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ABSTRACT

FINITE MIXTURE OF REGRESSION MODELS FOR

COMPLEX SURVEY DATA

ABDELBASET ABDALLA

2019

Over time, survey data has become an essential source of information for modern so-

ciety. However, to be effective, the structures of survey data require sampling designs that

are more complex than simple random sampling. The complex sampling data collected

from enormous national surveys via these complex designs ideally include sample weights

that allow analysis to take account of complicated population structures. When the target

of inference is the parameters of a regression model, it is crucial to know whether these

weights should be incorporated into the sampling weight when fitting the model to the sur-

vey data. The finite mixture models are one tool for modeling heterogeneity and finding

the subgroups in the data. Limited literature is available on modeling survey data via the

finite mixture of regression models using a complex survey design.

The principal aim of this dissertation is to develop and evaluate strategies for survey

data modeling using a new design-based inference, where sampling weights are integrated

into the complete-data log-likelihood function. More specifically, the pseudo maximum

likelihood estimator (PML) has been considered, so the expectation-maximization (EM)

algorithm was developed accordingly. In order to evaluate this strategy in realistic circum-

stances, we simulated the performance of the proposed model under numerous scenarios.

Comparisons were made using bias-variance components of the mean squared error. Ad-

ditionally, the Bayesian information criterion was utilized and assessed as a selection tool

under the proposed modeling approach. Finally, we applied the proposed approach to orig-

inal survey datasets to assess its practical usefulness
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1 INTRODUCTION

In modern society, survey accumulated data provides significant statistics in ultimately

creating a positive philosophy of change. Accurate facts gathered though surveys become

instrumental in the process of making decisions. Vital decisions include the implementa-

tion of program adjustments to better address the needs of a population, the improvement

of community policies and projects, creating priorities when allocating funds in regard

to government agencies, and public queries. Data and evidence combined from different

surveys facilitates the progress of health issues globally. In this framework, evidence col-

lected from social surveys, one of the most essential data sources, enables understanding

of changes in societal social trends, empowering the examinations of change for the benefit

of citizens as well as communicating a vision on issues specific to social policy. Equally,

health survey data plays a fundamental role in advising policymakers, as well as the public,

regarding significant health issues implemented by strategies and procedures. Therefore,

survey data contributes the most vital evidence to a focused and successful decision-making

processes concerning the implementation of government and global policies. Reliable and

unbiased methods of attaining information from a survey commands scrutiny particularly

since this information creates the basis for making choices affecting large target popula-

tions. Specifically, the necessity to establish dependable survey methods must launch with

a small sample in order to consider and infer characteristics of relationships of a vast popu-

lation. Multifaceted survey datasets contain distinctive structures that require an analytical

approach that cannot be achieved using standard techniques. Therefore, necessities for

the development of statistical methodologies intensify in order to extract information from

data collected from complex survey designs. Statistical sampling techniques and the analy-

sis of complex survey data is detailed in Kish (1965), Cochran (1977), Kalton and Graham

(1983), Lohr (2010), and in a more current issue published in the statistical science journal
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(Zhang, 2017).

The bulk of all-encompassing surveys use two principal methodologies of statistical in-

ference; namely, design based and model-based inference. These tactics incorporate com-

plexities into survey sampling, such as clustering, stratification, and unequal probabilities

of the selection mechanism. In the 1950s, model-based analysis began by Godambe (1955)

and Royall (1968). Design-based analysis initiated by Neyman (1934) is used in the frame-

work of survey sampling design to generate inference for population limitations. If we

consider the superpopulation model and let ΨN to be a finite population estimator for the

model parameter Ψ, which could be computed if the entire population U was observed. If

the components of the parameter vector ΨN can be expressed as functions of a finite pop-

ulation parameter, it is again possible to estimate it by a design-based estimator. However,

the model-baIf we consider the superpopulation model and let ΨN to be a finite population

estimator for the model parameter Ψ, which could be computed if the entire population

U was observed, if the components of the parameter vector ΨN can be expressed as func-

tions of a finite population parameter, it is again possible to estimate it by a design-based

estimator. However, the model-based is viewing the target population itself as a random

realization from the superpopulation model. In this view, the finite population quantity ΨN

is viewed as one particular realization of an estimator of the superpopulation model param-

eter Ψ. Figure 1.1 illustrates the traditional view of the design-based and model-based. In

this dissertation, a design-based technique used as an analysis tool, for a given dataset gath-

ered using complex sampling design, will be considered. Principally, the design considers

the complication of finite mixture linear regression analysis in order to analyze complex

survey data.
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Sampling Process
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Figure 1.1: Diagrams representing classical design-based inference (on the left), model-
based inference for super-population parameters (on the right).

Contemporary statistical applications widely use regression analysis. Essentially, re-

gression analysis demonstrate a path of responses based on its relationship with one or more

predictor or explanatory variables. Commonly, applications of linear regression evaluate

independent identically distributed (IID) data. However, when investigators perform re-

gression analysis on survey data the assumption is repeatedly inadequate in complex survey

sampling designs. Subsequently, linear regression models and estimators typically apply

to the inquiry of complex survey data using the PML method first recommended by Binder

(1983) following the idea from Skinner et al. (1989). DuMouchel and Duncan (1983) have

been discussed the sampling weights in multiple regression analysis for stratified samples.

Survey designs through strata, cluster, or a combination of the two, strive to capture the

heterogeneity in population in a more economical way. Nonetheless, occasionally subpop-

ulations occur after data collection. One malleable technique for modeling heterogeneity

in data uses finite mixture models (McLachlan and Peel, 2000). Finite mixture regression

models (Leisch, 2004; Grün and Leisch, 2008) permit simultaneous outcomes of original

subpopulations and structuring a regression model for each subpopulation in the data. Cor-

respondingly, this dissertation explores fitting finite mixture linear regression models to

sample survey data by including sampling weights to the regression parameter estimators.
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1.1 Literature Review of Sampling Designs

Consider a finite population U , comprised of a set of N units termed 1, ..., N , and a

vector of parameters of interest,Ψ, to be assessed. Supposing having used the entire popu-

lation to estimate Ψ, but regrettably, the population usually exceeds the amount, increasing

cost, or too complex to pull together the required statistics from each population division to

analyze Ψ. Hence, one obtains a sample of size n from the population, which provides the

data with which Ψ can be estimated. Let this estimator be represented by Ψ̂. The quality

of the precision of Ψ̂ as an estimator of Ψ depends on, amid other factors, how closely

the sample exemplifies the population of interest. An impeccable sample would be similar

to Grand view: a scaled-down version of the population, reflecting every distinctive fea-

ture of the entire population. Indubitably, such an idyllic sample cannot occur for complex

populations. As an alternative, effective sampling ensures that the characteristic of impor-

tance in the population, Ψ, can be estimated from the sample by Ψ̂ and the precision of the

estimation can be calculated (Lohr, 2010).

Sampling methods split into two classifications, a probability or a non-probability sam-

pling technique. The methodology behind non-probability techniques, such as convenience

or purposive sampling, automatically eliminates specific population units from the sampled

population due to techniques that choose sample units via subjective evaluation. In general,

this form of sample selection causes the estimate, Ψ̂, to be biased. Moreover, in the absence

of any probability techniques in the selection process, the degree of bias is indefinite. Any

effect concluded from non-probability samples subjects itself to an unidentified level of

bias (Lohr, 2010). A vital necessity of a probability sampling techniques certify that each

possible sample of size n accumulated from the finite population has an identified proba-

bility of being selected (Chen et al., 2017). The use of a random mechanism to establish

population units selected for the sample reduces the possibility of altering a pre-selected

unit for a different unit based on personal judgment. Henceforth, by means of the appli-

cation of a probability sampling technique, each individual population unit has an assured
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chance of appearing in the sample. The possibilities underlying all potential samples of size

n gathered using a probability sampling technique allow the establishment of the sampling

distribution of Ψ̂, the estimator of Ψ, making it possible to detect inference using Ψ̂ and

likewise defining the quality of the inference by means of the evaluation of standard errors,

biases, etc. of the estimators Lohr (2010). Common types of probability sampling include

simple random sampling, cluster sampling, stratified sampling, and multistage sampling.

Complex sampling, which contrasts with simple random sampling, applies one or more

unequal random selection mechanisms. The most popular designs involve using stratified

sampling and cluster sampling, or any combination of sampling designs. One might want

to consider complex survey design as opposed to simple random sampling as the list of the

population may not be available, and even if it is, it might be extremely inefficient to col-

lect data. Besides, any analysis of complex survey data that ignores both sample weights

and the sampling design may lead to biased estimation and inaccurate inference. For sta-

tistical inference, when studying survey sample data, considering the sampling design is

imperative. In chapter 2, reviews of properties of estimates for the principal design mech-

anisms used in a probability and sample survey design contain stratified, cluster sampling,

and complex sampling. The integration of these ideas in section 4.3 demonstrates how

they work collaboratively in complex surveys such as the National Health and Nutrition

Examination Survey (NHANES).

1.2 Literature Review of Sampling Weights

The primary objective of the sampling theory is to gain insights concerning population

parameters of interest. So, insights about those population parameters of interest can be

inferred from the sample. Therefore, the importance of employing sampling weights in

inference is to adjust for imperfections, for instance, unequal probabilities and population

groups that are not adequately embodied in the particular sample. The use of probability
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sampling techniques enables the determination of the inclusion probability of a population

unit in the acquired sample. Let the inclusion probability of the ith population unit be

defined as πi and let wi denotes the design weight. The most common definition of sam-

pling weight is as an indicator of the number of population units that are represented by ith

sample unit.

The sampling weights in the first stage are assigned to each sample unit to adjust for

the unequal selection probabilities. Thus, the sampling weights might not be inverse of

inclusion probability. The sampling weights are modified for several reasons. Some cus-

tomary corrections include nonresponse, misspecification of the sampling frame, and post-

stratification. The weights extend the clear-cut idea of design weights by incorporating

auxiliary population data. An assortment of adjustments can be executed, and the forma-

tion of weights can be complex. Further details regarding weighing in complex surveys

can be found in Kish (1992), Gelman et al. (2007), Särndal (2007), Haziza and Lesage

(2016); Haziza et al. (2017), and Chen et al. (2017). In this dissertation, it is presumed

that the sampling weights are inverse of the inclusion probability of a population unit being

selected for the sample,

wi =
1

πi
, i = 1, ..., n,

where n is the size of the selected sample and is interpreted as the number of population

units represented by the ith sampled unit. Subsequently N =
∑

iwi , the size of the

population from which the sample is selected (Horvitz and Thompson, 1952; Lohr, 2010).

Whenever we are dealing with a real-life data application, we either compute the weights

associated with each observation based on the sampling design or use the already existing

weights available with the data.
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1.3 Review of Finite Mixture Regression Models

In the nineteenth century, finite mixture models made their initial recorded appear-

ance in modern statistical literature by Newcomb (1886) who used it in the framework of

modeling outliers. In the years following, Pearson (1894) applied a mixture of two uni-

variate Gaussian distributions to analyze a dataset containing ratios of the forehead to body

lengths for 1,000 crabs, using the method of moments (MOM) to estimate the parameters

in the model. The most prevalent mixture model is the one consisting of Gaussian compo-

nents (Day, 1969; McLachlan and Basford, 1988; Fraley and Raftery, 2006). We refer to

McLachlan and Peel (2000) and Frühwirth-Schnatter (2006) for a complete survey on the

history and applications of finite mixture models.

Universally, finite mixture models are used to model data from a heterogeneous pop-

ulation. The power of finite mixture models through model-based clustering is that they

allow us to cluster and classify with the assumption that each mixture component rep-

resents a set of an observation belonging to one group in the original data (McLachlan

and Basford, 1988; Fraley and Raftery, 1998). Various fields of statistical applications

such as medicine and biology use mixture distributions for many purposes see, for exam-

ple„ the review chapter in Schlattmann (2009). All-encompassing dialogue concerning

the derivations and applications of finite mixture models are presented in the monographs

by McLachlan and Peel (2000) and Frühwirth-Schnatter (2006), and more recent reviews

by Melnykov et al. (2015); McNicholas (2016); McLachlan et al. (2019) discusses recent

advances and challenges in the topic of finite mixture models and model-based clustering

When a random variable with finite mixture distribution depends on some covariates,

it acquires a finite mixture of regression (FMR) model (Khalili and Chen, 2007). The ba-

sic idea here is to be able to fit different regression models to portions of data that behave

similarly. Quandt and Ramsey (1978) introduced mixtures of linear regression models as a

very basic method of switching regression. De Veaux (1989) established an EM approach

to fit the two regression situations. Jones and McLachlan (1992) applied combinations of
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regressions in data analysis and applied the EM algorithm to suit these models. Applica-

tions of FMR models, in many capacities such as market segmentation and social sciences,

are studied more carefully in Wedel and Kamakura (2012) and Rabe-Hesketh and Skrondal

(2004). The model is implemented in the R software through the FLEXMIX package (Grün

and Leisch, 2008).

Fitting regression models to survey data complicates estimating pure population quan-

tities such as totals, means, quantiles and variances. In addition, one of the commonly

sought after parameters is the census regression coefficient. This is what would be reached

from a regression if the complete population had been sampled. In most detailed demon-

stration of these and other matters concerning regression, one of the question that surfaces

is whether or not sampling weights should play a role when estimating the model param-

eters. This has been a topic of a debate for many years starting in the seventies. See for

example Fuller (1975), Pfeffermann and Smith (1985), Skinner et al. (1989), Pfeffermann

(1993) and Lumley and Scott (2017).

This dissertation will explore a finite mixtures of regression models that can be valid

as a model when the samples were drawn from complex sample designs. A design-based

inference incorporating sampling weight or design weight in the expectation-maximization

algorithm will be developed. A presentation will be made of a simulation study and actual

datasets, comparing weighted and unweighted models. Furthermore, validation will con-

firm the effect of incorporating the design weight in log-likelihood function to estimate the

finite mixture parameters, using a simulation complex sampling design and a real dataset

as well.

1.4 Outline of the Dissertation

The dissertation contains five chapters. In Chapter 2, sampling techniques are dis-

cussed in general, and we discuss how sampling weights are calculated and incorporated
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to our proposed model procedure. The main focus of this chapter is, therefore, the devel-

opment of this procedure, together with a discussion of how it can be implemented. This

will be followed by the computational strategies used to model data that comes from com-

plex survey designs using finite mixture models. Some theoretical aspects are presented

in Chapter 2. Here we discuss the asymptotic behavior and conditions required for the

maximum likelihood (ML) estimator. In particular, we introduce a robust estimator of the

asymptotic standard error of the pseudo maximum likelihood estimator.

Chapter 3 contains the design of the simulation studies based on stratified sampling,

cluster sampling, and complex sampling design. The simulation studies outlined in chap-

ter 3 are very important to investigate the performance of the proposed model. This chapter

describes results from a sequence of simulation experiments based on different complex

sampling designs. The bias-variance components of the mean squared error will be used to

evaluate and compare the proposed model with the alternative model. Some exciting and

distinct simulation studies and applications of the proposed model will be presented.

In Chapter 4 we address the topic of how to apply the finite mixture of normal regres-

sion models for samples acquired using a complex sampling design, based on real survey

datasets. This chapter includes an implementation of the modeling procedure to each com-

plex sampling design through stratified, cluster, and complex sampling data, respectively.

Chapter 4 describes results from sequence examples, based on a real-world dataset. One

of the most famous national surveys is considered here. Finally, Chapter 5 validates the

dissertation with overall remarks and summaries of the conclusions of this research. The

chapter concludes with topics identified for further research.

Part of this dissertation can be found in the recent publication "Finite mixture of re-

gression models for a stratified sample" Abdalla and Michael (2019) and can be found in

the appendix of the dissertation. A draft manuscript prepared for submission to the Journal

of Applied Statistics can be found in the appendix of the dissertation as well.
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2 METHODOLOGY

This chapter offers thorough descriptions of the necessary foundation laid regarding

finite mixture regression models and displays the proposed methodology used to model

data that comes from complex survey designs using a finite mixture of regression mod-

els. In the first section, revision of popular probability sampling designs such as stratified

sampling, cluster sampling, and complex sampling provides the essential foundation. In

the next section, we will introduce definitions and notations related to the finite mixture of

regression models. The maximum likelihood estimations of the finite mixture of regres-

sion models computed via the EM-algorithm will be described. Furthermore, the Pseudo

maximum likelihood (PML) estimations of the parameters of a mixture of regression mod-

els are derived under the complex sampling data. This will be followed by discussing the

general asymptotic behavior of the ML estimators obtained via the EM-algorithm. We will

define the ML estimators as a particular case of M-estimator. Then, we will give a short

introduction to the asymptotic concept of ML in general. We also include a section about

the asymptotic standard error of ML estimator for mixture models obtained by the EM-

algorithm. In the last section, a discussion will be more focused on the asymptotic standard

error of the PML estimators of the mixture models when the complex sampling design is

assumed.

2.1 Complex Survey Design

The purpose of this section is to revise well-known complex survey designs. This will

be followed by a discussion of stratified sampling, cluster sampling, and complex sampling.

Finally, the sampling weights will be defined and discussed as an integral part of complex

sampling design.
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Several statistical analyses assume data being analyzed constitutes a simple random

sample (SRS), ensuring that all elements have the same likelihood of being selected in the

sample. However, sampling in survey research often works differently. In general, sam-

ples are often stratified or clustered by variables of interest. Sampling methods fall into

two classifications: (1) non-probability sampling, in which the probability of being se-

lected in the sample is unknown, and (2) probability sampling, in which the probability of

being selected is known. The most common types of probability sampling are simple ran-

dom sampling, cluster sampling, stratified sampling, and multistage sampling. Complex

sampling, which contrasts with SRS, applies one or more unequal random selection mech-

anisms. The most commonly used designs involve applying stratified sampling and cluster

sampling, or any combination of sampling designs. For statistical inference, considering

the sampling design is imperative when studying survey sample data.

In general, we consider the regression of a dependent variable y on a vector of in-

dependent variables x. Then, (xi,yi) denote the row vector of these variables for a unit

with label i in the index U = {1, ..., N} of a finite population of size N . Without loss of

generality, assume a general complex sampling design p(s) from which sample s of size

n is drawn without replacement from the population U . The sampling design may involve

combinations of sampling schemes. Let δi be the indicator variable of the ith unit which

is equal to one if i ∈ s and zero otherwise with restriction
∑N

i=1 δi = n. Suppose that

under the sampling design a sampling unit is denoted by i, (i = 1, ..., n), we can define the

first-order inclusion probability, πi, as the probability of ith unit being selected in the sam-

ple. The second-order inclusion probability, πij , is the probability that the two units i, j are

selected in the sample. Thus, using the indicator variable, E(δi) = πi, and E(δij) = πij .

The inclusion probability of the ith observation, when we use SRS is defined as, πi = n
N

.

More discussion about the inclusion probability can be found in Horvitz and Thompson

(1952), Natarajan et al. (2008) and Lohr (2010).
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2.1.1 Stratified Sampling

In this section, we consider modeling data gathered through stratified sampling. A

stratified random sample is attained by separating the population elements into non-overlapping

groups which are primary sampling units (PSU), called strata. Therefore, the population is

the set of strata, {Uh}Hh=1 with sizesN1, ..., NH and
∑H

h=1Nh = N . Then, a simple random

sample of size nh is selected without replacement from each stratum with
∑H

h=1 nh = n.

One property of stratified sampling is that it works best when a heterogeneous population

is divided into fairly homogeneous groups. Therefore, strata are to be as homogeneous as

possible within, but each stratum as different as much as possible from another with respect

to the characteristic being measured. We consider that a finite population contains N units

and we split this population into H non-overlapping strata. In this case, we can define the

sampling design as

p(s) =





∏H
h=1

(
Nh

nh

)−1
for all nh, h = 1, ..., H

0 otherwise
.

The inclusion probability equals πi =
nhi

Nhi
, i ∈ Uh, where hi is the stratum h from which

units i comes (Sugden and Smith, 1984). These first-order inclusion probabilities will play

a role when constructing pseudo-likelihood function. Thus, the design weight associated

with the ith observation in the hth stratum is

wi =
Nhi

nhi
,

where the sum over all design weights over all the strata equals the population total (Lohr,

2010).
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2.1.2 Cluster Sampling

Cluster sampling is a standard sampling design tool for large complex surveys. Cluster

sampling is utilized because it is typically more cost effective and more convenient to

sample in clusters than in the population at random. Cluster samples are broadly applied

in virtually all large surveys executed by governments, commercial businesses or academic

institutions, due to enormous cost savings (Scheaffer et al., 2011). A cluster, like a stratum,

is defined as a grouping of the members of the population. Considering stratified sampling,

for optimal precision, individual elements within each stratum must be as homogeneous

as possible, but each stratum must contrast as much a possible from other strata in regard

to the characteristic being measured. Clusters bear a superficial resemblance to strata.

Both techniques involve the random selection of the sampling units. The selection process,

though, is vastly dissimilar in the two methods. In a stratified random sample, observation

units within each stratum are selected randomly. In a cluster sample, the clusters, PSU’s

are randomly chosen from the population of all clusters. Therefore, the elements observed

are the SSU’s within the clusters. For further specifics, see Horvitz and Thompson (1952).

Cluster sampling breaks up the population into subgroups called clusters. It is then

determined which (all or some) of the units in each cluster can be included in the sample.

One-stage cluster sampling is when all the units in a sampled cluster are incorporated in the

sample. Under this method, the clusters are referred to as primary sampling units (PSU’s).

Two-stage cluster sampling is when the units in a selected PSU are sub-sampled. Those

units are referred to as secondary sampling units (SSU’s) (Lohr, 2010). Considering a

population of Nc non-overlapping clusters. let Mi denote the number of population units

in ith selected cluster (cluster size). Assuming that the number of clusters selected in the

sample is nc and let mi denote the number of observations to be sampled from each of the

chosen clusters. Consider one-stage cluster sampling where clusters are chosen from the

population without further sampling from the selected clusters. Thus, in one-stage cluster

sampling, Mi = mi. In this case, the inclusion probability for the ith primary sampling
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unit equals

πi =
nc
Nc

, i = 1, ..., n

where Nc denotes the number of clusters in the population and nc is the number of sampled

clusters, respectively. Thus, the sampling weights under one-stage cluster sampling is given

by

wi = πi
−1 =

Nc

nc
.

It is important to note that if the secondary sampling units within a cluster are too

similar, measuring all the units in the cluster is not beneficial and does not interject any

additional information to the sample. Since the variability within a cluster is typically

lower than the variability between clusters, it is more valuable to pull more clusters and

then procure a random sample of units from each sampled cluster for a given sample size.

The final method is the two-stage cluster sampling. In this approach, a sample of clusters

is selected at the first stage. Afterward, a sample of units from each sampled cluster is

chosen at the second stage (Lohr, 2010). However, with the two-stage sampling cluster the

inclusion probability of the jth observation given that the ith cluster has been selected is

equal to πj|i = mi

Mi
. Thus, the overall inclusion probability under two-stage cluster sampling

is given by πij = πi · πj|i = nc

Nc
· mi

Mi
, where i = 1, . . . , nc and j = 1, . . . ,mi (Lohr, 2010).

Finally, the sampling weights in this case are given by wi = Nc

nc
· Mi

mi
.

2.1.3 Complex Sampling

The The definition of a complex sample (CS) is a stratified multistage cluster sample.

The process of selecting a CS begins by dividing the population into non-overlapping sub-

groups called strata. Recall the previous exposition of stratified random sampling. The

stratification process ensures that all strata in the population are represented in the final

sample. Next, each stratum is divided into relevant clusters from which a predetermined

number is selected. These first-stage clusters are termed primary sampling units (PSU’s).
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To facilitate variance estimation, it is vital to ensure that no less than two PSU’s are se-

lected per stratum. Each of the selected PSUs is then divided again into smaller clusters. A

predetermined number is then chosen from those clusters. These second-stage clusters are

called secondary sampling units (SSU’s). Notice that the PSU’s must be stratified before

the SSU’s are developed and selected. One continues in this manner until the population

units of interest are obtained and thus selected for the sampling. The final stage units are

called ultimate sampling units (USU’s).

As an example of CS, a stratified two-stage cluster sample design was considered.

Assuming that a finite population has been stratified intoH strata, then the sample is drawn

from each stratum in the population. Assume stratum hwas divided intoNh PSU’s of which

nh has been sampled, h = 1, ..., H with equal probability. It follows that the selection

probability of the ith PSU in the hth stratum, πhi, is given by

πhi =
nhi
Nhi

.

Let the ith sampled PSU be clustered into Mi SSU’s of which mj are sampled with equal

probability, i = 1, ..., nh. The selection probability of the jth SSU providing the ith PSU

in the hth stratum has been selected, πj|i, is defined as πj|hi = mi

Mi
. Lastly, the inclusion

probability of the jth SSU in the ith PSU of the hth stratum is calculated as

πij =
( nhi
Nhi

)(mhi

Mhi

)
, h = 1, ..., H, i = 1, ..., nh, j = 1, ...,mhi.

Consequently, the overall sampling weight is given by

wij =
(Nhi

nhi

)(Mi

mi

)
,

(Lohr, 2010). When conducting the inference about the mixture models under the com-

plex sampling designs, the sampling weights are incorporated in the inference to construct
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pseudo-likelihood functions in later sections.

2.2 Gaussian Mixture Models

The density of a one-dimensional random variable can be approximated by a weighted

sum of some Gaussian densities

g(xi; Ψ) =
K∑

k=1

αk φ(xi;µk, σ
2
k), (2.1)

where φ(xi;µk,σ
2
k) is a Gaussian density with mean µk and variance σ2

k, and αk, k =

1, ..., K are the positive mixing proportions that satisfy
∑K

k=1 αk = 1, then, the entire

parameter vector is defined as Ψ = {α1, ..., αK−1, µ1, ..., µK , σ
2
1, ..., σ

2
K}. Our goal is to

estimate the vector of parameters Ψ which can be conveniently estimated by maximum

likelihood via the EM algorithm. Let x1, ...,xn be a sample of observations from g(xi; Ψ),

the log-likelihood function of Ψ is given by

`(Ψ) =
n∑

i=1

log
K∑

k=1

αk φ(xi;µk, σ
2
k). (2.2)

Now, let Zik be the indicator variable which takes a value of 1 if the ith observation arises

from the kth component and zero otherwise. Then the complete-data log-likelihood func-

tion incorporate this indicator random variable and is given by

`c(Ψ) =
n∑

i=1

K∑

k=1

I(Zik = 1)
{

logαk + log φ(xi;µk, σ
2
k)
}
. (2.3)

At the tth iteration of the E-step, we take the conditional expectation of `c given the previ-

ous step parameter estimates Ψ(t−1) and data. These in turn results in the computation of
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the posterior probabilities

τ
(t)
ik =

α
(t−1)
k φ(xi;µ

(t−1)
k , σ; 2(t− 1)

k)

K∑

k′

α
(t−1)
k′ φ(xi;µ

(t−1)
k′ , σ

2 (t−1)
k′ ), (2.4)

for i = {1, . . . , n} and k ∈ {1, . . . , K}. At the M-step of the (t)th iteration, we maximize

the conditional expectation of the complete-data log-likelihood function with respect to Ψ.

This function is commonly known as the Q-function and is given by

Q(Ψ; Ψ(t)) =
n∑

i=1

K∑

k=1

τik

{
logα

(t−1)
k + log φ(xi;µk, σ

2
k)
}
. (2.5)

At the (t)th iteration of the M-step, the Q-function is maximized with respect to Ψ. For

the Gaussian mixture model the closed form solutions are as follows

α
(t)
k =

∑n
i=1 τ

(t)
ik∑K

k=1

∑n
i=1 τ

(t)
ik

, (2.6)

µ
(t)
k =

∑n
i=1 τ

(t)
ik xi∑n

i=1 τ
(t)
ik

, and (2.7)

σ
2(t)
k =

∑n
i=1 τ

(t)
ik

(
xi − µ(t)

k

)2
∑n

i=1 τ
(t)
ik

. (2.8)

Note that the above equations are similar to solutions of the maximum likelihood estimates

of the mean and variance of a normal distribution except that they are weighted by the

posterior probability from the E-step. The E- and M-steps are iterated until convergence

criterion is fulfilled. The criterion used in this paper is the relative difference between

consecutive log likelihood values which is given by

`(Ψ(t); x)− `(Ψ(t−1); x)

|`(Ψ(t−1); x)|
< 10−8,
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where `(Ψ) is the log likelihood value evaluated at Ψ. We will refer to this modeling

approach as the unweighted approach.

2.2.1 Pseudo-Maximum Likelihood Estimation of Gaussian Mixture

Models

Assuming a data set of {(xi, wi); i ∈ s}, where wi is the sampling weights of n units

selected from a finite population of size N under some complex survey design. The mod-

els that are frequently used to fit survey data are gathered with complex sampling designs.

However, if such a design is considered, then standard maximum likelihood estimators

are usually biased. Such a scenario can be avoided using the approximate, or Pseudo-

Maximum Likelihood (PML) approach as proposed by Skinner et al. (1989) and described

by Pfeffermann (1993), and Chambers and Skinner (2003). We propose a probability

weighted estimation procedure for finite mixture models which eliminates the bias esti-

mates that occur when ignoring the sampling design. The reciprocals of the inclusion prob-

abilities, wi = 1
πi

, at each sampling stage are used to weight the log likelihood function.

Then, the Pseudo complete-data log-likelihood function is given by

`pc(Ψ) =
n∑

i=1

wi

K∑

k=1

I(Zik = k)[ logαk + log φ(xi;µk, σ
2
k)],

and since the sampling weight wi does not have any effect on the posterior probabilities

τik the E-step is the same as in the unweighted approach as given in Equation 2.4. The

modified Q-function is given by

Qpw(Ψ; Ψ(t)) =
n∑

i=1

wi

K∑

k=1

τik{logαk −
n

2
log(2πσ2

k)−
(xi − µk)2

2σ2
k

}. (2.9)

We call the function in Equation 2.9 as the weighted Q-function and is denoted by Qpw. At

the (t)th iteration of the M-step, the Qpw-function is maximized with respect to Ψ. For the
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Gaussian mixture model the closed form solutions are as follows

α
(t)
k =

∑n
i=1wiτ

(t)
ik∑K

k=1

∑n
i=1wiτ

(t)
ik

, (2.10)

µ
(t)
k =

∑n
i=1wiτ

(t)
ik xi∑n

i=1wiτ
(t)
ik

, (2.11)

σ
2(t)
k =

∑n
i=1wiτ

(t)
ik

(
xi − µ(t)

k

)2
∑n

i=1wiτ
(t)
ik

. (2.12)

Note here that the above solutions in Equations 2.10-2.12 are similar to the usual Gaussian

mixture M-step solutions given in Equations 2.6-2.8 except they are pre-multiplied by the

sampling weights.

2.2.2 Multivariate Gaussian Finite Mixture Models

In the multivariate Gaussian mixture model, the density of a d-dimensional random

vector X is given by

g(X; Ψ) =
K∑

k=1

αk φk(X;µk,Σk), (2.13)

where φk(X;µk,Σk) is the kth component Gaussian density with d×1 mean vectorµk and

a d × d covariance matrix, Σk. αk, k = 1, ..., K, are the mixing probabilities that satisfy

the constraints: 0 < αk ≤ 1 and
∑K

k=1 αk = 1. Following the discussion in Section 2.2,

the Qpw-function for the multivariate Gaussian mixture case will be:

Qpw =
n∑

i=1

wi

[ K∑

k=1

τik logαk−
p

2

K∑

k=1

τik log

(
2π|Σk|

)
−1

2

K∑

k=1

τik (X−µk)>Σ−1k (X−µk)
]
.

Given the Qpw-function, at the (t)th iteration of the M-step for multivariate normal mixture

model the closed from of the component means µk and components-covariance matrices

Σk are given by
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µ
(t)
k =

∑n
i=1wi τ

(t)
ik X

∑n
i=1wi τ

(t)
ik

, (2.14)

Σ
(t)
k =

∑n
i=1wi τ

(t)
ik

(
X− µ(t)

k

)(
X− µ(t)

k

)>
∑n

i=1wi τ
(t)
ik

. (2.15)

The M-step closed form solution for the mixing proportions will be the same as in Equa-

tion 2.10.

2.3 Finite Mixture of Gaussian Regression Model

Suppose a random sample {(xi,yi), i = 1, ..., n} of independent identically dis-

tributed (IID) observations is drawn from a finite mixture of normal regression model.

In this case, explanatory variables xi are collected for each observation yi. Then, the prob-

ability distribution function is given by

g(yi;xi,Ψ) =
K∑

k=1

αk φ(yi;xiβk, σ
2
k), (2.16)

where K is the total number of mixture regression components, φ(yi;xiβk, σ
2
k) is a Gaus-

sian density function of the kth component with mean xiβk and variance σ2
k. The mix-

ing proportions, αk, k = 1, ..., K have the following restrictions: 0 < αk ≤ 1 and
∑K

k=1 αk = 1. Therefore, the parameter vector Ψ = {α1, ..., αK−1,β1, ...,βK , σ
2
1, ..., σ

2
K},

where β1, ...,βK , σ
2
1, ..., σ

2
K are the component specific regressions coefficients and vari-

ances, respectively. The common goal of statistical inference in this setting is to estimate

the parameters of the model. Below we describe two estimation procedures. The first one

is the traditional maximum likelihood approach which we will refer as the ‘unweighted

MLE’ and the second one is a pseudo-maximum likelihood approach which we call the

‘weighted MLE’. We assume that K is unknown, and regard it as a parameter, when per-

forming model fitting. The matter of how best to select an appropriate K is considered as
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part of our model fit and model selection.

2.3.1 Unweighted Maximum Likelihood Approach

In this case, estimation of the parameters is typically performed through the maximum

likelihood approach. The log-likelihood function is given by

`(Ψ) =
n∑

i=1

log

{
K∑

k=1

αk φ(yi;xiβk, σ
2
k)

}
. (2.17)

Due to the inconvenient form of `(Ψ) in Equation 2.17, the expectation maximization algo-

rithm (Dempster et al., 1977), which is based on a complete-data log-likelihood function,

is employed. The complete-data setup is given IID samples from g(yi;xi,Ψ); we define

the latent variable Zik such that

Zik =





1 if the ith observation ∈ kth component

0 otherwise
.

Then, we can write the complete-data log-likelihood function as

`c(Ψ) =
n∑

i=1

K∑

k=1

I(Zik = 1)
{

logαk + log φ(yi;xiβk, σ
2
k)
}
. (2.18)

The EM-algorithm is an iterative procedure of two steps, the Expectation (E) step, and

the Maximization (M) step. At the E-step, we calculate the conditional expectation of

the complete-data log-likelihood function given the observed data, E (`c(Ψ)|y,X), which

simplifies to

E
(
I(Zik = 1)|yi,xi,Ψ(t−1)

)
= Pr(Zik = 1|yi,xi,Ψ(t−1)).
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This posterior probability will be denoted as τik. The expression of τik at the (t)th iteration

of the E-step is given by

τ
(t)
ik =

α
(t−1)
k φ

(
yi;xiβ

(t−1)
k , σ

2(t−1)
k

)

∑K
k′=1 α

(t−1)
k′ φ

(
yi;xiβ

(t−1)
k′ , σ2

k′
(t−1)

) .

At the M-step of the (t)th iteration, we maximize the conditional expectation of the complete-

data log-likelihood function commonly known as the Q-function given by

Q(Ψ; Ψ(t)) =
n∑

i=1

K∑

k=1

τ
(t)
ik

{
logαk + log φ(yi;xiβk, σ

2
k)
}
. (2.19)

The two steps are iterated until a predetermined convergence criterion is met. For a simple

linear regression model, yi = βk0 +βk1xi + εik, where yi is the response variable value, xi

denotes a single explanatory variable and εik ∼ N(0, σ2
k), Equation 2.19 can be written as

Q(Ψ; Ψ(t)) =
n∑

i=1

K∑

k=1

τ
(t)
ik

{
logαk −

n

2
log(2πσ2

k)−
(yi − βk0 − βk1xi)2

2σ2
k

}
, (2.20)

and the closed form solutions for parameters at (t)th iteration of the M-step are given by

α
(t)
k =

∑n
i=1 τ

(t)
ik∑K

k=1

∑n
i=1 τ

(t)
ik

, (2.21)

β
(t)
k1 =

∑n
i=1 τ

(t)
ik

∑n
i=1 τ

(t)
ik xiyi −

∑n
i=1 τ

(t)
ik xi

∑n
i=1 τ

(t)
ik yi∑n

i=1 τ
(t)
ik

∑n
i=1 τ

(t)
ik x

2
i − (

∑n
i=1 τ

(t)
ik xi)

2
, (2.22)

β
(t)
k0 =

∑n
i=1 τ

(t)
ik yi∑n

i=1 τ
(t)
ik

− β(t)
k1

∑n
i=1 τ

(t)
ik xi∑n

i=1 τ
(t)
ik

, and (2.23)

σ
2(t)
k =

∑n
i=1 τ

(t)
ik

(
yi − β(t)

k0 − β
(t)
k1xi

)2
∑n

i=1 τ
(t)
ik

. (2.24)

Note that the Equations 2.22–2.24 are similar to least squares simple linear regression esti-

mates except that they are weighted by the posterior probability from E-step.
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2.3.2 Pseudo-Maximum Likelihood Estimation of Mixture Gaussian

Regression

We assume the given data set of observations {(xi,yi, wi); i ∈ s}, where wi is the

sampling weights. In this case, we selected a sample of size n units from a finite population

of size N under some complex survey design. If such a design is considered, then standard

maximum likelihood estimators are usually biased Wedel et al. (1998). Such a scenario

can be avoided using the approximate, or pseudo-maximum Likelihood (PML) approach

as proposed by Skinner et al. (1989) and described by Pfeffermann (1993) and Chambers

and Skinner (2003). We propose a weighted estimation procedure for finite mixture models

which minimizes the bias in parameter estimates that occur when the sampling design is

not taken into consideration. This is done by incorporating the sampling weights, wi to the

complete data log- pseudo likelihood function. Then the modified Q-function is given by

Qpw(Ψ; Ψ(t)) =
n∑

i=1

wi

K∑

k=1

τik{logαk −
n

2
log(2πσ2

k)−
(yi − βk0 − βk1xi)2

2σ2
k

}. (2.25)

We refer the function in Equation 2.25 as the weighted Q-function and is denoted by Qw.

At the M-step of the (t)th iteration, the Qw-function is maximized with respect to Ψ. For

the simple Gaussian mixture regression model the closed form solutions are as follows

α
(t)
k =

∑n
i=1wiτ

(t)
ik∑K

k=1

∑n
i=1wiτ

(t)
ik

, (2.26)

β
(t)
k1 =

∑n
i=1wiτ

(t)
ik

∑n
i=1wiτ

(t)
ik xiyi −

∑n
i=1wiτ

(t)
ik xi

∑n
i=1wiτ

(t)
ik yi

∑n
i=1wiτ

(t)
ik

∑n
i=1wiτ

(t)
ik x

2
i −

(∑n
i=1wiτ

(t)
ik xi

)2 , (2.27)

β
(t)
k0 =

∑n
i=1wiτ

(t)
ik yi∑n

i=1wiτ
(t)
ik

− β(t)
k1

∑n
i=1wiτ

(t)
ik xi∑n

i=1wiτ
(t)
ik

, and (2.28)
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σ
2(t)
k =

∑n
i=1wiτ

(t)
ik

(
yi − β(t)

k0 − β
(t)
k1xi

)2
∑n

i=1wiτ
(t)
ik

. (2.29)

Note here that the update equations in 2.26–2.29 are similar to 2.21–2.24 except the

weights are incorporated.

2.3.3 Matrix Approach for the Mixture of Gaussian Multiple Regres-

sion Models

We can extend the mixture of simple linear regression model to multiple linear regres-

sion model. This can be done using matrix notation as follows

β
(t)
k =

(
X>W

(t)
k X

)−1
X>W

(t)
k y, (2.30)

where X is an n × (p + 1) matrix containing unity for intercept and predictors, W
(t)
k is a

n× n diagonal matrix with entries wi × τ (t)ik , y is a n× 1 vector of response variable, and

σ
2(t)
k =

∥∥∥W1/2(t)
k

(
y −X β

(t)
k

)∥∥∥
2

tr
(
W

(t)
k

) , (2.31)

where ‖A‖ = A>A with > denoting a matrix transpose and tr(A) means the trace of

the matrix A. Equations 2.30 and 2.31 can be used as update equations at at the (t)th

iteration of the M-step. The same equation as given in equation 2.26 is used to update

mixing proportions.

2.4 Computational Strategies

In this section, we describe some computational strategies that have been used in fitting

the proposed model. Initialization is a key step in fitting mixture models to data via the EM

algorithm (Baudry and Celeux, 2015). In the simulation study, we considered two strategies
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5 CONCLUSIONS AND FURTHER RESEARCH

5.1 Summary

The statistical studies based on the regression analysis of complex sampling data have

received some attention over time. Notably, these data are widely used by government

agencies, which are often concerned with making decisions about the target population.

Finite mixture models are widely used for modeling heterogeneity in data. In the classical

theory of statistics, the mixture models are estimated under the assumption that observa-

tions are drawn from the population using a simple random sampling procedure. However,

this optimal assumption is not applicable. The principal aim of this dissertation is to de-

velop and evaluate strategies for modeling data collected via a complex sample survey

design using a �nite mixture of regression models.

A mixture of regression models is introduced when a sample is gathered from a com-

plex survey design. A new methodology was developed by incorporating sampling weights

into the complete-data log-likelihood function, the necessary theoretical groundwork to

modeling the mixture of regressions using complex survey data. Parameter estimation was

carried out within the EM-algorithm framework and the BIC was used for model selection.

Extensive simulation studies were undertaken in this dissertation. Firstly, a simula-

tion study was used to evaluate the performance of the proposed model under various cir-

cumstances. The developed model and the unweighted model were compared using the

bias-variance components of the MSE. A simulation study was also conducted to compare

different sampling designs, including strati�ed sampling, cluster sampling, and the com-

plex sampling design based on the results obtained in the �rst simulation study. The mean

squared error for the estimated parameters did not provide evidence signi�cant enough to

infer which estimation approach was better. However, the weighted model showed lower

bias for the estimated parameters when compared with the unweighted model. Conversely,
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the unweighted model had a smaller variance for most of the estimated parameters as com-

pared with the weighted model. Overall, the variability in both models tended to decline as

the sample size increased.

During further analysis, we constructed a percent contribution index that indicated how

much each model contributed to the total bias, variance, and MSE. Overall, according to

the percentage contribution index, R, the proposed model estimates showed lower bias

compared with the unweighted model estimates in all complex sampling strategies consid-

ered in this dissertation. In the same context, the weighted model estimates demonstrated

high variability compared with the estimates obtained via the unweighted model for the

majority of the estimated parameters. Regarding the stratified or cluster sampling design,

the variability in this index was found to be much higher in bias than either variance or total

MSE. However, the variability of R for MSE, it is interesting to note that the high index

variability compared to the same index for the MSE in the stratified and cluster sample de-

sign. We speculate that this might be due to the complex survey design. Overall, the effect

of sample size on bias and its variability was unclear. The complex sampling designs ap-

proach using a stratified, cluster, and complex sampling data were taken into account. The

proposed model was then applied to the artificial dataset to assess the utility of the BIC.

Here, the BIC was able to select the optimal number of components for a given dataset.

In the real data analysis, the proposed model was applied to real-world datasets. Here,

different complex sampling designs such as stratified, cluster, and complex sampling de-

sign data were considered. In the real application of stratified sampling, the API scores in

2000 were regressed against the percent of parents who were high-school graduates in Cali-

fornia schools in the first example. The optimal regression mixture model was chosen to be

the one with the smallest BIC. After several models were fitted, a 2-component quadratic

Gaussian regression mixture of regression model performed better than other models, with

the BIC being the smallest. In the same context, when the API in 2000 for the students was

regressed against percent parents with some college education. After numerous models
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were fitted, a 2-component linear mixture regression model had better performance than

other models, with I being the smallest.

In the application of cluster sampling, the proposed model has been applied to NHANES

data. In the first example, the average of systolic blood pressure as a response variable has

been regressed on the body mass index as an independent variable. The optimal regres-

sion mixture model was chosen to be the one with the smallest BIC. After several models

were fitted, a 2-component mixture of linear regression models performed better than other

models, with the BIC being the lowest. In the same context, when Total Cholesterol as a

response variable was regressed on the HDL-cholesterol as a predictor variable. After nu-

merous models were fitted, a 2-component mixture of linear regression models performed

better than other models, with the BIC being the smallest.

In order to apply the proposed model to complex sampling, the public data from the

National Health and Nutrition Examination Surveys 2013-2014 and 2015–2016 NHANES

has been used in this analysis. We tried to retrieve the hidden underlying subgroups in the

population based on the proposed model. Two different approaches have been assumed.

In approach 1, the finite mixture of regression models was fitted to the whole dataset. The

best fit model for the NHANES data, which used in this example, was k = 3, with the

BIC being the smallest. Then, the best solution with k = 3 used to construct the ap-

proach 1 co-occurrence matrix. In approach 2, the mixture model has been fitted to the

sample was selected based on the stratified multistage sampling design. This procedure

was repeated multiple times. However, the classification solutions were the 2-component

and 3-component mixture of multiple regression models. The classification solutions ob-

tained in this approach were used to construct the sample-based co-occurrence matrix. The

hierarchical clustering analysis was considered to find the proportion of the classification

agreement index between the two approaches at a different value of K. The proportion of

the index was 93% When the best solution was k = 3 for both approaches. Thus, there

is evidence to suggest the 3-component mixture model solution as the best solution for the
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given dataset.

5.2 Further Research

This dissertation represents a starting point in terms of building a framework for the

development of strategies for modeling data collected through complex sample survey data

using the mixture models. This implies that there are a number of areas for further research

that might be addressed in future studies. We will try to develop the statistical inference of

the mixture of regression models for complex survey data such as confidence intervals, the

test of hypotheses. In addition, exploring a design-based methodology for the mixtures of

linear mixed models for a complex sample might prove an essential area for future research.
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A APPENDIX

A.1 Asymptotic Properties of the ML Estimators

Consider observations y = {y1, ...,yn}, which are IID from a density function with

parameter Ψ or a function of Ψ. Part of statistical inference deals with estimation of Ψ

and assessment of its variability. One of the most poplar methods to estimate Ψ to get Ψ̂

is through M -estimators. Here, we will adapt the notation used in Van der Vaart (2000).

M -estimation is done by maximizing the criterion function given by

Mn(Ψ) =
1

n

n∑

i=1

m(yi; Ψ). (A.1)

Here m(yi; Ψ)’s are considered to be known functions from y to R. In the mathematics

literature, the set of maximizing values Ψ̂ is obtained by setting a (partial) derivative of

Equation A.1 equal to zero. Therefore, in multi-parameter setting, say Ψ = {θ1, . . . , θJ},

with M total number of parameters the vector Ψ̂ contains solutions to J systems of equa-

tions of the form
∑n

i=1 ϕj(yi; Ψ) = 0, for j = 1, . . . , J . That is, the M -estimator Ψ̂

satisfies
∑n

i=1 ϕ(yi; Ψ̂) = 0.

One of the most famous M -estimators is the Maximum Likelihood (ML) estimator. In

this case, we assume that y1, ...,yn have a common density function f(yi; Ψ), then the ML

estimator Ψ̂ of Ψ maximizes the likelihood,
∏n

i=1 f(yi; Ψ), or alternatively log-likelihood,
∑n

i=1 log f(yi; Ψ) functions. Hence, the ML estimator is an M -estimator, obtained by

putting m(yi; Ψ) = log f(yi; Ψ) in Equation A.1. On the other hand, we can also note

that an M -estimator is a generalization of the ML estimator. If the density function is

partially differentiable with respect to θj for each fixed y, then the ML estimator also

solves an
∑n

i=1 ϕj(yi; Ψ) = 0, for j = 1, . . . , J , and ϕj(yi; Ψ) equal to the vector of

partial derivatives of the form Sj(Ψ) = ∂
∂θj

log f(yi; Ψ). More comprehensive details and
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discussion on the generalM estimation can be found in Van der Vaart (2000). Here we will

focus on ML estimators.

Generally, when estimating Ψ using Ψ̂ some desirable properties of the estimator are

assessed. These properties include consistency, which is as n → ∞, we want Ψ̂ to con-

verge to Ψ in probability as well as asymptotic normality. Here we will provide details on

consistency and asymptotic normality of proposed ML- estimators under common regular-

ity condition.

We are considering y1, ...,yn to be IID from a pdf f(yi; Ψ), and we are interested in

estimating Ψ0. As discussed before, the ML estimator Ψ̂ is the value of Ψ0 that maximizes

the log-likelihood function say `(Ψ; y) =
∑n

i=1 log f(yi; Ψ). Under certain regularity

conditions (Royall, 1986), it can be shown Ψ̂ is consistent and asymptotically normal, with
√
n(Ψ̂−Ψ0) N (0, I−1n (Ψ0)), where In(Ψ) is the Fisher information given by,

In(Ψ) = −E
{
S(yi; Ψ) S>(yi; Ψ)

}
, (A.2)

with S(Ψ) denoting the score function which is the vector of partial derivatives given by,

S(Ψ) = `′(Ψ) =
∂

∂Ψ
log f(yi; Ψ). (A.3)

Since Ψ̂ maximizes `(Ψ), then in general S(Ψ̂) = `′(Ψ̂) = 0. By consistency of ML

estimator we have Ψ̂ → Ψ in probability as n → ∞. This allow us to apply a first-order

Taylor expansion to the equation `′(Ψ̂) = 0 around Ψ0 which results in 0 = `′(Ψ̂) ≈

`′(Ψ0) + (Ψ̂−Ψ0)`
′′(Ψ0), then multiplying both sides by n gives

√
n(Ψ̂−Ψ0) = −√n `

′(Ψ0)

`′′(Ψ0)
=

`′(Ψ0)√
n

− `′′(Ψ0)
n

+ op(1), as n→∞. (A.4)

as n→∞.

Considering the denominator of Equation A.4, by the Weak Law of Large Numbers,
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− 1
n
`′′(Ψ0) = 1

n

∑n
i=1− ∂2

∂Ψ2

[
log f(yi,Ψ0)

]
Ψ̂=Ψ0

converges in probability to

−E
[
S(yi; Ψ)S>(yi; Ψ)

]

which is the Fisher information, I(Ψ0). For the numerator in Equation A.4, by the Central

Limit Theorem, under familiar regularity conditions,

1√
n
`′(Ψ0) =

1√
n

n∑

i=1

∂

∂Ψ

[
log f(yi,Ψ)

]
Ψ=Ψ0

.

This can be written as
√
n(1/n

∑n
i=1 Si − 0), where Si = ∂

∂Ψ
log f(yi; Ψ). It is straight-

forward to show that E(Si) = 0 and by definition V ar(Si) = I(Ψ0). Hence by CLT,

1√
n
`′(Ψ0) has a limiting distribution given by N (0, I(Ψ0)). Applying these results, the

Continuous Mapping Theorem, and Slutsky’s Lemma to A.4,
√
n(Ψ̂−Ψ0) N (0, I−1n (Ψ0)),

as desired. It can further be shown that
√
n(Ψ̂−Ψ0) N (0, I−1n (Ψ̂)).

A.2 Properties of ML Estimator for Mixture Models

Now consider a mixture of regression model with an unknown vector of parameters Ψ

with a postulated density function given by

g(yi,xi; Ψ) =
K∑

k=1

αk fk(yi,xi;θk), (A.5)

where fk(xi;θk) is a density function of kth component with an unknown parameters θk,

and αk is the positive mixing proportion that satisfy
∑K

k=1 αk = 1, Ψ denotes the vector

for all regression parameters including αk and θk, yi is the response for subject i, and x

is the predictors (McLachlan and Peel, 2000). As stated before, the ML estimator Ψ̂ of

Ψ for the mixture model is provided in regular situations by an appropriate solution of the
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log-likelihood equation, ∂ logL(Ψ)/∂Ψ = 0, where

logL(Ψ) =
n∑

i=1

log

{
K∑

k=1

αk fk(yi,xi;θk)

}
. (A.6)

The asymptotic covariance matrix of the ML estimator Ψ̂ is the inverse of the expected

information matrix I(Ψ) which is defined in A.2, which can be approximated by In(Ψ̂).

Thus, the asymptotic covariance matrix of Ψ̂ is I−1n (Ψ̂). Taking a look at Expression A.6,

we see that the summation over the K components blocks our log function from being

applied to the mixture densities. However, the most agree that the EM-algorithm has been

by far the most commonly used approach to fit the mixture distributions. in the next section,

we will use the EM to obtain the ML estimators. A more comprehensive description can

be found in (McLachlan and Peel, 2000).

In majority of finite mixture modeling development, the most common method of pa-

rameter estimation is through M-estimation with a major subclass being Maximum Like-

lihood. To accomplish this, the famous EM-algorithm is employed. The EM-algorithm

attempts to find maximum likelihood estimates for models with latent variables. In mixture

modelind framework, the idea is to think of the data as consisting of triples (xi,yi, zi),

where zi is the unobserved indicator that specifies the mixture component from which the

observation yi. Now, the complete-data log-likelihood for Ψ is, therefore:

logLc (Ψ) =
n∑

i=1

K∑

k=1

I(Zi = k) {log(πk) + log(fk(yi,xi;θk)} (A.7)

At the E-step of the EM-algorithm, we use the current value of the parameters and compute

the posterior probabilities, τ (t)ik , by computing the conditional expectation of the complete-

data log-likelihood function given in A.7. At the M-step, we determine the new parameter

Ψ(t) by maximizing Ψ(t) = argmaxΨQ(Ψ,Ψ(t−1)). More comprehensive details about the

ML estimators of Gaussian mixture models can be found in Section 2.2.

Now, suppose that L(Ψ) denotes the likelihood function for Ψ formed from the ob-
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served data, and Lc(Ψ) denotes the complete-data likelihood function for Ψ formed from

the complete-data if it were completely observable. Then the complete-data score function

is given by

Sc(Ψ) =
∂ logLc(Ψ)

∂Ψ
, (A.8)

and the complete-data based information matrix denoted by Ic(Ψ) is given as

Ic(Ψ; y) = E{Ic(Ψ; yc)|y}. (A.9)

The expected information matrix corresponding to the complete-data is given by Ic(Ψ) =

E{Ic(Ψ; yc,xc)}. The extraction of observed information matrix from complete-data log-

likelihood has been shown in Louis (1982). In the paper, they showed that the information

matrix I(Ψ) of the observed data is the negative of the Hessian of the log-likelihood and

can be written as

In(Ψ; y) =Ic(Ψ; y)− cov{Sc(yc); Ψ|y}

=Ic(Ψ; y)− E
{
Sc(yc; Ψ) S>c (yc; Ψ)|y

}
+ Sc(yc; Ψ) S>c (yc; Ψ).

(A.10)

In Equation A.10, S(y; Ψ) and Sc(yc; Ψ) denote the observed and complete-data

score functions as defined in Equations A.3 and A.8, respectively. In addition, it has been

shown that

S(y; Ψ) = E{Sc(yc; Ψ)|y} (A.11)

Since that Sc(yc; Ψ) = 0, from A.11, the observed information matrix I(Ψ̂) can be com-

puted as

In(Ψ̂; y) = Ic(Ψ̂; y)−
[

E{Sc(yc; Ψ) S>c (yc; Ψ)}|y
]
Ψ=Ψ̂

. (A.12)

It can be noted that, the observed information matrix I(Ψ̂) given by expression A.12

requires the calculation of the conditional expectation of the complete-data information

matrix Ic(Ψ̂) given the observed data, y,x, in addition to the complete-data score func-
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tion, Sc(yc; Ψ) times its transpose. These may be possible to compute in the simple cases

such as mixtures of two univariate Gaussian densities with known common variance. How-

ever, for infeasible mixture models, it is infeasible to calculate the information matrix via

Equation A.12. Hence, we can consider some practical approaches for approximating the

observed information matrix (McLachlan and Peel, 2000).

In case of observed IID data (y), an approximation of the observed information ma-

trix can be obtained without any extra calculation. The log-likelihood can be written as

logL =
∑n

i=1 logLi(Ψ), where Li(Ψ) = f(yi; Ψ) is the likelihood function of the ob-

servation yi. Then the score function can be written as S(y; Ψ) =
∑n

i=1 s(yi; Ψ), where

s(yi; Ψ) = ∂ logLi(Ψ)
∂Ψ

. In addition, the expectation information matrix In(Ψ) can be written

as In(Ψ) = n I(Ψ), where

I(Ψ) = E
{
s(yi; Ψ) s>(yi; Ψ)

}

which is cov{s(Y; Ψ)} is the information contained in one observation. Now, we will

define an empirical information matrix corresponding to I(Ψ) then the empirical informa-

tion matrix is give by

Ī(Ψ) =n−1
n∑

i=1

s(yi; Ψ) s>(yi; Ψ)− n−2S(y; Ψ) S>(y; Ψ), (A.13)

then let us define Ie(Ψ) = n Ī(Ψ) which is equal to

n∑

i=1

s(yi; Ψ) s>(yi; Ψ)− n−1S(y; Ψ) S>(y; Ψ).

Finally, by letting Ψ = Ψ̂, Ie(Ψ) will be given by

Ie(Ψ̂) =
n∑

i=1

s(yi; Ψ̂) s>(yi; Ψ̂), (A.14)
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since S(y; Ψ̂) = 0. Therefore, the covariance matrix of the estimated parameter Ψ̂ is

approximated by

V ar(Ψ̂) ≈ I−1e (Ψ̂). (A.15)

A.3 The Pseudo-Likelihood Approach

In the classical applications of the finite mixture of models it is assumed that the sam-

ple units are drawn from the population via a simple random sample. Hence, the IID

assumption is imposed during ML- estimation procedure and variability assessment. When

considering models for data collected through complex survey design, such a potentially

unrealistic assumption may lead to inconsistent and biased parameter estimates. The more

practical solution is to consider a complex sampling design that is based on the pseudo

maximum likelihood (PML) estimation approach. The PML approach is now widely used,

forming as it does the basis for the methods implemented for the analysis of complex sur-

vey data. The basic idea had its origin in Binder (1983), and the development below for the

mixture approach is based on Skinner et al. (1989). The PML approach has been applied to

several statistical models. However, there is limited work that has been introduced to fit the

finite mixture models using the PML approach. Wedel et al. (1998) has made significant

contributions to fit the finite mixture models using the PML approach.

In this section, we consider the problem of finding the asymptotic design-based sam-

pling distribution for the parameter estimates obtained through PML approach. These are

defined as functions of the data values in the finite population. Suppose that individual

pairs {(xi,yi), i = 1, ..., N} are generated from a probability distribution with density

g(y,x; Ψ). Here Ψ is an unknown parameter denotes the vector for all regression param-

eters, Ψ = {α1, ..., αK−1,β1, ...,βK , σ
2
1, ..., σ

2
K}, and the aim is to estimate its value from

the sample data.

Assume a complex sample was drawn using a complex sampling design. Suppose
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that the sampling strategy is such that ith unit in the sample has a probability of being

selected of πi. The conventional estimation approach under simple random sampling is

to fit parametric mixture models via maximum likelihood estimation. Assuming the the

probability distribution function of the observations is given by (A.5).

The ML estimator of Ψ maximizes the log-likelihood. Traditionally, the standard for-

mulation of the log-likelihood applies under simple random sampling, in which each unit

receives the same weight which is defined in (A.6). The ML estimator solves the likelihood

equations
n∑

i=1

Si(Ψ) =
n∑

i=1

∂ log f(yi; Ψ)

∂Ψ
= 0. (A.16)

Often a full ML procedure is intractable since the expression for the likelihood under the

complex sampling strategy depends on assumptions about the unknown relationships be-

tween the y and the sample design variables. However, a simple approach is to construct a

consistent estimator for Ψ by solving equations

n∑

i=1

wi Si(Ψ) =
n∑

i=1

wi
∂ log f(yi; Ψ)

∂Ψ
= 0, (A.17)

the weights wi are inverse proportional to the inclusion probabilities πi. Solving the equa-

tion A.17 yields the pseudo- maximum likelihood estimator PML for the vector of pa-

rameters Ψ which is consistent. Inference proceeds with respect to its sampling distri-

bution over repeated samples generated from the population by a particular sampling de-

sign (Skinner et al., 1989). We define the pseudo-log-likelihood of the sample as p`n(Ψ) ≡

n−1
∑n

i=1wi log f(y; Ψ), and we define a pseudo-maximum likelihood (PML) estimator as

a parameter vector Ψ̂n which solves the problem maxΨ p`n(y; Ψ).

A.3.1 Conditions for Consistency

In this appendix, we provide conditions for the the PML estimator to be consistent.

According to White (1982) and Royall (1986), the conditions which are required for the
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PML estimator to be consistent are as follows

Assumption A.3.1. (White, 1982, p.2) The independent random 1 × M vectors y, i =

1, ..., n, have common joint distribution function G on Ω, a measurable Euclidean space,

with measurable Radon-Nikodym density g = dG/dv.

Assumption A.3.2. (White, 1982, p.3) The family of distribution functions F (y,ψ) has

Radon-Nikodym densities f(y,ψ) = dF (y,ψ)/dy which are measurable in y for ψ in Ψ,

a compact subset of a p-dimensional Euclidean space, and continuous in Ψ for every ψ in

Ψ.

Assumption A.3.3. (White, 1982, p.3) (a) E(log g(yi)) exists and | log f(y,Ψ)| ≤ m(y)

for all Ψ in Ψ, where m is integrable with respect to G; (b) I(g : f,Ψ) has a unique

minimum at ψ∗ in Ψ, where Ψ∗ is the parameter vector which minimizes the I(g : f,Ψ) is

Kullback-Leibler Information Criterion (KLIC), which can be defined as

I(g : f,Ψ) ≡ E
(

log
[

log g(yi)/f(y; Ψ)
])

Theorem A.3.4. (White, 1982, p.4) (Consistency): Given Assumptions A.3.1–A.3.3,

Ψ̂n → Ψ∗, as n → ∞ for almost every sequence {yi}; i.e., Ψ̂n
a.s−→ Ψ∗, where Ψ̂n

is a natural estimator for Ψ∗.

A.3.2 Conditions for Asymptotic Normality

In this appendix, we provide conditions for the PML estimator to be asymptotically

normally distributed. According to White (1982) and Royall (1986), the conditions which

are required for the PML estimator to be consistent are as follows

With additional conditions provided in this section, we can show that the PML estima-

tor is asymptotically normally distributed. When the partial derivatives exist, we define the
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matrices

An(Ψ) =
{
n−1

n∑

i=1

∂2 log f(yi; Ψ)

∂Ψ ∂Ψ>

}
,

and

Bn(Ψ) =
{
n−1

n∑

i=1

∂ log f(yi; Ψ)

∂Ψ
× ∂ log f(yi; Ψ)

∂Ψ>

}

If expectations also exist, we define the matrices

A(Ψ) =
{
E
(∂2 log f(yi; Ψ)

∂Ψ ∂Ψ>

)}
,

and

B(Ψ) =
{
E
(∂ log f(yi; Ψ)

∂Ψ
× ∂ log f(yi; Ψ)

∂Ψ>

)}
.

When the appropriate inverses exist, also define

Cn(Ψ) =An(Ψ)−1 Bn(Ψ) An(Ψ)−1,

C(Ψ) =A(Ψ)−1 B(Ψ) A(Ψ)−1.

Assumption A.3.5. (White, 1982, p.5) ∂ log f(y;Ψ)

∂Ψ ∂Ψ> , are measurable functions of y for each

ψ in Θ and continuously differentiable functions of y ∀Ψ ∈ Θ.

Assumption A.3.6. (White, 1982, p.5) |∂ log f(y,Ψ)/∂ψ ∂Ψ>| and |∂ log f(y; Ψ)/∂Ψ×

∂ log f(y; Ψ)/∂Ψ>| are dominated by functions integrable with respect to G for all y in

Ω and Ψ in Θ.

Assumption A.3.7. (White, 1982, p.5) (a) Ψ∗ is interior to θ; (b) B(Ψ∗) is nonsingular;

(c) Ψ∗ is a regular point of A(Ψ).

Theorem A.3.8. (White, 1982, p.6) (Asymptotic Normality): Given Assumptions A.3.1–

A.3.7
√
n(Ψ̂n −Ψ∗) N (0, C(Ψ∗)).
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Moreover, C(Ψ̂n)
a.s−→ C(Ψ∗), as n→∞, element by element.
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B APPENDIX

Below are some of the products of this dissertation.
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Despite the popularity and importance there is limited work on modeling data which

come from complex survey design using finite mixture models. In this work, we ex-

plored the use of finite mixture regression models when the samples were drawn using

a complex survey design. In particular, we considered modeling data collected based

on stratified sampling design. We developed a new design-based inference where

we integrated sampling weights in the complete-data log-likelihood function. The

expectation-maximization algorithm was developed accordingly. A simulation study

was conducted to compare the new methodology with the usual finite mixture of a

regression model. The comparison was done using bias-variance components of mean

square error. Additionally, a simulation study was conducted to assess the ability of

the Bayesian information criterion to select the optimal number of components under

the proposed modeling approach. The methodology was implemented on real data

with good results.
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1. INTRODUCTION

Data collected from complex surveys are becoming available to researchers in a variety

of fields for secondary use. Complex survey sampling design is a probabilistic sampling

procedure that differs from simple random sampling. Complex surveys are typically em-

ployed on national or multinational levels in studies such as behavioral and social sciences,

economics, and public health where simple random sampling is not the most practical op-

tion for collecting data. Complex survey data sets have special features which require a

distinct analytical view that cannot be performed using standard methods. Hence, there

is an increasing need for statistical methodology development to extract information from

data collected via complex survey designs. For more details about statistical sampling tech-

niques and analysis of complex survey data see Kish (1965), Cochran (1977), Kalton et al.

(1983), Lohr (2010), a more recent issue on several aspects of survey research is published

in statistical science journal (Zhang, 2017).

Most large-scale surveys use two main approaches of statistical inference; namely, de-

sign based and model-based. These approaches incorporate complexities into survey sam-

pling including clustering, stratification, and unequal probabilities of the selection mech-

anism. The design based analysis was originated by Neyman (1934) and it is used in the

survey sampling design context to make an inference about population parameters. In this

work, we consider design based approach as an analysis tool for a given dataset collected

using the stratified sampling design. Particularly, we consider the obstacle of regressing a

dependent variable against a given set of predictor variables.

Assuming the survey observations are independent identically distributed (IID), re-

gression models can be fitted using conventional methods. However, this assumption is

frequently insufficient in complex survey sampling designs. More complex model assump-

tions are needed to fit the features of the population structure and the complex sampling de-

sign. Another way to think of this model is the census regression coefficient model, which
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would be obtained from a regression if the entire population had been sampled. When

inference is performed, a question that arises is whether the sampling weights should be

factored in for parameter estimation. In this paper, we consider fitting finite mixture linear

regression models to sample survey data by including sampling weights to the regression

parameter estimators. For a detailed presentation of these and other issues regarding re-

gression and survey weights see Pfeffermann (1993) and Lumley and Scott (2017). The

parameters of the linear regression models for the complex survey design, in most cases,

are derived from the pseudo-maximum likelihood (PML) approach, outlined by Skinner

et al. (1989), following ideas of Binder (1983). The effect of a complex design on the iden-

tification of the underlying components from the sample using finite mixture models have

been studied by (Wedel et al., 1998). They have proposed a pseudo-likelihood approach

to obtain consistent estimates of parameters in the population. The paper reported that the

estimates of parameters may be severely biased when using the usual maximum likelihood

(ML) approach.

Survey designs through strata, cluster, or a combination of the two, aim to capture

the heterogeneity in population in a less costly manner. However, sometimes subpopula-

tions may exist after data collection. One flexible tool for modeling heterogeneity in data

is through finite mixture models (McLachlan and Peel, 2000). Finite mixture regression

models (Leisch, 2004; Grün and Leisch, 2008) allow simultaneously finding underlying

subpopulations and building a regression model for each subpopulation in the data. For

more details about analyzing a variety of the mixtures of linear regressions see Benaglia

et al. (2009). Commonly, the maximum likelihood estimates of model parameters are found

assuming that the data are generated through simple random sampling. However, for data

that are generated through complex surveys, statistical inference based the usual likelihood

approach may not be applicable. Despite the wide use of the regression analysis of survey

data and finite mixture regression models, there is limited attention has been given to work
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on modeling data collected with complex survey designs by using the mixture regression

models. In this paper, we examine the use of regression mixture models on the samples

drawn using a complex survey design.

The paper is organized as follows. Section 2 includes some preliminary concepts and

the proposed methodology. In Section 3 several simulation studies are presented, and a

real data application is shown in Section 4. The paper concludes with discussion and final

remarks in Section 5.

2. METHODOLOGY

In this section, some necessary groundwork will be laid concerning finite mixture mod-

els and complex survey data that will be used in this paper, then the proposed methodology

will be described.

2.1 Complex Survey Design

Several statistical analyses assume that the data being analyzed constitutes a simple ran-

dom sample (SRS), ensuring that all elements have the same likelihood of being selected

in the sample. However, sampling in survey research often works differently. In general,

samples are often stratified or clustered by variables of interest. Sampling methods fall

into two classifications: (1) non-probability sampling, in which the probability of being

selected in the sample is unknown, and (2) probability sampling, in which the probability

of being selected is known. The most common types of probability sampling are simple

random sampling, cluster sampling, stratified sampling, and multistage sampling. Complex

sampling, which contrasts with SRS, applies one or more unequal random selection mech-

anisms. The most commonly used designs involve applying stratified sampling and cluster

sampling, or any combination of sampling designs. For statistical inference, considering

the sampling design is imperative when studying survey sample data.
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In general, we consider the regression of a dependent variable y on a vector of indepen-

dent variables x. Then, (xi, yi) denote the row vector of these variables for a unit with label

i in the index U = {1, ..., N} of a finite population of size N . Without loss of generality,

assume a general complex sampling design p(s) from which sample s of size n is drawn

without replacement from the population U . The sampling design may involve combina-

tions of sampling schemes. Let δi be the indicator variable of the ith unit which is equal

to one if i ∈ s and zero otherwise with restriction
∑N

i=1 δi = n. Suppose that under the

sampling design a sampling unit is denoted by i, (i = 1, ..., n), we can define the first-order

inclusion probability, πi, as the probability of ith unit being selected in the sample. The

second-order inclusion probability, πij , is the probability that the two units i, j are selected

in the sample. Thus, using the indicator variable, E(δi) = πi, and E(δij) = πij . The

inclusion probability of the ith observation, when we use SRS is defined as, πi = n
N

. More

discussion about the inclusion probability can be found in Horvitz and Thompson (1952),

Natarajan et al. (2008) and Lohr (2010).

In this paper, we consider modeling data gathered through stratified sampling. A strati-

fied random sample is attained by separating the population elements into non-overlapping

groups which are primary sampling units (PSU), called strata. Therefore, the population is

the set of strata, {Uh}Hh=1 with sizesN1, ..., NH and
∑H

h=1Nh = N . Then, a simple random

sample of size nh is selected without replacement from each stratum with
∑H

h=1 nh = n.

One property of stratified sampling is that it works best when a heterogeneous population

is divided into fairly homogeneous groups. Therefore, strata are to be as homogeneous as

possible within, but each stratum as different as much as possible from another with re-

spect to the characteristic being measured. We consider that a finite population U contains

N units and we split this population into H non-overlapping strata. In this case, we can
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define the sampling design as

p(s) =





∏H
h=1

(
Nh

nh

)−1
for all nh, h = 1, ..., H

0 otherwise
.

The inclusion probability equals πi =
nhi

Nhi
, i ∈ Uh , where hi is the stratum h from which

units i comes (Sugden and Smith, 1984). These first-order inclusion probabilities will play

a role when constructing pseudo-likelihood function.

2.2 Finite Mixture of Normal Regression

Suppose a random sample {(xi, yi), i = 1, ..., n} of independent identically distributed

(iid) observations is drawn from a finite mixture of normal regression model. Then the

probability distribution function is given by

g(yi|xi; Ψ) =
K∑

k=1

αkφ(yi|xiβk;σ2
k), (1)

where K is the total number of mixture regression components, φ(yi|xiβk;σ2
k) is a Gaus-

sian density function of the kth component with mean xiβk and variance σ2
k. The mixing

proportions, αk, k = 1, ..., K have the following restrictions: 0 < αk ≤ 1 and
∑K

k=1 αk =

1. Therefore, the parameter vector Ψ contains {α1, ..., αK−1,β1, ...,βK , σ
2
1, ..., σ

2
K}, where

β1, ...,βK , σ
2
1, ..., σ

2
K are the component specific regressions coefficients and variances, re-

spectively. The common goal of statistical inference in this setting is to estimate the pa-

rameters of the model. Below we describe two estimation procedures. The first one is the

traditional maximum likelihood approach which we will refer as the ‘unweighted MLE’

and the second one is a pseudo-maximum likelihood approach which we call the ‘weighted

MLE’. We assume thatK is unknown, and regard it as a parameter, when performing model

fitting. The matter of how best to select an appropriateK is considered as part of our model

fit and model selection.
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2.2.1 Unweighted Maximum Likelihood Approach

In this case, estimation of the parameters is typically performed through the maximum

likelihood approach. The log-likelihood function is given by

`(Ψ) =
n∑

i=1

log
K∑

k=1

αkφ(yi|xiβk;σ2
k). (2)

Due to the inconvenient form of `(Ψ) in Equation 2, the expectation maximization (EM)

algorithm (Dempster et al., 1977), which is based on a complete-data log-likelihood func-

tion, is employed. The complete-data setup is given iid samples from g(yi|xi; Ψ); we

define the latent variable Zik such that

Zik =





1 if the ith observation ∈ kth component

0 otherwise
.

Then, we can write the complete-data log-likelihood function as

`c(Ψ) =
n∑

i=1

K∑

k=1

I(Zik = 1)
{

logαk + log φ(yi|xiβk;σ2
k)
}
. (3)

The EM-algorithm is an iterative procedure of two steps, the Expectation (E) step, and

the Maximization (M) step. At the E-step, we calculate the conditional expectation of

the complete-data log-likelihood function given the observed data, E (`c(Ψ)|y;X), which

simplifies to

E
(
I(Zik = 1)|yi;xi; Ψ(t−1)

)
= Pr(Zik = 1|yi,xi; Ψ(t−1)).

This posterior probability will be denoted as τik. The expression of τik at the (t)th iteration

of the E-step is given by

τ
(t)
ik =

α
(t−1)
k φ

(
yi|xiβ(t−1)

k ;σ
2(t−1)
k

)

∑K
k′=1 α

(t−1)
k′ φ

(
yi|xiβ(t−1)

k′ ;σ2
k′
(t−1)

) .

At the M-step of the (t)th iteration, we maximize the conditional expectation of the complete-

data log-likelihood function commonly known as the Q-function given by

Q(Ψ; Ψ(t)) =
n∑

i=1

K∑

k=1

τ
(t)
ik

{
logαk + log φ(yi|xiβk;σ2

k)
}
. (4)
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The two steps are iterated until a predetermined convergence criterion is met. For a simple

linear regression model, yi = βk0 + βk1xi + εik, where yi is the response variable value, xi

denotes a single explanatory variable and εik ∼ N(0, σ2
k), Equation 4 can be written as

Q(Ψ; Ψ(t)) =
n∑

i=1

K∑

k=1

τ
(t)
ik

{
logαk −

n

2
log(2πσ2

k)−
(yi − βk0 − βk1xi)2

2σ2
k

}
, (5)

and the closed form solutions for parameters at (t)th iteration of the M-step are given by

α
(t)
k =

∑n
i=1 τ

(t)
ik∑K

k=1

∑n
i=1 τ

(t)
ik

, (6)

β
(t)
k1 =

∑n
i=1 τ

(t)
ik

∑n
i=1 τ

(t)
ik xiyi −

∑n
i=1 τ

(t)
ik xi

∑n
i=1 τ

(t)
ik yi∑n

i=1 τ
(t)
ik

∑n
i=1 τ

(t)
ik x

2
i − (

∑n
i=1 τ

(t)
ik xi)

2
, (7)

β
(t)
k0 =

∑n
i=1 τ

(t)
ik yi∑n

i=1 τ
(t)
ik

− β(t)
k1

∑n
i=1 τ

(t)
ik xi∑n

i=1 τ
(t)
ik

, (8)

σ
2(t)
k =

∑n
i=1 τ

(t)
ik

(
yi − β(t)

k0 − β
(t)
k1xi

)2
∑n

i=1 τ
(t)
ik

. (9)

Note that the Equations 7–9 are similar to solutions of least squares solutions except that

they are weighted by the posterior probability from E-step.

2.2.2 Pseudo-Maximum Likelihood Estimation for Mixture Normal Regression

We assume the given data set of observations {(xi, yi, wi); i ∈ s}, where wi is the sam-

pling weights. In this case, we selected a sample of size n units from a finite population of

size N under some complex survey design. The most popular definition of wi is as an in-

dicator of the number of population units which are represented by ith sample unit. In this

paper, wi will be equal to the reciprocal of the inclusion probability πi, which is the proba-

bility of selecting the ith sample unit under some complex survey sampling design. If such

a design is considered, then standard maximum likelihood estimators are usually biased

Wedel et al. (1998). Such a scenario can be avoided using the approximate, or pseudo-

maximum Likelihood (PML) approach as proposed by Skinner et al. (1989) and described
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by Pfeffermann (1993) and Chambers and Skinner (2003). We propose a weighted estima-

tion procedure for finite mixture models which minimizes the bias in parameter estimates

that occur when the sampling design is not taken into consideration. This is done by incor-

porating the sampling weights, wi to the complete data log-likelihood function. Then the

modified Q-function is given by

Qw(Ψ; Ψ(t)) =
n∑

i=1

wi

K∑

k=1

τik{logαk −
n

2
log(2πσ2

k)−
(yi − βk0 − βk1xi)2

2σ2
k

}, (10)

We refer the function in Equation 10 as the weighted Q-function and is denoted by Qw. At

the M-step of the (t)th iteration, the Qw-function is maximized with respect to Ψ. For the

simple Gaussian mixture regression model the closed form solutions are as follows

α
(t)
k =

∑n
i=1wiτ

(t)
ik∑K

k=1

∑n
i=1wiτ

(t)
ik

, (11)

β
(t)
k1 =

∑n
i=1wiτ

(t)
ik

∑n
i=1wiτ

(t)
ik xiyi −

∑n
i=1wiτ

(t)
ik xi

∑n
i=1wiτ

(t)
ik yi

∑n
i=1wiτ

(t)
ik

∑n
i=1wiτ

(t)
ik x

2
i −

(∑n
i=1wiτ

(t)
ik xi

)2 , (12)

β
(t)
k0 =

∑n
i=1wiτ

(t)
ik yi∑n

i=1wiτ
(t)
ik

− β(t)
k1

∑n
i=1wiτ

(t)
ik xi∑n

i=1wiτ
(t)
ik

, (13)

σ
2(t)
k =

∑n
i=1wiτ

(t)
ik

(
yi − β(t)

k0 − β
(t)
k1xi

)2
∑n

i=1wiτ
(t)
ik

. (14)

Note here that the update equations in 11–14 are similar to 6–9 except the weights are

Incorporated.

2.3 Matrix Approach of Mixture Normal Regression

We can extend the mixture of simple linear regression model to multiple linear regres-

sion model. This can be done using matrix notation as follows

β
(t)
k =

(
X>W

(t)
k X

)−1
X>W

(t)
k y, (15)
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where X is an n × (p + 1) matrix containing unity for intercept and predictors, W
(t)
k is a

n× n diagonal matrix with entries wi × τ (t)ik , y is a n× 1 vector of response variable, and

σ
2(t)
k =

∥∥∥W1/2(t)
k

(
y −X β

(t)
k

)∥∥∥
2

tr
(
W

(t)
k

) , (16)

where ‖A‖ = A>A with > denoting a matrix transpose and tr(A) means the trace of

the matrix A. Equations 15 and 16 can be used as update equations at at (t)th iteration of the

M-step. The same equation as given in equation 11 is used to update mixing proportions.

2.4 Computational Strategies

In this section, we describe some computational strategies that have been used in fitting

the proposed model. Initialization is a key step in fitting mixture models to data via the EM

algorithm (Baudry and Celeux, 2015). In the simulation study, we considered two strategies

for choosing initial values of parameters. In the first simulation study, we compare the

weighted and unweighted models. For this, the true values of parameters were used as the

starting values. This will allow for comparing without confounding the issues associated

with initialization. In the second simulation study is conducted to assess the validity of

Bayesian Information Criterion (BIC) as model selection criterion. For this, we used Rnd-

EM (Maitra, 2009) to choose initial values. In this initialization method, first random points

are selected as seeds and the Euclidean distance is used to assign observations to centers.

This is repeated for some fixed number of times. The solution that yields the highest

likelihood value is then used for initializing the EM-algorithm. Rnd-EM tends to work well

if the number of components is not large (Michael and Melnykov, 2016). Rnd-EM is used

to initialize the EM-algorithm for the real data analysis. In the EM-algorithm, the E-step

and M-step are iterated until a convergence criterion is met. In our paper, the algorithm is

stopped when the absolute relative change in the likelihood given by `(Ψ(t);y,x)−`(Ψt−1;y,x)

|`(Ψt−1;y,x)| is

less than 10−8. In the real dataset analysis, we used the BIC (Schwarz et al., 1978) to select
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the optimal number of components. In this paper, BIC will be calculated as BIC(Ψ̂) =

−2`(Ψ̂) + M log n, where `(Ψ̂) and M represent the maximized likelihood value for a

given K and the number of parameters in the fitted model, respectively. For mixtures of

normal regression, M = (K − 1) + K(p + 1) + K, where p represents the number of the

predictor variables. The model with lowest BIC value is the best model for a given dataset.

2.5 Identifiability

Identifiability of a given model is one of the major requirements for any model to be

meaningful. It is defined for any two parameter vectors Ψ 6= Ψ′, the respective model

f(x; Ψ) must be different from f(x; Ψ′) for any random vector x. The identification issue

for the finite mixture linear model has been and continues to be studied. In general, in the

mixture regression model setting, there are two kinds of identification problems that are

common. One of them is label switching, and the other is overfitting. The label switching

which occurs when switching the labels of any two different components does not change

the distribution of the response variable at all. Overfitting is a more fundamental lack of

identifiability, and it leads to empty components or components with equal parameters.

This kind of unidentifiablity can be avoided by restricting the prior mixing ratios to be

greater than zero, and the component with specific parameters are different (Leisch, 2004).

In this paper, to prevent overfitting, mixing proportions have been restricted to be greater

than a particular threshold.

On a similar note, the identifiability of a mixture of regression models depends on the

distribution of the response variable. Particularly in this setting, Hennig (2010) pointed out

that identifiability issues may arise if there are solely a restricted range of values for covari-

ates and dditionally if there is a restricted info per person accessible. Such problems might

occur in applications where covariates are generally categorical variables for example race

and gender (Grün and Leisch, 2004). As per Hennig (2010), the mixtures of linear regres-
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sion models with Gaussian random errors are identifiable if the number of components K

is smaller than the minimal number of hyperplanes necessary to cover all covariate points.

In this work, we mainly focus on continuous response and covariates, but in general, one

needs to be cautious of the results obtained.

2.6 Model comparison

For comparing the weighted and unweighted models, the variance-bias components of

MSE are used. The MSE is obtained from theB replications asMSE(ψ̂j) = 1
B

∑B
b=1(ψjb−

ψ̂jb)
2, where ψjb and ψ̂jb, are the true and estimated parameter, respectively. The vari-

ance and bias components are given as V ar(ψ̂j) = 1
B

∑B
b=1(ψ̂jb −

¯̂
ψj)

2 and Bias(ψ̂j) =

(
¯̂
ψj − ψj)

2, where ¯̂
ψj = 1

B

∑B
b=1 ψ̂jb, respectively. Note that, MSE(ψ̂j) = V ar(ψ̂j) +

Bias2(ψ̂j). In our setting, Ψ = {ψj}Mj=1, where M is the number of parameters in

Ψ = {α1, ..., αK−1,β1, ...,βK , σ
2
1, ..., σ

2
K}, and each element is represented by ψj .

In this paper, percent contribution, R, is used to compute the relative contribution of

a given quantity to a total amount and is calculated as: R = θ1
θ1+θ2

, where θ1 and θ2 are

the two quantities calculated. We will use R to find out how much percentage contribution

take place for two quantities we are trying to compare. Note that, this index will range

between 0 and 1 and if both quantities contribute equally to the total amount then R will

be equal to 0.5. Values below 0.5 indicate lower percent contribution of θ1 as compared to

θ2 and values above 0.5 will indicate higher percent contribution of θ1 to the total θ1 + θ2.

In the simulation study, the MSE, and its bias and variance components will be used to

compute R. This will be use to compare the performance of the weighted model with

the unweighted model. If any of MSE components, bias or the variance of were equal of

the compared models; then R will be equal to 0.5. Also, we have been formulated this

measurement such that the components of the MSE of the unweighted approach will be on

the numerator of the fraction, thus for any of MSE components if R was less than 0.5 then
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the performance of the unweighted model will be better than the weighted model. On the

other hand, if R was greater than 0.5, then the performance of the weighted model will be

better than the weighted model.

3. SIMULATION STUDIES

3.1 Simulation 1: Parameter Estimation

This simulation study was executed to assess the performance of the maximum like-

lihood estimates obtained via the unweighted and weighted model in various scenarios.

The criteria used for comparison include: Mean Square Error (MSE), variance, and bias.

In this setting, the true values of parameters were used as the starting values. We con-

sidered two configurations of the true regression lines: non-overlapping and overlapping

which we call Mixture 1 and Mixture 2, respectively. In the first simulation, we generated

a finite population composed of N = 18000 observations from a two-component mix-

ture of normal regression model. The finite population consists of two stratum, {Uh}2h=1,

with {10000, 8000} observations in each stratum. The vector of parameters (τ ,β,σ2)

used to generate the mixture are reported in Table1. Stratified samples of sizes n1 =

n2 = {100, 250, 500, 1000} are drawn from each stratum. Thus, the total sample sizes

of n = 200, 500, 1000, 2000 are considered. Therefore, for n = 1000, we have n1 = 500

from the first stratum and n2 = 500 from second stratum. For example for Mixture 1, with

in each stratum, we use α1 = 0.34 and α2 = 0.66 to determine how many observations will

belong to component one and component two, respectively. Figure 1 shows sample of size

n = 1000 observations from the considered models Mixture 1 and Mixture 2. The above

setup is repeated for B = 1000 replications.

For each replication, the weighted and unweighted models are fitted and parameter es-

timates are obtained. The true parameter values are compared with the estimated values

using the MSE and its components as given in Section 2.6. Since two different methods
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Table 1: True parameter values for Mixture 1 and Mixture 2.

ψ α1 α2 β10 β20 β11 β21 σ2
1 σ2

2

Mixture 1 0.34 0.66 -3 3 1 -2 0.1 0.1

Mixture 2 0.34 0.66 -3 -2 1 -2 0.1 0.1
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Figure 1: Scatter plots of a sample of size n = 1000 units. Colors show the two components

and plotting characters represent strata. Left plot represents Mixture 1 - non-overlapping

components and right plot represents Mixture 2 - overlapping components.

have been used to fit the model, it is necessary to evaluate their parameter recovery and to

check whether accurate the variability of estimates is yielded. Parameter recovery concerns

whether the weighted or unweighted models can recover the generating parameters accu-

rately. If the empirical mean of the estimates across replications is statistically meaning-

fully different from the generating parameter, the estimator is thought to be biased. There

is also a concern regarding the variability of the estimates across replications. If the vari-

ability is practically minor, then a slightly biased estimation is negligible. Table 2 provides

the MSE and its bias and variance components for varying sample sizes when Mixture1

is considered. The bold values show where the minimum is achieved when comparing

the weighted and unweighted models. Looking at the table, the estimates obtained by the

weighted model have a smaller bias compared to the estimates obtained by the unweighted
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Table 2: Mean square error, bias, and variance of estimated parameters, based on 1000

replications for different sample sizes of the two-component when the Mixture 1 configu-

ration was considered.

ψ̂ α̂1 β̂10 β̂20 β̂11 β̂21 σ̂2
1 σ̂2

2

n
=

2
0
0

M
SE

×
1
0
−
2 Weighted 0.1186 0.5703 0.2884 1.7289 0.8935 0.0279 0.0172

Unweighted 0.1228 0.5636 0.2963 1.7133 0.8766 0.0274 0.0167

B
ia

s2

×
1
0
−
2 Weighted 0.0001 0.0081 0.0019 0.0272 0.0038 0.0019 0.0010

Unweighted 0.0034 0.0076 0.0027 0.0282 0.0058 0.0018 0.0009

V
ar

×
1
0
−
2 Weighted 0.1185 0.5622 0.2942 1.7007 0.8886 0.0260 0.0162

Unweighted 0.1194 0.5560 0.2858 1.6861 0.8708 0.0256 0.0158

n
=

5
0
0

M
SE

×
1
0
−
2 Weighted 0.0446 0.2380 0.1265 0.7559 0.3529 0.0109 0.0061

Unweighted 0.0492 0.2332 0.1225 0.7413 0.3478 0.0107 0.0060

B
ia

s2

×
1
0
−
2 Weighted 0.0001 0.0075 0.0021 0.0427 0.0045 0.0008 0.0004

Unweighted 0.0046 0.0089 0.0015 0.0392 0.0032 0.0007 0.0005

V
ar

×
1
0
−
2 Weighted 0.0445 0.2303 0.1234 0.7132 0.3484 0.0101 0.0057

Unweighted 0.0447 0.2243 0.1211 0.7021 0.3446 0.0100 0.0055

n
=

1
0
0
0

M
SE

×
1
0
−
2 Weighted 0.0227 0.1058 0.0567 0.3368 0.1676 0.0057 0.0029

Unweighted 0.0249 0.1093 0.0592 0.3451 0.1739 0.0056 0.0031

B
ia

s2

×
1
0
−
2 Weighted 0.0001 0.0067 0.0024 0.0270 0.0025 0.0005 0.0003

Unweighted 0.0024 0.0079 0.0034 0.0295 0.0040 0.0006 0.0004

V
ar

×
1
0
−
2 Weighted 0.0226 0.0991 0.0543 0.3098 0.1652 0.0052 0.0026

Unweighted 0.0225 0.1014 0.0559 0.3156 0.1700 0.0050 0.0027

n
=

2
0
0
0

M
SE

×
1
0
−
2 Weighted 0.0096 0.0566 0.0268 0.1842 0.0819 0.0026 0.0014

Unweighted 0.0124 0.0586 0.0284 0.1875 0.0855 0.0028 0.0016

B
ia

s2

×
1
0
−
2 Weighted 0.0001 0.0045 0.0029 0.0253 0.0054 0.0004 0.0002

Unweighted 0.0028 0.0055 0.0041 0.0275 0.0079 0.0005 0.0003

V
ar

×
1
0
−
2 Weighted 0.0095 0.0522 0.0239 0.1590 0.0766 0.0022 0.0012

Unweighted 0.0096 0.0532 0.0243 0.1602 0.0777 0.0023 0.0013
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model in 21 out of 28 cases. Thus, the estimates obtained by the weighted approach have a

smaller bias compared with estimates obtained via the unweighted approach. The weighted

model estimates have relatively high variability compared to estimates obtained via the un-

weighted model in 14 out of 28 cases. The variances of the estimates for both models

decrease by increasing the size of a sample.

Table 3: Mean square error, bias, and variance of estimated parameters, based on 1000

replications for different sample sizes of the two-component when the Mixture 2 configu-

ration was considered.

ψ̂ α̂1 β̂10 β̂20 β̂11 β̂21 σ̂2
1 σ̂2

2

n
=

2
0
0

M
SE

×
1
0
−
2 Weighted 0.1939 0.3531 0.2142 1.2784 0.7299 0.0164 0.0108

Unweighted 0.1797 0.3604 0.2018 1.2886 0.7016 0.0444 0.0221

B
ia

s2

×
1
0
−
2 Weighted 0.0009 0.0040 0.0045 0.0008 0.0051 0.0001 0.0001

Unweighted 0.0082 0.0062 0.0046 0.0001 0.0058 0.0002 0.0003

V
ar

×
1
0
−
2 Weighted 0.1930 0.3491 0.2097 1.2776 0.7248 0.0163 0.0107

Unweighted 0.1715 0.3542 0.1972 1.2885 0.6956 0.0442 0.0218

n
=

5
0
0

M
SE

×
1
0
−
2 Weighted 0.0646 0.1354 0.1011 0.5221 0.3135 0.0078 0.0044

Unweighted 0.0654 0.1284 0.0986 0.4777 0.3038 0.0193 0.0082

B
ia

s2

×
1
0
−
2 Weighted 0.0004 0.0001 0.0035 0.0012 0.0018 0.0001 0.0002

Unweighted 0.0017 0.0004 0.0039 0.0001 0.0027 0.0003 0.0003

V
ar

×
1
0
−
2 Weighted 0.0643 0.1353 0.0976 0.5209 0.3120 0.0077 0.0042

Unweighted 0.0638 0.1282 0.0949 0.4776 0.3013 0.0190 0.0079

n
=

1
0
0
0

M
SE

×
1
0
−
2 Weighted 0.0214 0.0692 0.0490 0.2593 0.1533 0.0036 0.0022

Unweighted 0.0283 0.0668 0.0472 0.2435 0.1435 0.0071 0.0034

B
ia

s2

×
1
0
−
2 Weighted 0.0001 0.0025 0.0038 0.0016 0.0046 0.0001 0.0001

Unweighted 0.0022 0.0032 0.0039 0.0017 0.0048 0.0002 0.0002

V
ar

×
1
0
−
2 Weighted 0.0213 0.0668 0.0452 0.2577 0.1488 0.0035 0.0021

Unweighted 0.0262 0.0636 0.0433 0.2418 0.1388 0.0069 0.0032

n
=

2
0
0
0

M
SE

×
1
0
−
2 Weighted 0.0104 0.0304 0.0236 0.1114 0.0683 0.0019 0.0011

Unweighted 0.0150 0.0299 0.0249 0.1039 0.0733 0.0035 0.0017

B
ia

s2

×
1
0
−
2 Weighted 0.0002 0.0011 0.0042 0.0005 0.0047 0.0002 0.0001

Unweighted 0.0013 0.0018 0.0045 0.0006 0.0054 0.0003 0.0002

V
ar

×
1
0
−
2 Weighted 0.0102 0.0293 0.0194 0.1109 0.0637 0.0017 0.0010

Unweighted 0.0136 0.0280 0.0204 0.1034 0.0679 0.0032 0.0015
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Table 3 provides the MSE, the bias, and the variance of the estimated parameters when

Mixture 2 is considered. The estimates obtained by the weighted model have lower bias

compared to the estimates obtained by the unweighted model in 26 out of 28 cases, which

leads to the conclusion that the estimates obtained by the weighted approach have small

bias compared with estimates obtained via the unweighted approach. The weighted model

estimates have high variability compared to the unweighted model estimates in only 14

out of 28 cases. However, the variances of the estimates for both models are declined by

increasing the size of a sample. Therefore, the estimates obtained via the weighted model

for Mixture 2 have a lower bias in about 93% of cases compared by the unweighted model

estimates in the same configuration while this percentage to about just decreased to about

78% of instances when Mixture 1 was considered. Hence, we can infer that the weighted

model has better performance to reduce the bias of estimated parameters for complicated

circumstances.

3.2 Simulation 2: Model comparison

To further investigate the parameter recovery capability of both approaches, we will

present a diagnosis concerning the results of the first simulation study. This is done to

evaluate the impact of the sample size on the parameter recovery and assess the variability

associated with the MSE and its components. Based on the results obtained in the previous

study, the weighted model has a lower bias in the majority of cases, yet occasionally, the

unweighted model estimates have a lower bias compared by those which are obtained via

the weighted model. Therefore, the simulation study has not yet determined the general

features of the two approaches definitively. Here we considered the Mixture 1 setup; there

is a finite population consisting of {10000, 8000} observations in each stratum. The vector

of parameters is reported in Table1. Stratified samples were drawn from each stratum at

different sample sizes, starting with 50 per strata up to 500 with an increment of 50 obser-
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vations. Thus, the samples that were selected are n = {100, 200, 300, . . . , 1000}. Here we

replicated B = 100 times for each n. These replicates are then used to calculate MSE val-

ues and the corresponding bias and variance components. Then, two hundred replications

of the above set up were completed to obtain 200 values of MSE, bias, and variance val-

ues for each sample size and parameter under both the weighted and unweighted models.

These 200 replicates are then used to calculate the percent contribution index, R, defined

in Section 2.6, by setting θ1 to be the results from the unweighted model and θ2 to be the

results from weighted model. Therefore, if R is above 0.5, then the weighted model had

contributed less to the total MSE, bias or variance. IfR is less than 0.5 then the unweighted

model has contributed less to the total MSE, bias or variance.

The results of this analysis can be found in a multiplot provided in Figure 2. The

top panel of the the figure represents the bias, the middle represents the variance, and the

bottom panel represents the MSE. The seven columns correspond to the seven parameters

estimated in this study. With in each plot, the x-axis represents the varying sample sizes

and y-axis is the R index. The median values of the index are represented by the black

line and the dashed bars indicate ±1 interquartile range (IQR) values of the index at each

sample size. The dashed horizontal line is at 0.5, indicating a threshold for when the two

methods perform equally. Considering the top panel, the median values of the R-index

for bias were above 0.5 in all estimated parameters and sample sizes. In the majority of

cases, the ±1 IQR bar of the bias was above the dashed horizontal line except for few

cases (estimation of σ2) where some IQR lines were slightly below the 0.5 line. In case

of the mixing proportion α̂1 we noted that on average more than 80% of the total bias

was contributed by the unweighted model. Overall, the effect of sample size on bias and

its variability was unclear. For three out of four intercept/slope parameter estimates the

variability in bias seems to decrease with sample size. In most cases, varying sample sizes

did not have a clear trend on median or IQR of the index.
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Regarding to the index for variance component presented in the middle panel of Fig-

ure 2, in four out of six of the parameters, the median value of R and the±1 IQR bars were

below the dashed line. The exceptions to this were for the estimates of σ2. For both com-

ponents, the variance seems to be much higher for the unweighted model than the weighted

model. In addition, looking at the IQR, we can see thatR associated with variance is much

less has shorter bars than the same index for the bias.

Finally, looking at MSE R index at the bottom panel of Figure 2, as MSE is the sum

of the bias square and variance the results shown are reflective of the above two. On

most cases, the median value of R is below the 0.5 threshold line except only the mixing

proportion parameter and the variance parameters. Concerning the variability of R for

MSE, we can see that similar to the variance component it has lower variability compared

to the same index for the bias. From the three summaries we can conclude that the even if

it is unclear which model performs better in terms of MSE, the bias in parameter estimates

obtained by using the weighted model is lower than the unweighted model.

3.3 Simulation 3: Model Selection

In this simulation study, we assess the performance of BIC as a model selection method

when using the weighted model as a classification tool. This is using the relationship

between finite mixture models and model-based clustering. In model based clustering,

each component is associated with a single cluster. Hence, a K-component mixture can be

used to identify K homogeneous classes in heterogeneous data. Therefore, we will vary

the number of components K that is used to generate the mixture model and assess if BIC

is able to retrieve the true K.

The vector of true parameters ψ = (τ ,β,σ2) used to generate the mixtures are shown

in Table 4. In this setup, samples were drawn using stratified sampling design from the

finite population by selecting simple random samples without replacement of size nh = 500
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Figure 3: Scatter plots of samples which are selected from finite populations for the four ex-

periments in Simulation 3. Colors show the number of components, and plotting characters

show the strata.

from each stratum, h = 1, ..., H . Figure 3 shows the stratified samples which were selected

in four experiments. In Mixture 1, we generated a finite population containing two strata

with 10000, 8000 observations in each stratum. In this case, there are two components

(K = 2), and the total of n = 1000 observations was selected. In Mixture 2, we generated

a finite population containing two strata with 10000, 8000 observations in each stratum. We

considered three mixture components (K = 3). Therefore, we have n = 1000 observations

selected in the total. In Mixture 3, we generated a finite population containing three strata

with 1000, 8000, 6000 observations in each stratum, respectively. The population has four

components (K = 4), where the total of n = 1500 observations selected with 500 from

each stratum. In Mixture 4, we generated a finite population containing two strata with

12000, 8000 observations, respectively. In this case, the population has five components

(K = 5). The total number of observations in the sample was n = 1000. After generating

data, the weighted model is fitted for different values of K ranging from 1 to 10. The BIC

is then calculated for each K. Figure 4 shows the results of this experiment including the

BIC values for allK and the optimal number of components in the four experiments above.

According to the results,BIC was able to choose the optimal number of components under

the various circumstance. In all four cases, BIC was the lowest at the true K value.
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Table 4: True parameter values for Mixtures of linear regression in Simulation 3.

ψ

H K α1 α2 α3 α4 β10 β20 β30 β40 β50 β11

2 2 0.52 -3 3 1

2 3 0.30 0.36 -5 -4 1 1

3 4 0.17 0.32 0.29 -5 -4 1 2 1

2 5 0.24 0.26 0.20 0.15 -5 -4 -1 1 2 1

H K β21 β31 β41 β51 σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

2 2 -2 0.1 0.1

2 3 -2 -3 0.1 0.1 0.5

3 4 -2 -3 -1 0.1 0.1 0.5 0.5

2 5 -2 1 -1 -3 0.1 0.1 0.5 0.5 0.4
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Figure 4: BIC values corresponding to the optimal number of components for the four

experiments.

4. APPLICATION

In the previous sections, we established tools to make inference and model assessments

for the proposed model. This section is dedicated to an application of the proposed model

to a real dataset. Our study focuses on the Academic Performance Index (API) dataset.

The API is a measurement of academic performance and progress of individual schools

in California, United States. This dataset is also available for use in an R package survey

(Lumley, 2004). The dataset contains 6,194 observations on 37 variables which provide

information for all schools in California with at least 100 students.
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4.1 Example 1

In this study, we used the variable called stype, which indicates the types of school (el-

ementary/middle/high school, for stratification to produce more precise sample estimates,

the individual strata should be internally homogeneous and different from one another.

Subsequently, we fitted the mixture regression model for the academic performance in-

dex in 2000 (api00) as the response variable and percent of parents who were high school

graduates, hsg, as a predictor. Then, the parameter estimates are determined based on the

proposed approach. A sample with size n = 750 observations was selected using strat-

ified sampling design. We implemented pseudo-maximum likelihood procedure for the

selected sample, to estimate and deduce the features of the hidden inference associated

with the relationship between the response and the explanatory variable. We fitted various

finite mixture of Gaussian polynomial regressions for this dataset. Table 5 reports the BIC

corresponding to the different scenarios that were implemented by varying the number of

components K and the polynomial degree r of the independent variable hsg for a mixture

regression of linear regression models. According to BIC, the best model was found to be

with K = 2 as the number of components and r = 2 for this part of the dataset. Estimates

of the regression parameters for a mixture of quadratic Gaussian regressions have been re-

ported on Table 6. Figure 5 shows the fitted regression model for the api00 on hsg. The

first component contains 27% of the total observations in the sample. The expected value

of API is about 567 when hsg = 0. On average, for each one percent increases in, hsg, the

API will decrease by −3.92 + 2(0.055)hsg, which corresponds to the first derivative of a

quadratic model. The API is declining by about 4 scores when the hsg = 0. Moreover, the

curve of API scores is slowly decaying by increasing in hsg until the hsg is approximately

36 which represents 87% of observations of hsg and then it is eventually growing when the

hsg increases, and that reflect the various behavior of the API of the students in this com-

ponent. In the second components, there are approximately 73% of the observation in the
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sample. The expected value of API is about 894 when hsg = 0. When the percent parents

who graduated from high school, hsg increased by one unit, the expected API changes by

−11.80 + 2(0.14)hsg, which corresponds to the first derivative of a quadratic model. The

API is decreasing by about 12 scores when the hsg = 0. Furthermore, the curve of API

scores is decreasing in a lower rate as the hsg increases until the hsg is approximately 42

which represents 93% in total of observations of hsg, and it shows a slight increase as the

hsg increases.

Table 5: BIC values for combination of number of components K and degree of the poly-

nomial r in Example 1.Bold font represents the lowest BIC obtained indicating the best

fit.

r

1 2 3

K

1 9259.619 9088.472 9168.37

2 9231.609 9073.795 9149

3 9282.754 9119.125 9195.36

4 9311.306 9160.060 9209.54

Table 6: Estimated parameters for the mixture regression model for the data in Example 1.

ψ̂

α̂1 β̂10 β̂20 β̂11 β̂21 β̂12 β̂22 σ̂1 σ̂2

0.27 566.56 894.40 -3.92 -11.80 0.055 0.14 58.52 66.84
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Figure 5: The plot shows the best-fitted mixture regression model with a 2-components

quadratic Gaussian regressions model to regress the academic performance index in 2000

for the students on percent parents who are high-school graduates

4.2 Example 2

We fitted the proposed model for the API in year 2000 api00 as a response variable

with the percent of parents with some college, some.col as the independent variable. For

the mixture regression model of regress the API in 2000 for students on percent of parents

with some college, some.col. Various finite mixture of polynomial regression models has

been fitted. Among these models, we sought a model with a small BIC. The best model

was found to be a linear regression withK = 2 for this dataset with the smallest BIC value.

The BIC corresponding to each of the linear regression fits are presented in Figure 6(a).

The resulting mixture is given in Figure 6(b). The corresponding parameter estimates are

provided in Table 7. It can be seen that for the first component (red), which consisted of

37% of the observations in the sample, and the average of API was about 816. The API

decreases 1 unit for each unit increase in the percent of parents with some college. In the

second component, there was approximately 63% of the the sample, and the component had

students with an average API of approximately 486 where some.col = 0. Their API score

increased by 4 units for each unit increase in the percent of parents with some college. In
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component 1, the conclusion is that on average a student whose parents have lower percent

with some college tends to report a higher API score. On the other hand, for component

2 on average a school which has have high percent of parents with some college tended to

report a higher API score. The association between API and some.col in first component is

not very intuitive and may be indicative of other confounded variable that is not captured.
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Figure 6: Plots show (a) BIC versus to the number of components, for the mixture regres-

sion model of regress the API in 2000 for students on percent of parents with some college,

(b) the fitted mixture regression model with a 2-components for the same dataset.

Table 7: Parameters estimated for the mixture regression model with the response the aca-

demic performance index in 2000 for the students and the percent of percent parents with

some college as explanatory variable.

ψ̂

α̂1 β̂10 β̂20 β̂11 β̂21 σ̂1 σ̂2

0.37 815.90 485.80 -1.36 4.35 49.83 72.28
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5. DISCUSSION AND CONCLUSION

A mixture of regression model was considered when a sample was gathered from a

stratified design. A new methodology was developed by incorporating sampling weights

to the complete-data log likelihood function, and an EM-algorithm was derived. Several

simulation studies were conducted to evaluate the performance of the model under various

circumstances. The new weighted model and the unweighted model were compared using

the bias-variance components of MSE. In both approaches, based on simulation results, the

mean square error for estimated parameters did not provide evidence significant enough to

infer which estimation approach was better. However, the weighted model showed lower

bias for the estimated parameters compared with the unweighted model. Conversely, the

unweighted model had a lower variance for most of the estimated parameters compared

with the weighted model. Overall, variability in both models tended to decline as the

sample size increased.

To assess this further, we constructed a percent contribution index that shows which

shows how much each model contributed to a total bias, variance, and MSE. Overall, ac-

cording to the relative bias index, the weighted model estimates have lower bias compared

with the unweighted model estimates. In the same context, weighted model estimates have

high variability compared with estimates which are obtained via the unweighted model for

the majority of the parameters to be estimated. The variability in this index was found to

be much higher in bias than either variance or total MSE. We assessed the utility of the

BIC for selecting the optimal number of components for a given dataset using a simulation

study. In all settings, the BIC model resulted in the correct number of components for a

given dataset.

In the real data analysis, the API scores in 2000 were regressed against the percent of

parents who were high-school graduates in California school of interest in the first example.

The optimal regression mixture model was chosen to be the one with the smallest BIC.
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After several models were fitted, a 2-component quadratic Gaussian regressions mixture

regression model performed better than other models, with the BIC being the smallest. In

the same context, when the API in 2000 for the students was regressed against percent

parents with some college. After numerous models were fit, a 2-component linear mixture

regression model had better performance than other models, with BIC being smallest.

In general, even though the survey detests already have subgroups, we can use finite

mixture regression tools, such as the proposed model, to search subpopulations that are

not easily amenable using the usual survey analysis tools. In future work, we will strive

to extend and develop this work to be appropriated for a mixture of multiple regression

models, other survey design techniques, and various types of weight calculations such as

non-response rates. Furthermore, we will address the different configurations by giving

sufficient scope to analyze the real dataset.
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Finite Mixture of Multiple Regression Models for a
Complex Sample

Abdelbaset Abdalla and Semhar Michael ∗

A design-based inference has been developed where sampling weights are integrated

into the complete-data log-likelihood function for modeling the mixture model to data

collected using complex survey data. A pseudo likelihood approach is proposed and

applied to obtain the estimates of the mixture model parameters. A challenging prob-

lem that arises in this domain: Is whether our proposed model will be able to retrieve

the underlying subgroups in a given population: Is whether our proposed model will

be able to retrieve the underlying subgroups in a given population. Two approaches

were considered: In the first approach, the mixture of regression models fitted to the

available survey data, which was treated as a finite population. The co-occurrence ma-

trix was constructed based on the classification solutions of the best fit model. In the

second approach, the mixture model was fitted to the selected sample samples based

on a complex design from the survey data. The co-occurrence matrix was constructed

based on the classification solutions of the best fit models of multiple samples. The

hierarchical clustering used to find clusters in data. Finally, we find out the classifica-

tion solution agreement between the two methods at different numbers of components.

We illustrate the proposed procedure of fitting a mixture model to survey data with an

example from NHANES data.

Keywords: mixture models, complex survey design, hierarchical clustering, pseudo

likelihood
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1. INTRODUCTION

Data collected through surveys are an essential source of information for modern soci-

eties. In this context, social survey data are one of the crucial data sources for understanding

society and changes in social trends. Besides, health surveys such as the National Health

and Nutrition Examination Surveys (NHANES) are vital for ensuring the public health data

that inform policymakers as well as members of the community about important health is-

sues for which health policy and procedures need to be implemented. Information from

surveys, therefore, represents one of the most important contributions to decision-making

processes aimed at effectively implementing international and government policies.

Over the past decades, there are a considerable number of studies describing the use of

sampling weights when a model fitting is carried out using complex sample survey data.

Many of these focus on the issue of whether sample weights should be used when fitting

a model to such data. It should also be pointed out that this is not a new problem. There

have been many research papers that aim to answer this question Pfeffermann and Nathan

(1981); Nordberg (1989); Pfeffermann (1993); Lohr and Liu (1994). Most of these papers

not only point out the solution to the issue but also provide useful guidelines regarding how

sample weights should be used in model fitting. The recent issues related with survey data

analysis is published in statistical science journal (Zhang, 2017)

Finite mixture models are being used increasingly to model heterogeneous data. Finite

mixture models in various practical situations are a powerful device that can be used for

clustering by assuming that each mixture of a component represents a subgroup in the data.

The most prevalent mixture model is the one consisting of Gaussian components (Day,

1969; McLachlan and Basford, 1988; Fraley and Raftery, 2006). An overview of mixture

models is given in McLachlan and Peel (2000) and Frühwirth-Schnatter (2006). The most

recent advances and challenges related to mixture models can be found in Melnykov et al.

(2015); McNicholas (2016); McLachlan et al. (2019). The issue of estimating the param-
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eters of the mixing distribution has a long history and dates back to Pearson (1894), who

dealt with a mixture of two components with equal variances by using the method of mo-

ments. However, in this work, the expectation-maximization (EM) algorithm (Dempster

et al., 1977) will be considered to derive the estimation of the parameters.

The finite mixture models are estimated based on the observations are drawn using the

simple random sample design. However, in real applications, this assumption rarely met.

However, ignoring the structure of the complex sampling design results in inconsistent and

biased estimates Wedel et al. (1998). The pseudo maximum estimation (PML) approach,

which is used to deal with finite mixture linear regression models for complex sample

designs. However, the inclusion probabilities for each of the sampled units are required

when using the PML approach. The development approach in later sections for the mixture

model for a complex sample is based on (Skinner et al., 1989). The PML approach has

been conducted on several statistical models. Still, as far as we know, there are only limited

works to fit the complex sampling data using the mixture of regression models.

The purpose of this article is to try to answer the following question: We will investigate

whether the proposed can be retrieved underlying subgroups in a given population if we

draw a sample from the data? To our knowledge, there is no previous work using the

proposed approach below.

In order to answer this question, an approach of two steps was considered. In the

first strategy, the mixture of regression models was fitted to the survey data, which were

treated as a target population. The classification solutions are identified based on the fitted

model of the data. The co-occurrence matrix has been constructed using these solutions.

In the second method, a complex sample is drawn using stratified multistage probability

sampling. The mixture of regression models was fitted to the sample and the classification

solutions identified based on the best-fitted model of the sample. The previous procedure

is repeated multiple times. Then, using these classification solutions, the co-occurrence
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matrix was constructed. The hierarchical was considered to find the clusters in the data.

Finally, we compute the classification solution agreement between the two approaches at

different numbers of components. As a concrete example, we will often refer to public use

data from the NHANES data.

2. SAMPLING DESIGN AND MIXTURE OF REGRESSION MODELS

In this section, some necessary groundwork will be laid concerning finite mixture mod-

els and complex survey data that will be used in this paper, then the proposed methodology

will be described.

2.1 Complex Sampling

In most survey data analyzed in practice are originally collected used non-simple ran-

dom sample (SRS) designs. These designs, such as stratified and cluster sampling. These

designs commonly are combined to obtain so-called complex sampling (CS). CS is a tech-

nique employed to ensure that the sample collected represents our target population as

closely as possible. In this paper, the sampling weights are calculated as reciprocals of

probabilities of selection. The sum of these weights is the population size (Lohr, 2010),

denoted here by N . In this paper, we consider a stratified two-stage cluster sample design

to draw the sample. Assuming that a finite population has been stratified into H strata,

then the sample is drawn from each stratum in the population. Assume stratum h was di-

vided into Nh PSU’s of which nh has been sampled, h = 1, ..., H with equal probability.

It follows that the selection probability of the ith PSU in the hth stratum, πhi, is given by

πhi =
nhi

Nhi
.

Let the ith sampled PSU be clustered into Mi SSU’s of which mj are sampled with

equal probability, i = 1, ..., nh. The selection probability of the jth SSU providing the ith

PSU in the hth stratum has been selected, πj|i, is defined as πj|hi = mi

Mi
, suppose that πij
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and which denote in turn the probability of selecting the jth SSU in the ith PSU of the hth

stratum, and the sampling weight of the the jth SSU in the ith PSU of the hth stratum.

Then wij = πij
−1. Where

πij =
( nhi

Nhi

)(mhi

Mhi

)
, h = 1, ..., H, i = 1, ..., nh, j = 1, ...,mhi.

Lohr (2010). When conducting the inference about the mixture models under the com-

plex sampling designs, the sampling weights are incorporated in the inference to construct

pseudo likelihood functions in later sections.

2.2 General Methods of Estimation for Complex Survey Design

Linear regression models and estimators are usually applies to analyze complex survey

data using pseudo maximum likelihood approach (Binder, 1983), (Skinner et al., 1989). Let

y1, ...,yN be the values of the y in the finite population. These are considered as random

variables with the pdf f(yi;Ψ) which depends on an unknown parameter vector Ψ. The

maximum likelihood estimate (MLE), Ψ̂mle of Ψ is defined as the solution to the equations

U(Ψ) =
N∑

i=1

∂ log f(y;Ψ)

∂Ψ
= 0. (1)

The pseudo maximum likelihood estimator (PMLE), Ψ̂pml estimator of Ψ is defined as

the solution of sample estimate of U(Ψ). i.e. Û(Ψ) = 0. The common estimator of U(Ψ)

is the Horvitz-Thompson estimator. Thus, the PMLE of Ψ is the solution of

N∑

i=1

wi
∂ log f(y;Ψ)

∂Ψ
= 0. (2)

2.3 Finite Mixture of Gaussian Regression Models

Let y be a response variable of interest and x = (x1, ...,xp)
> be the vector of p covari-

ates which may have effect on y. We say that (x,y) follows a finite mixture of Gaussian

regression model with the conditional density function of y given x has the form
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f(yi;xi,Ψ) =
K∑

k=1

αk φ(yi;xiβk, σ
2
k), (3)

where K is the total number of mixture regression components, φ(yi;xiβk, σ
2
k) is a Gaus-

sian density function of the kth component with mean xiβk and variance σ2
k. The mixing

proportions αk > 0 and
∑K

k=1 αk = 1. The parameter vector Ψ = (α1, ..., αK−1,β1, ...,βK)

with βk = (βk1, ...,βkp)
>.

2.4 Pseudo-Maximum Likelihood Estimation Approach

if one considered, a mixture model in (3) the MLE of Ψ maximizes the log-likelihood.

The standard formulation of the log-likelihood applies under simple random sampling, in

which each unit receives the same weight. The ML estimator solves the likelihood equa-

tions in (1).

In this case, estimation of the parameters is typically performed through the maximum

likelihood approach. The log-likelihood function is given by

`(Ψ) =
n∑

i=1

log

{
K∑

k=1

αk φ(yi;xiβk, σ
2
k)

}
. (4)

Due to the inconvenient form of `(Ψ) in Equation (4), the expectation maximization algo-

rithm (Dempster et al., 1977), which is based on a complete-data log-likelihood function,

is employed. The complete-data setup is given IID samples from f(yi;xi,Ψ); we define

the latent variable Zik such that

Zik =





1 if the ith observation ∈ kth component

0 otherwise
.

Then, we can write the complete-data log-likelihood function as

`c(Ψ) =
n∑

i=1

K∑

k=1

I(Zik = 1)
{
logαk + log φ(yi;xiβk, σ

2
k)
}
. (5)
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The EM-algorithm is an iterative procedure of two steps, the Expectation (E) step, and

the Maximization (M) step. At the E-step, we calculate the conditional expectation of the

complete-data log-likelihood function given the observed data

E
(
I(Zik = 1)|yi,xi,Ψ

(t−1)
)
= Pr(Zik = 1|yi,xi,Ψ

(t−1)).

This posterior probability will be denoted as τik. The expression of τik at the (t)th

iteration of the E-step is given by

τ
(t)
ik =

α
(t−1)
k φ

(
yi;xiβ

(t−1)
k , σ

2(t−1)
k

)

∑K
k′=1 α

(t−1)
k′ φ

(
yi;xiβ

(t−1)
k′ , σ2

k′
(t−1)

) .

At the M-step of the (t)th iteration, we maximize the conditional expectation of the

complete-data log-likelihood function commonly known as the Q-function given by

Q(Ψ;Ψ(t)) =
n∑

i=1

K∑

k=1

τ
(t)
ik

{
logαk + log φ(yi;xiβk, σ

2
k)
}
. (6)

Often a full ML procedure is intractable since the expression for the likelihood under

the complex sampling strategy depends on assumptions about the unknown relationships

between the y and the sample design variables.

Assume a complex sample {(xi,yi, wi); i ∈ s}, where wi is the sampling weights. In

this case, we selected a sample of size n units from a finite population of sizeN under some

complex survey design. The most popular definition of wi is as an indicator of the number

of population units which are represented by ith sample unit. In this paper, wi will be equal

to the reciprocal of the inclusion probability πi, which is the probability of selecting the

ith sample unit under some complex survey sampling design. If such a design is consid-

ered, then standard maximum likelihood estimators are usually biased Wedel et al. (1998).

Such a scenario can be avoided using the approximate, or pseudo-maximum Likelihood

(PML) approach as proposed by Skinner et al. (1989) and described by Pfeffermann (1993)

and Chambers and Skinner (2003). We propose a weighted estimation procedure for finite

130



mixture models which minimizes the bias in parameter estimates that occur when the sam-

pling design is not taken into consideration. However, a simple approach is to construct a

consistent estimator for Ψ by solving equations in (2).

This is done by incorporating the sampling weights, wi to the complete data log-

likelihood function. Then the modified Q-function is given by

Qpw(Ψ;Ψ(t)) =
n∑

i=1

wi

K∑

k=1

τik{logαk −
n

2
log(2πσ2

k)−
(yi − βk0 − βk1xi)

2

2σ2
k

}. (7)

We refer to the function in Equation (7) as the weighted Q-function and is denoted by Qpw.

At the M-step of the (t)th iteration, the Qpw-function is maximized with respect to Ψ. For

the mixture of multiple regression model, the closed form solution for mixing proportions

at (t)th iteration of the weighted M-step is given by

α
(t)
k =

∑n
i=1wiτ

(t)
ik∑K

k=1

∑n
i=1wiτ

(t)
ik

, (8)

The closed form solutions for the mixture of multiple regression model parameters at

(t)th iteration of the weighted M-step are given by

β
(t)
k =

(
X>W

(t)
k X

)−1
X>W

(t)
k y, (9)

where X is an n × (p + 1) matrix containing unity for intercept and predictors, W
(t)
k is a

n× n diagonal matrix with entries wi × τ (t)ik , y is a n× 1 vector of response variable, and

σ
2(t)
k =

∥∥∥W1/2(t)
k

(
y −X β

(t)
k

)∥∥∥
2

× tr
(
W

(t)
k

)−1
, (10)

where ‖A‖ = A>A with > denoting a matrix transpose and tr(A) means the trace

of the matrix A. Equations (9) and (10) can be used as update equations at at (t)th itera-

tion of the M-step. The same equation as given in equation (8) is used to update mixing

proportions.
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2.5 Computational Strategies

Rnd-EM (Maitra, 2009) was used to choose initial values. In this initialization method,

first random points are selected as seeds, and the Euclidean distance is used to assign obser-

vations to centers. This is repeated for some fixed number of times. The solution that yields

the highest likelihood value is then used for initializing the EM-algorithm. Rnd-EM tends

to work well if the number of components is not large (Michael and Melnykov, 2016). In

the EM-algorithm, the E-step and M-step are iterated until a convergence criterion is met.

In this paper, the algorithm is stopped when the absolute relative change in the likelihood

given by
`p(Ψ

(t);y,x)− `p(Ψt−1;y,x)

|`p(Ψt−1;y,x)| < ε, with ε = 10−8,

where `p(Ψ(t);y, `p(Ψ
(t−1);y,x) are the pseudo log-likelihood values from iterations t, t−

1, respectively. In the dataset analysis, we used the BIC (Schwarz et al., 1978) to select

the optimal number of components. In this paper, BIC will be calculated as BIC(Ψ̂) =

−2`p(Ψ̂)+M log n, where `p(Ψ̂) andM represent the maximized pseudo likelihood value

for a given K and the number of parameters in the fitted model, respectively. For mixtures

of normal regression, M = (K−1)+K(p+1)+K, where p represents the number of the

predictor variables. The model with lowest BIC value is the best model for a given dataset.

Identifiability of a given model is one of the major requirements for any model to be

meaningful and still an open question. It is defined for any two parameters vectors Ψ 6= Ψ′,

the respective model f(x;Ψ) must be different from f(x;Ψ′) for any random vector x.

Some basic issues are, however, in common with the component of a mixture of regression

models to which they belong. To illustrate, it is widely known that finite mixture models

are only identifiable up to a permutation of the component labels, which so-called switch-

ing labels problem. Nevertheless, this issue only affects the interpretation of the results, but

there is no problem with parameter estimation (Leisch, 2004). Overfitting is a more funda-

mental lack of identifiability, and it leads to empty components or components with equal
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parameters. This kind of unidentifiable can be avoided by restricting the prior mixing ratios

to be greater than zero, and the component with specific parameters are different (Leisch,

2004). In this paper, to prevent overfitting, mixing proportions have been restricted to be

greater than a particular threshold.

3. ANALYSIS OF NHANES DATA

Description of the Data

We will often refer to public use data from the NHANES data conducted by the U.S.

National Center for Health Statistics (NCHS). They are designed to provide national data

on health, disease, and dietary and clinical risk factors gained from clinical examinations

as well as detailed interviews (Centers for Disease and Prevention, 2013-2016). In this

work, we consider the 2013-2014 and 2015-2016 waves of NHANES participants in the

clinical exams and dietary questionnaires. In this paper, the subjects in NHANES who

had complete data on a selected set of variables were treated as a finite population (Li and

Valliant, 2015).

The R function for reading data in these formats in the R is haven package (Wickham

and Miller, 2019). This package is part of theR distribution but is not automatically loaded

into memory when R starts. To load this package from the package library, we need to type

library(haven). When the package is loaded, all its functions and help pages become avail-

able. The functions reade_xport(), will read SAS XPORT files. This function takes a file

name as the first argument. In this work, the 2013-2014 and 2015-2016 waves of NHANES

data were imported as SAS XPORT files, and we prepared them for our data analysis. The

R function for reading data in these formats in the R is haven package (Wickham and

Miller, 2019). This package is part of the R distribution but is not automatically loaded

into memory when R starts. To load this package from the package library, we need to

type library(haven). When the package is loaded, all its functions and help pages become
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available. The functions reade_xport(), will read SAS XPORT files. This function takes

a file name as the first argument. In this work, the 2013-2014 and 2015-2016 waves of

NHANES data were imported as SAS XPORT files, and we prepared them for our data

analysis.

Our analysis included people who are 18 years of age or older within the NHANES

2013-2016 population. The whole population consists of 2772 observations. After the

dataset was prepared and cleaned, the total was N = 2402 individuals. Suppose now that

one is interested in regressing a response variable y against a given set of independent

variables. For example, Harlan et al. (1985) has fitted regression models to NHANES data

with systolic blood pressure as a dependent variable (SBP) and body mass index (BMI),

age, and blood lead levels (BLL) as independent variables. Additionally, this example was

used by (Li and Valliant, 2015) in a linear regression analysis for data from NHANES. In

this section, we fitted the finite mixture of multiple regression models for NHANES data

2013-2016 with the response variable SBP on BMI, age, and BLL as predictor variables.

The dataset consists of two two-year waves of the new (continuous) NHANES data. Thus,

it is necessary to download the data on demographics (age, sex, education level, and ethnic-

ity), anthropocentric information (height, weight, and body mass index (BMI)), and blood

pressure) for both NHANES 2013-2014 and NHANES 2015-2016, then extract the appro-

priate variables and merge the datasets. It was also necessary to compute the average of the

multiple blood pressure measurements that are provided in the data. The sampling weights

also need to be adjusted for the combined data. Since each wave of analysis is weighted to

correspond to the full United States population, the combined data represents two copies

of the population. A new sampling weight variable was created by halving the original

weight that is recommended for analysis of complex survey datasets such as NHANES

data (Lumley, 2011). Moreover, the weights are created in NHANES to account for the

complex survey design, survey non-response, and post-stratification. Let wNH denote the
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sampling weights included in NHANES data. When a sample is weighted in NHANES,

it is representative of the U.S. Census civilian non-institutionalized population. A sample

weight is assigned to each sample person, which denotes the number of people in the pop-

ulation represented by that sample person. Throughout this section, we will assume that a

sampling weight of any observation is assigned a weight that is equivalent to the reciprocal

of its probability of selection.

Statistical Analysis

The question that surfaces is whether the proposed method will be able to retrieve the

underlying subgroups in a population that heterogeneity was not accounted for by the sam-

pling design. In most clustering methodology development, it is common to use clas-

sification dataset to assess performance of a method. However, to our knowledge there

is no population level classification dataset. To overcome this problem, we used treated

the NHANSE data as population data and determined underlying subpopulation using our

method. Then samples are taken from the data using complex survey design and the model

is fitted. Then we assessed how well the underlying groups are recovered by looking at

co-occurrence of observations in the sample as compared to the population. The following

describes the summary of our approach

• Step 1: Full data

1.1 Find best model fit using BIC. For the considered dataset, a 3-component mix-

ture of multiple regression model was the optimal model according to BIC.

1.2 Obtain the classification solution, based on K = 3 solution to construct was

used to construct a N ×N co-occurrence matrix, A1 = {aij}Ni,j=1. This matrix

is binary with aij = 1 indicating that two observations were in the same group

and aij = 0 that they were not classified together.
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• Step 2: Sample data

2.1 Use complex design to get a sample of size nb from full data of size N . Fit

the proposed model for various values of K and find the best model using BIC.

For the best model find classification solution and co-occurrence matrix of size

nb × nb. Repeat this for b = 1, . . . , 200.

2.2 The 200 nb × nb co-occurrence matrices have been merged to obtain A2 =

{bij}Ni,j=1,N×N co-occurrence matrix by finding the proportion, bij , computed

by dividing the number of times observations yi and yj are in the same group

by the number of times both were in a sample.

• Step 3: Comparison

3.1 Perform hierarchical clustering using JN − A1 as dissimilarity matrix, where

JN denoting an all-ones N × N matrix. Cut the tree at different values of

K to obtain classification solution C1K . Similarly, use JN − A2 to perform

hierarchical clustering and obtain C2K .

3.2 Compute classification solutions agreement between the two solutions C1K and

C2K at different K = 2, ..., 10. The pseudo-code with more formal notation is

provided in Algorithm 2.
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Data: Matrix of finite population X; Design Variables v1, v2, v3

Result: Complex Sample

Step 1;

Use v1 to divide X into h = {1, ..., H} strata;

Step 2;

for each h ∈ H do

Use v2 to cluster each h into Nh PSU’s;

Select SRS of nh PSU’s form Nh PSU’s;

Use v3 to cluster each i sampled PSU into Mhi SSU’s;

for each j ∈ Mhi do

Select SRS of mhi SSU’s form Mhi SSU’s;

end

end
Algorithm 1: The algorithm presents a stratified two-stage cluster design which uses

to selecting a complex sample from a finite population.
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Data: p-dimensional matrix of covariates XN×p and a response vector YN×1

Result: Proportion of class agreement

Step 1: Given YN×1 and XN×p;

for each k ∈ K do

Fit the proposed modelMk;

obtain BICMk
;

end

Let k′ = argminkBICMk
and C1k′ the corresponding classification solution;

Use C1k′ to construct A1 an N ×N co-occurrence matrix;

Step 2: Given YN×1 and XN×p;

for b ∈ B do

Select a sample ynb×1 and xnb×p form the full data using Algorithm 1;

for each k ∈ K do

Fit the proposed modelMbk ;

obtain BICMbk
;

end

Let k′ = argminkBICMbk
and Cbk′ the corresponding classification solution ;

Use Cbk′ to construct an nb × nb co-occurrence matrix ;

end

Obtain B co-occurrence matrices with nb × nb and combine them in one

co-occurrence matrix, A2 of size N ×N

Step 3: Comparison ;

JN − A1 and JN − A2 as dissimilarity matrix and perform hierarchical clustering;

for K ∈{ 1,. . . , 10} do

Cut the tree K and obtain classification solutions C1K and C2K;

Compute classification solution agreement between C1k and C1k;

end

Algorithm 2: The algorithm displays the steps to find the classification solution agree-

ment between the two of approaches.
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Results

In step 1, numerous finite mixtures of multiple regression models were fitted to the

whole dataset. The sampling weights included in NHANES, wNH , were used in this ap-

proach. The best model was found to be a multiple regression model with three compo-

nents, K = 3, with the lowest BIC value. The BIC corresponding to each mixture of the

linear regression fits is presented in Figure 1. Figure 2 displays the plots modeling sys-

tolic blood pressure versus the three auxiliary variables using the finite mixture of multiple

regression models. The classification solution, based on K = 3, was used to construct a

N ×N co-occurrence matrix.
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Figure 1: The plot shows BIC versus the number of components, for a mixture of multiple

regression models of regress the systolic blood pressure on the body mass index, age, and

blood lead levels.
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Figure 2: plots show the best-fitted mixture of multiple regression models with a 3-

component to regress the systolic blood pressure versus three auxiliary variables for

NHANES data.

In step 2, a sample was drawn from the NHANES 2013-2016 finite population using

a stratified two-stage sample design, as described in algorithm 1. Since we re-sampled

from the NHANES dataset, new sample weights needed to be constructed. Let wij be the

sampling weights computed by using the stratified two-stage sample design andwNH be the

weight associated with the NHANES data, thus, two kinds of sampling weights were used

in this step. Lohr (2010) and Thomas et al. (2006) have suggested combining these weights

into one weight by multiplying them. Then, the overall sampling weight for an observation

unit iswi = wij×wNH . The new weights were used in the inference of the proposed model.

The sampling was done B = 200 times with samples sizes nb, b = 1, . . . , B. The sample

sizes varied depending on the sampling design. The steps to sampling from the NHANSE

data are described in the pseudo-code given in Algorithm 1. In our specific application, the

variables v1, v2, and v3,respectively were used as design variables for each sample stage.

After we selected the sample, the finite mixture of multiple regression model was fitted to

the selected sample to find underlying subgroups. This was then used to obtain concurrence

of pairs of observations forming nb × nb.

The previous setup was repeated two hundred times. Contrary to the findings in step
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1, which suggested that 3 components may be the best solution for the given dataset, step

2 demonstrated two different solutions a 2-component and a 3-component of the finite

mixture of multiple regression models. Overall, in the majority of cases, the best solution

is a 3-component of a finite mixture of multiple regression models. The best model was

found to be a linear regression with a 3-component, K = 3, in approximately 72% of

drawn samples, and a 2-component solution, K = 2, in 28% of samples. Thus, a set of

two hundred N × N co-occurrence matrices were constructed via the two classification

solutions, K = 2, and K = 3. Therefore, two hundred nb × nB co-occurrence matrices

are then combined to N ×N weighed concurrence matrix by computing the proportion of

times two observations are in the same group given that they were in the sample.

The co-occurrence matrices obtained in both approaches were used as distance matri-

ces, so then hierarchical clustering was considered to determine the clusters in the data.

After the clusters were obtained, we found the classification solutions between the two

approaches at K = 2, ..., 10. Algorithm 2 describes the strategies used to obtain the co-

occurrence matrices and to calculate the proportion of the classification solution agreement

between the two approaches for different k.

From the short review to the classification solution agreement between the two steps,

key findings emerged. When the proposed model was applied to the whole available

dataset, the best solution was a 3-component of mixture distributions. Conversely, both

a 2-component and 3-component were the best solutions for the sample-based approach.

Considering Figure 3, it is interesting to note that the classification agreement solution be-

tween the co-occurrence matrices was minimal, considering K = 2 as a solution for the

dataset. The curve of agreement classification proportion suddenly increased to approx-

imately 93% when K = 3 was considered. In other words, 93% of the time, the correct

number of components for the best solution to the data wasK = 3. That was not surprising,

because the best solution for the whole dataset was K = 3. Then, the curve of proportion
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