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INTRODUCTION 

The swine industry generates an income of 100 million 

dollars per year for South Dakota farmers, amounting to 

15 percent of the total farm income, which ranks swine 

production second only to the beef industry as a source 

of farm income in South Dakota, Aanderud (1)1 • Over the 

last ten years, swine production has averaged 2.9 million 

hogs annually which is 3.2 percent of the production in 

the United States, ranking South Dakota ninth nationally. 

To keep pace with production in other areas of the country, 

South Dakota farmers must learn and employ the most 

advanced production techniques. Agricultural engineers 

must continue to improve the total environment, as it 

relates to animal performance, to parallel advances in 

genetics and nutrition being made by animal scientists. 

The total environment depends on several tactors 

which can be divided into three general areas: thermal, 

physical and social. Thermal factors include air tempera

ture, relative humidity, air movement, and temperature 

of the radiant and conductive surfaces. Light, sound, 

space and equipment are examples of physical factors. 

Social factors include the number of animals per pen, 

social behavior and "pecking order. " 

1Numbers in parenthesis refer to literature cited. 
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The importance of thermal factors has been emphasized 

by the number of investigators who have studied hog 

reaction to various temperature conditions. Kelly, 

Heitman and Morris (16) summarized many of the basic 

reactions in the following statement: 

As much as 30 percent of the gross energy 
of the feed may be dissipated as heat. Four 
avenues of heat dissipation are available to the 
animal for cooling itself--conduction, 
convection, radiation and evaporation. The 
first three depend on the difference between 
the surface temperature of the animal and the 
temperature of the air and of the surroundings 
to control the heat loss rate. As the environ
mental temperature increases the animal surface 
temperature also increases, but at a slower 
rate. The difference between the animal's 
surface temperature and the temperature of the 
air and the surroundings then becomes less and 
less, and it becomes more difficult for the 
animal to lose, through the skin, the amount of 
heat necessary to retain normal body temperature. 
In an effort to keep a normal temperature, the 
animal then cuts down ori its feed intake and 
increases its rate of respiration. Finally 
because the hog is unable to dissipate all the 
heat, a part of it must be stored, with a 
consequent increase in body temperature. 

Technological advances have improved methods of 

rearing pigs during cold weather. Many systems have 

been developed to provide heating and ventilation levels 

that are adequate in most swine housing systems. How

ever, air distribution systems in farrowing houses need 

improvement since the amount of air required to keep sows 

comfortable in summer could result in a draft on pigs. 

Ross (25} reported that facilities and equipment for cold 



weather were developed to the extent that -20 F1 weather 

is preferable to 95 F for farrowing, indicating a need 

to investigate performance and cost of cooling systems 

for warm weather operations. 

Hany of the technological advances in the swine 

industry have resulted in increased capital requirements 

for buildings and equipment. This has made multip�e 

farrowing, including summer farrowing, a near necessity. 

Hog farmers recognfze the problem of sow mortality due 

3 

to severe heat stress during periods of high ambient 

temperatures, and hog producers utilizing the free stall 

farrowing system recognize yet another problem, that of 

poor stall occupancy. Sows in this type of system tend 

to seek relief by leaving their stalls and lying in moist 

or breezy areas. This decreased stall occupancy has 

resulted in pigs being severely neglected, reduced weight 

gains and starvation in extreme cases. 

A need to modify the thermal environment in the free 

stalls to provide sows with thermal relief is desired. 

Preliminary work has indicated that cooling the entire 

environment is very expensive. Therefore, an alternate 

system of partial modification of the environment using 

a stream of cooled air directed on sows was investigated. 

The objectives of this research were the following: 

1. Determine the effects of cooled air directed 



toward the sow on swine performance as 

indicated by pig weight gain, mortality 

and weight change of the sow. 

2. Evaluate sow response in terms of respiration 

rate and pen occupancy. 

J. Describe the environmental conditions of 

temperature and relative humidity within 

the farrowing building. 

4. Determine the electric energy use of the 

environmental control equipment. 

4 



REVIEW OF LITERATURE 

Environment has been recognized as a factor which 

influences swine performance and physiological response. 

Heitman and Hughes (12) cited an 1883 Kansas publication 

by Shelton which stated that pigs kept outside during 

winter required 25 percent more feed than pigs housed 

5 

in the basement of a warm barn. More recently, studies 

were designed to investigate performance and physiological 

response of hogs with respect to varying environmental 

conditions. Major conditions investigated were tempera

ture, air velocity and relative humidity. 

Bond, Kelly and Heitman (6) reported that pigs 

gained weight much faster when subjected to an optimum 

air temperature which was found to be 73. 5 F for a 100-lb 

pig and 64.o F for a 350-lb hog. Bond, Kelly and Heitman 

(5) found that sows gained weight during lactation at 

60 and 70 F temperature, while a sow at 80 F lost weight 

but raised the largest and heaviest litter. Mangold, 

Hazen and Hays (18) concluded that swine fed "ad libitum" 

and raised in a range of air temperatures from 50 to 75 F 

exhibited similar levels of performance. Also, pigs 

exposed to temperatures above 75 F consumed less feed and 

had a better feed efficiency but a poorer growth rate than 

pigs raised at 60 F. Below 50 F, the pigs consumed more 



feed but had a poorer rate of gain and feed efficiency 

than the 60 F group. Bond, Kelly and Heitman (5) found 

that baby pigs seemed comfortable at 80 F, light hogs 
,_ 

6 

huddled for warmth below 70 F and heavy hogs began to 

huddle near 60 F. Heitman and Hughes (12) noted that 

respiration rates varied directly with temperature for 

groups of pigs averaging 200-lb and 100-lb (Figure 1). 

Respiration rates of 20 breaths per minute were recorded 

for 200-lb pigs at 40 F air temperature, while 100-lb pigs 

breathed 25 times per minute. The effect of temperature 

was more severe for larger hogs as respiration rates at 

95 F doubled the rates of the smaller pigs (160 versus 

80 breaths per minute) . Morrison, Bond and Heitman (21) 

found that r·espiration rates of 90-lcg pigs increased from 

15 breaths per minute at 60 F dry-bulb temperature and 

50 F dew-point temperature to 86 breaths per minute at 

85 F dry-bulb temperature and 50 F dew-point temperature. 

Investigators have concluded that humidity affects 

swine response. Morrison, Bond and Heitman (22) reported 

that hogs raised at their maximum gain temperatures and 

at a temperature 10 F above maximum gain temperature 

showed a decrease in growth rate as relative humidity was 

raised from JO to 95 percent. Morrison, Bond and Heitman 

(21) noted that respiration rates increased from 86 to 

143 breaths per minute at a temperature of 85 F dry bulb 

when dew-point temperature was raised from 50 to 82 F. 
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Bond, Heitman and Kelly (4) determined that in

creasing air velocities in the range of 35 to JOO fpm 

improved feed conversion and rate of gain of growing and 

finishing pigs at temperatures of 95 to 100 F. However, 

at lower temperatures ad.verse effects were frequently 

noted. Rate of air movement did not affect pulse or 

respiration rates. Nave, Olver and Shove (24) observed 

that air velocities over 40 fpm were not desirable for 

pigs under three weeks of age. 

Beckett (2) devised a parameter called.swine 

effective temperature which relates combinations of 

8 

ambient temperatures and relative humidity to dry-bulb 

temperature of equal pig stress at conditions of 50 percent 

relative humidity and 20 to 30 fpm air velocity (Figure 2). 

A major assumption was that respiration rate is an 

indicator of discomfort. The validity of this assumption 

was confirmed by Esmay (9). Air at 95 F and 50 percent 

relative humidity would have a swine effective temperature 

of 95 F. If moisture were added adiabatically until the 

relative humidity were 75 percent, the dry-bulb tempera

ture would be 86 F, yielding a swine effective temperature 

of 87 F, thus the swine effective temperature could be 

lowered 8 F by evaporative cooling. A change in relative 

humidity from 30 to 94 percent at an ambient temperature 

of 90 F would increase swine effective temperature from 
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89. 4 to 92. 6 F, but a change in relative humidity from J.O 

to 94 percent at an ambient temperature of 96 F would 

increase swine effective temperature from 93.8 F_ to above 

100 F. This indicates the greater effect of moisture at 

higher temperatures. Beckett and Vidrine {3) expanded 

the concept of swine effective temperature to include the 

reductions in swine effective temperature caused by 

higher air velocities, pigs breathing cooled air, radiant 

temperatures below ambient temperature and numerous 

factors of lesser importance. 

10 

Heat loss from swine and other warm blooded animals, 

including influencing factors, have been studied by 

various investigators. Animals have physiological compen

sation mechanisms which can control both heat loss and 

heat production to maintain body temperature at the same 

level under varying environmental conditions. Esmay (9) 

indicated that animals can reduce heat loss by decreasing 

skin temperature, maximizing the arrangement of the body 

. covering (hair, feathers, or fur) , minimizing evaporative 

losses and minimizing surface area exposed to the 

environment. Heat production, thermogenesis, is regulated 

by mechanisms such as shivering, changes in muscle tonus 

and secretion from endocrine glands which increases the 

metabolic heat production. nrody (7) found the period 

immediately following birth was frequently a critical time 
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in the life of many animals since homeothermic mechanisms 

are not highly developed; Mount (23) reported that in a 

cold environment rectal temperature of newborn pigs 

dropped despite a marked increase in heat production due 

to shivering. Under the same conditions, rectal tempera

tures did not fall when the pig was one week old. He 

also found that thermal conductivity of newborn pigs was 

greater than hairy animals of similar weight. Butchbaker 

and Shanklin (8) found respiration rates of newborn pigs 

remained relatively constant for varying environmental 

temperatures as low as 75 F. According to Esmay (9), 

Holub, Forman and Jezkova found the pilomotor {hair 

raising) and vasomotor (changing blood vessel size) 

reactions for pigs could be noted at approximately 6 days 

of age, even though metabolism -rate did not change. 

�aturity of the thermoregulatory system was reached 20 

days after birth. 

Investigators have observed that pigs in areas of 

high te�peratures tend to behave in a manner facili

tating heat loss. Mangold, Hazen and Hays (18) reported 

growing-finishing pigs at 80 F remained prone and away 

from others much of the time and kept the floor wet with 

liquid from body waste and waterers. Brody (7) stated 

that pigs wallowed in mud or water pools to increase 

heat loss. Heitman and Hughes (12) found that during 



warm weather pigs wallowed in the urine from other hogs 

and turned from side to side which exposed the moist 

skin surface and increased evaporative heat loss. 

12 

Total heat loss has been divided into the following 

components: conduction, convection, radiation and 

evaporation. Bond, Kelly and Heitman (6) reported the 

percentage of heat lost by conduction, convection and 

radiation decreased from 13, 38 and 35 percent of the 

total, respectively at 40 F to J, 5 and 2 percent, 

respectively at 100 F, while evaporation heat loss 

markedly increased from 14 to 90 percent (Figure 3). 

Beckett and Vidrine (3) modeled heat flow in a 150-lb 

pig and presented partitioned heat loss, BTU per hr per 

sq ft of hog surface area, versus temperature. This 

illustrated that total heat loss  for swine decreased from 

51 to 33 BTU per hr per sq ft when temperature increased 

from 10 to 100 F (Figure 4) • . The model was verified with 

swine heat loss data for temperatures ranging from 40 

to 100 F. Total heat loss for a pig of any size can be 

calculated using the Brody-Comfort formula for the 

surface area of a pig, which was presented by Esmay (9). 

Esmay (9) indicated that normally 80 percent of the 

surface area of a hog is exposed for convection,75 

percent for radiation and 20 percent for conduction. 

However, when pigs were huddled, the surface area oC the 
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inner pigs exposed for convection and radiation was 

reduced to 40 and 35 percent, respectively. Butchbaker 

and Shanklin ( 8) stated the total heat loss of huddled 

pigs approximates the heat loss of an individual pig of 

equal mass. Also, they concluded that the amount of 

latent heat lost was relatively uninfluenced by tempera

ture, but ranged from 8 to 100 percent of the total heat 

loss at 55 and 100 F, respectively. Latent heat loss was 

a small portion of the total heat loss in the 70 to 90 F 

range with two-thirds of the remaining heat loss attribu

ted to radiation and one-third to convection. 

Many investigators have studied environmental factors 

which influence heat loss. Bond, Heitman and Kelly { 4 ) 

found total heat loss varied directly with air velocity, 

and convective and evaporative heat losses increased from 

60 to 80 percent of the total heat loss when air velocity 

was increased from 35 to JOO fpm at air temperatures up 

to 100 F. Beckett and Vidrine (3) reported that radiant 

heat loss remained near JO percent of the total from 10 

to 70 F but decreased to near zero at 100 F {Figure 4) . 

Evaporative losses through lungs and skin rapidly in

creased above 70 F. Brody {7) concluded exhaled air may 

be assumed to be J . 5  F below body temperature and at 90 

percent relative humidity. Also, the tidal volume and 

difference in enthalpy of the incoming and outgoing 



respiration air determined lung heat loss . Esmay (9) 

reported that skin evaporation heat loss varies even 

though pigs are classified as nonsweating animals and 

that vaporization may take place below the surface of 

the skin with vapor diffusion dependent on convective 

air velocities and vapor pressure . Morrison, Bond and 

Heitman (21) showed skin evaporation doubled and lung 

heat loss tripled for 90-kg pigs when temperature was 

increased from 60 to 80 F with dew-point temperature 

constant at 50 F. 

1 6  

Studies to evaluate methods of increasing heat loss 

have been performed. Kelly, Bond and Garret (15) 

reported cooled slabs increased conductive heat loss 

from 11 to 28 percent of the total heat loss of growing

finishing pigs at an air temper�ture of 100 F. However, 

an optimum slab temperature was reached and lower slab 

temperatures caused less heat loss from pigs to the 

conductive surface. They concluded that the conductive 

capacity of the skin surface of pigs limited heat flow 

at the lower slab temperatures . Spillman and Hinkle (27) 

found growing and finishing pigs lost the most heat, 130 

BTU per sq ft per hr, at an air temperature of 92 F 

with floor temperature at 75 F. They studied air temper

atures ranging from 72 to 92 F and slab temperatures 

ranging from 70 to 85 F. The average heat loss at air 



temperatures of 72 and 82 F ranged from 37 to 58 BTU per 

hr per sq ft regardless of floor temperatures. The 

Midwest Plan Service ( 20 )  recommended intermittent 

sprinkling to increase heat loss of swine. 

17  

Taylor ( 28) furnished 8 cfm of cooled air directed 

in the area of the snout of sows to reduce the enthalpy 

of the respiration air. He concluded that "snout cooled" 

sows in Indiana exhibited less stress than other sows. 

The most noticeable indicator was the change in respira

tion rates. Merkel and Hazen ( 19) found sows in Iowa 

receiving 80 cfm of 65 F air were more comfortable than 

sows receiving 80 cfm of 90 F ambient air, but no 

significant difference due to treatment was observed in 

weight gain of the litters. 
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DESCRIPTION OF RESEARCH FAC ILITIES 

The C urtis Nelson farm eight miles southeas t  of 

Brookings, South Dakota, was selected to evaluate environ

mental conditions and swine performance in a free stall 

farrowing operation. 

The farrowing unit (Figure .5) is an "L 11 shaped 

portion of a converted barn. The research facility, 

which bounds a large open barn area, measures 59. 2  ft 

long on the wes t  side by 1.5. 4 ft wide and .5.5. 2 ft long on 

the south s ide by 13. 3 ft wide and has a ceiling height 

of 7. 4 ft . Figure .5 includes the dimensions and location 

of the 19 free stalls , doors, windows and environmental 

control equipment. The eight single pane windows are 

22 • .5 in. wide by 28 in. high • . Acces s  is gained through 

four hinged doors and one 9-ft long by 7. 3-ft high sliding, 

wooden door of double thick construction. The s outhwest 

access  door opens to a concrete feeding floor and is 

divided into upper and lower sections 43 and 3.5 in. high, 

respectively. The walls are insulated with 3 5/8 in . of 

fiberglas s ,  sealed on the inside with a polyethylene 

vapor barrier and covered with 3/8-in. plywood . The 

exterior is sheathed with 6-in. drop siding. Grain and 

hay storage in the loft plus the flooring boards provide 

the insulation in the ceiling. 
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The free stalls were fabricated from J/4-in. 

exterior plywood and were placed on a solid concrete 

floor . The west and south stalls were constructed with 

20 

48 in. and 39 in. high sides, respectively. Stall widths 

varied from 51 to 59 in. to conform to existing structural 

components. 

A two-ton heat pump furnished conditioned air which 

was delivered to the free stalls through a square, 1-ft 

by 1-ft plywood duct which was suspended from the ceiling 

joists. This air was directed to the individual stalls 

through 3-in. inside diameter flexible steel tubing and 

was controlled with adjustable sliding baffles located 

at the main air duct directly over the stalls receiving 

the conditioned air.- The heat pump was controlled for 

summer use by a thermostat (single pole, single throw) 

located 2 ft above floor level at mid-length along the 

north side of the stall designated as treatment 1 of 

block 1 (Figure 6) . A 1776 cfm exhaust fan , located on 

the south wall and controlled by a time clock, provided 

supplemental ventilation. The time clock was adjusted 

to run 40 percent of the time when the temperature was 

above the thermostat setting. 

Kilowatt hour meters were installed to monitor the · 

amount of electrical energy consumed by the heat pump. 

Cycling of the compressor was monitored by sensing the 
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main air duct temperature with a single channel 

continuous recording thermometer. 

Temperatures at 28 selected locations ( Figu�e 6 )  

22 

were sensed by 26-gauge copper constantan thermocouples 

and were recorded on two multi-point strip chart recording 

potentiometers which were controlled by a time clock and 

time delay relay system. Thermocouples in the stalls 

were inserted in thermocouple wells constructed of 1/2-in. 

copper tubing. Thermocouples numbered 1, 2, 3, 4, 6, 8
1 

9 ,  10, 11, 12, 16, 1 7 ,  20, 22, 24, 25 , 26 and_ 27 were 

located at the edge of the free stalls near mid-length, 

2 ft above the floor. Temperatures of the creep areas 

(points 19, 21 and 13) were measured at the edge near 

mid-length of the creep area, 6 in. above the floor . 

Thermocouples at points 5, 13 and 28 sensed temperatures 

at three locations along the length of the main air duct. 

Wet- and dry-bulb temperatures were measured at locations 

14 and 15 with a motor aspirated ps ychrometer placed 10  

in. below the joists. Wet-bulb temperatures were also 

investigated in the air stream of the 3-in. , air delivery 

tube. Outside temperature, point 7,  was measured at a 

shaded location on the west side of the barn. 



RESEARCH PROCEDURE 

Environmental conditions and swine performance in a 

farrowing house provided with minimal cooling were 

2J 

studied from July 17 , 1970 to September 4 ,  1970. A 

randomized complete block design was utilized to evaluate 

performance of 15 sows and their litters as affected by 

selected levels of cooled air directed in the area of 

the snout of sows. The selected levels were 100 cfm for 

treatment 1, 50 cfm for treatment 2 and no air for 

treatment J . The air supplied by a heat pump was adjusted 

employing sliding baffles and a vane anemometer . 

The heat pump controls were adjusted to l{eep the heat 

pump fan running continuously and to activate the com

pressor when the temperature in _ the stall designated 

treatment 1 of block 1 was above 65 F. The fan was 

manually interrupted on extremely cool nights. 

Temperatures were recorded at midnight , 0600 , 1000, 

1200, 1300 , 1400 , 1500 and 1 600 hr at the points designated 

1 through 28 in Figure 6. Hourly tenperature observations 

in the afternoons were selected to better describe environ

mental conditions during periods of high outside tempera

tures. Electrical energy consumed by the heat pump was 

manually recorded between 0700 and 0900 hr each day . 

The sows were brought into the farrowing house 

several days before farrowing. Farrowing commenced 



July 16, 1970, and was completed August 10 , 1970 . The 

stalls were filled by block to keep litter age within 

blocks nearly equal. S01-1s choosing a stall in a block 

other than the one being filled were allowed to farrow 

in that stall but were moved to the correct location as 

soon as practical. 

24 

The sows were fed on the concrete feeding floor 

twice daily by farm personnel. Water was continuously 

available, since the· lower portlon of the southwest door 

was open allowing access to the feeding floor and an 

automatic waterer. 

Treatment of the sows and baby pigs (performed by 

farm personnel) was consistent with standard recommended 

management practices. Water and creep feed were available 

continuously after the pigs were two to three days old. 

Pigs were fostered when litter size varied greatly among 

litters of equal age. 

Pigs were weighed within 24 hours after birth . 

Initial sow weights were recorded the first morning or 

evening the sow left the stall after she had given birth - ·. · 

From farrowing to weaning, the pigs and _sows were 

weighed each Friday morning. Smaller pigs were weighed 

with a balance scale, larger pigs were weighed with a 

dairy-type scale and the so1:1s were weighed with a 



portable large animal scale. Respiration rate and pen 

occupancies were recorded by visual observation .  

25 
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RESULTS Al'rD DISCUSSION 

Environmental Conditions 

Maximum, minimum and average daily temperatures were 

obtained with a digital computer. Daily averages were 

computed from temperatures recorded at midnight ,  0600 , 

1200 and 1800 hr. Weekly block and treatment averages 

were calculated from daily average temperatures of 

individual stalls within each block and treatment. 

Weekly outside temperatures, sensed at a shaded 

position along the west wall, ranged from 2 F below to 

.5 F above and averaged 3 F above weekly averages for 

Brookings, South Dakota, based on data from 1898 to 1965. 

However, maximum daily temperatures did not exceed 90 F 

as frequently as expected. Weekly average main air duct 

temperatures at a location near the heat pump, point 5 , 

ranged from 55 . 7 to 62. 9 F and averaged 58 . 7 F for the 

total test period. This average was 15  F below the 

avera�e outside temperature. Figure 7 shows the average 

daily temperatures, which closely correspond with average 

weekly relationships, for positions outside, in the duct 

near the heat puwp, in the duct at mid-length and in the 

duct at the far end. 

The horizontal temperature profile of the main air 

duct described the temperature of the conditioned air 
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delivered to stalls with respect to location within the 

farrowing facility. This temperature profile, averaged 

over the two-week period, indicated temperature increased 

2 F from the heat pump to the mid-length of the duct and 

5 F from mid-length to the far end. The temperature 

difference from the heat pump to the far end averaged 8 F 

for the entire period compared with 7 F for the two weeks 

illustrated in Figure 7 .  The cross-sectional area of 

the main air duct was uniform which caused decreasing 

air velocities in the duct as distance from the heat pump 

increased. The decreased velocities were primarily 

responsible for the J F larger temperature increase in 

the portion of the duct from mid-length to the far end 

as compared with that portion of the duct from the heat 

pump to mid-length. 

Average weekly re lative humidities at Brookings, in 

the research unit and in the main air duet nea·r the ell , 

are shown in Figure 8. The humidity data in the farrowing 

facility were calculated from average daily wet- and dry

bulb temperatures. Averages at Brookings were obtained 

from observations at 0 80 0 ,  120 0  and 160 0 hr. Average 

weekly relative humidity in the duct was nearly constant 

at 60 percent, while average weekly relative humidity in 

the building ranged from 64 to 80 percent and averaged 12 

percent higher than the re lative humidity in the main air 
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duct for the period. Because moisture was added by the 

sows and litters , relative humidity in the farrowing 

facility was consistently higher than it was at Brookings. 

Duct dew-point temperatures averaged 8. 6 F below the dew

point for the period in the farrowing facility and was 

also below the dew-point of the outside air due to the 

moisture removed by the cqoling coil of the heat pump 

(I-t1 igure 9) • 

Treatment and ;Block Temperatures 

Treatments of 10 0 cfm of conditioned air, 50  cfm of 

conditioned air and no ventilation air directed into 

individual stalls caused minimal variation in stall 

temperatures (Figure 10 ). Averages for the entire period 

were 72. 8, 73. 4 and 7L� . o  F for· treatments 1, 2 and 3 ,  

respectively. Daily treatment averages were similar to 

weekly treatment averages and also indicated the expected 

time lag response of stall temperatures compared with 

outside temperatures (Figure 11) . To further examine 

extreme stress conditions, daily maximum temperatures 

recorded by treatment in a single block are illustrated 

in Figure 12. The maximum temperature was 88 F and 

occurred in treatments 1 and 3 on August 13, 1970. 

Average maximum temperatures for the two weeks shown were 

80 . 8, 81. 0 and 82. J F for treatments 1,  2 and J ,  
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respectively, which indicates variations in extreme 

stall temperatures were also minimal. 

3.5 

Temperature averages by block were calculated to 

determine the influence of the horizontal temperature 

profile in the main air duct and southerly versus westerly 

wall exposure on block temperature. The temperature 

averages of the blocks for the second week of the test 

exhibited the expected pattern of warmer stall tempera

tures in positions further from the heat pump (Figure 13) .  

However , a comparison of farrowing dates with corres ponding 

block temperatures showed stall occupancy exhibited 

greater influence on stall temperatures than did location 

within the ouilding . This was evidenced by the rise in 

temperature of block 1 in week _ four which corresponded 

with the introduction of sows. Sows occupied blocks 2 

and 4 by the end of the first week and farrowed in blocks 

3 and 5 during week two. The comparative lowering of 

teffiperature in blocks 2, 3 and 4 in week six corresponded 

with the removal of sows and litters. When averaged over 

the entire period, minimal temperature differences be- . 

tween blocks were observed. Period averages were 72. 9 , 

73. 4, 73. 2, 72. 9 and 74 . 5 F for blocks 1 through 5 ,  

respectively. 

Ho logical explanation was found for the 7 F 

difference in daily block temperatures on August 1 8, 1970 
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as shovm in Figure 14. However, a comparison of average 

block temperatures for the two-week period, shown in 

Figure 14, corresponds closely with the entire period 

averages. 

Creen Areas 

The average weekly temperatures observed in the 

creep areas in bloclc 5 for · each of the three treatments 

revealed that maximum temperat�re differences between 

treatments were less than 6 F with the highest tempera

tures observed in the creep area of the stall receiving 

the 100 cfm treatment (Figure 15). Highest creep tempera

tures were noted in week two and corresponded with the 

early life of the pigs and the operation of the 250-watt 

heat lamps. Ninimum average weekly temperature, during 

the time of pen occupancy, was 71. 2 F. Note the drop in 

creep temperature in week seven (Figure 15 ) which was 

immediately after weaning. Daily average creep tempera

tures for the three treatments (dotted lines represent 

the creep temperatures prior to the date the sow 

farrowed) are shown in Figure , 16. Temperatures for the 

first week averaged 7 8  F for treatment 2, and temperatures 

in treatments 1 and 3 averaged 79 F. Figures 17 and 18 . 

sho1.•1 maximum and minimum daily temperatures were not 

greatly affected by treatment and ranged from 73 to 91 F 

for all treatments. 
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Heat ElJ.1lli2 Oneration 

The energy used by the heat pump was recorded in 

increments of 10 kw-hr between 0 70 0  and 0 900 hr daily 

from July 27, 1 970, to September 4 ,  1970. Table 1 

(Appendix A )  lists the kw-hr used each day and the 

corresponding average daily outside temperatures. The 

maximum daily energy use of 90 kw-hr was recorded on 

August 12, 1 970 . Energy use did not correlate well with 

outside temperatures , since relative humidity and the 

number of animals in the facility were major confounding 

factors. 

Energy use of 80 kw-hr was recorded on 12 of the 39 

days studied ; most were days of continuous or nearly 

continuous he'at pump operation as determined by analysis 

of continuous main air duct temperature data. Investiga

tion of the data revealed that the compressor was in 

continuous operation on August 11 and 12 with energy use 

readings of 70 and 90 kw-hr, respectively. Therefore, it 

was assumed the time of observation introduced a 1 0  kw-hr 

error in these two readings and that 80 kw-hr or energy 

were used each of these two days. The minimum one-day 

energy requirement was 40 kw-hr and the average energy 

requirement was 68. 7  kw-hr per day . for the period. 

The continuous main air duct temperature data from 

August 25 , 1 970, to September 4 ,  1970 ( Figure 19) was 

43 



Figure 19 . Continuous I-lain Air Duct Ter.1perature Data 
Illus trating On and Off Cycles of the 
Heat Pump 
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4.5 

chosen as representative of compressor operation during . 

the study. Temperature traces that stabilized at higher 

levels after a rapid change denote the compress or was 

idle while those that stabilized at lower temperatures 

indicated compressor operation. Note, the temperature 

changes from 0900 hr Tuesday to 0300 hr Friday were gradual 

changes and were due to diurnal temperature fluctuations ; 

continuous compressor operation is indicated. 

The average daily outside temperatures for Tuesday 

through Friday (the heat pump was in constant operation 

until 0300 hr Friday) were 78. 6, 80. 0, 79. 1 and 6.5 F, 

respectively and correspond to energy usage of 80 kw-hr 

per day for Tuesday through Thursday and 70 kw-hr for 

Friday ( F igure 19) . The seven brief periods o� higher 

temperatures in the main air duct between OJOO  and 1000 hr 

Friday indicated periods of compressor inactivity. The 

longest period of compressor inactivity was for 13 hr 

between 2030 hr Sunday and 0930 hr Eonday. Energy use 

from Sunday to Eonday morning was 40 kw-hr with an 

average outside temperature of 67 F. 

The percent of the time that the compressor operated 

was determined by dividing the 68. 7 kw-hr average dail 

energy use for · the entire period by 80 (kw-hr use :for a 

continuous day ' s  operation) . This indicated the heat 

pump was in operation 86 percent of the period . 
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Swine Performance 

Pig weight data were analyzed statistically with no 

adjustments for litter size. Linear , second order and 

third order least squares regression equations were 

fitted to the weight data for the sum of each treatment 

and the sum of all treatments. Second order regression 

equations yielded a significantly better fit than linear 

(based on a smaller error term) , but no improvement was 

realized with third order equations. No significant 

difference in pig weight gain between treatments was 

found. However, a plot of the pig weight regression 

equations indicated a trend towards higher pig weight 

gain in ful,�y air-conditioned stalls ( Figure 20). The 

regression equations for each treatment are as follows: 

y 1 = 3. 19 + O. JOX + o. 0 033x 2 

Y2 = J. 38 + o. 21x + o. 0 034x2 

Y3 = 3. 0 7 + 0. 25X + o. 0 022X2 

Y1, Y2 and Y3 represent the pig weights for treatments 1, 

2 and J, respectively, and X represents pig age in days. 

Variation within treatments was large as shown by the 

scatter of data along the regression lines in Figure 20 . 

This variation caused a large error term in the analysis 

of variance. Average daily gains for treatments 1, 2 and 

J were o. 417, 0 . 345 and 0 . 30 1  lb per day , respectively. 

Analysis revealed that air flow had little influence 
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on sow weight, although sow weights tended to decrease 

for a period of time after farrowing and then increase 

near the end of the lactation period. 

48 

Mortality data revealed no clear trend with res pect 

to air flow. Twenty-two out of a total of 146 pigs died ; 

4 out of 44 pigs died in stalls receiving 100 cfm of air, 

and 9 pigs per treatment died in stalls rece iving 5 0  cfm 

and no air. Sows in these treatments farrowed a total ot' 

53 and 49 pigs, respectively. Individual sows, one in 

treatment 2 and one in treatment J, were responsible for 

five and six dead pigs, respectively. 

Respirat ion Rate and £en Occupancy Comparisons 

Based on the average of data observed on July 27 , 28, 

August 5 ,  12 and 18 between 14·00 and 1600 hr, significantly 

reduced respiration rates were noted in stalls receiving 

cooled air, as contrasted to those sows not provided 

cooled air. Average treatment temperatures and average 

respiration rates for each treatment and date are presented 

in Table 2 ( Appendix B ) . Variation in stall temperatures 

were small as previously reported. Mean respiration rates 

for the total of all days observed were 36 . 8 , 54. 8 and 

64. 6 breaths per minute for treatments 1 , 2 and J ,  

respectively. No significant difference was noted 

because of date or the interaction between date and 
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treatment . The plot of average respiration rates by 

treatment on the Heitman and Hughes ( 12 )  respiration 

versus temperature graph ( Figure 21 ) shows the swine 

effect ive temperatures were 62 , 72  and 78 . 5  F for 

treatments 1 ,  2 and 3, respectively , as compared wi th 

actual stall temperatures from 78 to 83 P for all treat

ments and observat ions . 2 This indi cates  that the 100 cfm 

of 69 . 6  F conditioned air reduced the effect ive tempera

ture sensed by the sows 1 6 . 5  F ,  while the 50  cfm of the 

conditioned air reduced the effective temperature sensed 

by the swine 6. 5 F .  

Stall occupancy data were obtained from July 18 , 1970 , 

to August 14, 197� to determine the influence of cooled 
,, 

air . delivered to the stalls on the amount of t ime the sows 

spent with the i r  pigs. Sows in treatment 1 exhibited 3 

percent more occupancies than the no air treatment and 7 

percent more occupancies than the 5 0  cfm treatment . The 

cooperat ing farmer reported an overall increase in the 

time sows spent in the stalls as compared with summer 

farrowings before the introduct ion of conditi oned air .  

Stall occupancy levels were calculated on the basis of 

number of t imes the sows were in the stalls compared to 

2Beckett and Vidrine ( 3 )  reported that respiration 
rate data collected for a sow compared closely 
with that of . the 200-lb Heitman and Hughes ( 12) 
nirrs and indicated that comnarisons between sows ... u .... 
and 200-lb pigs could be made . 
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total observations. This data revealed that treatment 1 

had 1 75 occupancies out of a possible 236 or 74 percent 

occupancy rate, 157 occupancies out of 234 observations 

or an occupancy rate of 67 percent was observed in 

treatment 2, and treatment 3 exhibited 156  occupancies 

out of a possible 21 7 which gave an occupancy rate of 71 

percent. 

Economlc Analys is .Q.f. Heat Pump Qperation 

At retail values the heat pump, wiring, control and 

installation costs were approximately 1250 dollars, 

including the construction of the duct. Based on an 

interest rate of 6 percent and an estimated life of ten 

years, the ru��ual recovery costs are 170 dollars. 

The benefits received by susnrner farrowing based on 

the indicated increased average daily gain of 0. 116 lb 

per pig would be 159 dollars above an rumual electrical 

energy cost of LJ,8 dollars. This is based on 2 farrowings 

each summer i-dth 10 sows averaging 8 pigs per lit ter, a 

weaning age of 28 days and a price of 40 cents per lb. 

This suggests a contribution in excess of 90 percent of · 

the annual recovery costs leaving only 10 percent to  be 

allocated to the potential income from increased number 

of pigs weaned, minimized sow mortality and value added 

during spring, fall and winter farrowings. 

.51  



CONCLUSIONS 

The following conclusions were indicated by this 

investigation : 

1 .  Treatment had less effect on stall and creep 

temperatures than did stall occupancy. 

2 .  Average daily energy consumpt ion of the heat 

pump was 68. 7  kw-hr during the period which 

averaged 3 F above normal temperature for 

the Brookings, South Dakota area. 
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J. The 10 0 cfm level of air reduced swine effective 

temperature 16 . 5  F ,  and the 50  cfm level re

duced it 6 . 5 F as indicated by decreased sow 

respiration rates . 

4. Average daily pig weight gains were o .417 , 

0. 345 and 0 . 321 lb per day for treatments 1, 

2 and J, respectively . Pig weight gain was 

not significantly affected by level of air 

flow. 

5 . Sow respiration rate decreased significantly 

with increasing air flow and averaged J6. 8, 

54 . 8  and 64 . 6  breaths per minute for the 

treatments. 

6 .  Greatest stall occupancy was noted in the 

stalls receiving 10 0 cfm of conditioned air. 



7 . Indications were that the value of the added 

weight gain of the pigs from two farrowings 

per summer season would contribute 90 percent 

of the annual recovery costs of the heat 

pump, based on a ten-year useful life. 
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SUI1iMARY 

Sow mortality and poor litter performance have been 

attributed to heat stress during the farrowing and 

lactation period. Since cooling an entire swine building 

has been shovm to be cost prohibitive in many cases , an 

alternate system of partial environmental modification 

was s tudied. 

The effect of selected levels of air flow , conditioned 

by a heat pump and directed to the snout area of sows, on 

the performance of sows and litters housed in a free 

stall farrowing barn and the performance of the environ

mental control equipment were studied during a summer 

farrowing period in east central South Dakota. F ive 

replications of the following t_hree treatments were 

studied using a randomized complete block design : 100 cfm 

of conditioned air, 50 cfrn of conditioned air and no air. 

Analysis of the environmental conditions indicated 

that treatment had less effect on stall and creep 

temperatures than did stall occupancy. Outside tempera

ture averaged 73 . 7 F, farrowing barn temperature 73 .5 F ;  

and conditioned air temperature delivered by the heat pump 

averaged 58 . 7  F for the period. Swine effective tempera

ture was reduced 16. 5 F and 6 . 5  F by the 100 cfm and the 

50 cfm of conditioned air, respectively. Level of 

condit ioned air had no significant effect on piglet 
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weight gain and change in sow weight, but sow .respiration 

rate decreased significantly with increas ing levels of 

conditioned air. Sow stall occupancy was greates t for 

the 1 00 cfm treatment . The economic value of the added 

we ight gain of the pigs was in excess  of 90  percent of 

the annual recovery cost of heat pump, assuming two 

farrowings per summer seas on. 
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APPENDIX A . Daily Electrical Energy Use of the Heat 
· Pump and Average Daily Temperature , 
July 27 , 1 970, to September J, 1970 
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Table 1 .  Daily Electrical Ener�y Use of the Heat 
Pump and Average Daily Temperature , 
July 27, 1 970, to September J ,  1 970 

Date Kw-hr Avg. Temp . Date Kw-hr Avg. Temp . 
OF OF 

727 60 79. 1  816 70 . 71- • .5 
728 70 79 . 6 817 70 78 . 6 
729 80 79 . 6  81 8 80 78 . 4  
730 70 80. 6 819 .50 74 .4  
731 .50 78. 9 820 60 65 . 8 
801 40 71. 9 821 40 74 . 1 
802 · .  .50 66 . 8 822 60 7.5 . 6 
803 40 64. J  82J 60 68 . 8 
804 60 70. 9 824 JO 76 . 9  
80.5 80 74 • .5 82.5 60 78. 6 
806 80 71 . J 826 80 80.0  
807 80 72. J 827 80 79. 1 
808 80 69 • .5 · 828 70 65 . 0 
809 70 67. 8  829 60 76 . 9  
810 8Q 76 . 6 8JO 40 68. 1 
81 1 70 76. J 8J1 50 66 . o 
812· 90 78 . 9 901 80 76 . 9  
813 70 79. 1  902 70 7.5 . 9  
814 80 81 . 6  903 .50 74 . J 
81.5 80 72. 8 . 



APPEND IX B. Respiration Rates and Temperatures by 
Treatment at Sampling Time 
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'rable 2 .  Treatment Respiration Rates and Temperature at Sampling Time 

Respiration Rate , Breaths/Minute 
Date Temp Treatment 1 Temp Treatment 2 Temp Treatment 3 

Op Op OF 

1 81 • .5 2.5 . 2 82 . 2  62 . 3 83 . 1  93 . 0  

2 81 . 5 23 • .5 82 . 2  67 . 3  83 . 1  76. 3 

3 82 . 6  41} . 5 82 . 3  38 . 0  83 . 8 · 49 . 5 
4 78 . 1  26 . 2  78 . 5 58 . 2  78 . 3  49. 2 

5 78 . 1  37. 2 78 . 5 40 . 6  78 . 3  47 . 2  

6 82. 7 L�5 . 0  83 . 5 60 . 0  83 . 8  78 . 6  

7 82. 6 55 . 8  83 . 0  57 . 8  83 . 0  58 . o  

I 
°' 
\..J 
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APPENDIX C. Temperature Data 



Table 3. Maximum , Minimum and Average Temperatures at 
Point 1 from July 17 ,  1970 , to  September J , 1970 -

Max. Min. Avg. I1ax . Hin. Avg. 
Date OF OF OF Date OF 

. 
OF 

. OF 

717  82. 0 69 . 5  75 . 0  811 82 • .5 72. 0 76.9 
71 8 85 . 5 · 70. 0 77. 9 812 86 • .5 71 • .5 77.8 
719 77 • .5 69.0 74. o  813 87. 0 70 • .5 77 • .5 
720 79 . 5  62. 5 70.1 814 86 • .5 7.5 . 0  80 • .5 
721 76.o 63.5 70.3 81.5 77. 0 7J.O 7.5.0  
722 76.0 61 . 5 69. 6 816 77 • .5 63 • .5 69.0  
723 76. 0 62 • .5 69. 8 817 82. 0 6.5 • .5 73.1 
724 83.0 67. 0  73.9 81 8 8.5 • .5 70.0  7.5.9 
72.5 86.o 69 .5 77.4 81 9 79 • .5 72.0  76.1 
726 86  • .5 72  • .5 79.3 820 ?7. 0  62  • .5 67.0 
727 84. o 7.5  •. o 79.J 821 69. 0 61 • .5 66.1  
728 84. o 74.o 79. J 822 76. 0 61 • .5 68.8 
729 87 . 5, 74 • .5 79 • .5 823 72. 0 62 • .5 67 • .5 
730 84. 0 76. 0 80. 0 824 78. 0 6.5 • .5 72 . 1  
731 79. 0 73 • .5 7.5. 9 82.5 78. 0 67. 0  71 .0  
801  76 • .5 68  • .5 71.8 826 83 . o  6.5 • .5 72.J 
802 77 • .5 70. 0 73. J 827 76. 0 69 • .5 72.8 
803 7.5 • .5 67 • .5 71 . 1  828 67. 0 63 • .5 6.5. 0  
804 77 • .5 69 • .5 73.J 829 74 • .5 63. 0  67.4 
80.5 81 • .5 72. 0 7.5.4 830 70. 0 64. o 67.0 
806 77 • .5 72 • .5 7.5. 1  831 73. 5 62 • .5 64.9 
807 79.0 73 • .5 76.J 901 81 . 5 6.5 • .5 71 • .5 
808 78.0 73 .5 7.5.9 902 81. 0 70 . 5  74 . o 
809 77 . 5  69 . 5  74.1 903 73 . 5  .56 • .5 70 . 1  

810 79. 0 71 • .5 74 . 5  
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Table 4. Maximum , Minimum and Average Temperatures at 
Point 2 from July 17 , 1970 ,  to September J 1 1970 

Eax . Nin. Avg . Viax . Min. Avg . 
Date Op OF Op Date OF 

-
OF 

. OF 

717 82 • .5 70 • .5 76 .4 811 83. 0 74 . o 78 • .5 
718 82 . 0  71. 0 76. 9 812 87 . 0  74 • .5 79 . 9 
719 74. 5 66 . 5  70 . 9 813 88 . o  72 • .5 79 . 9 
720 77 . 0  61 . 5 68. 1 814 88. 0  77 . 0  82 . 0  
721 - 7l�. 0 60. 0 67. J  81.5 80.5 75. 0  78 . o 
722 73 • .5 60 . 0 67 . 0  816 80. 0 6.5 • .5 72 . J 
723 74. o 60 • .5 67 . 8  817 84 . o 70 . 0  76. 1 
724 82. 0 67. 0  73. 8 81 8 86 . o  72. 0 76 . 6  
725 86. o 69 . 5  77. 9 819 79. 5 72. 5 76 . J 
726 86. o 72. 0 79 . 3 - 820 78. 0 60 . 0  6 6 . 9 
727 83 . 5 72 . 0  77 . 8  821 70. 0 61 . -5 67 . 6  
728 8.5 • .5 72. 0 78 . 0 822 79. 0  61. 5 70 . 0  
729 86 • .5 " 76 . 0  79 . 9 823 74 • .5 62  • .5 6 8 . 1  
730 84. o  7.5 . 0 79 . 1  824 80 . 0  68 . 0 74 . 1  
731 80. 0  75. 0  77. 1  82.5 80. 0 68. 5 73 . 1  
80 1 78 • .5 70. 0 73. 3  826 84. o 67 • .5 74 . o  
802 77. 5 71 . 0  74. 0 827 77 . 5 71 • .5 7.5 . 0  
803 77 . 0  67 • .5 72. 1 828 69. 0 66. o 67 . 6  
804 80 • .5 70 • .5 7.5 . 0  829 76 • .5 65. 0  69 . J 
80.5 83. 0 71 • .5 76. 5 830 73. 0 66. o 68 . 6 
806 77 . 5  74 • .5 7.5 . 9  831 73 • .5 64. o 67 . J 
807 79 . 5  7.5. 5 77 . 0 901  8J  • .5 67 • .5 73 . 6  
80 8 78. 5 76 . 0  77. 0 902  81 • .5 72. 5 76 . J 
809 78 . 5  73. 0 74 .4  903 74. 0 .57 . 5 70 . 8 
810 81 . 5 74 . o  77 . 1  
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Table .5. Maximum , Hinimum a.11.d Average Temperatures at 
Po int 3 from July 17, 1970, to S eptember J, 1970 

Ma.� .  Hin . Avg . i'iax . Nin. Avg . 
Date OF OF OF Date OF · o  F . OF 

717  83. 0  69. 5 75 . 6 811 81 . 0 7 2. 5 76. 8  
71 8 81 • .5 71 • .5 75. 9  812 86. o 11 . s · 77. 8 
719 73 • .5 66. o 69. a 813 86. o 7 0 . 0  78. J 
720 · 7.5. 0 61 • .5 67. 1 814 87 . 0  74 . o  79. 9  
721 72. 0 60 . 0  66 . 1  81.5 79. 0 73 . 5 76 . J 
722 70.5  60. 0 66.4 816 80. 0 64. 5 71 .4  
723 70 . 0  60 . 0 66. o 817 82. 5 6 8 . 5 74. 9 
724 76 � 5 64. o 69 . 6  81 8 s.5. 0  7 2. 0 75 . 6  
72.5 82. 0 66. o TJ . 9  819 -so. o 71 . 5 75 . 6  
726 80 • .5 67 • .5 74. 6 820 77 . 0 5a . 5  66.4 
727 80. 0 68 • .5 73. 8 821 70 • .5 61 . 5  69. 0 
728 79 .5 68 • .5 74. o 822 76. 0 60 . 5  69. J 
729 83. 0 72. 0 76 . 8  823 77 • .5 64. 5 69. -9 
730 81 • .5 72. 0 75 � 9  824 81. 0 68 . 5  75 . 5  
731 78. 0 73 . 0 75 . 3  825 82 • .5 67 . 0  73. 8 
801 78. 5 68. 5 71 .9 826 86. o 67 . 0  74 . 1 
802 76. 0 71 . 0  74. 3 827 79 . 5 70. 0 75 . 0  
803 76. 0 67. 0  71 . 5 828 69. 5  64. 5  67 . 1  
804 79 • .5 69 . 5  74. 1 829 78 . 5 6J • .5 69 .4  
80.5 81 . .5 70 • .5 75 . 8 8JO 72. 0 65 . 0  68. 0 
806 77. 0 7L1, . 5 7.5. 8  831 74. 5 63. 0 66 . 9 
807 78 • .5 7.5 . 5  76.4 901 84 . o  66 . o  7J. 1 
808 77 • .5 74 • .5 76. 1 902 83. 0 72 . 5  75 . J  
809 77 . 5  70 . 5  73 . 1  903 74. 0 .59. 0 70 . 0  
810 80. 0 74 • .5 76 . 6  
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Table 6. Ha�irnum , Minimum and. Average Temperatures at 
Point 4 frora July 17 , 1 970 , to September J ,  1970 

Max . Hin . Avg . l''lax . Nin. Avg. 
Date Op OF OF Date OF - OF - OF 

717 81 . 0 69 . 0  74. 5 81 1 81 • .5 72.0  76.4 
71 8 80 .5  70 . 0  74. 6 812 8.5 • .5 72 • .5 77 . 8 
719 7J. O 59 . 0 69 . 0 813 86. o 74.o 79 .4  
720 73 . 0 60 . 5 66.6 814 8.5 . 5 76 . 0  80 . J  
721 · 70 • .5 59 . 5  6.5 . 6  81.5 78. 5 72 . 5 76.4 
722 72 . 0  60. 0 66 . 8  816 80. 0 67.0 71 . 5  
723 71. 0 60. 0 66 . 1  817 82. 0 70.0  76.0  
724 77  • .5 64 . o  69 . 9 81 8 86. 8 71.0 77 . 2 
725 81 • .5 6.5 • .5 73 . J  819  80 . 0  68 • .5 74.4 
726 81 • .5 67 . 0  74.4 820 ·76.0 64.o  68.8 
727 79. 0 67 . 0  72 � 1  821 72. 5 66 . o  71 . J 
728 80 • .5 69 . 0  74 . J  822 76 • .5 64 • .5 72 . 5  
729 82 • .5 70 • .5 7.5 . 5  823 77. 5 66 • .5 71 . 1  

730 80 . 0  70 • . s 7.5.3 824 80 • .5 67 . 5  75 . 5 
731  76. 0 69 • .5 73 . 1  825 81 . 5 69.0 74. 8 
801 74 • .5 6 1  • .5 68 . J  826 86. o 70.0 75 . J 
802 73 • .5 69 • .5 70. 6 827 80. 0 72. 5  76.8 
803 72. 0 64 • .5 68 • .5 828 73 . 5  67 . 0  69.5 
804 73 . 5 69. 0 71 . 0  829 79. 0  66. o 70.9 
805 77 . 5 70.0 72.9 830 77.5 67.5 72 . 1  
806 74 . o 71 • .5 73.1  831 74 . o 64.o  67.3 
807 77 . 5  70 . 0  74.9 901  83. 0  68 . ,5  73.8 
808 75 • .5 72 . 0  74. o 902 82.0 73 . 0  76 . 1 
809 77. 0  72 . 0  73.1  903 7.5. 0  59 . 0  71 . 6  

810 79 . 5  73 • .5 76 .4  



Table 7 .. Haximtu11 ,  N inimum and Average Temperatures at 
Point 5 from July 17 , 1970 , to September 3, 1970 

Eax. Min .  Avg . Hax . • Hin • . ·Avg . 
Date OF OF .  OF Date Op Op OF 

717 69 .- 0 .54 . 0  63 .4 811  64 • .5 .53. 0 .58 . J  
718 72 . 0  .5 8 . 0  6.5 . 3  81 2  6 8 . 0  .53 . 0 59 . 9  
719 68 . 0  59 . 0  6.5 . 0  813 68 • .5 .53 . 0  60 . 3  
720 77 • .5 .56  • .5 67 . 8  81L1, 69 . 0  .53 • .5 60 . 4  
721 76 . 0  55-. O 61 � 1  815 .59 . 0  .50 • .5 54 . 5  
722 74 .o 53 . 0 61 . 8  816 62 • .5 4,5 . 0  .5J .4  
723 70 . 0  52 • .5 .56 . 3 817 64 . o  48 . 0  .56 . 1  
724 66 . o  _5 8 • .5 61 • .5 818 .69 . 0  .56 . 0 60 . 6  
72.5 66 .o  54 • .5 .59 . J  819 62 . 0  49 • .5 .5.5 • .5 
726 69 . 0  .53 • .5 60 . 8 820 5 8 . 5  49 . 0 .5J . J  
727 68 . 0  .54 . o  61 . 6  821 60 . 5  49 . 0  · .52 .4 
728 68 . 0  .54 • .5 61 . 6  822 59 . 0  .52 . 0 .5J .4 
729 72 . 0  61 . 0 67 . J  823 74 . o  .53 • .5 62 . J 
730 71 . 0  57 . 0 6.5 . J 824 69 . 0  46 • .5 .58 . 9 
731 64 • .5 57 . 0 .59 . 3  82.5 6.5 • .5 49 . 0  .56 . 1  
801  70 . 0  .5 1 . 0  _58 . 8  826 68 . 0  .5 0 • .5 .58 . 1  
802 67 . 0  .53. 0 60 � 3  827 6J . O  .54 . o  

t.7 · 6  803 69 . 0  . 47 . 5 .50 . 3 828 54 • .5 46 • .5 9 . 6  
804 68 • .5 .53 . 5  64 �4  829 68 . 0  5 1  • .5 .5 8 . 0  
80.5 66 . o  .50 • .5 58 . 5 830 57 . 5  46 . o  .51 .4 
806 61 . 0  56 . 0 _5 8 . 4  831 5 7 . 5  .51 . 0  .54 . 6  
807 63. 5 58 . 0  60 . 3  901 68  • .5 .5 2  • .5 60 • .5 
808  60 . 0  .56 • .5 .57 .4  902 6,5 . 0  .57 • .5 .59 . 8 
809 60 . 0  .51 . 5  55 . 1 90.3 6 1 . 0  41 • .5 .56 . J  
81 0 6J • .5 .53 . 0 .57 . 8 . .: , ... 

- � 

.. 
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Table 8 .  r•'iaximum , M inimum and Average Temperature s at 
Point 6 from July 17, 1970 ,  to September 3, 1970 

-

Max . M in .  Avg. Max. H in .  Avg . 
Date OF OF OF Date OF . OF OF 

71 7 69 . 0 .53 • .5 6J. O 81 1 79. 0  68. 0 73. J 
71 8 72 . 0  58 . 0 6.5. 1  812 86. o · 69 • .5 76. J 
719 68. o 58 . .5 6.5. 0 813 8.5 • .5 69 • .5 76. J 
720 77 . 0  60 • .5 68. J 814 84 • .5 70. 0 77. 8 
721 · 75 . 5  52· . O 64. 6 81 .5 77 . 5 70. 0 75 . 0 
722 74. 5 64. o  69. 8  816 77. 0 6J • .5 68. 9 
723 74 . o  6J . O  69. 0 817 81 • .5 65 . 0  72. 4 
724 77 . 5  59 . 0 6.5. 1 81 8 83 . 5  70 • .5 74. 5  
72.5 83 . o  .54 .  O 72. 8 819 ·77 . o  69. 0 73. 9 
726 84 • .5 70. 0 77  • .5 820 75 . .5 61 • .5 66. J 
727 8J • .5 73 . 0  77. 8  821 69. 0 62. 0 67. 3 
728 85 . 5  71 . 0  76. 8 822 75 . 0 62  • .5 6 8  • .5 � 

729 85 . .5 75 . 5  79. 6  823 74 • .5 6 2  • .5 6 8.4 
730 85 . 5  73 . 5 78.4 824 77 • .5 66. 5 72. J 
731 81 • .5 74 • .5 78. 6 825 79. 0  66. o 71. 4 
801 80. 0  62. 0 73. 8  826 83. 0  6 7. 0  73.4  
802 7.5 . 5  69 . 5  72. 0 827 77 • .5 70. 0 74. J 
803 73 • .5 65 . 0 68. 5 828 68. 0 64 • .5 66. 1 
804 77. 0  68  • .5 71 . 5 829 77 • .5 63  • .5 71 . 1  "J 

.• . · · · - 80.5 79 . 0  66. 5 72.9 830 70 • .5 64. o  67. 6 
806 76 . o  71 . 5 72. 6  831 70. 0 61  • .5 64. 1 
807 75 . 0 70 . 5  73 . 1  901 so . a  66 • .5 71 .4 
808 73 . 0  70 . 0 71 • .5 902 79. 0  70 . 0 72.9 { 

809 74. o  67 • .5 69. 8  903 74. 0 57 . 0  69. a 
81 0 79 . 5 68. 0 73.4 � ... � 

� 
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Table 9. Maximum , :Minimum and Average Temperatures at 
Point 7 f�om July 17, 1 970, to September 3 , 1970 

Max . M in .  Avg . Max . Hin. Avg . 
Date o

lt, OF OF Date OF OF OF 

717 98 • .5 66. 5 80 .4  81 1 93 • .5 63 . 0  76 . 3 
718 97. 0 66. o 77. 8  81 2 97. 0 66. o 78. 9 
719 71. 5 60. 0 64.4  813 97. 5 64. o 79 . 1 
720 84. o 49. 5  64. 1 814 1 00 . 0 73 . 0 . 81 . 6 
721 82. 5  52. 0 65. 6 815 90 . 0 62 • .5 72. 8 
722 83 . 0 54. 5 68. 0 816 97. 0 .54. 5 71 . .5 
723 81 . 5 55 . 0  66. 1  817 87 • .5 61  • .5 78. 6 
724 92 . 0  57. 5 73. 0  818 97 • .5 68 • .5 78 .4 
725 94. o 61. 5 76. 8 819 86. 5 65 • .5 74.4 
726 98. 0 67. 0 81 . J 820 93 . 0 49. 0  65 . a  
727 92 • .5 65. 5 79. 1  821 81 . 0  .52 • .5 74 . 1 
728 93. ,0 67. 0 79. 6 822 93 • .5 55. 0 7.5. 6 . 
729 1 04 . o  67. 0  79 . 6 82J 96 . 0 43 . 0 68. 8 
730 97. 0  66. o 80. 6  824 97. 0  61 . 5  76 . 9 
731 97. 0 68. 5  ?8. 9  825 99. 0  66 . o 78 . 6  
801 95 . 5  57 . 5 71. 9 826 99 • .5 64. o 80 . 0  
802 81 . 0  .59. 0  66. 8 827 98. 0 68 • .5 79 . 1  
80J 81 • .5 48. 0 64.3 828 69  • .5 60  • .5 6.5 . 0  

804 86 • .5 62. 0 70. 9 829 1 03 • .5 60 . 0 76. 9 
80.5 86. 5 61 . 5  74 • .5 830 81 • .5 .57. 5 68 . 1  
806 75 . 5  68. 0 71 . 3  8J1 87. 5 54. 5 · 66. o 
807 76 • .5 70. 0 72. J 901 98. 5  64. o 7 '  . 9 
808 73. 5  67. 5  69 • .5 902 90 • .5 72 • .5 7.5. 9 
809 76 . 5 63 • .5 67. 8 903 88. 5 62. 0 74 . J 
81 0 88. 0 64. o  ?4. 6  
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Table 1 0 . Maximum , M inimum and Average Temperatures at 
Point s · rrom July 17 , 1 970 , to September 3 ,  1 970 

r·1ax . Hin. Avg. Nax . Min .  Avg. 
Date OF OF Op Date OF _

· oF OF 

717  82. 0 71 • .5 75 . 5 81 1 79 . 0  70 . 0  74 . 1  
71 8 81 • .5 71. 0 76. 4 812 85 � .5 69 . 5 76.8 
71 9  74 . o 66 • .5 70 . 1  813 87 • .5 72 . 0  79 . 1  
720 72 • .5 60  • .5 66 . 6  814 87 . 0  7.5 . 0  81 . J  
721 72. 0 59 . 0 6.5. 9  81.5 80. 0  74.5 78 . 1 
722 73. 0 60 . 0  67 . J 816 80 . 0  6 6  • .5 72 . J 
723 74. 0 60 • .5 67 . 5  817 8J • .5 6 7 . 0  75 . a 
724 77 • .5 64.o 70 . 8 81 8 8.5 • .5 72 . 0  77 . 1 
72.5 81 • .5 66. _5 73 . 9  819 80 • .5 74.o 77.4 
726 83 . 0 69. 0 76 .4 820 77 . 5 6 2.5  68.4 
727 79. 0  69 . 0  .73 . 6 821 72 . .5 63 . 0  70 . 1 
728 8i • .5 70 . 0  75 • .5 822 77 . 0  6 2  • .5 72 • .5 
729 8J . O  73 • .5 77 . J 823 76 . 0  64 • .5 69.9 
73 0 80. 0  72. 0 7.5.9  824 81 • .5 69 . 5  75.8 
731 79. 0 72 . 0  75. 1  82.5 81 • .5 70 . 0  74 . 9 
801 75 . 5 67 • .5 70.9 826 86. o 69.0  7.5 . 1  
802 72 • .5 61 • .5 67 . 9  827 79 • .5 72 . 5 76 . 6  
803 72 • .5 63. 0  68 . J 828  70 . 0 6 3 . 0  67 . J 
804 77 . 0  67. 0 71 • .5 829 78 • .5 6.5 • .5 70 . J  
80.5 79. 0 69  • .5 71+ . o  830 72 • .5 66 . 5  69 . 6  
806 74. 0  72 . 0  73 . 0  831 73 • .5 64.o. 67 . 0  
807 7.5 . 5  72 • .5 73 . 6  901 84 . 0  67 . 5 73 .4 
808  74 • .5 72 • .5 73 • .5 902 82 . 0  74.o 75 . 9  
809 74 . o 69. 0 70 . 6  903 7.5 • .5 58 . 5 71 . J  
810 77 . 5 70 • .5 TJ . 9  
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Table 11. Maximum , Minimum and Average Temperatures at 
Point 9 from July 17, 1970, to September J, 1970 

Max. N in. Avg . Max . Hin. Avg . 
Date OF OF OF Date OF · o OF F 

717 84. o 71. 5 76.6 811 82  • .5 70 • .5 7.5 . J  
718 84 • .5 - 69. 5  77 . 1 812 86 • .5 71 • .5 77 . 6  
719 74. 5 66 • .5 70 .8 813 88. 0 69 • .5 78 . 0  
720 73 • .5 61. 5  67 • .5 814 88. 0 7 .5 . 0  81 . 1  
721 73 • .5 60. 0 67. 3  81.5 79. 0 73.0  76.o  
722 74 • .5 60. 0 67. 4  816 80. 0  66. o 72 . 0  
723 73 • .5 60 • .5 67. 4  817 82 • .5 67. 0  74. J  
724 81. 0 6) • .5 71.a 818 86.o 70 . 0 7.5.1 
725 87. 0  68. 5 77.8 819 79 . 5  70 . 5  75 .4  
726 88 • .5 73 • .5 81.1 820 76 . 5  61 . 5 67.6  
727 86.o -7.5.0 80 . 5  821 70 • .5 61 . 5  69.J 
728 86 .,.5  75 • .5 81. 0  822 76 . 5  61 . 5  70.9 
729 89� 5  78. 0 82.6 823 76 • .5 64.5 . 70.J 
730 86 • .5 76. 0 81.4 824 82 . 5  68.0 75 . 5 
731 83 . 0  77.5 79 .9 82.5 83. 0  6 8. 0 73.9 
801 79 • .5 70. 0 73 . 1  826 87. 0  6 8. 0 7.5.3 
802 76 . 0 71 • .5 74. 1 827 80 • .5 72 . 5  76 . 8  
803 75 . 5  70 . 0 71.6 828 70. 0  67.0  68.9 
804 80 . 0 70 • .5 73.9 829 79. 0  66. o 70.9 
805 82. 0 70 . 0  7.5. 1  830 74. 0  67  • .5 70 . 8  
806 74 • .5 72 . 0  73.4  831 74 • .5 64 • .5 67 . 5 
807 77. 0  74. o  76. 0 901 84. o 6 8. 0 74. o 
808 7.5 • .5 72 • .5 74.1 902 82. 0 73 . 5  76 . 5  
809 77. 0 69. 5 70 .9 90J 76.0 60 . 0  71 . 6  
810 79 . 5  70 . 5  74.0 
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Table 12. Haximum, Minimum and Average Temperatures at 
Point 10  from July 17, 1970 , to September J , 1970 

t·iax. Min. Avg. Nax . ·Hin . Avg . 
Date OF OF O:[i, Date Op OF OF 

717 8J • .5 69 • .5 7.5 . 1  81 1 8J. O  6 8. o 73. 4 
71 8 84 • .5 69. 0 76 • .5 812 86 • .5 69. 0  7.5. 8  
719 74 • .5 66 • .5 70 . 6  813 89. 0 6 8. 0  77 . 5  
720 73 • .5 60 • .5 66. 9 814 89. 0 76. 0 80. 8 
721 73 • .5 60. 0 66. 8 81.5 79. 0 70 . 0 72 . 9  
722 74.o  .59 • .5 67. 0  816 79. 0 6.5 . 0  69. 6  
723 73. 0 60. 0 66. 9 817 81. 0 64. o 72 . _5 
724 81. 0 6J. 5 71 . 8  818 86.o  69 • .5 74. _5 
72.5 86 • .5 69 • .5 78. 4 819 77. 0 68. o 7J . O 
726 86 • .5 72. 0 79. 4  820 74 • .5 59 . 0  64 • .5 
727 85. 0  74 . o  78. 6 821 70 . 0  61 . 0  66. 6 
728 85 • .5 73 . 5 79. 9 822 73 • .5 .59. 0 . 70 . 0  
729 88. 0 77 • .5 81.4  823 74.o  6 2. 5 6 8 . J 
730 86. o  76 . 0  80 . 6  824 82 • .5 6_5. 0 73 . 9 
731 82. 0 76 . 0  78.4 82.5 81 • .5 66 . o 72. J 
801 79 • .5 70 . 5 73. 1  826 87 • .5 66 . o 74. 6  
802 75 . 5  69. 0 71 . 9 827 78. 0 69 . 5  73. 9 
803 75 . 5  63. 0  6 8. 9 828 69. 0  6 2  • .5 6,5 .4 
804 79. 0 69. 0 72. 9 829 79 • .5 63 • .5 69. 9 
80.5 81 • .5 67 • .5 72. 9  8JO 74. 0  64. o 6 8. 0 
806 74. o  70 • .5 72. J 831 73 • .5 62  • .5 65 . a  
807 78. 0 73. 0 76 .4  901 86 • .5 6.5. 0  72 . 9  
808 77. 0 71 . 5  74. J 902 81 • .5 70 • .5 7). 9  
809 78 • .5 68. 5 70 . 0  903 72. 0 .54 . o  69.4  
810 79 • .5 68 . 5  72. 8 
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Table 13 . Maximum, Minimum and Average Temperatures at 
Point 11 from July 17 , 1970 , to September 3 , 1970 

Nax. Hin .  Avg . Max . - Nin . Avg . 
Date OF OF OF Date OF OF OF 

71 7 84 . 5  70 . 0 76 . 1  81 1 82 • .5 71 . 5 76 . 0  
718 84 . o 70 . 0  77 . 0  812 8.5 • .5 70 . 0  76 . 8  
719  75 . 0  67 • .5 71 . 8 813 86 . o  6 8 . 0  76 . J 
720 . 75 . 0  62 • .5 6 8 . 8  814 87 . 5 73 ·. 5 79 . 5 
721 74 . o  61 . 0  67 . 6  81.5 76 . 5  70 . 0  73 . 5  
722 74 . o  61 . 0  68 . 0  816 78 . 0 64 . o  68 . 9  
723 73 . 0  61 . 0  67 . 4  817 81 . 0  64 . o  72 . 0 . 
724 82 • .5 64 • .5 72 . 1 81 8 8.5 • .5 69 . 0  74 . 1 
725 8.5 • .5 66 • .5 76 .4  819 77 . 0  69 . 0  7J .4 
726 86 • .5 69 . 0  7 8  •. 1 820 7-4 • .5 5 9 . 5  64 . 8  
727 83 . 0  72 . 5  77 . 3 821 70 . 0  61 . 0  66. J 
728 86 . 5  69.5 77 . 6  822 74 . o  59 . 0  69. 9 
729 88 . 0  7.5 . 0  80 . J  823 7J . O  62 • .5 6 8 . 1  
730 85 . 0 76 . 0  80 . 1  824 81 . _5  63 • .5 73 . 1 
731 78  • .5 73 • .5 76 . 1  82.5 81 . 0  65 . 5  71 . 8  
801 7 8 . 0  70 • .5 73 .4 826 86 . _5  65 . 0 73 . 6  
802 75 • .5 70 . 0  73 . 1  827 77  • .5 69 . 0  73 • .5 
803 74 . o  67 . 0  69. 0  828 68 . 0 62 • .5 64 . 9  
804 79 • .5 70 . 5  74 .4  829 79 . 0  6) . 0  69 . 6  
80.5 81 . 0  72 . 0  76 . 0  830 73 • .5- 63 . 0  67 . 3 
806 75 • .5 70 . 5  74 . o  831 73 • .5 62 . 0  6_5 . 4  
807 78 . 0  73 • .5 75 . 6  901 86 . o  64 • .5 . 72 . 6  
808 77 . 0 72 . 0  7.5 . 1  · 902 81 . 0  70 • .5 73 • .5 
809 7.5 . 5  70 . 0  71 .4 90.3 72 . 0  .54 . o  69 . 3 
810 79 . 5  70 . 5  74 • .5 
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Table 14 . Na.ximum, Hinimum and Average Temperatures at 
Point 12  from July 17, 1970, to September 3 ,  1970 

Max . Min . Avg . Max . Nin. Avg. 
Date OF OF OF Date OF OF OF 

717  8J. O 69 • .5 76 .4  811 81 • .5 6 8. o 7.5 .4  
71 8 86 • .5 70 . 0 78 . 8 812 8.5 • .5 70 . 5  76 . 6  
719 78 • .5 71 . 0  7.5 . 0  813 as . o  72 . 0  78 . 5  
720 78 • .5 62 . 5  71 . 0  814 86 . o  74. o 78 . 9  
721 7 6  • .5 62 • .5 69 • .5 81.5 78 . 0  73 • .5 7.5 .4 
722 75 • .5 63 . 0  69 • .5 81 6 so . o  64 • .5 71. 8 
723 75 . 0 61 . 0  6 8 .4 817 81 • .5 66 . o  7J . 6 
724 79 • .5 66 . o  72 . 9 81 8 86 . o  6 8  • .5 73 . 9 
72.5 84 • .5 69 . 0  76 • .5 819 77 • .5 70 . 0  73 . 9 
726 8_5 • .5 70 . 0 78 . 3 820 76 . 0  60 . 0  6.5 . 1  
727 SJ . O  71 • .5 77 . 6 821 68 .-5 61 . 5  ··6.5 . 8 
728 84 . o  70 . 5  78 . 1 822 74. o 62  • .5 68 . 6  
729 88 .' 0  76 . 0  80 . 9 823 72 . 0  62 . 5 67 . 6  
730 s.5 . 0 75 . 0 79 . 0  824 78 . 0 63 • .5 71 . 1  

731 79 • .5 74. o 7.5 • .5 82.5 77 • .5 64 • .5 69 . 9  
801 77 . 5  68 . 5  72 . 6  826 83 . 0  64 . o  71 • .5 
802 75 . 0 70 . 0  73 . 0  827 74 . 5 6 8 . 0  71 .4 
803 7.5 . 0  67 . 5  69 . 8  828 65 . 5 61 . 5  63 . 4  
804 78. 0 69 . 5 73 . 8  829 75 . 5  61 . 0  66 . 6  
80.5 82 . 0  69 . 0  74 . 9 830 69 . 0  61 . 5  64 . 9 
806 77 . 0  72 . 0  74 . 8  831 70 . 0  6 1  • .5 ·64 . o  

807 78 . 0  73 . 5  75 . 5  901 81 . 0  64 . o  10.a  
808 76 • .5 72 . 5 74 • .5 902 79 . 0  69 • .5 72 . 6  
809 77 . 0  69 . 0  71 . 6  903 73 . 0  .5 6 . 5  69 . 1  
810 80 . 5  · 70 • .5 75 . a 
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Table 15 .  Maximum, N inimum and Average Temperatures at 
Point 13 from July 17, 1970,  to September J ,  1970 

Max . Min. Avg. Hax. i·1 in . Avg . 
Date 

. 
OF . 

OF Op Date Op 
. 

OF OF 

717 68. 0 58. 0 61. J 811 67. 0  .5 6 . 0 61 . J 
718 73. 0  60. 0 65 . 1  812 70 . 0 .5 7. 0  62 . J  

719 68 .5  58 . 0  63 . 0 813 68. _5 .5.5. 0 61 • .5 
720 72 • .5 64 . o  66. 6  814 67 . 0  .56 • .5 61 . 1  
721 74 • .5 .59. 0 63 .4  81.5 6.5. 0  53 • .5 _58. 1  
722 67. 0  .56. 0 62. 9 816 61 • .5 49. 0 .53 . 9 
723 73 • .5 57 • .5 61.4 817 66 . o  .50 • .5 .57. 3  
724 67 . 5 60 . 0  63 . 9  818 70. 0 .58 • .5 62.4 
72.5 71. 0 59. 0  64. 1  819 61 • .5 .5 2 . 0  .56. 9 
726 73 . 0  62 • .5 66 . 6  820 60. 0 48. o .53 • .5 
727 76 .- .5 .58 . 0  6.5 .4 821 63. 0 .51. 0 _51-I, . 6 
728 76 • .5 64 . o  71.4  822 .59 • .5 .54. o .54 • .5 
729 74. 0  6J . O  68. J 823 7.5 . 0  61 . 0  6.5. 6 
730 73 • .5 63 . 0  67. 0  824 67 . 0  .59. 0  62. 4 
731 66. o .59 . 0  61.4 82.5 66. o .52 • .5 .59 . 1 

801 67 . 0  57 . 0  60 . 6  826 70. 0  .52. 0 .58. 8  
802 63 . 0  58 . 0  60 . 1  827 65. 0  .57. 0 .59. 9 
803 63. 0  .50 • .5 ,54. 1  828 .56. 0 .50 . 0 .52. J 
804 6_5 . 0  5.5 . 0 .59. 8  829 69. 0  61. 0 64 . 1  

80.5 67 • .5 53 . 0  .59. 9 830 .59. 0 .50 . 0 .54.4  
806 64. o 60 . 0  61. 6 831 60. 0 .53 . 0 .56 . 6  
807 66. o 61. 0 62 . 3 901 70 • .5 61. 0 6.5 . 1  

808 62. 0 60 . 0  60. 6 902 68. 0  61. 0 62. 8 
809 63. 0  .5.5 . 0  57 . 9  903 63 • .5 .57 • .5 . 60. 6 
810 66 . o 56 • .5 60. 6  
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Table 16 . Maximum, Minimum and Average Temperatures at 
Point 14 from July · 1 7, 1970 , to September 3, 1970 

Max . Min .  Avg. Hax . Nin. Avg . 
Date Op OF OF Date OF OF OF 

71 7  8 0  • .5 62 . 5 69. 0 81 1 78 . 5  6.5 • .5 70 . J 
71 8  76 • .5 64.o  68. 8  812 79. 0 68.5 73 . 1  
719 71 . 5  64.o  68.8 813 80. 0 63. 0  70 . 0  
720 68. o 60 . 0 6L� .4 814 77. 0 67 • .5 71 . J 
721 70 . 5 .5.5 . 0  60 . J  81.5 76 . 0  62. 0 67.J 
722 . 79 • .5 5 1 . 0 63 . 3  816  65 . 0 56 . 0 60.J 
723 72 . 5  _5 8 . 5 60 .9  81? 71. 0 57 . 0  6J . J  
724 76 . 5  63. 0 69. 0 81 8 75 . 0 60 . 5  67. 1  
72.5 76.0 60. 0 68 .9 819 69 . 5  61 . 0  6.5 .4 
726 73. 0 66 .o  70 . 0 820 70. 0 56 . 0 60.4 
727 83 . 0  6.5 . 5  71 � 5  821 6.5 • .5 58 . 5  6J . 1  
728 79. 0 66 • .5 7.5. J 822 74. o _54. O 64 . J  
729 78. 0 70. 0 74.1 823 71 . 0 60.0  64 . S 
730 84 . o  67 . 5  73 • .5 824 70 . 0 60. 0 6J . 1  
731 80. 0 66 . o  70 .9  82.5 69 . 0  61  • .5 64.4 
801 6.5 . 5 .59 . 0 62. 1 826 80. 0 61 . 0  64 . J  
802 68. 5 62 . 0  66. 3 827 78 . 0  64. o 68. J 
803 6_5 . 0  54 • .5 62. 0 828 64. 0 57 . 5  .59 . 6  
804 74. o 60 . 0  64.3 829 78. 0 66 • .5 69 • .5 
805 74 • .5 6.5 . 5  69.4 830 67 . 0  59.0  63. 9 
806 71 • .5 68 . 0  70.8  831 66.o .59 • .5 62 • .5 
807 73 • .5 70. 0 70.6 901 73.0 61 • .5 6.5 . 5 
808 72. 5 66 . 5 68. 8 902 71. 0  67 . 5  68 • .5 
809 72. 0 63 . 0  66.J 903 71 • .5 6J • .5 66.J 
810 72. 0 66 . 5  69 • .5 
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Table 17. Viaximum , :Minimum and Average Temperatures at 
Po int 1.5 from July 17 ,  1970 , to S eptember 3 ,  1970 

1'i ax .  Ein . Avg . Hax . Hin.  Avg . 
Date Op OF OF Date OF · o  OF F 

717 82 • .5 70. 0 7.5. 1 811 81. 0 72 . 5  76 .4 
71 8 8.5 . 5 72 • .5 77 .4 812 8_5. 0 70. 0 76 . 8 
719 76 . o 70 . 5  74. J 813 88 . 5  68. o 7.5 . 8 
720 73. 0 63. 5 68. o 814 . 85 . 0 73. 0  77 . 6  
721 73 . 5  61 . 5  67. 1 81 .5 82 . 5  71 . 0  75 . 5  
722 73. 0 62. 0 66 .4 81 6 78 . 5  66 . 5  71 . 8  
723 75 . 0 6J. O 67.4 817 79 . 5  63 • .5 70 .4  
724 82. 5  66.o 74 . o  818 83. 0 70. 0 74. 5 
72.5 85 . 0  67 . 5  76. 9 819 78. 0 71. 0 74. 6 
726 87. 0  72. 0 78 • .5 820 78 • .5 64 . o  69 . 8 
727 87 . 5 70 . 5  78. 3 821 74 • .5 6J. O 70 . 5  
728 SJ • .5, 75 . 0 79. J 822 76 . 5  61. 0 70 .4  
729 88. 0 7.5. 0 79. 3 823 82. 0 64. 5 ' 72 .4  
730 87 • .5 75 . 0 79. 8 824 82. 5  65 . 0 73 . 6  
731 83 . 0 7L� • 0 77 . 0  825 83. 5  67 . 5 74. 3 
801 75 . 0 67 . 0 71 .4  826 86. o 67 . 5  7 . o  

802 76 . o 69. 0 72 • .5 827 83. 0  70 . 5  7.5 . 9 
803 72 . 5  64 • .5 68. 9 828 71 . 0  66 . 5  67 . 9 
804 77 . 0  69. 0 71. 9 829 83. 0  67 . 5  74 . o 
805 79 . 0  67. 5 72. 8 8JO 74. 0 66 . 5  70 . 3 
806 74 • .5 72. 0 73. 3 831 74 • .5 68 . 0  72. 3 
807 77 . 0  73. 5 74 . 6  901 84 . 5  66 . 5  7 2  9 
808 74 . 5 72. 0 73. 6 902 82. 0 72 . 5  74 • .5 
809 75 . 0 69 . 5  71 .4 903 79. 0  69. 0 73. 3 
810 so . o  71. 0 74. J  
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Table 1 8. I-iaximum , H inimum and Average Temperatures at 
Po int 16 from July 17, 1970 , to September J ,  1 970  

I'-�a.x . Hin. Avg. Hax. I-lin . Avg . 
Date OF OF OF Date OF . 0

}.1
, OF 

717 80 • .5 69 • .5 73.8 811 82. 0 74. o 77.3 
71 8 84. 5 72. 0 78. 0 812 84 . o  74 • .5 78.4 
719 77 • .5 74. o 7 .5. 9  813 8.5 • .5 71. 0 76. 9 
720 7.5. 0 6.5 • .5 69-. 0  814 82 • .5 7.5. 0  77. 6 
721 76 • .5 6_5 . 0 70. 0 81.5 81 • .5 70 • .5 74. 8 
722 75 • .5 66 • .5 70. 0 81 6 75 • .5 63 • .5 _ 68. 8 
723 77. 0 66. o  70. 9 817 80 . 0  64. o 71 . 5  
724 83. 0  71 . 5 76. 8  818 83 . 0  71 • .5 7.5. 3  
72 .5 86. o 72 • .5 79 -.6 819 76 • .5 70. 0 7J. 6 
726 87 � 0  7.5. 5 so . a 820 7.5 • .5 63 • .5 67.8 
727 86. o 77 • .5 81 .4  821 69. 5 62 • .5 67.9 
728 84 • .5 74 • .5 79 � 8 822 73 • .5 62 • .5 68.1 
729 86 .o 76. 5  80. 6 82J 74 • .5 6J. O  68.9 
730 85 • .5 74 • .5 79. 8  824 76 • .5 64 • .5 69. 9  
731 82. 0 77 . 0  78. 8 82 .5 77 • .5 68. o 71. 8 
801 76. 0  70 • .5 73. 1 826 80 • .5 68 . 0 72. 3 
802 76 . 5  70 • .5 73. 1  827 78. 0 71 . 0  74.J 
803 74. o 65. 0  70. 6 828 69. 0  66. o 67. 1  
804 78. 0 70. 0 73 . 4 829 76. 0  66 • .5 71 . 0 
805 81 . 0  69 • .5 74.9 830 69 • .5 6J • .5 67. 3 
806 78. 0 74. o 7.5.4  · 831 71 . 0 65 • .5 69. 5 
807 78 • .5 75 • .5 77.4  901 78 • .5 67. 0 71 . J 
808 77 • .5 74. o 76. J  902 78. 0 72. 0 73. 8  
809 76. 0 70 • .5 72. 9 903 74. o 68. o  70.a 
810 s1-.o 72 • .5 75. 6 
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Table 19. Maxir.mm , M inimum and Average Temperature s at 
Point 17 from July 17, 1970 , to Septe□ber 3, 1970 

Nax. H in. Avg . Hax. Hin . Avg. 
Date OF ol., 

OF Date OF 
. 

OF OF 

717 77. 0  68. 0 71. 5 811 82. 0 73. 0  76.J 
718  80. 0 69. 0 74 � .5  812 84. o 7.5 • .5 78. 6 
719 75 • .5 71. 0 74. o 813 85 . 0 70. 5 77. 0  
720 77. 0  67. 0  70. 5 814 81 • .5 75. 5 77.9 
721 76 • .5 67. 0  70 • .5 815 80.5 70 • .5 74. 6 
722 75. 0 68  • .5 71.4 816 75.0 63. 0  68. 6 
723 77 • .5 68 . 5 72.J 817 79. 0 64. 5 71.4 
724 82. 5 72 . 5 77.0 818 83. 0  72.  5 75 • .5 
725 85 . 5 73 . 0 79. J 81 9 77. 0  70 • .5 ?4.1 
726 . s5 . o  75. 5 80.0 820 7.5. 0 65. 0  6 8. 4 
727 81+ . O 75 . 5 so . a  821 69. 5 64 . o  67. 8  
728 82. 0 74 . 0  78 .5 822 · 73. 5  62 • .5 67. 9  
729 86 � 0  78. 5 81. 6 823 74 • .5 6.5. 0  69 • . 6 
730 83. 0  ?5. 5 79. 1 824 75. 5  65 • .5 70. 0 
731 82. 0 77. 0 78. 6 82.5 76. 0 6.5 • .5 70. 1 
801 76 • .5 69. 5  · 7J.8  826 79. 0 67 • .5 71 • .5 
802 77. 5 69 • .5 72. 9  827 77 • .5 70 • .5 73.6  
803 73 • .5 65 . 0  69. 8 828 68. 0 6.5 • .5 66 . 6  
804 79. 0 69  • .5 73 . 1 829 75 . 5 66  • .5 71. 0  
805 82.0 69 . 5 75. J  830 70. 0 62  • .5 66.6  
806 77. 5 74 . 0  75. 8  8J1 70. 0 6.5. 0  68 . 6  
807 78. 5 75 . 0  77.4 901 77. 0 67. 0  70 . 6  
808 77. 5 74. 5 76. 1 902 77. 0  71 • .5 73. 0  
809 77. 0  70. 0 7J.5 903 73. 0 68.0 70.4 
810 81. 0 71. 0 7.5 . 1  
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Table 20 . Haximum , N inirnurn a."'ld Average Temperatures  at 
Po int 18  from July 17, 1 970 , to September J ,  1970 

Nax. Hin. Avg. Hax . Hin .  Avg . 
Date On OF 

OF Date O
F 

. 0 O
F .v F 

71 7  76 . 5  67 . 0  71 . 0  811 67 . 0  .55 . O 60 . J  
718  80. 0 68 . 5  73 . 6  812 69. 0 .56 . 5  60. 9  
719 74 • .5 70 . 0  72. 9 813 66 . o  .53. 0 .59 . 9 
720 74 • .5 62 • .5 68 . 0  814 6.5 . 0  .54 . o  _58 . 9 
721 ·76 • .5 6.5 • .5 69 . 8  815 64 . o  51 . 0  .57. 0 
722 67. 0 .54. O .59 . 6 816 59 . 0 47 . 0  .51 . 8  
723 64. o 55 . 5  .59 . 0 817 65 . 0 49. 0  .55 . J 
724 76. 0 57 • .5 6.5 . 5  818 68. 0 57 . 0 60 • .5 
72.5 79. 0 60 • .5 71 . 6 819 .59. 0 .50 . 0  .54 . 8 
726 79. 0 65 . 0 69. 8 820 .5 8 .  0 46 • .5 .52 . 0  
727 76 . 5 63. 0 67 -. 8  821 6 1 . 0  49 . 0  .51 . 8  
728 71 • .5 61 . 0  66. 9 822 .57 • .5 .5 2 . 0  s2 .

l 729 71 • .5 62 • .5 68. 1 823 73. 0 60. 0 63.  
730 78. 0 60 . 0  66 .9 · 824 65 . 0  .57  • .5 6 0 . 3  
731 73 • .5 68. 0 69.4  82.5 63 . 0  .50. 0 .5 6.4 
801 62. 0 .5.5 . 0  _58 .1  826 68 . 0  .50 . 0  .56 . 6  
802 61 • .5 .55 . 0 .57 . 6  827 63 . 0  .55 . 0 57 . 9  
803 57 • .5 48 . o  .53 . 0  828 .54. o 48 . 0 50 . 1  
804 63 • .5 _54. O ,58. 3 829 67. 0 60 . 0  62. J  
805 6.5 • .5 .54. o 60 . 3  830 .57 . 0  48 . o  52 . 3 
806 63. 0 .57 • .5 60 . 0  831 .5 6 • .5 .52 . 5  54. 8 
807 64. o .59 . 0 60 • .5 901 68 . 5  56. 0 1 . J  
808 61 • .5 59.0 60 . 1  902 66 • .5 59 .-0 60 • .5 
809 62. 0 55 . 0 57 • .5 903 61 . 0  54. o 58 . o 
810 67 . 0  .5.5 . 0 .59 .9  
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Table 21. Haximum, Ninimum and Average Temperatures at 
Point 19 fro� July 17 , 1970 , to September J ,  1970 · 

Hax. I-'Iin .  Avg. Nax . frlin. Avg. 
Date O

F OF 
O

F Date OF 
. OF OF 

717 75 . 0 68. 5 71 . 1 811 81 . 0  7 1 . 0  74 . 5  
718 78. 5 68. 0 73.4 812 8J • .5 68.0 77 . J 
719 74 • .5 70 • .5 73. 1  81J 8J • .5 70 . 5  75 . 1 
720 72 • .5 61. 0 67 .4 814 79.0 73 . 5  76 . 5  
721 81. 0 64. o 72.J 81.5 79. 0 69. 0 73 . 5 
722 81 • .5 74. o 77.8 816 73.5 61 • .5 67 . 0  

723 8J. O 76.0 79.0 817 81. 0 64 • .5 70 . 8  
724 88. o 78. 0 81.4 818 8J. O 74. o 76 . 0  
72.5 90. 0 78 • .5 . 84.9 819 80. 0 70.0  7.5 . 8  
726 88.0 79 • .5 83.1  820 7 8 • .5 6.5 . 5 69.0 
727 88. 0 77 • .5 82. 8 821 6? . 5  6lJ . •  0 67 . 9  
728 84 • .5 73 . 5  79. 6 822 77. 0 64 • .5 69.4 
729 86 � 0  7 7  • .5 80. 4  823 79. 0 64 • .5 70 . 9  
730 83. 0 73. 0  77. 8 824 76 • .5 69.0 71. 6  
731 79 • .5 7.5 . 0  76 • .5 825 78. o 68 . 0  71 . 1 
801 73 • .5 69 . 0  71 • .5 826 82.0 67 • .5 72 . 6  
802 73 • .5 69 • .5 71 . 9  827 79 • .5 7 1 . 0  75 . 0 
803 78. 0 66. o 70. 8 828 68. 0 66 • .5 67. 1  
804 81.0 71. 0 74 • .5 829 7.5 • .5 66 • .5 70 . 8  

80 5 82. 0 73. 0 77. 0  8JO 70 . 0 6J. 0 66 . 8  
806 82.0 67 • .5 7.5 • .5 831 69. 0 64.o  68 . o  
807 79.0 76 . 0  76. 6 901  7.5 . 0  67. 5 70 . J  
808 76 • .5 73. 0 . 74. 8 902 75 . 0 71 • .s 72. 6 
809 76.0 69. 0 72. 1 903 72. 0  68 • .5 70 . 1  

810 7 8.0 70 • .5 73. 4 
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Table 22 . Na�imtun ,  Hinimurn and Average Temperatures at 
Point 20 from July 17, 1970 , to Sept ember 3 , 1970 

Nax . Hin. Avg . Hax . Hin .  Avg . 
Date OF OF OF Date OF 

. OF OF 

717 77 . 5  68 . 5 72 . 5  81 1 82 . 5  73 • .5 76 . 8  
718 81 . ·0 67 . 5 74 . J 81 2 8.5 . 0  75 . 5  78 . 8  
719 75 . 0  71 . 0  73 . 6  813 86 . o  71 . 0  77 . 1  
720 73 . 5  62 . 0  68 . J  814 81 . 5 73 . 0  78 . 1  
721 . 7 6 . 5  64 . 5  69 . 6  815 81 . 0  71 . 5 75 . 5  
722 76 . 0  68 . 5 71 . 9  816 75. 5 63 . 0  68 . 6  
723 77 . 0  69 . 0  72 . 1  817 79 . 5 6 .5 • .5 72 . 0 

72L� 8J . O  74 . o  78 • .5 818 84 . o  74 . o 76 . 6  
725 86 . o  74 . 5 80 .4 819 79 . 0  7 0  • .5 7.5 . J 
726 87 . 0  77 . 0  80 . 9  820 77 . 5 66 . o  70 . 3  

727 85 . 0  78 . 0  81 .4 821 72 . 0  65. 0 69 . 8  
728 83 • .5 75 . 5  79 . 8  822 75 . 5  6.5 . 0  69 . 9 
729 s.5 ; 5 78 . 5 81 .4  823 78 . 0  66 . o  71 .4 
730 87 . 0  80 • .5 84 . 6  824 78 . 5  67 . 5  72 . 4 
731 81 . 0  77 . 5  78 . 8 825 78 . 5  69 . 0  72 . 9  
801 75 • .5 70 . 5 73 . 1  826 82 . 0  69 . 5  73 . 6  
802 75. 5 68 . 0  72 . 1  827 80 . 0  72  • .5 75 . a  
803 74 . 5  66 . o  70 • .5 828 69 • .5 67 • .5 68 . 4  
804 79 • .5 70 . 0  73 . 6  829 77 . 5  67 . 5  72 . J  

805 81 . 5  73 . 0  76 . 6  830 77 • .5 63 . 5 67 . 8  
806 78 . 0 75 . 0 76 . 1  831 71 . 0  66 . o  70 . 1  

807 79 • .5 76 . 5 78 . 1 901 78 . 5  68 . 0  71 . 8 
808 78 . 0 75 . 0 76 . 5  902 78 . 0  72 . 5  · 73 . 9 
809 78 . 0  72 . 5  74 . o 90.3 75 . 0 69 . 0  71 . 0  

810 80 . 0  71 . 5  75 . J  
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Table 23. Ha.."'C imum , M inimum and Average Temperatures at 
Point 21 from July 17 , 1970 , to September 3 ,  1 970 

Max . Hin. Avg. 1-'Ia.x . Hin. Avg . · 
Date OF OF OF Date OF 

. · 
OF OF 

717 74. o 68  • .5 70.9 811 87. 0  7.5 • .5 76.9 
718 78 • .5 69. 0 74. o 812 85. 0  78. 0 80.1 
719 7.5 • .5 71. 0 73.6  813 85 . 0 72. 0 76.4 
720 70 .5 63. 0 6.5. 9  814 82. 0 7.5. 0 77.9 
721 7.5 • .5 63. 0 68.4 815 80.0 70. 0 7.5.a  
722 7.5 . 5 67 • .5 71. J 816 7.5. 0  63 • .5 69. 1  
723 7.5. 0 69. 0 71.4 817 82. 0 6 8  • .5 74.0 
724 88. 0 76. 0 81.6  818 86.o 74. o 77.4 
72.5 90 • .5 78 • .5 84 • .5 819 79.0 71 . 0 7.5.a  
726 90. 0 80. 0 8.5.4  820 77.0 66. 6 69.8 
727 87. 0  8 0  • .5 82.8 821 74. o 66. 5 70 . 5  
728 86 • .5 77. 0  81.6 822 7.5 • .5 63. 0  70.4 
729 87. 0  77. 5  81.8  823 81 • .5 6.5 • .5 71.4 
730 82 • .5 74. 5 78.1 824 81. 0 69 • .5 7.5 . 1  
731 81 . 0  76. 0 78. 0 82.5 82. 0 71. 0 76.o 
801 74 . 0  69. 5 72. 4 826 83. 0  7.5 • .5 78. 8 
802 7.5. 0  70 • .5 72.6 827 81. 0 75 . 0  77.9 
803 73 . 0 64. o  69.3 828 72 • .5 6 8. o 70.4 
804 76 • .5 69 • .5 71 • .5 829 75 • .5 67. 0 71.0 
80.5 81. 5 73. 0  75.8 830 77. 0  63. 0  67.1  
806 77. 0 74.o 7.5.3 831 69 • .5 6.5. 5 68. 8 
807 78. 0 7.5 • .5 76.8 901 75 • .5 6a. o · 70. a 
808 77. 0 73. 0  75 . 8 902 7.5 • .5 . 72. 0 ?J . 3  
809 78. 0 70 • .5 72.6 903 73 • .5 69.0 71 . 0  
810 82 • .5 70. 0 76 .0  
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Table 24 . Maximum , M inimum and Average Temperatures at 
Po int 22 from J-uly 17 , 1 970 ,_ to  September J ,  19'70 

Max. i•an . Avg . Nax . Hin .  Avg. 
Date OF OF OF Date OF O

F OF 

717 77 . 0  68 . 5  72 . 3  811 83 . 0  75 . 5  77 . 9 
71 8 81 . 0  68 . 5  74 . 8 812 85 . 0 76 . o  79 .4 
719 75 . 0  71 . 0  73 . 6  813 8.5 • .5 73 . 0  78 . 1 
720 72 . 0  63 . 0  66 . 4  814 82 • .5 76 . 5 ?8 . 9 
721 7.5 • .5 63 . 0  68 . J 81.5 81 . 0  72 . 0  76 .4 
722 74 • .5 66 . o  71 . J 816 7.5 • .5 6.5 . 0  69 . 8  
723 7.5 . 0  67 • .5 70 . 4  81 7 80 • .5 67 . 0  ?2 . 6 
72l� 8.5 . 0  73 • .5 78 . 8  818 84 . o 75 . 0  ?7 . 8  
72.5 87 • .5 75 . 0 81 . 4  819 80 . 0  72 . .5 ?6 . J 
726 88 . 0  78 , 0  82 . i� 820 78 . 0  67 • .5 7-1 . 6  
727 86 . o  79 • .5 82 . J  821 7.5 • .5 66 . o  ?2 . J 
728 8.5 '� 0  76. 0 81 . 0  822 76 • .5 66 . o  71. 6  
729 86 • .5 79 • .5 82 • .5 823 81 . 0  68 . 0 73 . 6 
730 8.5 . o  76. o 79 . 6  824 80 • .5 69 . 0  74 . 6  
731 82 . 0  78 • .5 79 . 5  825 80. _5 70 . 0  74 . J 
801 76 . 5  71 • .5 74 . J 826 8J . O  71 . .5 7.5 .4 
802 77 . 0  73 . 0  75 • .5 827 82 . 0  75 . 0 77 . 6 
803 74 . o  67 . 0  70 . 3 828 70 • .5 68 . 0  69 . 4  
804 78 • .5 70 . 0  73 • .5 829 77 . 5  68 . o  72 . 6  
805 82 . 0  74 . o  76 . 8  830 78 . 0  6.5 . 0  6 8 . 8  
806 79 . 0  · 7.5 . 0  76 . J 831 71 • .5 66 • .5 7 0 . 6  
807 79 • .5 77. 0  78 . 1  901 78 . 0  68  • .5 71 . 9 

808 78 . 0  75 . 0  76 . 8  902 77 • .5 7J . O  ?4. J 
809 78 . 0  72 • .5 74 . 6  903 7.5 . 0  69 • .5 72 . 1  
810 81 . 0  72 . 0  7.5 . 9 
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Table 2.5 .  Maximum , N inimum and Average Temperatures at 
Point 23 from July 17 , 1970 , to September J , 1970 

Nax. Hin. Avg. Max. Min. Avg .  
Date OF OF OF Date OF . OF OF 

717  7.5  • .5 68 . 5 71 .4  81 1 84. o 74. o 78 . 1 
71 8 84.o  69 . 5 76. 8 812 s.5 . 0  77. 0 79. 3 
719 79 • .5 7.5 . 0  77. 6 813 84. 5  73. 0 78 . J 
720 72. 0 63 . 0  66 . 5  814 82 • .5 76 • .5 7 8.9 
721 74.o 63 . 0  67. 1  815 80 . 5  72. 0 76. J 
722 74. o 6.5 . 0  69. 8 816 7 8. 0 65 . 0 70. 6 
723 73. 0 6.5 . 0  68.4 817 83 . 0  67 . 5  73. 6 
724 87. 0 72. 0 77.9 81 8 84. o 76. 0 79. 1 
72.5 90. 0 73 • .5 81 . 6  819 81.5 74. o 78. 1 
726 90 . 0 so. a  84 . 6  820 78. 0 70. 0 73. 6 
727 88. 0 . 80 ,, 0 84. o 821 79. 0  69. 0 7.5.4 
728 87. 0 76. 0 81 . 8  822 81. 0 6.5 • .5 74 .4  
729 89� .5  83 . 0  85 . 9 823 82 . 5  68. o 75. J 
730 89 • .5 78 • .5 80. 8 82l� SJ . O 74. 5 77 . 9 
731 82.'5 76. 0 78. 5 825 84 • .5 76. 0 79 . 1 
801 79. 5 70 • .5 74.4  826 86. o 75 . 0  79 . 1 
802 78. 0 71 . 0 · 74. o 827 84 • .5 76 • .5 80. 0 
803 76 • .5 65 , 0  71 • .5 828 7.5. 0  6 8  • .5 71 . 8 
804 79 • .5 71 . 0 74. 6 829 77. 0 69. 0 72. 6 
80.5 82. 0 71� . o 77. J 830 72. 0 64. o 68. J 
806 80 . 0  7.5 • .5 77.4 831  70 . 5 66. o 69. 6 
807 83 • .5 77. 0 78. 3 901 79. 0 68 . 5 72. 1 
808 · 84.o 7?t - 5  78. 0 902 77. 0  73. 0 74. o 
809 78 • .5 7 �. o 75 . 0 903 75 . 0 70 . 5  72. 8 
810 79 • .5 70 • .5 74 . o 



88 

Table 26 " f • r ,. • • and A T · • naximum , .·1 1nimum verage ' ernpera tures at 
Point 24 from July 17 1 1970 1 to September J , 1970 

Hax . Hin. Avg. Hax: . Hin. Avg. 
Date OF OF OF Date OF 

. 
OF OF 

7 17 77 . 5 68. 0 72 . 0  811 81. 0 74. o 77 . 3 
718  8J. 0  69 . 0 7.5 . 6 812 84. 5  73. 0 77 . 8  
719 76. 5 72 . 5  74. 9 813 s.5 • .5 71 . 0 77 . 5  
720 72. 0 62 • .5 66 .· 1 814 81 • .5 7.5 . 5  77 . 6  
721 74.o 63 . 0 67 . 9  81.5 80 • .5 71 . 0 74 . 6  
722 74.o  6 0  • .5 68 . 4  81 6 . 76. 0 6 2. 0 68 . 4  
723 7J. O 6.5 • .5 68 . 6 817  80. 0 65 . 0  71 . 8 
724 8J. 0  70 • .5 75 . 5  81 8 83 • .5 74 . o 76 . 9  
725 86 • .5 71 . 5 79� 1 819 79 • .5 72 . 0  7.5 . 5  
726 87 . 0  77. 0 81 . 1  820 78. 0 67. 0 71 .4 
727 85 . 5 76. 0 30 . 6  821 75 • .5 66 • .5 73 . 1  
728 84 • .5 7.5 • .5 80. 1 822 77 • .5 6.5 • .5 72 . J  
729 86 �' 5 78 • .5 81 .4  823 81. 0 68. 0 74 . 8  
730 84.o 74 • .5 78 .4  824 81 • .5 70. 0 75 . 1  
731 80. 5 76 . 5 77 . 6 825 83 • .5 70. 0 74 • .5 
801 75 . 0 70. 0 73 . 0 826 84 • .5 71  • .5 7.5 . 6  
802 75 . 0 69 . 0  72. 3  827 82. 5  74. o 77 . J  
803 74.o 65 . 0 68. 8 828 70. 0 6 8. o 68 . 9  
804 77. 0 69 • .5 72. 8 829 78. 0 6 8  • .5 73 . 0 
805 80 . 5  71 . 0  74. 9 830 73. 0  65 . 0 69. 0 
806 77. 5 73 • .5 74. 5 831 71 . 5  66 . 5  70 . 6  
807 78 • .5 76. 0 76. 3 901 80 . 5 6 s. a 72 . 6  
808 76. 0 74. 5 75 • .5 902 78 • .5 72. 5 74 . 1 
809 76 . 5 71 . 5  73 . 0 903 75 . 5 70 . 0  72 . 9  
810 80. 0 71 . 0  7.5 . 1  
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Table 27. Ma--<imun , M inimum and Average Temperatures at 
Po int 25 from July 17 , 1 970 , to September J ,  1970 

i·iax . Hin . Avg. Nax . - M in.  Avg . 
Date OF 

OF OF Date OF o
lt, OF 

717  78.0 68.0 72.J 811 79.0 71. 0 7.5 . 1  
71 8 82.0 69.0 7.5 . 5  812 82 • .5 70  • .5 76 .4 
719 7 6 . 0  71  • .5 74.3 813  83 • .5 71. 0 76.8 
720 72  • .5 62 . 0  65. 6 814 81 .0  75 . 0  77.4 
721 74 • .5 63 . 0  67.6 81.5 80 • .5 71.0 74.6  
722 73 . 0  65 . 0 69.4 816 74 • .5 62 . 0  67.4 
723 75 . 0  6.5 • .5 68.8 81 7 80.0 65. 0 72. 1 
724 81 . 0  68 . 5  74 . 1  81 8 82. 5 73 • .5 76 . 5  
72.5 85. 0  70 . 0 77 • .5 819 79.0 71  • .5 7.5.4 
726 86 • .5 73 . 5  78 . 6  820 81 . 0  65 . 0  71. J 
727 84 • .5 76.0 79.9 821 77 . 0  67 . 5  7.5 .J 
728 83 � 5 73.0 78.9 822 78.0 68.0 74.8 
729 86 . o  78 • .5 81 .1 823 83 • .5 . 70 • .5 76.6 
730 83 • .5 76 • .5 79. 1  824 83 • .5 70 . 5  76.6 
731 80.0 76 • .5 77.6 82.5 82.0 73.0 76.6 
801  74.o 68 • .5 71 . 6  826 8.5 • .5 74 . o 77 . 1  
802 74 . o  69. 0 71 . 6  827 83 • .5 76 • .5 78 . 9  
803 72 . 0  64 . o 68.6 828 73 • .5 69 • .5 71 . J  
804 76. 5 69 . 5  72 . 0  829 81 . 0  70  • .5 7.5 . a 

80.5 79.0 71 .0  74 • .5 830 7.5 • .5 66 • .5 . 71 . 0  

806 76 . 0  73 . 0 74 .4- 831 7.5 . 0  68.,5 72. 8 
807 77.0  74 • .5 7.5.3 901 82 . 0  7 1  • .5 74 . 8 
808 76.0 73 • .5 74.4 902 80.0 7.5.0  76.6 
809 75 . 0  70 . 0  71 .8 903 77.0  72. 0 74 • .5 
81 0 79.0 71 • .5 74.6 



Table 28 . Maximum , H inimum and Average Temperatures at 
Point 26 from J"uly 17 , 1 970 , to September 3 ,  1 970 

Eax . Min .  Avg. Nax . · n in . Avg. 
• Date OF OF OF Date OF OF OF 

717 78 . 0 68 . 0  72.1 81 1 80 . 0  7 2. 0  75 . 6  
718 81 . 0  69 . 0 74.9 812 . 80 . 0  72 . 0  7.5.4 
719 76 • .5 70 . 5  74 . 3  813 81 . 5 67.0 73 • .5 
720 · 71 . 5 61 . 0  6.5 . J  814 78 . 5 69.5 73 • .5 
721 74 . 5 62 . 5  67 . 1  815 79 . 0  65 • .5 70.6  
722 73 . 5  65 . 0 69.J 816 71 .0 60.0  64.9  
723 73 • .5 64 . 5 68.J 817 80 . 5  61 • .5 70.4 
724 79 . 0  68 . o  71 .8  81 8 82.0 73 • .5 76.1 
725 8L� . O  68 . 5  76 . 5  81 9 78.0 72 . 0  74.9 
726 85 . 5  74 . 5 79.0  820 79 . 0  68 . 5 73.3 
727 84 . 0  73 . 5  78.4 821 76 . 5  6 8  • .5 74 . 1  
728 83: 0 74 . o  78.8 822 78.0 66.o 72.9  
729 86.o 77 . 0  80.6 823 82 • .5 69 • .5 75 . 9  
730 8J.O  75 . 0  78.4 824 83 • .5 70.0 76.J 
731 so . a  76 . 0  77.0 82.5 82 . 0  7 1 . 0  76 . 0  
801 73 . 0  67 . 5 70.8 826 86.o  72 . 5  77 . J 
802 74 . o 69 . 0  71.6  827 83.5 77 . 5 78.8 
803 70 . 5  63. 0 66.9 828 74.o 69 • .5 71 • .5 
804 75 . 5  68 . 0  70. 6  829 82.0 ?J.O  77.4 
805 78 . 0  69 . 0  72.6 830 77.0 - 68.0 72.8 
806 75 . 0 72 . 5  73 • .5 831 76 • .5 70.0 72 . 9  
807 77 . 0  72 . 0  73.J 901  8J.O 72.5 7.5.6 
808 73 . .5 71 . 0  71 .9 902  81 . 0  75 . 0 77.0 

- 809 72 . 5  67 . 5  69.8 903 79.0 72.0 74.4 
810 78 . 0  68 . 5 72.4 
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Table 29. t·Iaximum , Minimum and Average Temperatures at 
Point 27 from July 1 7 ,  1 970 , to September J ,  1970 

I·lax . H in .  Avg . Eax . Hin. Avg . 
Date OF OF OF Date OF Op OF 

717 77. 0 6 8. o  72 . J 811 78 . o 72 . 5  ?4 . 8  
718 82. 0 72. 0 76 . 9  812 80 . 5  70 . 5  74 . 6  

· 719 77. 0 70 • .5 74. J  81 ) 82 . 0  6 8 . 5  74 .4  
720 · 72 . 0  61. 0 65 . 5 814 79 . 0  71 . 0 74 . 1  
721 73. 0 62 . 0  66. 9 815 77 . 0  68 . 0  72. 6 
722 72 • .5 64. 5 68. 9 816 72 . 0  6 2 . 0  66 . 6  
723 73. 0 62 • .5 68 . 0  817 79 . 0 63 . 0  70 . J 
72�- 79 . 0  68. o 71 . 8  81 8 81 • .5 72 . 0  76 . 0  
725 86. o 68  • .5 77 . 1  81 9 79 . 0  72 . 0  76 . 0  
726 87 . 0 76. 0 80 . 8  820 so . o  68  • .5 73 . 1  
72? 86 . o  7 8. 0 81. 4  821 77 • .5 26 . 0  75 . 3  
728 85 .,.5 7.5 . 5  80 . 8  822 79. 0 68  • .5 74 .4  
729 88. 0 80 . 0  82 . 5  823 82. 5 71 . 0  76 . 5  
730 85 . 0  70. 0 77 . 6 824 82 . 5  .5 1 . 0  70 . J 
731 82. 0 76. 0 78. 9 825 82. 0 71 . 5  76. 0 
801 76. 0 71 • .5 73 . 8  826 86. o 72 . 0  77 . 3  
802 76 . 5  71. 0 73. 3  827 84 . o  78 . 0 80 . 0  
803 74. o 66. o 70. 0 828 74 • .5 71  • .5 72 . 4  
804 7 8 . 5  70 . 5  72 . 9  829 84. o 74 . o  78 . 6  
805 80.5 72 . 5 75 . 5  · 830 78 • .5 69 . 0  ?J . 8 
806 78. 0 74. o 75 . 3 831 77 . 0  7 1 . 5 7.5 . 0  
807 7.5. 0  73 . 0 73 . 6 901 83 • .5 72 . 5  76 . 6  
808 73. 5 71. 0 71 . 9  902 8J . O  77 . 0  78 . 5  
809 72 . 5  67 • .5 69 . 8  903 80 . 5 74 • .5 77 . 1  
810 76 • .5 69. 0  72 . 1  
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Table JO . Haxirnum , N inimum and Average Temperatures at 
Point 28 from July 17 , 1970 , to  September J ,  1970 

riax . Min .  Avg . Eax . i-!in .  Avg . 
Date OF OF 0

1? Date OF - 0  OF .L F 

717 71 . 5 61. 0 66 . 6 81 1 72 . 0  6). 0 67.4  
718  76 . 0 64 . o  69·. 8  812 75 . 0 63 • .5 68 . 3 
719 71 . 0  62 . 0  66 . 1  81J 76 . 5  61 . 0  68 . 0  
720 72 • .5 63 . 5  66. 8 814 73 . 0  63 . 0  67 . J  
721 73 • .5 63 . 0  66 . 8  815 71 • .5 60 . 0  64 . o  
722 73 . 0  63 . 0 67.3 816 64 • .5 50 . 0  56.0 
723 71 • .5 61 • .5 66 .4  817 71 • .5 .58  • .5 64. J 
724 73 . 0  64 . o  6 8. 1 81 8 74 • .5 65 . 0  6 8. 0 
72.5 76 • .5 67 . 0  70_·. 3  81 9 67. 0 .58 . 5  62. 9 
726 86 . o  65. 0 72. 6 820 66 • .5 56 . 5  59 . 9 
727 77 . 0  66 . o  70 . 9 821 69 . 0  .57 • .5 61 . J 
728 7.5. 0 66 . o  71 . 1 822 65. 5  59 . 0 61 . 0  
729 79 . 0  70 . 0  73 . 6  823 79. 0 64. 5 72 . 1  
730 77 . 0  67 . 5 70 . 8  824 72 . 0  59 • .5 65 . 6  
731 71 . 0  66 . 5  67. 8 825 79 . 5  59 . 5 67. J 
801 68 . 0  61 • .5 6.5.  8 826 75 • .5 60  • .5 6_5 .4 
802 68 . 0  64 . o  66. 1 827 71 . 0  63 . 5 66 . 6  
803 73 • .5 .5.5 . 0  59 . 0 828 62 . 0  _58 . _5 59.8 
804 69 . 0  60. 0 63 • .5 829 72 . 5  62 • .5 67. 6  
80.5 71 . 0  .59 . 0 6.5.5 830 65. 0 56 • .5 60. 6 
806 68 . 5 6.5. 0 66 . 6  · 831 6.5 . 5  59 . 0  62 . 6  
807 70 . 0  6.5 • .5 67 .4  901 74 • .5 65 . 5 68. 8 
808 67 . 0  6.5. 0 6.5. 6  902 73. 0  66 . 5 68. 1 
809 67 . 0  61. 0 63. 0 903 70. 0 63 . 0  65 . 8  
810 71. 0 62. 0 65 . 9 
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Table 31 . Sow and Litter Data 

BLOCK 1 
Treatment 1 Treatment 2 Treatrn.ent 3 

Au�ust 2, 1970  Augus t 1 ;  1 97 0  Augu� t 1 0 , 1970  

Days Litter Days Litter Days Litter 
from Avg . W t . Sow Wt . from Avg . Wt . Sow Wt . from Avg . i.-J t .  Sow  Wt . 
Birth Lbs . Lbs . Birth Lbs . Lbs . Birth Lbs. Lbs. 

0 3 . 9 460 0 3 . 39 455 0 3 . 50 500  
5 5 . 5 9 455 6 3 . 67 445 4 4 . 50 

1 2  7 . 91  455 1 3  5 . 97 4Lt,Q 1 1  6 0 3 8 470 
19 1 1 . 81 --- 20 8 . 03 435  1 8  6 . 81 4.5 .5 
26 1 6 . 57 440 27 10 . 3 440 2.5 9 . 3 6  460 
33 19 . 81 445 34 1}. 84 45.5 

BLOCK 2 
Treatment 1 Treatment 2 Treatment 3 

July 1 7 , 1 970  July 1 8, 1 970 July 23 , 1 970 
Days · Litter Days Litter Days Litter 
from Avg. Wt.  Sow Wt . from Avg . Wt . Sow Wt . from Avg . Wt . Sow Wt . 
Birth Lbs . Lbs . Birth Lbs . Lbs . Birth Lbs . Lbs . 

0 2 . 9 6 500 0 3 . 33 480 0 2 . 9 6 480 
7 J.� . 85 485 . · 6 4 . 1 7 475 1 J . 07 480 

14 6 . 96 485 1 3  6 . 50 480 8 5 . 1 7 460 
21  9 . 93 495 20 8 . 1 9 470 1 5  9 . 46 455 
28 1 3 . 99 490 27 1 1 . 49 475 22 1 2 . 91 445 
35 17 , 61 495 34 1 .5 . 32 --- 29 13 . 76 455 



Table 31 . C ontinued 

BLOCK 3 
Treatment 1 Treatment 2 Treatment 3 

July 21� , 1 970  July 25 ,- 1 970  July 2.5 , 1 970  

Days Litter Days Litter Days Litter 
from Avg. \.J t .  Sow Wt . from Avg. Wt . Sow Wt . from Avg. �Jt .  Sow W t . 
Birth Lbs. Lbs. Birth Lbs . Lbs. Birth Lbs . Lbs. 

0 3 . 87 525 0 3 . 4Lr 620 0 2 . 74 535 : 
5 . 52 505  6 5 . 23 570 6 3 . 7 6 .52.5 

13  8 . 22 51 5 1 3  7 - �-6 56.5 1 3 .5 . 93 51 5 
20 1 1 . 0 8 500 20 9 . 3 0 550 20 7 . 62 .5 15  
27 1 5 . 29 49.5 27 1 2 . 6 8 · 550 27 9 . 71 .5 1 .5 

BLOCK 4 
Treatment 1 Treatment 2 Treatment 3 

J'uly 16, 1 970 July 1 8, 1970 July 1 7, 1970 

Days Litter Days Litter Days Litter 
f rom Av3 . Wt . SoH Wt . from Avg . Wt . Sow Wt . f r-om Av�.  Wt . Sow Wt . 
Birth Lbs . Lbs . Birth Lbs . Lbs . Birth Lbs . Lbs. 

0 3 . 54 575 0 3 . 00 460 0 3 . 40 41 8 
7 6 . 1 6 565 

. · 6 4 . 9.5 453 7 .5 . 0 1 41 8 
14  7 . 85 565 13  5 . 9  4.50 14 7 . 1 8  355 
21 1 0 . 1 5 _580 20 6 . 8  460 21 9 . .52 32.5 
28 1 3 . 1 1 575 27 1 0 . 80 460 28 13 . 06 J20  
35 1 7 . 26 570  34 12. 08 46.5 3.5 1 ,5. 84 32.5 

'° 



Treatment 1 

July 25 , 1 97 0  

Days 
from 
Birth 

Litter 
Avg . Wt . S ow Wt . 

0 

6 
1 3  
20 
27 
Jl� 

Lbs . 

2 .  21+ 
3 , 66 
6 . ,5 0 
9 . 5 8  

1 2 . 66 
1 1+ .  62 

Lbs . 

5 2.5 
L1,95 
495 
L�7 5 
465 
L1, Go  

Table 31 . C ontinued 

BLOCK 5 

Treatment 2 

J uly 25 ,  1 970  

Days Litter 
from Avg . Wt . S ov1 Wt . 
Birth Lbs . Lbs . 

0 3 . 65 480 
6 6 . 0 3 470 

1 3 9 . 03 45 0  
2 0  1 1 · . 3 5 440 
27 l J. 42 440 
3L� 1 7 . 14 455  

. Treatment 3 

July 23 , 1 970  

Days 
from 
Birth 

0 

7 
14  
21  
28  
3.5  

Litter 
Avg . Ht . 

Lbs . 

3 . 05 
5 . 3 8  
6 . 41 
8 , 84 

1 2. 25 
1 2 . 84 

Sow W t . 

Lbs . 

420 
405 

- 4 0 0  
3 80 
3 95 
40.5 

'° °' 
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Table 32 . Respiration Rates 

Observation 1 2 3 4 5 6 7 
Sow 

Number 

11  20 44 98 

12 2.5 .58 34 

1J .5 6  47 

21 19 26 27 18 33 51 55 

22 70 95 38  88  26 75 47 

23 81 6.5 6.5 69 50 92 62 

31 26 21 62 .5 1 70  .55 48 

32 .51 .51 1 9  1 9  li O 35 

33 80 68 34 21 34 42 42 

41 37 1 9  28 41 

42 84 77 3.5 92 

43 129 67 .5 8  · .  99  49 

51 24 17  18  JO 37 

.52 66 .56 ?.5 92  72 

.53 84 96 40 4? 104 · 90  
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