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ABSTRACT 

 

ANALYSIS OF THE MOLECULAR MECHANISMS GOVERNING FCγ RECEPTOR 

ACTIVATION ON THE SURFACES OF MACROPHAGES BY ADVANCED 

OPTICAL MICROSCOPY 

ELIZABETH MICHELLE BAILEY 

2019 

Therapeutic antibodies are achieving new levels of therapeutic success in treating 

cancers and immunological disorders by antibody engagement of Fc receptor-directed 

immune responses. Conversely, inhibiting autoantibody induced Fc receptor activation is 

an attractive approach to treat autoimmune diseases.  Immunoglobulin G (IgG) antibodies 

are often the principal subclass used in therapeutic antibodies and associated with 

autoimmune pathologies because of their long circulation and potent effector functions, 

including activation of the Fcγ Receptor (FcγR).  Thus, a thorough understanding of the 

FcγR activation is required to improve the efficacy of immunotherapies and to mitigate 

autoimmunities.  It is well established that FcγR clustering is required for activation, yet 

the minimum number of FcγRs and the spatial characteristics of this activation remain 

incompletely understood.  In this dissertation, sophisticated microscopy methods were 

employed to elucidate how IgG binding to FcγRs changes their diffusion, membrane 

topographical environment and the recruitment of the essential kinase Syk. Additionally, 

this dissertation uses single particle tracking methods (SPT) to examine FcγR cluster 

valency and activation.  Major findings from this work include demonstration that 

clustering of five FcγRs is sufficient for activation on endosomes, but not the plasma 

membrane. The findings of this dissertation also provide insights into the mechanisms of 
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action of an FcγR inhibitor for IgG-mediated autoimmune diseases that binds three 

FcγRs.  Together, this work represents significant new insights into FcγR activation that 

may contribute to the field of basic immunology and may impact immunotherapy design 

strategy.  
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CHAPTER I. INTRODUCTION 

Immune cells, working in concert must integrate an intricate network of activating 

and inhibitory signals to regulate the innate and adaptive immune responses.  Pro-

inflammatory signals ensue when the scales are tipped in the direction of activating 

signals.  Effective responses of this pro-inflammatory signaling result in the elimination 

of invading pathogens such as bacteria or viruses [1]. When inhibitory signals prevail, 

immune cells are inactive or anti-inflammatory.  A major player in this balancing act is 

the Fcγ receptor (FcγR), which binds to the crystallizable fragment (Fc) of 

immunoglobulin G (IgG) antibodies that are attached to antigens, on the surface of a 

target, by their variable fragments (Fv).  FcγR binding to antibody-antigen complexes, is 

essential for IgG-dependent effector functions.  Activating and inhibitory FcγRs are 

expressed across innate and adaptive immune cells including dendritic cells, neutrophils, 

and macrophages, whereas, inhibitory FcγR is expressed on B cells, where it regulates 

IgG affinity maturation and production.  The roles of the FcγR vary widely and include 

phagocytosis, activation of natural killer cells and regulating antibody production in B 

cells [2, 3].  In macrophages, FcγR signaling results ins phagocytosis [3], ADCC, and the 

release of pro-inflammatory cytokines [2].   

Together, these FcγR effector functions define both activating and inhibitory 

activities of the innate and adaptive immune system.  In cases of autoimmunity, such as 

rheumatoid arthritis and systemic lupus erythematosus (SLE), excessive activation of the 

FcγR by IgG recognizing self-antigen contributes to pro-inflammatory responses 

characteristic of autoimmune pathogenesis [1, 4, 5]. Manipulation of FcγR  activation is 
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an attractive option for immunotherapies that range from treatment of cancer to 

autoimmune diseases [1, 6].  Achieving this goal requires a thorough understanding of 

the mechanisms of FcγR activation and inhibition.  

The FcγR family 

The human FcγR family (Fig. 1.1) is made up of activating and inhibitory 

receptors.   The activating receptors, FcγRI, FcγRIIa, FcγRIIc, and FcγRIIIa signal using 

an intracellular domain containing an immunoreceptor tyrosine-based activation motifs 

(ITAMs).  The inhibitory FcγR, FcγRIIb, contains an immunoreceptor tyrosine-based 

inhibition motifs (ITIMs).  The ITAMs for the FcγRIIa and FcγRIIc are located on their 

cytoplasmic tail while the FcγRI and FcγRIIIa have ITAMs within an associated dimer 

referred to as the common gamma chain (FcRγ, Fig. 1.1). The FcRγ is common to the 

FcεRI, and is shared among the other activating FcRs, (FcγRI, FcγRIIIa, and FcαRI) as 

well as other immune receptors (GPVI, OSCAR, TREM) and activates a wide array of 

immune functions [7, 8].   

 

Figure 1.1 The FcγR Family. A) The FcγR family members are made up of activating and 

inhibitory receptors that vary in affinity, with FcγRI being the high affinity receptor for IgG1.  
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All the FcγRs have extracellular domains comprised of multiple IgG-domains.  

The three IgG like domains of FcγRI, the high affinity receptor, enable it to bind IgG 

with Ka~109.  The high affinity receptor, FcγRI, or CD64, is the most studied of the 

FcγRs.  Association of the FcγR with the FcRγ occurs through salt bridges between the 

acidic residues of the signaling dimer and the basic amino acids of the receptor within the 

transmembrane region [9].  FcγRI also associates with the FcRγ via interactions between 

aromatic and polar residues that span the length of the transmembrane domain [10].  

ITAMs, Receptor Activation, Signaling 

A common feature across immune receptors such as the FcγR, T cell receptor 

(TCR), B cell receptor (BCR), and the FcεR, is that receptor cross-linking, also referred 

to as clustering, is required for activation and successful signaling propagation.  Upon 

engagement of the FcγR with an antibody-opsonized target, receptors undergo clustering 

[11].  In the T and B cell receptors, receptors cluster and accumulate at the central super 

molecular activation complex (cSMAC).  The receptor clustering at the cSMAC creates a 

narrow synapse between the cell and its target that excludes tall phosphatases [12-14]. 

Exclusion of phosphatases facilitate ITAM proximity of ITAMs for signal amplification 

via Syk kinase [11, 15]. Currently, it is thought that FcγR clustering is associated with 

integrins that form a physical barrier between phosphatases, like CD45, and the clustered 

receptors at the phagocytic cup [16].  Clustered FcγRs provoke phosphorylation of the 

ITAM’s tyrosines by Src Family Kinase, Lyn.  The ITAM’s phosphorylated tyrosines 

recruit Syk kinase, where it docks via its tandem SH2 domains [1, 17, 18].   Syk kinase 

continues to amplify signal by phosphorylating its ten tyrosines that function as 

autophosphorylation sites [18].   
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In opposition to the activating signal, inhibitory signaling occurs when FcγRIIb 

engages adjacent activating FcRs or the B Cell Receptor (BCR), which prompts the ITIM 

to recruit SHIP or SHIP-1, SH2 domain-containing phosphatases.  These negatively 

regulate the inflammatory responses by dephosphorylating local phosphorylated ITAMs 

[1, 19].  

Syk family kinases: Syk, Zap 70 

The T cell receptor (TCR), B cell receptor (BCR), and the FcRs all activate in a 

similar manner where receptors cross-link and Src family kinases phosphorylate the 

tyrosines of an ITAM.  The tandem phosphorylated ITAMs recruits either Syk kinase, in 

the case of BCRs and FcRs, and Zap70 in TCRs, where they bind via their two tandem 

Src homology 2 (SH2) domains.  Zap70 is entirely dependent on Src family kinases, 

where Syk can phosphorylate the ITAMs itself [18].  

In addition to two SH2 domains, Syk kinases have a kinase domain that is 

inactive in the resting state.  It is activated by binding both SH2 domains to dually 

phosphorylated tyrosines.  The phosphorylation of tyrosine residues within its 

interdomain allows kinase activation in the absence of phosphorylated ITAMs.  Because 

of this, Syk has been thought of as a logic switch (“OR”) for activation [18]. 

Syk kinase and its T-lymphocyte homolog, Zap70, have been shown to act 

differently.  This is illustrated across the different immune receptors and will be 

highlighted by reviewing the function of a significant tyrosine, Tyr130 in Syk and Tyr126 

in Zap70, and how differently its role is between the receptors. In BCRs, Tyr130 is 

responsible for dissociation of Syk from the ITAM and is thought to play an inhibitory 
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role as a mutation to phosphomimetic glutamate increased kinase activity [18].  For 

FcεRI, cycling of autophosphorylation and dephosphorylation of Tyr130 of Syk is 

necessary for amplification of kinase signaling for downstream pathways.  When 

substituted with Glut30, the binding off rate to the ITAM increased, a loss of site-specific 

Syk autophosphorylation occurred, and downstream signaling and resulting functions 

such as degranulation and cytokine production were deficient [20].  In the TCR, there is a 

proposed “catch and release” mechanisms that describes a transient Zap70 kinase 

recruitment, activation, and translocation to plasma membrane associated protein islands 

to activate other signaling molecules. The release of Zap70 to the plasma membrane is 

regulated by Tyr126 [21]. It is possible that this “catch and release” mechanism is 

employed in other membrane associated pathways and could explain the need for longer 

binding time of Syk:FcεRI.  Syk kinase activity at the ITAMs of the FcγR has not been 

explored in this capacity, but it is likely to have similarities given that the FcR is shared 

with FcεRI.   

Downstream Signaling Pathways 

When the FcγR activating signal dominates, a signaling cascade ensues that is 

responsible for effector functions such as antibody-dependent cell-mediated cytotoxicity 

(ADCC), oxidative burst, phagocytosis, stimulation of B cell to produce antibodies, and 

degranulation [1-3, 22].  The cascade of events includes Syk kinase recruitment mediated 

activation of multiple signaling pathways and downstream effects specific to the cell type 

(Fig 1.2).  In macrophages, Syk activates multiple signal transduction molecules, such as 

son of sevenless (SOS) and phosphoinositide 3-kinase (PI3K) which catalyzes the 

conversion of  PIP2 (Phosphatidylinositol 4,5-bisphosphate) to phosphatidylinositol-3,4,5-
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trisphosphate (PtdIns(3,4,5)P3),or PIP3 [2, 19, 23].  This conversion produces docking 

sites for Pleckstrin homology (PH) domain containing proteins that include PLCγ 

(phosphorylates phospholipase Cγ), Gab2, Akt, Bruton’s tyrosine kinase (Btk) [23].  Btk 

phosphorylates phospholipase Cγ.  Phospholipase Cγ then hydrolyzes PIP2 to produce 

IP3 (inositol triphosphate) and DAG (diacylglycerol) [23].  IP3 migration to the IP3 

receptors in the endoplasmic reticulum triggers an increase in intracellular calcium levels, 

triggering more downstream calcium-dependent channels.  An increase in DAG and 

calcium ions activates the Protein Kinase C (PKC) pathway [24].  An influx of calcium 

drives PKC activation also promotes downstream responses that include cytokine 

production and degranulation [23].  In addition to triggering the PLCγ pathway, Btk 

activates the Rac pathway, which in turn activates the Rho pathway [2].  Another 

activator of Rac is the guanine nucleotide exchange factor (GEF), Vav, which also is 

phosphorylated by Syk [23].  The Rac/Rho pathway, made up of Rho small GTPases, is 

responsible for the signaling needed to regulate the actin dynamic and as a result are 

responsible for the actin deformation during phagocytosis.  Meanwhile, activated SOS 

triggers activation of the Ras pathway.  The Rho, Ras, and PKC pathways in turn induce 

activation of even more signaling pathways, including MAPK/ERK. These pathways 

culminate in the control of ADCC, cytokine release, phagocytosis, and oxidative burst 

[2].  
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Figure 1.2 Activated FcγR signaling pathway. Clustering of FcγRI by a polyvalent opsonized 

target activates a phosphorylation cascade that starts with the Src family kinase, Lyn, 

phosphorylating the two tyrosines of the FcRγ’s ITAMs.  These phosphotyrosines recruit Syk 

kinase, causing it to exit its autoinhibited state and to dock its tandem SH2 domains to the 

phosphotyrosines.  Syk then continues to autophosphorylate its 10 tyrosines (not illustrated here 

for simplicity) as well as PI3K, Vav, and SOS.  PIP3 production recruits Btk and PLCγ, which 

activates other downstream kinases and GTPases and cause an influx of calcium ions.  These go 

on to activate many other pathways, which culminate in actin cytoskeleton reformation, 

phagocytosis, cytokine release, oxidative burst and ADCC. (Created with BioRender)   

 

The inflammatory response and FcγR autoimmunity 

Understanding the FcγR in the context of macrophages is of high interest, as they 

are powerful phagocytes that reside in all organs and tissues and play a role in both innate 

and adaptive immunity.  In a general inflammatory response, such as an infected wound, 
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PAMPs, DAMPS, and kinins are present as a result of invading microorganisms and 

damaged host cells. The kinins increase blood flow and capillaries become leaky so that 

platelets can make their way to the site of injury.  Meanwhile, resident macrophages of 

the tissue recognize the PAMPs/DAMPs and become activated, causing them to release 

pro-inflammatory cytokines such as TNF, IL-1, (IFNα in the case of virus and IFNγ, in 

case of bacterial infection) and IL-6 [18, 25]. Activated macrophages, among other 

monocytes, lymphocytes, and endothelial cells, release chemokines such as CXCL8 

which recruits more immune cells to extravasate through the blood vessel wall to the site 

of infection [25]. 

Once activated, macrophages increase their ability to phagocytose efficiently and 

present antigenic peptides on MHC class II molecules to engage T helper cells.  Their 

role as an antigen presenter is to amplify the adaptive immune response by activating 

memory or effector T cells at the site of inflammation.  The effector cells release IFNγ to 

hyperactivate the macrophage, which release cytokines to prompt T helper cell 

differentiation and upregulate the expression of MHC class II molecules on other antigen 

presenting cells, such as dendritic cells [2, 22, 25].  Thus the uptake of antigen, via 

antibodies initiates and sustains positive feedback with T helper cells that amplifies the 

immune response.    

As residents of all organs and tissues, macrophages are well positioned for 

clearing foreign pathogens from the body.  However, in FcγR-mediated autoimmunity, 

macrophages are one of the primary orchestrators of the inflammatory response that is 

attributed to pathogenesis.  A common denominator of autoimmune diseases, such as 
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rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), are autoantibodies 

that form immune complexes (ICs) with self-antigen [4, 5]. 

Using the FcγR to regulate the immune and inflammatory response 

Antibody based immunotherapies that activate FcγRs are attractive agents for 

treating cancers to autoimmune diseases.  While antibody therapy for cancer is meant to 

employ the immune system on a specific target, conversely, suppressing FcγRs activities 

for autoimmunity requires the opposite, competitive inhibitors that can bind and displace 

autoantibodies without initiating an immune response. Though opposite goals, successful 

drug design in either case requires a thorough understanding of the mechanisms 

governing FcγR activation and deactivation. 

Rituximab is an anti-CD20 antibody used to treat many types of B-cell 

lymphomas and hyper-active B-cell rheumatological disorders.  During intravenous 

delivery of Rituximab, B cells expressing the CD20 protein on their surface are decorated 

by the Rituximab antibody leading to their recognition by immune cells including 

macrophages and NK cells expressing FcγRs.  Normal and malignant B cells are depleted 

predominantly by macrophages via antibody-dependent cell phagocytosis (ADCP), and 

secondarily by ADCC and complement mediated cell death [26, 27].  The addition of 

Rituximab to chemotherapy significantly enhances response to treatment [28].  

Rituximab represents a shift in rheumatological and cancer treatments and is an example 

of the potential immunotherapies hold.   

Rituximab is an example of directing an antibody based immune response via 

FcγRs.  For IgG-mediated autoimmune diseases, FcγR inhibition is an attritive strategy to 
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inhibit IC-associated autoimmune diseases [29].  Autoimmune diseases such as RA in 

mouse models, and human autoimmune diseases such as acute immune 

thrombocytopenia purpura (ITP)  and Kawasaki disease have been effectively treated 

using single IgG Fc fragments and IVIG [30-32].  However, using just the IgG fragments 

or IVIG is not ideal because large doses are required due to the 1-1 Fc-FcγR binding in 

order to displace polyvalent ICs.  An alternative approach would be to design a 

therapeutic antibody with a higher avidity than the autoantibodies that could inhibit FcγR 

activation by blocking binding of autoantibody ICs.  Doing so without accidentally 

activating receptors represents a challenge in the design of therapeutic antibodies.  A 

strategy for designing a competitive FcγR inhibitor is to make a multivalent Fc molecule 

with a high affinity and avidity to displace the auto-polyvalent ICs.  

One of the challenges facing the design of therapeutic antibodies is potential for 

accidentally causing receptor clustering and activating the FcγRs, causing further 

damage.  Knowing the minimum number of receptors required to activate and propagate 

signal is key to developing therapeutics.  Recently, this question was interrogated through 

the engineering of multivalent Fc molecules of varying sizes and geometries.  The 

minimum requirement to activate FcγRs was an X-shaped pentameric molecule while a 

trimer was able to dock FcγRs with a high affinity and avidity without activating the 

receptor.  The trimer showed promising results in animal models of RA and SLE and as a 

potent inhibitor [6].   

While much of the signaling has been deciphered, the assembly of the FcγR 

activating cluster has yet to be sufficiently defined.  In this dissertation, two aspects of 

FcγR activation will be addressed.  The first addresses how the local topography and 
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actin regulators facilitate FcγR clustering at the phagocytic cup. Second, valency of the 

FcγR was interrogated using fluorescently labeled multivalent Fc molecules to 

understand the mechanistic differences in activation among varying cluster sizes.  

Together, this dissertation provides insights into FcγR activation that contributes to a 

basic understanding of immunology and may be informative for drug design strategy.   
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CHAPTER II. ACTIN NUCLEATORS AND MEMBRANE BENDING SHAPE THE 

SIGNALING OF FCγ RECEPTOR-MEDIATED PHAGOCYTOSIS  

Abstract 

FcγR-mediated phagocytosis is initiated upon the clustering of FcγRs once they 

have bound IgG on the surface of a target.  While the signaling machinery driving 

phagocytosis is well described, little is known about how nanoscale membrane 

topography facilitates receptor activation at the phagocytic synapse and its effect on tall 

transmembrane phosphatases.  Here, we applied new methods capable of capturing 

membrane curvature using polarized Total Internal Reflection Fluorescence (polTIRF) 

microscopy to visualize the topography of the macrophage membrane during frustrated 

phagocytosis of mobile IgG on a supported lipid bilayer.  The membrane curvature was 

examined for a small group of mutants dysfunctional in actin nucleators identified in a 

genetic screen for phagocytosis.  Formation of the phagocytic cup involved robust 

organization of membrane topography and indicated that the force provided for 

lamellipodia advancement is formed by specific orientation of membrane and 

cytoskeleton.  Specifically, the macrophage membrane remains flat against the target 

surface during phagocytosis and this region is followed by the M2 integrin.  Moreover, 

we demonstrate that the WAVE2 regulatory complex is essential for the formation of this 

topography and the lateral actin polymerization that provides the driving force for the 

leading-edge dynamics of the lamellipodia. 
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Introduction 

Phagocytosis is responsible for debris and pathogen clearance.  It is initiated in 

specialized phagocytes by a number of distinct receptors that can recognize innate signals 

or antibodies of an opsonized target [1, 2].  The FcγR is a potent promotor of 

phagocytosis in response to binding the Fc portion of target-associated Immunoglobulin 

G antibodies (IgG).  Macrophages are professional phagocytes and express high levels of 

FcγR.  Phagocytosis by macrophages depends on a balance of activating and inhibitory 

receptors that contain either immunotyrosine activation motifs (ITAMs) or 

immunotyrosine inhibition motifs (ITIMs), respectively.  Receptor clustering (referred to 

as microclustering) allows for FcγRs to spatially exclude phosphatases and arrange 

ITAMs in close enough proximity for Syk kinase signal amplification [1, 3].  An aspect 

of FcγR clustering that is not completely understood is how the local topography 

facilitates the scaffolding of FcγRs, signaling molecules, and the cytoskeleton.   

For successful signal amplification, the phagocytic cup or space between target 

and macrophage, called the immunological synapse (IS), must exclude the plentiful 

phosphatases on the macrophage surface.  It has been shown that phosphatases CD45 and 

CD148 have large extracellular domains and can be excluded from the phagocytic cup 

during phagocytosis of glass beads [4].  In T and B cells, T and B cell receptors coalesce 

into a central signaling unit where phosphatases are physically squeezed out by the tight 

space created at the IS [5-7].  More recently, a similar clustering phenomenon was 

observed in the FcγR upon engagement with IgG on a mobile supported lipid bilayer [8].  

In the case of the FcγR, Syk kinase was recruited to FcγR microclusters driving 
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production of freely diffusing Phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)  

and polymerization of lamellar actin followed by retrograde flow [8].   

In the context of a rigid target surface, akin to bacterial and fungal cell walls, the 

signaling of the FcγR is amplified through the help of integrin.  Rather than a tight IS 

being sufficient to spatially exclude phosphatases, integrins created a diffusional barrier 

between phosphatases and FcγR clusters and were shown to lower the threshold for 

required opsonin to complete phagocytosis[3].  Integrin recruitment to FcγR-mediated 

phagosomes has been observed, where the indicators of integrin activation, vinculin and 

talin, were found at phagocytic cups forming around IgG coated beads [9, 10].  The 

complement receptor 3 (CR3), referred to as αMβ2 integrin or CD11b/CD18 , is recruited 

to FcγR phagosomes in addition to being able to mediate phagocytosis by itself when 

engaged by the complement component C3b [11].  αMβ2 however, is one of the most 

promiscuous integrins and binds a variety of ligands that can be found on target cells, 

such as carbohydrates and components of the extracellular matrix: fibronectin, 

fibrinogen, and collagens [12].  Its promiscuity makes it a prime candidate for a 

secondary receptor in low antigen density, as it lowers the threshold for required opsonin 

[11].  In addition to forming a diffusional barrier and being a co-receptor, integrins have 

been found to form a dynamic podosome-like structure at the base of the phagocytic cup. 

That is believed to enable the tight contact between phagocyte and the phagocytic target 

as well as create a physical barrier.  This allows kinase signal amplification and enables 

the progressive engagement of FcγRs while giving a point of a support to the 

lamellipodia [11].   
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As current literature suggests, integrins are attractive candidates for 

mechanistically explaining anchoring of the actin cytoskeleton at the phagocytic cup.  To 

date, no mechanisms have been provided that link the FcγR to the actin cytoskeleton, thus 

it remains unclear as to how actin polymerization provides the force necessary for 

phagocytosis.  Thus far, the players in actin nucleation that have been studied in this 

context have predominantly been vinculin, talin, and Arp2/3.  Arp 2/3 nucleates and 

branches actin to form actin networks during lamellipodia protrusions.  In Arp2c-/- (actin-

related protein 2/3 subunit 2) macrophages, where formation of the Arp2/3 complex was 

compromised, FcR-mediated phagocytosis was not disrupted, while integrin dependent 

functions, such as complement-mediated phagocytosis were [13].  However, in a 

phagocytic screen, vinculin, talin, and all integrins were found to be dispensable, while 

gene knockouts for Arp2/3, Actr2 and Actr3 (actin-related protein 2 and 3), had mixed 

results of its necessity.  The WAVE2 complex was found to be required for phagocytosis, 

while knockout of WASP enhanced phagocytosis.   

The Wiscott Aldrich Syndrome Protein (WASP) family is a family of actin 

regulators that are understood to be responsible for regulating the dynamics of the actin 

cytoskeleton.  They are responsible for the stimulating steps for Arp2/3 actin nucleation 

through its conserved C-terminal VCA (Verprolin-homology, Central, Acidic) [14, 15].  

The WASP family verprolin homologous protein (WAVE) plays a role in processes such 

as cell adhesion, cell division, and migration, among others [15].  In T cells, WASP was 

found to generate dynamic F-actin foci at the T cell receptor’s (TCR) IS.  Though not 

required for actin polymerization at the IS, the dynamic architecture made via WASP 
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amplified the downstream signals that are required for optimum immune response, 

including the PLCγ1 activation pathway [16]. 

The WAVE regulatory complex (WRC or referred to simply as WAVE) is a 

heteropentameric complex made up of two subcomplexes; the first being a dimer of 

Cyfip1 (Sra1) and Nap1 (also known as Hem-1 or Nckap1l) and the second being a 

trimer made up of the N terminus of WAVE, Abi1, and Brk1 (also called Brick1 and 

HSPC300)[14, 17].  Cyfip1 links Nckap1l to activated Rac, suggesting that Rac may 

regulate WRC activation through Nckap1l and Cyfip1 [17].   

Within the WAVE complex, three possible isoforms of the WAVE protein occur: 

WAVE1, WAVE2, and WAVE3.  WAVE1 and WAVE3 are expressed mostly in 

neuronal cells. WAVE2 is expressed ubiquitously, but is the only WAVE protein 

expressed in hematopoietic stem cells and highly expressed in leukocytes [18-20].  

WAVE’s major role is Arp2/3 activation during protrusions of the plasma membrane and 

cell motility. WAVE2 (the WAVE complex containing the WAVE2 isoform), 

specifically, is associated with peripheral membrane ruffling, cell mobility, and 

lamellipodia formation [14]. Hem-1, or Nckap1l, are specific to hematopoietic cells. 

Immunoprecipitation of Hem-1of human promyelocytic leukemia cells, established that 

Hem-1 associates with WRC proteins WAVE2, Abi1 and Cyfip1/2 [21].  Hem-1 is 

thought to organize the leading edge lamellipodial formation by controlling a Rac/F-

actin-mediated feedback loop [21].  This was further supported via TIRF microcopy, 

where Hem-1 waves were correlated with the spread of the advancing leading edge.  

These waves of Hem-1 are thought to stimulate nucleation of actin at the leading edge 
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and may be vital for phagocytosis[21].  Additionally, work done in Hem1-/- neutrophils, 

exhibit major defect in phagocytosis [21]. 

While it is established that the formation of an IS involves exclusion of 

phosphatases and dynamic actin polymerization, the role of the local topography has not 

been explored.  We predict that the plasma membrane must be dynamic in order to 

facilitate the diffusion and scaffolding of receptors, adhesion proteins, and other 

accessory proteins necessary for phagocytosis.  Our lab developed a unique method to 

measure membrane bending dynamics.  This method, polarized total internal fluorescence 

microscopy (polTIRF), uses the orientation of the dipole of a lipophilic dye, DiI, under 

selective polarized excitation in either vertical or horizontal membrane to capture the 

dynamics of membrane curvature in living cells [22].  Here, we applied this method to 

interrogate changes in membrane topography during formation of the phagocytic 

lamellipodia in the context of frustrated phagocytosis on a mobile surface.  We found that 

in the context of the mobile antigen, the phagocytic cup forms an IS at the leading edge 

of an advancing lamellipodia that has an overall flat membrane which we predict would 

squeeze out phosphatases such as CD45. Additionally, immunofluorescence revealed 

integrin αM anchors the actin cytoskeleton behind a leading row of FcRs. These findings 

provide a potential explanation for a target-seeking force that pushes the membrane of the 

phagocytic cup into close juxtaposition with the target and may exclude large 

extracellular domain containing proteins such as CD45.   

Through CRISPR gene disruptions of the components of the WASP, WAVE 

(WRC), and Arp2/3 complexes, we have demonstrated that the actin nucleators are 

possibly specific to directionality of actin polymerization.  Knockouts for Wasf2 



20 
 

(WAVE2) and Nkap1l of the wave complex and Actr2 of the Arp2/3 complex, 

dramatically altered the organization of the leading-edge and the distribution of FcγR, 

suggesting that the WAVE complex is required for actin polymerization in lateral 

lamellipodia protrusions. These findings provide further insight into the local 

environment facilitating FcγR cluster assembly and signaling.   

Results 

Measuring Membrane Bending During Frustrated Phagocytosis 

Supported lipid bilayers on glass, containing biotinylated POPC, were used as a 

flat, mobile, target to image the organization of FcγRs and the morphology of the 

pseudopod in TIRF.  Fluorescently labeled anti-biotin IgG2a was used to opsonize the 

bilayer and fetal liver macrophages (FLMs) were dropped on the bilayers (Fig. 2.1A).  

FcγR engagement with the surface-associated IgG2a results in a potent frustrated 

phagocytic response; in which the cell attempts to engulf the surface but cannot due to its 

size.  Fluorescent IgG2a allowed for visualization of FcγR clustering and their 

movements at the macrophage-target interface.  In WT cells, clusters formed during the 

forward movement of the lamellipodia (Fig.2.1B) and then detached from the leading 

edge and trafficked back in towards the center of the phagocytic cup (Fig. 2.1C).  Figure 

2.1A shows a representation (not to scale) of an FLM engaging via its FcγRs with the 

opsonized bilayer.  Figure 2.1D shows an example of a macrophage over a timelapse, 

whose FcγRs engage the IgG2a and respond by expanding outward as it attempts to 

engulf the bilayer.  As it does so, receptors were pulled toward the center of the cell.  

This was studied in mouse fetal liver macrophages (FLM) (top), but human PBMC 

macrophages (bottom) were shown to behave in the same way as mouse macrophages.    
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Figure 2.1 PolTIRF imaging of membrane bending and FcγR organization during 

engagement of mobile IgG.  A) Frustrated phagocytosis was done using mobile supported 

lipid bilayers (SLB) containing biotin-PE lipids that were opsonized with fluorescent antibodies 

(Created with BioRender).  B-C) A representation of the leading edge was adapted from [8] and 

shows the leading edge advancing out radially, which required actin polymerization (purple) (B) 

that presumably propelled active FcγRs forward (C) until a process similar to retrograde actin 

flow (green) caused FcγRs to retract toward the center of the cell (C) [8].  D-E) Response to the 

IgG opsonized SLB was similar between mouse fetal liver macrophage  (FLM) (top) and human 

PBMCs (bottom).  Scale bare represents 2um.  E-F) polTIRF utilizes directionally polarized light 

to excite a lipophilic dye, DiI [22].  DiI’s dipole aligns parallel to the bilayer, allowing detection 

of vertical membrane with p-polarized light (E) or horizontally membrane with s-polarized light 

(F).  G) The polTIRF is used to image vertical membrane (P image) and horizontal membrane (S 

image).  These images are divided to create a P/S ratio image to show curvature, where the areas 

of highest intensity refer to more curvature and the low intensity refers to less curvature. 
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For curvature measurements, images of DiI labeled macrophages were used to 

calculate total curvature.  When DiI is vertical, the dipole is vertical and is excited by 

vertically, or p-polarized light.  Likewise, the horizontally oriented DiI is excited by 

horizontally, or S-polarized light. Figure 2.1E and 2.1F represents the 2-point TIRF setup 

with the laser beam bouncing off the glass-water interface with either p-polarized light 

(E), or S-polarized light (F).  The cartoon demonstrates the selective excitation of DiI 

during endocytosis were the vertically oriented DiI fluoresces when excited by p-

polarized light (F) and horizontally oriented DiI fluoresces when excited with S-polarized 

light (E).  Figure 2.1G is an example of polTIRF using P and S-polarized light to of 

primarily vertical and horizontal membrane respectively.  The P/S ratio images were 

made by dividing the P-image by the S-image to yield an image of total curvature.  

Membrane is most vertical near advancing edge and initial contact point  

Timelapse imaging revealed that membrane curvature is highest at the leading 

edge and then flattens as contacts with the target are established.  Figure 2.2A shows a 

representative montage of timelapse images of the IgG2a AF488, P/S ratio, and the 

resulting merged images of the two.  Close examination and a line scan of the leading 

edge showed vertical membrane followed by a flat region behind the zone of IgG2a 

clusters, interspersed with occasional spots of high curvature (Fig. 2.2B-C).   Line scans 

from the center of the cell to the most outward edge showed that clusters of IgG2a were 

found in regions of less vertical membrane (Fig. 2.2D-F).  The membrane immediately 

behind clustered receptors has a lower P/S ratio, which suggests that as contacts with the 

target are made, and the macrophage’s pseudopod advance outward, the membrane 

remains flat against the target.  These data demonstrate highly organized clusters and 
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membrane topography that orchestrate the phagocytic process. The progression of the 

leading edges suggests that contact is established in the center of the cell and there is a 

force pushing out laterally. 
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Figure 2.2 PolTIRF analysis of membrane topography relative to sites of FcγR engagement.  

A) Timelapse imaging of IgG and P/S signals during frustrated phagocytosis showed that the 

membrane behind the IgG leading edge was flat and the highest curvature remained further 

inward, toward the center of the cell (Scale bar=2um).  B) A close-up of the leading edge of the 

cell shows the very front of the cell is curved, followed by mostly flat membrane that sharply 

curve in some areas.  C) A line scan of a single frame at the leading edge verifies that the front of 

the pseudopod is vertical and then flattens out where IgG2a engages with FcγRs, but it still more 

curved than the flat control (DiI labeled SLB).  D) Line scans across the cell’s radius for a 20 

frame timelapse are represented as an arrow across three of the twenty frames measured. E-F) 

These line scans (not the same cell from panel A) of the IgG2a (E) and P/S (F) show peaks of 

IgG2a where clusters presumably retract towards the center and at the leading edge.  While 

curvature is dynamic, overall P/S ratio remains relatively low other than near the leading edge.   
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Cytoskeleton at the phagocytic cup is dependent on actin and adaptors 

Membrane curvature and the frustrated phagocytosis assay demonstrated high 

organization of the membrane and receptor clusters that prompted interrogation of the 

players that facilitate such organization.  Clustered FcγRs recruit Syk which drives 

production of diffusing PI(3,4,5)P3, which in turn, coordinates lamellar actin 

polymerization [8].  The dependence of macrophages on actin polymerization for the 

formation of pseudopodia in our supported lipid bilayer system, was validated by treating 

macrophages with latrunculin before dropping them on the opsonized bilayers.  

Latrunculin is a toxin made by the sponge, Latrunculia genus, that prevents actin 

polymerization by binding actin monomers.  Latrunculin treated cells were able to make 

contact and were able to spread a limited distance but exhibited poor organization of 

receptor clusters and failed to form a discrete leading edge (Fig. 2.3A).  We observed that 

the curvature of the plasma membrane (P/S ratio) remained flat in the region of contact 

and shows little to no change over the course of timelapse imaging, indicating that the 

higher degree of organization observed in between untreated macrophages required 

additional actin polymerization.  Latrunculin appeared to prevent full spreading on the 

bilayer. Macrophages were able to spread, but not to the same extent as untreated 

macrophages.  Additionally, the FcγR clusters were unable to organize the same way and 

remained in disorganized patches.  This suggests a lack of lateral actin polymerization.  

Rather, it appears cells contacted the bilayer, clustered receptors where the macrophage 

surface made contact, but could not extend much laterally to advance the leading edge 

and engage more antibody.  While actin is clearly important for the advancing leading 
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edge and overall organization of the phagocytic cup, it is not known to be physically 

connected to the FcγR, suggesting an important role of actin regulators.   

We next wanted to determine other molecules responsible for actin coordination 

during phagocytosis.  We first looked at integrins, as they are adhesion proteins known to 

anchor the actin cytoskeleton, and they are known to be a diffusional barrier during 

frustrated phagocytosis to prevent large phosphatases, such as CD45, from 

dephosphorylating activated receptors [3].  Knowing this, immunofluorescence was 

applied to the supported lipid bilayer system, which required gentle washes that left a 

small volume in the Leiden chamber, to prevent disruption of the bilayer.  Figure 2.3B 

represents the process of immunofluorescence on a supported lipid bilayer.  Integrins 

expressed in FLMs, β1, β5, and αM were stained.  αM was the only one of the integrins that 

was associated with microclusters.  This is demonstrated in Figure 2.3C whereas β1 and 

β5 show no correlation with clustered IgG2a, but αM localizes to the flat regions (P/S, Fig. 

2.3C) behind the IgG2a.  Next, we applied the same system to label actin with phalloidin.  

Figure 2.3D again shows a localization of actin that closely mimics the localization of 

both αM and low P/S ratio membrane.  These data suggest that the actin cytoskeleton 

facilitates a tight synapse between the target and phagocytic cup, creating a flat 

membrane topography, and is anchored by αM.  This topography may also facilitate the 

scaffolding of other accessory proteins that are necessary for phagocytosis.   
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Figure 2.3 Actin, actin adaptors, and integrins shape the topography at the phagocytic cup.  
A) Latrunculin treated FLM cells show lack of organization of FcγR clusters during frustrated 

phagocytosis of a mobile target.  Curvature is relatively flat and spreading of the cell is minimal.  

B) Immunofluorescence of FLM cells shortly after being dropped on the IgG opsonized bilayer 

allows staining of actin and integrins.  C)  Immunofluorescence of integrins expressed in FLM 

cells shows αM as candidate for actin cytoskeleton anchoring.  D)  Comparing staining of αM with 

actin (phalloidin), the pattern of localization is very similar and coincide with the area of flat 

membrane behind the leading edge of the phagocytic cup. E) Actin adaptors required for 

phagocytosis: Snapshots of gene knockouts of Actr2, Wasf2, and Nckap1l show an inability to 

expand laterally but could form microclusters (namely in Wasf2 and Nckap1l). While Was 

knockouts experienced hyper engagement lateral spread but poorly organized microclusters. 

Scale bars represent 5um.      
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These results indicated that while αM appears to be in a location consistent with 

anchoring the cytoskeleton to the plasma membrane for actin polymerization.  

Meanwhile, results of a whole genome screen conducted in the Hoppe lab indicated that 

that αM was not necessary for phagocytosis (data not shown).  Rather, macrophages were 

able to internalize IgG coated particles without αM or β2 and still establish a connection to 

the cytoskeleton. In addition, the screen showed other proteins, namely actin adaptors and 

regulators of the WAVE and Arp2/3 complexes, that were required for phagocytosis.  To 

evaluate the structure of the phagosome/target contact, we applied TIRF microscopy of 

gene-disrupted macrophages.  On the IgG2a opsonized bilayer, the actin nucleator Actr2 

knockouts only made punctate attachments to the bilayer, with no expansion from the 

central point of contact (Fig. 2.3E).  The Was mutants (coding for WASP) were able to 

form an advancing pseudopod, however, the structure of the contact was dramatically 

altered, resulting in large regions in contact with the target surface.  This leads us to 

believe that this protein may be important for integrin activation and organization of 

contact sites.  Thus, Was mutants failed to elevate plasma membrane above the target 

membrane, but rather simply just flatten out membrane across it.  The WAVE complex 

proteins, Wasf2 and Nckap1l, both established contact with the opsonized surface but 

failed to organize a lamellipodia leading edge as in the parental examples.  The effect of 

Nckap1l was even more debilitating than Wasf2.   These data suggest WASP is not 

required for the advancing leading edge but may be involved in integrin activation, that 

props the cell up and for activating Arp2/3 nucleation at the immediate contact area.  

Alternatively, these data may also further confirm WASP’s involvement in regulation of 

Arp2/3 at the podosome or even suggest a role as a negative regulator of the FcγR.  The 
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WAVE complex appears to be vital for activating Arp2/3 to provide lateral actin 

branching at the leading edge.  Nckap1l, the link between WAVE2 and Cyfip1, which 

binds to Rac, may be part of the regulation of the WAVE-mediated activation of Arp2/3.  

Without it, it is unable to activate the Arp2/3 and inhibits the cells to laterally nucleate 

new actin or branch existing actin. 

Discussion 

In the context of therapeutic antibodies, the antigen, IgG and the FcγRs are 

mobile at the macrophage target interface.  Our work focuses on addressing how the 

topology of the membrane organizes FcγR dependent phagocytosis.  This is in contrast to 

previous work on phagocytosis that has been studied in the context of immobile antigen.  

Studying in the context of mobile antigen provides insight into phagocytic response of 

immunotherapies.   

Understanding that phagocytosis is dependent on the exclusion of phosphatase 

from clustered FcγR-IgG synapse, we predicted that the FcγR clustering behavior was 

associated with deformation of the plasma membrane to spatially exclude phosphatases.  

We expected a flat region where the receptor: antibody complexes would form a tight 

space at the IS and a sharp vertical membrane transition at sites where tall phosphatases, 

extending approximately 30nm from the cell surface, would force the macrophage 

membrane to bend and make room for it against the target.  Indeed, our polTIRF imaging 

demonstrated that IgG-rich regions of contact corresponded to low P/S (flat) regions of 

membrane that were enveloped by regions of vertical membrane, suggesting that 

molecular heights influenced the membrane topography at the contact site.  This finding 

is consistent with IgG-FcγR complexes extending into the extracellular space about 6nm 
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and that the SLB lays on flat glass.  Most vertical membrane existed at the very central 

point of contact of the cell and at the leading edge which suggests that taller molecules 

may create a separation between macrophage membrane and the coverglass.  We can 

predict that the vertical nature of the leading edge was from the flow of PM that occurs as 

antibody meets receptors, as is suggested by the zipper model.  Additionally, 

polymerizing actin at the leading edge may cause higher membrane bending due to local 

membrane tension pulling against the non-adherent side of the lamella.   

Knowing that integrins were shown to serve as physical barriers between FcγRs 

and CD45 in the case of immobile antigen [3] and that the integrins involved in the 

complement receptor, αMβ2 are present at the phagocytic cup [23], we interrogated the 

involvement of integrins in the context of mobile antigen.  To do so, the most highly 

expressed integrins in FLMs were immunostained (Fig. 2.3B) and αM integrin, was 

associated with plasma membrane regions adjacent to or following advancing receptor 

microclusters at the leading edge, forming a ring (Fig. 2.3C). Additionally, phalloidin 

labeling of actin showed a similar localization of a ring around the cell, lying just behind 

the leading edge of the macrophage.  These similarities imply that αM2 is responsible for 

anchoring the cytoskeleton at the phagocytic cup.  It is possible that its function is 

twofold in allowing a close contact to be formed to spatially exclude phosphatases as well 

as act as a diffusional barrier in the few areas that may allow diffusion of the tall proteins. 

These observations reinforce that a podosome-like structures form at the base of the 

phagocytic cup. 

Complement receptor, αM2 is present at the phagocytic cup [23] and activated 

integrins diffuse to activating FcγR  and determine the efficacy of phagocytic response by 
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lowering the opsonin threshold needed for engulfment [3].  While in some cases, 

integrins appear to enhance the phagocytic response, our unpublished results indicate that 

αM2 was not required for phagocytosis.  Rather, the Arp2/3 and WAVE2 machinery 

(Actr2, Wasf2, and Nkap1l) were necessary for organization of receptor clusters at the 

phagocytic cup and efficient phagocytosis.  It is not yet clear if Arp2/3 and WAVE2 are 

necessary for actin dynamics and architecture or if they are involved in regulating other 

signaling processes.    

Importantly, WASP, demonstrated through the Was knockout, was required for 

FcγR organization and we speculate that this was in-turn important for integrin activation 

and regulation of regulating the number of engaged FcγRs.  It has been proposed that 

CalDAG-GEF1 serves as an adapter for integrins at FcγR clusters, as CalDAG-GEF1-

null mice did not form integrin barriers for CD45 phosphatases[3].  This may be the case, 

at least in immobile antigen, but our TIRF data of the Was knockout suggests that the 

WASP complex may be involved in inside-out integrin activation to employ the 

kickstand structure to lift the cell off the target surface enough.  Based on literature, this 

likely occurs at dynamic podosomes that form during target engulfment.  Podosomes 

form upon the engagement of the extracellular matrix by integrins.  At the core of 

podosomes, integrin β1 is preferentially found, along with WASP [24, 25].  While β1 is 

associated with WASP activation at the core, there is also evidence that WASP regulates 

integrin clustering at the initiation of podosomes.  Specifically, in dendritic cells, WASP 

was associated with β2 recruitment, but this recruitment did not occur in the absence of 

WASP and the concentric rings of integrins failed to form [26]. Drawing from literature 

and our data, it appears that WASP is associated with podosome initiation steps that 
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recruit and activate integrins, allowing podosome formation and the ‘propping up’ of the 

cell as was previously described.   

If WASP indeed is associated with integrin recruitment and activation at the 

podosome, it appears that a lack of integrin activation still allows, and enhances, receptor 

engagement and clustering, demonstrated in the TIRF data.  This result coincides with the 

enhanced eating from the phagocytic screen in the Was knockout bone marrow 

macrophages.  Future work will look at membrane curvature in Was knockout cells, with 

the prediction that the membrane would be even flatter, with fewer dynamics and spikes 

in vertical membrane.  

These data, in conjunction with literature showing the formation of dynamic 

podosomes [11] at the phagocytic cup, help shape a clearer picture of the phagocytic cup,  

It seems that WASP is associated with Arp 2/3 actin nucleation during podosome 

formation as well as with the initial recruitment and inside out activation of integrins that 

allow them to prop the cell up.  Previously, it was suggested that receptor cross-talk 

between FcγRs and integrins [3] was responsible for the inside-out activation during 

frustrated phagocytosis, but these data suggest WASP has a significant role. In its 

absence, phagocytosis is still successful, but the synapse between target and phagocyte 

appears to be non-existent and receptor-IgG binding is enhanced.  Despite an absence of 

organized receptor microclusters, the leading edge is still able to organize, unless the 

components of the WAVE complex are absent.  In the case of Wasf2 (WAVE 2) and 

Nckap1l knockouts, the cell was unable to organize its leading edge and advance it, 

despite appearing to form microclusters.  This suggests the WAVE’s role for stimulating 

actin nucleation may be directionally distinct from WASP; where the WAVE2 complex 
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is needed for the lateral Arp2/3 stimulation so that the pseudopod can advance around the 

target.  WASP’s stimulation for Arp2/3 may be specific to forward actin assembly as in 

the formation of dynamic podosomes (Fig. 2.4).   

 

Figure 2.4 Actin Nucleators are specific to direction of membrane deformation.  WASP 

stimulates Arp2/3 at dynamic podosomes and is associated with inside-out signaling necessary for 

activating integrin to prop cell up off the target surface.  Meanwhile, Wave stimulates Arp2/3 to 

nucleate actin filaments for peripheral actin organization and lamellipodia formation.  The short 

distance between receptor and antibody complexes at the IS create the flattest region of 

membrane while the height of integrins elevates the membrane.  This makes a bend in the 

membrane and then facilitates a flat sheet of membrane associated with wrapping the pseudopod 

around the target.  (Created with BioRender) 
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Phagocytosis requires FcγR clustering to propagate the intricate web of signaling 

the allows for engulfment of a target.  This clustering has been shown in other receptors, 

such as the T cell receptor, to allow for a tight synapse to crowd out tall phosphatases.  In 

macrophages, integrins were thought to not only be a valuable coreceptor, but also a 

physical barrier between phosphatases and clustered receptors FcγR [3].  We have 

demonstrated that much of the plasma membrane during frustrated phagocytosis is flat 

and that integrins appear to form a barrier behind the leading edge, suggesting that the 

phosphatase exclusion may be due to a combination of size exclusion and physical 

barriers.  Additionally, we predict that WASP activates integrins through an inside-out 

activation, while WAVE2 is required for the lateral actin polymerization and successful 

engulfment of a target.  These findings help shape a clearer understanding of FcγR-

mediated phagocytosis and the local environment that facilitates signaling.   
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Methods 

Supported Lipid Bilayer Formation 

Supported lipid bilayers were formed by spontaneous fusion of lipid vesicles. For 

the opsonized bilayers, DSPE-PEG(2000) Biotin (Avanti Polar Lipids 880129) and 

POPC (850457 Avanti Polar Lipids) were mixed at a molar ratio of 1:100 with total lipid 

concentration of 500uM. The lipid mixture was then dissolved in chloroform and dried 

using a vacuum centrifugation to remove the chloroform, where the first minute ran at 

30C and the remaining temperature was set to room temp. The lipid film was re-

suspended in dPBS by initially vortexing and then sonicating for 5 minutes using a bath 

sonicator and then extruded through (Avanti Polar Lipids 610000) 100nm filter at least 

13 times (Whatman Nucleopore Track-Etch 100nm membrane).   

To form bilayers, liposomes were diluted by using 75uL liposomes for every 

450uL of 2mM Mg2+ PBS. The dilution was then pipetted on the coverslip.  The bilayer 

was formed on Piranha acid (H2SO4 (30 %, v/v):H2O2 (3:1, v/v)) cleaned coverslip and 

then dunked in water at about 42C to remove excess liposomes. The water was 

exchanged with dPBS followed by Hank’s balanced Salt Solution for either imaging or 

opsonization (Corning). The bilayer coated coverslip was kept in a buffer solution during 

washing and transferring to imaging chamber to protect SLB from drying out and to keep 

it uniform. Either Alexa Fluor (AF) 647 (gene knockouts), 488 or Dylight (DL) NHS 

ester (ThermoFisher Invitrogen) was conjugated to anti-Biotin IgG (clone 3E6) for 

antibody fluorescent labeling. The antibody fluorophore varied by experiment to 

accommodate the other fluorophores being used in the experiments.  The labeled 
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antibody was incubated with the 0.1% PEG-biotin SLB at 37 °C for 30 min. Excess IgG 

was washed with imaging buffer.  

Data taken of knockouts was done on bilayers formed in 96 well glass bottom 

plates (Dot Scientific MGB096-1-2-LG-L).  Plates were cleaned for bilayer formation 

using Hellmanex III Special Cleaning Concentration for cuvettes (Z805939 Sigma-

Aldrich) by diluting the concentrated solution to a 2% solution in DI water and heating 

water between 30-37C in the microwave.  Prepared Hellmanex was added in volumes of 

150uL to each well of the 96 well plate and remained on a slide warmer set at 32C for 30 

minutes.  After the 30 minutes, the plate was rinsed thoroughly with DI water, 

undergoing at least 5 rinses.  The liposomes were diluted similarly, using 12.5uL 

liposomes for every 150uL of 2mM Mg2+ PBS.  

DiI labeling Cells in Suspension 

Cells were removed from the dish using cold dPBS and then were spun down at 

1500g for 5 minutes.  Cells were resuspended and DiI (D282 ThermoFisher) labeled by 

resuspending the pellet in 500uL HBSS with 1ug of DiI stock (1mg/mL in DMSO).  Cells 

were then spun down at 800 g for 3 minutes in the microcentrifuge and resuspended in 

HBSS and 

Image Processing    

Fiducial data collection and image registration. Single images were registered 

using calibration images acquired simultaneously on each of the four EMCCD detectors. 

A single image of 200 nm green beads (Life Technologies, Carlsbad, CA) immobilized 
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on a glass coverslip were excited using 445 nm excitation.  Coordinates for registration 

were determined using the MATLAB (The MathWorks, Inc., Natick MA) cpselect tool.  

A rigid affine transformation was used to transform all points onto the red channel. 

Line Scan Analysis 

A customized MATLAB script utilizing the improfile function was used to 

generate line scans of the represented cell.  A line scan was applied to the timelapse 

images and Figure 2D are the plotted line scans.  Each line is the line scan for each frame.  

A binary mask was applied to the images line scans, resulting in a sudden drop to zero for 

frames that prior to the final frame.  This is represented in the montage of Figure 2C 

where the line scan extends past the leading edge. 

Cell Fixation and Staining 

Five minutes after FLM cells were dropped on the bilayer they were fixed with 

4% PFA for 20 minutes (exchanged HBSS 5x with PFA to make sure chamber was 

between 2 and 4% PFA).   

Integrin staining:  Cells were permeabilized for 20 minutes with 0.05% saponin. 

(washed 5x with dPBS) for integrin staining and then washed 5x with dPBS and then 

blocked with 0.001% BSA for 30 minutes (again 5x exchange was done).   Samples were 

incubated overnight with appropriate antibody in 0.001% BSA at 4C.  Integrin B1 

(550531 BD Biosciences)-1:500 dilution; Integrin αM-AF488 conjugated (CD11B) 

(557672 BD Biosciences) 1:200 dilution; Integrin B5 (ab15459 Abcam)- 1:500 dilution. 

Samples were washed 5x with dPBS the next day.  The secondary antibody for integrin 
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B1, anti-Rat DL594 (SA5-10020 ThermoFisher), and B5, anti-Rabbit DL 594 (35560 

Thermo Scientific Pierce Antibodies), were incubated at room temperature for one hour.  

Cells were washed 5 times and imaged with dPBS. 

Staining actin with phalloidin 

Actin was stained using a cocktail of 30 µL of phalloidin AF594 (A12381 Life 

Technologies), 0.1% saponin to 495µL of PBS + 0.001% BSA.  For a final volume of 

0.6mL.  This is a 2x solution so that adding it to a chamber with about 500-600μL will 

have the final desired concentration of phalloidin and saponin.  Solution was added to 

chamber and incubated at room temp 20 minutes.  

The fixed samples underwent a final wash with dPBS 5 times and imaged in 

dPBS.  Imaging was done using 50% 594nm laser for the phalloidin AF594 and 42% 

488nm laser for AF488 IgG2a.  Gain on the green camera was altered depending on the 

cell.  No gain was necessary for the red channel. 

Latrunculin 

FLM cells were treated with 10uM Latrunculin B (428020 Millipore Sigma) for 

30 minutes by adding 8uL of 2.5mM in DMSO to 2mL of the bone marrow media in a 6-

well dish.  Cells were removed from the dish at the end of the 30 minutes using cold 

dPBS and then were spun down at 1500g for 5 minutes.  Cells were DiI labeled by 

resuspending the pellet in 500uL HBSS with 1ug of DiI stock, as previously 

described.  Cells were then spun down at 800 g for 3 minutes in the microcentrifuge and 

resuspended in HBSS and imaged, looking at the IgG2a as well as the P and S channels. 
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Gene Knockouts (Conducted by Jason Kerkvliet) 

Bone marrow was isolated from the femurs of B6J.129(Cg)-

Gt(ROSA)26Sortm1.1(CAG-cas9*,-EGFP)Fezh/J mice (Jackson labs) and cultured in 

DMEM containing 20% heat inactivated FBS, Pen/Strep, and 30% L929-cell supernatant 

(bone marrow media, BMM) for 4 days before transduction with lentivirus.    

 

For individual targeted gene knockouts, 25 bp oligos were synthesized by IDT 

containing the 20 bp protospacer sequences for individual genes. Paired sense and 

antisense sequences were annealed, 5’ phosphorylated and double stranded cassettes 

cloned into pLenti-Puro vector (Addgene). gRNA sequences were chosen based on the 

outcome of the fold change effect seen in Brie library whole genome screening 

results.  See table 1 supplementary materials for sequences. After correct sequence 

verification, HEK 293T cells were transfected with Lentiguide-puro vector containing 

individual gRNA sequences and helper vectors psPAX2 and pCMV-VSV-G. On day 2 

and 3 post transfection viral supernatant was harvested and pooled.  
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CHAPTER III. MINIMAL CLUSTERING OF FCγR REQUIRES ENDOCYTOSIS FOR 

SYK RECRUITMENT AND ACTIVATION: STRATEGIES FOR FCγR INHIBITION  

 

Abstract: 

Blocking Fcγ Receptor (FcγR) activation is an attritive therapy option for diseases 

involving autoreactive IgG immune complexes.  Inhibitors are being developed that bind 

to the extracellular portions of FcγRs and preclude their binding to immune complexes 

and downstream activation of inflammatory responses.  Currently the most potent FcγR 

inhibitor is a tri-valent Fc (SIF1) that binds FcγRs with high avidity and is retained on the 

cell surface.  In contrast, a penta-valent Fc (PentX) can produce phosphorylated Syk 

kinase at low drug concentrations, indicating a delicate balance between the number of 

FcγRs needed for complete inhibition versus activation.  Here, we have used a range of 

powerful fluorescent microscopy approaches to understand how these multivalent Fc 

molecules control FcγR microclustering and activation on the surface and within 

endosomes of macrophages.  Surprisingly, single particle tracking by total internal 

reflection microscopy (SPT-TIRF) demonstrated that the motions of FcγRs docked with 

recombinant Fc (rFc), SIF1 or PentX, have display similar mobilities on the cell surface, 

characterized by medium-speed diffusion (D ~ 0.15 m2/s) restricted to small domains on 

the plasma membrane.  The rapid diffusion and analysis of spot amplitudes indicated that 

PentX/FcγR did not recruit additional downstream signaling molecules nor did they 

cluster into larger patches at the plasma membrane.  SPT-TIRF showed that mScarlet-

Syk was recruited transiently to the plasma membrane with nearly indistinguishable 

lifetimes.  SIF1 and rFc showed modest rates of internalization and possible recycling to 
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the plasma membrane and did not retain Syk.  However, internalized PentX accumulated 

on endosomes to which Syk was potently recruited.  We conclude that at the plasma 

membrane, phosphatases maintain FcγRs in dephosphorylated state, that is 

indistinguishable for rFc and SIF1 and that endocytosis alleviates this inhibition enough 

for PentX, but not SIF1 or rFc to be phosphorylated.  Thus, inhibition of FcγRs is 

achieved for low-valency Fc-multimers at both the plasma membrane and on endosomes.   
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Introduction 

A hallmark of many autoimmune diseases is the presence of immunoglobulin G, 

IgG, autoantibodies and the formation of immune complexes (ICs).  Recognition of ICs-

associated IgG binding by the Fcγ receptor (FcγR) drives activation of macrophages 

which potentiates inflammation and autoimmune pathogenesis by the recruitment of other 

immune cells including neutrophils, monocytes, T cells, natural killer cells (NK cells), 

and additional macrophages [1, 2].   FcγR activation is therefore a recognized therapeutic 

target for disrupting autoimmunity. 

 The human FcγR family is comprised of activating (FcγRI, FcγRIIa, FcγRIIc, 

and FcγRIIIa) and inhibitory (FcγRIIb) receptors that tune FcγR immune response.  

Activating FcγRs signal via intracellular domains known as immunoreceptor tyrosine- 

based activation motifs (ITAMs) in the cytoplasmic tail of FcγRIIa and FcγRIIc or from 

an associated ‘common gamma chain’ (referred to as FcRγ) in FcγRI and FγcRIIIa.  The 

inhibitory FcγRIIb contains an immunoreceptor tyrosine-based inhibition motifs (ITIMs).  

FcγRI is the high affinity receptor as it has three IgG like domains and bind IgG strongly 

(Ka~109).  FcγR activation and signaling occurs upon receptor engagement of an 

antibody-opsonized target, prompting receptor crosslinking, or clustering, and 

phosphorylation of the ITAM’s phosphotyrosines by the Src Family Kinase, Lyn.  Syk 

kinase is recruited to the ITAM’s phosphorylated tyrosines and docks via its tandem SH2 

domains [2-4].  Receptor clustering at the plasma membrane is thought to size exclude 

phosphatases and facilitate the necessary proximity of ITAMs for cross and auto-

phosphorylation via Syk kinase [5, 6]. When FcγRIIb is engaged alongside activating 

FcRs, its ITIM becomes phosphorylated and it is thought to recruit SHIP or SHIP-1, SH2 
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domain-containing phosphatases, and acts as a negative regulator of the inflammatory 

responses that are triggered by ICs [2].  Downstream effects of FcγR activation include 

degranulation, oxidative burst, phagocytosis, antibody-dependent cell-mediated 

cytotoxicity (ADCC), and phagocytosis [1, 2, 7].  Activation of FcγRs by ICs initiates 

signaling for inflammation and autoimmunity which are a Syk and NFAT/NFkb 

dependent pathways [2].  

In autoimmune pathogenesis, IgG-ICs, cause FcγRs to cluster and activate, and 

the resulting inflammatory response eventually culminates in tissue damage.  IC 

autoimmune pathogenesis, such as in systemic lupus erythematosus (SLE), a chronic 

autoimmune disease that affects connective tissue, antinuclear antibodies cause ICs to 

deposit in various organs, begins when dying cells release autoantibodies and ICs during 

apoptosis [8].  Autoantibodies bind and stimulate B cells via the B Cell Receptor (BCR).  

The B cells reach full activation, becoming plasma B cells, when stimulated by T cells 

that are specific for the self-peptide.  The plasma B cells produce more autoantibodies, 

which form more ICs and activate resident macrophages or newly arriving macrophages.  

Macrophages respond by either directly engaging the free ICs via the FcγR or by 

attempting to clear dying cells by phagocytosis [9].  However, in autoimmune diseases 

such as SLE, macrophages are unable to effectively clear the apoptotic cells and cells 

become necrotic.  This leads to macrophage activation and a worsening of the disease 

[10]. Activated macrophages, whether by the ICs- FcγR clustering, or from necrotic cell 

components, release pro-inflammatory cytokines, IFN-β IL-12, IL-1B, and TNF-α 

(cytokines will vary based on activation pathway), that recruit and activate additional 

immune cells.  Other downstream effects of the signaling pathways included 
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transcriptional regulation through ERK and Ca2+ NFAT pathways[4].  The recruitment of 

additional immune cells leads to escalated tissue damage, which leads to more 

autoantibodies to activate more B-cells leading to replenished populations of 

autoantibodies, creating a positive feedback loop that worsens the disease [10].  

Macrophages also present antigen to cytotoxic T Cells, which promotes their activation 

and killing by perforin, granzymes, and granulysin [10].  This process wanes as ICs and 

apoptotic cells are eventually cleared by macrophages and waxes as B cells replenish 

autoantibodies and new ICs are formed.     

SLE and RA are examples of an IgG-IC autoimmune disease where FcγR 

inhibition may be an effective therapeutic strategy.  The most common manifestations of 

SLE include arthritis, renal damage, pleuritis or pericarditis, and skin rashes, which 

includes the butterfly, or malar, rash on the face [8].  As the inflammatory response 

cycles, so do the patients’ symptoms.  Interfering with FcγR activation by displacing 

autoantibody ICs can be an effective way to disrupt the cycle by inhibiting additional 

damage-inducing pro-inflammatory signals and preventing additional autoantibody 

production [11-14].  A second example is rheumatoid arthritis (RA), where the IgG-ICs 

similarly drive FcγR activation but resulting inflammatory response results in chronic 

joint inflammation that eventually culminates into tissue degradation and joint 

deformation [15].  The RA autoantibodies predominantly target rheumatoid factor and 

citrullinated peptides and are known to be primarily IgG [15].  Autoimmune pathogenesis 

involves networks of signaling pathways that can vary depending on the disease. 

However, a common feature of IC-driven autoimmune diseases like SLE and RA, is the 

FcγR activation caused by ICs which escalate the inflammatory response.  Much of the 
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downstream inflammatory response could be avoided by preventing the binding of 

autoantibody ICs to the FcγR. 

As a result of its association with autoimmunity, FcγR inhibition has been sought 

after as a therapeutic target for autoimmune diseases. Previous studies demonstrated the 

potential of FcγR inhibition as an efficacious therapeutic strategy to inhibit IC-associated 

autoimmune diseases [16]. Single IgG Fc fragments and IVIG have been used as 

effective therapeutics in animal rheumatoid arthritis models and in humans for various 

autoimmune diseases such as  Kawasaki disease and acute immune thrombocytopenic 

purpura (ITP) [11-13].  While this strategy can provide therapeutic benefits, it requires 

large doses as the Fc-FcγR binding is 1-1 and may be displaced by polyvalent ICs.  An 

alternative strategy, currently in clinical trial, is to create multivalent Fc molecules that 

have high affinity and avidity for the FcR, but do not activate it thereby providing a long-

lived competitive inhibitor.  By docking the FcγR with a higher avidity than the body’s 

autoantibodies, the auto-ICs would be displaced.  If the FcγRs are occupied but not 

activating, the pro-inflammatory response would be paused so fewer immune cells would 

cause inflammation and damage.  Additionally, B cell would be prompted less to 

replenish autoantibody stores.   

While a multivalent Fc is an ideal candidate for an inhibitor, an incomplete 

understanding of Fc valency and its effect on FcγR signaling has been an obstacle in 

multivalent Fc drug design.  Prior work using engineered multivalent Fc molecules in 

varying valences and geometries has demonstrated that Fcγ molecules with a valency of 

five can drive activation, however three does not [14].  The pentameric construct in an X-

geometry, PentamerX (PentX), acted as a strong agonist for FcγR activation while the 
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trimer, SIF1, had inhibited FcγR both in vitro as well as in multiple animal autoimmune 

models, including rheumatoid arthritis [14].  How these two constructs propagate such 

different cellular responses remains unknown and understanding their differences offers 

new insights into the mechanism of receptor activation.  

Here, we applied a biophysical approach to understand how the multimeric Fc 

molecules influence FcγR activation and inhibition by using single molecule microscopy 

methods to interrogate clustering and Syk recruitment.  Our findings shed new light on 

the importance of the geometric arrangement of FcγRs for their inhibition and activation 

by demonstrating that small clusters are competent for signaling by driving their rapid 

endocytic internalization and enabling signaling from endosomes.  

Results 

The mobility of FcγRs are largely unchanged by increasing valency. 

Previously it has been shown that engineered molecules containing five Fcs in an 

x-configuration (PentX) can activate Syk [14], but molecules containing one Fc (rFc) or 

three Fcs arranged in a y-conformation (SIF1) cannot.  Here, we sought to test the 

hypothesis that activation requires clustering of the FcRs at the cell surface and that five 

receptors is sufficient for this activation (PentX).  Conversely, that three FcRs is not only 

insufficient, but precludes activation, providing a high-avidity, competitive inhibitor. We 

anticipated that the oligomerization state of the FcRs and their mobility on the cell 

surface could be detected using single particle tracking (SPT) [17, 18] of the labeled rFc, 

SIF1 and PentX (Fig. 3.1A).  While SPT measurements have been routinely performed in 

epi-fluorescence mode using quantum dots at very low labeling density, we wanted an 
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approach that would access to molecular motions across a wide range of FcR 

occupancies.  To satisfy this objective, we turned to total internal reflection fluorescence 

microscopy (TIRF) and a modification of our supported lipid bilayer approaches [19] to 

ensure that the glass substrate did not hinder the motions of the Fc molecules. 

Cyclo RGD Supported Lipid Bilayers as a Tool for Particle Tracking 

In order to study the free movement of FcγRs on the cell surface, we modified our 

previous SLB approach, that does not allow for macrophage attachment, to include the 

addition of cyclo RGD (cRGC) to allow macrophage attachment via integrins, but not 

activate FcγRs.  A copper free click reaction using azide-alkine cycloaddition reaction, 

was used to react cRGD, with an attached azide, to liposomes containing the dibenzo-

bicyclo-octyne (DBCO) component (Fig. 3.1B).  The cRGD on the top leaflet of a the 

SLB offers an anchor point for integrin (Fig 3.1C).  THP-1 cells were then exposed to 

multimeric Fcs on ice and then allowed to adhere to the SLB at 37 C for 30 minutes prior 

to imaging by SPT. Over 90% of cells bound to the cRGD bilayer, most cells created an 

enlarged contact zone and some cells had a smaller more punctate attachment zone (Fig. 

3.1D).  The contact zone of attachment and relative flatness was observed using DiI 

labeled THP-1 cells in TIRF and epifluorescence across 50 cells.  Examples of interaction 

and non-interacting cells seen in TIRF are shown (Fig. 3.1E) and examples of cells 

treated with rFc DL594 demonstrate successful interaction with the bilayer (Fig. 3.1F).     
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Figure 3.1 Cyclic RGD functionalized bilayers enable imaging of Fc-FcR interactions in 

context of low Fc construct dose.  A) The Fc constructs used to study valency were rFc, SIF1, 

and PentX. Adapted from [14].  B) Liposomes are functionalized with cRGD using a Copper free 

click chemistry reaction between DSPE-PEG(2000) with a DBCO on it and a cRGD-azide. C) 

Illustration of bilayer showing the predicted engagement of integrins with cRGD functionalized 

bilayer and the possible Fc-FcR complexes. (Created with BioRender) D) Using the cRGD 

method, about 95% of THP1 cells show some level of interaction with the bilayer. This 

interaction varies in area but allows enough room to investigate the cell surface via TIRF 

microscopy.  H) Cells labeled with DiI show this and are not visible in the TIRF field when they 

do not interact.  F) Example of rFc DL594 cells interacting with cRGD bilayer. Scale bar 

represents 5um. 

 

Fc valency has minimal effect on FcR mobility, even under activating conditions.    

We anticipated that as the valency increased from one Fc (rFc), three Fcs (SIF1), 

to five Fcs (PentX) that 1) diffusion would slow as more FcRs were recruited and the 
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diameter of the complex increased and 2) activation of the FcR, by PentX, would recruit 

cytosolic molecules to the phosphorylated ITAMs leading to slowed diffusion and 

potential oligomerization of FcRs. The extent of slowing due to the engagement of 

multiple receptors is predicted by the Einstein-Stokes equation for a uniform medium as a 

function of particle radius in two-dimensions:  

𝐷 =
𝑘𝑇

6𝜋𝜂𝑎
       𝐸𝑞. 1 

  

where a is the radius of the complex and k is the Boltzmann constant, T is temperature, 

and η is the viscosity of the plasma membrane.  Because all terms except a can be 

considered constants, then the diffusion coefficient scales as the inversed radius: 

𝐷 ∝
1

𝑎
        𝐸𝑞. 2 

In addition to frictional drag, diffusion can be slowed by barriers including 

interactions with the cytoskeleton and  collisions with other surface proteins [20].  We 

first quantified the movements of DL594 labeled multimeric Fcs on the surface of PMA 

differentiated THP-1 cells adhered to cRGD-SLBs by TIRF microscopy.  These 

movements were classified by their motion type.  Classification of the motions of rFc, 

SIF1 and PentX using u-track, showed that SPT trajectories showed that all three 

constructs displayed predominantly free Brownian diffusion, and a significant fraction of 

confined diffusion and a small fraction of immobile molecules.  Directed diffusion was 

negligible and excluded from further analysis. Representative SPT trajectories 2-

dimensional for rFc using U-track that is color coded by the diffusion class is shown in 

Figure 3.2A (top). These same tracks are shown below with each track having a different 
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color to clearly show individual tracks. Figure 3.2B shows single representative tracks for 

confined, free, and immobile tracks.  Under these conditions, low densities of Fc 

molecules allowed clear resolution of single particles on the cell surface (Fig. 3.2C). The 

bilayer condition was used to visualize individual Fc polymers at very low doses without 

the friction or drag the cell surface may experience on glass.   Interestingly, the diffusion 

coefficients for the rFc, SIF1 and PentX single complexes were statistically 

indistinguishable (Fig 3.2D), indicating that that collisions with transmembrane proteins 

and other effects from the cytosol dominated the diffusion coefficients.  This observation 

is surprising, since we anticipated being able to easily resolve the predicted 5-fold slower 

diffusion of PentX relative to rFc, at the sub-activating concentrations used. The average 

diffusion coefficients observed were close to those noted in literature, where free 

receptors diffused at a median rate of approximately 0.074±0.004 μm2 per second when 

labelled with Cy3 [20].   



53 
 

 

Figure 3.2 Fc valency has little impact on short range Fc/FcR diffusion. A) Representative of 

track classification of THP-1 cells treated with rFc. Top: Tracks color coded by diffusion class. 

Bottom: Tracks colors show individual tracks.  B) Single tracks that fall within the confined, free, 

and immobile category. C) Representative images of cells treated with fluorescently labeled Fc 

constructs on SLBs in the non-activating dose, 0.7nM (0.03ug/mL rFc, 0.11ug/mL SIF1, and 0.17 

ug/mL PentX).  Scale bar represents 5um.  D-E) Combined across three days of experiments.  D) 

The average diffusion coefficient for cell track by diffusion class at non-activation dosages of 

(0.7nM).  E) The percentage of tracks for each diffusion at sub activation dosages of 0.7nM 

(0.03ug/mL rFc, 0.11ug/mL SIF1, and 0.17 ug/mL PentX).  F) Representative images of cells 

treated with fluorescently labeled Fc constructs on glass in an activating dose of 100ug/mL (about 

0.4uM). G) The average diffusion coefficient for each cell by diffusion class at 100ug/mL (about 

0.4uM).  These are from a single experiment but are representative of data across multiple 

activating concentrations across multiple replicates. Scale bar represents 5um.  H) The percentage 

of tracks for each diffusion class at 100ug/mL (about 0.4uM). 

 

To delineate if FcR activation was associated with changes in mobility and 

oligomerization state, at fully activating (PentX) or inhibiting conditions (SIF1), THP-1 

cells were exposed to 100 ug/mL concentrations of multimeric Fcs (Fig. 3.2F).  

Surprisingly, there were minimal differences in rate of diffusion across construct types or 
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relative to the low, sub-activating concentrations (Fig. 3.2G).  The only distinguishable 

difference was an increase in the fraction of immobile complexes for each of Fc 

constructs (Fig. 3.2H).  Given that these experiments were conducted on cleaned glass 

instead of the cRGD-bilayer, we cannot say with certainly if this was due to non-specific 

interactions with the glass or a characteristic change in the FcR complexes caused by the 

increased numbers of multimeric Fcs. Given that the increase was observed for rFc, as 

well as SIF1 and PentX, we believe that the increase in immobile fraction was due to 

interactions with the coverglass. The similar mobility for PentX was surprising given that 

receptor activation is generally associated with receptor immobilization such as in the 

case of the Fc epsilon receptor (FcεR)  [21].  The negligible differences in distribution of 

free, confined, and immobile receptors as well as diffusion coefficients  (Fig. 3.2E, Fig. 

3.2H),  indicates that FcγR mobility is controlled by physical barriers such as actin 

corrals, lipid rafts, and protein islands that result in receptors presiding in microdomains 

[20, 22, 23].   Pre-formed clusters of FcγRI were observed by super-resolution imaging in 

fixed cells that were perhaps corralled in by actin or lipid rafts [18]. If such pre-formed 

clusters were present, we would anticipate that our SPT data would show regions of 

confined diffusion with increasing numbers of overlapping Fc traces.  Interestingly, our 

SPT traces showed zones of preferential occupancy and exclusion typically containing 

tracks from free and confined receptors with D ~ 0.15-0.2 m2/s suggesting that rather 

than pre-formed clusters, the FcRs are corralled by actin [17, 18] but are able to diffuse 

within these zones.  Indeed, observed confined diffusion trajectories had dimensions 

similar the cluster diameters ~ 50 nm observed for FcRI [18]. 
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We applied Fluorescence Recovery After Photobleaching (FRAP) in TIRF to 

understand the effect of valency on diffusion over distances larger than could be accessed 

by SPT.  Bleaching regions with a diameter of 3um (area of 7um2) gave similar, slow 

diffusion coefficients with a weak trend of diffusion speeds of rFc> SIF1 > PentX (Fig. 

3.3).  The diffusion observed by FRAP, D~ 0.02-0.04m2/s, is about 5-10x slower than 

observed by SPT consistent with actin-corrals further restricting diffusion over portions 

of the membrane larger than 50 nm and therefore appearing slower than the SPT 

measurements.  Interestingly, the mobile fraction across rFc, SIF1 and PentX were 

indistinguishable, indicating that even when PentX is present at concentrations known to 

activate Syk, the mobile fraction and diffusion of the FcR is not altered (Fig. 3.3C).  

Thus, FcR diffusion is slowed by interactions with the actin cytoskeleton at short range 

(SPT) and increasingly slowed over larger areas of the cell surface suggesting corralling 

within microdomains that limit their latera movement.   
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Figure 3.3 FRAP shows Fc Valency affects diffusion on larger length scale due to zones of 

confinement. A) Representative FRAP examples of rFc, SIF1, and PentX AF488 to show fast, 

medium, and slow recovery. The white arrows indicate the FRAP spot. Scale bar represents 5um.  

B) Average diffusion coefficients calculated from fluorescence recovery for 10 or more cells per 

condition for three replicates. C) Percentage of mobile fraction calculated from fluorescence 

recovery for 10 or more cells per condition for three replicates.   

 

Two-color imaging indicates that FcγR receptors do not cluster on the plasma 

membrane even at activating concentrations of PentX.  

Closely packed FcγRs form larger clusters once treated with polyvalent ICs 

consisting of DNP24-BSA [18].  We tested to see if activating or inhibiting dosages of the 

multivalent Fc molecules would drive super clustering of the Fc bound receptors.  To do 

so, THP-1 cells on glass were treated with the Fc molecules, rFc, SIF1, and PentX, that 

were tagged with either AF488 or DL594 in a 1:1 mixture (Fig. 3.4A-C).  Timelapse 
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imaging revealed minimal colocalization of any of the molecules.  Rather, receptors 

appeared to move around each other at random and remained segregated despite 

occasional collisions.  This suggested that there is a distinction between small, mobile 

clusters that are not bound to an antigen, such as would have been the case in the cited 

literature where clusters aggregated together in the presence of DNP24-BSA [18].  In that 

work, the super resolution imaging showed that human monocytes treated with DNP24-

BSA, bovine serum albumin labeled with 24 antibodies, formed clusters of 24 FcγRs that 

continued to oligomerize into even larger clusters.  This may suggest a different 

mechanism of activation for small receptor clusters, possibly representing what occurs in 

some autoimmune diseases, that do not interact with large surface-associated antibodies.  

  

Figure 3.4 Small clusters do not form superclusters, even in activating concentration of 

PentX.  A-B) Montages of cells treated with 33ug/mL rFc(A), SIF1(B), PentX(C) AF488 and 

33ug/mL rFc (A), SIF1(B), PentX(C) DL594 over a timelapse of 40 seconds shows no long 

lasting colocalization of molecules. Adapted from [14]. 
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FcγRs preferentially occupy small domains on the plasma membrane, but they are 

not pre-oligomerized. 

Super resolution microscopy has been used to show that FcγRs pre-cluster on the 

cell surface in a process that depends on the actin polymerization state of the cell.  Based 

on our observation that monomeric FcγRs, detected with rFc-DL594, had diffusion 

characteristics like that of three (SIF1) or five (PentX) FcγRs suggested that slow 

diffusion could be either due to micro-corralling of the receptors or the FcγRs existing in 

a pre-oligomerized state.   To test these two possibilities, we performed an intensity 

analysis of our SPT data.  If the fluorescent Fc molecules bound to FcγRs that were 

oligomerized or within very small microdomains (<~20nm) then single spots of increased 

brightness (or exhibiting multiple photobleaching steps) would be detected during high-

density labeling of the FcγRs.  Moreover, the brightness of rFc spots should be maximal 

since multiple rFc molecules will be bound at the sub-resolution spot and dimmer by ~1/3 

for SIF1 and ~1/5 for PentX, as the number of FcγRs would limit the binding of Fcs.  

Alternatively, if the FcγRs diffuse within corrals, we would expect single spots of similar 

brightness for rFc, SIF1 and PentX that transiently diffuse into and out of sub-diffraction 

limited structures.  Figure 3.5A shows rationale behind this approach, demonstrating that 

if each Fc molecule has one fluorophore the intensity of five receptors would be greatest 

for rFc, binding five individual receptors with five fluorophores, versus PentX which 

would bind five receptors to one Fc molecule, bearing one fluorophore.   

To eliminate dynamics, cells were plated on glass and exposed to concentrations 

of Fc multimers but the same in total number of molecules.  Treatment was done for five 
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minutes on ice followed by immediate fixation with 4% paraformaldehyde.  This only 

allowed molecules to bind to the surface without the chance of internalizing.  Each 

treatment condition was imaged under the same conditions.  Representative images for 

each Fc molecule treatment are shown in Figure 3.5B. Point source detection in U-track 

was used to detect all the fluorescent spots (Fig 3.5C).  The fluorescence intensities for 

each construct demonstrated spot brightness in the following order: rFc > SIF1 > PentX. 

However, the observed differences in intensity were approximately 4% and 13%, which 

are much smaller than the expected 1/3 and 1/5 intensities that would be expected for 

oligomerized receptors.  Rather, we conclude that the smaller variance in intensity of the 

histograms correlates with the number of receptors within a larger ~ 50 nm corral and 

thus a reflection of a chance of coincident detection, similar what was observed in the 2-

color experiments (Fig.3. 4).   Both single and multi-step bleaching were indicating that 

some spots contained multiple fluorophores, however even at saturating concentrations 

the preponderance of spots in fixed cells corresponded to a left-skewed histograms that 

were highly similar amongst constructs suggesting that most spots reflect single Fc 

molecule’s with occasional overlap with co-corralled neighbors (Fig. 3.5D-F).  

To determine if the degree of clustering in live cells, spot amplitudes were 

averaged over the first four frames of the timelapse SPT represented in Figure 3.2.  When 

comparing the mean spot per cell for the 0.01ug/mL and the 100ug/mL (Fig. 3.5G),  

histograms of the average spot intensities were nearly identical at the 0.01ug/mL and 

100ug/mL across rFc, SIF1 and PentX indicating that FcγRs behaved as independent but 

corralled molecules.  If oligomers were present, the low 0.01 ug/mL concentrations (Fig. 

3.5H) should represent individual Fc molecules, whereas at high concentrations multiple 
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shoulders would be present in the 100ug/mL (Fig. 3.5I).  However, the overall 

distribution reported a single population with only a small shoulder, likely reflecting the 

fact that occasionally multiple Fc molecules occupied the same spots.  Although some 

cell to cell variance existed, the general trend points to a mostly homogenous population.  

This suggest the opposite of preclustered receptors.  Rather, they were confined on the 

cell surface, but move independently as either single receptors, bound to rFc, or as 

clusters of three and five.  Even in the case of activating PentX, clusters remain as 

independent, small mobile clusters that do not supercluster or change in motion type.   
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Figure 3.5 Fluorescence intensity analysis shows Fc receptors are not preclustered and 

remain in small, mobile clusters upon binding multivalent Fc. A) Schematic of Fc molecules 

and their fluorophore to FcγR ratio. (Created with BioRender)  B) For intensity analysis, cells 

(represented in left) were treated with the same number/concentration of Fc molecules and fixed 

upon binding (Scale bar=5um).  C) Fluorescent spot detection (left, zoomed in region from B) 

was used to plot the frequency of average Fc spot fluorescence at the same concentration (right).  

D) Sample of rFc bleaching over 200 frames that demonstrates stepwise bleaching (Scale 

bar=2um).  E-F) Top: chymograph of predicted single (E)  or multistep/fluorophore (F) bleach 

event. Bottom: Integrated intensity over time (frames) of above single (E) and multistep (F) 

bleached tracks. G)  Average amplitude per cell taken over the first four frames of 100ug/mL and 

0.01ug/mL dose multivalent Fc SPT data. H-I) Histograms of amplitude averaged over four 

frames for all tracks taken per Fc molecule treatment for 0.01ug/mL (H) and  100ug/mL 

conditions (I).   
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Pentamer drives rapid endocytosis and recruitment of Syk to endosomes.  

In the case of phagocytosis, antibody/FcγRs engagement leads to rapid ITAMs 

phosphorylation at the plasma membrane by Src family kinase, Lyn, which creates a 

docking site for Syk, which in turn undergo auto and transphosphorylation for signal 

amplification.  In the case of the FcεRI, intermediate and high antigen concentrations are 

correlated with immobilization and increased cluster sizes and rates of receptor 

internalization [21].  Previously it was shown that PentX drove rapid activation by Syk.   

We captured the dynamics of Syk-mScarlet recruitment at activating doses, 100ug/mL of 

AF488 conjugated multivalent Fc molecules.  Imaging over the course of 45 minutes was 

done using Hi-Lo microscopy, a microscopy method that directs the laser at a glancing 

angle across the cell creating a confocal-like sectioning effect.  Representative images of 

these data at approximately the same time after Fc treatment are found in Figure 3.6A.  

Confocal Z stack imaging was used to confirm that the that Hi-Lo imaging was 

accurately capturing cell cross-sections.  This verified that PentX and Syk do colocalize 

in the same plane (Fig 3.6C).  After being exposed to the multivalent Fc for 30 or more 

minutes, PentX was rapidly internalized and frequently colocalized with Syk at 

endosomes (Fig. 3.6B).    Surprisingly minimal Syk recruitment to the PM was observed 

in PentX treatment, and rarely did it remain predominantly cytosolic after 30 minutes.  

SIF1 and rFc largely remained on the plasma membrane throughout the course of an 

hour, with only minimal internalization that could be associated with PM turnover.   Syk 

remained in the cytosol under SIF1 and rFc conditions.  SIF1 and rFc saw very little Syk 

recruitment and in the rare times that SIF1 or rFc were found in endosome, Syk was not 
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colocalized there.  These observations are consistent with the previous observation that 

PentX is internalized over the course of one hour [14], but provide new insight into the 

fact that Syk is predominately recruited to FcγRs located within endosomes, but not the 

plasma membrane. 

Syk is transiently recruited to and trafficked with PentX-FcγR, but not SIF1-FcγR 

Given the observation that Syk was predominantly recruited to endosomes, we 

wanted to determine if activating FcγRs docked to multivalent Fcs would become 

phosphorylated and transiently recruit Syk, in a process that could be reversed by plasma 

membrane resident phosphatases.  Using single particle tracking, we captured the 

recruitment dynamics of Syk-mScarlet to the plasma membrane and quantified the track 

length and positions at the cell surface.  In all cases, flashes of Syk-mScarlet were 

observed, suggesting that Syk was transiently sampling receptors at the plasma 

membrane, but they exhibited little lateral movement (Fig. 3.D-E).  Cumulative 

probability for track dwell time was calculated for tracks between 0.48 and 12 seconds 

(Fig. 3.6F).   SIF1 and rFc had nearly identical cumulative probabilities most of which 

were less than 4 seconds or less in duration.   The duration of Syk-mScarlet on the plasma 

membrane was slightly longer for PentX suggesting that this configuration may have 

afforded a few more activated ITAMs.  However, the average Syk track length for rFc, 

SIF1, PentX were nearly identical, being 4.75 seconds, 4.73 seconds, and 4.89 seconds, 

respectively.  Overall, we did not observe the anticipated extended tracks for Syk-

mScarlet for PentX that we anticipated for an activation of FcγRs.  We interpret these 

results to mean that at the plasma membrane, freely diffusing FcγRs docked with Fcs 

ranging in valency from 1-5 will collide with membrane associated phosphatases such as 
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CD45 that will rapidly deactivate them.  Rather, it is only following endocytosis that 

PentX can fully activate the FcγRs and recruit Syk.  SIF1 and rFc do not trigger this 

activation mechanisms and may be recycled to the plasma membrane. 
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Figure 3.6 PentX prompts Syk recruitment to endosomes rather than the PM.  A) The 

localization of Fc molecules and Syk using Hi-lo images show Syk localization at endosomes 

containing PentX (images represent 30 minutes post 100ug/mL treatment).  Scale bar represents 

5um.  B) Hi-lo data from A was quantified as the percentage of localization for Fc molecules and 

Syk localization.  The data was taken over the course of 45 minutes post treatment and represents 

three different days of experiments and approximately 50 cells for each Fc treatment.  C) 

Confocal images of 100ug/mL Fc molecule treated Syk-mScarlet THP-1 cells verify 

colocalization of Syk at PentX endosomes. Scale bar represents 2um.  D) TIRF timelapse imaging 

of Syk-mScarlet cells treated with AF488-Fc molecule treatment was used for tracking Syk (scale 

bar represents 3um). E-F) 2D Syk tracks, colored by classification, show little lateral movement. 

(Cyan=free diffusion, green=confined diffusion, black=immobile) (E).  Track length cumulative 

probability showed a minor increase in Syk residency at the plasma membrane (F).  G) 

Representative data of THP1 Syk-mScarlet interaction on a an IgG2a-AF647 opsonized bilayer 

shows recruitment of Syk to IgG-FcγR clusters. Scale bar represents 3um.  
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To compare this result with surface-associated antibody, a supported lipid bilayer 

opsonized with IgG2a-AF647, described in [19], was used to image Syk dynamics.  Here, 

Syk-mScarlet expressing THP-1 cells were dropped on the bilayer and time-lapse images 

of receptor engagement were captured.  The THP-1 cells engaged the IgG and Syk 

rapidly co-localized at the leading edge of a newly formed and advancing pseudopod.  

Additionally, Syk also relocated to the PM near receptor engagement (Fig.3.6F) [19].  

Thus, we conclude that while FcR clustering by multivalent Fcs of 5 is capable of 

activating Syk, this response occurs on endosomes (Fig. 3.7) and is distinct from the 

activation mechanisms at the plasma membrane which require a particle to displace 

opposing phosphatase inhibition.    
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Figure 3.7 Proposed model of soluble IC: FcγR endosomal activation versus surface-

associated antibody FcγR activation A) Proposed mechanism for FcγR activation in the context 

of small clusters formed via soluble antigen ICs.  IC: FcγR cluster are rapidly dephosphorylated 

by tall phosphatases but signal for AP2 clathrin adaptor followed by clathrin triskelia which 

internalized the small clusters where they can recruit Syk and promote inflammatory signal.   B) 

FcγR activation in the context of surface-associated antibody that docks FcγRs and forms clusters 

that create a tight space where CD45 cannot fit. Dual tyrosines of the ITAM are phosphorylated 

by Lyn.  Syk is recruited to the phosphotyrosines resulting in amplified signal that leads to 

downstream immune response such as phagocytosis.  (Created with BioRender) 
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Discussion 

The designer multimeric Fc molecules, rFc, SIF1, and PentX, provided new 

fundamental mechanistic insight into the minimal number of FcγRs necessary to form 

and activate signaling complexes. This work indicates that the molecular environment 

contributes to this minimum threshold.  Specifically, our data demonstrated that PentX, 

which potently drives Syk phosphorylation through the binding of five FcγRs [14], 

requires compartmentalization of the PentX/FcγR complex to recruit Syk.  This is a sharp 

contrast with freely mobile surface associated IgG, which potently recruits Syk to the 

plasma membrane.  Taken together, these results are fully consistent with the proposed 

models for FcR activation that require segregation of the FcγRs from phosphatases to 

allow full activation.  At the plasma membrane, it is thought that rearrangements of the 

actin cytoskeleton and potentially the activation of integrins mediate that sorting, when 

surface associated IgG/FcγR interactions limit the spacing between the phagocyte 

membrane and target, thereby excluding bulky and glycosylated phosphatases such as 

CD45 [20, 24] by forming physical barriers [20, 25, 26].  In contrast, PentX and 

potentially soluble immune complexes do not create a sufficient rearrangement of the cell 

surface to provide this segregation and thus, five FcγRs is insufficient to trigger Syk 

activation at the plasma membrane.  Moreover, our measurements demonstrated that 

multimeric FcγR clusters, even in activating conditions, remain predominantly mobile on 

the plasma membrane and are corralled in regions that may be enriched in phosphatases 

that suppress activation.  Thus, in contrast to phagocytosis, the five FcγRs appear 

insufficient to drive actin cytoskeleton facilitation of receptor clustering [17], but this 
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does not preclude FcγR activation on endosomes.  This strongly implies a signaling 

mechanism unique to small, soluble IC: FcγR complexes.   

Within the observed behaviors of these three Fc molecules, the endocytosis was 

PentX’s most distinguishing feature [14].  In contrast to conventional thinking, 

endocytosis in this system does not appear to be a result of Syk recruitment to ligated 

FcγRs, but rather that endocytosis provides a microenvironment for FcγR signaling and 

Syk recruitment.   It remains unclear if the multivalent Fcs promote endocytosis and 

subsequent Syk recruitment or if endocytosis of the Fc/FcγR complexes is a default 

pathway and through the removal of the complex from the plasma membrane, FcγR 

activation occurs.  Our data suggest that in the case of SIF1 and rFc, no detectable Syk 

recruitment is observed on internal membranes or the plasma membrane, despite 

endocytic traffic of SIF1 and rFc.  Furthermore, the long residency time of SIF1 and rFc 

on the cell surface, suggests that these molecules docked to FcγRs are dynamically being 

internalized and recycled back to the cell surface.  Important future work will include 

determining if FcγR clusters of greater than five can signal for endocytosis.  A potential 

mechanism for this would be that following clustering, the FcRγ is capable of recruiting 

clathrin-associated sorting proteins (CLASPs) that drive endocytosis.  Markers for 

endocytosis would be the YXXØ or [DE]XXXL[LI] [27].  Of those motifs, YXXØ 

occurs multiple times throughout the FcRγ, of which the tandem YXXL motifs of the 

ITAMS fall within this classification.       

This work also provides insights into how SIF1 works as an inhibitor.  While 

capable of binding three FcγRs, it appears to behave identical to rFc, suggesting it is not 

recognized by activation machinery.  This was demonstrated by the lack of observed 
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colocalization with Syk kinase packaging into endosomes for degradation.  Additionally, 

there was no discernable effect on receptor mobility and rearrangement on the cell 

surface, which suggests that it behaves as an ideal competitive inhibitor.  In summary, 

SIF1 as an inhibitor is capable of docking three FcγRs while maintaining the properties of 

a single receptor which makes it ideal to displace auto-antibodies.   

In conclusion, we have demonstrated that small, mobile clusters of five FcγRs are 

signaling competent but in a mechanistically distinct way than that of surface-associated 

antibody targets. Rather, they are not free of collisions with phosphatases and 

consequential dephosphorylation until being endocytosed.  Once trafficked on 

endosomes, the clusters of five can enhance signaling by recruiting cytosolic Syk kinase.  

These findings represent a new mechanism of FcγR activation that is unique to soluble 

IC: FcγR activation and provides insights into autoimmune pathogenesis.  Moreover, 

SIF1’s inability to signal for endocytosis illustrates its worth as an inhibitor.   
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Methods 

THP-1 cell culture and differentiation.    

THP-1 cells were cultured in RPMI-1640 Medium (ATCC 30-2001) and 

maintained at 100,000-200,000 cells per milliliter.  THP-1 differentiation was done using 

Phorbol 12-myristate 13-acetate, 97% from Acros Organics (AC356150010) to create 

human monocytes capable of adherence and behave similarly to macrophages. THP-1 

cells were spun down at 12000 rpm for 4 minutes and plated in a six well dish containing 

about 200,000 cells per mL in RPMI containing 50 ng/mL PMA for 48hours.  After 48 

hours, cells rested for 24 hours in RPMI, no PMA.  PMA was diluted by adding 10uL of 

1mg/mL DMSO frozen stock into 240uL of DMSO or RPMI (for a 40ng/uL solution), 

5uL of this stock was then added to well of the 6-well dish for a final 50ng/mL. For 

imaging cells on glass, cells were differentiated directly on ethanol flamed 25 mm 

coverslips (Number 1.5) (Thermo Fisher) or onto -6 well glass bottom plates (dot 

scientific) (MGB096-1-2-LG-L) for high content experiments.   

Characterizing PMA differentiated Cells 

PMA Differentiated THP-1 cells were characterized using fluorescently 

conjugated Fab fragments of hCD64 (Santa Cruz Biotechnology sc1184) and hCD32 

(StemCell Technologies 60012).  Fab fragments were generated using 62.5 ug of each 

antibody in the Pierce Fab micro preparation kit (Thermofisher 44685) for a four-hour 

reaction and then stopped at 5000g for one minute.  15uL of each sample was mixed with 

the 5x non-reducing SDS buffer and loaded onto a 12% SDS page gel (Biorad) and ran 

for 30 minutes at 230 volts.  Coomasi blue staining was used to visualize lanes.   
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The CD64 and CD32 fab fragments were labeled with AF647 NHS ester and used to 

label THP-1 and differentiated THP-1 cells.  Cells were blocked with dPBS+1%FBS for 

15 minutes on ice before adding the fab fragments diluted into dPBS with 1%FBS at a 

1:8 dilution of 1.14uM labeled fab fragments (final of approximately 0.18uM)  incubated 

20 minutes on ice, spun down at 800g for 3 minutes and resuspended in cold HBSS and 

kept on ice until analyzed by the BD Accuri C6 flow cytometer.  Flow cytometry data 

revealed in increase in CD64 and CD32 expression. 

To validate if the PMA differentiated cells behaved like macrophages, cells on 

plastic underwent a sheep red blood cell uptake assay to validate their ability to 

phagocytose similarly to macrophages.  A 30:1 MOI of biotinylated and anti-IgG2a 

sRBCs were dropped on differentiated THP1 cells and phase contrast microscopy using 

an inverted fluorescent microscope was done for a qualitative analysis of THP-1 cells 

ability to phagocytose. 

Live Cell imaging 

The PMA treated THP-1 cells plated on coverslips and were imaged in AttoFluor 

chambers (ThermoFisher) using TIRF-based imaging which was conducted with an 

inverted microscope built around a Till iMic (Till Photonics, Germany) equipped with a 

60 × 1.49 N.A. oil immersion objective lens, enclosed in an environmental chamber to 

keep the samples at 35–37 °C using heater fans.  The entire microscope setup and 

centering of the back focal plane was previously described in [28].  Excitation for TIRF 

was provided by either a 561 nm laser, for DL594 labeled molecules or Syk-mScarlet or a 

488nm laser for the AF488 labeled molecules.  Single point TIRF was used for fast 

imaging of single particles while TIRF 360 was used to create uniform TIRF illumination 
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for moderate speed particle tracking and fluorescence recovery after photobleaching 

(FRAP) by steering the laser at the back-focal plane. The microscope was custom-built 

based on iMIC system (TILL Photonics, Munich, Germany) with 60x 1.49 oil immersion 

objective lens (Olympus, Tokyo, Japan). 

Spinning disk confocal experiments of the Syk-mScarlet cells were done using a 

561 laser to excite the mScarlet and the AF488 Fc molecules were imaged with a 445nm 

laser.  This is not an ideal laser for excitation, so Hi-Lo was relied on for increasing ‘n’ 

for these data.  

Supported Lipid Bilayer formation 

Supported lipid bilayers were formed by spontaneous fusion of lipid vesicles. For 

the bilayers DSPE-PEG(2000) Biotin (Avanti Polar Lipids 880129)or DSPE-PEG(2000)-

DBCO (Avanti Polar Lipids 880229) and POPC Avanti Polar Lipids (850457) were 

mixed at a molar ratio of 1:100 with total lipid concentration of 500μM. The lipid 

mixture was then dissolved in chloroform and dried using a vacuum centrifugation to 

remove the chloroform, where the first minute ran at 30C and the remaining temperature 

was set to room temp. The lipid film was re-suspended in dPBS by initially vortexing and 

then sonicating for 5 min using a bath sonicator and then extruded through (Avanti Polar 

Lipids 610000) 100 nm filter at least 13 times (Whatman Nucleopore Track-Etch 100nm 

membrane).  For the cRGD bilayer, 10uL of 0.1mg/mL cRGD-azide (1ug) (Peptides 

International 004327) added to the solution prior to vortexing.  The bilayer was formed 

on Piranha acid (H2SO4 (30 %, v/v):H2O2 (3:1, v/v)) cleaned coverslips and then dunked 

in water at about 42C to remove excess liposomes. The water was exchanged with dPBS 
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followed by Hank’s balanced Salt Solution for either imaging (Corning). The bilayer 

coated coverslip was kept in a buffer solution during washing and transferring to imaging 

chamber to protect SLB from drying out and to keep it uniform. For opsonization of the 

biotinylated bilayers, Alexa Fluor 647 NHS ester (Thermofisher Invitrogen) was 

conjugated to anti-Biotin IgG (clone 3E6) for antibody fluorescent labeling. The labeled 

antibody was incubated with the 0.1% PEG-biotin SLB at 37 °C for 30 min. Excess IgG 

was washed with imaging buffer.    

Single and Multivalent Fc Treatments 

The designer Fc molecules, rFc, SIF1, and PentX were provided by Momenta 

Pharmaceutical as part of a collaboration.  For the low dosage on bilayers, single particle 

assays on the cRGD bilayer, differentiated THP-1 cells were removed from the plastic 

dish using cold dPBS and then treated in suspension at 4C with either 0.03ug/mL rFc-

DL594, 0.11ug/mL SIF1-DL594, or 0.17ug/mL PentX-DL594.  This dosage is 

approximately 1.4nM for each construct and should not be activating according to [14]. 

Treatment on ice was done for 30 minutes and then cells were washed and resuspended in 

HBSS and dropped on the supported lipid bilayers.  For each construct treatment, about 

200,000 cells were used, of which about 120,000 cells were dropped onto the supported 

lipid bilayer.      

For moderate and high dosage treatments on glass, Fc constructs labeled with 

AF488 were used at the same mass 33ug/mL, 66ug/mL, or 100-110ug/mL doses for the 

particle tracking data.  For the two-color Fc experiments, 33ug/mL of AF488 and 

33ug/mL of DL594 were mixed and cells were treated with them at the same time as in 
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the single-color Fc treatments.  These were treated at 37C for 5 minutes and then washed 

and imaged immediately over the course 45 minutes after washing.  For brightness 

analysis, Fc constructs were all 0.4uM for each to keep the total number of molecules the 

same for each.  These experiments were done with cells on glass.  Predominately cells 

were differentiated directly on glass, but in some cases, cells were removed from a plastic 

dish and plated on ethanol flamed coverslips and allowed to adhere at least overnight.  

For each of these, ideally 150,000-200,000 cells per coverslip were plated.   

Image Processing    

Fiducial data collection and image registration: Single images were registered 

using calibration images acquired simultaneously on each of the four EMCCD detectors. 

A single image of 200 nm green beads (Life Technologies, Carlsbad, CA) immobilized 

on a glass coverslip were excited using 445 nm excitation.  Coordinates for registration 

were determined using the MATLAB (The MathWorks, Inc., Natick MA) cpselect tool.  

A rigid affine transformation was used to transform all points onto the red channel. 

Image montages were generated using ImageJ, and due to unintended photobleaching in 

some data sets, the Bleach Correction tool was used (Kota Miura et al. (2014). ImageJ 

Plugin CorrectBleach V2.0.2. Zenodo. 10.5281/zenodo.30769).    

U-track (Danuser Lab) was used for single particle tracking using the Gaussian 

detection [29, 30].  For the brightness analysis and syk kinase track length, point source 

detection without tracking was used.  Data was extracted and visualized using both 

customized codes and provided, for plotting 2D tracks by classification.  

THP-1 syk-mScarlet lentiviral transduction 

http://dx.doi.org/10.5281/zenodo.30769
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To produce lentivirus, 3x106 293T cells were seeded in a 6-well treated 10 cm 

plates.  The next day after plating, each dish was transfected with 6ug gRNA Syk-

mScarlet-pLJM1, 6ug psPAX2, 1ug pVSVG, and 24 uL of 1 mg/mL polyethylenimine 

(PEI).  After 48 hours, lentivirus was harvested, centrifuged, and aliquoted into 15 mL 

tubes and stored at -80C or -150C.  For lentivirus transduction into THP1 cells, cells were 

transduced using the harvested virus for 48 hours.  After the 48hour transduction, cells 

were selected with Blasticidin (10ug/mL) for two days.  THP-1 cells were transduced 

using 200,000 cells per well of a 6-well plate.   
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CHAPTER IV. DISCUSSION 

The ability to selectively activate and inhibit FcγRs is an important goal of 

immunology and medicine.  In this dissertation, the analysis of FcγR activation at a single 

molecule level provided an improved understanding of the mechanisms of FcγR 

activation and inhibition that have implications for immunity and autoimmune 

pathogenesis and suggests new immunotherapeutic strategies.   

From studying plasma membrane topography near sites of FcγR activation, it was 

found that the macrophage membrane remains close to its target in regions of FcγR 

ligation followed by a transition in topography to more vertical and more distal 

membrane in regions occupied by the M2 integrin.  Rather than tiptoeing at the sights 

of FcγR engagement with antibody, as was expected, and curving sharply to 

accommodate encroaching phosphatases, actin pushes the lamellipodia laterally from the 

point of contact, leaving a flat, but elevated plasma membrane in the wake of the 

advancing edge. Given that all phosphatases, like CD45 can deactivate FcγRs by 

diffusion driven collisions with FcγR clusters [1], we predicted that changes in the 

macrophage membrane topography would be adjacent to the target to help exclude 

proteins with large extracellular domains.  Furthermore, this mechanism is likely to be of 

high importance when the antigen is mobile and on a deformable surface such as that 

found on ADCP targets.    

Our findings provide some evidence that although integrins were not at the 

leading edge of the lamellipodia, M2 podosomes may contribute to the macrophage 

phagocytic cup [1, 2], however the ligand and mode of activation remains undefined.  A 
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typical diagnostic of integrin activation, talin and vinculin accumulate at podosomes 

formed against IgG-coated glass [2].  Thus, the arrangements of M2 are overall 

consistent with this model. 

However, evidence contradicting this model includes the fact that M2, talin and 

vinculin were not found to be significant hits in our phagocytic screen.  Thus, specific 

integrins and the general activating machinery does not seem to be required.  In support 

of the podosome hypothesis was the observation that the actin nucleators and their 

adaptors, Arp 2/3 and WAVE2 were found to be very important by our whole genome 

screen.   Of these, this work in this dissertation found new evidence that Wasf2 and 

Nckap1l, genes coding for members of the WAVE2 complex, control the organization of 

the FcγRs and are important for establishing the leading-edge dynamics of the 

pseudopod.  Surprisingly, Was, the gene coding for WASP, was not needed for the lateral 

actin polymerization but was involved in controlling the organization of the FcγRs in 

contact with the target, potentially by regulating the activation of integrins in the post 

FcγR zone.  At this point, it is unclear what the relationship between WASP activity and 

integrins is in organizing the phagocytic cup and its potential role in forming a diffusional 

barrier between CD45 phosphatases and the FcγR clusters [1].  These findings provide a 

new line of investigation for delineating the divergent roles of the WASP and WAVE2 

machineries in regulating FcγR signaling and phagocytic function.   

Future work on the role of WAVE2 in the engulfment of phagocytic targets will 

be needed to delineate how WAVE2 regulates FcγR clustering.  Polarized TIRF 

experiments of knockout macrophages will delineate the effects of WAVE2 and WASP 

on the membrane topography and contributions of integrins to shaping FcγR clustering 
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and activation.  We propose that the lateral actin polymerization is mediated by WAVE2 

recruitment of Arp2/3 at the periphery of the phagosome, driving the lamellipodia 

forward and that this facilitates clustering of FcγR and flattening of the plasma membrane 

against the target as it advances.  Additionally, correlation of polTIRF with fluorescently 

tagged actin, integrins, and the WAVE2 components in mutant macrophages would allow 

testing of this hypothesis.   

 This dissertation also addressed FcγR activation regarding receptor valency by 

comparing the cell surface dynamics, internalization, and Syk kinase recruitment to 

engineered Fc molecules.  In order to design an inhibitor for IgG-mediated autoimmune 

diseases, the question of receptor valency was addressed by Ortiz et. al. by designing 

multivalent Fc molecules [3].  They successfully identified a pentameric agonist for 

receptor activation and a trimer that potently inhibited activation. By utilizing multivalent 

Fc molecules, we found that small pentameric FcγR clusters are internalized and recruit 

Syk to endosomes. This finding is significant for the field of immunology because it 

provides evidence of a unique form of FcγR activation that may occur in some 

autoimmune diseases where immune complexes form with small, soluble antigen.  

Additionally, it provides insights that are valuable for inhibition strategies.  The trimeric 

Fc, SIF1, is a potent inhibitor in animal autoimmune models, and is moving on to clinical 

trials [3].  Until recently, its route of inhibition was not understood, however our findings 

demonstrate that SIF1 precludes endocytosis, behaving like a single receptor, while 

docking three FcγRs. With its high avidity for the FcγR, it makes an ideal inhibitor. 

 Future work for this project includes investigation of FcγR endocytosis and 

activation on endosomes.  It is not clear if clusters larger than five will always promote 
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activation on endosomes or if the geometry is particularly important.  This could be 

tested by using some of the larger multivalent Fc molecules designed by Momenta 

Pharmaceutical [3].  A simple way to determine if PentX clusters promote endocytosis 

would be to inhibit endocytosis with drugs such as Pitstop and Dynasore, which arrest 

clathrin mediated endocytosis.  Additionally, mutagenesis of the predicted motifs that 

signal for endocytosis would be key in determining the mechanism of endocytosis.  

 

Figure 4.1 Models described in this dissertation provide insights into FcγR activation and 

signaling that may be valuable in designing therapeutic strategies.  (Created with BioRender) 

  

 From FcγR clustering and signaling for phagocytosis, to small, mobile FcγR 

clusters driving responses to ICs, the FcγR plays an expansive role in the immune system.  

Understanding the nanoscale details of FcγR clustering and membrane topography 

provides new insights into the mechanisms by which FcγR clustering controls activation 

and provides strategies for inhibition (Fig. 4.1).  This dissertation provides a new insight 
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into these processes and provides a roadmap for understanding the contributions of the 

newly discovered molecular machinery involved in FcγR activation. 
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