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ABSTRACT 

PHYTOREMEDIATION OF SALINE-SODIC SOILS IN EAST CENTRAL SOUTH 

DAKOTA UTILIZING PERENNIAL GRASS MIXTURES 

DOUGLAS J. FIEDLER 

2020 

 Several decades of above average precipitation in South Dakota has increased the 

area of saline and sodic soils, which reduce crop yields and inhibit sensitive plant growth. 

Saline and sodic soils are difficult to remediate using traditional agricultural crops. 

Establishing salt tolerant perennial species may restore productivity to salt affected areas. 

Two perennial grass mixtures (mix 1: slender wheatgrass, beardless wildrye; mix 2: 

slender wheatgrass, western wheatgrass, green wheatgrass, creeping meadow foxtail) 

were dormant frost seeded along a topographic gradient in Clark Co., SD. Soils were 

Forman-Cresbard loam and a Cresbard-Cavour loam with surface electrical conductivity 

(EC1:1) that ranged from <0.5 to >15 dS m-1 and sodium <400 to >2500 ug g-1. Perennial 

grass and corn biomass, soil chemical properties, weed cover, and greenhouse gas 

emissions were quantified in two growing seasons (2018 and 2019). By 2019 perennial 

grass mixtures and corn reduced soil EC1:1 and sodium similarly. Slender wheatgrass was 

the dominant species in mix 1, comprising up to 65% of September 2018 total biomass 

(246-1705 kg ha-1) and 83% in 2019 (6400-9700 kg ha-1). AC Saltlander was the 

dominant species in mix 2 comprising up to 61% of 2018 total September biomass (604-

2646 kg ha-1) and 81% in July, 2019 (5853-10663 kg ha-1). In July, 2019 mix 1 and mix 2 

saline plots had 16% and 3% weed cover (kochia/foxtail barley), respectively, compared 

to 75% in corn. Over a 7 d period in July, 2018 and 2019 non-fertilized barren saline soils 
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emitted 2.09 and 4.89 g N2O-N ha-1 hr-1, respectively; and 611 and 324 g CO2-C ha-1 hr-1, 

respectively. During the same time period, grass vegetated non-saline soil emitted 0.38 

and 0.46 g N2O-N ha-1 hr-1 in 2018 and 2019, respectively; and 1589 and 2538 g CO2-C 

ha-1 hr-1, respectively. Corn vegetated non-saline soil emitted 0.01 and 0.62 g N2O-N ha-1 

hr-1 in 2018 and 2019, respectively; and 1821 and 1812 g CO2-C ha-1 hr-1, respectively. 

Urea application (224 kg-1 ha-1) increased CO2 emissions in all treatments both years 

from 19-155%, but increased N2O emissions by 102-704% in 2019 only. Simulated root 

exudates, plant residue decomposition, simulated root respiration, and barley growth 

increased greenhouse gas emissions compared with nontreated controls in laboratory 

studies on a saline Cresbard-Cavour loam. Growing barley plants reduced soil EC1:1 from 

6.3 dS m-1 to 5.9 dS m-1 and reduced soil NO3- from 509 ug g-1 to 428 ug g-1 after 7 

weeks and increased N2O-N and CO2-C flux by 224% and 244%, respectively, from 

baselines of 0.359 ug N2O-N kg-1 hr-1 and 206 ug CO2-C kg-1 hr-1. Revegetating salt 

affected soils with perennial grasses may reduce soil EC1:1, NO3-, Na, and weed cover 

and also may improve soil microbial activity and nutrient cycling.  
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CHAPTER 1: INTRODUCTION TO SOIL SALINITY AND LITERATURE 

REVIEW 

1.1 SOIL SALINITY: PROBLEMS AND CAUSES 

Soil salinity and sodicity are important soil properties which, if not managed 

correctly, can have damaging impacts on crop yield and establishment. Soils in South 

Dakota are classified as saline when saturated paste electrical conductivity (EC) soil test 

level is ≥ 4 dS m-1 (Clay et al., 2015). Sodic soils are defined as having sodium 

adsorption ratio (SAR) levels ≥ 4 mmolc L-0.5 (Clay et al., 2015). Saline-sodic soils have 

EC and SAR values that meet both criteria (Clay et al., 2015). 

 In recent decades, soil salinity and sodicity have increased in both area affected 

as well as severity in South Dakota. Approximately 3,442,000 ha of land in South Dakota 

is impacted by soil salinity and over 2 million ha impacted by sodicity in North Dakota 

and South Dakota (Millar, 2003; Seelig, 2000). Multiple Northern Great Plains (NGP) 

states are also impacted by soil salinity, including Minnesota, Nebraska, North Dakota, 

South Dakota, Montana, and Wyoming with an estimated 10.6 million ha affected 

(Carlson et al., 2013; Hopkins et al., 2012; Millar, 2003; Seelig, 2000; Soil Survey Staff, 

2018).  

The area of NGP land impacted by salinity has increased over time. Between 

2008 and 2012, 13.4% of corn and soybean ha in eastern South Dakota increased in 

salinity by at least 4 dS m-1 (Kharel, 2016). Beadle, Brown, and Spink counties in SD lose 

$26.2 million in crop revenue annually due to soil salinity (USDA-NRCS, 2012). In the 

Red River Valley of ND, losses attributed to soil salinity were estimated at $150 million 

on 485,000 ha of land (Hadrich, 2011). If the number of affected acres continues to 
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increase, so will economic losses. The widespread prominence of saline and sodic soils 

indicates the need for researching management methods to minimize economic and 

ecological loses. 

 In order to manage the issue, one must first understand the causes of salinity. The 

overall underlying cause for soil salinity in the NGP is the soil parent material. However, 

other factors exacerbate the problem including increased precipitation, temperature, and 

land conversion (Kharel, 2016).  

During the Cretaceous and Paleogene time periods, the Western Interior Seaway 

covered much of the Great Plain states, including nearly all of South Dakota. When this 

ocean receded, shale formations high in salt content were left behind, becoming the 

subsurface parent material for much of the state. In areas where glaciation occurred, this 

parent material can be very close to the soil surface and is impermeable to water (George, 

1978). When the water table rises, it brings soluble salts closer to the soil surface 

(George, 1978). These salts can travel further up the soil profile through capillary action 

with higher evaporation increasing salinity in these areas (Seelig, 2000). Therefore, 

factors that favor water table rise or increase evaporation can increase soil salinity in 

these at-risk areas.  

The Northern Great Plains climate in recent decades has experienced precipitation 

increases (Seelig, 2000). Between 1980 and 2018, South Dakota had 25 years with above 

average precipitation and 13 years below average, based on 1901-2000 baseline (NOAA, 

2019). During the 1990’s eight out of ten years had above average precipitation (NOAA, 

2019). This pattern of wetter years has thus brought more soluble salts to the soil surface.  
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Another factor influencing the salt problem is evaporation due to increased 

temperature. Like precipitation, South Dakota temperatures have increased. From 1980-

2018, 26 of the years had above average mean temperatures during the growing season 

(May-October) based on 1901-2000 as a baseline (NOAA, 2019). These higher 

temperatures can increase evaporation rates and increase salinity due to capillary action.  

Land use change in the 1800’s also contributed to the problem (George, 1978). 

South Dakota native prairie consisted of mixed annual and perennial grass and forb 

species. Perennial grasses have large, deep root systems capable of removing water from 

deep in the soil profile throughout the growing season (George, 1978). This helped keep 

the water table lower than annual cropping systems which only provide an actively 

growing plant a few months of the frost-free season. Annual crops also have a limited 

size root system compared to perennial grasses. Joshi (2018) reported between 2006 and 

2014 there were 910,000 ha of grassland converted to cropland. This is 25% more than 

estimated by Reitsma et al. (2015) who calculated 730,000 ha for the same time period. 

Between 2006 and 2012, it was found that about 700,000 ha of grassland was converted 

to cropland in South Dakota and between 2012 and 2014 210,000 ha were converted 

(Joshi, 2018). This allows more water to percolate to the water table and thus decrease 

the depth to the water table which carries soluble salts. Additionally, without the yearlong 

coverage of the soil with perennial species, soil evaporation may increase. Higher 

evaporation rates increase water movement through capillary action. This capillary action 

also brings salts up the soil profile similar to a rise in water tables (Seelig, 2000).  

 When salt levels become too high, plant growth is reduced (Lauchli and Grattan, 

2011). When salts are dissolved in the soil-water solution, it reduces the soil osmotic 
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potential making it more difficult for roots to extract water (Lauchli and Grattan, 2011). 

Therefore, high levels induce drought-like symptoms in plants and can result in plant 

death (Seelig, 2000).  

Likewise, high sodium (Na) levels in soil also have negative impacts (Davis et al., 

2012; Rengasamy and Olsson, 1991). Sodium causes soil particles to disperse rather than 

aggregate (Davis et al., 2012; Seelig, 2000). This creates a soil with poor water and air 

permeability, little structure, dense layers, and crusting, all of which inhibit plant growth 

(Davis et al., 2012; Seelig, 2000; Lauchli and Grattan, 201). Na can also have specific ion 

effects on plant nutrition, such as preventing adequate uptake of calcium from soil 

(Lauchli and Grattan, 2011).   

1.2 DRAINAGE AND CHEMICAL REMEDIATION STRATEGIES 

For areas in the western United States with saline conditions, the recommendation 

is to install tile drainage and use irrigation with water of a similar EC to leach soluble 

salts from the profile. This successful western state tactic has been unsuccessful in the 

Northern Great Plains environment (Davis et al., 2012; Seelig, 2000). In the NGP, there 

is little irrigation in many regions and locally high sodium levels limit infiltration through 

the soil profile, which results in tile lines which do not function as intended. There also 

are limited tile outlets available in South Dakota so off site drainage is not always 

possible. 

Other efforts to remediate saline sodic or sodic fields have included chemical 

remediation as a first step. Application of calcium (Ca) based amendments, such as 

gypsum, to the soil is one such tactic (Davis et al., 2012; Seelig, 2000). The added Ca is 

supposed to replace Na on clay exchange sites, allowing Na to be leached as soil structure 
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improves (Davis et al., 2012; Seelig, 2000). However, in SD high levels of calcium 

carbonate are already present in the soil (Franzen et al., 2006). Therefore, elemental 

sulfur is suggested as an amendment to lower the soil pH and solubilize the free lime 

(Davis et al., 2012). However, these chemical amendments have limited success. 

A study done by Birru (2016) on two South Dakota saline sodic soils found that 

applications of gypsum (4975kg ha-1) or elemental sulfur (922 kg ha-1) did not impact soil 

pH or EC. SAR was not impacted by amendments at the White Lake location (Beadle-

Dudley complex, Delmont-Talmo complex, and Houdek and Ethan loams), but sulfur 

reduced SAR at the Redfield location (Harmony-Aberdeen silty clay loam, Winship-

Tonka silt loam, and Great Bend-Beotia silt loam) (Birru, 2016).  

In a Pakistan study, 25 Mg ha-1 gypsum did not affect soil hydraulic conductivity 

6 months after application unless plants were grown or 7.5 Mg ha-1 residue was added 

with the gypsum (Ilyas et al., 1993). After one year however, gypsum increased hydraulic 

conductivity, although weeds growing in the treatment plots may have contributed to this 

(Ilyas et al., 1993).  

Ilyas et al. (1997) applied 25 Mg ha-1 of gypsum to a saline sodic fine-loamy, 

mixed thermic Typic Natrustalf in Pakistan with a SAR of 49 dS m-1 at the 0- to 20- cm 

depth. The authors reported that after one year, gypsum amendment reduced pH to 7.9 

compared to 8.5 in non-treated control plots. Differences in SAR were not seen unless 

perennial alfalfa (Medicago sativa L.) or sesbania [Sesbania bispinosa (Jacq.)W.F. 

Wright]) was grown or wheat residue was added to the treated plots at 7.5 Mg ha-1 (Ilyas 

et al., 1997).  
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Gypsum applied at 5000 kg ha-1 and allowed to incubate under laboratory 

conditions for one-month improved soil chemical conditions by reducing pH from 9.75 to 

8.22, EC from 12.35 to 1.98 dS m-1, and exchangeable sodium percentage (ESP) from 

44.75 to 6.61% (Hanay et al., 2004). However, soil physical and biological properties 

were not improved by the gypsum (Hanay et al., 2004). When gypsum was applied to 

leaching columns at 10 t ha-1 to a Hyperthermic Salic Calciorthids, soil EC did not 

decrease quicker than non-treated soil (Khosla et al., 1979). The SAR however, decreased 

quicker with gypsum, but the non-gypsum treated soil had similar results when an 

additional 16 cm of leaching water was added (Khosla et al., 1979). Gypsum was not 

required for sodium or salt leaching but may quicken the process in heavy textured soils 

with low infiltration (Khosla et al., 1979).  

An 11-week field study in Pakistan applied 12,700 kg ha-1 gypsum on a sandy 

clay loam saline sodic soil (Arshad et al., 2015). The gypsum reduced pH from 8.55 to 

7.23 compared to the control of 7.62 in the top 15-cm of the profile. EC was lowered 

from 8.72 dS m-1 to 4.15 dS m-1 compared to the control of 8.2 dS m-1 and SAR was 

lowered from 12.53 to 2.75 compared to the control of 11.39 (Arshad et al., 2015).  

At the Soil Salinity Research Institute in Pindi Bhattian (Pakistan), the application 

of gypsum at the required rate equivalent to the total CO3 and HCO3 in the soil did not 

impact EC but decreased pH from 8.94 to 8.5 after 30 days (Hussain et al., 2001). The 

gypsum also decreased SAR from 40.66 to 27.27 (Hussain et al., 2001).  

Gypsum was applied to a Halic Camborthid sandy clay loam soil in leaching 

columns, which were leached four times over a year (Qadir et al., 1996a). Gypsum 

treated soil removed more Na (1884 mmolc) compared to the control (393 mmolc) (Qadir 
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et al., 1996a). Gypsum application also reduced EC from 4.3 dS m-1 to 1.3 dS m-1, SAR 

was reduced from 42.3 to 12.1, and pH was reduced from 9.0 to 8.8 (Qadir et al., 1996a).  

Although chemical amendments can be successful in some cases, there are known 

problems with gypsum applications in the north-central region of the United States. First, 

fields may already have high amount of free lime in the soil, thus adding more calcium 

may not be effective (Franzen et al., 2006). Many soils in the Northern Great Plains also 

have naturally high amounts of gypsum in the soil, making the small amounts of added 

gypsum insignificant (Franzen et al., 2006). Additionally, soil structure takes time to 

rebuild and could take decades for the sodium to leach out in certain field conditions 

unless tile drainage is also installed, which is only an option if outlets are available and 

water can infiltrate the soil. Also, in many of these studies, the soil amendments are tilled 

into the soil for maximum effectiveness. Forty-five percent of SD fields are in no till 

management, meaning the practice would have to be abandoned for gypsum to be 

incorporated (Franzen et al., 2006; USDA-NRCS, 2017; Sharma et al., 1974). 

Additionally, many of the successful studies were done in Pakistan or the Western United 

States in areas under irrigation. The studies done in SD show no benefit of applying 

gypsum on sodic soils in the NGP (Birru, 2016).  

1.3 SPECIES SALT TOLERANCE 

Phytoremediation is another proposed method to restore productivity to salt 

affected soils. However, selecting tolerant species is important in order for this strategy to 

be successful. Tolerant species are able to grow in soil with high salt content for several 

reasons. These can include the formation of compatible solutes, ion absorption, 

compartmentalization, formation of antioxidants, and genetics (Liang et al., 2018; Parida 
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and Das, 2005). Salt tolerant plants are better adapted in one or several of these tactics of 

tolerance than sensitive plants. 

 Compatible solutes are substances formed by the plant that do not interfere with 

normal plant functions but are used to alleviate the osmotic differential between the plant 

cells and soil solution due to salinity and thus allow water uptake by roots (Liang et al., 

2018; Parida and Das, 2005). These substances include proline, sugars, betaine, and 

glycine (Liang et al., 2018; Parida and Das, 2005).  

In cells, high levels of Na can be toxic, so maintaining high K+/Na+ ratios is 

another trait important for salt tolerance when dealing with higher Na levels in the 

intracellular region (Liang et al., 2018; Parida and Das, 2005). Some species store excess 

Na in the cell vacuole to mitigate cell damage (Liang et al., 2018). During salinity stress, 

there is an increase in reactive oxygen species (ROS). These can include hydrogen 

peroxide, singlet oxygen, and hydroxyl radicals (Parida and Das, 2005). It is important 

for plants to form the proper enzymes to remove ROS (Liang et al., 2018; Parida and 

Das, 2005). All of these tolerance abilities are controlled by a multitude of genes in 

plants, and when upregulated these genes enable some species to be more salt tolerant 

than others (Liang et al., 2018). 

Selecting species to plant on saline fields depends on the degree of salinity, as 

different species are impacted at different levels of salinity. Different tolerance levels are 

reported in the literature, although the tolerance may be method specific, and often has 

high variance. Corn, a dominant crop in South Dakota, is considered to be moderately 

salt tolerant of EC up to 4 dS m-1 (Alberta Agriculture and Rural Development, 2001). 

Although some reports have threshold levels of 1.7 dS m-1 with a 12% yield decrease 
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with each unit increase in EC, making corn a moderately sensitive crop (Grieve et al., 

2012). Corn also has 50% germination reduction between EC levels of 6-10 dS m-1 

(Allison et al., 1954). Barley (Hordeum vulgare) in comparison, is rarely planted in SD 

due to low commodity prices but is rated as tolerant up to 8 dS m-1 with a 5% yield 

decrease with each EC unit increase (Alberta Agriculture and Rural Development, 2001; 

Grieve et al., 2012). Barley has 50% germination reductions at EC levels at 16 dS m-1 

making it much more salt tolerant that corn (Allison et al., 1954). Slender wheatgrass 

(Elymus trachycaulus), a perennial grass, is rated tolerant at EC levels up to 16 dS m-1 

(Alberta Agriculture and Rural Development, 2001) but growth can be highly variable 

based on soils and locations (Tilley et al., 2011). Beardless wildrye (Leymus triticoides) 

can tolerate EC levels up to 20 dS m-1 as reported by Alberta Agriculture and Rural 

Development (2001) but may also only tolerate EC levels up to 2.7 dS m-1 and a 6% 

decrease in yield with each unit increase in EC depending on soils (Grieve et al., 2012). 

The Natural Resources Conservation Service (NRCS) rates beardless wildrye for EC 

tolerances in excess of 15 dS m-1 (Young-Matthews and Winslow, 2010). Western 

wheatgrass (Pascopyrum smithii) has 50% germination reduction at EC levels between 

12-18 dS m-1 (Allison et al., 1954). Creeping meadow foxtail (Alopecurus arundinaceus) 

has EC tolerances up to 12 dS m-1 according to the NRCS and green wheatgrass (Elymus 

hoffmannii) is rated tolerant to EC levels up to 12.9 dS m-1 (Hybner et al., 2014; Tilley et 

al., 2004).  

1.4 GREENHOUSE GAS EMISSIONS IN AGRICULTURE 

Greenhouse gases (GHG) are defined by the Environmental Protection Agency 

(EPA) as “gases that trap heat in the atmosphere” (EPA, 2018) and by Merriam-Webster 
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as “any of various gaseous compounds (such as carbon dioxide or methane) that absorb 

infrared radiation, trap heat in the atmosphere, and contribute to the greenhouse effect” 

(Merriam-Webster, 2019). The primary greenhouse gases that contribute to the 

greenhouse effect and are monitored include carbon dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O) (EPA, 2018).  

 CO2 is produced from soil primarily through biological activity, both from plant 

and microbial respiration (USDA-NRCS, 2019). Because of this, CO2 is often used as an 

index of soil microbial activity and to some extent microbial populations (USDA-NRCS, 

2019). CO2 from soil respiration is strongly related to temperature, where a two-fold 

increase in respiration occurs with every 10 °C increase in temperature, up to 35 °C 

(USDA-NRCS, 2019). Because CO2 is driven by microbial and plant respiration, which 

are indicators of soil health, it would not be ideal to attempt reducing GHG emissions 

from agriculture by focusing on CO2 emissions from soil sources alone.  

 N2O has a global warming potential (GWP) of 298, partly because N2O lasts 114 

years in the atmosphere (EPA, 2018; IPCC, 2001). In the United States, 77% of all N2O 

emissions are from agricultural soils, with an additional 5% from manure (EPA, 2018). 

N2O is produced from soil by several processes, with the primary contributors being 

nitrification and denitrification (Davidson et al., 1986; Hu et al., 2015; Stevens et al., 

1997, Liu et al., 2016). A major factor determining the source of N2O production in soil 

is water filled pore space (WFPS). When WFPS is 30-70%, the primary contributor to 

N2O production is nitrification and when WFPS is 80-90% denitrification dominates (Hu 

et al., 2015; Braker and Conrad, 2011; Huang et al., 2015).  
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 Nitrification forms N2O through several pathways. One pathway is through the 

chemical decomposition of hydroxylamine (Butterbach-Bahl et al., 2013). 

Hydroxylamine is formed as an intermediate product of nitrification (Bremner, 1997). 

When soil pH is acidic to neutral, hydroxylamine oxidation produces N2O, whereas when 

pH is higher (7.8-8.2) the main product is N2 gas (Bremner et al., 1980). Nitrification can 

also produce N2O when oxygen is limited (eg. high WFPS) and there is an elevated level 

of NO2- in the soil which is then used as an alternate electron acceptor (Khalil et al., 2004; 

Snyder et al., 2009). During this process, NO2- is converted to NO and subsequently N2O. 

Denitrification produces N2O under anaerobic conditions by facultative anaerobic 

bacteria when nitrate NO3- is converted to nitrite NO2- and finally to N2O or N2 (Snyder 

et al., 2009).  

Methane (CH4) has a GWP of 25, meaning CH4 is 25 times more potent than an 

equivalent amount of CO2 (EPA, 2018; IPCC, 2001). Soils can either be a sink or source 

of CH4 depending on soil conditions. Because CH4 is the most reduced form of carbon, it 

is only produced in soils under highly reducing conditions with very limited oxygen 

(Topp and Pattey, 1997). This could be the case in SD saline-sodic soils where soil is 

dispersed and often saturated forming reducing conditions. CH4 is produced by 

methanogen bacteria in the absence of oxygen by reducing oxidized forms of carbon to 

CH4 as a source of energy when soils have very low levels of nitrate, sulfate, and ferric 

iron (Topp and Pattey, 1997). Because of these conditions needed for CH4 production in 

soil, the main source of CH4 is wetlands or rice fields where the soils are saturated for 

long periods of time (Lelieveld et al., 1993). In South Dakota due to high water tables in 
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ditches and drainage ways near saline-sodic areas, these conditions may occur for most of 

the spring and early summer. 

 Although the largest sink for methane is the atmosphere, where it reacts with the 

hydroxyl radical, soils account for 10% of the total CH4 sinks across the globe, fixing 

approximately 30±25 Tg yr-1 of CH4 (Lelieveld et al., 1993). CH4 is removed from the 

atmosphere through soil due to methanotrophic bacteria. Methanotrophic bacteria obtain 

energy by oxidizing reduced forms of carbon such as CH4 into CO2 (Topp and Pattey, 

1997). During this process, oxygen is required for use as the terminal electron acceptor, 

meaning methanotrophic bacteria only oxidize CH4 under aerobic conditions, typically 

near the air-soil interface at the soil surface (Topp and Pattey, 1997). Because of the 

requirement of oxygen for soil to act as a sink for CH4, soil structure and moisture have a 

large impact on CH4 emissions. If soil has good porosity, structure, and drainage, the soil 

will likely act as a sink (Dunfield et al., 1995). However, if a soil is compacted and 

saturated it will have a limited ability to remove CH4 and in some cases may emit CH4 

(Dunfield et al., 1995).  

 Temperature also influences CH4 fluxes. Methanogen bacteria are more sensitive 

to temperature fluctuation than methanotrophs (Dunfield et al., 1993). Therefore, soils 

which typically act as a sink for CH4 have little fluctuation in flux throughout the day; 

whereas methanogenesis will typically occur during the warmest time of day and be 

reduced during cooler temperatures (Dunfield et al., 1993; Mosier et al., 1991). The 

balance between soil moisture and temperature thus determines if CH4 is released from or 

removed by the soil.  
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1.5 SOIL GREENHOUSE GAS EMISSIONS AND UREA FERTILIZER IMPACT 

Urea application to soil has several known impacts on GHG emissions. Urea is 

broken down in soil by the urease enzyme (Sigurdarson et al., 2018). This enzyme 

hydrolyzes urea into two ammonia molecules and carbonic acid which is broken into 

water and carbon dioxide (Sigurdarson et al., 2018). Because of hydrolysis, urea 

application increases CO2 emissions. Urea also increases CO2 indirectly by providing 

nitrogen to soil microbes and plants for growth, which release CO2 through respiration. 

Nitrogen fertilizers, including urea, have also been shown to inhibit CH4 oxidation in soil 

(Mosier et al., 1991; Bosse et al., 1993; Hansen et al., 1993; Hutsch et al., 1993; Bronson 

and Mosier, 1994; Dunfield et al., 1995; Dunfield and Knowles, 1995). This phenomenon 

is thought to be the result of two reactions. First, ammonia that is released from urea is 

oxidized by the enzyme methane monooxygenase (MMO) into hydroxylamine, then to 

nitrite and nitrous oxide (Bedard and Knowles, 1989). MMO is the same enzyme used by 

methanotrophs to oxidize methane, thus when there is a sudden increase in ammonia 

there is a reduction in available MMO for methanotrophs (Bedard and Knowles, 1989). 

Second, during this previously mentioned process, the nitrite formed may be toxic to 

methanotrophs and reduce their ability to oxidize methane by inhibiting the formate 

dehydrogenase enzyme (Jollie and Lipscomb, 1990; King and Schnell, 1994). The lack of 

formate oxidation then results in a shortage of reductant for MMO and thus inhibition of 

methane oxidation (Jollie and Lipscomb, 1990; King and Schnell, 1994; Topp and Pattey, 

1997). The end result of these processes means soil treated with urea fertilizer may not be 

an efficient CH4 sink a short period of time following application.  
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 Perhaps the largest impact urea is on N2O emissions. As previously mentioned, 

urea hydrolyzes into NH3 in the soil which equilibrates with NH4+ depending upon soil 

pH (Sigurdarson et al.,2018). This NH3 then undergoes nitrification by soil bacteria from 

Nitrosomonas and Nitrobacter species to form NO3- (Signor and Cerri, 2013). During the 

process of nitrification, N2O gas is released into the atmosphere. Although usually in 

small amounts, losses can be higher when there is higher soil moisture or platy soil 

structure (Signor and Cerri, 2013). Likewise, the increase in soil NO3- from urea 

increases the available soil N for N2O losses due to denitrification (Bremner, 1997). 

 Although little research has been done on GHG emissions from saline soils in SD, 

there is extensive publications on GHG emissions from other soil types in the region as 

well as limited studies on saline soils in other parts of the world. CO2 emissions from a 

non-saline Brandt silty clay loam soil averaged 1318 g ha-1 hr-1 over a 7-day study based 

on the mean of measurements taken 6 times per day in mid-June (Thies, 2018). When 

urea was applied at 224 kg ha-1 CO2-C emissions decreased by 30% to 1010 g ha-1 hr-1 

(Thies, 2018). Soil N2O-N emissions averaged 0.81 g ha-1 hr-1 with no urea and decreased 

to 0.35 g ha-1 hr-1 when urea was added (Thies, 2018).   

 A continuous wheat field had mean CO2 emissions of 488 g ha-1 hr-1, N2O 

emissions of 0.2 g ha-1 hr-1, and CH4 emissions of 0.06 g ha-1 hr-1 when averaged over the 

growing season from mid-June through mid-October (Lai, 2017). A long-term study done 

in Mandan, ND on a Werner–Sen–Chama complex soil reported that a grazed western 

wheatgrass [Pascopyrum smithii (Rybd) Love] prairie had peak flux rates of 2542 g CO2-

C ha-1 hr-1 when averaged over multiple years, and a non-grazed mixed grass prairie had 

an average peak flux rate of 2417 g CO2-C ha-1 hr-1 (Frank et al., 2002). Another 
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experiment in Nesson Valley, ND reported a Lihen sandy loam no-till field planted with 

malt barley (Hordeum vulgaris L.) had a flux of 6042 g CO2-C ha-1 hr-1 with no nitrogen 

applied and 6833 g CO2-C ha-1 hr-1 when 64 kg N ha−1 was applied when averaged from 

May to November (Sainju et al., 2008). In Rasmussen, MT on a Williams loam the mean 

flux from May through November was 3158 g CO2-C ha-1 hr-1 when 78 kg N ha−1 was 

applied (Sainju et al., 2008). During the same time period, in a no till fallow field at the 

Montana site with no nitrogen applied the flux was 1567 g CO2-C ha-1 hr-1 (Sainju et al., 

2008). 

 A laboratory study done on saline-sodic soils from Australia reported CO2-C 

emissions were negatively correlated with soil EC, SAR, and bulk density (Setia et al., 

2011). The mean CO2 emissions of 0.47 g CO2-C kg soil-1 with saline soils at an EC1:5 of 

2.5 dS m-1 was ~50% lower than a non-saline soil with EC1:5 of 0.5 dS m-1 (Setia et al., 

2011).  

Methane is another GHG that also can be emitted from soils, although usually at 

very low levels. A study done by Le Mer and Roger (2001) reported aerobic upland soils 

are mainly a sink for CH4 and rarely have fluxes higher than 1 g CH4 ha-1 hr-1. Orthic 

Black Chernozemic Loam near Saskatoon, Saskatchewan, Canada had a flux of 0.27 g 

CH4 ha-1 hr-1 in July after a 79 mm rain event (Wang and Bettany, 1995). A fine sandy 

loam in Mandan, ND with switchgrass (Panicum virgatum L.) vegetation and 67 kg ha-1 

N fertilizer had mean peak emissions of 620-2500 g ha-1 hr-1 for CO2, 0.01-0.36 g ha-1 hr-

1 for CO2 equivalent of N2O, and -0.16-0.1 g ha-1 hr-1 for CO2 equivalent of CH4 (Schmer 

et al., 2012). Nitrogen fertilizer addition increased CO2 hourly peaks, but not cumulative 

growing season totals; whereas it did increase season long cumulative CO2 equivalent 
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N2O emissions from 27600 g ha-1 in non-fertilized plots to 86300 g ha-1 in fertilized plots 

(Schmer et al., 2012).  

 A study conducted in Bozeman, MT on an Amsterdam silt loam reported that a 

perennial grass-alfalfa (Medicago sativa L.) mix averaged 0.014 g N2O-N ha-1 h-1 over 

the year (Dusenbury et al., 2008). Nitrogen additions increased cumulative N2O-N 

emissions in a wheat-wheat no till system from 145 kg N2O-N ha-1 yr-1 to 656 kg N2O-N 

ha-1 yr-1 when 245 kg N ha-1 was applied (Dusenbury et al., 2008). A laboratory study 

done on a sandy loam soil with an EC of 2.3 and a pH of 8.5 from Lake Texacoco, 

Mexico reported urea additions of 200 mg N kg-1 dry soil increased CO2 emissions by 

170% and N2O emissions by ~765% when compared to nonamended soils at 100% water 

filled pore space (WFPS) (Silva et al., 2008).  

A review of 25 studies concluded no-till fields with poor aeration had higher N2O 

emissions when compared to tilled soils by 2 kg N2O-N ha-1, whereas there was little 

difference in no-till fields with good or medium aeration (Rochette, 2008). These results 

suggest that saline sodic areas, which have poor aeration due to soil dispersion, may have 

high N2O emissions after nitrogen fertilizer addition.  

1.6 PLANT-SOIL INTERACTION AND SALINITY IMPACT ON SOIL 

CHEMICAL PROPERTIES AND GREENHOUSE GAS EMISSIONS 

Impact of Root Exudates on Soils 

 Root exudates are an important component of plants because they are a direct link 

between the plant and the soil rhizosphere. Root exudates are compounds such as 

saccharides, amino acids, organic acids, and secondary metabolites (proteins) released by 

the plant roots into the rhizosphere for the purpose of nutrient uptake, chemical signaling, 
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promotion of microbial growth among numerous other functions (Gargallo-Garriga et al., 

2018; Badri and Vivanco, 2009). Up to 30-40% of a plant’s fixed carbon can be excreted 

during seedling stages (Whipps, 1990). Crested wheatgrass (Agropyron cristatum) 

exuded 5.6-10.4 mg C per plant over a 70-day lab experiment when grown from seed 

(Henry et al., 2007). Whereas wheat plants exuded between 2.6-22.5 mg C per plant over 

a 2-month period when grown from seedlings (Harmsen and Jager, 1962).  

Root exudates impact soil physical, chemical, and biological properties. For 

example, Traoré et al. (2000) reported that both a modelled soluble exudate and natural 

root mucilage from corn (Zea mays) increased the amount of stable soil aggregates by 

3.8-4.2 fold after 30 days compared to a non-treated control. This increase in soil 

structure would be especially important in sodic soils to help limit the effects of sodium 

dispersion and erosion. Root exudates also influence soil CO2 emissions (Traoré et al., 

2000). Simulated exudates added at 2 g C kg-1 soil mineralized the added carbon in 2 

days, and after a 30-day incubation the mineralized carbon totaled 2.82 g C (Traoré et al., 

2000). Compared to a glucose solution that released 1.81 g C, a maize mucilage that 

released 2.07 g C, and a control soil released 0.42 g C after 30 days (Traoré et al., 2000). 

In total, 87% of added C from the modelled exudate solution was mineralized as 

measured by CO2 evolution in the first 75 hrs. The addition of a simulated exudate 

solution in another study reported 85% of added C released as CO2 in the first 76 hours 

(Kunc and Macura,1966). These studies demonstrate the relatively quick metabolism of 

added carbon sources by soil microbes.  

Additions of glucose and amino acids can increase gram negative bacteria 

populations, which are the primary colonizers of plant roots (Rovira and Brisbane, 1967). 
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The addition of 100 μg C g−1 day−1 of synthetic exudate solution increased bacterial 

colony forming units (CFU) by 1.5 Log CFU g-1 dry soil after 14 days (Baudoin et al., 

2003). Therefore, improving plant growth on saline soils also has the potential to help 

recolonize microbially “dead” saline soil through root exudation with subsequent 

microbial population increases. 

Impact of Root Respiration on Soil pH  

Another component associated with plant growth in soil is CO2 respiration from 

plant roots. Roots respire CO2 as a result of metabolism. The buildup of CO2 in the soil 

from plant root respiration impacts soil chemical properties, especially soil pH. As plants 

respire CO2, the CO2 combines with water molecules and forms H2CO3, carbonic acid. 

Over time H2CO3, a weak acid, can reduce soil pH. This is favorable in high pH sodic 

soils where soil pH can be 8 or greater. The decrease in pH can help dissolve free lime 

and gypsum providing increased calcium to exchange with sodium. Increased calcium 

also can help rebuild soil structure. However, research has had mixed results in 

attempting to prove this hypothesis.  

A field experiment in a soil with 0.82% carbonate in which CO2 was injected 60 

cm below the soil surface at 1.0 L min-1 for 8 weeks reported that soil pH increased from 

6.31 to 6.7 at the 15- to 30-cm depth and from 5.89 to 6.39 at the 45- to 60-cm depth 

(Biose et al., 2016). However, in pasture and fallow field plots the soil pH decreased 

from ~6.4 to ~6.0 after 21 weeks compared to controls at the 0- to 30-cm depth (Patil et 

al., 2010). A greenhouse experiment percolated CO2 at 400 mL min-1 for 36 days in 

construction grade mineral soil and increased soil pH from 6.8 to 7.4, whereas N2 

increased pH to 7.5 and no gas treatment final pH was 7.0 (He et al., 2019). 
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 Others argue that CO2 respired by roots may diffuse through soil pores too easily 

to change pH (Nye, 1981). It is unlikely for root respiration to change pH in acidic soils, 

as H2CO3 has its first pKa value at 6.36 (Hinsinger et al., 2003; Lindsay, 1979) However, 

there is a greater potential for CO2 to lower pH in alkaline soils when present in high 

enough concentrations (Hinsinger et al., 2003; Lindsay, 1979). When plants were 

cultivated for 5 months in alkaline saline-sodic soil pH decreased from ~8.5 to ~8.2, 

depending on plant species present (Qadir et al., 1996b). This difference was 

hypothesized to be the result of plant-induced increases in CO2 from root respiration 

(Qadir et al., 1996b). Thus, under the right conditions CO2 respiration from plant roots 

has the potential to induce chemical changes in soil properties such as pH. 

Impacts of Plant Tissue Residue Additions to Saline Soil  

As a result of plant growth in soil, plant residue and organic materials will be 

added to the soil and may impact soil properties. Plant residue is a source of carbon 

addition to the soil and depending on the plant residue makeup, nutrient addition as well. 

The incorporation of kangaroo grass at 10 t ha-1 over 12 weeks to highly alkaline saline 

soils decreased pH from ~10.1 to ~9.2 at the 10- to 20-cm depth but did not impact the 

pH at 0- to 10-cm depth and increased EC1:5 from ~1.7 dS m-1 to ~5.9 dS m-1 in the 0- to 

5-cm depth (Wong et al., 2009). In an acidic saline soil, the pH did not change, which 

remained ~4.5 from 0- to 40-cm. However, EC1:5 at the 0- to 5-cm depth increased from 

~1.7 dS m-1 to ~3.4 dS m-1 (Wong et al., 2009). In both soils, the addition of residue 

increased cumulative soil CO2-C respiration throughout the 12 week study at the 0- to 5-

cm depth in the alkaline soil from ~500 mg CO2-C kg-1 in control to ~1700 mg CO2-C kg-

1 and in the acidic soil from ~700 mg CO2-C kg-1 in control to ~2000 mg CO2-C kg-1 
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(Wong et al., 2009). After 12 weeks, soil microbial carbon in the alkaline soil increased 

from <100 mg C kg-1 in control to ~500 mg C kg-1 and in the acidic soil increasing to 

~700 mg C kg-1 (Wong et al., 2009). In the alkaline soil, the chemical differences were 

attributed to residue decomposition processes, which produced organic acids, thereby 

reducing the pH (Wong et al., 2009). It was proposed this difference was not seen in the 

acidic soil because the pH was already low and thus not easily influenced by weak acids 

(Wong et al., 2009). The increase in EC was attributed to the increase of ions present due 

to mineral dissolution or organic acids produced (Wong et al., 2009). The increases in 

microbial biomass and respiration were likely results of short-term substrates provided by 

the residue which relieved osmotic stresses (Wong et al., 2009).  

The addition of 1% Hemp sesbania residue to artificially salinized soils increased 

CO2 evolution and microbial activity at saturated paste EC levels of up to 26 dS m-1 (Rao 

and Pathak, 1996). However, after the 90-day study there were no significant differences 

in soil microbial biomass in saline soils treated with residue compared to control (Rao 

and Pathak, 1996). After 5 months and 4 pore volumes of leachate, the addition of 

pistachio residue at 50 g kg-1 reduced Na levels from ~25 meq L-1 in the control to ~15 

meq L-1 and reduced EC from of 4.0 dS m-1 initially, to 3.6 dS m-1 (Mahmoodabadi et al., 

2013). 

The addition of corn residue at 20 g kg soil-1 to artificially salinized soil incubated 

at soil moisture of 0.17 or 0.25 g g-1 for 47 days induced changes in the soil respiration 

(Li et al., 2006). During the first 3 days, soils with higher salinity levels had lower CO2 

evolution at both moisture contents compared to lower salinity levels. During days 4-32 

the higher salinity level soils had higher CO2 evolution. However, from days 33-47 CO2 
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evolution from both soil types was similar (Li et al., 2006). It was hypothesized that the 3 

day delay in the saline soil was a function of microbial acclimation to saline soils and 

once acclimated corn residue was metabolized (Li et al., 2006). Additionally, the higher 

salinity soils had increased SAR levels up to 4.97 which could cause aggregate dispersion 

and release organic carbon that had been protected inside the aggregates (Li et al., 2006). 

The cumulative CO2 respired during the 47 day study was 15% higher in the 0.25 g g-1 

moisture treatment compared to the 0.17 g g-1 treatment when averaged across salinity 

levels (Li et al., 2006). The 0.17 g g-1 moisture soil cumulative CO2 emission was higher 

in the elevated saline soils at 739 mg CO2 (50 g soil)-1 [9.57 dS m-1 using saturated paste] 

compared to 693 mg CO2 (50 g soil)-1 [5.35 dS m-1]; whereas in the 0.25 g g-1 moisture 

level the elevated saline soils were similar to the control in cumulative emissions 

averaging ~821 mg CO2 (50 g soil)-1 (Li et al., 2006).  

Other studies have investigated the impacts of residue additions to soil pH. When 

faba beans (Vicia faba) were cultivated for 45 days and the accumulated biomass was 

added back to the soil, pH increased from 5.64 to 6.29 as a result of organic anions and 

nitrogen released during residue decomposition (Yan et al., 1996). The increase in pH 

due to residue additions was also reported when 19 g faba bean or wheat (Triticum 

aestivum) residues were added to 4.95 kg soil and pH increased from 6.2 to 6.6 with faba 

bean and to 6.4 with wheat residue. However, residue decomposition also can decrease 

pH, if nitrification is an active process taking place (Yan et al., 1996). 

An experiment quantified the impacts of maintaining either canola (Brassica 

napus L.) or wheat straw residue on the soil surface during the growing season on soil 

quality and GHG emissions and reported that during both years cumulative N2O-N 
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emissions were similar in residue and no residue treatments (Malhi et al., 2006). When 

8.23 Mg ha-1 of residue over 3 yrs were left on the soil surface in a no-till corn-soybean 

rotation, CO2 emissions were 24% less than when residue was removed (Al-Kaisi and 

Yin, 2005). This is hypothesized to have occurred due to minimal residue decomposition 

on the soil surface which also acted as a barrier between the soil surface and the 

atmosphere, so gas exchange was minimized (Al-Kaisi and Yin, 2005). Residues reduced 

soil temperatures slowing mineralization as well (Al-Kaisi and Yin, 2005). Maintaining 

plant residue on the soil surface can also help relieve salt issues by reducing water 

evaporative losses, minimizing capillary rise (Cardon et al., 2014).  

Impact of Plant Systems Growth on Saline Soils   

To fully understand how plant growth impacts saline soils and GHG emissions, 

all the individual plant components must be combined. When a plant establishes in a 

saline soil it will exude carbon substances from its roots into the soil and also respire CO2 

into the soil atmosphere. Additionally, as the plant matures it will drop matured leaves 

and add organic material to the soil which can return ions and Na to the soil that the plant 

had taken up. This full plant system is important to understand as a whole, as different 

components of plant growth interact with each other and may produce net neutral impacts 

on soil.  

One of the ways plant growth may influence saline soils is through nutrient 

uptake. Nitrogen is a key element that plants use in the soil for growth and in the process 

changes in pH can occur. When plants extract nutrients from the soil, they must also 

exude an equally charged ion to maintain electrical balance within the plant (Youssef and 

Chino, 1989). Saline soils found in crop production areas can be high in nitrogen as a 
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result of over-fertilization and lack of plant growth to utilize the nitrogen. Therefore, if 

plants were to be reestablished on these soils, there may be an abundance of nitrogen in 

the soil. This can result in high plant tissue nitrate levels, which in high enough 

concentrations can be toxic to livestock (Vermunt and Visser, 1987; O'Hara and Fraser, 

1975).  

Depending on the form of the nitrogen present, the uptake of excess nitrogen 

could result in soil pH changes. Since NO3- is an anion, the uptake by plants would likely 

result in the addition of HCO3- or OH- ions from roots and increase soil pH, whereas the 

uptake of nitrogen in the form of NH4+ would result in H+ ion additions and thus lower 

pH (Walker, 1960; Kirkby, 1968; Grinsted et al., 1982; Nye, 1981). Several studies have 

observed the effects of pH change due to nitrogen uptake.  

When corn was grown in pots for 50 days, the soil pH increased with a 

concomitant decrease in EC due to nitrate and ion uptake by plant roots (Yanai et al., 

1995). When rape (Brassica napus, var. Emerald) with high root density was grown in 

phosphorus deficient soil, pH decreased as much as 2.4 units from day 14 to day 28 

(Grinsted et al., 1982). This was attributed to an imbalance of cation-anion uptake by the 

plant. During the time of pH decrease, there was more calcium uptake than nitrate uptake 

resulting in an imbalance and a net increase in H+ to the soil. This hypothesis was 

confirmed, as the amount of H+ required to result in the observed pH change matched the 

difference of milliequivalents between cations and anions during the same time period 

(Grinsted et al., 1982).  

Different nitrogen sources can likewise influence the impact that plants have on 

soil pH changes as a result of plant N uptake (Marschner and Römheld, 1983). When 
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nitrate was applied as a nitrogen source in corn, soil pH increased from 6.0 to 7.5 

(Marschner and Römheld, 1983). However, when ammonium was used the pH decreased 

to 4.0 (Marschner and Römheld, 1983). These results vary however; when applied to 

legume crops such as chickpea (Cicer arietinum) and white clover (Trifolium repens) pH 

changes were opposite of those found in corn (Marschner and Römheld, 1983). In 

soybean (Glycine max (L.) Merr.), when nitrate initially composed 40% of total anions in 

the soil, and bicarbonate 0%, the rhizosphere soil increased in pH from 5.9 to 6.3 after 2 

weeks of soybean growth (Riley and Barber, 1969). The bicarbonate levels also increased 

to ~20% of anions in rhizosphere soil during this time. However, when initial nitrate 

anion composition was increased to 75%, the rhizosphere soil increased in pH from 6.3 to 

7.0. Also, bicarbonate levels in the 75% nitrate experiment increased to ~55% which was 

the result of higher anion uptake than cations by the plants (Riley and Barber, 1969).  

Other studies however, observed that the initial bulk soil pH, and not nitrogen 

source, determine how plants influence soil pH. For example, Youssef and Chino (1989) 

reported that after 8 weeks of growth, both soybeans and barley increased pH from 5 to 7 

in both a sandy and clay loam soil. This study also reported a decrease in soil pH around 

the root zone to ~7 when the initial bulk soil pH was 8.5. Therefore, depending on 

nutrient uptake and initial soil pH levels, plant revegetation could either increase or 

decrease soil pH in soils (Youssef and Chino, 1989).  

In addition to pH, other soil chemical properties can be influenced by plants. The 

use of kallar grass (Leptochloa fusca) as a cropping treatment in a leaching study on a 

highly saline sodic soil with an EC of 9.8 dS m-1, pH of 9.1, SAR of 103, and Na of 88 

mmolc kg-1 reduced soil EC to 2.9 dS m-1 compared to 4.3 dS m-1 in the control with no 
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plant growth after 4 leaching cycles totaling 13.7 L of leachate (Qadir et al., 1996a). 

Additionally, SAR was reduced to 20 compared to 42.3 in the control and the pH was 

reduced to 8.2 compared to 9.0 in the control (Qadir et al., 1996a). The changes could 

have been due to root dissolution of free lime in the soil which then replaced sodium on 

clay exchange sites, making the sodium leachable through root channels (Qadir et al., 

1996a). Also, the sodium reductions could have been the result of plant uptake (Qadir et 

al., 1996a; Abdullah, 1985). Another experiment used three crop treatments which 

included sesbania (Sesbania aculeata Pers.), sordan [Sorghum bicolor (L.) Moench × 

Sorghum Sudanese (Piper) Stapf], and kallar grass grown on field plots ranging in EC 

from 7.4-8.8 dS m-1 and SAR from 55.6-73.0 (Qadir et al., 1997). After two growing 

seasons and 2 harvests where biomass was removed, the non-planted control plot EC 

decreased by 1.0 dS m-1 whereas the cropping treatments of sesbania, sordan, and kallar 

grass had reductions of 3.1, 1.8, and 2.5 dS m-1, respectively. Sesbania, sordan, and kallar 

grass also reduced SAR by 25.5, 22.3, and 25.4 units, respectively, compared to control 

of 8.9 units (Qadir et al., 1997). These reductions were attributed to both increased ion 

exchanges with sodium and leaching of sodium as well as plant uptake in aboveground 

biomass (Qadir et al., 1997). The effectiveness of salt and sodium leaching however 

depends on the permeability of the salt-affected soil. 

A review done by Jesus et al. (2015) identified several methods by which plants 

grown in saline or saline-sodic soils could remediate the soil. Methods for salt removal 

included direct plant uptake by roots and improving soil structure which could improve 

salt leaching. Identified methods for sodium removal included the two aforementioned 

pathways, as well increases of the pCO2 in the soil. Increases in pCO2 is can result from 
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plant root respiration as well as microbial respiration, which can be stimulated directly by 

plants themselves as well as indirectly through increased organic matter (Jesus et al., 

2015; Qadir et al., 2000; Qadir et al., 2006b; Rabhi et al., 2009). These methods were 

also proposed by a review done by Qadir et al. (2006a); where proposed methods of 

phytoremediation for saline-sodic soils included increased pCO2 to increase dissolution 

of CaCO3, release of H+ by roots to reduce pH as well as directly exchange with Na+ on 

clay exchange sites, and uptake by plants directly.  

Plants may also be able to alter GHG emissions associated with saline soils as 

well. Saline soils in SD are often wet due to poor drainage and occurrence in areas with a 

high-water table. A 10-day study done by Adviento-Borbe et al. (2006) investigated the 

impacts of salinity and water content of soils under corn growth. As soil EC increased 

from 0.5 dS m-1 to 2.0 dS m-1, cumulative soil CO2 emissions decreased from 50.6 kg 

CO2-C ha-1 to 36.6 kg CO2-C ha-1 and N2O emissions decreased from 20 g N2O-N ha-1 to 

8.6 g N2O-N ha-1 when soil moisture was at 60% WFPS. This was hypothesized to be the 

result of inhibited microbial activity and respiration (Adviento-Borbe et al., 2006). 

However, when WFPS was 90%, N2O emissions were 2 to 40 times higher than when 

soils were at 60% WFPS (Adviento-Borbe et al., 2006). When EC increased from 0.5 dS 

m-1 to 2.0 dS m-1 at 90% WFPS, N2O emissions increased from 37.7 g N2O-N ha-1 to 343 

g N2O-N ha-1; whereas CO2 emissions decreased from 43.9 kg CO2-C ha-1 to 30.6 kg 

CO2-C ha-1 (Adviento-Borbe et al., 2006). It is hypothesized in the 90% WFPS treatment, 

denitrifying bacteria tolerated higher salinities than nitrifying bacteria, hence why N2O 

increased with higher moisture content and EC (Adviento-Borbe et al., 2006).  
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A review found saline soils have reduced CO2 emissions as a result of reduced 

microbial and enzymatic activities (Rastogi et al., 2002). This was documented by Pathak 

and Rao (1998) as well, where Sesbania residue was added to soils with different EC 

values and monitored for 90 days. Soils with crops had 2-3 fold higher CO2 emissions 

compared to barren soils (Rastogi et al., 2002). Residue amended soils had less 

cumulative CO2 emissions ranging from 2.1 g kg soil -1 to 0.89 g kg soil-1 with increasing 

ECe values from 1.1 dS m-1 to 96.7 dS m-1 (Pathak and Rao, 1998). Unamended saline 

soils from Australia had cumulative CO2-C emissions of 0.6 g kg soil-1 at EC1:5 of 0.5 dS 

m-1 but only 0.3 g kg soil-1 at EC1:5 of 2.5 dS m-1 after 120 days (Setia et al., 2011). This 

was attributed to the saline soils having inhibited microbial activity due to osmotic 

stresses.  

Based on the information presented there are several knowledge gaps, especially 

for South Dakota saline soils. These include how various practices and processes may 

produce different outcomes in Northern Great Plains soils. Salt-affected soil in South 

Dakota commonly has low infiltration and permeability, but high gypsum and free lime. 

This may decrease the effectiveness of leaching salts down the soil profile, especially 

where the water table is high, as well as gypsum application to improve soil structure and 

sodium removal. Phytoremediation may have potential in South Dakota, however there 

are very limited publications which go beyond species tolerance studies and into the 

effectiveness of phytoremediation at reducing salinity and sodicity in the Northern Great 

Plains. Additionally, while greenhouse gases have been well documented in non-saline 

soils, there are no publications which have measured saline soil greenhouse gas emissions 
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in the Northern Great Plains and how revegetating saline soils may impact these 

emissions.  

The overall goal of this research is to better understand how saline soils in South 

Dakota function and respond to phytoremediation as a reclamation method. In these 

research studies, specific information regarding saline soils in South Dakota were 

conducted to determine which salt tolerant species were best suited for Eastern South 

Dakota, quantify how vegetation and fertilizer management practices influence 

greenhouse gas emissions from saline soil, and what impacts plants have on soil 

properties in response to root respiration, root exudates, and residue additions.  
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CHAPTER 2: PERENNIAL GRASS MIXTURES AND CORN IMPACTS ON 

SALINE-SODIC SOIL CHEMICAL AND VEGETATIVE PARAMETERS IN 

SOUTH DAKOTA  

2.1 ABSTRACT 

 A multitude of research had been done on the use of phytoremediation in salt 

affected soil. However, most of these studies are from the Middle East, with soils 

different from those in South Dakota. This study was conducted in 2018 and 2019 to 

determine if establishing perennial grasses on salt affected soils in the Northern Great 

Plains could improve soil chemical properties, weed control, and biomass production. 

Two grass mixes (mix 1: beardless wildrye and slender wheatgrass; mix 2: AC Saltlander 

green wheatgrass, creeping meadow foxtail, western wheatgrass, and slender wheatgrass) 

were established on a non-saline Forman-Cresbard loam (EC1:1 <1.3 dS m-1) as well as a 

transitional (EC1:1 2.3-3.0 dS m-1) and saline (EC1:1 >3.5 dS m-1) Cresbard-Cavour loam 

and compared to corn. Corn and perennial grass mixtures influenced soil electrical 

conductivity (EC1:1), pH, sodium (Na), Na:EC1:1, NO3-, and NH4+ similarly. In 2018 mix 

1 produced the least biomass at ~2000 kg ha-1, whereas in 2019 both grass mixtures 

produced more biomass (10500 kg ha-1) than corn (1800 kg ha-1). In 2019 saline soil, 

weed cover and weed biomass were lower in grass treatments (mix 1=16%, mix 2=3% 

weed cover)(mix 1=850 kg ha-1, mix 2=150 kg ha-1 weed biomass) than corn (75% weed 

cover)( 2475 kg ha-1 weed biomass). Results indicated that >1 year may be required to 

quantify potential benefits of perennials to soil EC and Na reductions. Also, results may 

be weather dependent, as 2019 had significantly higher precipitation than 2018. Grass 
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mixtures, once established can revegetate marginal saline soils, suppress weeds better 

than corn, and produce more biomass without additional fertilizer. 

2.2 INTRODUCTION 

Saline soils are in need of remediation efforts because elevated salt concentrations 

inhibit plant growth which leaves the soil barren and at risk for compaction and erosion. 

In addition, salt moves by wind to new areas, increasing salinity in areas at higher 

elevations. Phytoremediation is the use of plants to renovate poor soil conditions. 

Phytoremediation of saline soils requires the establishment of salt tolerant crops to 

solubilize calcite and improve soil physical properties by root respiration (Qadir and 

Oster, 2002). Reducing soil pH through formation of carbonic acid from root respiration 

can increase dissolution of free lime in the soil, making more calcium available for 

exchange with sodium (Qadir et al. 2000, 2006a; Rasouli et al. 2013; Walker et al. 2014). 

In addition, plant roots would create pores for air and water infiltration and root exudates 

could help rebuild soil structure. These benefits would restore soil health quicker than 

chemical remediation alone. Plant growth would also add organic matter to the soil 

through residue helping build soil structure and provide soil microbes food sources to 

stimulate activity. Perhaps most importantly, if perennial plants are established, a deep 

root system would utilize excess water from both surface inputs and subsurface (shallow 

aquifer) sources.  

Plants can also remove salts, specifically sodium, through accumulation in 

biomass. However, the effectiveness of plant uptake is debated, with some authors 

suggesting little success in reducing sodium levels as plant litter would return the sodium 

to the soil unless physically removed (Qadir et al., 2000; Minhas et al. 2007; Shekhawat 
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et al. 2006; Gharaibeh et al. 2011). However, others reported reductions in soil sodium 

levels by plant accumulation (Rabhi et al., 2009, 2010; Ammari et al. 2013; Shelef et al. 

2012). Jesus et al. (2015) proposed a hypothetical scenario and found that in a medium 

textured soil, with a goal of reducing the EC from 20 dS m−1 to 4 dS m−1, that using 

Sesuvium portulacastrum (the species found to remove the most salt in the study review) 

could reduce the 10.725 ton ha-1 of salt in 2 years strictly through plant removal to attain 

the goal of 4 dS m-1. Jesus et al. (2015) also reviewed eight studies looking at the impact 

of plant growth and chemical amendments had on reducing soil EC and SAR. Jesus et al. 

(2015) found trends indicating that phytoremediation and chemical amendments had 

similar results in EC reduction; whereas phytoremediation, with a few exceptions, had 

higher reductions in SAR. A review found that after just 1 year, Kallar grass (Laptochloa 

fusca) reduced soil EC from 22.0 dS m−1 in the top 20 cm to 12.6 dS m−1 (Ashraf et al., 

2010). After 5 years there was an 87% reduction from the starting EC compared to an 

uncropped control (Ashraf et al., 2010). This same study found a reduction in pH from 

10.4 to 8.9 after 5 years and a reduction in SAR from 185.5 to 20.7 (Ashraf et al., 2010).  

Qadir et al. (2006b) reviewed several phytoremediation studies and reported a 

general trend that phytoremediation reduced EC and SAR at rates similar to chemical 

amendments such as gypsum but also provided the benefits of no chemical purchase, 

income provided by the sown crop, added soil stability and porosity, improvements at 

greater soil depths, higher carbon sequestration, and productive use of marginal lands. A 

study done on a calcareous soil in Pakistan found that after one year of growth, Sesbania 

(Sesbania aculeate) and Kallar grass both reduced soil EC greater than gypsum treatment 

compared to the control (Ahmad et al., 1990). Sesbania and Kallar grass reduced the EC 
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by 47.4% and 38.5%, respectively, compared to gypsum which reduced EC by 25.5% 

(Ahmad et al., 1990). However, all three of the treatments had similar reduction in SAR 

after two years and none of the treatments reduced soil pH (Ahmad et al., 1990).  

A 2-month laboratory study done by Qadir et al. (2003) on an artificially 

calcareous saline–sodic soil compared gypsum application to alfalfa (Medicago sativa) 

growth in soil columns that were then subjected to 10 days/cycles of leaching (wetted to 

130% water holding capacity once per day). The authors reported that gypsum was more 

effective at sodium removal in the earlier leaching cycles, but at the end of the 

experiment the chemical and phytoremediation treatments removed similar amounts of 

sodium in leachate at ~37 mmol Na, whereas plant uptake in tissue only accounted for 

1.6% of Na removal from the soil. 

Another study done by Ilyas et al. (1997) found that after one-year alfalfa 

treatment and crop rotation treatment (sesbania-wheat-sesbania) reduced SAR to ~29, 

compared to fallow control at 46. Singh et al. (2013) found that rhizospheric soil samples 

from Bermuda grass in a salt affected soil had significantly lower pH, EC, ESP, and SAR 

compared to non-rhizospheric samples. These differences were attributed to plant soil 

interactions such as CO2 root respiration, root exudates, and increases in organic carbon 

and enzyme activity (Singh et al., 2013).  

Most of these studies attribute the soil improvement and reductions in soil salinity 

to increased leaching of salts through root channels and dissolution of free lime in the soil 

from root respiration (Ashraf et al., 2010; Qadir and Oster, 2002; Qadir et al. 2000, 

2006a; Rasouli et al. 2013; Walker et al. 2014). However, many of the species in these 

studies are not ideal for the Northern Great Plains soil types.  
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Salt tolerant species that are suited for the Northern Great Plains include species 

such as slender wheatgrass, beardless wildrye, green wheatgrass, western wheatgrass, and 

creeping meadow foxtail. Slender wheatgrass is a cool season bunchgrass with a 

relatively short lifespan of 3-5 years (Tilley et al., 2011). It is suitable for grazing with 

high protein content and establishes quickly with high vigor to prevent erosion while 

slower growing species establish such as beardless wildrye (Tilley et al., 2011).  

Beardless wildrye is a cool season, sod forming salt tolerant species which is 

strongly rhizomatous and can tolerate saline and wet soil conditions as well making it 

well suited for saline soils (Young-Mathews and Winslow, 2010). It is a good candidate 

for soil stabilization as it is sod forming and can tolerate erosion sedimentation up to 12 

inches and high waterflow (Young-Mathews and Winslow, 2010). Beardless wildrye is 

palatable to livestock when is young and can provide valuable waterfowl habitat (Young-

Mathews and Winslow, 2010).  

Creeping meadow foxtail is a cool season introduced species with very large 

rhizomes forming a dense sod (Tilley et al., 2004). Creeping meadow foxtail does not 

undergo dormancy in the summer and provides a good source of forage for haying or 

grazing with minimal recovery time (Tilley et al., 2004). Additionally, creeping meadow 

foxtail is tolerant of wet soils, very winter hardy, and provides beneficial wildlife habitat 

(Tilley et al., 2004). 

Western wheatgrass is a slow to establish cool season native species with a sod 

forming rhizomatous growth pattern (Ogle, 2000). Western wheatgrass usually has poor 

germination and does not compete well against vigorous introduced species and therefore 
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may take up to four years to establish well (Ogle, 2000). Western wheatgrass provides a 

good forage source with high protein early in the season before it matures (Ogle, 2000).  

AC Saltlander green wheatgrass is a hybrid wheatgrass cultivar created from 

crossing Eurasian bluebunch wheatgrasses with quackgrass (Hybner et al., 2014). AC 

saltlander is a cool season species with high salinity tolerance and moderately aggressive 

rhizomes (Hybner et al., 2014). It is a long-lived perennial that stays green longer in the 

season than other wheatgrass species making for high forage quality and recovers quickly 

from haying or grazing (Hybner et al., 2014). AC saltlander is well suited for erosion 

control and also competes strongly against weeds (Hybner et al., 2014).  

Objectives 

 The objectives of this experiment were to measure and compare two different 

perennial grass mixtures and corn based on establishment and growth in a saline-sodic 

field over two growing seasons. The influence of these treatments on soil chemical 

properties, biomass production, and weed suppression also was determined. 

2.3 MATERIALS AND METHODS 

Study Site 

 The experiment was conducted in a field setting located at 44° 42' 11.6388'' N, 

97° 52' 43.8312'' W in Clark County, SD in the James River watershed. The field had 

summit positions on the east and west sides of the field and a depression running down 

the middle going north and south. The soil classification for the elevated east and west 

sides of the field was a Forman-Cresbard loam (Soil Survey Staff, 2018). The Forman 

series is considered well drained and is a fine-loamy, mixed, superactive, frigid Calcic 

Argiudoll. The Cresbard series is considered moderately well drained and is a Fine, 
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smectitic, frigid Glossic Natrudoll. The soil classification for the depression running 

north and south was a Cresbard-Cavour loam. The Cavour series is a Fine, smectitic, 

frigid Calcic Natrudoll (Soil Survey Staff, 2018). According to the National Oceanic and 

Atmospheric Administration (NOAA) (2019) the 30-year average annual precipitation 

(1981-2010) for Clark, SD is 60.4 cm and the average annual temperature is 6.2 °C.  

Experimental Design 

The overall experimental design was a split block design with four replications 

within each zone. Zones were low salinity, moderate salinity, and high salinity. Each 

zone had four treatment levels: corn planted in spring, mix 1 and mix 2 which were over 

seeded as a dormant seeding in both year 1 and 2, and areas where no vegetation was 

planted.   

Field Management 

The field was dormant seeded with two perennial grass mixtures in 13.7 m wide 

strips on December 15, 2017 with a Truax Company, Inc. FLEX-II drill (Traux 

Company, Inc., New Hope, MN) at 6 mm depth. The first mixture, designated mix 1, 

consisted of Shoshone beardless wildrye (Leymus triticoides (Buckl.) Pilger) planted at 

3.9 kg ha-1 of pure live seed (PLS) and Certified First Strike slender wheatgrass (Elymus 

trachycaulus (Link) Gould ex Shinners) planted at 3.9 kg ha-1 PLS. The second mixture, 

designated mix 2, consisted of AC Saltlander green wheatgrass (Elymus hoffmannnii) 

planted at 3.6 kg ha-1 PLS, Garrison creeping meadow foxtail (Alopecurus arundinaceus 

Poir) planted at 2.2 kg ha-1 PLS, western wheatgrass (Agropyron smithii Rydb) planted at 

6.7 kg ha-1 PLS, and Certified First Strike slender wheatgrass planted at 2.2 kg ha-1 PLS. 

DeKalb DKC45-65RIB (Monsanto Co, St. Louis, MO) 95-day Smartstax corn (Zea mays 
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L.) on May 17, 2018 at a rate of 79,000 seeds ha-1 in 0.76 m wide rows. However, during 

planting there was a planter error and seed was planted 2.5-cm deep rather than 5-cm, 

resulting in a reduced stand by ~45%.  

The treatments were repeated in 2019, however the grass mixtures were seeded 

over each other in the same 2018 strips of existing grass stand on October 24, 2018 as a 

dormant seeding at the same rate and depth as in 2017. Corn was planted at a 5-cm depth 

on May 31st, 2019 at a rate of 79,000 seeds ha-1 in the same area as 2018, with rows offset 

from the 2018 rows. Variety was DKC40-77RIB (Monsanto Co, St. Louis, MS) which is 

a 90 day Smartstax hybrid. No fertilizer was applied in any treatments. 

Weed management was required both years due to high weed densities of kochia 

(Kochia scoparia L.). The plot area was sprayed on June 6, 2018 with Engeniaâ herbicide 

[3,6-Dichloro-o-anisic acid (0.56 kg ae ha-1)] at a rate of 935 mL ha-1 with water as 

carrier applied at a rate of 187 L ha-1 with TT11003 nozzles (TeeJet Technologiesâ, 

Wheaton, IL) at 207 kPa. On June 21, 2018 the area, except corn plots, was mowed to a 

12-cm height using a King Kutterâ lift rotary mower model L-60-40-P (King 

Kutterâ,Winfield, AL). On June 27, 2018 the field was sprayed with a tank mix of 

Callistoâ , BROCLEANâ, and Destiny HCâ with 8002VS nozzles (TeeJet 

Technologiesâ, Wheaton, IL) at 276 kPa. Callistoâ (mesotrione)[2-(4-thysulfonyl-2-

nitrobenzoyl)-1,3-cyclohexanedione] was applied at 219 mL ha-1 (0.105 kg ai ha-1). 

BROCLEANâ (bromoxynil)(3,5-dibromo-4- hydroxybenzonitrile) was applied at 438 

mL ha-1 (0.072 kg ae ha-1). Destiny HCâ (high surfactant oil concentrate) was applied at a 

rate of 0.25% v/v. Water carrier for this tank mix was applied at 122 L ha-1. The entire 

plot area, excluding corn, was mowed on September 12, 2018 to a height of 17-cm.  
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In 2019, the plot area was sprayed on June 6th with Starane NXTâ  (fluroxypyr) 

[((4-amino-3,5-dichloro-6-fluoro-2-pyridinyl)oxy)acetic acid, 1-methylheptyl ester] 

(0.102 kg ae ha-1) plus bromoxynil [2,6-dibromo-4-cyanophenyl octanoate] (0.41 kg ae 

ha-1). This was applied with water carrier at 150 L ha-1 with 8002VS nozzles (TeeJet 

Technologiesâ, Wheaton, IL) at 276 kPa. The fallow and corn plots were sprayed a 

second time on July 26, 2019 with 2338 ml ha-1 of Roundup Powermaxâ (glyphosate, N-

(phosphonomethyl) glycine) (1.26 kg ae ha-1), ChemsurfTM at 0.5 % v/v, ammonium 

sulfate at 2% w/v, and Callistoâ was applied at 219 mL ha-1 (0.105 kg ai ha-1). This was 

applied with water carrier at 150 L ha-1 with 8002VS nozzles (TeeJet Technologiesâ, 

Wheaton, IL) at 276 kPa. 

Data Collection 

Three zones were designated in each strip of vegetation in early July 2018 after 

plant emergence: 1) Good: plant growth did not appear limited by soil conditions, 2) 

Transition: plant growth was stunted with lower stand establishment, and 3) Saline: plant 

growth was severely impacted with few or no emerged plants. During the growing 

seasons of 2018 and 2019, multiple parameters were measured in each zone.  

Soil samples were collected from each zone in all vegetation treatments from 0- to 

15- cm and 15- to 30-cm depths in mid-July (VT corn growth stage). Samples were dried 

at 37.8 °C, ground, and sieved to < 2 mm. Samples were tested for EC1:1 (electrical 

conductivity), pH, NO3-, NH4+, Na, and Na:EC. EC1:1 was measured using an Orion Star 

A215 (Thermo Scientific, Waltham, MA) and pH was measured using a 1:1 soil to water 

ratio using an Accumet Excel XL60 pH meter with the same soil slurry, with EC 

measured first (Fisher Scientific, Hampton, NH) following methods described by Grafton 
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(2015). This was performed with 10 g oven dried soil and 10 mL nano-pure filtered water 

which was stirred immediately and after 15 min. Measurements were taken 30 min after 

water addition. NO3- and NH4+ was measured using an Astoria Nutrient Analyzer 

(Astoria-Pacific, Inc. Clackamas, OR) following methods described in Maynard and 

Karla (1993) in which extraction was performed with 10 g soil using 100 ml 1.0 M KCl, 

shaken for 1 hr, and filtered through fine porosity Ahlstrom filter paper. Na was extracted 

using 1 M ammonium acetate at pH 7.0 following methods in (Grafton, 2015) of a 1:10 

soil to extract ratio which is shaken for 5 min at 200 evolutions per minute (epm) and 

filtered through Whatman No. 2 filter paper and measured on a Jenway PFP7 flame 

photometer (Cole Parmer, Staffordshire, UK). 

In grass mixtures the % ground cover and % species composition of desired 

ground cover were visually evaluated in mid-July 2018 and 2019. Samples for total 

biomass were collected and separated by species on September 10, 2018 and July 11, 

2019 at species maturity. Species matured earlier in 2019 due to greater precipitation, 

higher temperature, and less weed competition. Biomass samples were collected in 2018 

from two 1-m2 areas and in 2019 from two 0.1 m2 areas from representative areas of each 

zone. The larger sample area in 2018 was used due to sparse growth for a more 

representative measurement. 

Two stover biomass samples were collected from each corn plot zone on 

September 11, 2018 and August 29, 2019 when corn was at R5 growth stage. In 2018 the 

stover biomass samples were collected from 5.3 m of row and in 2019 from 2.7 m of row. 

Grain yield data were collected in 2018 but not 2019 due to weed pressure and no 

fertilization. 
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The % weed ground cover in early June was estimated in 2018 and 2019 from a 

saline and non-saline site for each block and treatment. In 2019 weed biomass was 

sampled on July 11, 2019. 

All biomass samples were placed in paper bags and dried at 60°C for 72 hours, or 

until constant weight was achieved, in a forced air drier. Samples were weighed for dry 

matter.  

Statistics 

For statistical analysis of vegetation biomass as a function of specific soil 

properties, a linear regression approach was used. The linear regression model was as 

follows: 

! = #! + #"% + & 

 Where #! is the biomass of the soil test parameter, #" is the change in biomass 

with each unit change in % which is the soil test parameter being modeled; this would 

include soil EC1:1, Na, and Na:EC1:1. & is the random error. For each linear regression, 

bootstrapping was performed with 5000 replications to generate 90% confidence intervals 

for each model’s intercept and slope using the resampling package (Wu, 2019) in R (ver. 

1.1.383) (R Core Team, 2017).  

ANOVA was performed in R (ver. 1.1.383) (R Core Team, 2017) for statistical 

analysis of total grass, corn, and weed biomass, grass species biomass, % ground cover, 

and % weed cover on plots. The ANOVA model is as follows: 

!#$ = ' + (#+#$ + &#$ 

 Where !#$ is the outcome of the measured variable (biomass, % ground cover, 

etc.). ' is the overall grand mean of the measurements. (# is the treatment effect of the ith 
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treatment (species, vegetation plot). #$ is the blocking effect of the jth observation and &#$ 

is the random error. Following ANOVA, if the P value was <0.05, a LSD post-hoc test 

was done for mean comparisons using the package agricolae in R (De Mendiburu, 2009). 

2.4 RESULTS AND DISCUSSION 

Environmental Conditions 

 The total annual precipitation in 2018 was 536 mm, which was 68 mm less than 

the 30-year normal (1981-2010) of 604 mm (Table 2.1). In 2018, the first half of the year 

had below average precipitation during the months of January through July (Table 2.1). 

The latter half of the year from August through December generally had more 

precipitation than normal with the exception of September and December which were 

also below normal (Table 2.1). Average monthly temperatures during 2018 were below 

normal from January through May and October through November (Table 2.1). July 

through September and December average monthly temperatures were above average in 

2018 (Table 2.1).  

 In 2019, January through August had above average precipitation with the 

exception of June which was 25 mm below normal. Average monthly temperatures in 

2019 were below normal from January through May and the month of August (Table 

2.1). June and July had above average monthly temperatures by ~1°C (Table 2.1).  
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Table 2.1. Monthly Mean Precipitation and Average Temperature for Clark, South 

Dakota for 2018-2019 and Historical 30-Year Average (1981-2010).  

 

Collected from Clark, South Dakota weather station ID CLARK NUMBER 2, SD US 

located at 44° 52' 54.84'' N, -97° 44' 3.12'' W. Data obtained from the NOAA (National 

Oceanic and Atmospheric Administration). 

 
 
Soil Tests 

0- to 15- cm Depth 

 There were minimal differences among soil test results in vegetation treatments. 

Therefore, soil data were averaged across vegetation treatments within corresponding soil 

zones, which were then compared.  

In 2018 the pH, Na:EC, and NO3-N soil test levels were similar among the three 

sampling zones, averaging 7.35, 415, and 51 ug g-1, respectively (Table 2.2). Soil EC1:1 

2018 2019
30 Year 
Normal

2018 2019
30 Year 
Normal

January 0 25 13 -11.1 -12.2 -10.8
February 14 31 14 -13.9 -16.7 -8.2

March 7 58 31 -2.2 -5.3 -1.7
April 37 78 50 -0.6 6.1 6.4
May 51 197 75 10.6 10.8 13.4
June 54 75 100 21.7 19.7 18.7
July 81 171 89 22.2 22.5 21.9

August 83 139 72 21.1 20.3 20.7
September 58 - 71 16.7 - 15.2

October 59 - 52 5.6 - 7.6
November 79 - 23 -3.9 - -1.2
December 14 - 14 -4.3 - -8.8

Total 536 - 604 - - -

----------------- °C -----------------

Month
-------Precipitation------- ----Average Temperature (°C)----

----------------- mm ------------------
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was highest in the saline zone as expected and measured 3.97 dS m-1, whereas non-saline 

and transition zones were 1.18 and 2.62 dS m-1, respectively (Table 2.2). Sodium was 

highest in the saline zone at 1744 ug g-1 wheras the non-saline zone was 388 ug g-1 (Table 

2.2).  

In 2019 pH decreased similarly across all zones by an average of 0.12 to a pH of 

7.22 (Table 2.2). The Na:EC content decreased similarly across all zones compared to 

2018 by an average of 157 (Table 2.2). Soil NO3-N also decreased similarly across zones 

by 36 ug g-1 to an average value of 15 ug g-1 (Table 2.2). Soil EC1:1 decreased similarly 

across all zones by an average of 0.66 dS m-1 (Table 2.2). The saline zone still had the 

highest soil EC1:1 reading of 3.03 dS m-1 (Table 2.2). Soil sodium content decreased most 

in the transition and saline zones by 605 and 729 ug g-1, respectively, whereas the non-

saline zone decreased 243 ug g-1 compared to 2018 (Table 2.2).  

15- to 30- cm Depth 

 In 2018, the pH and NO3-N was similar among zones and averaged 7.91 and 22 

ug g-1, respectively (Table 2.3). The saline and transition zones had similar in EC1:1 levels 

averaging 3.41 dS m-1, which was higher than the non-saline zone of 2.23 dS m-1 (Table 

2.3). The soil Na content highest to lowest was in the saline zone (1633 ug g-1) > 

transition zone (1157 ug g-1) > non-saline zone (714 ug g-1) (Table 2.3). The Na:EC ratio 

was highest in the saline zone at 443, whereas the non-saline and transition zones were 

similar to each other and averaged 338 (Table 2.3).  

 In 2019 the pH decreased similarly among all zones compared to 2018 by 0.39 to 

an average pH of 7.52 (Table 2.3).  Soil EC1:1 in 2019 changed similarly from 2018 

among zones and the saline and transition zones had the highest EC1:1 of 4.07 dS m-1 and 
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3.12 dS m-1, respectively (Table 2.3). Compared to 2018, soil sodium content in 2019 

decreased similarly among zones by 206 ug g-1 and was highest in the saline zone at 1424 

ug g-1 (Table 2.3). Soil Na:EC in 2019 decreased similarly among zones by an average of 

96 compared to 2018 and was highest in the saline and transition zones which were 327 

and 279, respectively (Table 2.3). In 2019, soil NO3-N was highest in the transition and 

saline zones at 10 and 24 ug g-1, respectively. The saline zone NO3-N remained 

unchanged compared to 2018 (Table 2.3). 

Soils Discussion 

It was anticipated that the perennial grass mixtures would reduce soil EC and Na 

more than corn due to earlier season growth, a more extensive root system, and greater 

vegetative biomass. However, this was not substantiated in either year as these 

measurements were similar by vegetation treatments within a zone. The results of this 

research did not show similar reductions in soil EC1:1 or Na as those of previous studies 

(Qadir et al., 2006b; Ahmad et al., 1990). Ashraf et al. (2010) reported rapid reductions in 

soil EC1:1 from 22.0 dS m-1 to 12.6 dS m-1 after 1 year of Kallar grass growth and an 87% 

reduction in EC1:1 compared to a fallow non-cropped treatment. However, our study did 

not find any advantage to perennial grass mixtures over corn in such a short time period. 

One possible reason for these results could be the time it took for the grass 

mixtures to establish in 2018. Although the grass mixtures were dormant seeded the 

previous fall, emergence did not readily occur until June of 2018 due to soil crusting and 

weed competition, whereas corn established soon after planting. This additional time of 

fallow in the grass mixture treatments could have allowed more salts to accumulate 

through evaporation and capillary rise in the surface soil compared to the corn treatment. 
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The first year of strong establishment in the grass mixture treatments was in 2019. 

Additionally, 2019 was 76% wetter than normal from April-August so that standing 

water was present in lower elevation saline zones on several occasions. Since the 

beneficial effects of perennial grasses is attributed to improved soil structure and porosity 

to increase salt leaching (Qadir and Oster, 2002; Qadir et al., 2003), the high water table 

and lack of drainage could have mitigated any beneficial effects of the cropping 

treatments. Over several years of different environmental conditions and further 

development of a perennial root system, differences among treatments may occur and 

should be monitored for future research.  
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Table 2.2. Soil Test Results from Mid-July 2018 and 2019 for 0- to 15- cm Depth Averaged Across Vegetative Treatments.  

 

 

 

 

Table 2.3. Soil Test Results from Mid-July 2018 and 2019 for 15- to 30- cm Depth Averaged Across Vegetative Treatments. 

Zone 2018 2019 Change 2018 2019 Change 2018 2019 Change 2018 2019 Change 2018 2019 Change 2018 2019 Change
Non-Saline 7.18 7.12 -0.07 340 195 b -146 37 8 -29 1.18 c 0.82 c -0.36 388 c 145 b -243 a 6 11 5
Transition 7.31 7.12 -0.17 467 252 b -215 40 13 -27 2.62 b 1.95 b -0.68 1193 b 522 b -605 b 2 13 11

Saline 7.56 7.42 -0.13 437 328 a -109 75 25 -51 3.97 a 3.03 a -0.94 1744 a 1015 a -729 b 3 8 5
P-Value 0.337 0.212 0.880 0.085 0.002 0.167 0.129 0.071 0.409 <0.001 <0.001 0.447 <0.001 <0.001 0.008 0.090 0.642 0.514

NH4-N

---------------- ug g-1 ------------------------------------------------------- ---------------- dS m-1 ---------------- ---------------- ug g-1 -------------------------------------------------------- ---------------- ug g-1 ----------------

pH EC NaNa:EC NO3
--N

Zone 2018 2019 Change 2018 2019 Change 2018 2019 Change 2018 2019 Change 2018 2019 Change 2018 2019 Change
Non-Saline 7.72 7.42 -0.30 312 b 225 b -87 17 3 b -14 2.23 b 1.96 b -0.27 714 c 516 b -197 5 14 9
Transition 7.92 7.44 -0.48 364 b 279 ab -84 24 10 ab -14 3.16 a 3.12 a -0.04 1157 b 909 b -314 2 9 7

Saline 8.09 7.71 -0.38 443 a 327 a -116 24 24 a 0 3.65 a 4.07 a 0.42 1633 a 1424 a -208 2 8 6
P-Value 0.097 0.314 0.670 <0.001 0.020 0.599 0.578 0.035 0.235 <0.001 0.003 0.196 <0.001 0.003 0.726 0.107 0.576 0.878

NH4-N

---------------- ug g-1 ------------------------------------------------------- ---------------- dS m-1 ---------------- ---------------- ug g-1 -------------------------------------------------------- ---------------- ug g-1 ----------------

pH EC NaNa:EC NO3
--N
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Vegetation Performance 

Grass Mixture Species Ground Cover Composition 

 Grass species composition was measured as it indicates which species in the 

mixtures were better adapted for different field soil conditions. The first year of the study 

(2018), mix 1 had low total ground cover. In the non-saline zone, mix 1 ground cover 

was 54%, whereas the transition zone and saline zones had 28% and 5%, respectively 

(Table 2.4). In 2019, the non-saline, transition zone and saline zones had 86%, 90%, and 

61% total ground covered by mix 1, respectively (Table 2.4). The lower % ground 

covered by mix 1 in 2018 was the result of it being the establishment year and early 

season weed competition. In 2019, a second year seeding may have improved coverage in 

addition to less weed competition and adequate moisture (Table 2.4). There was lower % 

ground cover in the saline zones during both years compared to other zones, likely the 

result of increased EC1:1 and Na level in the soil which increased stress on the plants. 

 Both years of the study had similar species compositions in mix 1. Slender 

wheatgrass was the dominant species both years in the non-saline (61-70%) and transition 

(65-72%) zones of the field where soil EC1:1 was <2.6 dS m-1, whereas in the saline zone 

beardless wildrye and slender wheatgrass composed equal amounts of the total mix 

composition (Table 2.4; Table 2.2).  

 Mix 2 followed a similar trend to mix 1 in terms of total ground covered in 2018 

and 2019. In 2018, mix 2 covered 54%, 25%, and 4% of the plots in the non-saline, 

transition, and saline zones, respectively (Table 2.5). This is in contrast to 2019 where 

mix 2 ground cover increased to 100%, 83%, and 51% in non-saline, transition, and 

saline plots, respectively (Table 2.5).  
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 Within mix 2, species performed differently and had clear niches. In mix 2, the 

least productive species were slender wheatgrass and western wheatgrass which 

comprised <20% of mix 2 ground cover in 2018 and <10% in 2019 (Table 2.5). In the 

non-saline zone AC Saltlander and creeping meadow foxtail comprised 41% and 31% of 

the mix 2 ground cover, respectively (Table 2.5). Similarly, in the transition zone in 

2019, AC Saltlander and creeping meadow foxtail were similar in % ground cover at 

52% and 41%, respectively (Table 2.5). However, as the salinity gradient increased, AC 

Saltlander increased in ground cover, whereas creeping meadow foxtail decreased. In the 

saline zone, AC Saltlander comprised 71% and 84% of mix 2 ground cover in 2018 and 

2019 respectively; whereas creeping meadow foxtail made up 1% and 6% in 2018 and 

2019, respectively (Table 2.5).  
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Table 2.4. Mix 1 Species Composition in Mid-July 2018 and 2019 as a Percent of Total 

Ground Cover.  

 

 

 

 

 

 

 

Table 2.5. Mix 2 Species Composition in Mid-July 2018 and 2019 as a Percent of Total 

Ground Cover.  

 

 

 

 

 

 

 

Non-Saline Transition Saline Non-Saline Transition Saline
% Total Ground Covered 54 28 5 86 90 61

Species
Beardless Wildrye 39 b 35 b 49 30 b 28 b 47

Slender Wheatgrass 61 a 65 a 51 70 a 72 a 53
P-Value 0.002 <0.001 0.921 0.003 0.004 0.775

2019

% Composition of Desired Ground Cover

2018

% Composition of Desired Ground Cover

Non-Saline Transition Saline Non-Saline Transition Saline
% Total Ground Covered 54 25 4 100 83 51

Species
Slender Wheatgrass 19 c 19 bc 11 b 1 b 4 c 7 b
Western Wheatgrass 9 d 9 c 17 b 6 b 0 c 3 b

AC Saltlander 41 a 49 a 71 a 52 a 59 a 84 a
Creeping Meadow Foxtail 31 b 23 b 1 b 41 a 37 b 6 b

P-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

2019

% Composition of Desired Ground Cover

2018

% Composition of Desired Ground Cover
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Grass Mixture Species and Corn Biomass 

 In 2018 the most biomass produced in mix 1 was in the non-saline zone followed 

by the transition and saline zone with 1705, 801, and 246 kg ha-1, respectively (Table 

2.6). In the non-saline zone and transition zone, slender wheatgrass comprised 64% and 

60% of the mixture 1 biomass weight, respectively, whereas in the saline zone beardless 

wildrye and slender wheatgrass both produced ~120 kg ha-1 (Table 2.6). Similar to 

ground cover discussed earlier, this low biomass in the saline zone in the first year of the 

study was most likely due to soil crusting, early season weed pressure, and saline 

conditions.   

 In 2019 mix 1 biomass increased in all three zones to 9038, 9700, and 6400 kg ha-

1 from the non-saline, transition, and saline zones, respectively (Table 2.6). In the non-

saline zone slender wheatgrass produced 7225 kg ha-1 of biomass compared to 1813 kg 

ha-1 from beardless wildrye (Table 2.6). Similar results were found in the transition zone. 

In the saline zone in 2019, slender wheatgrass and beardless wildrye produced similar 

levels of biomass, producing 4250 and 2150 kg ha-1, respectively (Table 2.6).  

 Mix 2 had lower 2018 biomass levels in all three zones compared to 2019. In 

2018 mix 2 produced 2646, 1368, and 604 kg ha-1 from non-saline, transition, and saline 

zones, respectively (Table 2.7). In the non-saline zone AC Saltlander produced the most 

biomass at 1045 kg ha-1, which was 25%, 95%, and 358% more than creeping meadow 

foxtail, slender wheatgrass, and western wheatgrass, respectively (Table 2.7). In the 

transition zone, AC Saltlander produced the most biomass at 690 kg ha-1, which was 124-

452% more than the other species in the mix which were all similar to each other (Table 

2.7). The same trend was found in the saline zone where AC Saltlander produced 367 kg 
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ha-1, which was 198-1012% greater than the other species in the mixture, those of which 

were also similar to each other (Table 2.7).  

 In 2019 total mix 2 biomass was 10663, 9775, and 5853 kg ha-1 from non-saline, 

transition, and saline zones, respectively (Table 2.7). AC Saltlander produced the most 

biomass in all three zones compared to the other species in the mixture with 6625, 6775, 

and 4763 kg ha-1 from non-saline, transition, and saline zones, respectively (Table 2.7). 

Creeping meadow foxtail was the next highest biomass producer in 2019 and out 

produced slender wheatgrass and western wheatgrass in the non-saline and transition 

zones with 3550 and 2675 kg ha-1, respectively (Table 2.7). Slender wheatgrass and 

western wheatgrass produced similar amounts of biomass in 2019 in the non-saline and 

transition zones with <400 kg ha-1 (Table 2.7). In the saline zone, creeping meadow 

foxtail, slender wheatgrass, and western wheatgrass all produced similar amounts of 

biomass ranging from 263-438 kg ha-1 (Table 2.7).  

 In 2018 corn produced 3952 kg ha-1 of stover and 6881 kg ha-1 grain in the non-

saline plots (Table 2.8). The saline plots produced the least stover biomass with 943 kg 

ha-1 of stover and 1302 kg ha-1 of grain (Table 2.8). In 2019 due to the heavy weed 

pressure and lack of nitrogen, there was no grain yield. Stover biomass in 2019 was 

similar in non-saline and transition plots with ~2000 kg ha-1 (Table 2.8). Saline plots 

produced 1489 kg ha-1 of stover (Table 2.8).  

Ground Cover and Biomass Discussion 

 In mix 1 slender wheatgrass composed more of the mix in the low to moderate 

salinities. However, in the most saline zone, slender wheatgrass and beardless wildrye 

had similar biomass. Slender wheatgrass is classified as tolerant of EC1:1 levels up to 16 
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dS m-1 by Alberta Agriculture and Rural Development (2001) and beardless wildrye up to 

20 dS m-1. Young-Matthews and Winslow (2010) rated beardless wildrye highly salt 

tolerant up to over 15 dS m-1. However, beardless wildrye has also been regarded as not 

highly salt tolerant by others (Grieve et al., 2012). Our research indicated that slender 

wheatgrass and beardless wildrye were equally tolerant of EC1:1 levels of 3.2-4.1 dS m-1. 

However, slender wheatgrass was more competitive, based on biomass, than beardless 

wildrye at EC1:1 levels below 3.0 dS m-1. Thus, using a mix of the two species, as in mix 

1, has the advantage of a competitive species (slender wheatgrass) providing high cover 

on low to moderate salinity soils and the two species filling the niche in higher salinity 

soils. The findings in this study infer two other main points for mix 1: First, the 

establishment year of converting cropland to perennial grass mixtures may produce little 

overall biomass and the focus should be achieving a strong stand rather than getting a hay 

crop or grazing livestock on the field. Second, species will perform differently depending 

on salinity. In the case of mix 1, slender wheatgrass outcompeted beardless wildrye in 

both the non-saline and transition zones and produced similar biomass levels in the saline 

zones.  

 The results of mix 2 show that in the non-saline regions of the field, creeping 

meadow foxtail and AC Saltlander comprised the majority of mix 2 ground cover. 

However, creeping meadow foxtail was more sensitive to increasing salinity gradients 

and growth was reduced as salinity increased, whereas AC Saltlander was more salt 

tolerant and dominated the mixture in the saline regions. This result could be expected, as 

AC Saltlander was developed as a wheatgrass hybrid intended for high salinity tolerance. 

However, past research rated creeping meadow foxtail and AC Saltlander as equally 
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tolerant of salinity with tolerances of 12.0 and 12.9 dS m-1, respectively (Tilley et al., 

2004; Hybner et al., 2014). Western wheatgrass was rated tolerant up to 18 dS m-1 

(Allison et al., 1954). The species which tolerated higher salinity in past studies would be 

expected to perform better than low tolerance species at moderate salinities as well. This 

was not the case with the findings in this research however. Although our study did not 

measure absolute tolerance limits, there were clear superior species in mix 2. Even 

though creeping meadow foxtail and AC Saltlander were classified as equally salt 

tolerant, in this study creeping meadow foxtail was clearly not as tolerant as AC 

Saltlander. Also, western wheatgrass had the highest seeding rate of mix 2 and also the 

highest salt tolerance (Allison et al., 1954). However, western wheatgrass was 

consistently one of the poorest species in terms of ground cover percentage and biomass 

produced. In the case of mix 2, AC Saltlander produced the most ground cover and 

biomass in all the zones measured. Creeping meadow foxtail performed well in the non-

saline and transition zones, however it produced little biomass in the saline zone with 

EC1:1 values >3 dS m-1 (Table 2.2; Table 2.7). The results of this study indicate that a 

mixture is a good option to use of saline soils, as different species occupied different 

niches. Thus, mixtures of species could help to maximize ground cover and biomass 

production while minimizing weed pressure.  

 Corn plots in this experiment did not perform well in biomass production likely 

due to soil fertility not meeting the high nitrogen demands of corn, and weed pressure 

suppressing growth. If fertilizer were applied and other weed control measures utilized, 

corn yields and biomass would likely have been higher. However, when all treatments 

were treated equally as in this experiment corn produced the least biomass of the 
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treatments in 2019. While corn can certainly establish in the some of the same soils as the 

grass mixtures tested, it requires extra inputs such as herbicides, fertilizer, and annual 

seed costs to produce equal amounts of biomass. There are additional challenges to corn 

in saline soils. For example, 2018 was drier in spring so corn was planted at an ideal time. 

However, 2019 was very wet in spring and the earliest date corn could be planted was 

after the crop insurance final plant date. Even then, only the hillsides were dry enough to 

plant in 2019 and the central lowland portion of the field plots were never planted to corn 

due to wet soil conditions. This is in contrast to perennial grasses which were able to be 

planted in drier conditions in fall and once established will not need future plantings and 

less trips across the field with equipment. 

 

 

Table 2.6. Mix 1 Species Dry Biomass on September 10, 2018 and July 11, 2019. 

 

 

 

Table 2.7. Mix 2 Species Dry Biomass September 10, 2018 and July 11, 2019. 

 

Non-Saline Transition Saline Non-Saline Transition Saline
Species

Beardless Wildrye 685 b 290 b 134 1813 b 1675 b 2150
Slender Wheatgrass 1020 a 511 a 112 7225 a 8025 a 4250

P-Value 0.024 0.014 0.535 <0.001 <0.001 0.145
Total Biomass 1705 801 246 9038 9700 6400

-------------------------------------------------------kg ha-1-------------------------------------------------------

Estimated 2018 Biomass 2019 Biomass

Non-Saline Transition Saline Non-Saline Transition Saline

Species

Slender Wheatgrass 536 c 245 b 123 b 138 c 325 c 438 b
Western Wheatgrass 228 d 125 b 81 b 350 c 0 c 389 b

AC Saltlander 1045 a 690 a 367 a 6625 a 6775 a 4763 a
Creeping Meadow Foxtail 837 b 308 b 33 b 3550 b 2675 b 263 b

P-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Total Biomass 2646 1368 604 10663 9775 5853

Estimated 2018 Biomass 2019 Biomass 

-------------------------------------------------------kg ha-1-------------------------------------------------------
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Table 2.8. Corn Grain Yield @ 15.5% Moisture and Stover Dry Biomass at Maturity in 

2018 and 2019. 

 

 

Biomass Reduction Regression  

 Biomass was regressed as a function of EC1:1, Na, and EC1:1:Na ratio (Figure 2.1). 

In 2018 corn and mix 2 had the highest intercepts of 3655 and 2916 kg ha-1, respectively, 

indicating that in low EC1:1 soils these treatments had more biomass than mix 1 (Table 

2.9). However, the slopes of the regressions were similar for all treatments in 2018 at ~-

481 kg ha-1, indicating that for each unit increase in EC1:1, all three treatments lost similar 

amounts of biomass (Table 2.9). The same trend was found in the regression for Na soil 

levels, with corn and mix 2 having the highest intercept, averaging 3031 kg ha-1 with 

similar slopes among all treatments (Table 2.9). Using Na:EC1:1 ratio as the regression 

parameter, corn and mix 2 again had the highest intercept at 4602 and 4716 kg ha-1, 

respectively, and mix 1 was lowest at 1626 kg ha-1 (Table 2.9). However, in this 

regression slopes differed among treatments with mix 1 losing the least biomass with 

each unit increase in Na:EC1:1 at -1.75 kg ha-1 whereas corn and mix 2 both lost ~6.51 kg 

ha-1 (Table 2.9).  

 In 2019, corn had the lowest intercept when EC1:1 was fitted in the regression at 

1807 kg ha-1, whereas mix 1 and mix 2 had intercepts of 9890 and 11279 kg ha-1 (Table 

2.9). In 2019 corn had more weed competition compared to grass mixtures which likely 

lowered the intercept. The slopes of the EC1:1 regression in 2019 also differed among 

Non-Saline Transition Saline Non-Saline Transition Saline

Corn Stover Biomass 3952 2468 943 2003 1926 1489
Corn Grain Yield 6881 5164 1302 - - -

2018 2019

-------------------------------------------------------kg ha-1-------------------------------------------------------
Crop Parameter
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treatments, with corn having the lowest slope of -0.6 kg ha-1 and mix 2 having the 

greatest at -1018 kg ha-1 (Table 2.9). However, the regression slope for EC1:1 in 2019 

should be interpreted with caution. Since corn saline zones had a large reduction in EC1:1 

compared to 2018, the regression is only fitted to an EC1:1 up to 2.26 dS m-1, whereas the 

grass mixtures are fitted up to 4.5-5.2 dS m-1. This means there was not as large of a 

detectable biomass reduction in corn at higher EC1:1 levels because there were no high 

EC1:1 levels to be fitted. Thus, the intercept data for 2019 EC1:1 is of good quality, but 

slope may be skewed. When Na was used for the regression, corn had the lowest 

intercept of 1858 kg ha-1 compared to mix 1 and mix 2 at 9084 and 10977 kg ha-1 (Table 

2.9). This also indicated that at lower sodium levels, both grass mixtures produce more 

biomass than corn in this study. However, the slopes for Na were similar among 

treatments. The final parameter, Na:EC1:1, indicated similar results as Na and EC1:1 alone, 

where corn had the lowest biomass in low Na:EC1:1 soils. Again, all treatments were 

similar for slope when fitted with Na:EC1:1.   

Biomass Reduction Discussion 

 The results of the regression analysis for biomass as a function of soil EC1:1, Na, 

and Na:EC1:1 suggest several things. First, in the establishment year of perennial grass 

plantings the biomass may be lower compared to a corn cash crop depending on the 

mixture. In this study, mix 1 was lower in biomass production compared to corn whereas 

mix 2 was similar to corn. In the second year after grass mixtures establish, they can 

outperform corn biomass production under some circumstances; 2019 was a wetter than 

average year which may have had an impact. Both mixtures produced more biomass than 

corn in 2019 and had similar losses in biomass for each unit increase in Na and Na:EC1:1. 
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The intercepts showed that when salinity and sodicity parameters were zero, some 

treatments performed better than others depending on the year. Likewise, the slopes 

showed differences among treatments in biomass lost per unit increase in parameters. 

However, this slope can be misleading. 

 For example, let’s assume mix 1 has a low intercept and mix 2 has a high 

intercept, but both stopped growing at the same EC1:1 level in the soil. Although in this 

example both tolerated similar EC1:1 levels, the slope of mix 1 would be lower because of 

an initially lower biomass. This would lead to the interpretation that mix 1 produced less 

biomass but was more tolerant to a salinity increase. But in reality, mix 1 produced less 

biomass and they both tolerated the salinity increase similarly.  

  

 

Table. 1.9. Regression Intercept and Slope of Dry Basis Biomass as Function of Soil 

Parameters in 2018 and 2019. 

 

 

 

 

Intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept Slope

Corn 3655 a -501 3425 a -1.10 4602 a -6.59 ab 1807 b -0.6 a 1858 b -0.22 1860 b -0.26
Mix 1 2060 b -435 1662 b -0.65 1626 b -1.75 a 9890 a -723 ab 9084 a -1.17 7863 a 2.02
Mix 2 2916 ab -508 2636 a -0.74 4716 a -6.43 b 11279 a -1018 b 10977 a -2.64 14390 a -18.42

Adj R2 p value Adj R2 p value Adj R2 p value Adj R2 p value Adj R2 p value Adj R2 p value
Corn 0.25 0.007 0.29 0.004 0.30 0.003 -0.05 0.999 -0.04 0.797 -0.04 0.829
Mix 1 0.51 <0.001 0.39 <0.001 0.01 0.285 0.04 0.168 -0.01 0.395 -0.04 0.794
Mix 2 0.63 <0.001 0.63 <0.001 0.54 <0.001 0.29 0.004 0.29 0.004 0.09 0.082

Treatment

2019
EC Na Na:EC EC Na

dS m-1 ug g-1 -------------

Biomass kg ha-1

dS m-1 ug g-1 -------------
Na:EC

2018
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Figure 2.1 Vegetative Biomass Regressions as a Function of Soil Test Parameters from 2018 and 2019. 
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Weed Suppression  

Weeds were present in both years of the study with the primary species being 

kochia (Kochia scoparia) and foxtail barley (Hordeum jubatum). In early June of 2018 

the percent of plots covered in weeds was similar among treatments in both the saline 

(20%) and non-saline (24%) zones of the field (Table 2.10). This was expected because 

no crop had emerged at this time, so the field was uniform among treatments. In early 

June of 2019 the weed cover was similar among treatments in both the saline and non-

saline zones (Table 2.10). At this point in time grasses in the mixtures were beginning to 

break dormancy from overwintering and emerge but there was not yet enough 

competition to reduce weed cover compared to other treatments.  

 After a broadleaf herbicide application between early June and mid-July in 2019 

measurements, there were % weed cover differences mainly composed of foxtail barley. 

In non-saline plots, corn and no crop treatments had 100% weed cover (Table 2.11). This 

was higher than mix 1, which had 14% weed cover, and mix 2, which had no weeds in 

non-saline plots (Table 2.11). In the transition plots corn had the highest weed cover of 

89% and no crop treatment had the next highest at 66% weed cover (Table 2.11). Mix 1 

and mix 2 had the lowest weed cover at 7% and 0%, respectively (Table 2.11). In the 

saline plots, corn again had the highest weed presence with 75% of the plots covered by 

weeds whereas mix1  and mix 2 were lower with 16% and 3% weed cover, respectively 

(Table 2.11). No crop treatment comparison in the saline soil is not valid due to 

drastically higher EC1:1 levels, which violated assumptions of the analysis. However, the 

no crop treatment in the saline plots averaged 20% weed cover (Table 2.11). 
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 In addition to percent cover, weeds present in the study were also measured for 

biomass in 2019. In the non-saline zone, the no crop treatment had the highest weed 

biomass of 6713 kg ha-1 compared to corn, mix 1, and mix 2 which had 1650, 1300, and 0 

kg ha-1 of weeds, respectively (Table 2.12). In the transition zone, no crop treatment again 

had the highest weed biomass of 5625 kg ha-1 (Table 2.12). Corn and mix 1 had the next 

highest weed biomass in the transition zone at 2150 and 562 kg ha-1 weeds, whereas mix 

2 had no weeds present, although mix 1 was also similar to mix 2 (Table 2.12). In the 

saline zone corn had the highest weed biomass with 2475 kg ha-1 weeds and mix 1 and 

mix 2 were similar with 850 and 150 kg ha-1 weeds (Table 2.12). No crop treatment was 

not compared for the same reasons as in Table 2.11 but did average 775 kg ha-1 weed 

biomass in saline plots (Table 2.12).  

Weed Suppression Discussion 

 To the author’s knowledge, no publications have been produced examining how 

perennial grasses influence weed pressure in saline soils of the Northern Great Plains. 

The results of the weed data collected show strong differences among treatments. 

Although all treatments had similar percentages of the ground covered by weeds in 

spring, by the summer of 2019 the grass mixtures had much less weed presence. Both 

mix 1 and mix 2 were able to keep weeds suppressed after an herbicide application in all 

three zones compared to corn and no crop treatments. This result was evident in the weed 

biomass data where mix 1 and mix 2 both had less weed biomass than no crop treatment 

in non-saline zones and less weed biomass than corn in saline zones. The advantage of 

the grass mixes was the fact they were already established from the previous year, which 

allowed them to emerge early and provide a dense stand cover over the soil much earlier 
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than corn canopy. Additionally, grass mixtures were drilled at 0.2 m spacing, whereas 

corn was planted on 0.76 m row spacing. This means there is more time required to 

canopy the wider row spacing in corn. This allowed the grass mixtures to compete with 

weeds and suppress them much better than corn by mid-summer. Thus, our findings 

indicate that although the first year of grass establishment may face heavy weed pressure, 

but once established they have high weed suppression potential. 

 

Table 2.10. Percent of Plots Covered by Weed Species* in Early June of 2018 and 2019 

in Good and Saline Soil Zones of Corn, Grass, and No Crop Soil Treatments.  

 

*Weed species included primarily foxtail barley and kochia. 

 

 

 

 

 

 

 

 

Non-Saline Saline Non-Saline Saline
Treatment

Corn 16 13 76 13
Mix 1 38 39 51 16
Mix 2 24 14 31 4

No Crop 19 13 75 18
P-Value 0.551 0.377 0.199 0.668

Spring 2018 % Plot in Weed Cover Spring 2019 % Plot in Weed Cover

-----------------------%----------------------- -----------------------%-----------------------
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Table 2.11. Percent of Plots Covered by Weed Species (primarily foxtail barley) in Mid-

July of 2019 in Good, Transition, and Saline Soil Zones of Corn, Grass, and No Crop Soil 

Treatments.  

 

 

 

 

 

 

Table 2.12. Weed Biomass (primarily foxtail barley) in Mid-July of 2019 in Corn, Grass, 

and No Crop Soil Treatments.  

 

 

 

Non-Saline Transition Saline

Treatment
Corn 100 a 89 a 75 a
Mix 1 14 b 7 c 16 b
Mix 2 0 c 0 c 3 b

No Crop 100 a 66 b 20 b*
P-Value <0.001 <0.001 <0.001

Summer 2019 % Plot in Weed Cover

-----------------------%-----------------------

* Value lower than expected due to higher EC of the saline zone in No Crop strips

Non-Saline Transition Saline

Treatment
Corn 1650 b 2150 b 2475 a
Mix 1 1300 b 562 bc 850 b
Mix 2 0 b 0 c 150 b

No Crop 6713 a 5625 a 775 b*
P-Value <0.001 <0.001 <0.001

* Value lower than expected due to higher EC of the saline zone in No Crop strips

Weed Biomass

-----------------------kg ha-1-----------------------
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CHAPTER 3: GREENHOUSE GAS EMISSIONS OF A SALINE-SODIC SOIL 

WITH NO VEGETATION AND A NON-SALINE SOIL UNDER CORN AND 

GRASS VEGETATION 

3.1 ABSTRACT 

 Greenhouse gas (GHG) emissions (CO2, N2O, CH4) of saline soils in South 

Dakota has not been studied, although over 3.4 million ha are impacted in the state. These 

areas are intertwined with non-saline areas in the landscape and are often managed 

similarly for convenience. This two-year study quantified and compared GHG emissions 

from adjacent saline and non-saline soils without (0 kg N ha-1) or with urea (224 kg N ha-

1). The saline soil was barren, whereas corn or grass was growing in the non-saline soil. 

Urea was applied immediately prior to GHG collection, which was measured every 4 hrs 

for 7 consecutive days in July (2018 and 2019) using a near continuous automated 

system. All treatments were replicated twice each year. Methane (CH4-C) flux was near 

zero for all treatments both years. In the 0 N treatment, average CO2-C flux from saline 

soil was 611 and 324 g CO2-C ha-1 hr-1 in 2018 and 2019, respectively, which was 36% 

and 16% of the flux measured in vegetated soils in 2018 and 2019, respectively. Urea 

increased CO2-C flux in 2018 by ~35% from all areas, but in 2019 by 19% (grass), 74% 

(corn), and 155% (saline). N2O emissions in the 0 N treatment in saline soil were 2.09 

and 4.89 g N2O-N ha-1 hr-1 in 2018 and 2019, respectively, which was 450% and 963% 

higher than soils with grass vegetation. Urea did not increase N2O flux in 2018 due to 

cool temperatures and drier conditions, however, urea increased N2O-N flux in 2019 by 

704%, 602%, and 102% in grass, corn, and saline soils, respectively. Saline soils 

disproportionately contributed to N2O emissions. Low CO2 emissions from saline soils 
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imply decreased biological activity. Revegetating barren salt-affected soils may increase 

soil health and reduce N2O emissions.  

3.2 INTRODUCTION 

In SD, saline and sodic soils are scattered across the landscape in regions where 

they occur. Typically, a salt affected area starts small but may spread throughout the field 

due to salt movement with wind and water. Because of this, without the use of precise 

GPS and variable rate technology, it is often an inconvenience or extra burden to manage 

these small areas separate from the rest of the field unless the impacted area is large. 

Variable rate technology also adds to production costs if custom applied by a retailer. 

Higher costs may further decrease the incentive to spend more money on unproductive 

marginal land that does not produce a profit unless the decision to implement the 

technology will reduce fertilizer input costs enough to offset the variable rate cost. 

Therefore, fertilizer is often applied to small saline or sodic areas at the same rate as the 

rest of the field. Baseline GHG emissions have not been quantified from saline soils in 

South Dakota and past studies’ results from non-saline soils may not be applicable to 

saline soils, as saline soils have drastically different biology and chemistry. These lack of 

data warrant attention and was the basis for this research study.   

Objectives 

This research quantified GHG emissions of CO2, CH4, and N2O from a saline 

sodic soil with no vegetation and compared results to an adjacent non-salt affected area 

that was vegetated with either corn or mixed perennial grass vegetation. These data can 

be used to determine the impact that revegetating saline soils could have on GHG 
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emissions. Additionally, urea was applied to each area to quantify the impact of urea 

nitrogen fertilizer addition to GHG emissions from soils in SD. 

3.3 MATERIALS AND METHODS 

Study Site 

 This experiment was conducted in a field setting in Clark County, South Dakota 

at 44° 42' 11.6388'' N, 97° 52' 43.8312'' W and was selected because it had elevated 

electrical conductivity and sodium levels which limit plant growth and establishment. 

The area of the field where the experiment was conducted was planted with DeKalb 

DKC45-65RIB (Monsanto Co, St Louis, MO) corn (Zea mays L.) on May 17, 2018 in 

0.762 m rows at a rate of 79,000 seeds ha-1 at 2.5-cm depth. Adjacent to the corn, a 13.7 

m wide strip of a perennial grass mixture was dormant seeded on December 15, 2017 

using a Truax Company, Inc. FLEX-II drill (Traux Company, Inc., New Hope, MN) at 6 

mm depth. This grass mixture consisted of Shoshone beardless wildrye (Leymus 

triticoides (Buckl.) Pilger) planted at 3.9 kg ha-1 pure live seed (PLS) and Certified First 

Strike slender wheatgrass [Elymus trachycaulus (Link) Gould ex Shinners] planted at 3.9 

kg ha-1 PLS. The grass mixture was over seeded in the same strip of existing grass stand 

on October 24, 2018 at the same rate and depth as done in 2017 to strengthen the stand. 

Corn was planted in the same strips of the field on May 31st, 2019 at a rate of 79,000 

seeds ha-1. Corn was planted at a depth of 5 cm with variety DKC40-77RIB (Monsanto 

Co, St. Louis, MS). At the time of measurements corn was at the tassel growth stage both 

years. The grass mix was at the boot stage in 2018 and seed stage in 2019.  

 The field sloped downhill to the East; the further down the slope, soil properties 

become more unfavorable for plant growth as seen visually and by data collected. The 
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uphill region of the field is a Forman-Cresbard loam on a 3-6% slope. The Forman series 

is a fine-loamy, mixed, superactive, frigid Calcic Argiudoll. The Cresbard series is a 

Fine, smectitic, frigid Glossic Natrudoll. The downhill region of the field is a Cresbard-

Cavour loam on a 0-3% slope. The Cavour series is a Fine, smectitic, frigid Calcic 

Natrudoll and has a natric restrictive feature 13- to 36- cm below the surface (Soil Survey 

Staff, 2018). According to the National Oceanic and Atmospheric Administration (2019) 

the 30-year average annual precipitation (1981-2010) for Clark, SD is 60.4 cm and the 

average annual temperature is 6.2 °C.  

Soil Tests 

 Soil samples were collected at the start of the experiment directly outside the 

chambers and at the end of the experiment, from inside each chamber PVC ring. All 

samples taken were from 0- to 15- cm and 15- to 30-cm depths, dried at 37.8 °C, and 

ground and sieved to < 2 mm. Samples were tested for EC1:1 (electrical conductivity), pH, 

NO3-, NH4+, Na, and Na:EC. EC1:1 was measured using a 1:1 soil to water ratio with an 

Orion Star A215 (Thermo Scientific, Waltham, MA) and pH was measured using an 

accumet excel XL60 pH meter (Fisher Scientific, Hampton, NH) and followed methods 

described by Grafton (2015). NH4+ and NO3- were extracted using 1.0 M KCl and 

measured using an Astoria Nutrient Analyzer (Astoria-Pacific, Inc. Clackamas, OR) 

following methods described in Maynard and Karla (1993). Na was measured using 

ammonium acetate extraction using flame photometry (Grafton, 2015).  

Equipment 

Soil flux was measured in the field using a LI-COR 8100A (LI-COR, Lincoln, 

NE) system to collect gas samples and a Picarro G2508 (Picarro Inc., Santa Clara, CA) 
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system for gas sample analyzation. Twelve LI-COR 8100-104 Long Term Chambers (LI-

COR, Lincoln, NE) where used for gas collection from the soil. These chambers were 

placed over a PVC (polyvinyl chloride) ring that was inserted approximately 5 cm into 

the soil surface and had an inside diameter of 20.1 cm and a total area of 317 cm2 with 

total chamber volume of 4244 cm3. PVC rings and chambers were placed according to 

LI-COR protocols (LI-COR, Lincoln, NE). Special attention was given to leveling the 

PVC rings and chamber placement over PVC rings; ensuring the PVC ring did not extend 

into the chamber headspace. The chambers used mixed air within the chamber and were 

vented to maintained ambient air pressure. Vegetation was removed from PVC rings 

before measurements began in the grass mix, whereas in the corn rings were placed 

between rows.  

The collected gas sample was measured for CO2 using a LI-8100A Analyzer 

Control Unit (LI-COR, Lincoln, NE). The gas sample is then analyzed using a Picarro 

G2508 cavity ringdown spectrometer for CO2, N2O, and CH4 measurements. A LI-8150 

multiplexer (LI-COR, Lincoln, NE) controlled chamber sequence to automatically open 

and close chambers to collect data. During chamber measurement, the system measured 

gas concentration every second for 15 minutes. Before each chamber closed to take 

measurements, an automatic 45 second pre-purge was conducted through the gas lines. 

Likewise, after each chamber was done sampling gas, an automatic 45 second post-purge 

was conducted through the gas lines. A 45 second deadband was used for flux 

computations. To measure soil moisture, LI-COR 8150-205 Soil Moisture Probes (LI-

COR, Lincoln, NE) were placed to 5 cm depth to determine volumetric soil moisture 

content. Soil temperature was measured at 5 cm depth using LI-COR 8150-201 Soil 
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Temperature Probes (LI-COR, Lincoln, NE). Air temperature was measured from the LI-

COR 8100-104 chambers (LI-COR, Lincoln, NE) with a built in sensor which measured 

the air temperature inside the chamber during the time of gas collection. 

Flux Calculation 

SoilFluxProTM ver 4.0.1 software was used to calculate exponential flux of all 

gases. Flux was calculated using the following equations: 

!! = !"! + [!#! − !"!]'$%& (Equation 1) 

where !! is the instantaneous water vapor dilution-corrected chamber gas mole fraction, 

!"! is the water vapor dilution-correction gas concentration in the soil surface layer under 

the chamber, and a is a rate constant. The flux is calculated using the initial slope ('(
!

'& 	 at 

) = 0) of the function at the time of chamber closing when !! is close to the ambient 

level (!#! ). '(
!

'&  is calculated by the equation 

'(!
'& = +[!"! − !#! ]'$%&. (Equation 2) 

Flux is then calculated using the equation 

,) = *+"(-$.")
01(2"3456.-8)

	'(!'&   (Equation 3) 

where ,) is the soil gas flux, V is the volume, -# is the initial pressure, .# is the initial 

water vapor mole fraction, S is soil surface area inside the chamber, /# is the initial air 

temperature, and '(
!

'&  is the initial rate of change in water vapor dilution-corrected gas 

mole fraction (LI-COR, 2019). For flux calculation of CO2, gas collected from 45-165 

seconds after chamber closing was used. For all other gases, 45-900 seconds was used. 

Equations were automatically modified for each gas for molar weights. 
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Design and Treatments 

 The overall experimental design was a 3x2 factorial with two replications. The 

first factor was vegetation, with three levels: corn, grass mixture, and no vegetation. The 

corn and grass mixture levels were positioned in the uphill land position were soil 

properties were less saline. The no vegetation level was positioned further downhill in 

saline soil. The second factor was urea application rate, with two levels: 0 kg ha-1 N and 

224 kg ha-1 N. Nitrogen application was performed by dissolving urea in 10 mL H2O and 

then evenly dripped on the soil within the PVC ring. Urea was applied to all treated areas 

directly before measurements began. Four LI-COR 8100-104 Long Term Chambers were 

placed in each vegetation level; with two chambers each treated with urea, and two 

chambers with no urea. The experiment was replicated over 2 years. The was conducted 

in 2018 from July 17 to July 24 and 2019 from July 16 to July 23. 

Statistics 

 All statistics for flux and soil data were conducted in R (ver 1.1.383) (R Core 

Team, 2017). Before analysis was done, any outliers were removed from the dataset 

using DFFITS in R (Hebbali, 2017) and confirmed using SoilFluxProTM. ANOVA 

analysis was performed between among treatments with the following model:  

09: = 1 + 29 + 39: (Equation 4) 

 Where 09:= ith observed sample value from the ith population, 1= the overall 

mean, 29= vegetation and urea treatment effect in the ith treatment level which is the 

difference between the mean of the ith treatment level and the overall mean, and 39: is the 

random error. If Pr(>F) was found to be less than a=0.05 significance level, a Fisher 

Least Significant Difference (LSD) post-hoc test was conducted in R to determine 
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differences among treatments using library agricolae (de Mendiburu,2009). Graph figures 

were generated using the ggplot2 package (Wickham and Winston, 2016). 

3.4 RESULTS AND DISCUSSION 

Overall Environmental Conditions 

2018  

 This experiment took place in July, which is historically the warmest month of the 

year in Clark, SD according to 30-year normal temperature data (1981-2010) with 

average daily high temperatures of 28.0°C, and average daily low temperatures of 

15.8°C. During the week of the experiment, the average temperature was 21.5°C, with an 

average high of 27.1°C and an average low of 16.0°C (Table 3.1). Precipitation during 

the study consisted of two rain events. The major rainfall event occurred on July 18, 2018 

totaling 31 mm (Table 3.1). This rain fell during the evening and throughout the night for 

approximately 8 hours. The other totaled 1 mm on July 20, 2018 overnight (Table 3.1) 

2019 

 The temperatures were slightly higher in 2019 compared to 2018 with an average 

low temperature of 16.5°C and an average high temperature of 28.8°C (Table 3.2). This 

was also higher than the 30-year normal low and high temperatures by 0.7°C and 0.8°C, 

respectively. There were three precipitation events during the 2019 study totaling 100 

mm (Table 3.2). The first occurred on July 17, 2019 from 2:15 to 9:00 am CDT and 

totaled 13 mm (Table 3.2). The second precipitation event occurred on July 18, 2019 

from 1:15 to 1:45 am CDT and totaled 3 mm (Table 3.2). The final precipitation event 

occurred on July 20, 2019 from 5:50 to 7:30 am CDT and totaled 84 mm (Table 3.2). 

This final precipitation event brought strong wind and heavy rain forcing the shutdown of 
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equipment for one measurement cycle at 7:30 am CDT and resumed measurements at 

12:00 pm CDT. The heavy rain filled the chamber rings in the saline zone due to no 

infiltration and prevented GHG measurements; this water was manually removed at 4:40 

pm CDT the same day.  

 

 

 

Table 3.1. Daily Precipitation and Temperature Data During 2018 Experimental Run. 

Precipitation collected on field site and temperature data collected from Clark, SD 

weather station ID CLARK NUMBER 2, SD US USC00391740 located at 44° 52' 54.84'' 

N, -97° 44' 3.12'' W as obtained from the NOAA (National Oceanic and Atmospheric 

Administration).  

 

 

 

 

Date Precipitation Minimum Temperature Maximum Temperature
---mm---

July 17, 2018 0 15.0 28.9
July 18, 2018 31 15.6 29.4
July 19, 2018 0 17.2 26.7
July 20, 2018 1 14.4 23.9
July 21, 2018 0 14.4 26.7
July 22, 2018 0 16.1 26.7
July 23, 2018 0 19.4 27.2
July 24, 2018 0 15.6 27.2
Total 32 - -
Average - 16.0 27.1

---------------------------------°C---------------------------------
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Table 3.2. Daily Precipitation and Temperature Data During 2019 Experimental Run. 

Precipitation collected on field site and temperature data collected from Clark, SD 

weather station ID CLARK NUMBER 2, SD US USC00391740 located at 44° 52' 54.84'' 

N, -97° 44' 3.12'' W as obtained from the NOAA (National Oceanic and Atmospheric 

Administration).  

 

 

 

 

Zone Environmental Conditions 

2018 

 The mean air temperature as measured with field equipment was similar between 

all three vegetation zones throughout the study, ranging from 21.5°C to 25.9°C (Table 

3.3).  

 Unlike air temperature, soil temperature differed by zones with averages 24.1°C 

(saline) and 19.0°C (corn) (Table 3.3). The cooler soil temperature in corn was most 

likely the result of 100% vegetative canopy. The saline zone was barren, allowing direct 

solar radiation to heat the bare soil. The first two days in the grass zone had temperatures 

Date Precipitation Minimum Temperature Maximum Temperature
---cm---

July 16, 2019 0 20.6 32.2
July 17, 2019 13 19.4 30.0
July 18, 2019 3 17.8 28.9
July 19, 2019 0 18.9 31.7
July 20, 2019 84 13.3 31.7
July 21, 2019 0 14.4 25.0
July 22, 2019 0 13.9 24.4
July 23, 2019 0 13.9 26.1
Total 100 - -
Average - 16.5 28.8

---------------------------------°C---------------------------------
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lower than the saline zone but higher than the corn zone due to less shading provided by 

the grass vegetation (~50% canopy) (Table 3.3). 

 Mean volumetric soil moisture contents at the start of the experiment for corn, 

grass, and saline treatments were 0.13 cm3 cm-3 (corn), 0.20 cm3 cm-3 (grass), and 0.46 

cm3 cm-3 (saline) (Table 3.3). Soil moisture increased on day 2 after the rainfall. The 

saline zone was consistently higher in moisture throughout the study due to poor drainage 

and the lower landscape position. Over the 7 days, grass, corn, and saline zone soil 

moisture averaged 0.31, 0.23, and 0.47 cm3 cm-3, respectively (Table 3.3).  

2019 

 Similar to 2018, chamber air temperature did not differ between zones throughout 

the study. The average air temperatures for the grass, corn, and saline zones over the 7 

days was 23.8, 23.9, and 24.5°C (Table 3.4). Days 1-4 of the study were ~5 to 10°C 

warmer than days 5-7 (Table 3.4). 

 Soil temperature also showed similar trends seen in 2018 with the saline zone 

being warmer than the corn and grass treatments on days 1 and 3 of the study as well as 

when averaged throughout the 7 days (Table 3.4). Corn and grass soil temperatures were 

similar on all 7 days and averaged 21.4 and 23.1°C, respectively (Table 3.4). In contrast, 

the saline zone averaged 25.7°C during the study.  

 Soil moisture content was higher in all treatments compared to 2018 due to a 

wetter season and more precipitation events. Corn and grass zone soil moisture averaged 

0.41 and 0.42 cm3 cm-3, respectively, over the 7 days (Table 3.4). The saline zone had a 

higher moisture content throughout the study compared to corn and grass zones and 
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averaged 0.58 cm3 cm-3 over the 7 days (Table 3.4). Soil moisture did not change 

substantially with rainfall in 2019 due to saturated conditions already present. 

 

 

 

Table 3.3. Mean Chamber Air Temperature, Soil Temperature, and Soil Moisture at 2018 

Experiment Site as Measured in Each Vegetation Zone. 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 1-7

Grass Mixture 25.5 21.3 21.6 22.9 24.4 25.2 21 23.2
Corn 25.4 21.5 20.7 22.5 24 24.8 20.5 22.9

Saline No Vegetation 25.9 21.5 21.3 23.7 25.2 25.9 22.2 23.7

Grass Mixture 24.9 19.2 - - - - - 22.3 a
Corn 21.7 17.8 16.8 18.2 b 19.3 b 20.5 b 18.1 b 19.0 b

Saline No Vegetation 26.2 21.3 20.7 24.2 a 25.5 a 25.8 a 24.6 a 24.1 a

Grass Mixture 0.22 b 0.37 b 0.37 b 0.34 b 0.32 b 0.31 b 0.28 b 0.31 b
Corn 0.13 c 0.31 b 0.30 c 0.23 c 0.23 c 0.19 c 0.19 c 0.23 c

Saline No Vegetation 0.46 a 0.48 a 0.48 a 0.47 a 0.47 a 0.45 a 0.44 a 0.47 a

Mean Soil Moisture (cm3 cm-3)

Treatment

2018
Day

Mean Chamber Air Temperature (°C)

Mean Soil Temperature (°C)
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Table 3.4. Mean Chamber Air Temperature, Soil Temperature, and Soil Moisture at 2019 

Experiment Site as Measured in Each Vegetation Zone. 

 

 

 

Soil Tests 

2018 

 Analysis was examined by year due to the different environmental conditions and 

because the objective was to use annual soil data to help support findings in the flux data 

collected rather than to determine soil changes over time. During the 2018 study, soil 

EC1:1 in the grass and corn chambers in both urea and non-urea treatments had similar 

values in the 0- to 15- cm depth (Table 3.5). Saline chambers had a higher EC1:1 value at 

the 0- to 15- cm depth, with a mean EC1:1 of 3.87 dS m-1 (Table 3.5). Compared to a 

mean EC1:1 of 1.01 dS m-1 in the corn and grass chambers (Table 3.5). At the 15- to 30- 

cm depth, corn treatments had the lowest EC1:1 of 0.52 to 0.80 dS m-1, whereas grass and 

saline zones were greater and averaged 2.11 dS m-1 (Table 3.5).  

 Soil pH values had differences among treatments in the 0- to 15- cm depth. The 

grass area had an average pH of 7.31 (Table 3.5). This was similar to the soil pH of 7.34 

1 2 3 4 5 6 7 1-7

Grass Mixture 26.9 25.9 28.3 25.8 21.1 19.6 18.1 23.8
Corn 27.2 25.9 28.9 25.3 20.7 20.0 18.4 23.9

Saline No Vegetation 27.0 26.0 29.5 26.2 21.9 20.1 19.6 24.5

Grass Mixture 23.8 b 24.1 25.7 b 25.4 22.2 19.9 20.5 23.1 b
Corn 23.5 b 23.1 24.9 b 22.7 19.5 17.7 17.7 21.4 b

Saline No Vegetation 27.1 a 26.8 29.4 a 28.3 24.1 20.8 23.1 25.7 a

Grass Mixture 0.41 b 0.42 b 0.42 b 0.42 b 0.43 b 0.43 b 0.42 b 0.42 b
Corn 0.41 b 0.42 b 0.40 b 0.39 c 0.41 c 0.41 c 0.40 c 0.41 c

Saline No Vegetation 0.60 a 0.58 a 0.58 a 0.58 a 0.57 a 0.56 a 0.56 a 0.58 a

Mean Soil Moisture (cm3 cm-3)

2019
DayTreatment

Mean Chamber Air Temperature (°C)

Mean Soil Temperature (°C)
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in the corn area (Table 3.5). The saline zone had the lowest pH 6.84 (Table 3.5). pH in 

the 15- to 30- cm depth was similar across all zones averaged 7.53 (Table 3.5). 

 Most N in the soil profile was in the NO3- form and in the top 0- to 15- cm of the 

profile (Table 3.5). The beginning soil total N baseline tests for the corn, grass, and saline 

areas were 78, 181, and 169 ug g-1 at the 0- to 15- cm depth, respectively, and 63, 28, and 

20 ug g-1 at the 15- to 30- cm depths, respectively. In the 0- to 15- cm depths the highest 

NO3- was found in the saline urea treatment with 137 ug g-1 (p=0.1) (Table 3.5), whereas 

the corn area had the lowest NO3- level of 6 ug g-1 in the non-urea treatment and 22 ug g-1 

in the urea treatment (Table 3.5). The high NO3- values found in the saline zone could be 

due to lack of plants available to remove the nitrogen from the soil. In the 15- to 30- cm 

depths, all treatments had similar NO3- values with the exception of the saline urea 

treatment which had the highest NO3- value of 25 ug g-1 (Table 3.5).   

 Na in the 0- to 15- cm depth was highest in the saline area, with the saline urea 

treatment chambers averaging 1804 ug g-1 (Table 3.5) The lowest Na levels were found 

in the corn area, averaging 72 ug g-1 Na across the treatments (Table 3.5). The grass zone 

averaged 343 ug g-1 in Na levels. The 15- to 30- cm depth Na levels were highest in the 

saline area averaging 1026 ug g-1 across treatments (Table 3.5). Similar to EC1:1 data, Na 

values also indicate the grass zone was on a transitional zone with slightly elevated levels 

of Na and EC1:1 (Table 3.5).   

The Na:EC1:1 ratio helps depict how much of the soil EC1:1 is a result of Na 

levels, as Na is a salt in the soil that increases EC1:1. This ratio showed that in the 0- to 

15- cm depth the saline area had the highest ratio value averaging 432 (Table 3.5) Corn 
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and grass areas had similar values averaging 189 (Table 3.5). Urea treatment did not 

impact the ratio.  

2019 

 In the 0- to 15- cm depth the highest EC1:1 was in the saline area at 4.96 dS m-1 

when averaged between urea treatments (Table 3.6). Urea addition did not impact EC1:1 

in all treatments for both depths (Table 3.6). The grass area averaged an EC1:1 of 1.12 dS 

m-1 and corn area treatments averaged an EC1:1 of 0.41 dS m-1 (Table 3.6). At the 15- to 

30- cm depth the saline zone had the highest in EC1:1, averaging 2.29 dS m-1 (Table 3.6). 

Averaged across urea treatments, grass zone subsoil averaged 1.31 dS m-1 while the corn 

zone averaged 0.45 dS m-1.  

 Soil pH was similar across all treatments for both depths tested (Table 3.6). When 

averaged across urea treatments, the pH for the 0- to 15- cm depth in grass, corn, and 

saline areas was 6.83. In the 15- to 30- cm depth the pH in grass, corn, and saline areas 

averaged 7.20.  

 Most soil N was in the nitrate form in 2019 as it was in 2018. Baseline NO3-  

levels before urea application were 5, 6, and 169 ug g-1 for corn, grass, and saline areas, 

respectively, at the 0- to 15- cm depth and 1, 1, and 34 ug g-1 at the 15- to 30- cm depth, 

respectively. NO3- content was similar across treatments for both depths tests. Averaged 

across treatments, soil NO3- was 55 ug g-1 at the 0- to 15- cm depth at the end of the 

experiment. At the 15- to 30- cm NO3- levels averaged 21 ug g-1 across treatments (Table 

3.6).  

 Soil Na levels in the 0- to 15- cm depth was not affected by urea application and 

were highest in the saline area which averaged 1351 ug g-1. The corn area averaged 67 ug 
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g-1 and the grass area averaged 191 ug g-1 (Table 3.6). The Na levels in the 15- to 30- cm 

depth in the saline area averaged 886 ug g-1 and was higher than the corn and grass 

treatments (Table 3.6). The grass urea treatment Na levels were higher than the no urea 

treatment with 236 ug g-1 and 383 ug g-1 Na, respectively, and is likely due to inherent 

variability (Table 3.6). Corn had the lowest Na levels at 98 ug g-1 averaged across urea 

treatments (Table 3.6).  

 Soil Na:EC1:1 values were only different among treatments and the 0- to 15- cm 

depth. Corn no urea and both saline treatments had the highest Na:EC1:1 levels of 266 and 

273, respectively. The grass area averaged 166 Na:EC1:1 which was similar to the corn 

urea treatment (Table 3.6). These results were similar to 2018 where the saline zone had 

the highest Na:EC1:1 ratio as well.  

 

 

Table 3.5. Soil Test Values for 2018 Study in Clark, SD on July 23.  

 

 

 

 

Na:EC

Treatment 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm

Corn No Urea 0.37 b 0.80 bc 7.49 a 6 5 b 72 b 141 b 198 b 175 b

Corn Urea 0.40 b 0.52 c 7.18 ab 22 3 b 71 b 131 b 182 b 264 b

Grass No Urea 1.80 b 1.81 ab 7.37 a 61 8 b 438 b 346 b 209 b 188 b

Grass Urea 1.47 b 1.86 a 7.25 a 64 5 b 248 b 307 b 167 b 165 b

Saline No Urea 3.66 a 2.37 a 6.85 bc 78 17 ab 1555 a 1070 a 421 a 452 a

Saline Urea 4.07 a 2.40 a 6.83 c 137 25 a 1804 a 982 a 443 a 407 a

P-value 0.006 0.017 0.015 0.275 0.098 0.043 0.540 0.640 0.002 0.001 0.004 0.003

Corn vs Grass * *** ns ns ns ns ns ns ns * ns ns

Corn vs Saline *** *** *** ns ** *** ns ns *** *** *** ***

Saline vs Grass *** ns *** ns ns ** ns ns *** *** *** ***

**   Significant at a =0.05

*** Significant at a =0.01

7.53

-------dS m-1-------

EC pH NO3
--N NaNH4-N

---------------------------------------------------------------------------------------------------ug g-1---------------------------------------------------------------------------------------------------

6 4

ns=not significant

*     Significant at a =0.1
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Table 3.6. Soil Test Values for 2019 Study in Clark, SD on July 24.  

 

 

Flux  

2018 

Carbon Dioxide  

All CO2 emissions can be observed as a time series that shows changes in flux 

across treatments during the study (Figure 3.1). Corn soil treated with urea had the 

highest mean CO2-C flux of 2,553 g CO2-C ha-1 hr-1 (Table 3.7). This was higher than 

grass zone urea, corn zone no urea, grass zone no urea, saline zone urea, and saline zone 

no urea by 19%, 40%, 61%, 215%, and 318%, respectively (Table 3.7). The saline zone 

had the lowest CO2-C flux throughout the study, whether or not it was treated with urea 

(Table 3.7, Figure 3.1). The grass zone produced slightly lower CO2-C than the corn zone 

and was occasionally similar such as days 2-4.  

When days 1-2 were averaged together, representing the time period before the 31 

mm precipitation event, corn and grass zones treated with urea at 224 kg N ha-1 had the 

highest CO2-C emissions, averaging 2,348 g CO2-C ha-1 hr-1 (Table 3.7). Corn and grass 

zones with no added urea had the second highest emissions during this interval with flux 

Na:EC

Treatment 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm 0- to 15- cm 15- to 30- cm
Corn No Urea 0.24 c 0.32 e 4 a 64 c 81 d 266 a 310

Corn Urea 0.57 bc 0.58 de 4 a 70 c 114 cd 127 b
Grass No Urea 0.88 bc 1.02 cd 3 ab 136 bc 236 c 157 b

Grass Urea 1.36 b 1.60 bc 2 ab 245 b 383 b 175 b
Saline No Urea 4.95 a 2.42 a 1 b 1350 a 935 a 273 a

Saline Urea 4.98 a 2.16 ab 1 b 1352 a 873 a 273 a
P-value <0.001 <0.001 0.369 0.206 0.256 0.231 0.757 0.029 <0.001 <0.001 0.004 0.577

Corn vs Grass ** *** * ns ns ns ns ** * *** ns ns
Corn vs Saline *** *** ns ns ** ns ns *** *** *** ns ns
Saline vs Grass *** *** * ns * ns ns ** *** *** ** *

**   Significant at a=0.05
*** Significant at a=0.01

-------dS m-1-------

EC pH NO3
--N NaNH4-N

--------------------------------------------------ug g-1--------------------------------------------------

ns=not significant
*     Significant at a=0.1

6.83 7.20 55 21 9



 
 

79 
 

 
averaging 1412 CO2-C ha-1 hr-1(Table 3.7). Saline soil had the lowest CO2-C flux rate of 

446 g CO2-C ha-1 hr-1 when no urea was added, and 669 g CO2-C ha-1 hr-1 when urea was 

added (Table 3.7).  

These results indicate the soil under saline conditions had lower CO2-C emissions 

compared to both the corn and grass areas. Soil CO2 is produced primarily due to 

biological respiration from plant roots and soil microbes (USDA-NRCS, 2019). Because 

the saline zone had no established plants, there were no roots to respire CO2.  

Differences were not only due to vegetation however, as differences within zones 

were also seen due to urea application. The addition of urea increased CO2-C flux in 

grass zone chambers by 34%, corn zone by 40%, and saline zone by 33% over the 7 days 

(Table 3.7). Both plant roots and microbes in the soil utilize nitrogen, which may also 

result in higher respiration and thus increase CO2-C flux. Additionally, the hydrolysis 

reaction of the urea molecule in soil also produces CO2. The addition of urea at the rate of 

224 kg N ha-1 would correspond to 40750 g CO2-C ha-1. 

The general conclusions from CO2 analysis are that CO2 emissions increased after 

a rainfall and declined as soil moisture decreased (Figure 3.1, Figure 3.2). Also, saline 

affected soil had the lowest CO2 emissions. While this could be interpreted as beneficial 

to mitigating the additions to global GHG concentrations, it must be noted that CO2 

emissions are an indicator of soil health and microbial activity. Also, these soils are not 

sequestering any carbon from the atmosphere through plant growth meaning there is 

likely a higher net loss of carbon from the saline soil when compared to vegetated soils.  

When relating the soil test data to the flux data from non-treated chambers, it can 

be seen that the soils with higher EC1:1, Na, and Na:EC1:1 values had lower CO2-C 
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emissions; further displaying that high soil salinity may inhibit biological populations, 

both plant and microbial.  

 

 

 

Table 3.7. 2018 Mean Flux of CO2-C, N2O-N, and CH4-C as Observed for 7 Days from 

Saline, Grass, and Corn Zones; with Urea Applied at 0 or 224 kg ha-1 N. 

 

 

Treatment 1 2 3 4 5 6 7 1-7

Corn No Urea 1547 c 1233 bc 1961 b 2075 bc 2146 b 2082 b 1733 b 1821 c
Corn Urea 2205 a 2728 a 3123 a 2802 a 2471 a 2443 a 2081 a 2553 a

Grass No Urea 1411 c 1455 b 1853 b 1860 c 1606 c 1541 c 1392 c 1589 d
Grass Urea 1899 b 2561 a 2744 a 2464 ab 1811 c 1860 b 1563 bc 2137 b

Saline No Urea 660 d 198 d 745 c 760 d 563 d 620 d 747 d 611 f
Saline Urea 762 d 560 cd 1352 bc 960 d 625 d 669 d 739 d 810 e

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Corn No Urea 0.00 d 0.03 0.03 c 0.02 c 0.01 d 0.00 c 0.01 c 0.01 c
Corn Urea 0.04 cd 0.16 0.25 c 0.31 bc 0.35 cd 0.59 b 0.41 b 0.29 bc

Grass No Urea 0.01 cd 0.80 1.63 bc 0.11 bc 0.04 d 0.02 c 0.02 c 0.38 bc
Grass Urea 0.08 c 0.83 0.78 c 0.82 b 0.68 c 0.78 b 0.61 b 0.64 b

Saline No Urea 0.20 b 2.32 7.19 a 2.45 a 1.35 b 0.66 b 0.54 b 2.09 a
Saline Urea 0.29 a 2.00 4.00 b 2.78 a 1.89 a 1.22 a 1.12 a 1.88 a

P-value <0.001 0.16 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Corn No Urea -0.395 d -0.130 bc -0.193 c -0.257 c -0.284 c -0.329 c -0.378 d -0.284 c
Corn Urea -0.471 e -0.192 c -0.233 d -0.270 c -0.304 c -0.343 c -0.357 d -0.312 d

Grass No Urea -0.183 b -0.060 ab -0.067 b -0.099 b -0.088 b -0.110 b -0.116 bc -0.106 b
Grass Urea -0.221 c -0.121 bc -0.076 b -0.077 b -0.092 b -0.102 b -0.155 c -0.121 b

Saline No Urea -0.023 a -0.001 a 0.002 a -0.005 a -0.009 a -0.014 a -0.025 a -0.011 a
Saline Urea -0.037 a -0.002 a -0.006 a -0.006 a -0.008 a -0.068 b -0.069 ab -0.027 a

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

---------------------------------------------------------g ha-1 hr-1---------------------------------------------------------

---------------------------------------------------------g ha-1 hr-1---------------------------------------------------------

Day

Daily Mean Soil CO2-C Flux (g ha-1 hr-1)

Daily Mean Soil N2O-N Flux (g ha-1 hr-1)

Daily Mean Soil CH4-C Flux (g ha-1 hr-1)
---------------------------------------------------------g ha-1 hr-1---------------------------------------------------------
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Figure 3.1 Time Series Carbon Dioxide Flux Data Collected in Field from July 17, 2018 

to July 24, 2018 in Clark County, SD from Saline, Grass, and Corn Zones; with Urea 

Applied at 0 or 224 kg ha-1 N. Arrow Indicates 31 mm Precipitation Event. 

 

 

Figure 3.2 Time Series Soil Volumetric (%) Moisture Collected in Field from July 17, 

2018 to July 24, 2018 in Clark County, SD from Saline, Grass, and Corn Zones. Arrow 

Indicates 31 mm Precipitation Event. 
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Nitrous Oxide 

 Nitrous oxide emissions are presented in a time series graph (Figure 3.3). The 

saline zone averaged the highest N2O-N flux regardless of treatment over the 7 days with 

an average flux of 1.99 g N2O-N ha-1 hr-1. The average N2O-N flux from the saline areas 

was higher than grass zone no urea, grass zone urea, corn zone no urea, and corn zone 

urea by 423%, 211%, 19800%, and 586%, respectively.  

 On day 1, before the rainfall, N2O-N emissions were at the lowest averaging 0.1 g 

N2O-N ha-1 hr-1 across treatments. After the precipitation on day 3, the saline zone had the 

peak observed N2O-N emissions and averaged 7.19 g N2O-N ha-1 hr-1 in no urea treatment 

and 2.78 g N2O-N ha-1 hr-1 when treated with urea (Table 3.7).  

 Urea addition had mixed impacts on N2O flux. In the saline area, urea increased 

N2O-N emissions on days 1, 5, 6, and 7 of the study by 45%, 40%, 85%, and 107% 

(Table 3.7). However, averaged over the 7 days urea application did not influence N2O 

emissions in saline soil. Urea increased N2O flux in the grass zone on days 5-7 as well by 

an average of 2,783%, however again there was no difference with non-treated grass 

areas when averaged over the 7-day period (Table 3.7). Likewise, the corn area also was 

not influenced by urea when averaged over the entire study.   

While urea addition may not influence N2O emissions in this study as much as 

other conditions such as temperature, vegetation, or moisture; it is still seen that the saline 

area of the field released much larger amounts of N2O-N when compared to soil under 

grass or corn vegetation. This suggests that N2O emissions could be minimized by 

maintaining vegetative growth on the soil, whether it is corn or grass. This is likely due to 

plants shading the soil; which decreased mean soil temperature which is a driver in N2O 
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emissions from soil. Plants also use water in the soil which can shorten the time the soil is 

at heightened moisture contents, which is also a driver of N2O emissions (Figure 3.2). 

This effect was seen in Table 3.3 where the saline soil had higher soil temperature as well 

as moisture content as seen in Figure 3.2. Additionally, plants use nitrogen in the soil for 

growth. By transferring nitrogen from soil into the vegetative biomass, the reduced 

nitrogen content of the soil reduces the levels of nitrogen in the soil to be lost as N2O. 

This could be the case, as the saline soil had higher NO3- content compared to the grass 

and corn zone soils (Table 3.5).  

 

 

Figure 3.3 Time Series Nitrous Oxide Flux Data Collected in Field from July 17, 2018 to 

July 24, 2018 in Clark County, SD from Saline, Grass, and Corn Zones; with Urea 

Applied at 0 or 224 kg ha-1 N. Arrow Indicates 31 mm Precipitation Event. 
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Methane 

 Methane emissions during the study were almost all negative values, meaning the 

soil was acting as a sink for CH4, rather than a source. This allows analysis of the 

environmental benefits the different soil treatments are providing in terms of CH4 

removal from the atmosphere. When averaged over the length of the 7-day study, corn 

urea had the lowest CH4-C flux of -0.312 g CH4-C ha-1 hr-1, whereas saline no urea had 

the highest flux of -0.0106 g CH4-C ha-1 hr-1, with grass treatment’s flux rates falling 

between the two. Throughout the study, corn and grass treatments removed more CH4 

than the saline zone. Although the saline soils did not emit CH4 in large amounts, they 

failed to remove CH4 from the atmosphere as effectively as vegetated soils.  

 After the 31 mm rain event, the CH4-C flux increased (Table 3.7, Figure 3.4). 

This increase was seen most drastically in the corn zone but still occurred in all 

treatments. This is because methane is produced by methanogenesis, carried out by soil 

bacteria in an anaerobic environment. Because the rain fell heavily, soil conditions 

became saturated for several hours. This may have allowed the rate of methanogenesis to 

increase temporarily as conditions became more reducing with a lack of oxygen and 

limited the rate of methane oxidation.  

 Urea additions did not impact CH4-C flux as much as it did with CO2-C emissions 

(Table 3.7). Although there was a difference in corn treatments with urea, this was not 

seen with grass or saline zones. Although the finding that urea increased the capacity of 

the soil to remove methane in the corn zone, the difference was small and not seen in 

grass or saline zones (Table 3.7). 
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 The results show the saline soil took longer to recover from a rainfall event in 

terms of fixing CH4 and has a limited ability to remove CH4 from the atmosphere. When 

compared to corn and grass treatments, it appears that the corn vegetated soil functions 

better at fixing CH4 than grass vegetated soil, however, this difference could be explained 

by the soil conditions. Table 3.5 shows that the grass zone selected for study had a higher 

EC1:1 than the corn zone. This slightly elevated EC1:1 may have influenced CH4 emissions 

or fixation in the grass zone. Also, these values are very small and are relatively a small 

proportion of the total GHG emissions measured.  

 

 

 

Figure 3.4 Time Series Methane Flux Data Collected in Field from July 17, 2018 to July 

24, 2018 in Clark County, SD from Saline, Grass, and Corn Zones; with Urea Applied at 

0 or 224 kg ha-1 N. Arrow Indicates 31 mm Precipitation Event. 
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2019 

Carbon Dioxide 

 The second year of the study saw similar results to 2018. Grass and corn followed 

very similar flux patterns in 2019 in both urea and no urea treatments. Averaged over the 

7 days, the grass and corn treatments with urea had the highest flux rate averaging 3089 g 

CO2-C ha-1 hr-1 (Table 3.8). The grass no urea treatment was the next highest at 2,538 g 

CO2-C ha-1 hr-1 which was 40% higher than the corn with no urea (Table 3.8). The saline 

zone had the lowest fluxes for CO2 and was 324 g CO2-C ha-1 hr-1 with no urea additions 

and 825 g CO2-C ha-1 hr-1 when urea was added (Table 3.8). This is similar to 2018 

where the saline soil had the lowest CO2 emissions, however, grass and corn zone 

emissions increased compared to 2018 due to higher temperatures during the first four 

days (Table 3.1, Table 3.2).  

 After the 8.4 cm rainfall event at the start of day 5, CO2 emissions decreased due 

to saturated soil conditions and a decrease in temperature (Figure 3.5). Emissions 

decreased in the grass zone by 27%, corn by 22%, and saline by 45% as a result.  

 Also similar to 2018, urea increased emissions in all vegetative zones as well. 

Urea increased CO2 flux in grass chambers on days 3, 4, and 5 by 24%, 33%, and 23%, 

respectively, and increased CO2 flux by an average of 19% over the week (Table 3.8). 

CO2 flux from corn increased due to urea on every day measured by an average of 75% 

(Table 3.8). Urea increased CO2 flux in saline soil by an average of 155% (Table 3.8). 

Less differences were seen between urea and non-urea treatments in all vegetation zones 

after day 4 when temperatures cooled, and the heavy precipitation may have leached 

some of the nitrogen away and minimized the effects of the added nitrogen.  
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 The results from both 2018 and 2019 found similar trends and show that grass and 

corn vegetated soils produced similar levels of CO2 emissions. Because CO2 is used as an 

indicator of soil health, this is a positive outcome when compared to the saline soil 

(USDA-NRCS, 2019). Also, the grass vegetation treatment had potential to have higher 

CO2 emissions than measured because it was located in a slightly more saline soil than 

the corn and salinity inhibits CO2 evolution. This effect was seen in the saline soil which 

had the highest EC1:1 of 4.95 dS m-1 and also the lowest CO2 emissions. The saline soil 

had the lowest CO2 fluxes both years due to limited plant and root growth and possibly 

reduced microbial activity. The measured soil emissions do not account for carbon 

sequestration by the plants themselves in the grass and corn zones, which would reduce 

net emissions. Thus, net carbon fluxes of the plant-soil systems cannot be computed for 

these zones. However, since there are no plants in the saline zone, the flux measured in 

the saline zones is also the net loss of carbon from the soil. Also, both years of 

experiments found urea to increase CO2 emissions.  

 

 

 

 

 

 

 

 

 



 
 

88 
 

 
Table 3.8. 2019 Mean Flux of CO2-C, N2O-N, and CH4-C as Observed for 7 Days from 

Saline, Grass, and Corn Zones; with Urea Applied at 0 or 224 kg ha-1 N. 

 

 

 

 

 

 

 

 

Treatment 1 2 3 4 5 6 7 1-7

Corn No Urea 2239 b 2142 c 2263 bc 1673 c 1381 c 1396 b 1436 b 1812 c
Corn Urea 4801 a 4054 a 3610 a 2958 ab 2147 a 2022 a 2046 a 3162 a

Grass No Urea 3817 a 3070 b 2883 b 2294 bc 1746 b 1815 ab 1759 ab 2538 b
Grass Urea 4198 a 3488 ab 3564 a 3052 a 2156 a 1233 a 2186 a 3015 a

Saline No Urea 358 c 363 d 414 d 274 d 233 d 312 c 198 c 324 e
Saline Urea 729 c 1128 d 1777 c 825 d 202 d 524 c 564 c 825 d

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Corn No Urea 1.25 0.72 c 0.48 c 0.76 cd 0.35 b 0.34 c 0.34 c 0.62 c
Corn Urea 4.26 5.25 bc 3.47 b 5.95 b 5.82 a 3.29 b 2.34 b 4.35 b

Grass No Urea 0.8 0.67 c 0.50 c 0.32 d 0.35 b 0.27 c 0.21 c 0.46 c
Grass Urea 1.31 3.53 c 3.77 b 5.03 bc 5.75 a 4.07 b 2.90 b 3.70 b

Saline No Urea 3.39 8.73 ab 4.96 b 3.14 bcd 5.52 a 3.12 b 2.94 b 4.89 b

Saline Urea 5.57 13.13 a 13.25 a 10.85 a 5.42 a 10.65 a 11.34 a 9.87 a

P-value 0.075 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Corn No Urea -0.086 b -0.052 c -0.080 c -0.048 bc -0.042 c -0.037 b -0.054 d -0.058 c
Corn Urea -0.140 c -0.054 c -0.058 bc -0.066 c -0.024 b -0.039 b -0.045 cd -0.064 c

Grass No Urea -0.076 b -0.027 b -0.051 b -0.048 bc -0.018 b -0.029 b -0.036 bc -0.041 b
Grass Urea -0.056 b -0.040 bc -0.033 b -0.026 b -0.012 b -0.027 b -0.027 b -0.033 b

Saline No Urea 0.012 a 0.014 a 0.011 a 0.007 a 0.005 a 0.007 a 0.005 a 0.009 a
Saline Urea 0.009 a 0.009 a -0.004 a 0.007 a 0.005 a 0.007 a 0.002 a 0.005 a

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

 -----------------------------------------g ha-1 hr-1 -----------------------------------------

Day

Daily Mean Soil CO2-C Flux (g ha-1 hr-1)

Daily Mean Soil N2O-N Flux (g ha-1 hr-1)

Daily Mean Soil CH4-C Flux (g ha-1 hr-1)

 -----------------------------------------g ha-1 hr-1 -----------------------------------------

 -----------------------------------------g ha-1 hr-1 -----------------------------------------
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Figure 3.5 Time Series Carbon Dioxide Flux Data Collected in Field from July 16, 2019 

to July 23, 2019 in Clark County, SD from Saline, Grass, and Corn Zones; with Urea 

Applied at 0 or 224 kg ha-1 N. Arrows Indicate Chronological 13, 3, and 84 mm 

Precipitation Events. 

 

 

Figure 3.6 Time Series Soil Volumetric (%) Moisture Collected in Field from July 16, 

2019 to July 23, 2019 in Clark County, SD from Saline, Grass, and Corn Zones. 
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Nitrous Oxide 

 Averaged over the seven day study in 2019 the saline urea treatment produced the 

highest N2O-N flux of 9.87 g N2O-N ha-1 hr-1 which was 2,046%, 167%, 1,492%, 127%, 

and 102% higher than grass zone no urea, grass zone urea, corn zone no urea, corn zone 

urea, and saline zone no urea, respectively (Table 3.8). N2O-N fluxes were similar among 

treatments during day 1 (Figure 3.7).  

 The grass and corn treatments with no urea added had the lowest emissions 

throughout the study and remained below 1 g N2O-N ha-1 hr-1 for most of the measured 

period, averaging 0.46 and 0.62 g N2O-N ha-1 hr-1 for grass and corn, respectively (Table 

3.8, Figure 3.7). In contrast, the saline zone with no urea added averaged 4.89 g N2O-N 

ha-1 hr-1 over the 7 days and peaked at 21 g N2O-N ha-1 hr-1 after the first rain event 0.75 

days into the study (Table 3.8, Figure 3.7).  

 Urea increased N2O emissions in all treatment zones. When urea was added, both 

grass and corn averaged higher emissions of 3.70 and 4.35 g N2O-N ha-1 hr-1, with higher 

peaks after rainfall events on 0.75 and 3.8 days after urea application (Table 3.8, Figure 

3.7). This was a 704% and 602% increase for grass and corn, respectively. Urea addition 

to the saline soil increased N2O-N emissions by an average of 102% (Table 3.8).  

 The results of the N2O flux data reveals the lack of environmental services 

provided by saline soils. Figure 3.5 shows that saline soils without urea applied produced 

N2O emissions similar to those found in the corn and grass zones which had urea applied. 

This demonstrated what may have occurred when these areas were managed separately. 

However, when treated with identical management and urea was applied to the saline soil 

as well, emissions more than doubled. The N2O-N emissions from the saline soil with 
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urea were initially lower than the same treatment in corn and grass after a rainfall for a 

short time, however this was due to standing water in the chamber rings preventing gas 

evolution from the soil during that time. After the water infiltrated a few hours later or 

was manually removed, N2O-N flux increased rapidly to levels ~300% higher than those 

in the corn and grass treatments with urea (Figure 3.7). N2O is 298 times more potent of a 

GHG than CO2 (EPA, 2018). Therefore, the emission of N2O is not desirable and the 

saline soil produces a disproportionate level of N2O when compared to corn or grass 

vegetated non-saline soils.  

 The high levels of N2O produced in the saline soils could be the result of several 

factors. First, soil temperature was found to be higher in the saline soils compared to 

grass or corn soils by 2.6°C to 4.3°C, respectively, which were shaded by residue and 

plant growth (Table 3.4). Second, soil moisture was higher in the saline soil compared to 

grass or corn soils by 0.17 cm3 cm-3 (Table 3.4, Figure 3.6). Both of these conditions 

favor increased N2O emissions (Smith et al., 1998). Also, soil tests showed that soil NO3- 

was more than double in the saline soil compared to grass and corn, although values were 

similar due to low sample size and high variability (Table 3.6).  
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Figure 3.7. Time Series Nitrous Oxide Flux Data Collected in Field from July 16, 2019 to 

July 23, 2019 in Clark County, SD from Saline, Grass, and Corn Zones; with Urea 

Applied at 0 or 224 kg ha-1 N. Arrows Indicate Chronological 13, 3, and 84 mm 

Precipitation Events. 

 

Methane 

 Similar to 2018, CH4 flux was near zero for the majority of the study and urea did 

not impact CH4 flux. Saline soil CH4 flux was near zero for the entire study (Table 3.8). 

The grass vegetated soil initially had a slightly lower flux ~ -0.09 g CH4-C ha-1 hr-1 but 

then increased to ~ -0.035 g CH4-C ha-1 hr-1 (Figure 3.8). Likewise, the corn treatment 

initially had a lower flux ~ -0.15 g CH4-C ha-1 hr-1 but then increased to identical levels as 

grass vegetated soil (Figure 3.8).  

 These results are similar to those of 2018 where when soil moisture was lower, 

such as day 1 in 2019, CH4 fluxes were lower. However, after rainfall and the saturated 

soil conditions throughout the rest of the study in 2019, CH4 flux stayed near zero and 

never decreased again as in 2018 due to constant high moisture in 2019 during the study. 
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Although the grass and corn vegetated soils fixed more CH4 than saline soils when dry, 

the values are very small and not significant compared to N2O and CO2 emissions. 

 

 

Figure 3.8. Time Series Methane Flux Data Collected in Field from July 16, 2019 to July 

23, 2019 in Clark County, SD from Saline, Grass, and Corn Zones; with Urea Applied at 

0 or 224 kg ha-1 N. Arrows Indicate Chronological 13, 3, and 84 mm Precipitation 

Events. 

 

 

Emissions Discussion 

 The addition of urea increased the flux rate of CO2 in all three sites in this 

experiment: non-saline corn, non-saline grass, and saline barren. This effect was seen 

during both years of the study and may partially be due urea hydrolysis by soil enzymes 

as CO2 is released as a byproduct (Sigurdarson et al., 2018). Increases in CO2 as a result 

of N additions in our study were comparable to those reported by others (Sainju et al., 
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2008; Silva et al., 2008). Sainju et al. (2008) reported CO2 emissions increases of 102% 

when 78 kg N ha−1 was applied as urea and mono ammonium phosphate to a field in 

Rasmussen, MT compared to a control where no nitrogen fertilizer was applied. Silva et 

al. (2008) reported an increase in CO2 emissions by 170% in a saline soil when urea was 

applied at 200 mg N kg-1 dry soil. The results of our study found more modest increases 

in CO2 emissions, which in 2018 were 35%, 40%, and 33% in grass, corn, and saline 

soils, respectively, and in 2019 by 19%, 75%, and 155%, respectively. However, Thies 

(2018) reported slightly reduced CO2 emissions in response to urea applications on a non-

saline Brandt silty clay loam soil with no crop.  

 The results reported by Thies (2018) on the impact of urea on N2O emissions also 

contradict those found in our study. Thies (2018) reported a 57% reduction in N2O 

emissions as a result of urea application at the same rate used in our study. However, this 

could be due to varying environmental conditions, as our study found N2O emissions 

were highly dependent of rainfall and temperature and the study conducted by Thies 

(2018) was in June, whereas our study was in July. The dependency upon soil moisture 

and soil NO3- content as described by Bremner (1997) may also explain experimental 

differences. In 2018 our study found that urea application did not increase or decrease 

N2O-N emissions when averaged over the 7-day study. However, in 2019 urea increased 

N2O-N emissions by 704%, 602%, and 102% in grass, corn, and saline soils, 

respectively. Likewise, Schmer et al. (2012) conducted a study in North Dakota on 

switchgrass plots and reported a 213% increase in N2O emissions in response to 67 kg ha-

1 N additions. Dusenbury et al. (2008) reported a 354% increase in cumulative N2O-N 

emissions in a wheat-wheat no till system when 245 kg N ha-1 was applied over the 
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course of the two years. Silva et al. (2008) found similar increases to our study, with a 

765% increase in N2O flux when urea was added to saline soil at 200 mg N kg-1 dry soil 

in a laboratory study.   

 Urea did not influence CH4 emissions in our study which was in contrast to what 

was theoretically proposed by numerous authors that CH4 emissions would decrease 

(Mosier et al., 1991; Bosse et al., 1993; Hansen et al., 1993; Hutsch et al., 1993; Bronson 

and Mosier, 1994; Dunfield et al., 1995; Dunfield and Knowles, 1995). However, CH4 

emissions in our study were very small, which could may be why differences due to urea 

were not detected. Our measured CH4 emissions levels did agree with Topp and Pattey 

(1997) however, as they proposed that CH4 flux in soil is typically negative unless under 

heavily reducing condition. In our study, the only soil to produce positive CH4 flux was 

the saline soil which had dispersed soil structure and higher soil moisture, both of which 

encourage reducing soil conditions. Similarly, Le Mer and Roger (2001) reported that soil 

CH4 flux in aerobic soils were rarely higher than 0.1 mg CH4 m-2 h-1. Our study agreed 

with this, as no CH4 flux rates were detected higher that 0.007 mg CH4 m-2 h-1. 

 The average CO2-C flux rates in our study for 2018 averaged 1589, 1821, and 611 

g ha-1 hr-1 for non-urea treated grass, corn, and saline soils, respectively. In 2019 CO2-C 

emissions averaged 2538, 1812, and 324 g ha-1 hr-1 for non-urea treated grass, corn, and 

saline soils, respectively. In comparison, Thies (2018) reported flux rates of 1318 g CO2-

C ha-1 h-1 in June. Frank et al. (2002) reported peak flux rates of 2417 g CO2-C ha-1 hr-1 

on a non-grazed mixed grass prairie Werner–Sen–Chama complex which was similar to 

our results in 2019 for the grass mixture with 2538 g ha-1 hr-1. Setia et al. (2011) reported 

that saline soils in Australia had 50% lower CO2 fluxes compared to non-saline soils. Our 
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study also found reductions in saline soil CO2 flux, where saline soils averaged 13-38% 

of grass and 18-34% of corn CO2 production. These results and past studies all indicate 

that the flux rates measured in our study are reasonable and that salt-affected soils have 

reduced CO2 emissions. This implies reduced microbial activity, although not directly 

measured. 

 The average N2O-N flux rates in our study for 2018 averaged 0.38, 0.01, and 2.09 

g ha-1 hr-1 for non-urea treated grass, corn, and saline soils, respectively. In 2019 N2O-N 

emissions averaged 0.46, 0.62, and 4.89 g ha-1 hr-1 for non-urea treated grass, corn, and 

saline soils, respectively. These ranges were similar to those reported by previous 

researcher’s findings. Thies (2018) reported emissions of 0.81 g N2O-N ha-1 hr-1 in mid-

June and Lai (2017) reported average N2O emissions of 0.20 g ha-1 hr-1 from a continuous 

wheat field in North Dakota. However, neither of these studies measured saline soil GHG 

emissions. Although our experimental findings in the corn and grass soils were similar to 

the aforementioned studies, the average N2O-N emissions were much higher from saline 

areas. This indicates that barren saline soils likely produce disproportionately higher N2O 

emissions, even though there may be reduced microbial activity as mentioned earlier. 

This could be the result of higher soil moisture, reduced soil oxygen, or chemical 

reactions within the soil (Hu et al., 2015; Braker and Conrad, 2011; Huang et al., 2015; 

Khalil et al., 2004; Snyder et al., 2009; Bremner et al., 1980). Revegetating these saline 

soils has potential to reduce unfavorable N2O emissions while increasing CO2 emissions, 

which while usually not favorable in most cases is desired in the case of soil health. 

Revegetation may reduce saline soil N2O emissions by reducing soil nitrate, soil 

temperature, and soil moisture. 
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 The CH4-C emissions measured in this study were small in all treatments and 

ranged from -0.5 to 0.05 g CH4-C ha-1 hr-1. This agreed with Le Mer and Roger (2001) 

where no peak flux values for CH4 were above 1 g CH4 ha-1 hr-1. Wang and Bettany 

(1995) reported a peak CH4 flux of 0.27 g CH4 ha-1 hr-1 after a 79 mm precipitation event. 

This gives us confidence in our flux values and allows us to examine our data even 

though values were small. Our results thus show that salt-affected soils, while not 

necessarily producers of CH4, do not as effectively remove CH4 from the atmosphere as 

they have average fluxes higher than those recorded in the grass and corn soils. However, 

this is not as large of a concern compared to N2O which has a GWP of 298 compared to 

CH4 GWP of 25 and CO2 emissions which were produced in larger amounts (up to 6,000 

g CO2-C ha-1 hr-1). 
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CHAPTER 4: IMPACTS OF INDIVIDUAL PLANT COMPONENTS ON 

GREENHOUSE GAS EMISSIONS AND CHEMICAL PROPERTIES OF A 

SALINE-SOIL IN SOUTH DAKOTA  

4.1 ABSTRACT 

 Phytoremediation is one method of improving salt affected soils’ physical and 

chemical properties. However, there has been minimal research on how phytoremediation 

may also influence greenhouse gas emissions (GHG) and their environmental services. 

This study quantified how individual plant components and whole plant systems 

influenced saline soil properties (EC1:1, pH, Na, NO3-, NH4+) and GHG emissions. 

Simulated root exudates, root respiration (via CO2 injection) and perennial grass mixture 

tissue residue (12.8 C:N ratio) additions [20% slender wheatgrass (Elymus trachycaulus 

(Link) Gould ex Shinners), 35% AC saltlander green wheatgrass (Elymus hoffmannnii), 

12.5% western wheatgrass (Agropyron smithii Rydb), 32.5% creeping meadow foxtail 

(Alopecurus arundinaceus Poir)] were utilized in laboratory experiments  to examine the 

impacts to GHG emissions from a Cresbard-Cavour loam saline soil. Soil samples from 

saline and non-saline sites also were collected from the field where plants had, or had not, 

already established and GHG emissions were quantified. A single addition of simulated 

root exudates did not impact soil chemical properties tested, but increased CO2-C flux by 

91% to 1115 ug CO2-C kg-1 hr-1 over the first 24 hrs with differences lasting 4 d. 

Exudates also increased N2O-N flux by 3,167% to 1.57 ug N2O-N kg-1 hr-1 for 1 d. The 

20% CO2 + 80% N2 gas injection at 14.5 L hr-1 for 6.5 days increased pH from 6.26 to 

6.34 and decreased NO3- by 25 ug g-1 to 64 ug g-1 compared to N2 only. Gas injection had 

minimal direct changes on soil chemical tests and had no impacts lasting >1 d on CO2-C 
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flux after injection ceased. However, CO2 injection increased N2O-N flux 198% for 1 d 

from a base level of 2.81 ug N2O-N kg-1 hr-1 and by 88% on day 2 from 1.91 ug N2O-N 

kg-1 hr-1. Plant residue addition of 3,900 kg ha-1 increased N2O-N flux for at least 8 d by 

an average of 119% compared to control levels of 0.522 ug N2O-N kg-1 hr-1 and CO2-C 

flux by 582% from 526 ug CO2-C kg-1 hr-1 in the first 8 d and 59% after 10 weeks 

compared to non-treated control rates of 501 ug CO2-C kg-1 hr-1. Residue additions 

increased soil EC1:1 by 0.12 dS m-1 from 2.079 dS m-1 and increased NO3- from 137 ug g-

1 to 183 ug g-1 compared with non-treated control. After 7 weeks of barley growth soil 

EC1:1 was reduced from 6.30 dS m-1 to 5.92 dS m-1 and NO3- from 509 ug g-1 to 428 ug g-

1 compared to non-planted control and increased N2O-N and CO2-C flux by 224% and 

244%, respectively, from control levels of 0.359 ug N2O-N kg-1 hr-1 and 206 ug CO2-C 

kg-1 hr-1. Field collected samples in saline sites with AC Saltlander Green Wheatgrass, 

Creeping Meadow Foxtail, Western Wheatgrass, and Slender Wheatgrass present had an 

EC1:1 of 3.61 dS m-1, pH of 6.48, and sodium content of 1493 ug g-1 compared to barren 

saline soil which had an EC1:1=8.03 dS m-1, pH=5.92, and sodium= 2575 ug g-1. CO2-C 

flux from saline soil with plants was 124% greater compared to barren saline soil but was 

similar to the flux from non-saline soil from the same area. Overall, establishing plants on 

saline soils may increase soil CO2 and N2O emissions through substrate additions and 

residue decomposition, and decrease soil NO3- and EC; making conditions more 

favorable to further revegetation.  

4.2 INTRODUCTION 

 Plant growth is needed for soil health, making it a priority to maintain or 

reestablish vegetation to areas affected by salinity or sodicity. Phytoremediation has 
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several benefits over chemical remediation through amendments such as gypsum or 

elemental sulfur. These include less input costs over time as well as a source of revenue 

through forage production (Qadir et al., 2006c). Additionally, phytoremediation can 

stimulate microbial activity through root-soil interactions. More research needs to be 

done in the Northern Great Plains on phytoremediation, as few publications have 

investigated the subject thoroughly. It is important to specifically measure not only how 

plant growth impacts chemical properties of salt affected soil, but also the greenhouse gas 

fluxes to fully understand what interactions are taking place in the soil. Plants interact 

with the soil in countless ways. For the purpose of this study, three specific individual 

interactions were investigated. These individual components included simulated root 

respiration, simulated root exudate excretion, and aboveground residue accumulation. 

These components were represented together by growing barley (Hordeum vulgare) in 

saline soil in a laboratory setting, as well as taking field samples where plants revegetated 

saline soil. 

Objectives  

To achieve the goal of understanding, analyzing, and quantifying how plants impact 

saline soils, individual plant system components were tested in separate, but related, 

experiments to quantify how different plant components play a role in interacting with 

saline soil. The objectives of these experiments were to measure how plants and their 

individual components influence saline soil chemical properties such as electrical 

conductivity (EC), pH, sodium (Na), nitrate (NO3-) and ammonium (NH4+) 

concentrations and GHG emissions.  
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4.3 MATERIALS AND METHODS 

Soil Collection 

The same Cresbard-Cavour loam saline soil from Clark, SD [44°42'10.99"N, 

97°52'44.41"W] was used for the root exudate, plant residue, and root respiration (carbon 

dioxide) experiments. Soil was collected from the top 15-cm on October 24, 2018. There 

was no vegetative growth on the site, which was located at the backslope position, where 

a non-saline soil was transitioning into a saline footslope region of the field. The soil had 

a starting EC1:1 of 2.17 dS m-1, pH of 6.24, Na content of 720 ug g-1, and NO3- content of 

93 ug g-1 and NH4+ content of 3 ug g-1. 

Due to possible residual mesotrione herbicide present in the soil which was 

applied on June 27, 2018 at 0.105 kg ai ha-1, a different saline soil was used for the whole 

plant experiment. The soil for the whole plant experiment was collected on May 3rd, 2018 

from the top 15-cm and was on a similar slope position and transition zone located at 

44°42'11.49"N, 97°52'44.26"W. However, this soil had a starting EC of 6.29 dS m-1, pH 

of 6.49, Na content of 2189 ug g-1, NO3- content of 519 ug g-1, and NH4+ content of 9.5 

ug g-1. Soils were stored in a cooler at 2° C from the time of sample collection to 

experimental use.  

A field validation experiment used soil collected from the same field on April 

26th, 2019 and was collected with a coring device 5-cm in diameter and 10-cm deep with 

samples taken from a non-saline area with and without plant growth and also from a 

saline area with and without plant growth. Soil test values for the four soils can be found 

in Table 2.7. Plant growth associated with these samples consisted of 55% AC Saltlander 

green wheatgrass (Elymus hoffmannnii), 15% creeping meadow foxtail (Alopecurus 
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arundinaceus Poir), 7.5% western wheatgrass (Agropyron smithii Rydb), and 22.5% 

slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners). 

Greenhouse Gas Flux Measurement 

For all experiments GHG flux was measured 4-7 days. Measured gases included 

CO2, N2O, and CH4. To take measurements, a LI-COR 8100A (LI-COR, Lincoln, NE) 

system which collects gas samples was connected to a Picarro G2508 (Picarro Inc., Santa 

Clara, CA) system for gas sample analyzation. The LI-COR system was configured 

according to LI-COR protocols to be used as a flask sampler setup. The flask sampling 

system uses sealed containers for analysis of small samples, rather than larger LI8100-

104 chambers. For all of the conducted experiments, with the exception of the field 

validation experiment, 500 g of air-dried soil was placed in a 1-L glass jar and sealed 

with a lid which had inlet and outlet air ports for air circulation. During measurement, the 

jars used mixed air. The gas samples were collected automatically every hour. A 

subsample of the collected gas was analyzed with the Picarro G2508 cavity ringdown 

spectrometer for CO2, N2O, and CH4 measurements. A LI-8150 multiplexer (LI-COR, 

Lincoln, NE) controlled flask sampling. During individual flask measurement, the system 

measured gas concentration every second for 10 minutes. While one jar is sampling in a 

closed system with the analyzer, all other jars have ambient air continuously circulated 

through them. Because of this, no pre-purge or post-purge time was needed. Every 24 hrs, 

flasks were weighed on a scale and water was added to keep each at the desired 

gravimetric soil moisture level between 30 and 35%. Flux measurements were corrected 

for air temperature. For the field validation experiment, samples were only measured on 
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the LI-COR system for CO2, and were variable in sample weight and were measured for 

5 minutes during each measurement cycle which was repeated over 3 days. 

Flux Calculation 

SoilFluxProTM ver 4.0.1 software was used to calculate exponential flux of all 

gases. Flux was calculated using the following equations: 

!! = !"! + [!#! − !"!]'$%& (Equation 1) 

where !! is the instantaneous water vapor dilution-corrected chamber gas mole fraction, 

!"! is the water vapor dilution-correction gas concentration in the soil surface layer under 

the chamber, and a is a rate constant. The flux is calculated using the initial slope ('(
!

'& 	 at 

) = 0) of the function at the time of chamber closing when !! is close to the ambient 

level (!#! ). '(
!

'&  is calculated by the equation 

'(!
'& = +[!"! − !#! ]'$%&. (Equation 2) 

Flux is then calculated using the equation 

,) = *+"(-$.")
01(2"3456.-8)

	'(!'&   (Equation 3) 

where ,) is the soil gas flux, V is the volume, -# is the initial pressure, .# is the 

initial water vapor mole fraction, S is soil surface area inside the chamber, /# is the initial 

air temperature, and '(
!

'&  is the initial rate of change in water vapor dilution-corrected gas 

mole fraction (LI-COR, 2019). For all lab studies, 45 to 600 seconds after the start of 

sampling was used for flux measurements, with the field validation experiment using 45 

to 300 seconds which was adequate for calculating CO2 flux. All equations used are built 

in to the SoilFluxProTM software as developed by LI-COR and adjusted for individual 

gases. 
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Carbon Dioxide Experiment 

 The hypothesis of this study was that CO2 addition would lower the soil pH by 

formation of carbonic acid with soil water and was designed to simulate the effects of 

plant root respiration in saline soils. The objective of this experiment was to quantify how 

simulated plant root respiration may impact soil pH. If soil pH gets low enough, free lime 

and gypsum in the soil may be brought into solution and become a source of cations to 

replace sodium on clay exchange sites.  

Eight 1-L jars were each filled with 500 g of air-dried saline soil. A mixture of 

80% N2 and 20% CO2 gas was percolated through the soil medium over 6.5 days at a rate 

of 14.5 L hr-1. A compressed gas cylinder was hooked to a 4-way splitting manifold with 

each of the four lines attached to a gas diffuser stone and regulated for fine adjustments. 

The diffuser stone was placed at the bottom of each jar before soil was added. An elbow 

joint was used to connect the gas diffuser to the line so the line would run up the side of 

the jar rather than through the middle of the soil medium to minimize gas escape along 

the line channel. An identical setup was used with the remaining four jars, except 100% 

N2 gas was used as a control. Soil was wetted to 40% gravimetric moisture content in 

each jar. A total of 2.26 m3 of gas was percolated through each jar of soil. Immediately 

after the tanks ran empty, the jars were rewetted to 35% gravimetric moisture content and 

placed on the LI-COR flask system for 7 days for GHG analysis. Water was added daily 

to maintain 35% moisture content. The experiment was run twice, with similar results; so 

results were combined. 
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Root Exudates Experiment 

 The hypothesis was that exudate addition to soil would stimulate microbial 

activity which would be observed as increased CO2 and N2O emissions. The objective of 

this experiment was to simulate the root exudate component of plant growth in saline soil 

to quantify soil GHG emissions which can be used as indicators of biological activity.  

The amount of simulated root exudates added was comparable to the amount 

produced by plant roots over the course of a growing season, but addition was 

compressed into a one-week study. Composition of the simulated exudate solution was 

based on past studies that examined the exudates of a wheatgrass or barley species 

(Rovira, 1969; Henry et al., 2007; Vančura, 1964). The experiment consisted of eight-1 L 

glass jars, each of which was filled with 500 g air dried saline soil. Each jar was wetted to 

40% gravimetric moisture content and placed on the LI-COR flask system for 3 days to 

allow emissions to settle to a baseline with no additional water added during this time. 

After 3 days, 20 mL of simulated root exudates was added to four of the jars from a stock 

solution and additional nano-pure water if needed to bring soil to 35% gravimetric 

moisture. This stock solution was composed of 317 mg glucose, 452.8 mg malic acid, 

302.4 mg oxalic acid, 0.8 mg alanine, 19.2 mg proline, 2.56 mg valine, and 320 mL of 

nano-pure water (Table 4.1). The stock solution had an EC of 1.45 dS m-1, pH of 2.79, 

and sodium concentration of 350 ug g-1. This addition resulted in each treated jar having 

an addition of 19.8 mg glucose, 28.3 mg malic acid, 18.9 mg oxalic acid, 0.05 mg 

alanine, 1.2 mg proline, and 0.16 mg valine (Table 4.1). This equates to 7.92 mg C 

sourced from glucose, 10.2 mg C from malic acid, 5.1 mg C from oxalic acid, 0.02 mg C 

from alanine, 0.62 mg C from proline, and 0.08 mg C from valine for a total of 24 mg C 
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per treated jar (Table 4.1). The 4 non-treated jars were rewetted to 35% moisture using 

nano-pure water with no exudates solution as a control. All jars were then placed back on 

the LI-COR flask system for 6 days to monitor changes in GHG emissions. Water was 

added to all jars each day (10 to 15 mL) to maintain 35% moisture content. The 

experiment was run a second time with all factors being identical except the stock 

exudate solution was made with 240 mL of water instead of 320 mL, resulting in a 

slightly more concentrated solution with an EC1:1 of 1.47 dS m-1, a pH of 2.69, and a 

sodium content of 355 ug g-1. This was done so that only 15 mL of this solution was 

added to maintain 35% moisture, although each chemical component was at the same 

total amount as run 1. This change was done due to less moisture loss in the second run 

compared to the first run and following the identical procedure as run 1 would have 

resulted in over 35% gravimetric moisture. Similar results were obtained from the runs 

and data were combined.  

 

Table 4.1 Simulated Root Exudate Solution Compositional Components. 

 

 

 

 

 

Stock Solution
mg mg mg C

Glucose 317 19.8 7.92
Malic Acid 452.8 28.3 10.2
Oxalic Acid 302.4 18.9 5.1
Alanine 0.8 0.05 0.02
Proline 19.2 1.2 0.62
Valine 2.56 0.16 0.08

Individual Flask Addition
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Plant Residue Experiment 

 The hypothesis was that plant residue would stimulate microbial activity and 

therefore increase CO2 and N2O emissions from the soil. The objectives of this 

experiment were to examine how the residue addition component of a plant system 

impacts saline soil chemical properties and GHG flux. 

The plant residue experiment consisted of adding plant residue from vegetation 

grown in saline conditions to a saline soil. The experiment measured 8 jars in one 

experimental run with four jars filled with 500 g of air-dried soil with no residue to be 

used as a control. The other four jars were filled with a mixture of 500 g of air-dried soil 

and 2.15 g of plant residue, equivalent to a rate of 3,900 kg ha-1 of biomass production. 

Plant residue was obtained from the same field where the soil was collected and consisted 

of 35% AC Saltlander Green Wheatgrass (Elymus hoffmannnii), 32.5% creeping meadow 

foxtail (Alopecurus arundinaceus Poir), 12.5% western wheatgrass (Agropyron smithii 

Rydb), and 20% slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners). 

Plant residue was collected on September 10th, 2018, was oven dried at 60 °C and stored 

until use for the experiment. Before the residue was added to the soil it was cut into ~2-3 

cm pieces. Plant residue used was 3.5% N and 44.6% C and had a C:N ratio of 12.8 as 

determined by mass spectrometry (Sercon Limited, Gateway Crewe, UK) and had a 

sodium content of 1407 ug g-1 as measured with flame photometry. Water was added to 

bring soil water to 30% gravimetric moisture using nano-pure water. GHG emissions 

from soils were analyzed for 6 days after residue addition. Water was added each day to 

maintain 30% gravimetric moisture content.  
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The experiment was run two times, with each run showing similar results. After 

removal from gas analyzer, the jars were allowed to incubate at ambient temperatures 

(~22 °C) in the laboratory for 10 weeks before the experiment was concluded to allow 

decomposition of the residue; with additional water added weekly to maintain desired 

moisture content of 30%. These jars were placed on the LI-COR flask system after the 

10-week period to determine if differences in emissions were still sustained. During this 

measurement, moisture was maintained at 30% for the first 3 days. The remaining 4 days, 

the soil was allowed to dry to determine if emission differences would be maintained 

over different moisture contents. Jar weights were measured daily to determine moisture 

content. 

Whole Plant Experiment 

 The hypothesis of this experiment was that CO2-C flux would increase in soils 

with plants present due to shoot and root respiration and exudate secretion, N2O-N flux 

would decrease due to nitrogen removal from the soil, pH would decrease due to root 

respiration and exudate secretion, Na and NO3- would decrease through plant uptake, and 

EC1:1 would decrease due to plant ion uptake. The objectives of this experiment were to 

quantify and observe how growing plants would impact the soil GHG flux as well as 

chemical properties of a saline soil.  

The whole plant experiment consisted of growing barley (Hordeum vulgare) 

plants in a saline soil for 7 weeks. This experiment represented all combined components 

of the three prior experiments. The experimental setup again consisted of 8 jars, 1-L in 

size each. In four jars, 500 g of air-dried saline-sodic soil was added. In the other four 

jars, 500 g of air-dried saline-sodic soil was also added and 12 barley seeds were planted 
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per jar; 2 cm below the surface. All eight jars were then wetted to 30% gravimetric 

moisture content. Once plants emerged after 7 days, plants were thinned to 7 plants per 

jar. Soil was rewetted every other day to 30% moisture content (~20 ml). 

 Plants grew in the greenhouse for 7 weeks at 23°C and a day length of 13 hr light 

and 11 hrs dark. After 7 weeks, an average of 1.26 g of biomass present over the rim of 

the jar was removed. Jars were then attached to the LI-COR to measure GHG for 4 days. 

Water was added daily (~10-15 ml) to maintain desired moisture content at 30% w/w. 

Once gas sampling ended, all remaining aboveground biomass was removed for tissue 

analysis. Root biomass also was measured by sieving the damp soil, washing the roots, 

air-drying for 24 hours, and weighed. This experiment was performed twice, and all data 

were analyzed together.  

Field Collected Samples Experiment 

 The objective of this experiment was to quantify CO2-C emissions from non-

saline and saline soils, with and without plants, to determine the impact revegetation can 

have on saline soils and also to quantify the difference in soil chemical tests as a direct 

result of plant growth, as the samples were taken only 1 m from each other. 

The field collected samples experiment consisted of soil samples taken from the 

field where plant growth had already established in a Cresbard-Cavour loam saline soil to 

support the results of the previous four experiments as one system. Samples were also 

taken from a non-saline region for comparison. Four soil cores (replications) were taken 

from each of the four treatments: good soil no plants, good soil plants, saline soil no 

plants, and saline soil plants. These cores were allowed to air dry for 10 days, ground 

with a mortar and pestle, and passed through a 6mm sieve, with larger pieces of plant and 
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root debris removed. The soil was then weighed for each sample and wetted to 50% water 

filled pore space following procedures described by Solvita and Woods End Laboratories 

(Mt. Vernon, ME). This was equivalent to a gravimetric moisture content of 30% w/w. 

Samples were measured for CO2-C emissions for 3 days. No additional water was added 

during these 3 days and when the experiment was concluded, soil moisture had decreased 

to 15.5% w/w. One replication was removed from saline plants treatment data analysis 

due to an error in data recording. Following emission data collection, soil was sampled 

for chemical analysis.  

Soil Analysis 

For all experiments, at the conclusion of the experimental run, a soil sample was 

taken and was air-dried at 37.8° C, ground and sieved to 2-mm, and tested for EC1:1, pH, 

Na, NO3- and NH4+. EC1:1 was measured using an Orion Star A215 (Thermo Scientific, 

Waltham, MA) and pH was measured using a 1:1 soil to water ratio using an Accumet 

Excel XL60 pH meter with the same soil slurry, with EC measured first (Fisher 

Scientific, Hampton, NH) following methods described by Grafton (2015). This was 

performed with 10 g oven dried soil and 10 mL nano-pure filtered water which was 

stirred immediately and after 15 min. Measurements were taken 30 min after water 

addition. NO3- and NH4+ was measured using an Astoria Nutrient Analyzer (Astoria-

Pacific, Inc. Clackamas, OR) following methods described in Maynard and Karla (1993) 

in which extraction was performed with 10 g soil using 100 ml 1.0 M KCl, shaken for 1 

hr, and filtered through fine porosity Ahlstrom filter paper. Na was extracted using 1 M 

ammonium acetate at pH 7.0 following methods in (Grafton, 2015) of a 1:10 soil to 

extract ratio which is shaken for 5 min at 200 epm and filtered through Whatman No. 2 
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filter paper and measured on a Jenway PFP7 flame photometer (Cole Parmer, 

Staffordshire, UK). 

Tissue Analysis 

Tissue analysis was done on the barley above ground biomass in the whole plant 

experiment. Tissue samples were dried in a forced air oven at 60° C for 72 hours, ground 

with a mortar and pestle and tested for sodium concentration. Sodium in plant tissue was 

performed by weighing 0.25 g of ground plant tissue and adding 1 mL of 30% H2O2 and 

3 mL of nitric acid and microwaved for 45 min. The dissolved solution was then diluted 

to 25 mL total volume with nano-pure water and tested using atomic absorption flame 

photometry on a Jenway PFP7 flame photometer (Cole Parmer, Staffordshire, UK). 

Carbon and total nitrogen was tested using mass spectrometry (Sercon Limited, Gateway 

Crewe, UK).  

Statistical Analysis 

 All statistics were conducted in R (ver 1.1.383) (R Core Team, 2017). Statistical 

analysis was performed on flux data collected as well as all soil and tissue test data 

collected. Two sample t-tests were performed for comparison between treated samples 

and non-treated samples for each experiment to determine p-value significance. Two 

sample t-tests were run for both emissions and soil test differences. Before analysis was 

done, any outliers were removed from the dataset using DFFITS in R (Hebbali, 2017). 

Outliers that were removed were the result of gas samples taken directly after or during 

water additions, machine default error readings, or poor placement of sampling ports near 

obstructions in the flask (plants, CO2 stone tube). For field validation experiment an 

ANOVA analysis was performed among the four treatments with the following model:  
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 09: = 1 + 29 + 39: 

 Where 09:= ith observed sample value from the ith population, 1= the overall 

mean, 29= soil and plant treatment effect in the ith treatment level which is the difference 

between the mean of the ith treatment level and the overall mean, and 39: is the random 

error. If Pr(>F) was found to be less than a=0.05 significance level, a Fisher Least 

Significant Difference (LSD) post-hoc test was conducted in R to determine differences 

between treatments using library agricolae (de Mendiburu,2009). Graph figures were 

generated using the ggplot2 package (Wickham and Winston, 2016). 

4.4 RESULTS AND DISCUSSION 

Greenhouse Gas Emissions 

Carbon Dioxide Experiment 

 The N2+CO2 treatment initially had a very high CO2-C flux rate as residual gases 

in the soil from injection were lost (Figure 4.2). The CO2-C flux rates were near 20,000 

ug CO2-C kg soil-1 hr-1 for the first 3 hours but then dropped to about 500 ug CO2-C kg 

soil-1 hr-1 for the remainder of the experiment. The N2 only treatment had the reverse 

results; initially CO2-C flux was near zero as there was no CO2 in the injection treatment 

and thus little CO2 in the soil atmosphere (Figure 4.2). After the first day of removal from 

gas injection and the soil reached equilibrium with the atmosphere, CO2-C fluxes were 

similar between the N2+CO2 treatment and the N2 only treatment for days 2-4 (Table 4.2). 

From days 5-7 there were differences, but they were relatively small; with the CO2 

treatment producing higher CO2-C fluxes by an average of 6%.  

 Similar to the CO2-C fluxes, in the early stages of the experiment within a couple 

hours after removal from gas injection, N2O-N flux was higher in the CO2 treated soil at 
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10 ug N2O-N kg soil-1 hr-1 compared to N2 treated soil at 3.7 ug N2O-N kg soil-1 hr-1 

(Figure 4.1). However, unlike CO2-C flux, the N2O-N flux difference between treatments 

was maintained from days 1-4 and then flux was similar between treatments for the 

remainder of the experiment (Table 4.2). The differences in N2O-N flux were significant 

as seen in Figure 4.8 which also shows an initial increase in N2O-N flux over 3-4 hours 

and then a gradual decline until day 2 in CO2 treatment. The N2 only treatment followed a 

very similar trend, with an initial increase in N2O-N flux and then a gradual decline until 

about day 3. The initial increase of N2O-N flux in both treatments and subsequent 

decrease is likely the result of denitrification, as neither gassing treatment contained 

oxygen. This could have resulted in anaerobic conditions which would favor 

denitrification and thus N2O production. It is unclear however, why the CO2 only 

treatment produced higher N2O-N fluxes and could be the result of complex microbe-soil 

atmosphere interactions.  

 Methane production was unaffected by CO2 gas injection when compared to N2 

only gassing treatments and over the course of the 7 day measurement period, there were 

no differences. Averaged across treatments over the study, CH4-C flux was -0.027 ug 

CH4-C kg soil-1 hr-1 (Table 4.2).  

Carbon Dioxide Experiment Discussion  

 The injection of CO2 increased N2O emissions; however, this may not be the case 

in a field setting. The methods used in the lab likely resulted in anaerobic conditions in 

the soil due to no oxygen in the gases used, which likely caused denitrification. Whereas 

in the field some oxygen is present in the soil atmosphere and may reduce this effect, 

unless this experiment is used to represent the very interface of soil roots and the soil 
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surface which is in contact with the root hairs. This study indicated that when CO2 

injection ceases, the built-up CO2 in the soil wa lost within several hours. This means 

unless constant plant growth and root respiration is taking place, the CO2 is quickly 

released to the atmosphere unless soil structure limits the diffusion of gases through the 

soil profile. To our knowledge the monitoring of GHG in response to simulated root 

respiration has not been studied in past research, as most of the focus is on the impact to 

soil pH. 

Root Exudates Experiment 

CO2-C and N2O-N flux increased within 1-3 hours after exudate addition (end of 

day 3) (Figures 3.4 and 3.5). The increase in the N2O-N flux lasted for 24 hours, whereas 

the CO2-C increase lasted for 4 days (Table 4.3). One day after exudate additions, (day 4) 

N2O-N fluxes in exudate treated soil had an average flux rate of 1.57 ug N2O-N kg soil-1 

hr-1 whereas non-treated soil had an average flux of 0.02 ug N2O-N kg soil-1 hr-1 (Table 

4.3). During the entirety of the experiment after exudate addition there were no 

differences in CH4-C flux between treatments with the exception of day 7 where exudate 

addition reduced CH4-C flux by 0.004 ug CH4-C kg soil-1 hr-1 compared to untreated soil 

(Table 4.3). This small difference is not environmentally significant. Averaged over the 6 

days after exudate addition, the exudate treated soils had N2O-N and CO2-C flux rates 

that were 513% and 37% higher than untreated soil, respectively (Table 4.3).  

Root Exudate Experiment Discussion 

The results of this experiment show that root exudates could increase N2O 

emissions from saline soils immediately after they are released from plant roots and 

increase soil CO2 emissions for a slightly longer period of time. Soil microbes most likely 



 
 

115 
 

 
utilized substrates with a lower C:N ratios such as the amino acids proline, valine, and 

alanine. Thus, freeing more nitrogen in the soil which can result in the short N2O-N burst 

seen in the experiment (USDA-NRCS, 2011). In contrast, the higher C:N ratio substrates 

would be utilized by microbes over a longer period of time, resulting in longer increases 

in CO2-C emissions. Even so, the results suggest that immediately after roots exude 

carbon substrates soil microbes begin to utilize them, as seen by the increase in CO2-C 

respiration in Figure 4.2. This relatively quick use of added carbon in the form of 

simulated exudates also was found in similar studies (Traoré et al., 2000; Kunc and 

Macura, 1966). Traoré et al. (2000) added simulated root exudates at 2 g C kg-1 soil and 

reported that the 87% of the added carbon was mineralized in the form of CO2 in the first 

75 hours. Kunc and Macura (1966) also conducted a similar study and reported 85% of 

added C mineralized as CO2 in the first 76 hours. In our study 47% of the added C was 

mineralized as CO2-C in the 75 hours. The lower rate of mineralization compared to that 

reported by Traoré et al. (2000) is likely due to inhibited microbial activity or lower 

microbial populations in the saline soil when compared to that of a non-saline soil used 

by Traoré et al. (2000), however this was not directly measured in this experiment. The 

addition of these root exudates did not impact CH4-C emissions. CH4-C emission is 

driven more by soil moisture as seen in flux data from the first day of the experiment 

which had higher moisture (35% vs 30%) and was a CH4 source (slightly positive CH4-C 

flux of 0.037 ug CH4-C kg soil-1 hr-1) compared to being a sink (-0.025 ug CH4-C kg soil-

1 hr-1) when soil was at 30% moisture content.   

 This study demonstrated that soil GHG emissions respond quickly to the addition 

of simulated root exudates which was similar to results found in other studies (Traoré et 
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al, 2000; Kunc and Macura, 1996). Although the increases in GHG were short lived in 

the lab experiment, these effects may be sustained in a field setting over the growing 

season as plants release exudates slowly over time, unlike the addition of all at once 

approach used in this study. The increase in N2O emissions is a pitfall, as N2O is 298 

times more potent of a GHG than CO2. However, the increase in CO2-C flux is an 

indicator of microbial activity in the soil. Plant roots and soil microbes form strong 

relationships with each other through root exudates and this increased microbial activity 

could be utilized by plants to form symbiotic relationships for nutrient uptake and to help 

reduce water stress (Gargallo-Garriga et al., 2018). Thus, if the goal is to increase and 

restore microbial activity in saline soils, it appears that the introduction of plants could 

accomplish this in part through root exudation (Rovira and Brisbane, 1967; Baudoin et 

al., 2003). Additionally, the aboveground portion of plants not accounted for in this 

experiment would fix CO2 and could help offset the increases in soil CO2 as a result of 

exudate release. 

Plant Residue Experiment 

 The addition of plant residues to saline soils induced changes in GHG fluxes 

throughout the 8-day study period. As the plant residue broke down by microbial 

degradation, N2O gas was released and was on average 641% higher than the non-treated 

soil during days 2-8 after residue addition (Table 4.4). No differences were seen in N2O-

N during the first day likely because the addition of water to the air-dried soil also 

induced a burst in N2O-N which masked differences due to the residue addition. 

However, the water-induced N2O-N burst decreased after 2 days and the influence of the 

residue could be seen (Figure 4.7). N2O-N flux over the measured period in non-treated 
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saline soil averaged 0.522 ug N2O-N kg soil-1 hr-1 and during days 3-8 flux averaged 

closer to 0.1 ug N2O-N kg soil-1 hr-1 (Table 4.4). This was in contrast to the residue 

treatment which averaged 1.145 ug N2O-N kg soil-1 hr-1 throughout the study, an increase 

of 119% (Table 4.4).  

 Changes in CO2 were also observed as a result of plant residue additions. Like 

N2O, a water-induced burst of CO2-C was also seen in the non-treated saline soil which 

also decreased in less than a day (Figure 4.8). However, the differences in treated vs non-

treated soils were apparent with CO2-C flux in saline soil treated with residue higher than 

that of the non-treated soils (Figure 4.8). Averaged over the 8 days of the study, saline 

soil with residue had a CO2-C flux of 3587 ug CO2-C kg soil-1 hr-1 compared to the non-

treated soil at 526 ug CO2-C kg soil-1 hr-1, a 582% increase (Table 4.4). The addition of 

plant residue to the soil also maintained this increase over non-treated soil in the long 

term as well. When the soil was measured for CO2 again 10 weeks after treatment, there 

were sustained differences (Figure 4.10); during the first 3 days after placing on the 

LICOR again (when moisture was kept at 30%) the residue treated soils maintained a 

CO2-C flux near 1100 ug CO2-C kg soil-1 hr-1 which was 34-67% higher over the non-

treated soil (Table 4.5). During the next 4 days when soil moisture was allowed to 

decline, the residue treated soil still maintained 64% higher CO2-C flux rates. Averaged 

over the 7-day measured period, residue treated soil had a flux rate of 795.9 ug CO2-C kg 

soil-1 hr-1 and non-treated soils averaged 500.8 ug CO2-C kg soil-1 hr-1 (Table 4.5). 

Residue additions did not influence CH4 emissions and were near 0 during the course of 

the experiment. 
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Plant Residue Experiment Discussion 

  The addition of plant residue to saline soil resulted in increased N2O and CO2 

emissions, similar to the effects of root exudates. The increase in N2O emissions as a 

result of plant residue additions can be explained by the residue itself. Plant material 

contains nitrogen compounds within its tissues. As soil microbes decompose the residue, 

these nitrogen containing substrates are released, increasing soil nitrate and ammonium. 

An increase in soil NO3- inhibits the formation of N2 in the nitrogen cycle and can 

increase N2O emissions as a result. This could explain the increase seen in this study as 

well as direct releases of N2O from the decaying residue. The differences in CO2-C fluxes 

between treated and non-treated saline soils are a likely the result of available substrate 

for microbes. The changes in CO2-C during the experiment were likely driven by 

microbial processes and activity and showed results similar to those found by Wong et al. 

(2009). The addition of plant matter would provide both a short and long-term source of 

carbon for soil microbes to utilize as an energy source. This increase in available carbon 

would allow for higher microbial activity and thus the resulting increase in CO2 fluxes as 

seen in several other studies (Wong et al., 2009; Rao and Pathak, 1996). Wong et al. 

(2009) reported a 186% increase in 12-week cumulative CO2-C emissions when 

kangaroo grass was added to a saline soil at 10 t ha-1. Our study found a 582% increase in 

CO2-C flux for the first 8 days and a 34-67% increase after 10 weeks when measured for 

a 4-day period. Thus, for restoring microbial activity in saline soil, plant residue additions 

are a viable method by which plants can be used to achieve this goal. This study also 

showed that the increase in CO2 emissions from microbial activity as a result of organic 

matter additions are sustained over long periods of time when compared to those 
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resulting from root exudates (>10 weeks from residue compared to 4 days from 

exudates). Thus, a buffer is created so that during times when plants cease growth or 

reduce exudation rates, the plant residues present can provide a more stable supply of 

carbon for soil microbial consumption. Some research has found differing results such as 

Al-Kaisi and Yin (2005) where a field study in a 3 year corn-soybean rotation with 

residues left in the field had 24% lower CO2 emissions. However, this difference is likely 

because Al-Kaisi and Yin (2005) left the residues on the surface whereas our study 

incorporated the residue in the soil and temperatures were fairly consistent. Al-Kaisi and 

Yin (2005) made the point that the residue likely shaded the soil and reduced 

temperatures as well as created a barrier for soil-atmosphere gas exchange and that there 

was minimal contact of the residue with the soil surface.  

Whole Plant Experiment 

 During the measured period of four days, emissions from soil planted with barley 

averaged 1.163 ug N2O-N kg soil-1 hr-1 whereas control soil without plants averaged 

0.359 ug N2O-N kg soil-1 hr- (Table 4.6). The barley planted soil also had consistently 

higher CO2-C emissions, averaging  709.1 ug CO2-C kg soil-1 hr-1 compared to the non-

planted control soil of 206.3 ug CO2-C kg soil-1 hr-1 (Table 4.6) This 244% increase in 

CO2-C respiration in barley soil treatment is likely the result of two factors: 1) the 

presence of roots which respire CO2 as a result of metabolism and 2) increased microbial 

respiration driven by plant root exudates and plant-root associations.  

 The presence of plants in the soil did not impact CH4-C emissions during this 

study, with both treatments following identical trends (Table 4.6, Figure 4.13). CH4-C 

emissions remained near zero during the study for both treatments, with barley planted 
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soil averaging 0.006 ug CH4-C kg soil-1 hr-1 and non-planted soil averaging 0.005 ug 

CH4-C kg soil-1 hr-1 (Table 4.6). 

Whole Plant Experiment Discussion 

Even though the barley plants were grown in a more saline soil than those of the 

previous experiments, the same trends were seen in GHG emissions. When plants were 

established in the saline soil the fluxes of N2O-N and CO2-C both increased, while there 

was no impact on CH4-C flux. This supports the findings from the exudates, residue, and 

root respiration experiments. 

 It is likely that the increase in N2O emissions associated with barley growth was a 

result of decaying lower leaves on the plants, resulting in a similar phenomenon seen in 

the residue experiment as well as the secretion of root exudates which was also shown to 

increase N2O emissions as seen in the simulated exudates experiment (Table 4.2; Table 

4.3). The decaying leaves occurred because barley accumulates salts in the leaf tissue 

which results in premature lower leaf death and decay (Munns et al., 1995). 

 The increase in CO2 emissions from the barley planted soil were similar to results 

observed by Rastogi et al. (2002) where it was reported that soils with established plants 

typically have CO2 fluxes of 2-3 fold higher than barren soils. This is likely again due to 

similar reasons found in the root exudates and residues addition experiments. Our study 

found that saline soil with barley had 244% higher CO2 respiration which is very similar 

to what Rastogi et al. (2002) reported.  

 From a global warming perspective, the increase in GHG emissions is not a 

desirable outcome. However, from a soil health perspective the increase in CO2-C 

indicates increased biological activity in the soil, from both plant roots and soil microbial 
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communities, although not directly measured. Also, these emissions were only measured 

from soil sources, and did not factor plants into the equation. Although plants were 

present during measurements in the barley experiment, they did not result in decreased 

CO2-C emissions, likely due to low rates of photosynthesis due to lack of sunlight in the 

lab where measurements were taken and the small amount of aboveground biomass 

allowed in the jars during measurements due to limitations of the equipment. Therefore, 

in a field setting were plants are actively photosynthesizing and fixing carbon, the net 

CO2-C flux could be reduced or even negative which would be beneficial from a global 

warming viewpoint. Additionally, in the long-term N2O emissions could be expected to 

decline as plants utilize the excess NO3- in the saline soils and reduce soil N2O emissions. 

Field Collected Samples Experiment 

 The samples taken from the field showed similar results to those found in the lab 

setting in which barley plants where grown. Samples from the field were only measured 

for CO2, with a non-saline soil also measured for comparison purposes. As expected, all 

soils had a burst of CO2-C immediately after wetting which then quickly decreased to a 

baseline respiration level (Figure 4.14). However, the saline soil which had no plants 

established, had an initial burst in CO2-C four times lower, peaking at ~5000 ug CO2-C 

kg soil-1 hr-1 compared to the other saline soil with plants and non-saline soil with and 

without plants at ~20000 ug CO2-C kg soil-1 hr-1 (Figure 4.14). Throughout the 

measurement period, it was observed that both the non-saline soil and saline soil which 

had plants present emitted higher rates of CO2-C than those without plant growth (Figure 

4.14). After the initial CO2 burst, on days 2-3 flux rates ranked non-saline plants > saline 

plants > non-saline no plants > saline no plants. This same ranking was found when the 
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CO2-C flux was averaged over the entire measured period as well, with flux values of 

3517, 3119, 2015, and 1395 ug CO2-C kg soil-1 hr-1 for non-saline plants, saline plants, 

non-saline no plants, saline no plants treatments, respectively (Table 4.7).  

Field Collected Samples Experiment Discussion 

Since soil samples from locations with and without plants were taken from only 1 

meter apart, it can be assumed that differences in CO2 respiration were a direct result of 

whether plants were present or not; either by plants revegetating the saline site or by 

preventing the soil from becoming further degraded by increases in salt concentration. 

The saline soil without plants had very low respiration levels compared to the good soil 

without plants which averaged 44% higher CO2-C flux. Not only plants impacted CO2 

soil respiration, but elevated soil EC values ~6.3 dS m-1 also impacted CO2-C evolution. 

This phenomenon of EC impact on soil CO2 evolution was also reported by several other 

studies (Adviento-Borbe et al., 2006; Pathak and Rao, 1998; Setia et al., 2011). Adviento-

Borbe et al. (2006) reported that saline soil under corn had CO2 emissions decrease from 

5.06 g CO2-C m-2 to 3.66 g CO2-C m-2 as EC increased from 0.5 dS m-1 to 2.0 dS m-1. 

This difference was attributed to inhibited microbial activity and respiration (Adviento-

Borbe et al., 2006). Pathak and Rao (1998) reported reductions in cumulative CO2 

emissions from 2.1 g kg-1 to 0.89 g kg-1 with increasing ECe values from 1.1 dS m-1 to 

96.7 dS m-1. Setia et al. (2011) reported CO2-C emissions of 0.6 mg g-1 soil at an EC1:5 of 

0.5 dS m-1 but only 0.3 mg g-1 soil at an EC1:5 of 2.5 dS m-1. The authors again attributed 

the reduced soil CO2 emissions in saline soil to inhibited microbial activity due to 

osmotic stresses. 



 
 

123 
 

 
 In our study, however, saline soil CO2 respiration increased by 124% when plants 

were present and was near levels found in the non-saline soil with plants. Therefore, even 

though salinity inhibits CO2 respiration through inhibited microbial activity, restoring 

plants on saline soils has potential to increase CO2 evolution to rates of soils not affected 

by salt.  

Tissue and Soil Chemical Tests 

Carbon Dioxide Experiment 

 The injection of carbon dioxide did not change soil Na or NH4+ levels and was 

expected to decrease soil pH through formation of carbonic acid with soil water. 

However, this study showed an increase in soil pH to 6.34 compared to 6.26 in N2 treated 

soil as well as decrease in EC1:1 to 1.86 dS m-1 compared to 2.09 dS m-1 in N2 control 

(Table 4.8).  

Carbon Dioxide Experiment Discussion 

 The lack of a decrease in pH could be the result of the injected carbon dioxide not 

forming carbonic acid due to the already acidic starting pH of the soil (Hinsinger et al., 

2013; Lindsay, 1979). It could also be that it would take a longer duration of CO2 

injection to induce pH changes in the bulk soil than performed in this study length of a 

few days. However, longer studies have been conducted and also had mixed results 

(Biose et al., 2016; Patil et al., 2010; He et al., 2019). Biose et al. (2016) had reported a 

soil pH increase from 6.31 to 6.7 at the 15-30 cm depth and from 5.89 to 6.39 at the 45-

60 cm depth when CO2 was injected 60 cm below the soil surface of field plots for 8 

weeks. However, a very similar field design study reported decreases in pH from ~6.4 to 

~6.0 after 21 weeks compared to controls at the 0-30 cm depth (Patil et al., 2010). 
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Additionally, He et al. (2019) percolated CO2 through a soil for 36 days and saw an 

increase in pH from 6.8 to 7.0. Our study found increases in soil pH from 6.26 to 6.34, 

and thus was within the range of results reported by Biose et al., (2016) and He et al. 

(2019).  

 It is important to note that the CO2 treatment in our study had significant 

decreases in soil NO3- from 93 ug g-1 down to 64 ug g-1 compared to 89 ug g-1 found in 

the N2 only treatment (Table 4.8). This indicates that higher levels of denitrification could 

have occurred in the CO2 treatment, which would explain the higher N2O-N fluxes. This 

increase in denitrification could also explain the lack of expected pH change because 

denitrification causes an increase in soil pH which would counter the effects of a pH 

decrease expected from the CO2 injection. Further research must be done on this subject 

to confidently claim that increases in pCO2 as a result of root respiration will reduce soil 

pH. 

Root Exudates Experiment 

 The addition of simulated root exudates to a saline soil had no significant impact 

on soil EC1:1, pH, Na, NO3-, or NH4+ (Table 4.8). A change in pH was expected due to the 

low pH of the simulated root exudate solution, however this was not seen.  

Root Exudates Experiment Discussion 

 The lack of differences in soil tests could be due to the buffering capacity of the 

soil and the relatively small amount of exudate solution which was added to the bulk soil. 

Likewise, very little nitrogen was contained in the simulated root exudate solution, so no 

change occurred as a result of the exudate addition. Both treatments increased NO3- levels 

to ~123 ug g-1 compared to the starting level of 93 ug g-1, indicating that mineralization 
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occurred during the study; but was not influenced by exudate additions as indicated by 

the near identical NO3- levels found between exudate addition and control treatments. It 

could be possible root exudates can influence the pH close to the root surface of plants 

which has been documented in previous studies where 8 weeks of soybean or barley 

growth reduced soil pH from 8.5 to 7.0 near the root interface (Youssef and Chino, 

1989).  

The root exudate experiment indicates that a year’s worth of simulated root 

exudates are not likely to be a source of soil chemical parameter changes, at least in the 

short term. It is possible root exudates can induce changes near the root surface in the 

short term. However, changes to bulk soil may take years and was not observed in the 7-

day experiment. 

Plant Residue Experiment 

 The plant residue addition to saline soil increased soil EC1:1 and NO3- but did not 

impact pH, Na or NH4+ content (Table 4.8). The addition of residues increased EC1:1 

from 2.08 dS m-1 to 2.20 dS m-1 and increased NO3- from 93 ug g-1 to 183 ug g-1 (Table 

4.8). The non-treated soil also had NO3- increases from 93 ug g-1 to 137 ug g-1 which may 

have occurred due to mineralization.  

Plant Residue Experiment Discussion 

 The increase in EC1:1 in residue treated soil compared to non-treated soil due is 

similar to the findings by Wong et al. (2009) and is likely the result of stored salts in the 

plant tissue being released into the bulk soil. Wong et al. (2009) reported that the addition 

of kangaroo grass in an acidic saline soil increased EC1:5 at the 0- to 5-cm depth from 

~1.7 dS m-1 to ~3.4 dS m-1. As plants grow in saline soils, they can accumulate the salts 
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in a variety of methods in their tissues. When these residues are added to the soil, the 

stored salts and ions are released as plant cells break down (Wong et al., 2009).  

 However, the increase seen in this study may not represent what would happen in 

a field setting. This is because the plants would first have to establish in the saline soil 

and then accumulate salts in the tissues, thus actually lowering the EC1:1 of the soil. The 

EC1:1 could then be increased as that residue breaks down. In this study though, the 

residue was collected from the field and then added to a saline soil which did not have the 

EC1:1 reduced first by plant growth. Therefore, this experiment is only representing the 

latter half of the cycle; where the plant has already been established and then is added to 

the soil. The whole plant experiment discussed later, represents the first half of the cycle; 

where the plant establishes and removes salts from the soil.  

Sodium behaves in a similar fashion, however an increase in sodium as a result of 

residue addition was not detected in our study. Similar to the exudates experiment, 

nitrification occurred in the residue experiment as seen by the increase in NO3- in the 

control treatment. The addition of residues further increased NO3- as a result of nitrogen 

being released from decaying plant residues. This increase in NO3- could also explain 

some of the increases in N2O emissions mentioned earlier since higher soil NO3- levels 

can promote higher N2O fluxes.  

Previous studies found pH changes with the addition of residues, but it is 

dependent on starting soil pH, type of residue, and various processes which take place in 

the soil. Wong et al. (2009) found in alkaline saline soil, residue addition decreased pH 

from 10.1 to 9.2 at the 10- to 20-cm depth but no change was detected in an acidic saline 

soil. Yan et al. (1996) reported a pH increase after 45 days from 6.00 to 6.29 after the 
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addition of field bean residue. Yan et al. (1996) also mentioned that pH can also decrease 

if nitrification takes place. Yan and Schubert (2000) also reported pH increases due to 

residue additions from 6.2 to 6.6 when faba bean was added and 6.4 when wheat was 

added. However, our study did not detect any change in pH where the treatment and 

control pH was 6.41 and 6.42, respectively.  

The implications of this experiment show that when residues are added back to 

the soil in saline sites, EC and NO3- levels may increase. Although these increases are 

unfavorable from an environmental standpoint, they do not take into account the first half 

of the cycle of plants actually growing in the soil or the potential improvements in 

physical characteristics of the soil. This experiment was done in a closed system, if 

leaching were allowed the addition of residues could actually decrease EC1:1. This effect 

was reported by Mahmoodabadi et al. (2013) where the addition of pistachio residue at a 

rate of 50 g kg- reduced EC to 3.6 dS m-1 compared to control soil of 4.0 dS m-1 after 5 

months and 4 pore volumes of leaching.  

Whole Plant Experiment 

 Barley growth in saline soil reduced the EC1:1 and NO3- of the soil but did not 

impact pH, Na, or NH4+ content. There was a slight increase in pH and decrease in Na, 

but neither were significant at the 0.05 level. From the time of sowing barley seeds to the 

end of the experiment 7 weeks later, barley treatment reduced soil EC1:1 from 6.30 dS m-1 

to 5.92 dS m-1 (Table 4.8). Barley plants also reduced NO3- from a starting level of 519 

ug g-1 to 428 ug g-1 and was less than the ending NO3- level of 509 ug g-1 for the non-

planted control (Table 4.8).  
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 Tissue analysis found that barley plants harvested after the 7-week experiment 

contained 5.0% Na, 4.8% N, and 38.1% C. This gave the tissue a C:N ratio of 7.8. These 

results showed that barley took up large amounts of sodium in the tissue of the young 

plants while also removing nitrogen from the soil. Both of which are good first steps in 

remediating saline sodic soils. 

Whole Plant Experiment Discussion 

The results of this experiment were promising for restoring saline soils in the 

field. The reduction in EC1:1 as a result of plant uptake of ions (Wong et al., 2009; Yanai 

et al., 1995) is beneficial for further promoting plant growth and may condition the soil 

for less salt tolerant plant species to eventually be planted. The reduction of soil EC1:1 

due to plant growth has been reported by other studies as well. Qadir et al. (1997) grew 

sesbania, sordan, and kallar grass in the field and found EC reductions of 3.1, 1.8, and 2.5 

dS m-1 compared to 1.0 dS m-1 in the control plot. Qadir et al. (1996a) also found that 

combined with leaching, kalar grass reduced soil EC from 9.8 dS m-1 to 2.9 dS m-1 

compared to non-planted control of 4.3 dS m-1.  

 The reduction in NO3- likely also resulted from plant uptake of the nutrient. This 

NO3- removal may be responsible for the slight increase in soil pH (Walker, 1960; 

Kirkby, 1968; Grinsted et al., 1982; Nye, 1981) even though it was not different from the 

control (p value=0.07).  

Field Collected Samples Experiment 

 The samples taken from the field under non-saline and saline soils with and 

without plant growth supported the findings of the previous experiments. In non-saline 

soils tested, there were no differences in EC1:1, pH, or Na due to plant establishment 
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(Table 4.8). However, saline soils did have differences in soil chemical tests as a result of 

plant growth. Non-saline soils had lower EC1:1 (<0.4 dS m-1) and Na (<50 ug g-1) 

regardless of plant growth compared to saline soils (Table 4.8). In non-saline soils 

without plants, pH levels were lower (pH=6.24) than those in saline sites with plants 

(pH=6.48). However, non-saline soil with or without plants both had higher pH values 

than those found in saline sites without plants (pH=5.92) (Table 4.8). Additionally, NO3- 

levels were lower in non-saline soils with (20 ug g-1) or without plants (32 ug g-1) 

compared to saline soil without plants (232 ug g-1) (Table 4.8).  

In saline soils, plants were able to influence EC1:1, pH, Na, and NO3- (Table 4.8). 

When plants were not present in saline soils, the EC1:1 was higher, pH was lower, and Na 

was higher. Saline soils with plants present had a soil EC1:1 of 3.61 dS m-1 compared to 

8.03 dS m-1 when plants were not present (Table 4.8). Similarly, Na levels were lower 

when plants were present at 1493 ug g-1 compared to 2575 ug g-1 when plants were not 

present, a 42% reduction (Table 4.8).  

Field Collected Samples Experiment Discussion 

Similar to what the barley experiment showed and what past studies have found, 

the field collected samples had an increase in pH when plants were present (Yanai et al., 

1995; Marschner and Römheld, 1983). Saline sites with plant growth had a pH of 6.48 

compared to 5.92 under saline conditions without plants (Table 4.8). This difference in 

pH could be the result of plant uptake of NO3- in the soil; because to remain electrically 

balanced, plants release either OH- or bicarbonate when they remove NO3- from the soil 

(Walker, 1960; Kirkby, 1968; Grinsted et al., 1982; Nye, 1981). This may be the case 

because NO3- levels were higher in saline soils without plants by 625% compared to 
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vegetated saline soils (Table 4.8). This indicates that plant growth reduced the high NO3- 

levels in saline soils, which otherwise remain high in NO3- without plants to utilize it.  

 The large differences in EC1:1 and Na levels between saline samples with and 

without plants is likely due to increased leaching through root channels and plant uptake 

(Qadir et al., 2006b). This is supported by other studies which found similar results 

through phytoremediation. Ashraf et al. (2010) reported that kallar grass reduced soil EC 

from 22.0 dS m−1 to 12.6 dS m−1 in one year and reduced EC by 87% after 5 years. 

Sesbania and kallar grass have also been found to reduce soil EC by 47.4% and 38.5%, 

respectively, compared to controls (Ahmad et al., 1990). These large differences due to 

plant growth suggest that given enough time, phytoremediation has the potential to 

reduce soil EC1:1 enough to encourage further plant growth and can help with the first 

steps to reclaiming severely salt-affected soils, or at least preventing increases in salinity. 
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Table 4.2. Greenhouse Gas Flux Rates of a South Dakota Saline Soil with and without 

CO2 Injection 

 
 
 
 
 

 

Table 4.3. Greenhouse Gas Flux Rates of a South Dakota Saline Soil with Addition of 

Simulated Root Exudates Between Days 3 and 4 of Experimental Run Lasting 10 Days. 

 

Treatment 1 2 3 4 5 6 7 Mean

80% N2 + 20% CO2 8.369 3.591 0.309 0.164 0.178 0.126 0.085 1.852

100% N2 2.812 1.913 0.989 0.472 0.356 0.213 0.186 0.931

Standard Error 0.281 0.139 0.059 0.042 0.070 0.049 0.040 0.066

p-value <0.001 <0.001 <0.001 0.002 0.160 0.363 0.169 <0.001

80% N2 + 20% CO2 2725 556 475 444 454 426 381 781

100% N2 489 572 501 444 431 401 356 454

Standard Error 282 9.64 9.18 5.75 5.99 6.53 5.23 39.0

p-value 0.087 0.088 <0.001 0.717 <0.001 <0.001 <0.001 0.083

80% N2 + 20% CO2 -0.019 -0.025 -0.017 -0.022 -0.032 -0.035 -0.047 -0.028

100% N2 -0.013 -0.030 -0.019 -0.019 0.024 -0.041 -0.031 -0.026

Standard Error 0.009 0.012 0.003 0.002 0.003 0.006 0.005 0.002

p-value 0.712 0.880 0.711 0.522 0.210 0.600 0.101 0.581

Day

Daily Mean Soil N2O Flux (ug N2O-N kg soil-1 hr-1)

Daily Mean Soil CO2 Flux (ug CO2-C kg soil-1 hr-1)

Daily Mean Soil CH4 Flux (ug CH4-C kg soil-1 hr-1)

Treatment 1 2 3 4 5 6 7 8 9 10 4-10 Mean

Exudates 4.201 3.039 0.235 1.565 0.041 0.036 0.178 0.138 0.036 0.034 0.343

No Exudates 4.276 4.067 0.422 0.024 0.049 0.039 0.104 0.052 0.069 0.019 0.056

Standard Error 0.155 0.167 0.030 0.104 0.005 0.004 0.051 0.045 0.014 0.009 0.023

p-value 0.541 <0.001 0.008 <0.001 0.376 0.675 0.496 0.309 0.372 0.240 0.001

Exudates 1350 1246 688 1115 667 651 427 359 315 285 590

No Exudates 1355 1321 731 583 505 454 379 365 316 285 432

Standard Error 29.5 24.0 10.0 30.2 9.1 10.1 4.5 3.3 2.6 4.2 7.4

p-value 0.623 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 0.570 0.690 <0.001

Exudates 0.009 0.003 -0.014 -0.022 -0.025 -0.026 -0.029 -0.026 -0.030 -0.032 -0.026

No Exudates 0.012 0.003 -0.013 -0.022 -0.024 -0.026 -0.025 -0.025 -0.031 -0.030 -0.025

Standard Error 0.002 0.001 0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

p-value 0.172 0.796 0.326 0.959 0.719 0.561 0.040 0.493 0.812 0.420 0.087

Day

Daily Mean Soil N2O Flux (ug N2O-N kg soil-1 hr-1)

Daily Mean Soil CO2 Flux (ug CO2-C kg soil-1 hr-1)

Daily Mean Soil CH4 Flux (ug CH4-C kg soil-1 hr-1)
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Table 4.4. Greenhouse Gas Flux Rates of a South Dakota Saline Soil with and without 

Perennial Grass Mixture Residue Additions Over 8 Day Experimental Run. 

 

 

 

 

Table 4.5. Greenhouse Gas Flux Rates of a South Dakota Saline Soil with and without 

Perennial Grass Mixture Residue Additions After Resting for 10 Weeks and Measured 

Over 7 Days. 

 
 
 
 
 
 
 

Treatment 1 2 3 4 5 6 7 8 Mean

Residue 2.132 1.708 1.132 0.903 0.773 0.692 0.434 0.370 1.145
No Residue 2.134 0.741 0.110 0.067 0.075 0.118 0.103 0.068 0.522

Standard Error 0.047 0.040 0.036 0.030 0.027 0.029 0.028 0.031 0.021
p-value 0.982 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Residue 4851 4990 4325 3514 2793 2241 1813 2050 3587
No Residue 1253 715 366 336 294 345 242 298 526

Standard Error 131 143 126 104 84 59 68 156 45
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Residue 0.008 0.007 0.006 0.005 0.001 -0.005 -0.007 -0.012 0.002
No Residue 0.006 0.001 -0.010 -0.020 -0.020 -0.017 -0.020 -0.030 -0.011

Standard Error 0.001 <0.001 0.001 0.001 <0.001 0.001 0.002 0.004 <0.001
p-value 0.308 0.005 <0.001 <0.001 <0.001 0.002 0.005 0.090 <0.001

Day

Daily Mean Soil N2O Flux (ug N2O-N kg soil-1 hr-1)

Daily Mean Soil CO2 Flux (ug CO2-C kg soil-1 hr-1)

Daily Mean Soil CH4 Flux (ug CH4-C kg soil-1 hr-1)

Treatment 1 2 3 4 5 6 7 Mean

Residue 1093 1109 1104 761 577 470 464 796

No Residue 813 664 698 464 349 289 285 501

Standard Error 31.1 30.5 28.7 21.4 13.0 10.0 10.8 11.8

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Day

Daily Mean Soil CO2 Flux (ug CO2-C kg soil-1 hr-1)
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Table 4.6. Greenhouse Gas Flux Rates of a South Dakota Saline Soil with and without 

Barley Vegetation Present after 7 Weeks Growth 

 
 
 
 
 
 
 
 
Table 4.7. Soil Carbon Dioxide Burst Test Flux Rates of a South Dakota Soil from Salt 

Affected and Non-Salt Affected Regions Where Plants Did and Did Not Establish 

 

Treatment 1 2 3 4 Mean

Barley 1.459 1.991 1.824 1.147 1.163

No Plants 0.298 0.385 0.430 0.319 0.359

Standard Error 0.071 0.093 0.088 0.055 0.041

p-value <0.001 <0.001 <0.001 <0.001 <0.001

Barley 638 751 731 717 709

No Plants 132 214 237 248 206

Standard Error 18.4 19.5 18.7 19.0 9.6

p-value <0.001 <0.001 <0.001 <0.001 <0.001

Barley 0.007 0.008 0.004 0.004 0.006

No Plants 0.006 0.005 0.005 0.004 0.005

Standard Error <0.001 <0.001 <0.001 <0.001 <0.001

p-value 0.289 <0.001 0.394 0.366 0.006

Day

Daily Mean Soil N2O Flux (ug N2O-N kg soil-1 hr-1)

Daily Mean Soil CO2 Flux (ug CO2-C kg soil-1 hr-1)

Daily Mean Soil CH4 Flux (ug CH4-C kg soil-1 hr-1)

Treatment 1 2 3 Mean

Non-Saline Plants 5409 a 3014 a 2128 a 3517 a
Non-Saline No Plants 3216 b 1583 c 1245 c 2015 c

Saline Plants 5168 a 2405 b 1785 b 3119 b
Saline No Plants 2089 c 1270 d 834 d 1395 d
Standard Error 139 40 28 52

P-Value <0.001 <0.001 <0.001 <0.001

Day

Daily Mean Soil CO2Flux (ug CO2-C kg soil-1 hr-1)
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Table 4.8. Soil Chemical Test Parameter Results after Treatments for Soils Used in 

Simulated Root Exudate, Plant Residue, Root Respiration, Whole Plant, and Field 

Validation Experiments 

 
 
 
 
Table 4.9. Whole Plant Barley, Residue, and Field Validation Experiment’s Plant Tissue 

Test Results. 

 
 
 

EC pH Na NO3
--N NH4

+-N

Treatment  dS m-1 ----- ug g-1 ug g-1 ug g-1

Exudates 2.152 6.31 730 123 3.4
No Exudates 2.119 6.25 719 124 3.8

p-value 0.716 0.37 0.727 0.529 0.684
Residue 2.200 6.41 649 183 0.8

No Residue 2.079 6.42 654 137 0.5
p-value 0.045 0.70 0.719 <0.001 0.461

80% N2 + 20% CO2 1.860 6.34 678 64 0.8
100% N2 2.090 6.26 677 89 0.6
p-value 0.003 0.006 0.972 <0.001 0.552
Barley 5.920 6.60 2028 428 3.1

No Plants 6.300 6.49 2086 509 2.8
p-value 0.041 0.07 0.151 <0.001 0.430

Non-Saline Plants 0.227 c 6.37 ab 45 c 20 b 9 b
Non-Saline No Plants 0.351 c 6.24 b 49 c 32 b 6 b

Saline Plants 3.605 b 6.48 a 1493 b 33 b 19 a
Saline No Plants 8.032 a 5.92 c 2575 a 232 a 22 a

p-value <0.001 <0.001 <0.001 <0.001 <0.001

Soil Parameter

Mass Flask-1 N C C:N Ratio Na
g - ug g-1

Barley Shoots 0.64 4.8 38.1 7.8 500
Barley Roots 0.34 - - - -
Residue Experiment 2.15 3.5 44.6 12.8 1407
Field Validation Experiment 
Saline Plants

- 3.0 36.9 12.4 -

-----------%-----------
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Figure 4.1. Nitrous Oxide Flux Time Series of a South Dakota Saline Soil with and 

without CO2 Injection. Error Bars= 1 Standard Error. 

 
 

 
 
 

Figure 4.2. Carbon Dioxide Flux Time Series of a South Dakota Saline Soil with and 

without CO2 Injection. Error Bars= 1 Standard Error. 
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Figure 4.3. Methane Flux Time Series of a South Dakota Saline Soil with and without 

CO2 Injection. Error Bars= 1 Standard Error. 

 

 
 
 

Figure 4.4. Nitrous Oxide Flux Time Series of a South Dakota Saline Soil with Addition 

of Simulated Root Exudates on Day 3 of Experimental Run Lasting 10 Days. Error Bars= 

1 Standard Error. Arrow Indicates Time of Exudate Addition. 
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Figure 4.5. Carbon Dioxide Flux Time Series of a South Dakota Saline Soil with 

Addition of Simulated Root Exudates on Day 3 of Experimental Run Lasting 10 Days. 

Error Bars= 1 Standard Error. Arrow Indicates Time of Exudate Addition. 

 

 
 

Figure 4.6. Methane Flux Time Series of a South Dakota Saline Soil with Addition of 

Simulated Root Exudates on Day 3 of Experimental Run Lasting 10 Days. Error Bars= 1 

Standard Error. Arrow Indicates Time of Exudate Addition. 
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Figure 4.7. Nitrous Oxide Flux Time Series of a South Dakota Saline Soil with and 

without Perennial Grass Mixture Residue Additions Over 7 Day Experimental Run. Error 

Bars= 1 Standard Error. 

 
 
 

Figure 4.8. Carbon Dioxide Flux Time Series of a South Dakota Saline Soil with and 

without Perennial Grass Mixture Residue Additions Over 7 Day Experimental Run. Error 

Bars= 1 Standard Error. 
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Figure 4.9. Methane Flux Time Series of a South Dakota Saline Soil with and without 

Perennial Grass Mixture Residue Additions Over 7 Day Experimental Run. Error Bars= 1 

Standard Error. 

 

 
 

Figure 4.10. Carbon Dioxide Flux Time Series of a South Dakota Saline Soil with and 

without Perennial Grass Mixture Residue Additions after Resting for 10 Weeks. Error 

Bars= 1 Standard Error. 
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Figure 4.11. Nitrous Oxide Flux Time Series of a South Dakota Saline Soil with and 

without Barley Vegetation Present after 7 Weeks Growth. Error Bars= 1 Standard Error. 

 

 
 
 
 

Figure 4.12. Carbon Dioxide Flux Time Series of a South Dakota Saline Soil with and 

without Barley Vegetation Present after 7 Weeks Growth. Error Bars= 1 Standard Error. 
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Figure 4.13. Methane Flux Time Series of a South Dakota Saline Soil with and without 

Barley Vegetation Present after 7 Weeks Growth. Error Bars= 1 Standard Error. 

 

 
 

 

Figure 4.14 Soil Carbon Dioxide Burst Test Flux Time Series of a South Dakota Soil 

from Salt Affected and Non-Salt Affected Regions where Plants did and did not 

Establish. Error Bars= 1 Standard Error. 
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CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 

Conclusions 

 Phytoremediation can be a viable method to restore productivity to salt-affected 

soils in Eastern South Dakota. However, results in the field may take multiple years to 

become apparent. Over two growing seasons, two perennial grass mixtures were able to 

successfully establish on a salt-affected site. The first year of establishment faced heavy 

weed pressure and required herbicide intervention to aid establishment. However, by the 

second growing season perennial grass mixtures only required one herbicide application 

early in the season, and future years may not require any additional input costs. Although 

perennial grass mixtures did not influence changes in soil electrical conductivity or 

sodium compared to a corn and fallow control, they did outproduce corn in biomass 

production when no additional fertilizers were applied and also suppressed weeds more 

than corn in both saline and non-saline plots. Species such as AC Saltlander, slender 

wheatgrass, and creeping meadow foxtail were the dominant species of the mixtures used 

and appear well adapted for saline conditions.  

 The GHG emissions were quantified in the field sites and it was discovered salt-

affected soils have drastically reduced CO2 respiration which is indicative of inhibited 

microbial activity. Soils which were vegetated with either corn or a mix of slender 

wheatgrass and beardless wildrye had higher CO2 respiration and lower N2O production 

as well. Saline soil with no vegetation had more N2O emissions which is a potent 

greenhouse gas and is likely the result of constantly high soil moisture, higher soil 

temperature, and elevated soil nitrate levels. Plant establishment on these sites have the 

potential to reduce N2O emissions by providing shade which would reduce soil 
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temperature, introduce root systems for water use to reduce moisture levels, and nutrient 

uptake to remove excess nitrate which can threaten ground water sources and increase 

soil N2O emissions. Repeated urea application to these barren saline sites is likely the 

cause of the high soil nitrate levels and the research performed in the field shows that 

urea application to these soils also increases N2O emissions, primarily after rain events.  

 While remediation in the field may require years to become effective, lab 

experiments showed that some impacts can be detected relatively quickly. Root 

respiration creates anaerobic zones near the root-soil interface and can increase N2O 

emissions. Likewise, root exudation provides substrates for microbial decomposition 

which increases N2O as well as CO2 emissions. The breakdown of plant residue on the 

soil surface also increases these GHG emissions through substrate additions. The effects 

of root respiration, exudation, and residue decomposition were detectable the same day of 

addition, indicating rapid microbial, enzyme, or chemical responses. However, unless 

constantly supplied by living plants, only residue additions provided long term substrates 

to provide measurable differences from controls for greater than one week. The presence 

of plant systems as measured in the lab by either barley or perennial grass mixtures both 

increased GHG emissions, as found in individual component experiments, but also 

reduced soil electrical conductivity and sodium.  

 The findings of this research were that phytoremediation’s effects can be 

measurable immediately in a laboratory setting where all other variables are isolated and 

held constant. However, field experiments were influenced by high precipitation, weed 

competition, and continuous supply of salts from subsoil deposits. Therefore, the overall 

conclusions of this research are that phytoremediation can likely reclaim salt-affected 
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soils over multiple years but can promptly begin the process of restoring soil health 

through carbon substrate additions which stimulate soil microbial communities during the 

same year of implementation. The larger challenge in these sites however is the constant 

replenishing of salts from shale deposits in the soil parent material, which is why multiple 

years are required for reclamation. 

Future Research 

 Data collection should continue to take place on the field site where perennial 

mixtures are established to monitor progress. Soil samples should be taken at the same 

time and same points as previous years to monitor soil parameters such as electrical 

conductivity and sodium to determine if, over time, perennial grass mixtures can reduce 

these parameters to more favorable levels. Likewise, biomass and weed pressure levels 

should continue to be measured to determine long term weed suppression and forage 

production rates of the different mixtures. Mixture species composition could also be 

monitored to determine if changes occur within mixtures due to a superior species 

outcompeting other species and if future mixes should have different species components. 

Other future research could integrate livestock on these sites to quantify how an 

integrated livestock system could impact soil conditions and vegetative performance as 

well as economic influences. Long term studies should be conducted to determine if 

perennial grass mixtures influence soil bulk density, structure, and porosity over time 

compared to non-vegetated regions and corn treatments.  
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APPENDIX 

 
Appendix 1. Mix 1 and Mix 2 On May 13, 2019. 
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Mix 1 
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Appendix 2. Mix 1 and Mix 2 at Maturity on August 29, 2019 Transitioning into a Saline  
 
Zone. 
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Mix 1 
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Appendix 3. Greenhouse Gas Measurement Chamber Placement in Saline Zone 2019. 
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Appendix 4. Greenhouse Gas Measurement Chamber Placement in Grass Zone 2019. 
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Appendix 5. Greenhouse Gas Measurements Utilizing Flask System Design on Root  
 
Exudate Experiment.  
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