-Aqui fer ratios retain  

high hydrau l i c  conductivi t ie s , because s and does not pene­

trate in  large amount s and al ter it s byd�au lic proper t i es . 

10  



2. The hydraulic conductivity of the successful filters is not 

affected significantly by sand movement beyond 2 inches ihto 

the gravel from the interface , wh i ch separates the sand and 

gravel . 

Filter Placement 

1 1  

Sisson (16) explained why it is s ometimes recommended that envelope 

material s  be placed only on the top and sides of the tile if the pri­

mary function of  the envelope is to prevent clogging of the drai n with 

sediment . He states , "Soil particles under the drain w il l  ente r the 

drain from the bottom only if the upward force from water moving int o 

the drain is greater than the oppos ing gravitational for ce from the 

weight of the so i l  parti cles . "  As  soil part icles s uch as fine s and 

and silt be come smaller , these particles . will move at slower veloc­

ities;  thus,  the forc 2s caus ed by f l owing water can eas i ly move the 

smaller particl es . Instability or piping tendencies be come progressiv e ­

ly worse as soil particle s become smaller. However, as soil par ticle s 

becorr:e qui t e  small, as in fine silt and clays, the s oils become 

cohes ive and individual soil part ic les bind together to provide sta­

b i l i t y. Ne l s on ( 1 5) descr ibed the group of soils tha t are the most 

uns tab l e as thos 2 l ying within the si ze  range of 0 . 05 to 1 .0 milli -

mr-: ter s in d i a me t er . 

Mechanics of �i.l e  Draina� 

The purpose h ere is to dis c uss the f l ow of wat2r through the 

soi l and i n t o  a su sur face dra in. The fund22ent � l s  o f  gro 1 1 nd water 

are s u��2 r i ze d  a s  per t a i ning to th is author ' s thes i s  (se e , for 

exai':1.p le , Lut.h in ( 1 2 )  and 1-12.rr (6) for cowplete d i. s cussion o::  ground 



water flow) . 

Darcy's Law 

In 185 6, Henry Darcy discovered an empirical law which is regarded 

as the fundamental law conc�rning flow of water through soils . Ex ­

pressed in words, the law states that the flow of water through a 

porous n�dium is propor tional to the hydraulic gradient and to a 

factor known as the hydraulic conductivity, which is ch ara c teristic of 

the porous media. In mathemat ical symb ols Darcy ' s law is as fo l lows : 

Q KiA 

where 

Q = vo lume of water per unit time (1 3t - 1 ) 

i = hydr aulic gradient (dimensionless) 

A = cross se ction of flow ar ea  (1 2 ) 

K - hydrauli c  conductivity (lt - 1) 

The hydraulic gradien t, i, represents  the total head loss of the 

f luid over a given distance . The hydraulic gradient can be evaluated 

by dropp i ng t e ve locity head terms from the Bernoulli equation , since 

for flow of water through soils the kine tic energy due to veloc it y  is 

negl igib le 1 l eaving only the pressur e head and gravitationa l or 

po sitional head to supply the dr iving force. The sum of these two 

he ads is cal led the hyd r aul ic head or pot ential head and c an be 

writ ten as follows : 

whe r e  

¢ _E_ · + h 
./° g 

0 h ydr aul ic head  at  a part icular point ( 1 )  

1 2  



p pressure (fl-2 ) 

,I' =  density ( fl-4t2 ) 

g = gravitational constant (lt-2 ) 

h = elevation measured -from a reference plane ( 1 )  

Laplace ' s  Equation 

The linear flow of water through a column of soi l is easily 

analyzed using Darcy ' s law. However, the two- or three -dimensional 

flow which occurs in land drainage requires the derivation of an 

equation describing the distribution of hydrauli c head. 

Laplace ' s  equation is developed by examining the flow th rough a 

small rectangular paralle lepiped. Here, the net mass of water gained 

or los t  withi n  the parallelepiped is  set equal to the time rate of 

change or water mass . Next , the followin g assumptions are made ; 

1. The so i l  is isotropic . 

2 .  The voids are completely f illed with water. 

3. No consolidat ion or expansion o f  the soil takes place. 

4.  Th e soi l  and water are incompressible. 

5. Flow is laminar, and Darcy ' s law is valid. 

Laplace ' s equation for three -dimensional flow, applying the previous 

assumptions, is obtained as 

+ + 0 

�here 0 is the hydraul i c  head or potential ; and x, y and z are car -

II  t�Jo d1_· m_e ns i· o 11s, Lapl ace ' s equation has the forn tesi an co o r dinat es . , - -

== 0 

2 1 6 0 0 4  

SOUTH DAKOTA STATE UN IVERS ITY. L IBRARY 

13 



The Flow Net -- --
A f low net  is a repre sentation of a family o f  streamlines and '  

e quipotentials in a two -dimensional plane. A streamline is  a path of  

flow of an individual particle through the soil. An e quipotent i a l  is 

a line drawn through all points in the soil having the same potential . 

Streamline s and e quipotential lines are related in tha t  t he potential 

function an d stream function are connec ted by means o f  the Cauchy­

Riemann dif ferential e quations :  

__d_1_ = - d jV 
J X J y d X 

where (/J is the hydraulic head and '// is the stream func tion .  Hence, 

the stream function and hydraulic head function are both solutions 

of Laplace's e quation for two -dimensionaL f l ow, and the streamlines 

and e quipotential lines repre senting the flow ne t are orthogonal in 

an isotropic soil. 

Flow int.2_ Drain s 

Prior to 19 1 1 ,  there seemed to be  different views on how water 

f lowed into the drain tile. Waring ( 25 ) states that "There seems to 

remain in the mind s o f  many wri ters on drainage a glinnner ing of the 

old  fa l lacy that underdrains, like open drains , receive their water 

from above, and it is too com.man ly rec oIT1mended that porous substance s 

be placed  above the tile. I f :  as is universally conceded, the water 

r is es i nto the tile from below , thi . s  i �  unnece ssary. "  There i. s now 

a general agrc e□ent that , under a saturated condi tion, wat e r  f lows to 

an under d r a i n  approac 1 f r om around  the entir e pe r ime t e r, a s  shown in 

Figure II I. 1�nke ( 14 )  describe d in d e tail the  f l ow pat tern  ar ound a 

14 



partially filled drain . He called this flow pattern a surface of 

seepage. Water approaching the top and sides o f  a drain does not 

drop into the drain but enters the surface of seepage because the 

force into the drain is less. than the opposing force of surface 

tension. The flow follows along the surface of seepage. downward 

because o f  the gravity force and breaks away to enter the stream of  

flow in the drain when the surface of  seepage intersec ts the water 

level in the drain . 

1 5  
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Analog Modtl .2.f Tile Drainage 

There are three analog methods ( 12) besides a tedious mathe ­

matical analysis of differential e quations for obtaining a flow net. 

These are the ele ctrical analogue, numerical analysis, and the resist­

ance network. The electrical analogue utilizes the flow of e l ectricity 

through a sheet  of electrical cunducting paper or fluid. This method 

is  limited to steady -state flow problems where soi ls ar e saturated , 

isotropic, and homogeneous. Numerical analysis utilizes an iterative 

procedure to solve Laplace ' s e quation. This method can solve flow 

problems involvi 1g nonuniform hydraulic cond 1ictivit ies as well as ir-

· regular boundaries. Numerical analysis is particularly adaptable to 

the digital computer. The resistance ne twork combines the principles 

cf nume rical analysis and the e lectrical analogue to solve a wide 

var iety of flow problems for the steady-s tate condition as well as 

the transient condition . An important advantage of the resistance 

network is the instantaneous re l axing of the entire net > a procedure 

requiring many hours of work using numerical analysis. 

Resistance �2twork 

The si1d l ar i ty between Ohm ' s law and Dar cy ' s law forms the basis 

for the ana l :i gy  between electrical f low and ground water flow (see 

Lu thin ( 1 2 )  for  de t a iled discussion) . Ohm ' s la\-l can be expressed as 

I = V/R 

where  I is · c urrent in amps , V is· volt age in  volts , and  R i s  resistance 

in oh ;:ns . S i n e ?.  in Oho ' s l .s.-:-1 the conduc t ance K1 i s  the rec ipro cal of 

resist ance , the  law can be wr i t t en a s  

1 7  
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I 

Conductance K1 varies direct l y as the specific conduc t iv i ty k
1 

and ' the 

area , A, and inversel y  as the length , L, then K1 = kl A/ L from which 

one can write 

Th . /. · 1 ' 1 h 1. s  11. s s im1. ar to Darcy s aw wh ic can be writ ten as 
I 
I Q 

where Q is f low, K is hydraulic conductivity,  0 / L  is hydraul ic gradient, 

and A is cross-sectional flow area. The hydrau l ic conduct ivity is re­

lated to  the reciprocal of resistance, and the vol tage can be used to 

represent hydraulic head or potential . 

The res i s tance network uses a n etwork of resist ors having a 

f inite r e s is t ance to represent a so i l profile, as shown in Figure V. 

Looking at a node of four e qua l resistances shmm in Figure IV and 

appl ying Kirchof f ' s  l aw, the algebraic su.m of the currents at a 

j unction equals  zero, the current at point Vo is 

Using Ohm's l aw to write the current in terms of resistance and vo l tage , 

the e quation b e c ome s 

+ + 
V3 - Vo 

+ 0 

Rz 

Where al l values o f  resis tances are e qua l (representing a homogeneous 

soi l  mass) ) the vo l t age Vo is the  following : 
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This equation is exactly analogous to the potent ial formu la, 0o , used 

in the numer ical analysis so lution 'of Laplace ' s equation for two-dimen ­

sional f low ( s ee Luthin ( 1 3) ) . This basic formula for the numerical 

ana lysis method is 

In a network s tudy, there are three types of so lutions which can 

be obtained: ( 1 )  equipotentia� lines, (2) streamlines, and (3)  f low 

ratE. ; or, in the case o f  drainage, the amount o f  water that can be 

removed during a given time . A voltmeter is used to measurE.  potential 

at each node, and the equipotential lines can be drawn by interpolating 

between potentials. To ob tain stre amlines, the boundaries are now 

· reversed ; then the potentials are again measured . To determine the 

flow rate, the amount o f  current passing through the circuit is 

measured. 

Boundary Conditions 

Vimoke and Taylor (24) describe the ca lculating and assembling of  

a resistance n2twork by the "building block method". Detai ied pro ­

cedures are given in this report on representing a rec tangu lar  b lock 

o f  soil, representing a circular drain , and repr e s entin g  a strati fied 

soil conditi on . The bo undary cond itions which apply to this thesis 

will be discussed . The se are represen t ing an impe rmeable b oundary , 

a ponded wate r condition, and a sur·facc o f  seepage around a drain . 

Luthin (1 1) de s cr ibed how poi nts on an imperme able b ou ndary can 

be represent ed.  On an imperm2 able bo undary th e firs t  de r iva� ive o f  

th e hydrau l i c  head  taken nor u1.2 l t o  the ir;1 erme able - oc.nd2_ry � s  equ a l  t o  



z ero . The average cross-sectional area of the f low section on an 

imperme ab le boundary is one-ha l f  that o f  the f low section in the 

interior. Since the cross -sectional area of the f l ow section is one ­

ha l f  and resistance is inver s e ly proportional to the area of f l ow ,  

the resist ance on the boundary must be twice the resistance o f  the 

interior. There fore , the resistances on the impermeable boundaries 

are twice the value of the interior resistances. 

A ponded  water condition is essential ly a wat er table at the 

ground sur face. Luthin (12 )  de fines a water table as "the locus of 

points of atmospheric pressure. " In ground water flow , �tmospheric 

pressure is t a ken as the datum point where pre�sure is zero. Since 

hydrau lic head or potential is the sum o f  the pressure head and the 

gravitationd l  head , the horizontal water table represents an equi ­

potentia l l ine where the hydrau lic potenti a. l , 0n , at the ground sur ­

face is equa l to th e e levation above the reference plane , hn 

0n = hn 

Figure V shows hm1 the vo ltage is app l ied  to the resistance network 

for a ponded water condition. 

20 

Manke ( 14) described how water flows as a surface o f  se epage around 

the drain  until this surface of seepage interse cts the water leve l in 

the drain . Luthin (1 1 )  describes how th is  s ur fa ce of se epage above t112 

water leve l in the drain can be  taken as the in t e r face b e twe e n  the 

saturat e d  soi l and the free  a tmo s phere . Again the hyd raulic head , 

whi ch i s  th e s um of the press ure heaw a�d the gr av i t a tional h e ad · for 

the sat urated c a s e, would  be e qual  to the gravi t ationa l head ove r the 
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surface of seepage . Here, the numerical value_ f or the hydraulic head 

or potential head at  any point on the surface of seepage would be 

e qual to the vertical distance of the point around the drain above 

the reference plane from which hydraulic head is calcu lated. 

Accuracy of Resu l ts 

Thiel ( 18) lists four primary sources of error in so lving a field 

pr oblem with the resistance net,vark . They are: 

1. Errors in representing an electrical e quivalent of the 

field problem. 

2 .  E r r ors resulting from inaccurate boundary definitions . 

3 .  E lectrical errors, due primarily to deviations of the 

indiv idual resistor  values from their specified 

magn itudes and to measuring errors . 

4 .  Possib i l i ty of error in interpolating and drawing the. 

f l ow ne t . 

The first and second sources of error are probably the most 

limi ting s ince it is extremely dif ficult to obtain accura te definitions 

of p2r ameters and boundaries o f  a complex protot ype field. Errors in 

represe nti ng an ele c trical  equiva lent can depend upon t he ne t spacing . 

In the resis tance ne twork as well as the nume r i cal analysis , the 

assumpti on was made that the po t ential is a linear functi on in two 

dimensions. This assump t i o n is accurate for  the par ts o f  the pr ofile 

distant from the t i le  drain but be comes less accur a t e  c l ose to t he 

dra in. The re fore , a f i ner  grid system is emp l oye d_ near th e drai�. 

E lectr i ca l errors are u s u ally s 1aa l l, probably less than 1% for 
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network resistors of t 1%. Measuring errors also are usually small. 

Luth in ( 1 1 ) states that over-all accuracies of 1% to 2% are not 

unreasonable to expe c t. 
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OBJECTIVE OF THE RESEARCH 

A gravel envelope is required to facilitate ground water entry 

into the drain, prevent erosi9n of the base material, and serve as a 

stabilizing foundation for the drain . The typical gravel envelope for 

a tile drain in the Oahe. Irrigation Unit will be embedded in a course 

silt base material which could prove to be a major hazard to the life 

of the tile -drainage system . The immediate obje ctive o f  this research 

is to study in detail the design criteria for a nonuniform (pit - run) 

gravel envelope as proposed in the drainage of the Oahe Irrigation 

Unit. Some of the questions needed to be answered are as foll ows: 

1. Is a grave l envel ope necessary for adequate protection 

of the tile drain in this case? 

2 .  Does the proposed thickness of gravel envelope meet 

the requirements of a successful envelope? 

3. Would a l�rger grave l envel ope thickness effectively 

increase the floi::v rate and provide more protecti on 

for the tile drain? 

4. What is the maximum physically noticed pene tration and 

concentration of base material into the gravel 

envelope ? 

5 .  What ef fe ct would time have on the flow rate and 

sediment discharge from the tile drain? 

6 .  Would the grave l enve lope  remain complete ly saturated at 

a l l  times  in a f i el d  si tuati on?  

24 



EXPERIMENTAL APPARATUS AND PR OCEDURE S 

This sect ion will be divided into four areas of discussion: 

plan of experiment, testing of �aterials, resistance network analog, 

and tile drain model . The problem is limited and examined in the 

plan o f  experiment section. The experimental apparatus and procedures 

used in this investigation are described in the testing of materials, 

resistance network analog , and tile drain model sections . 

Plan of Experiment 

The problem, as presented in the section entitled " Objective of  

the Rese arch" is to  study in de tail the design criteria for a non­

uniform gravel envelope as proposed in the d rainage of the Oahe 

Irrigati on Unit . 

From the review of literature it is evident that design recom­

mendations for gravel envelopes have been made by many investigators. 

However, most o f  the gravel envelope research has been with a cylinder 

model and fine sand as the base material. Using a cylinder model re ­

stricts the study to only vertica l flow of water through the pores o f  

the g ravel envelope ;  whereby, questions concerning the hydraulics or 

flow convergence near the tile drain cannot be answered . I t  is the 

author ' s opinion tha t  flow patterns near the drain are important to 

the <les i on o f  a or avel envelope for a loose, coarse silt base material. 
b o 

The prototype field selected for this investigat ion was the field 

dra i nage plot a t  the Rcd f � e l d  Irrigati on Farm, R edfield , S outh Dako ta. 

The drainage p lot  t as sc l e c t e  b ecause of its we ll- d e fined parameter� 

and boundar , co 1.cl i tions. fl:�r raulic conductivi ty measurements have been 
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made by a number of methods and compared to til e  outflow from the 

drainage plot for the severe case of a ponded water surface. A 

plastic barrier separating the drainage plot from the b order and a 

well-de fined, impervious boundary at a depth of 13 feet provide idea l  

boundary conditions. Figure VII shows the stratified soil layers in 

a tile trench resembling the so� l profi le found on the drainage plot ; 

the b ottom layer o f  coarse silt is where the tile  drain is embedded 

i n  the fie ld. The rather shallow soil profile and the coarse silt 

base material give cause for a hazardous drainage prob lem. 

2 6  

After c onsidering the problem and the se lected prot otype field , 

this investigation was limited to a study of  the following situations : 

1. A single nonuniform (pit-run) grave l material, similar 

to the envelope originally used for t he drainage pl ot. 

2. A single base material of coarse silt, as found below 

th e 7 - foot depth in the drainage plot. 

3. A ponded water surface condition, providing a severe 

tes t cas e for the enve lope in the f ield . 

The experi menta l plan cal led for study in thre e areas : pre limi­

nary testing o f  materia ls, resistance network anal og, and a tile 

drain model. The preliminary testing of materials inc luded a 

mechanic a l  ana lysis of the base mater i a l  and the grave l enve lope 

materia l, a perme abi lity test o f  the base material and the gravel 

enve 1 ope mate r i a 1 , · and a bu  1 k density tes t  of the base mater i a 1 in 

the fie ld . The res istance ne twork an� l o g  pre d i cted th e f l ow net· as 

well as t i le out f l ow for five ri.:.e. thods  of insta llation- -no gravel 



Figure VII . T i le Trench a t  Redfield Irrigat i on 
Farm Showing Strat ified Soil Layers  
in the  F i �ld 
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envelope and gravel envelopes of 3, 6 ,  9 and 1 2 -inch thicknesse s. The 

tile drain model was constructed in the laboratory permitting inquiry 

into  the necessity of the gravel envel ope, the penetration and con­

centration of sediment in the- gravel envelope ,  and the hydraulic 

properties of the gravel envelope . 

Te s tin8 of Materials 

One and one -half tons of coarse silt and a total of 50 gallons of 

gravel we re procured from the Redfield Irrigation Farm ,  Redfield , 

South Dakota. The coarse silt mat erial was obtained from a pile 

where the silt had been removed earlier at a depth of 7 to 1 3  feet 

below the surfac e. The gravel material was obtained from two other 

piles , which came from the same pit south of Redfield from which the 

original gravel material for the drainage plot was obtained . A 

mechanical Rnalysis was made of both materials to determine the 

particle size re lationship exis ting between the materials . A dis­

turbed permeabj_lit y test was made for the gravel material to determine 

a saturated hydr au lic conduct ivity value that could be used in the 

resistance network analog, and a disturbed permeability test was made 

for the coarse s i lt material to determine what hydraulic conduct ivity 

could be anticipat ed in the tile drain model. Also, a bulk density 

t est wa s made of the coarse silt in the field to determ ine the 

necessary compact ion in the til e  drain model . Care was t aken in all 

thes e t est s to use only cle a 1.1, well-mi xed mat erial .  

�ch 2_nica l Anc: l vs is 

A grave l  en ve lope is usually de s i gned on the basi s of d c t crminin 
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the mechanical analysis gradation curve of the base mat erial and select­

ing a gravel material to meet the design gradation re quirements. In 

this investigation there was no attempt to alter or grade the pit-run 

gravel material to give satisfactory performance , for indications were 

that the pit -run gravel material would fall within design requirements. 

To determine the gradation curv�s for the two materials , a sieve 

analysis was made for the sand and gravel ; and a combined sieve and 

hydrometer analysis was made for the coarse silt material. The grain­

size analysis test procedure was based on recommendations in "Soil 

Testing for Engineers" by Lambe (8) . Figure VIII shows the nest of 

.sieves , the motor -driven shaker , and the torsion balance used in the 

sieve analysis. 

S ieve Analysis Procedure for Sand and Gravel 

1. Two or three kilograms of the material were oven -dried. 
2. E ach sieve , thoroughly cleaned , was weighed to 0. 1 gram. 
3. A dried sample between 500 to 1000 grams was weighed to 

0 . 1  gram. 
4. The sampl e was sieved through a nest of sieves on a 

motor -driven shaker for 3 to 5 minutes. 
5. The material retained on each sieve and the pan was 

weighed to 0. 1 gram. 
6. The weight of the soil retained on each sieve was 

determined by subtracting the wei ghts in step 2 
from step 5 .  

7. The percentage retained on each sieve, the cumulative 
percentage retained on each sieve, and the percent 
f ine r by weight for each sieve were calculated 
by the fo l l owing : 

a .  Per c ent retained = weight o f  soil ret ained 
total soi l  weight 

X 100% 

b. Cumulative per centage retained = sum of  percentages 
reta ined on al l coarser sieves . 

c.  Perce n t  f ine r = 1 0 0% - cumulative p e rcentage retained . 



Figure VIII. Sieve Analysis E quipment 

30 



Combined Analysis Procedure for Coarse Sil t  

1 .  A sieve analysis was taken as outlined for the sand and 
gravel material . 

2 .  The No . 200 sieve was washed to obtain the total amount 
of soil finer than the No . 200 sieve . 

3 .  A suspension of one liter was made by adding distilled 
water to approximately 50 grams of· the dry soil 
retained in the pan . 

4.  After the suspension was shaken for 30 s econds, hydI·ometer 
read ings were  taken at \, \, 1 and 2 ainutes without 
removing the hydrometer. 

5 .  The suspension was remixed and readings were taken at 
time intervals of 2 ,  5 ,  10 , 20 minutes, etc . ,  
inserting the hydrometer a t  each o f  these times . 

6 .  Temperature observations and meniscus corrections for 
the hydrometer were taken periodical ly . 

7 .  The percent finer for the hydrometer, the effective 
diameter for the hydrometer readings and the corrected 
per cent finer for the combined analysis ,;-rnre cal­
cu l ated by the following : 

where = 

N 
Gs = 

v 
Ws = 

Ye = 

(a . )  N Gs 
Gs- 1 

V 

Ws  
Y c ( r - rw) x 100% 

percent finer by weight for the hydrometer 
speci fic gravity of solids 
volume of suspension ( 1000 cm3) 
weight of dry soil 
unit weight o f  water at 20 °c 

r = h ydrometer reading in suspension 
rw hydrometer reading in distilled water 

(b . ) D =J 1 8  � j Zr 

Ys - Yw t 
wherE: : 

D = 
)f = 

Ys --
Yw = 
Zr 

effe ct � ve diameter o f  the hydrometer readings 

vis co s it y  o f  water at test temperature 
unit ,:;Jc ight o f  soil gra ins 
un it weigh t o f  water at test temperature 

dist ance from surface o f  suspension to cen ter of 

hydromet er volume obtained from the calibration 

chart 
t tota l e l 2p s ed time 
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(c. ) 
where : 

1 Wl 
N = N X 

N1 = percent finer than No. 200 sieve 
N = percent finer obtained for hydrometer 

wl = weight of dry soil passing No. 200 sieve 
W8 = t otal weight of dry 'soil used for sieve analysis 

Permeability Tests 

A plexiglass, constan t  head, cylindrical permeameter was used to 

determine the disturbed hydraulic conductivit ies of the coarse silt 

base material and the gravel envelope material. The t est  procedures 

used for the two materials were somewhat different because of the 

application of their results. 
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A representative hydraulic conductivity measurement  of the gravel 

envelope material was obtained using the apparatus shown in Figure IX. 

A completely s aturated hyd raulic conductivity value was needed to  re­

present the gravel envelope in the resistance network analog ; there­

fore, the entrapped air in the pores of the material need be removed. 

Entrapped air can be removed from the porous material over a period of 

time by the passage of de -aired water through the sample . This requires 

considerable time to  accomplish (3) . Carbon dioxide can also be used to 

remove soil air . Carbon dioxide is slowly introduced before wet ting 

the sample; then upon percolatin g water through . the soil, the carbon 

dioxide will be removed being readily soluble in water . The in itial 

permeabili ty of a carbon dioxide treated soil will be approximately 

equal to  the max imum permeabili ty of an untreated sample (4) .  

De termining a saturated hydraulic conduct ivity value for the 

gravel material was accomplished in t h e  follo0ing described manner . A 



Figure IX . Constant Head, Cylindr ical 
Permeameter Used to Determine 
Permeability of Gravel � ter ial  
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vacuum pump was connected to the top of the permeameter, c losing a l l  

other valves and c lamps. After the vacuum was applied for 10 to 15 

minutes, carbon dioxide gas was introduced very slowl y  at the bottom 

of the permeameter whi le the column was stil l evacuated of air . When 

34 

a sufficient volume of carbon dioxide gas had reduced the vacuum gauge 

pressure c lose to zero, both the_ vacuum line and the carbon dioxide l ine 

were c lamped off. Nex t de-aired, disti l led water from a Mariotte bottle 

of  sufficient head was introduced by capillary action into the bottom 

of the permeameter to saturate the sample and to disso lve the remaining 

carbon dioxide. Final ly de-aired, distil led water was started from 

the constant head tank on the top of the permeameter, and the amount of 

water flowing through the sample was measured by timing the volume of  

flow into a graduated cylind�r. Observations were taken every 10 min­

utes unti l a gradual decrease in the flow was noticed. The hydrau lic 

conductivity was calculated by rearranging Darcy ' s  law and correcting 

for temperature . 

where 

K = 

Q = 

A = 

L = 

0 = 

,4 -·-

,lfc = 

hydraulic 

- K . = _Q L 
A 0 

conductivity (lt- 1 ) 

4 c  

volume of  water per unit ti.me (1 3t-l ) 

cross section o f  flow area ( 1 2 )  

sample  le i1.gth ( 1 ) 

head loss or hydraulic  pot ent ial d i f ference 

viscos i t y o f  i;;rot er a t  t emperature of  test 

viscos i ty of  w a ter at temperature 20°c 

( 1 ) 
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A hydrau lic conduct ivity measurement of the coarse silt base 

material was obtained using the apparatus shown in Figure X .  The 

purpose of this measurement was to det ermine what hydraulic con ­

ductivity value could be expected from the disturbed silt material in 

the tile drain model . Two trials  were made - -an unchanged s ilt samp�_e 

and an oven -dried .s.nd ground si lt  sample . Since conditions ·w·ere to 

represent those in the t ile drain model , there was no need o f  a vacuum, 

carbon dioxide or de -aired water supply .  Instead, the permeameter 

sa�ple was saturated by only capil lary f low from the bot t om of the 

permeameter. A Mariot te bottle -cvas adjusted to supply a constant head 

o f  water below the samp le surface in the permearnet er eliminating the 

problem of smearing the soil pores on the sample surface. This sat ­

uration process was continued overnight. Then, flow measurements and 

hydrauli c  conductivity calculations were made as described for the 

gravel material . 

Field Density 

A bulk dens ity test was made fer the coarse silt base material in 

the f ield to determine the necessary compaction in the t i le drain model . 

Thr e e  such meas urem0nts were taken i n  a tile trench at the Redfield 

Irr i ga t ion Farm, Redfield, Sou th Dakot a; two meaiurements were taken on 

the bottom of  the t rench, and one mea s urement was made on the side of 

the trench . The simplified f ield procedure was : level an area in the 

trenc h, auger a sma l l  h o l e ; measure by volume the amount of coar s e  

gravel ne e d e d  t o  fill the hole, and oven - dry the soi l  obta ined from the 

ho le. The bu l k  density is the dry weight  of soil divided by the volume 



F i gure X .  Constant He ad , Cyl indri c al 
Permeameter Used _ to Determine 
Permeability of Base Material 
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of soil for the small auger hole. 

Resistance Network Analog 

The resistance network analog uses a network of resistors having 

a finite resistance to represent a soil profile . The prototype f ield 

sele c led for this investigation was the field drainage plot at the 

Redfield Irrigation Farm , Redfield , South Dakota. Figure XI shows the 
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resistance network analog constructed on three tag boards in the labor ­

atory to predict the flow net and tile outflow for five methods of 

installation- -no  gravel enve lope and gravel envelopes of 3 ,  6 ,  9 and 

12 -inch thicknesses . The analog model represents a one -half cross 

section of the drainage plot , since flow patterns on one side of a 

plane th rough the center of the tile drain would be s ymmetrical to the 

other side . 

As previously mentioned, Vimoke and Taylor (24) described calcu­

lating and assembling of a resistance network by the r rbuilding block 

method ' '.  These procedures were followed in this investigation . Figure 

XII shows the one-ha l f  cross section o f  the drainage plot with the 

various s o i l l ayers o f  different hydraulic conductivity and the resist­

ance value s c alculated to represent the hydraulic conductivities. A 

resis t ance of 1 2 , 400 ohms wa s chosen as th e characteristic resistance 

value for the netwo rk and the bas e  mater i a l. This resistance value 

was selected for three rea3 ons : the availability of resistors, a value 

cons iderably smal ler tli an the inter nal resi s tance of the measuring 

e quipment ,  and a value considerably large r th an th0. con t act r e sis-tance 

d 1 bl  · es Figures in the mo.ny w ire s connecting the j ack an P ug as serr:. 1. 



Figure XI . Re s i s t anc e Ne twork Ana log  S imu l a t ing 
Water F l ow on Red f i e ld Dra inage P l o t  
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XX-XXII in Appendix B show the assembled resistors representing the 

soil prof ile ; each figure corresponds to a resistance network board 

constructed in the laboratory. 

The following assumptions' concerning boundary conditions for the 

resistance network analog were made : 
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1. No contribution to the flow beyond the impermeable boundarj_es . 

2. A ponded water condition on the ground surface. 

3. An empty drain wi th a surface of seepage . 

4. A completely saturated gravel envelope of the same thickness 

on the top, bottom and sides of the drain . 

Empl oying these boundary conditions, three solutions were obtained 

for the five methods of installation studied : (1) equipotential lines, 

(2 ) streamlines, and ( 3 )  tile outflow. The power supply used to 

establish the boundary conditions had an output voltage of 0-30 volts, 

a current regulation of + 0. 15%, and a voltage regulatio n of + (0. 0 1% + 

1 mv) . 

To obtain equipote ntial lines, 20 volts were applied to the top 

bou ndary. The bottom of the drain was connected to the ground as 

shown in previous F igure V. Volta ge s from a voltage potentiometer 

were i nserted around the periphery of the drain to represe nt a sur face 

of see page . The unconnect2d boundaries represented impermeable 

boundar ies. A d i gital voltmeter with a range , t 109 9. 9 volts , and a 

voltage accuracy , ± 0. 01% of the readi�g arid ! 0 . 0 1% o f  the full scale 

reading was used to measure the vol t a �e at each node in the reaistance 

net �ork. Then , the voltages  o t 2 ined at  each o f  the nodes were int er -



preted in terms of hydraulic potentials , and the equipotential lines 

were drawn by interpolating between the potentials. 

To obtain streamlines , the boundaries were ' 'reversed" as shown 
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in previous Figure VI. This time 2 0  volts were applied to the 

previously unconnected boundaries. The voltages were again measured 

using the digital voltmeter . The voltages obtained at each of  the 

nodes were interpreted in terms of percentage of flow , and the stream­

lines were drawn by interpolating between these percentages. The out­

lined procedure for obtaining streamlines was actually for a full drain 

instead of  an empty drain. In order to have obtained streamlines for 

.an empty drain , the procedure would have been to sketch orthogonal lines 

to the e quipotentials after knowing the current flow distribution on 

the ground surface. and around the drain . Making current measurements 

around the drain would require an extremely fine net to obtain a de ­

tailed des cr iption of the current flow. Manke (14) stated that there 

was no particular difference in flow patterns for an electrical or 

physical model when the drain was allowed to empty. As a check on 

using streamlines for a full drain rather than an empty drain , the 

equipotent ial lines were obtained for the full drain as well as the 

empt y drain . The potential for a drain running full with no back 

pressure would be equal to the radius of the drain  where the ref�rence 

plane is through the center of the drain paral lel to the soil surface. 

The potential for an empty drain ,;;,rnuld be equal to the vertical dis­

tance of any po int around the drain  above the r e ference plane. the 

results sh owed little difference in the potential pattern for a full 
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drain i n  comparison to an empty drain . 

To determine the f low rate per foot of tile drain , the amount oi  

current passing through the network was measured . This was accomplish­

ed by plugging a. high-precision shunt across the digital voltmeter in 

s eries with the resistance network . The shunt used  for all the 

measurements ·was a 10 -ohm resis tor with an accuracy of ± 0 . 0 1% plus 

the digital voltmeter . The selected shunt meas ured mi llivolts on 

the 100 millivolt s cale having a numerical value equal to  a current 

f low of 10 milliarnps . The amount of current f low was measured for 

both an empty and full drain for the five methods of ins tal lation 

s tudied . Using the fol lowing equations (24) tile outflow was cal ­

culated : 

== V 

wher � 

C0 = conversion coef ficient (volts/foot) 

V = opp l ied vol tage (20 volts ) 

0 n = potential at top boundary (fe et) 

0d = potent ial at the drain (feet) 

whe re 

2 1  K Ro 
Co 

Q '  f low rate  per foo t _ of drain (cub i c  fee t /day/ foo t )  

R 

I =  c ur r e � t  through the . network (amps ) 

d f- • · t  r e ore s� 0 nt ed by R0 ( 1 . 6  f t /  ay) K - h yclr 3.u l i c  con  uc .. 1.v1. Y � ..... 

charac ter i s t ic res i s t ance for the ne twor · ( 1 2 , 40 0  ohms)  

C0 •- con · e rs ion f actor  (volt s / foot) 



Tile Drain Model 

A t ile drain model was constructed in the laboratory permitting 

inquiry into the nece s s ity of the gravel envelope , the penetration 
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and concentration of sediment in the gravel envelope , and the hydraulic 

properties of the gravel envelope . A unique aspect of this model was 

the �nser ting of a single predic;ted equipotential line to s tudy the 

flow of water through the pores of the gravel envelope in al l directions . 

Previous investigators such as  des Bouvrie (5 )  and Sisson (16 )  used 

a rectangular box or cylinder model where the water was ponded on the 

surface in the model. In their s tudies , the f low was not represented 

. from all directions in the proportions found in the field. Cons idering 

the exploratory nature of the model cons tructed in the laboratory for 

thi s  thesis, only two method s of installation , no gravel en ,elope and 

a six-inch gravel envelope , were s tudied. The s ix-inch gravel envelope 

was chos en because thi s  thicknes s was pl aced on the field drainage 

plot and recon�ended in the 1960 Oahe Unit Report. 

The tile drain model , as sketched in Figure XIII , has outside 

dimen sions of L� feet by 4 feet and a depth of 2 feet. The model has 

two compar tment s ,  a front compartment for soil placement and a back 

compar tment fo r water contro l. A 3/4-inch plexig las s plate , with 1 2  

PJ. e r m- t e �  ta s arra11ged in a rectangular pattern , was bolted to the _ z o . e _ � ,._ p ...., 

fron t of the model . Six of the piezometer taps on one s ide of the 

plex iglas s _ plate  were placed flush wi th the soil; the other s ix taps on 

the oppo s i t e s i de o f  the p l ate were attached to ceramic Cl tp s ins�rt �d 

J· r 1  th · 1  Solcl� ·1.· ed  i n  the div ider separ a t ing the compartment s were 
- .l : 0 e S O  1. • '-· 
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\-inch, brass couplings . These brass couplings were spaced accqrding 

to t he streamline pattern on a single e quipotential line predicted by 

the resistance network analog. A d ifferent equipotential line was 

used for each of the two inst �l lations studied. Connected to these 

couplings were filter tubes through which water flowed into the soil 

compartment. Ten filter tubes represented each installation studied. 

An adjustable float mechanism in the back compartment maintained the 

required head of water in the filter tubes to establish the single,  

predicted e quipotential line in the soil . Plugs could be put into 
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the couplings whenever the filter tubes were not in use. Through the 

center of the tile drain model a 6 -inch diameter bell and s pigot con­

crete tile was permanently fixed leaving a 1/8 to 1 /4 -inch joint spac­

ing centered in the soil compartment. 

The original test procedure for placement of materials, saturation 

of the porous media , and maintenance of flow resulted in a number of 

problems. F irst , ·the materials were placed and saturated in 3-inch 

layers . It was expected that the coarse silt material would compact 

itself to field density when satu rated in small layers. As the 3_-inch 

soi l layers ,J�re placed in the front compartment of the mod el, water 

from the ba c k  compartment, through a valve in the bottom o f  the com ­

par tment divi der, was al l0wed to r i s e  i n  the s o i l  layers . This process 

con t inued until  s aturat ion reached  the tile drain. Then , with plexi ­

glass covers ove r th t.: concrete tile ends � ·wate r  from a 25- foot head 

tat;.k was for c e d  back th :;_·ough the ti le o 1:,cn.:. ng in ord e r  to  s aturate the 

soil l ayer s  above t l , e  ti le _dra in . The s a tura t ing of t l e soil in laye r s  



caused smearing of the soil pores between the coarse silt layer $. 

Als o, the for cing o f  water into the model with a high head caused a 

surging which moved the smaller particles into the gravel envelope as 

the head o f  water was removed'. 

An additional problem was the method for supplying water into the 

soi l compartment. Originally, ceramic filter candles were conne cted to 

the brass couplings to supply water into the soil. However, these 

ceramic candl es were not suf fic iently permeable to maintain -he re ­

quired flow o f  water. To replace the filter candles, filter tubes 

were designed. These filter tubes were made from plastic PVC pipe. 

The PVC pipe was longitudinally slit three times around the circum­

ference o f  the pipe . Then, the slotted pipe was wrapped with glass ­

f iber sheets ("Tileguarcl " )  to prevent sediment clogging. These filter 

tubes e f ficiently maintained the required f low o f  water . 

The correc t e d  test procedure began with the placement of materials 

in the tile drain modf'. l .  A nearly dry sample of coarse silt was weigh ­

ed and compacted in 3 - inch layers to the previously determined field 

density. Very little packing was necessary to obtain the required 

bulk density for the coarse silt base material . When the gravel 

envelope was compacted in the mode 1 ,  the final bLtlk density o f  the 

permeab ili t y  test o f  the gravel was duplicated. The ten filter tubes, 

spaced on a sino le  predi cted e quipotentia l line for the installation 

being studi ed, were pla ced as the soil was compacted . After the p l a c e ­

ment o f  ma t e ria l s ,  f l ow was started i n  th e f i l t er tubes leav ing the 

p l  xiglass covers over the caner _ te tile ends . The soil model i· as 



a l lowed t o  saturate for 1 0  to 1 2  hours. The plexiglass covers were 

then removed and flow commence d from the tile drain model . 
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The corrected t est procedure was repeated for the two methods of 

instal lation - - no gravel  envel?pe and a 6 -inch grave l envelope . Figures 

XXIII and XXV in Appendix C show with a double line the equipo tential  

line �redicted by  the resistance ne twork analog and replicated  in the I 
ti le 

1
drain model for each o f  the instal lations st ud ied . 

Three  observations were ascertained from tha ti le drain mod e l : 

water discharge, sediment discharge , and hydraulic head or  potential 

head distribution . Water discharge was determined by two volumet ric 

methods . First , the volume of flow into a graduated  cylinder was 

� imed per i odica l ly . Se condly , the f low rat e  was de termined using 

a t ipping bucket  where an Este rline Angus event recorder indicated 

the number of t imes the bucke t  t ipped for a giv2n time. Sediment  dis­

charge sample s  were taken whenever a noticeable amount of s ediment 

appeared in the ti le outflow . Then an additional discharge sample was 

taken whenever the sediment ceased in the t i le outflow. The s e  dis­

charge sampl es were taken at the. same t ime as the graduated cylinder  

f low measurements .  To  determine the amount o f  sed iment , a t c t a. l  solids 

analysis wa s performe d on the discharge s amples cont aining s i=- d iment ; 

and a d i s s olved so lids analysis was performed on d i s charge s amp l e s  

containing no sedimen t. The solids analysis was performed wi th a 100 -

milliter sample  of the discharge by weighing the residue uron evapora ­

t ion ove r  a wa ter  bath and drying at  10 5° C in a  porce lain dish. _ The 

r .f - f cl · d · l ,.. c ,., 1 cu 1..,  -1- "'d by Tilll 1_ t i 0 1  '
.1

1 f. G .0_� th(� d 0.0 U !'.l t 6 f a L e  o s e i men t 1 s c 1 a r g e u a�, o. - c. 1.. ,  - , _; 

sed iment, total s o lid s minus d i ssolved solids, t ime s the  fl ow rate at 
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th e time of sampling. To determine the hydraulic potentia l representa­

tion in the model, the twelve piezometer taps on the p lexiglass front 

were connected by clear vinyl tubing to an inverted manometer board . 

The adjustable., inverted manoraeter measured the head of water for 

both positive and negative pressures. These hydraulic head or 

piezometric head readings were 1'.lade periodical ly a long with the 

graduate cylinder flow measurements . 



RESULTS OF TE STS 

The primary objective of this investigation was to study in de­

tail  the design criteria for � nonuniform (pit-run) gravel envelope as 

proposed in the drainage of the Oahe Irrigation Unit. Some questions 

were asked concerning the necessity, required thickness, sediment 

movement, and hydraulic properties of the proposed grave l envelope. 

Data , analysis, and discussion are found in the following 

sections. 

Properties of Test Materials 

A mechanical analysis was made of the base and gravel materials. 
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Figure XIV presents the grain -size distribution curves for the materials. 

Shown in dashed lines on the same figure are upper and lm,Jer limit 

curves based on design criteria recommendations by the U. S . D . A .  Soil 

Conservation S ervice (19, and on page 9 in th is thesis) . The 

following Filter -Aquifer ratios were cal culated for the test materials: 

n50 Filter 

D50 Aquifer 

Dis  F il te r  

D15  Aquifer 

Dis F i lt er 

D3 5 Agu i fer 

78 

9 . 1  

where n15 , n50 , and n8 5  are _ the respectiv2  1 5% ,  50% , and 85% finer 

grain size from the grada t ion cur 1es of the materials . It is worth 

noting lhat the gra i n -size dis t r ibu tion curves  are often only ap-proxi­

mate . ·  Lamb e (8) d i s  cus s e s  s oW:'. o f  the reasons why the mechc:.nicc 1 
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analysis measurements in the laboratory are more questionable for the 

fine-grained soi ls than for the coarser materials . 

Comparing the mechanical analysis gradation curves with the 
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design criteria recommendations , it was conc luded that the pit -run 

gravel material may have been coarse for the base material. The 15% 

size (D1 5 )  of an envelope mater �:al should not be greater than five 

times the 85% size (Da s ) o f  the protected soil . The ratio of D1 5 of 

the filter  to D35 o f  the soi l is cal led the piping ratio . Piping 

oc curs when a large amount o f  soil is washed in or through the envelope . 

Cedergr n (2 ) ind i c ates that the piping ratio may be up to 10 before 

appreciable amounts of soil will move through the envelope . But with 

a piping ratio above 10, erosion is very likely to occur . The piping 

ratio for t he envelope material in this investigation wou ld indicate 

the poss ib ility o f  an erosional failure . The ratio of D 15 o f  the 

fi lte r L n15 of the soil i s  to guarantee suff ic ient permeability to 

prevent the bui ldup of large seepage forces and hydrostatic pressures 

in filter and drains . The ratio of  Dso of the filter to  D50 o f  the 

soil is to enoure that grain -size curve for the envelope material is 

somewhat paial lel to the base material . In all three crit eria, the 

Filter ··Aquifer ratios we re somewhat larger than design reconnnendat ions. 

A dis turbed permeability test was made for the gravel material 

to de termine a saturatec hydraulic conduct iv ity  value that could be  

used in  the r e sis tance netwoik anal o g , and a disturbed  permeabil ity 

test wa s mad i2  for the bas e  mo.t eria l to deterr:1ine i; :-hat  hydr aulic con ­

duc t iv i ty  could b e  ant icip ated in the ti le drain n�u e l  . .  Also , a bulk 



density test was made of the base material in the field to det�rmine 

the required packing in the tile drain model. Table 2 shows the 

average values and ranges of hydraulic conductivity and bulk .density 

of the gravel and base material for the preliminary tests. 
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Table 2. Average Va lue s and Ranges of Hydraulic Conductivity and Bulk 
Density of Gravel and Base Material f or Preliminary Tests 

Material Tested 

Hydraulic Conductivity 
Time of Average R ange 

Test (in/hr) (in/hr) 
(hours) 

Bulk Density 
Average Range 

(lbs/ft3 ) (lbs/ft3) 

Nonuniform Gravel 1 

5 

3 

2 7 .33 25 .5 1-28 .74 1 10* 

Unaltered Silt 

Dried and Ground Silt 

0 .19 0 .15-0 .2 5 

0 .2 7  0 .20-0 .40 

***Bulk den sity of silt from field test . 
i��Data 1ot obta ined . 

7 1-84';',;',-;', 

*Bulk density of gravel from cylindrical permeameter in laboratory. 

The dist urbed hydraulic conductivity values for the nonuni form 

(pit-run) gravel material were quite high. Comparing the hydr aulic 

conductivity  of the gravel material to the base material, there is a 

tremendous i ncre ase in the ability to conduct air or water through 

the ma cropores of the gravel envelope . This explains why the envelope 

is of ten ass umed to be completely permeable and to represent the 

actual or ef fective diameter of the tile drain. This assumption is 

only approxima t e l y  true and there would be some resistance or head 

loss attributed to the envelope as water flows into the tile drain. 

Thus , th e as sumpt i on was made for the ponded water  condition on th� 

ground su r face tha t the gravel envelope would  be completely saturated 



at all times. The average hydraulic conductivity value was us �d to 

represent the gravel enve lope for the resistance network analog. 

In contrast to the nonuniform gravel material , the disturbed 

hydraulic conductivity values for the base material were quite low. 

Two trials were made for the base material - - an unchanged silt s ample , 

and an oven-dried and ground silt sample . The unchanged s ilt s ample., 

as procured from the prototype fie ld, was initially around 10% 

moisture. The hydraulic conductivity obtained in the laboratory 

cyl inder permearneter was approximately one- quarter the hydraulic 

conductivity obtained in the field by the auger hole method. It was 

hoped that by oven-drying and grinding the silt , a hydraulic con­

ductivity near field value cou ld be reached . Table 2 shows the 

hydraul ic conductivity o f  the coarse silt to have increased after 

being dried and ground. However , it was decided that the small 

increase was nonbeneficial since a huge quantity of oven-dried and 

ground materia l would be required to fill the tile drain model . The 

average bu lk densities shown in Table 2 for gravel and unchanged silt 

material were emp l oyed in packing the materials in the tile drain 

mode l. The bulk density of the gravel matE- rial was the final density 

which the wat er compacted th2 gravel in the cylindri cal permeameter . 

The bulk density of the coarse silt material was determined by field 

measurement and repl icated in the perme ameter and the tile drain model . 

Predicted Flow Jets anc!_ Tile Out flow 

A re s i s tance n2t1 :ork analog  was cons tructed to predict tl e flow 

net and ti le o utflow for five  methods o f  ins ta l l ation- - no gravel 
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envelope and gravel envelopes of  3, 6, 9 and 12 -inch thicknesse� . The 

assumptions listed on page 40 made concerning the boundary conditions 

were adhered to in the re sistance network analog. 

Figures XXIII - XXXII in Appendix C show the c omp lete flow net 

and an expanded flow net near the drain for all f ive installations. 

When the e quipotential lines for the various installations are examined, 

it appear s  that  the potential heads near the drain are continually 

moving outward as the thickness of gravel material increases . However, 

there is no particular difference in the potential pattern further out 

in the s oil profile as the thickness of gravel material increases. 

_ When the streamlines for the various installations are examined, it 

appears that the percent age of flow from the bottom o f  the drain is 

continua lly in creasing as the gravel envelope thicknes s increases. 

There are two possible advantages to a larger gravel envelope 

thicknesc if the primary function of the envelope is t o  prevent 

clogging of the di ain with sediment. These two advantages are addi­

tional pr otection from sediment movement into the envelope and addi­

tional water flow into the bottom of the dra in . . on the basis of this 

study, the �dditiona l  water flow into the bottom of the drain has been 

predicted by the resistance network ana l og foi a ponded water c ase. 

A soil particle entering from the top of the drain has both a dowm�ard 

force from the wa ter and a gravi tationa l force from the weight of s o i l  

particles moving into the drAin; whereas , a soil part i cle entering the 

drain from the  bot t om w i l l enter only if the upward force from the 

water is greater  than the gravitat ion al  force from the wei ght of soil 
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particle s .  A greater percentage o f  a given water flow from the bottom 

of the drain could fea sibly decrease the sediment movement into the 

drain. 

Tab le 3 gives the predicted tile outflow for an empty and full 

drain from the resistance network analog at different envelope thick­

nesses. The predicted tile outflow was calculated to three significant 

figures , since the given parameters were only to three significant 

figures. The large st percentage increase in tile outflow occurred 

when the gravel envelope was first added. The subsequent increase s  

in tile outflow, a s  the gravel thickne ss was increased, were o f  

approximately the same magnitude. The difference between the predicted 

tile out flow for an empty and ful l  drain was almost the same for e ach 

grave l envelope thickne ss . This dif ference, although the empty drain 

had a larger predicted tile outflow, may not be considered physically 

si gnificant in the field. 

Manke ( 14) concluded that the percentage increase in discharge 

would be about equal to the corresponding maximum change in hydraulic 

head which occurs when the water level in the drain subsides. The 

con<.:lus ion pertain s to a flow re gion which is constantly saturated 

and ext ends at least a small distance below the ·drain. In this investi­

gation, the ful l drain had a 9 3 -inch hydraulic head or potenti a l  head ; 

the emp t y  dra in had a 99 -inch hydraulic head or potenti al head . There­

fore, there was a 6. 5% increase in hydraulic head as  the drain emptied. 

Looking a t  the per cent age increas e i n  discharge from the full t o  emp ty 

dra in shown in Table  J, this stL dy appears  to verify Monke ' s c o nclu sion. 



Table 3 .  Pred icted Ti le Out flow for Empty and Ful l Drains from Res istance Network at 
Di f fe�:· e �1t E �1ve l ope Th icknesse s  

Grave l Enve l ope Empty Drain Ful l  Drain Di fference 
Thickne s s  

Ti le Percent T i le Percent Ti le Percent 
Out f low Increase._•_., Outf low Increase.,•_., Outf low Increase-,'d<' 

( ft3 /day/ ft ) (ft3 /day/ ft) ( ft 3 /day/ ft) 

none 1 5 . 10 14 . 10 I 
1 . 00 7 . 1  

3 18 . 30 2 1 . 2  1 7 . 10 2 1 . 3  1 . 20 7 . 0 

6 20 . 30 10 . 9  18 . 80 9 . 9 1 . 50 8 . 0 

9 2 1 . 80 7 . 4 2 0 . 30 8 . 8 1 . 50 7 .4 

1 2  2 3 . lj.Q 7 . 3 22 . 10  8 . 8  1 . 30 5 . 9  

* An incremental percent increase in ti le outf low from previous  gravel envelope thi cknes s . 
..,•,·-k A pe rcent increase in ti le outflow from a ful l  to an empty drain . 

V1 
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Thus, the tile outflow at various water levels in the drain can .be 

ade quately predicted knowing the outflow for a given water level. 

No Grave l Enve lope Model 

The no gravel envelope tile drain model resulted in almost 

immediate pi ping . Piping occurs when e rosion channels are formed 

by the flow of water through the soil moving soil_ particle s into 

the drain. A piping failure in the field would be exhibited by a 

sink hole or cavity in the soil . Figure XV shows the tile drain 

mode l failure in the laboratory. The conditions replicated in the 

mode l were adverse , since a ponded water case was represented and 

onl y  a shallow profile of coarse silt was represented. The extreme 

ponded wat er condition e stablished a high hydraulic head or· potential 

head near the drain permanently . Whereas, in the field the ponded 

water condition would occur for only a short duration of time . Also, 

the shallow soil profile gave immediate access to piping where the 

hydraulic gradient could easily move the coarse silt material into the 

drain . Whereas, once a cavity had formed in the field , more stable 

layers o f  s_ilty c]  ay loam and silt loam would pack into the cavity 

where the prevailing hydraulic gradient near the drain could less 

l i kely move the soil particles .  Even though the outcome without a 

grave l enve l o pe in the field would be questionable , an e rosional 

failu re would prob ab ] y  still occ ur. 

Tab l e  4 compares the tile outflow and rate o f  sedimen t dis�harge 

of the no grave l enve lope model  wi th the 6 - inch gravel envelope model. 

Care was taken in hath mod e ls to see th a t  the porous media ·was s atu -

57 



Figure XV .  No Gravel Envelope Tile Drain 
Model Piping Failure 
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Tab le 4 .  Compar i s on o f  Water Dis charge and Sediment Dis charge for No Grave l Enve lope and S ix­
Inch Grave l Enve lope Mode l s  

Treatment Time Water Dis charge* Sediment Dis charge** 
of Te s t  

Average Range Average Range 
( ft 3 /day/ ft) (ft3 /day/ft) ( lb s /hr/ ft )  ( lbs /hr/ft)  

No gravel  1 5 minutes  1440 906 - 2820 420 2 18 - 6 2 2  

6 - inch grave l 4 days 4 . 95 7 . 2 6 - 3 . 52 none 0 - . 08 

"i', No gr ave l measured by tipping bucket , 6 -inch gravel measured by graduate · cylinder . 
;':;': S ix - inch grave l sediment only during firs t 2 hours of te st . 

IJl 
\.0 



rated and compacted to field density before tile outflow commenced. 

The no gravel envelope trial lasted for only 15 minutes. Yet , in , 

15 mi nutes over one hundred pounds of soil was lost from the model. 
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An overwhelming flow rate was developed in the model. In the author's 

opinion ,  chances for clogging the tile drain without a gravel envelope 

are quite probable . 

Six-Inch Gravel Envelope Mode l 

The 6 -inch gravel envelope model resulted in protection for the 

tile drain. Table 4 compares the tile outflow and rate of sed iment 

discharge of the 6 -inch gravel envelope model with no gravel envelope 

model. Both water discharge and sediment discharge were sizeably 

reduced. Only a trace of fine soil parti c les moved int o  the drain . 

The average tile outflow wa s approx ima t ely one-quarter the predicted 

tile out flow int o  an empty drain for a 6 -inch gravel thickness from 

the resistance network analog, as shown in Table 3. 

Water Discha_rge 

Figur e XVI pr esents the hydrograph of t ile outflow from the 6 - inch 

grave l  envelope model for a four-day trial. The tile outflow started 

at a higher r ate and decreased as time progressed. The pattern of 

decrease -cvas similar to what occurred on the field drainage plot at 

the Red field Irrigation Farm , Redfield, South Dakota, as shown in 

previous Figure I .  The overall tile outflow from the tile drain mode l 

was cons i d e rably less than the outflow· from the drainage plot and the 

predicted out flow from the resistance network us ing auger hole _ hy2r aul i c 

conduc t iv ity me asureme nt s in the fie ld. 
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A possible reason for the previously stated lower tile orit flow 

from t he tile drain model was bridging of  soil particles on the inter ­

face , which separates the base material and the gravel envelope , or 

within the gravel envelope itself. Lembke ( 10) attributed an increase 

in flow rate for the second year af ter construction of  the drainage 

plot to a removal or rearrangement of fine particles in and around 

the gravel enve lope. I f  bridging was occurring in the model , it was 

decided to force water at a low head back through the tile drain to 

develop the gravel envelope. Figure XVII shows the apparatus used to 

backflush the gravel envelope. A 1\ foot head o f  water was applied 
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to the tile drain with the plexiglass cover over the tile drain ends. 

Here , the filter tubes, which injected the water at a 1\ foot hydraulic 

potential during the model trial, became multiple drains on a single 

equipotential line. The backflush process was continued for a day. 

A rever sed potential distribution was indicated on t he manometer board 

concluding that the backflush process was a success. 

After back flushing the tile drain model , the plexiglass covers 

wer e remove<l , f low start ed  in the filter t ubes , and the flow commenced 

from the t i l2 dra in mo del. Again the tile out flow star ted at a higher 

ra te , 2. s shmm on th e hyclrograph on Figure XVI , ·but soon decreased to 

about the s ame f low rate as before backflushing. It appears that the 

lower  tile o u t flow was not caused by restric tions in the gravel envelop� 

Mode l Permeo.bi litv 

d d the lo�er than pr e dicted til e  out flow As previously _is cusse , 

from the tile  drain mode l was not cause d by r�strict i ons within t he 



Figure XVII . Backflush ing Six-Inch Grave l 
Envelope Tile . Drain Mod el 
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gravel envelope. Ra th e r , the lower tile outflow may be attributed to 

a reducti on in the  p2rmeability o f  the disturbed, coarse silt base 

material. The h i � e r  tile outflow was predicted using the 1964 auger 

hole measurc1nents for the permeability of the base ma terial in the 

field . Tab le 5 compares the average values and ranges of hydraulic 

condu ctivity in the field and laboratory . The field permeabi lity of 
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the base mater i al was approximately four times the permeabi lity obtained 

in the laboratory. 

Table 5. Comparis on of Average Value s and Ranges of Hydraulic Conduc­
tivity for the Base Mater ial i n  the Field and Laboratory 

Source of Data 

1964 Au ger Hole Measurements 

Unalt ered Silt S amp J. e Using 
Cylindri c a l  Perme amcter 

Six - Inch Gr ave l Envelope 
Tile Drain Model 

Hydraulic Conductivity-;': 

Average 
(in/hr ) 

0 . 8 0 

0 . 1 9 

0 . 18  

Range 
(in/hr) 

0. 78-0 . 82 

C . 1 5 ·-0. 2 5  

0 . 1 3 - 0 . 27 

- - ==================----..:::::::::::::::::::::::::::::::::::::::::::::::::::::::.=- - ---·-· 

*Corrected to 20° C .  

1 h hydrallll. c conductiv ity vali1es of  the base mater -T o  ca l cu 3 t c  t c 

dr· ai· n  mode l, th� res i s t ance ne twork tile outf low equa-ial in the Li l  c "· 

�0 s  rea_ r ranuped with hydrau lic conduc ti on , on page !.! 2 in th is the s i s , , u 

t · · t K t - .::> S  the unknm•Jn . l V l  y ,  , - e 1. JTt  , ThP a c tual t i le  out f l ow ,  Q ' , was then 

· , · res i stance va lue , R ,  C i arac i: C' i'." l S  C J_ C  r e  re 

c1.mount: of currt2nt f l o\·:, I ,  for the e .1 .�_; ty  



drain, 6 -inch gravel envelope resistance ne twork analog . The two 

assumptions b eing made were : ( 1) the ratio between the hydraulic ' 

conductivity of the base and gravel material for the resistance net­

work analog would b e  th e sarne in the tile drain model, and (2) the 

flow pattern for the resistance n etwork analog would be identical in 

the tile drain model. 

Although hydraulic conductivity for a given s oil is o ften con­

sidered constant , it can vary widely for given material , depending on 

a number o f  factors. Cedergren (2) lists the following f actors whi ch 

can affect the ease at whi c h  \later can travel thr ugh the soil : 

1. The viscosity of the flowing fluid (water) 

2 .  The si z e and con tinuity of the pore spaces or joints 

t hrough which the fluid flows, i�hich depends upon : 

a .  

b .  

The size. and shape of soil particles 

The density 

The d etailed arrangement of the individual soil 

gra ins, called the structure 

3 .  The presence of d iscontinuities 

The in f l uence of parti c le arrangement and of discontinuities are 

pos s ib y the more important reasons for the reduction in pe r me ab i l i ty 

o f  the b a s e  mate r ial in the til e  drain  model . Natural soil deposits 

f · t t re Water -deposited soils are con -are usua l ly  no nuni  orm in s rue u 

d · h · t 1 layers and usuilly more permeable in a hori­structe- i n  t or i zon - a L  

zontal th a'.7. i. :1.  a ver t. i. c a l  d irection; whereas, windb lown soi ls are 

1 1  tl: horl· zon, t � l l v There is  a possi -often mor..:' pe n"! ,e .=1ble ver t ica Y 1 2.n - a · -., · -
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bility that the base material would have been water -deposited or set 

under water for a long period of time . Dispersion of fine particles 

often affects particle arrangement in the laboratory. Soils compacted 

in a relatively dry state can result in a fairly high permeability ; 

on the ot her hand, if a liberal amount of moisture is present, the 

part icles tend to slide over each other resulting in a relatively 

impermeable structure . In the permeability test of materials, a 

sample o f  ground and dried material was tried ; the permeability was 

increased but not to the hydraulic conductivity value found in the 

field . Discontinuities, such as undetected j oints or seams, can 

easily develop with time in the field to substantially increase 

permeability. Any one of these reasons could explain the reduced 

perrn� ab i lity of the base material . 

Sed iment Disch arge 

There w a s  little sediment discharge into the t ile drain for the 

6 - inch gravel envelope model . The small amount of sediment that did 

occur ca�e during the early part of the tile outflow period . The 

s � l ime n t  d ischarge rate from the model was initially less than one­

t enth poun·d pe r hour per foot of drain and decreased as the time pro-

:l T�1 i· s  was si�il ar to the sediment discharge pattern from gre s s e L . t 

the field  draina ge p lot where Lemb):<e (10 ) stated that sediment occurred 

only dur i n g  the e ar ly part · of the tile outflow . 

I k · t F · oure XVII · shm-jing the backflushing of the gravel 
.,O O ing a l 0 

enve l o p e, i t  can be seen that the gravel envelope thickness on top of 

. • 1 h b een reduced where the orig inal gravel envel -
t he t i l e  d r e . ..  1 c:1 -::i 2 . as - , 



ope thickness is shown by a black square around the tile drain- in the 

figure . A mechanical analysis was made of a 2 -inch vertical core on 

top and b ottom of the tile drain after completion of the model trial . 

The grain-size distribution curves of the top and bot tom gravel cores 

along with the original gravel samples for the 6 -inch gravel enve lope 

are shown in Figure XVIII . It._ appears that the gradat i on curve for 

the gravel material on t op of the ti le drain has more fine particles 

than the gravel material on the bot tom of the tile drain or the 

original gravel material. It can be noticed that the original gravel 

material used in the 6 -inch envelope model was somewhat coarser than 

the gravel t e s ted in the preliminary test, the reason being that the 

orig ina l  sample was depleted and the second sample obtained proved to 

be coarser . It was concluded tha t a larger physical penetration and 

concentrat ion o f  coarse silt could  be expected into the top half than 

into the bo t tom h a lf o f  the gravel envelope . 

Mode 1 Rf: n re.  s £. n tat?.:.£� 
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Dup li cating the predict ed flow net in the tile drain model, filter 

tubes were  spaced  according to the predicted streamline pat tern on a 

singl e equ i p o t e n t ia l. from the r esistance 8etwork ana log. Figure YJ::V 

in the Appenc ix c shows the predicted , 1\ foot  equipotentia l  line and 

s treartiline pat tern which was replicated in t he tile drain model for 

the 6 - inch o-ravel enve lope tri a l. F i gure XIX shows t e typical equi-
o 

pot entia l pa t terns ex ist ing in the . od e l  over the four-day t rial. 

Thes e  equi po t ent i a l  li nes we r e  ob taine d by interpola ting betwe�n th� 

hydrau l ic or pi ezoue l r i c  head readings on the inverted manometer board. 
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The 1% foot equipotential line in the model closely corresponds to 

the applied 1� foot equipotential curve . A lso there was very little 

variation of the hydraulic potential patterns within the four -day 

trial. Thus , evidently the tile drain model adequately replicated 

the equipotential pattern predicted for a ponded water condition in 

t he field. 

An outcome accrued from the hydraulic head or potential head 

7 0  

readings was that all pressures in the model were positive. The 

resistance network analog had predicted negative pressures above the 

tile drain within the gravel envelope. The positive pressure readings 

within the gravel envelope would indicate that the envelope remained 

saturated at all t imes in the ti le drain model. The lack of negative 

pressures above the tile drain can be explained from the lower hydraulic 

conductivity value of the coarse silt base material in the tile drain 

model than found in the field and represented in the resistance net ­

work. The lower hydraulic conductivity caused a reduction in the 

head l o s s  through the base material �stablishing a higher equipotential 

pattern wi thin the gravel envelope for the tile drain model . This 

higher e qu {pot ential pattern near 'the drain can be seen by comparing 
. . 

Figure XIX with the predicted equipotential pat tern from the resistance 

network analog shoi:m in Figure X)...7V in Appe n d i x  C • 
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RECOMME}..TDED SPECIFICATIONS 

A lthough nonuniform (pit-run) gravels and sands s ometime s can be 

us ed for envelopes,  most na�ural deposits  are highly variable in grading 

from point to point in the borrow area . Also, many aggregates break 

down and develop a greater proportion of fine particles during handling, 

placement, and compaction . The materials may meet grading specifica­

tions when they arrive at the j ob but may fail if tested after com­

paction. Hence, s amples for testing should be taken of the materials 

af�er they have been compacted. The need for a high-quality gravel for 

tile drains cannot be overemphasized . Among prere quisites for good ·· 

quality construction are well-established specifi cat ions for the 

gravel mat eri a l. 

Based  on t h e  r es ults  of this investigation, no change is proposed 

in the use of a nonuniform (pit-run) gravel envelope in the drainage 

of  the Oahe Irrigation Unit . Al so , no change in th e grad ation require ­

ments in the s e lecti on o f  a gravel envelope for the coarse  silt base 

material, as  shown in the previous Figure XIV, will be made . Pos sible 

spec i fi c at i ons for the placement of a satisfact ory envelope ar e the 

following adap t ed from the form u s ed by Ceder gren (2 ) : 

The aggre gate s used sh all be compos ed of hard 
durab le  s and and gravel particles free from organic 
matt er, clay balls, soft par ticles, and

_
othcr 

i mpuritie s o:c foreign ma t t e r. After being compa c t e d  

in  the  ti le  trench ,  the material shall conform to 
the folloHing grading requirements: 



Sieve No. or Size Percent Passing by Weigh_t 

3/4 inch 100 
No. 4 8 5  to 100 
No. 16 50 to 9 5  
No . 50 5 to 50  
No . 100 0 t o  10 

The trench will be excavated 6 inches below the 
bott om grade of the tile to accommodate a 6 -inch gravel 
envel ope . A 6 -inch gravel envelope will be provided above 
and below the tile drain with a 6 -inch minimum thickness 
on the sides. The maximum thickness on the sides can 
vary, depending on the method of installation and the 
contractor . At no place shall a tile drain be embedded 
in a gravel envelope of dimensions smaller than those 
prescribed. 

The gravel mat erial as placed and compacted in the 
tile trench shall be free of segregation and contamina­
tion. I f  th e gravel envel ope material fails to meet 
the speci fied requirements, the material will be con ­
s idered unacceptable and shall be removed . 

7 2  



SUMMARY AND CONCLUSIONS 

Summary 

To ensure a longer life for the tile-drainage system , a more 

permeable backfill material than the base material is often placed 

around the d rain. This material , placed on either the top, bottom , 

or sides o f  the drain, singularly or in combination ,  is called an 

envelope. The three-fold purpose is as follows : (1) to  exclude fine 

soil particles from moving into the drain and resulting in clogging , 

(2) to increase the ef fective diameter by providing a highly permeable 

zone around the drain , and (3) to serve as a stabilizing foundation 

for the dra i n .  

The pr inc i p le objective of the investigation was to study in 

detail the desi gn crit _ria for a nonuniform (pi t -run) gravel envelope 

as proposed in the drainage of the Oahe Irriga tion Unit . The proto­

type field s e lected for this inves t i gation was the field drainage 

plot at the  Red field Irrigation Farm , Red field, South Da kota. This 

study w2 . .  :, l imited in the foll owi ng ways : (1) a single nonunif rm 

(pit -run ) gravel material , (2) a single base material of coarse silt, 

and ( 3 )  2 ponde d  water condition. 
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The exp e r i men t a l  plan cal led for study in three areas--preliminary 

te s t i ng o f  rnnter i a ] s ,  a re s is tance network analog, and a tile d�ain 

model .  '),h  · · ar test 1.· n 00 of material s included a mechanical c J? C e  imin . y 

b · J  · t  test , and bulk density test for the materials. ana lysi s, perLle a •  i . l  y 

Tl k ana ].og �,� s C l�ns�ructed to predic t  the flow net 1e res i s t a nc e  nc twor · � •· � 

I d of installation- -no gravel enve lope and tile o ut f low f o r  five metno s 

.c 3 6 9 and 1 2 - inch thi cknes ses. The assump-and gravel enve l o pes  _ L , , c 



tions made concerning boundary conditions for the resistance network 

analog were (1 ) no contribution to flow beyond the impermeable 

boundaries , (2 ) a ponded water condition on the ground surface, (3) _ 

an empty drain with a surfac·e of se_epage , and (4) a completely satu­

rated gravel enve lope of the same thickness on all sides . A tile 
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drainj model was designed to  study two installations, no gravel envelope 

and � 6 -inch gravel envelope. A unique aspect of the model was the 

replication of the streamline pattern on a single equipotential near 

the drain predic ted by the resistance network analog .  Wate r  discha:rge, 

sediment discharge , and hydraulic head or potential head data were 

obtained from the ti l e  drain model .  

Conclusions 

ti.gation : 

1 .  

2 ,  

..J .  

4 ,  

5 .  

The following conclusions are o ffered as a result of this inves -

A gravel envelope is essential to the protection o f  the 
tile drain embedded in a coarse silt base material . 

The proposed six-inch gravel envelope for the coarse  silt 
b ase material can successfully exclude sediment from 
the tile drain. 

The nonuniform (pit -run) gravel envelope material selected 
in this investigation may have been somewhat coar se for 
the base material according to established design 
criteria recommendations . 

While a larger physical penetration and concentration o f  sedi-
d · the top half than into the bottom half ment may be expecte in  

of the grave l envelope, the difference may not be  significant. 

The add ition of a gravel envelope , no mat t er
_ �ow smal l ,  

could substar.tially increase the predicted
. 

t1. 1-e ou tflow. 

· b  t · eases ir aravel envelope thicknesses may Su s e quen incr - � i b 

h dd . t .  1 · a  ct� ·1 1  a lar oer outf low ;  however, t e a l i ona provi e u 1. � o • . h · · • t · di" rect propor t ion tq c e i ncrease in out f low i s  no in 
envelo pe thickness. 



6. The possible advantages of a thicker gravel envelope are 
addit ional protection from sediment movement into the 
envelope and additional water flow into the bot tom of 
the tile drain. A greater percentage o f  a given water 
f low from the bot tom of  the drain could feasibly 
decrease the sediment movement into the ti le drain. 

7 .  The predicted tile outf low was greater for an empty 
tile drain than for a fu ll tile drain. The difference , 
which was less than 10 percent for all instal lations 
studied, may not be considered physical ly significant 
in the field. 

8. Tile ou tf low and sediment discharge decreased with time 
in the tile drain model . 

9.  The six -inch gravel envelope remained completely satu­
rated at  al l times in the tile drain model. 

10 .  The tile drain model in this investigat ion could be 
used to answer questions concerning t he hydrau l ics 
near the drain in a ti le -drainage system; however, 
for quest ions of a more practical nature regarding 
a particular aquifer and enve lope, a simp le cylinder 
model would be sa tisfactory. 

The fo l l owing suggestions are offered for further s tudy on th is 

subj ect ; 

1 .  

2 .  

3 .  

4. 

5 .  

A graded iravel envelope material which i s  more nearly 
within es tablished design criteria recommenda tions cou l d  
be tested in the tile drain model. 

Additional gravel envelope thicknesses cou ld be tested 
in the tile drain model. 

Addit i onal study co uld be made into the explanation for 
the redvc tion in perme abi lity of the base material in 

the laboratory . 

A fa l ling water-tab le condit ion could be  studied for 

various grave l enve lopes . 

A tile  drain m�del ind resistance network analog study 

-, l b 1· 1 1· t 1· atPd  usino on l y  a grave l t' nvelope on the cou .� c1 e 1 - o � .  . 

, 1 f f t ' '  e t 1· 1 e d r· r, .; r ,,7 1 th  a g L:i s r: - .t lb er shee t Or 
t o o  n;:; . o 1 1 0 ·- · '  ·· c.. . 

l • 1 , • 
m2 . .... 0 ::1 the. b o t tom o f  t h (-:. t i  _ e.  C1 1::"a1n . 
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APPENDIX A .  DEFINITION OF SYMBOLS 
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Definition of  Symbols 

A - cross section o f  flow area 

C0 - conversion coefficient 

D - effective diameter for hydrometer reading 

particle size at which 15%, 50% , and 85% o f  
the part icle weight is smaller 

Gs - spec i fic gravity of solids 

g - gravitat i onal constant 

h - elevation measured from reference plane 

hn - elevation of ground sur face from reference plane 

I - current 

i hydraulic gradient  

K - hydraulic conductivity 

L length 

N - percent finer f o r  the hydrometer 

N '  - per cent  finer than No . 2 00 sieve 

P - pressure 

Q - vo lume o f  wat e r  per unit time 

Q '  - f low r ate per foot of drain 

R - r e s is tance 

R0 - characteri s t i_ c  resistance 

r - hydrome ter reading in suspe nsion 

rw - hydrometer reading in distilled  water 

t - e lap s e d  time 

80 



V voltage 

V volume o f  suspension 

Vo - voltage at a specific node 

Ws - weight of dry soil 

W ! weight of dry soil passing No . 200  sieve 

x ,  y ,  z - car tesian coor d inates 

Zr - distance f rom sur face of suspension to center of hydrometer 

0 - hydrau lic head or potential 

0d - hydraulic head or potential at drain 

0n - hydraulic head or potential at ground surface 

0o - hydr au i ic potential at a specific  node 

)1 - viscosit y  of water at test temperature 

He. - viscosit y of water at 20° C 

Ye. - unit weight o f  water at 20 ° C 

Ys - unit weight of soil grains 

Yw - unit weight o f  water at test temperature 

,I° - f luid density 
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Table  6 .  S ix - Inch Grave l Envelope Ti le Drain Mode l  Data  
Bi..! lk Dens ity  of  Base Material : 75 . 4  lbs / £t 3 

Bulk Dens i ty o f  Gravel :  102  lbs / ft3  
Temperature o f  Water : 15°c ,  init ial ; 17°C ,  di s charge 

Piezometer Readings Ti le Out f low 

Date Time inche s o f  water* ml /min 
1 2 3 4 5 6 7 8 9 10 1 1  12 l 2 3 

11 / 6 / 67  lOA . M .  14 . 7  14 . 6  11 . 0  3 . 4 18 . 6  12 . 2  -3 . 0  9 . 1  4 . 3 20 . 5  14 . 4  1 9 . 0  150 140 140 
lP . M . 1 7 . 3  14 . 1  1 1 . 8  6 . 3  20 . 9  10 . 2  -0 . 6  8 .4 3 . 4 19 . 8  1 3 . 7  19 . 8  1 15 1 1 6  1 14 
3P . M . 18 . 4  14 . 0  1 3 . 1  6 . 1  20 . 1  10 . 3  -0 . 6  8 . 4 3 . 0 19 . 6  13 . 4  1 9 . 8  Li.0 106 1 10 

SP .M . 18 . 7  1 3 . 9  13 . l  6 . 0 19 . 5  10 . 1  -0 . 6  8 . 1 2 . 7  19 . l 1 3 . l  19 . 6  105 106 105  
1 1 / 7 / 67 9A . M . 1 9 . 8 14 . 7  15 . l  5 . 7  20 . 3  10 . 8  :o . 5  9 . 5 2 . 9  1 9 . 5 14 . 4  20 . 4  97  9 7  9 7  

l lA . M .  19 . 8 15 . 4  1 5 .4  7 . 1 20 . 2  Air 1 . 6  10 . 8  5 . 1  19 . 5 1 5 . 0  20 . 4 8lt. 8 7  8 8  
lP . M . 19 . 7 15 . 4  1 5 . 4  7 . 1 20 . 2  Air 1 . 5  10 . 8  4 . 5  19 . 5 15 . 1  20 . 4  3 6  8 6  84 
3P . M . 19 . 6 15 . 4 1 5 . 4  7 . 0 20 . 3 11 . 5  1 . 5  10 . 8  � . 5 19 . 4 15 . 1  20 . 4 8 5  84 8 5  
SP . M . 19 . 5  15 . 4 1 5 .4 7 . 0 20 . 4  11 . 5  1 . 5  10 . 8  4 . 5  19 . 4  15 . 2  20 . 4  8 3  8l� SL!-

1 1/ 8 / 67 9A . M .  19 . 0 1 5 . 5 15 . 5  6 . 9 19 . l 11 . 4  1 . 4 10 . 6  4 . 5  19 . 0  15 . 6  20 . 4  8 2  8 3  82  
Backflushed t ile drain mode l at 9 : 30 A .M .  - 1\  ft . head 

1 l / 9 / 67 9A . M .  18 . 1  16 . 5  1 3 . 6  5 . 6  18 . 4  13 . 6  
l lA . M . 19 . 2 1 5 . 2 14 .4  5 . 8 18 . 5  1 3 . 5 

lP . M .  19 . 3  15 . 2 14 .4  5 . 7  18 . 5  13 . 5  
' 3P . M . 19 . & 1 5 . 2 14 .4  5 . 7 18 .4  1 3 . 5  

1 1  / 10/67 l lA . M . 19  . 0 1 5  . 2 14 . 3 5 . 6 18 . 0 1 3  . 2 
4P . M . 18 . 9  15 . 2  14 . 3  5 . 6 1 7 . 9  12 . 2  

* Re ference plane bottom of t i le drain 

2 . 2  10 . 0  4 . 0  19 . 9 14 . 0  1 6 . 5  
2 . 2 9 . 6 4 . 0 19 . 9  1 3 . 6  1 6 . 3  
2 . 2 9 . 6  3 . 9  19 . 8  1 3 . 6 1 6 . 2  
2 . 2  � - 5 3 . 9  19 . 8 13 . 7  16 . 2  
2 . 2  9 . 3  3 . 9  18 . 9  13 . 5  15 . 6  
2 . 2  9 . 3 3 . 9  18 . 7 13 . 5 15 . 5 

96  95  9 5  
8 2  8 2  8 1  
8 0  79 79 
77 7 7  77 
G9  70 69  
7 0  69 69  

Sediment 
Avg . gm/1 

143 4 .  2 6  (9A . M .) 
1 1 5 (no s i l t )  
1 19 
105 
9 7  
8 6  
8 5  
8 5  
84 
8 2  

9 5  0 . 0 7 

8 2  (no s i lt )  
7 9  

7 7  
6 9  
69 

\.0 
00 
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