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silence; no breath in the plains. He sat, contemplated, and waited. Suspended at the 

fragility of time, he fainted in the dark. Words floated and soon surrounded him. Words 

became sentences and sentences became songs. All he could feel was the earth beating on 

his feet, in his hands, and through his heart. He knew his time had arrived. He stood up, 

gathered his thoughts, and stepped. How long did he stay? He could not tell. 

All he could remember was the warmth in his heart. He started to hear again the 
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was filled with wonder and curiosity. “ 
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ABSTRACT 

QUANTITATIVE IMAGING OF CELL-LEVEL AUXIN-CYTOKININ OUTPUTS IN 

SOYBEAN AND MODEL PLANTS 

PAUL GAILLARD 

2020 

Auxin and cytokinin are major plant hormones that orchestrate plant development. 

These hormones are involved in cell division and differentiation and their spatio‐temporal 

balance controls organ initiation and maturation. Even though independent transcriptional 

responses to these hormones have been characterized, their concomitant outputs have not 

been described. We developed methodology to determine auxin-cytokinin relative output 

(ACRO) ratios at cellular resolution. Hormone-specific fluorescent markers that localize 

to the nucleus were used to report transcriptional outputs of auxin and cytokinin. 

Multiphoton microscopy and image data processing were used to quantify their relative 

ratio at cellular level in three-dimensional tissue volumes. This strategy was successfully 

applied to soybean (Glycine max) and two model plant species, Arabidopsis thaliana and 

Medicago truncatula to evaluate ACRO ratios in different organs of interest. The ACRO 

ratios estimated in soybean and Medicago root tips and lateral roots in this study agreed 

with previously reported outputs for each fluorescent reporter individually, suggesting that 

the method is reliable and accurate. Soybean and Medicago are legumes that can produce 

root nodules through a symbiotic partnership with nitrogen-fixing bacteria. Six soybean 

nodule developmental stages were studied and presented exclusive ACRO ratios patterns 

indicating a fine cell-specific regulation. We hypothesize that auxin bursts promote pattern 

initiation and cytokinin bursts promote cell differentiation. Based on ACRO ratios in 
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nodules of soybean roots with reduced sensitivity to auxin, we speculated that lower auxin-

cytokinin balance in nodule initials allows development of more primordia into nodules 

but delay their maturation. Similar ACRO ratios in infection zones and vascular bundles of 

soybean and Medicago nodules suggested a conserved role for auxin and cytokinin in these 

species that produce two different types of nodules. Evaluation of ACRO ratios in 

Arabidopsis roots treated with different concentrations of auxin or cytokinin revealed that 

the sensor responds to auxin in a dose-dependent manner and to cytokinin in a cell type-

specific manner. Understanding the role of auxin and cytokinin balance in organ 

development can help improve plant productivity. For example, creating plants with more 

nodules that fix for a for a longer period could increase the soybean production in an 

ecofriendly manner.  
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CHAPTER I 

1. Introduction 

 

1.1. Plant nodule a reliable source of nitrogen 

 

1.1.1. Biological nitrogen fixation 

 

Nitrogen, being a component of major biomolecules such as nucleotides and amino 

acids, is essential for the survival of all living organisms. While heterotrophic organisms 

(e.g animals) can find nitrogen in their diet, autotrophic organisms (e.g. plants) uptake 

nitrogen primarily from the soil and water. However, the availability of nitrogen in the 

environment is highly variable and can be a crucial limiting factor. To overcome this 

restriction, plants have developed multiple strategies over their evolution. One of these is 

biological nitrogen fixation (BNF) that appeared 3.3 billion years ago in a group of 

prokaryotic organisms in response to a high ammonium (NH4
+) deficiency in the 

environment, reviewed by (Towe 2002). Plants obtain nitrogen from these prokaryotes 

through different means.  

These interactions can be divided into three different categories: free-living 

nitrogen fixation, associative nitrogen fixation and symbiotic nitrogen fixation. 
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Azotobacter, Beijerinckia, and Clostridium are examples of free-living bacteria in soil. 

These diazotrophic bacteria encode for nitrogenase, an enzyme that converts dinitrogen gas 

to ammonia (NH3) (Santi, Bogusz et al. 2013). Nitrogenase is inhibited by dioxygen, and 

free-living nitrogen-fixers have adopted several strategies to overcome this oxygen 

restriction. Some are anaerobic while others are associated to create micro-colonies 

containing heterocyst, a specific cell type with thick cell walls that prevent oxygen 

diffusion. Associative nitrogen fixing organisms include diazotrophic bacteria that live in 

contact with plants. These forms can be classified into different groups based on their 

degree of sophistication and closeness.  

The most rudimentary types are represented by diazotrophic bacteria that live either 

outside (i.e. epiphyte) or inside (i.e. endophyte) of the plant in an extracellular fashion. 

This association is often correlated with higher plant biomass when nitrogen availability is 

limited (James 2020). The most elaborate and efficient BNF form is encountered in the 

endosymbiotic relation between plants and compatible bacteria that result in formation of 

root nodules, specialized organs dedicated to symbiotic N fixation.  

Root nodules provide an oxygen-regulated environment for efficient functioning of 

nitrogenase and plants provide carbohydrates to the bacteria in exchange for nitrogen 

(Oldroyd, Murray et al. 2011). Nodule symbiosis falls in two categories, the legume family 

(Fabaceae) associated with rhizobia bacteria and eight angiosperm families (Betulaceae, 

Casuarinaceae, Elaegnaceae, Myriaceae, Rhamnacea, Rosacea, Datiscaceae and 
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Coriariaceae) interacting with Frankia filamentous bacteria in the context of actinorhizal 

symbiosis. 

1.1.2. Different nodule types 

 

Legume nodules can be divided into two main categories based on their site of 

primordium initiation and meristem persistence:(i) determinate nodules that initiate in the 

outer cortex and have a transient meristem resulting in a spherical nodule in which most of 

the tissues are at the same developmental stages; and (ii) indeterminate nodules that initiate 

in the inner cortex and have a persistent meristem, engendering an oblong nodule shape 

where the apex has mitotic activity. Each young cell produced by the meristem enter in a 

differentiation program and each differentiation stages are present in a mature 

indeterminate nodule, reviewed by (Ferguson, Indrasumunar et al. 2010). Determinate 

nodules are present in plants such as soybean (Glycine max) and the model plant Lotus 

japonicus, whereas indeterminate nodules are produced by plants such as barrel clover 

(Medicago truncatula) and white cover (Trifolium repens).  

1.2. Nodule development 

 

1.2.1. Early responses and rhizobia infection 
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The association between legumes and the diazotrophic bacteria rhizobia begins 

with a chemical dialog between the symbiotic partners and is determined by their respective 

spectra of specificity. During this process, nitrogen-deficient legumes release flavonoids 

in their rhizosphere. These flavonoids induce the production of lipochitooligosaccharide 

molecules termed Nod Factors (Lerouge, Roche et al. 1990, Abdel-Lateif, Bogusz et al. 

2012) in compatible rhizobia bacteria in close proximity to plant root hairs. These NFs are 

perceived by plant receptors Nod factor receptor 1 and 5 (NFR1 and NFR5), and the signal 

is transduced to Symbiosis Receptor Kinase (SYMRK), a leucine-rich repeat (LRR) 

receptor kinase. It triggers the action of two potassic channels located on the nuclear 

membrane (CASTOR and POLLUX) and two nucleoporins (NUP85 and NUP133) 

inducing a specific calcium spiking signature. This calcium signaling is decoded by a 

Calcium/calmodulin-dependent protein kinase (CCaMK, Marsh et al., 2007) induces two 

parallel responses involving two related signaling cascades.  

The first one results in the formation of an “infection thread” (IT) that transports 

rhizobia into the root cortex and primarily involves the phosphorylation of the transcription 

factor CYCLOPS by CCaMK. During this process, root hairs follow a deformation and 

curling that confine the micro-colony into an infection pocket. Plant and bacteria enzymes 

degrade plant cell walls and invagination of the plant plasma membrane forms an IT that 

carries rhizobia to root cortex cells that are diving to form the incipient nodule primordium 

(Capoen, Den Herder et al. 2007).  
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The second one involves LHK1 (Lotus Histidine Kinase 1), a cytokinin receptor 

and transcription factors (TFs) such as NSP1, NSP2, ERN1 and NIN (NODULATION 

SIGNALING PATHWAY 1, NODULATION SIGNALING PATHWAY 2, ETHYLENE 

RESPONSE FACTOR REQUIRED FOR NODULATION1 and NODULE INCEPTION) 

that initiates nodule organogenesis, reviewed by (Kouchi, Imaizumi-Anraku et al. 2010, 

Suzaki, Ito et al. 2013). Therefore, in parallel to the progression of the IT containing 

rhizobacteria in the epidermis, a nodule primordium forms at the root cortex. Infection and 

organogenesis responses and most of the signaling components involved are highly 

conserved between determinate and indetermination nodule forming legumes, reviewed by 

(Kouchi, Imaizumi-Anraku et al. 2010). 

1.2.2. Primordium development, nodule and bacteria maturation 
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Figure 1.2.2-1: Comparison of indeterminate and determinate nodule morphology. 

(A): representation of indeterminate nodule comprising five different tissues zones. I: 

apical meristem, II: infection and differentiation zone, III: fixation zone, IV: senescent 

zone and V: saprophytic zone. (B): representation of determinate nodule. Both nodule 

types are surrounded by a cortical cell layer, have vascular bundles represented with a 

brown line and central infected tissues. Red color represents zones of high nitrogen 

fixation and green indicates the absence of fixation as the nodules enter in a senescence 

program. Adapted from Dupont et al. 2012. 

Once the IT has reached the primordium, bacteria are release via endocytosis into 

plant membrane-derived vesicles called symbiosomes. There, rhizobia are differentiated 

into bacteroids via endoreduplication and undergo morphological changes to more 

efficiently convert atmospheric dinitrogen into NH3. The morphological differences 

observed between determinate and indeterminate nodule result from a different cell fate 

programming during organogenesis. In determinate nodules, anticlinal cell division 

initiates in the outer cortex and later in the pericycle and inner cortex to form the primordia, 

reviewed by (Ferguson, Indrasumunar et al. 2010). Outer cortical cells give rise to the 

central tissue and the pericycle and inner cortex cells differentiate into the parenchyma 

surrounding the central zone. Nodule vasculature forms from the root vasculature towards 

the base of the nodule parenchyma and branches out in the mature nodule periphery. 

 As meristematic activity ceases at the primordia stage, nodule maturation is the 

consequence of primordia cell elongation and results in a spherical nodule. Mature 
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determinate nodule can be divided into the central and the peripheral regions (Figure 1.2.2-

1). The central zone or infection zone consists of rhizobia-infected cells where the 

atmospheric nitrogen is fixed. The peripheral region is composed of the vasculature 

embedded in a parenchyma, surrounded by the endodermis and a nodule cortex. The nodule 

vasculature is connected to the root vasculature to provide the fixed nitrogen to the plant.  

Indeterminate nodule organogenesis involves anticlinal cell divisions in the inner 

cortex and later in the pericycle, reviewed by (Ferguson, Indrasumunar et al. 2010). The 

apical persistent meristem allows cell division at the mature stage which results in an 

elongated oblong structure comprised of different zones (Figure 1.2.2-1). Zone I represents 

the meristematic zone in which cells are continuously dividing. Zone II correspond to the 

infection zone, in zone III rhizobia are differentiated into bacteroids, this is the nitrogen 

fixation zone. Zone IV is the senescence zone, and Zone V is the saprophytic zone (Figure 

1.2.2-1), reviewed by (Gage 2004, Ferguson, Indrasumunar et al. 2010). These zones are 

in the nodule central zone and surrounded by parenchyma traversed by vascular bundles 

(Bond 1948, Newcomb 1976). Once determinate nodules start senescence the entire nodule 

senesce, and it then replaced by a nodulation event. Interestingly, indeterminate nodule has 

a relatively less branched vasculature system than determinate nodule and determinate 

nodules can be covered by lenticels which helps in gas exchange. Over the course of 

infection, nodule organogenesis and nodule growth, hormones like auxin and cytokinin 

play a central role in both nodule types. 
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1.3. Auxin during nodulation 

 

Auxin plays a significant role at every step of the nodulation process including, the 

early epidermal and root hair response, the initial cortical cell division and nodule 

maturation.  

During rhizobia invasion auxin-responsive marker gene expression patterns suggest 

a rapid auxin response in the root hair cells. This induction is necessary for successful 

infection in Medicago and L. japonicus and can also be induced by Nod factor treatment 

(Breakspear, Liu et al. 2014, Nadzieja, Kelly et al. 2018). It is followed by a local auxin 

accumulation in the root cortex at the site of an incipient nodule primordium in both nodule 

types (Wasson, Pellerone et al. 2006, Suzaki, Ito et al. 2013). In mature determinate and 

indeterminate nodules, auxin response is absent/undetectable in the infection zone but is 

clearly detected in the vascular bundles. In the case of indeterminate nodule, auxin response 

has also been detected in the meristem, reviewed by (Kohlen, Ng et al. 2017). There are 

multiple ways to regulate the auxin action, 1. auxin biosynthesis, 2. auxin inactivation, 3. 

auxin signaling, 4. auxin signaling regulation via microRNA and 5. auxin transport.  

1.3.1. Auxin biosynthesis 

 

The major auxin biosynthesis pathway in plants involves the conversion of 

tryptophan into indole-3-pyruvic acid (IPA) by the TRYPTOPHAN AMINO-
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TRANSFERASE RELATED (TAR) genes family members, followed by conversion of 

IPA into Indole-3-acetic acid (IAA) by members of the YUCCA (YUC) gene family 

(Mashiguchi, Tanaka et al. 2011). IAA is the prevalent chemical form of auxin, however 

other forms like phenyl acetic acid (PAA) and indole butyric acid (IBA) have been 

identified.  Interestingly, LjTAR1 expression is Nod factor dependent and transcriptome 

data reported its induction after bacteria inoculation and Nod factor treatment (Nadzieja, 

Kelly et al. 2018). MtTAR2 is also up-regulated following Nod factor treatment (Herrbach, 

Chirinos et al. 2017). 

 In soybean, GmYUC2A expression is also induced by Bradyrhizobium 

diazoefficiens infection and observed in nodule tissues. Lines overexpressing GmYUC2A 

produce more auxin and have a defect in root hair development, delayed nodule maturation 

and a reduced nodule number (Wang, Yang et al. 2019). In Medicago YUCCA expression 

is also induced early after Sinorhizobium meliloti (S. meliloti) inoculation. The two keys 

steps involved in auxin biosynthesis are induced during the legume/rhizobia interaction 

and proper auxin production is required for nodule formation. 

1.3.2. Auxin inactivation 

 

The pool of active auxin is regulated by conjugation and/or degradation involving 

genes like GRETCHEN HAGEN 3 (GH3), UDP-GLUCOSYLTRANSFERASES (UGT), 

and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1), reviewed by (Staswick, 
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Serban et al. 2005, Muller and Leyser 2011). DAO1 is involved in IAA oxidation and UGT 

in IAA-amino acid conjugation. GH3 enzymes catalyze IAA-amino acid conjugation and 

alter the free (active) IAA pool (Staswick, Serban et al. 2005). Indeed, in Medicago GH3 

genes are synergistically upregulated by Nod Factors and auxin treatments (Herrbach, 

Chirinos et al. 2017).  

It is proposed that auxin can be inactivated in the root epidermis by GmGH3-14 

and in the nodule primordium by GmGH3-15 (Damodaran, Westfall et al. 2017). Silencing 

GH3 genes impacts nodule numbers, maturity, and size. Symbiotic bacteria can also 

modify auxin’s pool; however, their role is still unclear (Torres, Benavidez et al. 2018). 

Even though rhizobial auxin is essential for proper infection for at least determinate 

nodules (Fukuhara, Minakawa et al. 1994), B. diazoefficiens may also be able to degrade 

IAA and could potentially negatively regulates auxin pool in the infection zone of mature 

nodule (Torres, Benavidez et al. 2018). It appears that auxin level is controlled by 

inactivation during the infection and nodule primordium formation. Auxin biosynthesis 

and inactivation being observed at similar stages, this indicates a very tight regulation of 

the active pool of auxin to enable proper nodulation. 
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Figure 1.3.2-1: Auxin signaling pathway’s regulation by ARF 10/16/17 and miR160. 

(A) In absence of auxin positive ARF activity is suppressed by Aux/IAA and TPL. (B) In 

presence of auxin Aux/IAAs is ubiquitinated to TIR1/AFBs and degraded by the 

proteasome activity. Hence, positive ARF can induce the transcription of auxin response 

genes. (C) ARF 10/16/17 are negative regulators preventing the expression of auxin 

response genes in presence of auxin. (D) miR160 can target and repress ARF 10/16/17 to 

promote auxin response genes transcription in presence of auxin. Adapted from (Taylor-

Teeples, Lanctot et al. 2016). 

1.3.3. Auxin signaling 
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The response to auxin is mediated by three groups of proteins: AUXIN RESPONSE 

FACTORs (ARFs), AUXIN/INDOLE-3- ACETIC ACID (Aux/IAA) and TRANSPORT 

INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). ARFs are 

transcriptional activators or repressors that can respectively induce or inhibit the expression 

of early auxin response genes (Figure 1.3.2-1b and 1.3.2-1c). The Aux/IAA family includes 

repressors proteins that can act in association with the co-repressor TOPLESS (TPL) and 

inhibit ARF activity through dimerization and repress the expression of auxin response 

genes (Figure 1.3.2-1a). In presence of auxin, the Aux/IAA proteins are be degraded by the 

auxin receptor F-box proteins such as TRANSPORTER INHIBITOR RESPONSE1 (TIR1) 

to regulate plant development. Altering auxin signaling can result in nodulation 

phenotypes.  

For example, overexpression of the soybean GmTIR1/GmAFB3 genes increases 

the number of infection events and nodules (Cai, Wang et al. 2017). During early infection 

of Medicago by S. meliloti, ten ARFs are suppressed, while ten others are upregulated 

(Shen, Yue et al. 2015). In Medicago, auxin signaling components like ARF16a and IAA9, 

are induced at infection sites and nodule primordia by Nod Factors, or S. meliloti and a 

mutation in MtARF16a reduces the number of infection threads (Breakspear, Liu et al. 

2014). In soybean, GmARF8a/b silenced plants have less nodules (Wang, Li et al. 2015). 

ARFs are major actors of the auxin signaling pathway and positives and negative auxin 

response regulators are controlling nodulation. Moreover, other component of the auxin 
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signaling regulation such as TIR1 and IAAs are also implicated in this regulation, 

emphasizing the crucial role of proper and flexible auxin response during nodulation.  

1.3.4. Auxin signaling regulation via microRNA 

 

microRNAs (miRNAs) are 21 to 22 nucleotides long sequences that regulate 

transcripts in cleaving mRNA or inhibiting their translation reviewed by (Axtell 2013). 

They regulate plant development by fine-tuning expression levels of different transcription 

factors and other target genes. miRNAs that regulate auxin signaling have been identified 

in both determinate and indeterminate nodule-forming legumes. Specific auxin signaling 

actors are also regulated by microRNA to provide in a very fine and adaptable control of 

auxin responses during nodule development. Additionally, the miR390/TAS3 pathway 

relies on miR390 to produce Trans-Acting small interfering RNA (siRNA) and repress 

ARF2/ARF3/ARF4 (Marin, Jouannet et al. 2010).  

GmmiR167 represses the expression of positive auxin response factors GmARF8a 

and GmARF8b and is expressed in the infection zone of soybean to positively regulate 

nodule number (Wang, Li et al. 2015). While miR160 represses the negative ARF10/16/17 

family, is expressed in the majority of soybean mature nodule and its action is required for 

proper nodule maturation (Figure 1.3.2-1d). Taken together, in determinate nodule, auxin 

action is repressed via miRNA167 in the infection zone and miR160’s partial and indirect 

activation of the auxin pathway is very localized (Nizampatnam, Schreier et al. 2015, 
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Wang, Li et al. 2015). miR393 regulates the auxin receptor GmTIR1/AFB3, and its role on 

nodule development is still unclear. In composite soybean plants where the cassava vein 

mosaic virus (CsVMV) CVP2 promoter is used to overexpress miR393 in the roots, these 

auxin hyposensitive roots are not altered in nodule number (Turner, Nizampatnam et al. 

2013). However, in transgenic roots where the Cauliflower mosaic virus 35S (CaMV35S) 

promoter is used to overexpress miR393d, nodule number is decreased (Cai, Wang et al. 

2017). This dissimilitude might be due to different expression level strengths and tissue 

specific variation between the CVP2 and CaMV35S promoters.  

In indeterminate nodules, miR390 indirectly targets ARF2, ARF3, and ARF4. Its 

expression has been observed in vascular bundles and nodule meristem of Medicago and 

inhibits nodule organogenesis and rhizobial infection. In M. truncatula, overexpression of 

miR160 (Bustos-Sanmamed, Mao et al. 2013), miR166 (Boualem, Laporte et al. 2008), 

miR171h (Hofferek, Mendrinna et al. 2014) miR169 (Combier, Frugier et al. 2006), and 

miR164 (D'Haeseleer, Den Herder et al. 2011), which target the ARF 10/16/17, HD-Zip, 

NSP2, NF-YA1, and NAC1, respectively, reduced nodule number. The repression of 

positive or negative ARFs by microRNA provides a very contextual and target specific 

layer of regulation to control auxin level to enable nodule formation. 

1.3.5. Auxin transport 
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Auxin transport is another way to regulate the available auxin pool. Polar auxin 

transport (PAT) is regulated by auxin influx AUXIN1/LIKE-AUX1 (AUX/LAX) family 

carriers and auxin efflux PIN-FORMED (PIN) family carriers, reviewed by (Friml 2003). 

PAT varies between indeterminate and determinate nodule during their respective 

initiation. During the initiation of indeterminate nodule, acropetal auxin transport 

inhibition leads to auxin accumulation at the start of nodule initiation in the pericycle, 

endodermis, and inner cortex cells (Ng and Mathesius 2018). Moreover in Medicago, 

synthetic auxin transport inhibitors such as 2,3,5-triiodobenzoic acid or 1-N-

naphthylphthalamic acid induce pseudo-nodule even in the absence of the S. meliloti 

(Hirsch, Bhuvaneswari et al. 1989). Auxin transport is strongly reduced 24 h after rhizobia 

infection at the initiation site of indeterminate nodules (Mathesius, Schlaman et al. 1998, 

Wasson, Pellerone et al. 2006) and Nod factors treatment reduced auxin transport within 4 

h, with the strongest reduction from 24 to 48 h (Boot, van Brussel et al. 1999). 

PIN genes seems to be involved in the auxin maximum creation during nodule 

initiation as silencing the expression of MtPINs resulted in fewer nodules (Huo, Schnabel 

et al. 2006). MtPIN9 is expressed at higher levels in the mature nodule when compared to 

roots tips and its expression level is altered in the cytokinin response1 mutant (cre1) that 

have fewer and delayed nodules. In view of the high functional redundancy within PINs, 

no genetic approach has been able to identify PIN(s) specific to nodule maturation. 

Nevertheless, MtPIN2/3/4 showed a negative effect on nodulation in M. truncatula (Huo, 

Schnabel et al. 2006). De Billy reported that the auxin influx transporter MtLAX1 and 
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MtPINs belonging to the auxin exporter gene family are expressed during nodulation (de 

Billy, Grosjean et al. 2001). MtLAX2 a paralog of the Arabidopsis AUX1 is expressed in 

the early primordium, in the vascular bundles and in the nodule meristem apex of 

indeterminate nodules. MtLAX2 promotes nodule elongation, positively regulate 

nodulation (Roy, Robson et al. 2017) and the Mtlax2 mutant presents defect of both 

infection thread formation and nodule development (Roy, Robson et al. 2017). 

Indeterminate nodule expansion may require auxin transporters to spatially regulate auxin 

accumulation for proper vascular bundle progression. 

During the initiation of determinate nodule, the acropetal auxin transport is 

increased in L. japonicus (Ng and Mathesius 2018) and an auxin response is detected in 

the outer cortex. (Kohlen et al, 2018). Even though indeterminate and determinate nodules 

show an elevated auxin response in the cortical cells during the formation of a nodule 

primordium (van Noorden, Kerim et al. 2007, Takanashi, Sugiyama et al. 2011, Suzaki, 

Yano et al. 2012, Turner, Nizampatnam et al. 2013) their respective auxin transport control 

differs. Auxin transport inhibition is responsible of the auxin accumulation at the initiation 

of indeterminate nodules. Local auxin accumulations are sufficient to trigger nodule 

initiation in indeterminate nodules. In determinate nodules, the auxin maximum is also 

necessary but reached via mechanism(s) that is yet to be determined. Other hormones such 

as cytokinin are also playing a role in auxin and modulation regulation. 
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1.4. Cytokinin during nodulation 

 

Cytokinin is a class of plant hormones known to regulate cell proliferation and 

differentiation. Exogenous cytokinin treatment induced pseudonodules in alfalfa (M. 

sativa; (Cooper and Long 1994)), white clover (Trifolium repens; (Mathesius, Weinman et 

al. 2000)), siratro (M. atropurpureum; (Relic, Talmont et al. 1993)), Aeschynomene spp. 

(Podlesakova, Fardoux et al. 2013), L. japonicus (Heckmann, Sandal et al. 2011), and in 

the non-legume alder (Alnus glutinosa; (RODRIGUEZ‐BARRUECO and CASTRO 1973). 

Note that high cytokinin concentration treatments reduce nodule number, which is most 

likely due to hormone toxicity (e.g., elevated ethylene production; (Lorteau, Ferguson et 

al. 2001, Ferguson, Wiebe et al. 2005).   

Cytokinin responses have been linked to cortical auxin responses in nodulating 

legumes but not in non-nodulating species (Gauthier-Coles, White et al. 2018). Trans-

zeatin and isopentenyl adenine, the major endogenous cytokinin forms accumulate few 

minutes after rhizobial inoculation and Nod Factor treatment (van Zeijl, Op den Camp et 

al. 2015, Reid, Heckmann et al. 2016, Reid, Nadzieja et al. 2017). Cytokinin response using 

the synthetic TCSn reporter revealed that cytokinin pattern in nodule development is 

similar in both nodule type. In L. japonicus, the cytokinin-induced primordium initiates 

from the outer cortex (Szczyglowski, Shaw et al. 1998) and the third cortical cell layer (van 

Spronsen, Grønlund et al. 2001). In Medicago, initial cytokinin induction is reported in the 
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cortical and pericycle cells, the site of nodule initiation of indeterminate nodule (van Zeijl, 

Op den Camp et al. 2015).  

The cytokinin response then spread to the epidermis in the case of L. japonicus 

(Held, Hou et al. 2014). In Medicago and L. japonicus, a cytokinin epidermal response is 

also observed after rhizobia inoculation (van Zeijl, Op den Camp et al. 2015, Reid, 

Nadzieja et al. 2017) and the initial cytokinin cortical peak is followed by a second peak in 

the nodule primordia once it is emerging from the root. In a mature determinate nodule, 

cytokinin is weakly detected in the nodule parenchyma and vasculature and also present in 

the infection zone (Fisher, Gaillard et al. 2018).  Interestingly, the type A-RR Mt RR4 

reporter cytokinin presence in the infection zone of indeterminate nodules (Dolgikh, 

Kusakin et al. 2020). Note that cytokinin seems to promote meristematic activity in cortical 

cells of the root during nodulation (Gamas, Brault et al. 2017), which is opposite to its role 

in root growth. There are multiple ways to regulate the cytokinin action, 1. cytokinin 

biosynthesis, 2. cytokinin activation and degradation 3. cytokinin signaling. 

1.4.1. Cytokinin biosynthesis 

 

Cytokinins are adenine species with an isoprenoid side chains in the N6 and are 

synthesized by the ISOPENTENYL TRANSFERASE (IPT) and LONELY GUY (LOG) 

enzymes,  reviewed by (Wybouw and De Rybel 2019). Isopentenyladenine (iP) and trans-

zeatin (tZ) are the most important and abundant cytokinin compounds in plants. Cytokinin 
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biosynthesis is activated during nodulation in various legumes (Mortier, Wasson et al. 

2014, Reid, Nadzieja et al. 2017, Dolgikh, Kirienko et al. 2019). Transcriptomic data report 

that members of gene families involved in cytokinin biosynthesis or activation, isopentenyl 

transferases (IPT), CYP735A and like LONELY GUYs (LOGs), are upregulated 3 h after 

Nod Factor treatment in Medicago (van Zeijl, Op den Camp et al. 2015).  

IPT2 and KNOX3 a transcription factor that activates IPT3 are expressed in the 

root epidermis 24 h after Nod Factor external application in Medicago (Jardinaud, Boivin 

et al. 2016). In L. japonicus, the LjIpt4 mutant plants have reduced nodule number, but 

overexpression of LjIpt3 or LjLog4 fails to produce pseudonodule (Reid, Nadzieja et al. 

2017). Interestingly LjIpt2 and LjLog4 induction occurs independently of LjLhk1 

suggesting that they might be involved in the initial cytokinin buildup. Therefore, 

cytokinins are produced during early infection invent and required for successful 

nodulation. 

1.4.2. Cytokinin activation and degradation 

 

MtLOG1 and MtLOG2 encode for cytokinin riboside 50-monophosphate 

phosphoribohydrolases that activate cytokinin and are induced during nodulation. 

Overexpression and silencing of MtLOG1 decrease nodule numbers (Mortier, Wasson et 

al. 2014) suggesting a fine tuned cytokinin biosynthesis during nodulation in Medicago. 

Cytokinin can be irreversibly degraded into adenine and 3-methyl-butenal by the Cytokinin 
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oxidases (CKX). In L. japonicus, CKX3 expression is induced by Nod Factors and its 

symbiont Mesorhizobium loti during early nodulation and the ckx3 mutant has fewer ITs 

and nodules (Murray, Karas et al. 2007, Reid, Heckmann et al. 2016). Therefore, cytokinin 

production induced by Nod Factor might trigger cortical nodule organogenesis followed 

by a feedback via specific cytokinin response regulators in the epidermis to control the 

infection.  

1.4.3. Cytokinin signaling 

 

Cytokinin signaling pathway plays a central role in initiating nodule primordia and 

is also responsible for meristem activation (Suzaki, Ito et al. 2013). Cytokinin treatment 

triggers pseudonodule formation in the non-nodulation mutants, nfr1, nfr5, symRK, 

nup133, nup85, castor, pollux, and ccamk, suggesting that cytokinin action is downstream 

of the Nod factors signal transduction pathway and that cytokinin is necessary and 

sufficient for the initiation of nodule organogenesis. Activation of cytokinin signaling 

during nodule development relies on NIN, NSP1, and NSP2 (Heckmann, Sandal et al. 

2011).  

Cytokinin is perceived by a histidine kinase (HK) phosphorelay system. First, a 

protein with an extracellular domain perceives the cytokinin. This induces its kinase 

activity and the protein autophosphorylates. Then, the phosphoryl group is transferred 

intramolecularly to an aspartate residue. A His-containing phosphotransfer protein receives 
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the phosphoryl group and transfer it to an aspartate present on a receiver domain of the 

second component of the system; a response regulator (RR) which is frequently a 

transcription factor. Type-B RRs are commonly associated with transcriptional activation, 

and type-A RR with cytokinin signaling inhibition, reviewed by (Hwang, Sheen et al. 

2012). Exogenous cytokinin treatment and gain-of-function mutations in the cytokinin 

receptor LjLhk1 or MtCRE1 induces cytokinin signaling in the root and pseudonodule 

formation (Tirichine, Sandal et al. 2007, Heckmann, Sandal et al. 2011).  

After M. loti infection, LHK1 promoter activity has been reported the root cortex 

first and subsequently in root epidermis (Held, Hou et al. 2014). Consistently, the L. 

japonicus triple mutant lhk1-1 lhk1a-1 lhk3-1 is not impaired in the infection thread 

formation, but cortical division is affected (Held, Hou et al. 2014). Hence, the three 

cytokinin receptors LHK1, LHK1A, and LHK3 don’t seem to be involved in epidermal 

infection but regulate cortical division. In Medicago truncatula the receptor 

MtCRE1/CHK1 along with MtCHK2, MtCHK3, and MtCHK4 enables initial cortical 

division (Gonzalez-Rizzo, Crespi et al. 2006, Plet, Wasson et al. 2011, Boivin, Fonouni-

Farde et al. 2016).  

During nodulation, response regulators are orchestrating cytokinin signaling 

responses. MtRR4 (type-B RR) is induced in the initial cortical cell division in the 

primordia and in the nodule meristem (Plet, Wasson et al. 2011). Interestingly, MtRR4 

seem to be regulated by the MtKNAT3/4/5-like genes which are homeodomain 

transcription factors involved in nodule development (Di Giacomo, Laffont et al. 2017). 
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MtRR1 (type-A RR) is also induced in the initial cortical cell division and can bind to the 

promotor of NSP2 a transcription factor that trigger nodule organogenesis (Ariel, Brault-

Hernandez et al. 2012). MtRR9 expression is upregulated in the epidermis and the root 

cortex after inoculation with rhizobia or Nod Factor treatment. Moreover, constitutive 

activation of MtRR9 triggers cortical cell division demonstrating its positive role during 

nodule primordia formation (Op den Camp, De Mita et al. 2011). Therefore, positive 

cytokinin signaling is required for the cortical nodule organogenesis initiation but not 

directly involved in root hair infection. 

To summarize, both cytokinin and auxin signaling pathways are involved during 

nodulation and specific patterns of expression and action are required for proper rhizobia 

infection and nodule organogenesis. 

Auxin is promoting the root hair infection, primordium initiation, is 

absent/undetectable in the infection zone, present in the vascular bundles of both nodule 

types and in the meristem of indeterminate nodules. Experimental studies have revealed 

that auxin biosynthesis is active during the root hair infection of both nodule types and 

during determinate nodule maturation. In Medicago, GH3 genes are upregulated during 

the root hair infection and soybean GH3 genes also seem to reduce auxin level in the root 

epidermis and the nodule primordium. Auxin transport inhibition is responsible of nodule 

initiation in indeterminate but not determinate nodules. Auxin carriers are active in the 

early primordium, the vascular bundles and the nodule meristem of indeterminate nodules 

but haven’t been identified in determinate nodules. In Medicago and soybean, the auxin 
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signaling pathway is regulated by positive and negative ARFs themselves regulated by 

microRNAs at different stages and in different tissues types. This enables a very fine and 

versatile regulation of the pool of auxin and its response and highlights the specificity of 

auxin action required to produce the different cell types constituting nodules. 

Cytokinin treatment induces pseudonodules in determinate and indeterminate 

nodules. Cytokinin patterns are present in the cortical cells after infection, then in the 

epidermis, in the emerging primordium and the vasculature of both nodule type. It is also 

present in the parenchyma of determinate nodule and the infection zone and meristem of 

indeterminate nodule. Cytokinins are biosynthesized during early infection in Medicago 

and cytokinin biosynthesis is required for nodulation in L. japonicus. Cytokinin 

activation is tightly regulated in indeterminate nodules and cytokinin degradation is 

required for determinate nodules. Cytokinin receptors gain-of-function mutants produce 

pseudonodules and cytokinin signaling pathway is involved in cortical cell division but 

not root hair infection. Therefore, it appears that cytokinin plays an essential role in 

nodulation organogenesis of determinate and indeterminate nodules. Interesting patterns 

of auxin and cytokinin seem to partially overlap and are both involved in nodule 

induction and organogenesis. The following section will describe how both of these 

actors are regulating each other during legumes symbiosis with rhizobacteria.  

1.5. Auxin/cytokinin ratio during nodule development  
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1.5.1. Auxin-cytokinin regulation during nodulation 

 

Beyond the role played by auxin and cytokinin individually in controlling cell 

proliferation and differentiation, reviewed by (Benkova and Hejatko 2009, Suzaki, Ito et 

al. 2013) considering their ratio is essential to understand their function during nodulation. 

Indeed, these hormones are known to act antagonistically and/or synergistically to control 

and regulate several plant developmental processes such as embryogenesis and shoot/root 

meristem maintenance, reviewed by (Su, Liu et al. 2011).  

In nodulation, auxin and cytokinin seem to be involved in the regulation of nodule 

formation in a rhizobium-independent manner. During the early steps of the infection 

process, local root epidermis responses are observed for both auxin and cytokinin. After 

Nod Factor treatment or rhizobium inoculation, the auxin biosynthesis is induced in root 

hairs and the cytokinin biosynthesis is inhibited in the epidermis in L. japonicus (Nadzieja, 

Kelly et al. 2018). Nadzieja et al., 2018 have proposed that auxin is rapidly accumulated 

after infection and suppresses cytokinin biosynthesis and signaling, to enable early 

infection events.  

In 2016, Miri et al., were also proposing that the repression of the cytokinin 

signaling via auxin action was necessary for successful infection events. In fact, type-A 

RR are induced by Nod Factor treatment and rhizobia inoculation in an auxin-dependent 
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manner. In return, cytokinin stimulates ethylene production to restrict infection events and 

nodule development (Penmetsa and Cook 1997, Penmetsa, Uribe et al. 2008).  

Cytokinin can also regulate auxin transport via controlling PIN1 distribution and 

can induce auxin biosynthesis (Pernisová, Klíma et al. 2009, Jones, Gunneras et al. 2010). 

The Medicago cytokinin receptor CRE1 can influence the auxin level via two ways. By 

inducing a cytokinin cascade and the activation of ARF16a in the epidermis (Boivin, 

Kazmierczak et al. 2016), or in modifying the auxin transport via the action of flavonoids 

(Plet, Wasson et al. 2011, Ng, Hassan et al. 2015). 

Auxin and cytokinin responses are observed in the first dividing cortical cells of 

both determinate and indeterminate nodule (van Noorden, Kerim et al. 2007, Plet, Wasson 

et al. 2011, Takanashi, Sugiyama et al. 2011) and there are evidences supporting that 

cytokinin activation is upstream of the auxin response (Plet, Wasson et al. 2011, Suzaki, 

Yano et al. 2012, Ng, Hassan et al. 2015). For instance, white clover treated with exogenous 

cytokinin induces auxin responses in the early cell divisions of the inner root cortex 

(Mathesius, Weinman et al. 2000). Once the nodule is getting more developed, auxin and 

cytokinin patterns partially overlap. Auxin is absent in the infection zone and present in 

the vascular bundles in both determinate and indeterminate nodule (Guan, Stacey et al. 

2013, Turner, Nizampatnam et al. 2013). Auxin is also present in the meristem of 

indeterminate nodule, reviewed by (Kohlen, Ng et al. 2018).  
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Cytokinin has been reported in the nodule meristem and nodule vascular bundle 

using a type-A RR reporter and throughout the nodule when using a type-B RR reporter in 

indeterminate nodule (Plet, Wasson et al. 2011, Franssen, Xiao et al. 2015). In determinate 

nodule, cytokinin transcriptional output reporter has been slightly detected in the 

parenchyma and the vascular bundles (Held, Hou et al. 2014). Hence, auxin distribution is 

specifically present in the vascular bundles of determinate and in the meristem and vascular 

bundles of indeterminate nodule. Concerning cytokinin it is present in the meristem, 

vascular bundle and infection zone of indeterminate nodules and in the nodule parenchyma, 

vascular bundles and infection zone of determinate nodules.  

To summarize, even though auxin and cytokinin overlap during the infection and 

early organogenesis stages, it is thought that a high auxin/cytokinin activity is required in 

the epidermis for successful infection and a low auxin/cytokinin ratio is necessary for 

effective nodule primordia initiation (Miri, Janakirama et al. 2016). These hypothetical 

optimal ratios can be regulated by actors like miR160. Indeed, experimental alteration of 

miR160 expression and activity modifies the sensitivity to auxin over cytokinin or 

cytokinin over auxin and results in nodulation phenotype.  

1.5.2. Auxin/cytokinin measurement  

 

Gene mutation is commonly used to study specifics actors involved in plant 

development. However, the use of mutant is often problematic in plant signaling pathways 
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due to extensive redundancy within gene families like in the case of the 

ARF10/ARF16/ARF17 families (Turner, Nizampatnam et al. 2013). It would necessitate 

the creation of higher order mutants which can be challenging because of the lack of null 

mutants and the important number of genes. Indeed, the Arabidopsis triple order mutants 

arf10, arf16 and arf17 do not present defects in plant development (Mallory, Bartel et al. 

2005, Wang, Wang et al. 2005). Additionally, mutation in signaling components is often 

associated with pleiotropic effects and early lethality. Therefore, we decided to image 

fluorescent transcriptional output sensors to estimate which are the relative auxin/cytokinin 

ratios dictating proper nodule development and to what extend this is controlled by 

miR160.  

This methodology has two main advantages. It enables to perform in vivo imaging 

in a nondestructive way to capture hormone outputs in living tissues. It provides a 3-

dimensionnal (3D) quantification of hormone levels and cells response to measure the 

amount of active forms of hormones and calculate their relative ratios. For cytokinin, we 

used the specific synthetic sensor, Two Component signaling Sensor new (TCSn) which is 

to date the most sensible and specific cytokinin sensor that provides a balanced response 

to the ARABIDOPSIS RESPONSE REGULATOR (ARR) type-B RR family (Zürcher, 

Tavor-Deslex et al. 2013). It is composed of 24 binding sites arranged in all possible 

orientations of the consensus sequence of the Myb-like DNA-binding of 11 type-B ARR 

promoters. Concerning auxin, the synthetic DR5rev promoter reporter have been 

employed. It comprises the auxin-response element (TGTCTC) repeated 9 times and 
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placed in inverse orientation to the CaMV minimal 35S promoter (Ulmasov, Murfett et al. 

1997). Literature reports that DII:VENUS auxin accumulation sensor has also been used 

to report auxin amount. DII domain corresponds to the most stable Aux/IAA rested, IAA28 

(Brunoud, Wells et al. 2012).  

In the absence of auxin, the VENUS signal is expressed and detected. However, 

when auxin is accumulated, Aux/IAA are degraded by a proteasome mediated by the SCF-

TIR1/AFB complex and the VENUS signal is absent. Hence, DII:VENUS can provide a 

great temporal resolution, nevertheless it has the disadvantage to be an indirect technique 

(absence of signal means presence of auxin) and is not suitable for ratiometric analysis. 

DR5rev and TCSn are both present in a single construct to simultaneously quantify auxin 

and cytokinin outputs. Moreover these reporter are transcriptionally fused to the nuclear‐

localized enhanced green fluorescent protein (eGFP) and the nuclear‐localized tdTomato 

respectively (DR5rev:eGFP‐NLS and TCSn: tdTomato‐NLS). Florescence imaging of 

living sample comes with several challenges.  

There is variation due to experimental conditions, aberrations induced by local 

fluctuations in refractive index and scattering specially in thick legumes roots. Employing 

this two-reporter construct in addition with relative ratio quantification instead of absolute 

quantification is expected to moderate these drawbacks and provide a reliable report of the 

relative auxin and cytokinin ratios. Alternatively, quantification of auxin and cytokinin in 

Medicago mature nodule has been performed using liquid chromatography–mass 

spectrometry (LC-MS). In 2019, Demina et al. reported that PAA was the major form of 
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auxin in nodule and there was no difference between the concentration of active auxin in 

roots and in nodules, however nodules had more IAA-alanine (Demina, Maity et al. 2019).  

Cytokinins were not different from nodules and roots. As both hormones can be 

quantified, their ratio can be calculated. Nevertheless, LC-MS is tissue destructive and 

doesn’t allow a fine in vivo cellular mapping of the hormones and their relative ratio. Using 

a two-photon induced fluorescence imaging system coupled with the two-reporter 

construct enabled us to get a 3D resolution of the samples. The images were analyzed via 

an optimized individual nuclei detection strategy, each hormones output was quantified, 

and the ratios calculated for every nucleus detected. 

1.5.3. miR160 modifies the auxin/cytokinin balance during nodule 

formation  

 

In 2013, our lab has reported that miR160 is involved in soybean nodule 

organogenesis in regulating relative auxin/cytokinin ratio via the control of the 

ARF10/ARF16/ARF17 family (Turner, Nizampatnam et al. 2013, Nizampatnam, Schreier 

et al. 2015). These ARFs are classified as repressor, in other words they can inhibit the 

expression of early genes responding to auxin. If miR160 is expressed, it can repress the 

activity of these ARFs and thus indirectly restores the expression of early genes in response 

to auxin. Indeed, roots over-expressing miR160 (miR160ox) were hypersensitive to auxin 

(based on root response to exogenous auxin) and were impaired in nodule primordia 
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formation. Moreover, they are also hyposensitive to cytokinin, based on the induction of 

marker genes in response to exogenous cytokinin (Turner, Nizampatnam et al. 2013, 

Nizampatnam, Schreier et al. 2015).  

miR160ox roots were not affected in the number of infection foci while they have 

a severe deficit of primordium, emerging and mature nodule. Conversely, roots 

constitutively expressing a short tandem target mimic (STTM160ox) repressing miR160, 

had reduced sensitivity to auxin and enhanced sensitivity to cytokinin. These roots had 

more initiated nodules, but their maturation was drastically delayed (Nizampatnam, 

Schreier et al. 2015). Hence, miR160 seems to be a key regulator that dictates relative 

auxin/cytokinin ratios.  

As nodules are very complex organs resulting from different auxin/cytokinin ratios, 

tissues specific studies have been done to better characterized miR160 action. miR160 

expression is sparsely detected in emerging nodule, but widely detected in mature nodule. 

Moreover, the auxin pattern is also sparsely present in emerging nodule, however it is 

restricted to the nodule periphery and absent in the central zone of mature nodule. Hence, 

it seems that the spatio-temporal expression of miR160 and auxin is essential for proper 

nodule development.  

To assess this, transgenic roots expressing miR160 via the nodule primordium-

specific promoter pENOD40 (pENOD40miR160) were generated. pENOD40miR160 

showed an equal number of IT reaching the cortex, but fewer emerging and mature nodules 
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compared to the vector control. These results indicate that miR160 activity in nodule 

primordium inhibits nodule development. In miR160 silenced roots using 

pENOD40STTM160, a higher number of initiated nodules was observed (as in 

STTM160ox), however no delayed in maturation was noticed (contrarily to STTM160ox). 

Hence, it seems that miR160 acts in the primordium to control nodule formation but 

regulates nodule maturation through its expression in some other zone. Yet, we still need 

to determine how miR160 impacts the relative auxin/cytokinin balance in a developmental 

stage and cell specific manner.  

In this dissertation, three different aspects will be presented. The first part will 

introduce and discuss methodology developed in collaboration with Dr Steve Smith’s team 

from The South Dakota School of Mines & Technology. The relative auxin/cytokinin 

response ratio (ACRO) approach was created to quantify the relative auxin/cytokinin ratios 

of individual cells in living tissue. This strategy has been optimized on roots of soybean 

composite plants. The ratios were measured in different cell types with known relative 

activities of auxin and cytokinin to assess the reliability of this method. Secondly the 

ACRO approach was employed to characterize relative auxin/cytokinin ratios at 6 key 

stages of soybean root nodule development. The relative auxin/cytokinin ratios in roots 

where miR160 was silenced (STTM160) were also evaluated. Finally, the creation of other 

plant model species such as Arabidopsis thaliana and Medicago truncatula constitutively 

expressing the RAD strategy has been reported. These reporter lines and quantitative 

imaging methods offer a new approach to study the auxin/cytokinin requirements involved 
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in the regulation numerous plant process (growth, fructification, pathogenicity, tolerance 

to stress…) in a variety of organs and/or in the whole plant.   
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2.1. Abstract 

 

Legume-Rhizobium symbiosis results in root nodules where rhizobia fix atmospheric 

nitrogen into plant usable forms in exchange for plant-derived carbohydrates. The 

development of these specialized root organs involves a set of carefully orchestrated plant 

hormone signaling. In particular, a spatio-temporal balance between auxin and cytokinin 

appears to be crucial for proper nodule development. We put together a construct that 

carried nuclear localized fluorescence sensors for auxin and cytokinin and used two 

photon induced fluorescence microscopy for concurrent quantitative 3-dimensional 

imaging to determine cellular level auxin and cytokinin outputs and ratios in root and 

nodule tissues of soybean. The use of nuclear localization signals on the markers, and 

nuclei segmentation during image processing enabled accurate monitoring of outputs in 

3D image volumes. The ratiometric method used here largely compensates for variations 

in individual outputs due to sample turbidity and scattering, an inherent issue when 

imaging thick root and nodule samples typical of many legumes. Overlays of determined 

auxin/CK ratios on specific root zones and cell types accurately reflected those predicted 

based on previously reported outputs for each hormone individually. Importantly, distinct 

auxin/CK ratios corresponded to distinct nodule cell types indicating a key role for these 

hormones in nodule cell type identity.  

Keywords: symbiosis, development, hormones, auxin, cytokinin, nodule, soybean, two 

photon induced fluorescence (TPIF), local maxima detection method (LMDM) 
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2.2. Introduction 

 

Leguminous plants have evolved to symbiotically interact with diazotropic soil 

bacteria, collectively named rhizobia, and produce symbiotic nodules. There are two 

major classes of legume nodules: (i) determinate nodules that do not have a persistent 

nodule meristem and are spherical in shape, typically produced by tropical legumes such 

as soybean and Lotus japonicus; and (ii) indeterminate nodules that have a persistent 

meristem and oblong shape, typically produced by temperate legumes such as white 

clover and Medicago truncatula (reviewed by (Sprent 2007)). The development of these 

specialized root organs involves a set of carefully orchestrated plant developmental 

pathways. A number of different plant hormones have been implicated in nodule 

development (reviewed by (Ferguson & Mathesius 2014)). Of particular interest are the 

key plant hormones auxin and cytokinin (Suzaki et al. 2013).  

Cytokinin (CK) activity is necessary and sufficient for the initiation of nodule 

development. Loss of function mutations in CK signaling components causes 

impairments in nodule primordia initiation (e.g. (Murray et al. 2007; Plet et al. 2011; 

Held et al. 2014). On the other hand, constitutive activation of a CK receptor results in 

spontaneous nodules even in the absence of rhizobia (Tirichine et al. 2007). CK acts 

upstream of several key transcription factors crucial for nodule initiation specifically in 

the root cortex (Madsen et al. 2010). In addition, CK is also active in the root epidermis 

and root hair where it appears to play a negative role to inhibit subsequent rhizobial 
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infection (Op den Camp et al. 2011; Miri et al. 2016). Therefore, CK plays both positive 

and negative roles in a tight interplay with key transcriptional regulators (reviewed in 

(Gamas et al. 2017)).  

Auxin accumulation and/or perception also appears to be  crucial for both 

determinate and indeterminate nodule initiation (Wasson 2006; Kohlen et al. 2017; Cai et 

al. 2017). However, enhanced response to auxin inhibits nodule formation (Bustos-

Sanmamed et al. 2013; Turner et al. 2013; Wang et al. 2015). It is likely that a narrow 

window of auxin activity promotes proper nodule development (Mao et al. 2013).  

In addition to their independent roles on nodule development, key interactions 

between auxin and CK also shape proper nodule development. M. truncatula cre1 

mutants deficient in CK perception, auxin transport regulation, and nodule initiation can 

be rescued through the exogenous addition of flavonoid compounds that inhibit auxin 

transport suggesting that a crucial role for CK during initiation of indeterminate nodule 

primordia is to direct the accumulation of auxin in specific root cortex cells (Plet et al. 

2011) (Ng et al. 2015).  

Spontaneous nodules that result from constitutive activation of a CK receptor in 

L. japonicus also display auxin responsive gene expression suggesting that CK might 

activate auxin accumulation for determinate nodule initiation as well (Suzaki et al. 2012). 

However, deregulated auxin activity appears to inhibit post-initiation development of 

nodules. For example, exogenous auxin or enhanced sensitivity to auxin inhibited nodule 
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formation in M. truncatula (van Noorden et al. 2006) (Breakspear et al. 2014; Hobecker 

et al. 2017), and conversely resistance to auxin resulted in enhanced nodule development 

in this species (Kuppusamy et al. 2009). In soybean, enhanced sensitivity to auxin 

resulted in reduced nodule formation (Wang et al. 2015), and was associated with 

reduced sensitivity to CK (Turner et al. 2013).  

Exogenous CK restored nodule numbers in these roots, suggesting that the 

underlying reason for reduced nodulation in auxin hypersensitive roots is reduced CK 

activity (Nizampatnam et al. 2015). These observations suggested that an appropriate 

balance between auxin and CK might be crucial for proper nodule development similar to 

other plant developmental processes such as formation of the embryonic root pole, 

maintenance of root meristem size, xylem differentiation, lateral root formation, shoot 

apical meristem activity, and shoot axillary bud development (reviewed in (Vanstraelen 

& Benková 2012; Schaller et al. 2015)). 

Although the auxin-CK ratio is likely to be an important determinant of legume 

nodule development, the mechanism has yet to be defined. Recent studies are unraveling 

molecular mechanisms by which auxin and CK interact at the levels of biosynthesis, 

inactivation/degradation, transport, and signaling in plants [reviewed in (Vanstraelen & 

Benková 2012; Schaller et al. 2015)]. One of the first steps in elucidating mechanisms by 

which auxin and CK interact to dictate proper nodule development is to map and quantify 

the cellular outputs of these hormones. 
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While many methods exist to measure auxin and CK distributions in root systems, 

fluorescence imaging allows for non-invasive observation of hormone outputs (a 

combination of both hormone levels and a cell’s response). While both perception and 

transcriptional output sensors are available for auxin (Ulmasov et al. 1997; Liao et al. 

2015), only transcriptional output sensors have been developed for CK (D’Agostino et al. 

2000; Müller & Sheen 2008; Zürcher et al. 2013). We reasoned that using transcriptional 

output sensors for both hormones would allow the best possible comparison of relative 

cellular outputs of these hormones in specific cell types during nodule development.  

In legumes, transcriptional output sensors based on the auxin-responsive GH3 

promoter and the synthetic DR5 promoter reporter have been used to successfully 

identify domains of auxin output during nodule development (Suzaki et al. 2012; Turner 

et al. 2013; Breakspear et al. 2014; Ng et al. 2015). Auxin output was detected in the root 

hairs and infection zone, nodule initial cells, early nodule primordium, nodule meristem, 

and in the nodule vasculature. While the GH3 promoter appears to closely reflect auxin 

outputs, it is likely to be under regulation by other cues. Therefore, we decided to use the 

DR5 promoter that specifically responds to auxin. Similarly, transcriptional output 

sensors based on the Arabidopsis ARR5 promoter, and the synthetic TCS and TCSn 

promoters have been used to map domains of CK output during nodule development 

(Lohar et al. 2004; Held et al. 2014; Franssen et al. 2015; Gamas et al. 2017; Reid et al. 

2017).  
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CK output has been detected in nodule initial cells, the entire nodule primordium, 

root epidermis and root hairs, and in most cells of mature nodules. We chose the TCSn 

promoter which is the most sensitive and also specific to CK. Previous studies on 

legumes used these sensors for qualitative spatio-temporal mapping of auxin or CK 

outputs. The use of fluorescent proteins that localize to the nucleus as output markers 

would enable accurate quantification, as outputs from nuclear localized signals are 

unlikely to be affected by cell size and vacuolization. For example, quantification of 

auxin perception in specific root cell files using the R2D2 sensor in Arabidopsis root tips 

revealed that CK maintains the position of the transition zone by controlling both polar 

auxin transport and local auxin degradation (Di Mambro et al. 2017).  

To enable simultaneous quantitative imaging of auxin and CK outputs, we 

generated a single construct that carried transcriptional output sensors for both hormones. 

The construct contained transcriptional fusions of nuclear-localized green fluorescent 

protein (GFP) to the auxin-responsive DR5 promoter, and nuclear-localized tdTomato, to 

the CK-responsive TCSn promoter (DR5:GFP-NLS and TCSn:tdTomato-NLS). Given 

that the distribution of auxin and CK outputs along the main axis of the root and during 

lateral root formation have been separately demonstrated in the literature, we used these 

tissues to validate the construct and quantification methods. For example, CK response is 

high in the columella, somewhat diminished in the quiescent center (QC), and strong in 

the vasculature of the elongation zone (Zürcher et al. 2013; Antoniadi et al. 2015). Auxin 
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response on the other hand, is high in the QC and initial columella cells (Petersson et al. 

2009; Suzaki et al. 2012; Turner et al. 2013).  

Each of these qualitative measures, while informative, fail to reveal the relative 

outputs of these two key regulatory hormones as a function of the root architecture. In 

addition, imaging is sensitive to varying experimental conditions, including aberrations 

caused by local fluctuations in refractive index and scattering particularly in species with 

thicker roots such as soybean and other legumes. Using the two-color construct reported 

here, in combination with quantitative analysis, and the use of relative ratios rather than 

absolute outputs, is expected to minimize these influences and be a more faithful reporter 

of relative hormone outputs. We combined 3-D imaging using multiphoton microscopy 

with image analysis tools to detect individual nuclei, quantify hormone outputs, and 

calculate relative ratios of auxin and CK outputs in each nucleus. We applied the methods 

to premature nodule tissues of soybean to determine relative auxin/CK ratios in different 

nodule zones/ cell types.  

2.3. Materials and Methods 

 

2.3.1. DNA vector and composite plant transformation 

 

A plant binary vector containing DR5:GFP-NLS and TCSn:tdT-NLS 

transcriptional fusions where the auxin-responsive promoter DR5 (Ulmasov et al. 1997) 
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drove the expression of GFP and CK-responsive promoter TCSn (Zürcher et al. 2013) 

drove the expression of tdTomato, both florophores with a NLS, was generated as 

follows. The DR5:GFP-NLS sequence was reported by (Suzaki et al. 2012), and was 

kindly provided by Dr. Takuya Suzaki, National Institute for Basic Biology, Okazaki, 

Japan. The TCSn:tdTomato-NLS composed of the TCSn promoter sequence (Zürcher et 

al. 2013) kindly provided by Dr. Bruno Mueller, University of Zurich, Switzerland, 

tdTomato coding sequence, and the NLS sequence from the construct above. The 

sequences were synthesized by Genscript, and cloned in to pCAM backbone obtained 

from pCAM-GFP-GW (Subramanian lab, unpublished). The NLS sequence was added in 

frame to the C-terminus end of the fluorophores to concentrate them in the nucleus for 

enhanced sensitivity, and accurate quantification irrespective of cell size or vacuolization 

status. 

Soybean (Glycine max ‘William 82’) transgenic composite plants were generated 

using Agrobacterium rhizogenes-mediated transformation as described by (Collier et al. 

2005). Three weeks post A. rhizogenes treatment, composite plants were screened under a 

dissection microscope to identify and tag transgenic roots of interest based on tdT 

epifluorescence at the root tip. Composite plants were transferred to a 4” pot filled with 

sterilized 3:1 vermiculite: perlite mix, and watered with nitrogen free plant nutrient 

solution (N− PNS). Five days-post transfer, the plants were inoculated with a suspension 

of Bradyrhizobium japonicum USDA110 cells re-suspended in N− PNS to OD600 nm of 

0.08. About 25 mL of this suspension was added uniformly to each pot. Roots were 
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harvested at 7 to 30 days post rhizobium inoculation for imaging of premature nodules 

(Figure S4a). For mock-inoculated plants, the same quantity of N− PNS was applied, and 

used for imaging of root tips and lateral root primordia.  

2.3.2. TPIF Imaging of GFP, tdTomato, and FM4-64 

 

All images were obtained using an Olympus FV1000MPE multi-photon scanning 

laser microscope. An InSight® DS+ laser from Spectra Physics was mode-locked with an 

average power of 1.71W at 950nm, which is where GFP and tdTomato have similar two-

photon absorption cross-sections (spectra.arizone.edu). Excitation power used varied 

between 5%, 8%, and 16% in successive images to measure unsaturated epidermal 

fluorescence at lower powers and to measure deep tissue sections at higher powers. Two 

PMTs collected fluorescence from this excitation at 500-540nm for green, and 580-

640nm for red, digitized at 12-bit resolution. Because GFP has a long emission tail, an 

average of 9.6% of the GFP signal is detected in the red channel which was subtracted 

out during post-processing. Additionally, a Mai Tai laser was mode-locked with an 

average power of 0.85W at 750nm to image two photon induced autofluorescence of the 

cell walls and root epidermis. Autofluorescence was excited at 8% power and filtered by 

a 400-450nm bandpass filter. 

Samples were mounted in dH2O between a glass slide and coverslip, then imaged 

using a XLPL25XWMP 25X 1.05NA water immersion objective from Olympus. Images 
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were obtained at 512x512 resolution in the XY dimensions with a varying number of Z-

slices depending on the sample. Each voxel is 1x1x1µm3 which was chosen to balance 

acquisition speed and resolution. Optical images showed signal up to an average of 

150µm depth, which generally is larger than the root apex radius. The deeper the 

penetration, the lower the resolution, likely related to the aberrations in the beam caused 

by variable refractive index and scattering due to the inhomogeneity in tissue type and 

shape with depth. 

After imaging, root tip and root segments with LRP were stained for 30 minutes 

using FM4-64 dye, which binds to the cell membranes (Bolte et al. 2004). Additional 

images were obtained at 950nm and 1-2% excitation power to observe root cell 

morphology. Lateral and distal sectional slices after staining showed nearly uniform 

penetration of FM4-64 stains throughout the root sample. Premature nodule sections did 

not stain well with FM4-64 precluding the identification of nodule zones. We used 

autofluorescence and nuclear density in grayscale versions of hormone output images to 

distinguish different nodule zones (See “Region of Interest (ROI) Sectioning” subsection 

below). 

2.3.3. Particle Segmentation to detect nuclei 

 

Collected images were analyzed by a modified 3D particle segmentation routine 

referred to here as the local maxima detection method (LMDM), originally developed by 
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Weeks (Crocker & Weeks) and later adapted to MATLAB by Kilfoil (Kilfoil; Gao & 

Kilfoil 2009). The basic functions of the routine operate as follows. First, local maxima 

are detected throughout the image. Next, a pre-defined volume mask is created about the 

maxima. All nearby shells are then rejected. Finally, the shell is relocated to the center of 

mass of the found particle. All signal within this shell is summed as the particle intensity. 

Particle sums below a defined signal threshold are filtered from the final result. Analysis 

of root images presented here using this method showed nearly zero false positives and 

an approximately 85% detection rate compared to manual inspection. See Results section 

for details on optimization of these parameters for detecting nuclei. 

Nuclei will only fluoresce when the cell contains auxin, CK, or both. This can 

result in a different number of observed nuclei in the red and green channels. Thus, to co-

localize root nuclei using the above routine, both red and green channels were added 

together before segmentation. The resulting particle centroids and volume masks were 

applied to sum the red and green channels separately.  

2.3.4. Region of Interest (ROI) Sectioning 

 

After nuclei segmentation, tissue domains of interest within each image were 

identified and digitally sectioned. A generalized sectioning can be performed by creating 

regions of interest (ROIs) in the data using simple 3D masks, typically a cuboid or a 

cylinder (See cylindrical sectioning algorithm in supplemental materials). For root tip and 
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LRP images, the regions were identified using FM4-64 stained images which display root 

cell wall morphology, thereby identifying the specific root architecture, and the ROIs 

were transferred to corresponding GFP/tdTomato images to evaluate auxin-CK outputs. 

For premature nodule images, FM4-64 staining was not as efficient in distinguishing 

individual cells. Therefore, the distinction between infection zone and its surrounding 

parenchyma was determined based on the autofluorescence of a layer of cells bordering 

the infection zone. The vascular bundles were characterized by the presence of a cluster 

of nuclei within the parenchyma. The outer boundary of the parenchyma region was 

determined based on sclerenchyma and epidermal cell autofluorescence (Figure 2.4.5-2 a, 

Figure 2.4.5-3b). We were able to manually confirm the boundaries of infection zone, 

nodule parenchyma, and vascular bundles (where visible) switching between 

fluorescence and white light through the eye piece.  
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Figure 2.3.4-1: Auxin and CK outputs along the longitudinal axis of a soybean root 

tip. A median optical section along the longitudinal axis of a soybean composite plant 

primary root tip expressing DR5:GFP-NLS and TCSn:tdTomato-NLS where output 

collected using the (a) FM4-64 channel, (b) green channel indicating auxin output, (c) 

red channel indicating CK output, and (d) a composite of red and green are shown. The 

green line in (a) indicates the main axis along which hormones outputs were quantified. 

Segments in (a) and (d) indicate the root cap columella, QC, and proximal meristem 

starting from the root tip. The image shown is representative of 14 out of 15 primary 

roots evaluated.  
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2.4. Results 

 

2.4.1. Auxin and cytokinin outputs in soybean composite plant roots 

closely reflect that observed in other plant species 

 

Reporter constructs based on DR5 and TCSn promoters were previously used to 

localize auxin and CK outputs at cellular resolution (e.g. (Friml et al. 2003) (Zürcher et 

al. 2013). To validate the use of these markers in composite soybean plant roots, the 

expression patterns of DR5:GFP-NLS and TCSn:tdTomato-NLS were evaluated by two-

color TPIF imaging. DR5:GFP-NLS was clearly visible in root cap columella cells, QC, 

and dividing meristematic cells (Figure 2.4-1a and 2.4-1b). A lower, albeit clearly 

detectable, expression level was observed in other cells of the root cap. TCSn:tdTomato-

NLS was also clearly observed in the columella cells, but was much lower in the QC and 

meristematic cells (Figure 2.4-1a and 2.4-1c). The expression was prominent in the outer 

layer of the root cap compared to other root cap cells. The observed expression pattern of 

the reporters was in agreement with those observed in other plant species stably 

transformed with these markers, indicating that composite soybean plants expressing 

these markers are a suitable experimental system to study hormone output in roots and 

nodules.  
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2.4.2. Optimized Parameters for detecting nuclei 

 

Determination of cell level auxin and CK outputs requires high-throughput 

automated detection of nuclei. We employed the local maxima detection method 

(LMDM) developed by Weeks (Crocker & Weeks), a highly sensitive algorithm by 

design. In addition, due to variations in size of the nuclei and their close proximity to 

each other in the root meristem and nodule primordium tissues, LMDM is likely to be 

better at identifying individual nuclei compared to other methods relying on signal 

boundary such as watershed segmentation (Roerdink & Meijster 2000). However, 

LMDM requires optimization for each specific application. Optimization was conducted 

through processing 40x40x40µm3 volumes from different regions in the root tip and 

manually validating the results through visual inspection. Three general parameters 

required adjustment: (i) particle mask diameter to account for nuclei of different sizes, (ii) 

volume count threshold to reduce the number of false positives, and (iii) separation 

distance to confidently detect individual nuclei in regions of high cell density.  

The most efficient particle mask diameter was the smallest possible diameter, 

which collects the most nuclei. Nuclei are approximately spherical with ≈5µm diameters 

near the QC and ≈7µm in the meristematic elongation zone. Imaged nuclei were slightly 

elongated in the z-axis due to the point spread function of the microscope. All collected 

images were obtained at 1x1x1µm3 resolution. Thus, 5x5x7 voxel diameters were chosen 

to capture the full volume of the smallest nuclei.  
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Volume count thresholds are needed to reduce the number of false positives 

detected in the image. Many false positives can be detected near arbitrarily bright voxels 

which register as a local maximum. Volume thresholding eliminates these false positives. 

Using a 5x5x7 nuclei volume mask, each volume mask has a total of 123 voxels. The 

average background per pixel within collected images was 40 ± 10 counts. Thus, the 

background level in a single mask could reach 4920±1230 counts. However, image 

intensities were offset by 40 counts before LMDM processing, leading to at most 1230 

counts from noise. The thresholding limit was set to 10,000 counts to be well above this 

floor but still able to detect dim nuclei. Since the maximum counts per voxel is 4096 for 

12-bit resolution, only exceptionally bright anomalous regions could register as false 

positives at this limit. The final limiting parameter is particle separation distance. For 

close-packed regions, this parameter is recommended by Weeks to be 1/2 particle 

diameter. Using this setting no evident false positives were detected by visual inspection 

in the subsections evaluated.  
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Figure 2.4.2-1: Picture showing an example of a primary and lateral root (labeled) 

in a composite soybean plant. Transgenic roots were identified based on 

TCSn:tdTomato-NLS fluorescence at the root tip using a dissection microscope and 

labeled using a Tough tag.  

Root tips are one of the most studied plant organs for auxin and CK outputs. 

Multiple signaling modules that confer key cell identities in the root tip are also known. 

As the first step towards establishing parameters for imaging and quantification of auxin 

and CK output, we imaged primary and lateral root tips using TPIF microscopy and 

analyzed auxin and CK outputs in the central core. However, as the original primary roots 

are cut during the composite plant transformation process, all composite plant roots are 

essentially secondary roots. We refer to the roots originating directly from the cut end of 
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the stem as primary roots, and those emerging from these roots as lateral roots (Figure 

2.4.3-4). 

2.4.3. Auxin and Cytokinin Output and ratios along different cell types of 

the central root core 

 

Our goal was to identify key cell types and associated auxin-CK outputs and 

ratios. FM4-64 (Vida & Emr 1995) staining was used to identify cell morphology and 

thus conventional cell types, and the hormone response markers were used to determine 

hormone outputs. An example cross-sectional image of a primary root tip can be seen in 

Figure 2.3.4-1. Regions of interest (ROIs) for detection of nuclei and quantification of 

hormone outputs were identified along the central root apex axis as follows. A cylindrical 

section was created about a vector that began in the root apex and ended in the root 

meristem; the selection of these points was aided by FM4-64 staining (Figure 2.3.4-1a). 

Three cylindrical subsections along the root main axis which identified the root cap 

columella, the QC, and the dividing cells of the meristem were created based on cell 

morphology (Figure 2.3.4-1a).  
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Figure 2.4.3-1: Quantification of auxin and CK output and relative ratios along the 

central root axis. (a) Auxin and CK output and (b) relative ratio in each nucleus plotted 

as a function of distance from the tip of the primary root shown in Figure 2.3.4-1. Each 

dot represents a nucleus. Vertical blue lines indicate the boundaries of root cap 

columella, QC, and proximal meristem. (c) Average auxin and CK outputs and (d) ratios 

obtained from three independent transgenic roots (n=3). See Figure 2.4.3-2 for raw data. 

Auxin and CK outputs and relative auxin/CK ratios in nuclei from 20 normalized 

segments (≈18µm each) in each root along the root axis were determined and averaged. 

Segments along the root axis for each root were normalized by scaling the QCs to the 

same size.  
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The cylindrical ROI mask had an average radius of 15µm per root sample, as 

determined by the meristem radius. Sloughed off root cap cells still attached to the root 

tip (observed mostly in primary roots) fluoresced in the red channel (Figure 2.3.4-1a and 

2.3.4-1c). These regions were ignored during analysis. The ROIs were transferred over to 

the hormone output images by measuring the distance from the tip to the QC boundaries 

in the FM4-64 images and transferring this to the fluorescent hormone image (Figure 

2.3.4-1d). Nuclei in the images were segmented into ellipsoidal volumes with 5µm x 5µm 

x7µm diameters and a minimum threshold of 10,000 counts. 

All segmented nuclei within the masks were characterized as a function of 

distance from the root apex along the drawn vector. Figure 2.4.3-1 shows both 

fluorescence outputs and relative ratios of auxin and CK for the root image shown in 

Figure 2.3.4-1 as a function of distance along the root tip. Each green/red dot in Figure 

2.4.3-1a represents a single nucleus denoting auxin/CK output respectively. In Figure 

2.4.3-1b, each dot represents a single nucleus denoting the ratio of auxin/CK. The dots in 

Figure 2.4.3-1b are color coded with green/red to indicate if that particular nucleus is 

auxin (ratios above 1.0) or CK dominant (ratios below 1.0). Thus, our construct, imaging 

and quantification methods enable us to determine relative auxin-CK outputs and ratios at 

cellular resolution through concurrent expression and visualization of nuclear-localized 

markers for auxin and CK. To evaluate consistency among different roots, a total of 317 

nuclei were assayed from the central cores of primary root tips from three independent 

transgenic roots. Hormone outputs were normalized by scaling to that of the nucleus with 
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maximum auxin output in each root. The average values and standard deviation of 

hormone outputs and auxin/CK ratios for these roots can be observed in Figure 2.4.3-1c 

and 2.4.3-1d respectively.  
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Figure 2.4.3-2: Auxin and CK output and relative ratios along the central root axis 

for primary root tips. (a) Auxin and CK output and (b) relative ratio in each nucleus 

plotted as a function of distance for the three roots overlay normalized by the QC 

boundaries as determined by FM4-64 staining. These figures correspond to the 3 

primary-root averages in Figure 2.4.3-2c and 2.4.3-2d. (c) Auxin and CK output and (d) 

relative ratio in each nucleus for 9 primary-root overlay wherein the QC is approximated 

by the rising edge of the auxin dominant peak. Corresponding 40 segment averages and 

standard deviations of these overlays (≈28µm each) are shown for both (e) outputs and 

(f) ratios.  

Raw data is presented in Figure 2.4.3-2a and 2.4.3-2b. Absolute outputs showed a decay 

in both channels relating to the increasing penetration depth in the sample and other 

extrinsic factors, however, the relative ratios of the two fluorophores should be 

insensitive to these variations. Both auxin/CK outputs (Figure 2.4.3-2c) and relative 

ratios (Figure 2.4.3-2d) showed substantial differences in different cell types. The highest 

auxin CK ratio was observed in the dividing cells of the proximal meristem, closest to the 

QC (Figure 2.4.3-2d; segments 11-12). In the shootward direction, the ratio quickly 

drops, heavily favoring CK, in cells of the proximal meristem (segments 13-20). The 

ratio also drops, albeit at a slower rate, towards the root cap along the QC region 

(segments 10-7), reaching a near uniform relative ratio of auxin to CK along the middle 

region of the columella (segments 2-6). 
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Figure 2.4.3-3: Auxin and CK output and relative ratios along the central root axis 

for lateral root tips. (a) Auxin and CK output and (b) relative ratio in each nucleus 

plotted as a function of distance for the 3-root overlay normalized by the QC boundaries 

as determined by FM4-64 staining. Corresponding averages and standard deviations for 

the 3 lateral-root overlay are plotted in 20 segments (≈20µm each) for both (c) outputs 

and (d) ratios. Additionally, an 11 lateral-root overlay of lateral roots was produced by 

approximating the QC boundaries by the rising edge of the auxin dominant peak, 

showing both (e) Auxin and CK output and (f) relative ratio in each nucleus. 

Corresponding averages and standard deviations for the 11-root overlay are plotted in 

20 segments (≈22µm each) for both (g) outputs and (h) ratios 

To evaluate if an independent assessment of auxin/CK ratios can be used to 

determine root architecture independent of FM4-64 staining, auxin-CK outputs and ratios 

obtained from an additional 6 primary roots (Figure 2.4.3-3c to 2.4.3-3f) were overlaid 

with distance normalized to the “predicted” QC of each root. The QC was predicted 

based on the extent of the auxin dominant region as observed in Figure 2.4.3-1d. Thus, a 

total of 9 primary roots were assessed for their average auxin/CK ratio values. The 

quantitative patterns of auxin/CK ratios along the root axis were consistent among the 

group of primary root tips (Figure 2.4.3-3f).  

Analysis of 191 nuclei from lateral roots of three independent transgenic roots 

stained with FM4-64 (Figure 2.4.3-3a to 2.4.3-3d) displayed similar distribution of auxin 

and CK outputs and ratios as observed for primary roots. An additional 8 lateral roots 
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where auxin and CK outputs and ratios were evaluated independent of FM4-64 staining 

also displayed similar patterns (Figure 2.4.3-3e to 2.4.3-3h). It should be noted that the 

peak auxin/CK ratio in primary roots was 7.5±3.4:1 and that of lateral roots was 

3.4±1.1:1. Our results demonstrate that concurrent imaging of auxin and cytokinin 

outputs and determination of their ratios at cellular resolution using the construct and 

analysis methods used were able to accurately correlate the root architecture zones/cell 

types to relevant auxin/CK ratios.  

2.4.4. Lateral root primordia show a transition to cytokinin dominance 

post-breach of epidermis 

 

 The quantitative hormone output imaging method was applied on lateral root 

primordia (LRP) to obtain a better understanding of spatio-temporal changes in auxin-CK 

levels during the development of this organ in soybean. In particular, two types of LRP 

were investigated, Stage V and Stage VI, which signify before and after breaching the 

epidermis, respectively, following Herrbach, et al. (Herrbach et al. 2014). These stages 

were chosen as the major transition from auxin-rich to auxin-CK patterns occurs during 

LR emergence in Arabidopsis (Bielach et al. 2012; Chang et al. 2013; Zürcher et al. 

2013). Primordia stages were identified based on morphology observed in FM4-64 

stained images. Because of their early formation orientation, the QC was barely visible 

based on morphology. ROIs in these LRPs were marked as cylinders along the root 

center axis. Since the QC could not be determined in younger LRPs (Stage V), it 
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becomes untenable to create multi-root overlays as there is no obvious commonality, 

either morphologically or in hormone outputs, to normalize the results.  

 

Figure 2.4.4-1: Representative images and hormone outputs from a Stage V lateral 

root primordium. (a & b) Median optical sections along the longitudinal axis of the 

lateral root primordium expressing DR5:GFP-NLS and TCSn:tdTomato-NLS. Output 

collected using the (a) FM4-64 channel, and (b) a composite of red and green are shown. 

The straight green line in (a) indicates the main axis along which hormones outputs were 

quantified. The curved greenline marks the outer boundary of LRP. The ROI box in (b) 

indicates the region analyzed for hormone outputs. (c) Auxin and CK outputs and (d) 

relative ratios in each nucleus plotted as a function of distance from the tip of the 

primary root shown in (a). Each dot represents a nucleus. The image shown is 

representative of 7 out of 8 LRPs evaluated. 
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Therefore, representative examples of each type are shown. Four out of five LRPs 

imaged showed similar spatial patterns of hormone outputs and ratios. Figure 2.4.4-1a 

and 2.4.4-1b show cross-sectional TPIF images of a Stage V lateral root with many small 

cell layers. No clear distinction between columella and the QC can be observed at this 

stage based on cell morphology (Figure 2.4.4-1a). Fluorescence images show mainly 

auxin dominance in the Stage V (Figure 2.4.4-1b). Quantification of hormone outputs 

(Figure 2.4.4-1c) clearly indicate high auxin and basal levels of CK along the LRP axis. 

Relative auxin/CK ratios (Figure 2.4.4-1d) indicate near equal ratios close to the tip and a 

higher auxin peak at the base. CK is involved in early stages of breaching the root cap, 

but never has greater relative output than auxin. 

Post-breach, Stage VI samples can also be determined with FM4-64 staining 

based on the discontinuous primary root epidermal layer (Figure 2.4.4-2a).  A noticeable 

CK dominance can be observed in these images, in particular in the root cap (Figure 

2.4.4-2b). Stage VI samples show substantial shift from auxin dominance to the familiar 

CK-Aux-CK patterning present in primary and lateral root tips (Figure 2.4.4-2c and 

2.4.4-2d). Four out of five LRPs imaged showed similar patterns of hormone outputs and 

ratios. Because the Stage VI organ is small, the shift between auxin and CK dominance is 

more abrupt than in fully developed root tips (Figure 2.4.3-2).  
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Figure 2.4.4-2: Representative images and hormone outputs from a Stage VI lateral 

root primordium. (a & b) Median optical sections along the longitudinal axis of the 

lateral root primordium expressing DR5:GFP-NLS and TCSn:tdTomato-NLS. Output 

collected using the (a) FM4-64 channel, and (b) a composite of red and green are shown. 

The straight green line in (a) indicates the main axis along which hormones outputs were 

quantified. The curved greenline marks the outer boundary of LRP.. The ROI box in (b) 

indicates the region analyzed for hormone outputs. (c) Auxin and CK outputs and (d) 

relative ratios in each nucleus plotted as a function of distance from the tip of the 

primary root shown in (a). Each dot represents a nucleus. Blue lines indicate shift 

between auxin and CK dominance corresponding to segments in (b). The image shown is 

representative of 9 out of 10 LRPs evaluated. 



78 
 
 

 

 

Several distinctions between Stage V and Stage VI primordia can be drawn from 

these examples. First, auxin dominates the primordia tissue during Stage V as previously 

reported, and CK dominates during Stage VI except for a small region along the core 

where the QC is likely to be located. This shift is associated with the transition from 

dividing cells in Stage V to cellular elongation and cell type differentiation in Stage VI. 

Remarkably, Stage VI auxin/CK peak values ranged from 2.0-2.5 which were close to the 

3.5 average of fully emerged mature lateral roots.  

2.4.5. Pre-mature determinate nodules show distinct cell type-associated 

auxin-cytokinin ratios 

 

The quantitative hormone output imaging method was adapted and applied to 

nodule tissues where little is known about the relative auxin and CK outputs. Premature 

determinate nodules of soybean were selected for initial analysis as they have visibly 

distinct nodulation zones and cell types. These were identified by their rounded shape, 

≈500µm diameter, an incomplete emergence from the root and perpendicular angle 

compared to the root from which they initiated (Figure 2.4.5-1a). The highly spherical 

nature of nodules made optical sectioning through the tissue difficult, as there is a wide 

dynamic range in fluorescence between regions on the periphery and the center, related to 

the varying imaging depth. To produce a more uniform image intensity with depth, 

nodules were hand-sectioned to 40-80µm flat segments by a razor blade and imaged as 

described for the root samples.  
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Figure 2.4.5-1: Representative image of a Soybean Premature nodule. Premature 

nodule corresponds to the developmental category between the nodule primordia and the 

fully functional mature nodule. This developmental category is characterized by an 

incomplete emergence from the root. An angle of 90ᵒ (±15) between the nodule epidermis 

and the adjacent root epidermis permits to determine the Premature nodule identity. 

Scale bar at: 200µm. (b) A portion of a cross section of a mature nodule stained with 

phloroglucinol showing morphological features of the infection zone, nodule 

parenchyma, and vascular bundle. A layer of smaller cells with thicker walls that 

displayed autofluorescence separated the infection zone and parenchyma. Vascular 

bundles appeared as near circular bodies with a relatively higher cell density located 

within the parenchyma.   
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Figure 2.4.5-2: Auxin/CK ratios in different nodule zones. (a) Manually identified (i) 

central infection zone, (ii) parenchyma along the outer edge, and (iii) the vascular 

bundles, in cross sections of premature soybean nodules. (b) Select cylindrical ROI sub-

sections for quantification of auxin and CK outputs and ratios in each nodule zone. Red, 

blue, and yellow circles indicate randomly selected sub-section ROIs of infection zone, 

parenchyma, and vascular bundle respectively. The image has been contrast stretched in 

the green and blue channels for easy visualization of all signals and appears mainly red 

in the unadjusted image. (c) Histograms of auxin/CK ratios and (d) scatter plot of auxin 

and CK outputs from selected ROIs in pre-mature nodule sections. Each histogram has a 

10-bar width on a log10 scale auxin-CK ratio. Data in (c) and (d) are derived from a 

total of 1577 nuclei from four separate nodules (n=4) on independent transgenic roots. 
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Figure 2.4.5-3: Auxin/CK ratios in different nodule zones identified with propidium 

iodide. (a) Propidium Iodide stained pre-mature nodule section with green lines marking 

boundaries of nodule zones of interest - the central infection zone, vascular bundles, and 

the parenchyma. (b) Select cylindrical ROI sub-sections for quantification of auxin and 

CK outputs and ratios in each nodule zone. Red, blue, and yellow circles indicate 

randomly selected sub-section ROIs of infection zone, parenchyma, and vascular bundle 

respectively. The image has been contrast stretched in the green and blue channels for 

easy visualization of all signals and appears mainly red in the unadjusted image. The 

image is contrast stretched in the green channel to distinguish auxin prominent regions. 

Blue autofluorescence was not obtained and is not shown. (c). Histograms of auxin/CK 

ratios for all nuclei within each cylindrical section from part (b). 
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Some red autofluorescence signals, which appear as blurred noise, were observed 

within the infection zone, which can result in false positives during nuclei detection. 

Therefore, this signal was filtered using the rolling ball background subtraction filter in 

ImageJ with a 25-pixel radius, which was chosen to 5X the average nucleus diameter. 

This filter operates by subtracting the average counts of all pixels in a given radius from 

the central pixel. Filters were used only to find particle centroids but not to calculate 

summed data. Most of the false positives were removed through filtering, verified by 

manual inspection.  

To determine auxin/CK ratios in specific nodule zones, (i) the infection zone, (ii) 

the parenchyma, and (iii) the vascular bundles were identified using local cellular 

densities or previously known distinguishing features in grayscale images of the 2-color 

pre-mature nodule sections (Figure 2.4.5-2a; Figure 2.4.5-1; See Methods subsection). 

We resorted to the use of grayscale images for identification of zones as FM4-64 did not 

efficiently stain nodule tissues. From these identified zones, cylindrical subsection ROIs 

(60µm diameter, 15µm height) were digitally constructed (Figure 2.4.5-2b). All nuclei 

within each cylinder were identified and their auxin and CK outputs quantified and 

associated with the corresponding nodule zone.  

Compiled auxin-CK data from premature nodules of 4 independent transgenic 

nodules are shown in Figure 2.4.5-2c and 2.4.5-2d. The data corresponds to 582 vascular 

bundle nuclei, 464 infection zone nuclei, and 530 parenchyma nuclei. The distributions of 

relative auxin/CK ratios for vascular bundles, infection zone, and parenchyma were 
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centered at 0.79, 0.10, and 0.14 respectively (Figure 2.4.5-2c). A pronounced increase in 

auxin output can be seen in vascular bundle ROIs, but CK is still dominant in these 

tissues as indicated by ratios of less than 1. The lower tail of this ROI distribution, below 

0.1 auxin/CK ratio, is likely from the inexact selection of ROIs, as the cylindrical 

sections may include nuclei not part of the vascular bundle. Both the infection zone and 

parenchyma have auxin/CK ratios centered near 0.1, which may be influenced by the 

noise floor, suggesting that little to no auxin output is present in these zones.  

A scatterplot of auxin output to CK output showed two distinct populations of 

nuclei associated with vascular bundles and the infection zone (Figure 2.4.5-2d). 

However, the parenchyma nuclei appear to have two sub-populations, one with slightly 

increased auxin content. These peaks suggest that distinct nodule zones and potentially 

individual cell types might have distinct on auxin/CK ratios. We also evaluated the use of 

propidium iodide (1.5mΜ for 1 min) to stain nodule sections to identify the different 

zones. Auxin/CK ratios of ROIs from nodule zones identified using this method were in 

agreement with those identified using the grayscale images (Figure 2.4.5-3). However, 

the use of grayscale images is preferred due to non-uniform staining of nodule tissues by 

propidium iodide in our experience.  
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Figure 2.4.5-4: 3D maximum intensity projection of auxin/CK ratios in a pre-

mature nodule section. Ratios of auxin/CK represented through a five-color non-linear 

pallet for the pre-mature nodule section in Figure 2.1.5-2. Insets show lateral subsections 

of select vascular bundles. 

Results shown in Figure 2.4.5-2 indicated that distinct nodule zones and cell types 

could be identified solely based on their distinct auxin/CK ratios. Therefore, in a second 

approach, images were rendered based on the ratio of auxin/CK, represented through a 

five-color pallet and evaluated for agreement with manually identified nodule zones. 

Figure 2.4.5-4 shows a 3D rendering of all detected nuclei from the nodule image shown 

in Figure 2.4.5-2, their color indicating auxin/CK ratio, using a nonlinear five-color 



85 
 
 

 

 

pallet. Vascular bundles are distinct using this color scheme and show very high 

auxin/CK output ratios near their center (green, 1.0-3.0 auxin/CK), and relatively higher 

auxin in other vascular cell types (yellow and white).  

This is very clear from lateral sections of select vascular bundles (Figure insets). 

The majority of the infection zone cells are CK dominant (red, 0-0.2 auxin/CK). 

Interestingly, while nodule parenchyma cells were also CK dominant, this zone was 

distinguished by an abundance of cells with relatively weaker CK dominance (blue, 0.2-

0.4 auxin/CK) than the infection zone cells. These results indicate that distinct cell types 

in nodules indeed have distinct auxin/CK ratios despite an overall CK dominance. It is 

exciting to note that auxin/CK ratios can be used to directly identify key cell types in 

nodules. 

2.5. Discussion 

 

2.5.1. Quantitative imaging of fluorescent markers to determine spatio-

temporal hormone outputs 

 

While many studies have demonstrated qualitative outputs of auxin and CK in 

different plant tissues individually, concurrent localization and quantification of relative 

ratios at cellular resolution has not been reported. TPIF imaging of fluorescent markers 

for auxin and CK outputs not only enabled quantitative monitoring of their outputs, but 
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also the relative ratios of these phytohormones at single cell resolution. It should, 

however, be noted that the measured outputs depend on the target tissue depth in the 

sample and the signal intensity diminishes with increased depth due to increased 

scattering and absorption.  

This problem could be partially mitigated by measuring the distance to the surface 

of the root in the image, and rescaling the signal, though there is a great deal of 

uncertainty in the exact correction and therefore was not attempted in this study. We used 

the relative ratios of the hormone outputs, which should be immune to these variations, 

assayed on an individual nucleus basis to overcome this limitation. Another approach 

could be to use constitutively expressed, nuclear-localized fluorophores to normalize 

signal outputs.  

Accurate detection of individual nuclei is crucial for proper spatio-temporal 

quantification of the nuclear localized fluorescent output markers. The LMDM has a 

number of advantages to other segmentation routines such as a watershed or variable 

intensity method for detection of nuclei. First, while a predefined volume mask does not 

collect the exact nuclei shape, it will prevent false identification of super-particle 

segments in a close-packed sample, which would distort the average and sum outputs of 

the signal. Thus, this method can be effective for monitoring localized hormone outputs 

in relatively close-packed particle distributions such as the root meristem. Second, this 

method is relatively independent of intensity, which allows for identifying particles 

throughout a deep tissue sample where intensity varies considerably. Finally, by using an 
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intensity threshold, the only observable false positives created by the routine result from 

AF in the root samples, a problem any segmentation routine would struggle to resolve.  

Because particle volumes are fixed, segmentation is restricted to only similarly 

shaped particles and useful for experiments which prioritize output and location. 

Considering the near uniformity of nuclei sizes in root samples, this did not present a 

significant concern in this study. Most importantly, the fixed volume mask size used in 

this study effectively treats summed intensity outputs as a concentration density, thus, 

critical information is not lost by failing to sum the whole nucleus.   

2.5.2. Auxin/CK ratios in soybean root and nodule tissues 

 

The construct and the methods described here allowed us to quantify and 

determine relative outputs of auxin and CK for specific cell types or regions of interest. 

In the root cap columella cells, we observed near-uniform auxin CK ratios, but there was 

a trend of high CK towards the tip and high auxin towards the base within the columella 

cells (Antoniadi et al. 2015). Modeling of auxin concentrations and experimental 

evaluation using a DR5-GFP reporter line suggest that indeed such a gradient of auxin is 

present along the columella cells resulting from auxin transporter activity (Grieneisen et 

al. 2007). Both cell type-specific measurements and immunolocalization showed high 

CK levels in the distal root cap columella cells, in agreement with our observations.  
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There was a sharp increase in auxin/CK ratio in the QC, as predicted. In many 

independent studies, QC and stem cells indeed show very high levels of auxin response 

and little if any CK response. There was a sharp decline in the auxin-CK ratio in cells of 

the proximal meristem. This is consistent with differentiation of protoxylem and 

formation of distinct cell identities in this region. A mutually inhibitory feedback loop 

between auxin and CK in this region was shown to set distinct boundaries (Bishopp et al. 

2011). The protoxylem cells (fewer in number at this stage) show high auxin response 

whereas the procambial cells (the majority of the vascular core) show high CK response. 

Consistent with these observations we observed auxin/CK ratios that were very low in 

this region.  

Cell type-specific measurements of both auxin (IAA) and CKs in Arabidopsis 

root tips are largely consistent with hormone response marker outputs observed in 

specific cell types (Petersson et al. 2009; Antoniadi et al. 2015). However, key 

differences exist between hormone levels and hormone response in some cell types. For 

example, even though the levels of auxin were relatively low in the root cap columella 

cells, high auxin response has been observed in these cells based on auxin 

perception/response reporters. It is likely that this is due to modulation of sensitivity. 

Similarly, high levels of CK are reported in the columella cells, lateral root cap, and QC 

cells. However, CK response is highest in the columella cells and very low in QC cells.  

Indeed, modulation of hormone sensitivity in a zone-specific manner in the root 

tip has been well documented. In addition, CK also regulates auxin levels in the lateral 
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root cap cells through modulation of auxin transport, in particular the auxin influx carrier 

AUX1 (Street et al. 2016). Expression patterns of the CK biosynthesis gene IPT5 and 

immunolocalization of CKs indicated that the columella cells are the primary sites of CK 

biosynthesis in the root tip (Miyawaki et al. 2004; Aloni et al. 2005; Chang et al. 2015). 

Therefore, quantifying cellular hormone outputs, likely the ultimate determinant of the 

hormone’s impact on cellular outcome, can integrate both hormone levels and sensitivity. 

Fluorescence imaging of hormone output markers, combined with post-experiment 

quantitative analysis, enables 3- and 4- dimensional non-invasive quantification that can 

be used to reconstruct spatio-temporal changes in hormone action during organogenesis 

and development. 

Cytokinins also regulate lateral root formation through the effect on auxin. While 

ectopic CK biosynthesis in xylem-pole pericycle cells can inhibit LR formation, young 

LRPs (stages I to IV) are not sensitive to CK-induced inhibition (Laplaze et al. 2007). 

Little or no CK output is present in LRPs until LR emergence (Bielach et al. 2012; Chang 

et al. 2013; Zürcher et al. 2013). At advanced stages, CK activity was re-established 

resulting in CK output patterns seen in the primary root (Nishimura et al. 2004; Stolz et 

al. 2011). This suggests that CK signaling is turned on during the emergence phase of the 

LR (between stages V and VI). Our results in soybean were in agreement with these 

observations in Arabidopsis, suggesting the existence of similar mechanisms and 

underscoring the ability of the reporters in composite soybean plant roots to quantify 

auxin and CK responses.  
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In addition, auxin accumulation at the tip of the growing LRP appears to be 

crucial for proper lateral root emergence. Such auxin accumulation enhances the 

expression of auxin influx transporter LAX3 in the cortex and epidermis cells directly 

above the LRP (Bielach et al. 2012; Vilches-Barro & Maizel 2014); in turn, auxin 

accumulation in these cells upregulates the expression of the cell wall remodeling 

enzymes starting softening of these cells to enable LR emergence. Using a combination 

of mathematical modeling and experimental evaluation, it was shown that sequential 

activation of PIN3 followed by LAX3 in cells abutting the LRP enables auxin to move 

towards the outer tissues from the LRP, leading to softening. In agreement with this 

result, we observed predominant auxin activity until stage V, and a shift towards CK and 

establishment of the familiar CK-aux-CK pattern observed in mature root tips. It appears 

from our results that emergence might trigger CK synthesis in the lateral root cap and 

columella cells resulting in establishment of an auxin transport stream establishing 

distinct cell types and root zones in the root tip. 

We also determined relative auxin-CK outputs and ratios in distinct zones of 

premature soybean nodules. As expected, the majority of nodule tissues had enriched CK 

response. However, we identified four distinct cell populations with distinct auxin-CK 

ratios. Two with relatively high auxin-CK ratios were associated with vascular bundles. 

A cluster of cells near the center of the bundles had the highest auxin-CK ratio (typically 

from 1.0-3.0). In agreement, we and others have reported readily detectable auxin 

reporter expression associated with vascular bundles (Takanashi et al. 2011; Suzaki et al. 
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2012; Turner et al. 2013). In fact, nodule vascular development was impaired in L. 

japonicus plants treated with auxin transport inhibitor, and soybean composite plants with 

reduced auxin sensitivity (arising from suppression of microRNA160 level 

(Nizampatnam et al. 2015) ) suggesting that high auxin-CK ratio might be crucial for 

proper nodule vascular development.  

By assaying relative ratios, we were able to identify two distinct sub populations 

of cells within the vascular bundle. We presume that the central cells with high auxin-CK 

ratio correspond to the xylem elements (Bishopp et al. 2011). Evaluation of auxin-CK 

outputs and ratios and vascular development in nodules where auxin levels/response is 

chemically/genetically altered would help correlate specific auxin-CK ratios to vascular 

differentiation. The majority of the nodule cells associated with the infection zone were 

CK enriched with little to no auxin response detectable. Another group of cells with 

auxin-CK ratios from 0.2-0.4 appeared to be preferentially located in proximity to the 

periphery of the infection zone. While it remains to be seen how these cells are distinct 

from other cells in the infection zone, their auxin-CK ratios are similar to those of the 

nodule parenchyma cells. These results indicate that subtle changes in auxin-CK 

ratiometric outputs might dictate nodule cell type identity. 

Given the high tissue penetration of TPIF imaging, germinal processes such as 

lateral root primordia formation can be observed effectively. However, the 150µm depth 

penetration we observed in soybean tissues limits observation of deep tissue processes. 

For example, for imaging of premature nodules, we had to resort to hand-sectioning prior 
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to imaging. Nevertheless, combined with methods being developed for tissue clearing 

(Warner et al. 2014), non-invasive imaging of large organs such a 1mm sized mature 

soybean nodule might be possible using this method.  

In conclusion, the construct put together in this study enabled concurrent imaging 

and quantification of cell-level auxin and CK outputs in soybean roots and nodules. The 

use of nuclear localization signals on the markers and in turn LMDM for nuclei 

segmentation enabled accurate monitoring of outputs through 3D image volumes. 

Overlays of determined auxin/CK ratios on specific root zones and cell types accurately 

reflected those predicted based on previously reported outputs for each hormone 

individually. The ratiometric method used here is shown to largely compensate for 

variations in individual outputs due to sample turbidity and scattering, an inherent issue 

when imaging thick root and nodule samples typical of many legume species. 

Importantly, distinct auxin/CK ratios corresponded to distinct nodule cell types indicating 

a key role for these hormones in nodule cell type identity. Future applications of the 

method for time-course imaging of auxin/CK outputs and ratios along the course of 

nodule development are expected to provide key insights on hormonal control of cell 

differentiation during nodule development.   
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2.8.  Supplementary information 

 

2.8.1. Cylindrical Sectioning Algorithm 

 

The following describes the math to create a cylinder in 3D space. These cylinders were 

used to segment regions of interest (ROIs) in the digital images for characterization of 

hormone outputs. 



103 
 
 

 

 

The distance of a point, 𝑝, to an infinite line collinear to a vector defined by 𝑝1 − 𝑝2, is: 

𝑑 =
|(𝑝−𝑝1)×(𝑝−𝑝2)|

|𝑝1−𝑝2|
      (1) 

This can be extended to an infinite cylinder by squaring the results. Thus, the equation of 

an infinite cylinder along arbitrary axis is: 

𝑟2 =
|(𝑝−𝑝1)×(𝑝−𝑝2)|

2

|𝑝1−𝑝2|2
= 𝑐(𝑝)   (2) 

where 𝑟 is the radius of the cylinder. To create a finite cylinder between 𝑝1 and 𝑝2, 

infinite planes at each point normal to the vector 𝑝1 − 𝑝2 can be considered. Point 𝑝 can 

be determined to be on one side of the plane by taking the dot product of the vector 𝑝1 −

𝑝2 with the vector created by 𝑝 to the given point by the equations: 

𝑎 = (𝑝1 − 𝑝2) ∙ (𝑝 − 𝑝2)   (3) 

𝑏 = (𝑝1 − 𝑝2) ∙ (𝑝 − 𝑝1)   (4) 

Thus, 𝑝 can be considered within a cylinder with height and orientation determined by 

vector 𝑝1 − 𝑝2 and a radius 𝑟 if the following conditions are met:  

𝑐(𝑝) ≤ 𝑟  &  𝑎 ≤ 0 ≤ 𝑏   (5) 
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CHAPTER III 

3. Auxin and cytokinin response ratios in soybean nodule primordium at 

different developmental stages. (status: manuscript in preparationb) 

3.1. Abstract 

 

Stage-specific auxin/CK balance dictates proper nodule development. Alteration 

in these ratios can inhibit, promote or delay nodule formation. We used two photon-

induced fluorescence microscopy for quantitative 3-dimensional imaging of fluorescent 

markers to characterize cellular level auxin and cytokinin outputs and ratios during 

nodule development in soybean. The six different nodule developmental stages presented 

unique patterns of auxin/cytokinin ratios suggesting a tight cell type-level hormonal 

regulation during nodule organogenesis. Based on these patterns we hypothesize that 

auxin bursts promote pattern initiation and cytokinin bursts promote differentiation. 

Soybean roots with reduced levels of microRNA160 that produce more nodules with 

 
 

 

 

b Gaillard P, Nurmalasari NPD, Smith S, Subramanian S (2020) Auxin and cytokinin 

response ratios in soybean nodule primordium at different developmental stages 

(tentative). 
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delayed maturity were examined to determine changes in cell type-level auxin/cytokinin 

ratios. Based on the results, we hypothesize that lower auxin/cytokinin ratio in nodule 

initials allow development of more primordia but delay their maturation.  

3.2. Introduction 

 

Phytohormones regulate nearly all aspects of plant growth and development (Su, 

Liu et al. 2011). Among these, auxin and cytokinin (CK) play a crucial role in controlling 

cell proliferation and differentiation (Benkova and Hejatko 2009, Suzaki, Ito et al. 2013) 

and therefore are crucial for genesis of organs. These hormones act antagonistically or 

synergistically to regulate several plant developmental processes such as embryogenesis 

and shoot/root meristem maintenance (Su, Liu et al. 2011). Moreover, auxin and 

cytokinin control de novo initiation and development of organs such as lateral root, 

axillary bud and nodule.  

Comprehensive studies report that cell type specificity and auxin/CK balance are 

the major factors dictating the proper development of these organs. In lateral roots, auxin 

promotes cell division and initiates central lateral root founder cell priming, while 

cytokinin inhibits this priming and triggers cell differentiation in the periphery of the 

organ (De Smet, Tetsumura et al. 2007, Laplaze, Benkova et al. 2007). In axillary buds, 

cytokinin promotes cell division in the center of the bud, while auxin is located in the 

outside to inhibit outgrowth (Riou-Khamlichi, Huntley et al. 1999, Muller and Leyser 
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2011). Even though Suzaki has suggested that an auxin/CK balance might be involved in 

nodule formation, little is known about the auxin/CK dynamics and its organization 

during nodule initiation and development (Suzaki, Ito et al. 2013).  

Root nodules are organs dedicated to symbiotic N2 fixation. They host 

diazotrophic bacteria that provide nitrogen in exchange for carbohydrates supplied by the 

plant (Oldroyd 2013). The symbiotic interaction starts with rhizobia attachment and root 

hair curling. Rhizobia progress into the root hair via an infection thread and are delivered 

to newly produced primordium in the root cortex. As the cortical cells differentiate, the 

nodule matures, and rhizobia are differentiated into bacteroids to efficiently fix N2 and 

supply the plant. Nodules can be divided into two main categories based on their site of 

primordium initiation and meristem persistence: (i) determinate nodules that initiate in 

the outer cortex and have a transient meristem resulting in a spherical nodule (such as 

soybean and Lotus japonicus nodule); and (ii) indeterminate nodules that initiate in the 

inner cortex and have a persistent meristem, engendering an oblong nodule shape (such 

as barrel clover’s nodule) (Ferguson, Indrasumunar et al. 2010).  

In a determinate nodule, auxin seems to be involved during the early steps of 

nodule initiation but is not observed during maturation except in the nodule vasculature 

and parenchyma (Takanashi, Sugiyama et al. 2011). An indeterminate nodule has a 

similar auxin profile, but auxin is continuously present in the meristematic zone at the 

apex of the nodule. Additionally, exogenous polar auxin transport inhibitors are sufficient 

to induced pseudo-nodule formation in plant producing indeterminate (Hirsch, 
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Bhuvaneswari et al. 1989), but not in plants producing determinate nodules. In both 

nodule types, CK signaling pathway plays a central role in initiating primordia and is 

responsible of the meristem activation (Suzaki, Ito et al. 2013). Application of exogenous 

CK induces nodule primordia-like structures in the absence of rhizobium in determinate 

and indeterminate nodule types (Joshi, Caetano-Anollés et al. 1991, Heckmann, Sandal et 

al. 2011). Therefore, auxin and CK seem to be involved in the regulation of nodule 

formation in a rhizobium independent manner (Bensmihen 2015).  

During the early steps of the infection process, local root epidermis responses are 

observed for both auxin and CK. The cytokinin receptor, Cytokinin Response1 (CRE1) 

induces the cytokinin signaling cascade and the transcription factor (TF) Auxin Response 

Factor 16a (ARF16a) activates the auxin response in the epidermis (Boivin, Kazmierczak 

et al. 2016). The response to auxin is mediated by three groups of proteins: AUXIN 

RESPONSE FACTORs (ARFs), AUXIN/INDOLE-3- ACETIC ACID (Aux/IAA) and 

TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). 

ARFs are transcriptional activators or repressors that can respectively induce or inhibit 

the expression of early expressed genes in response to auxin (Teale, Paponov et al. 2006). 

The Aux/IAA family includes repressors proteins that inhibit ARF activity through 

dimerization and repress the expression of auxin-response genes. The Aux/IAA proteins 

can be degraded by the auxin receptor F-box protein proteins such as TRANSPORTER 

INHIBITOR RESPONSE1 (TIR1) to regulate plant development. However, the activity 

of repressor ARFs does not appear to be controlled by this mechanism. Some microRNAs 
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(miRNAs) have been described to regulate specifics ARF gene family and can potentially 

impact the auxin/CK ratio (Marin, Jouannet et al. 2010, Wang, Li et al. 2015). 

miRNAs are 21 to 22 nucleotides long sequences that regulate transcripts by 

facilitating degradation of mRNAs or inhibiting their translation in a sequence-specific 

manner (Axtell 2013). They are involved in root, shoot and leaf development. Indeed, it 

has been demonstrated that miR160 can regulate the level of the ARF10/ARF16/ARF17 

family in Arabidopsis (Mallory, Bartel et al. 2005). In 2013, our team revealed that 

miR160 inhibits the auxin repressor ARF10/ARF16/ARF17 family in soybean. This 

activity affects soybean nodule development by dictating developmental stage-specific 

auxin/CK balance. Roots over-expressing miR160 (miR160ox) are hypersensitive to 

auxin and hyposensitive to cytokinin and have a nodule primordium deficit (Turner, 

Nizampatnam et al. 2013). On the contrary, roots constitutively expressing a short 

tandem target mimic (STTM160ox) repressing miR160 are hypersensitive to cytokinin 

and hyposensitive to auxin and have more initiated nodules, but their maturation is 

delayed (Nizampatnam, Schreier et al. 2015). 

Hence, miR160 is a key regulator of nodule development that seems to dictate the 

auxin/CK ratio. Nodules are complex organs composed of different cell types having 

specific auxin/CK requirements. However, the different auxin/CK ratios involved in 

nodule development have never been described. Moreover, the actor(s) targeted by 

miR160 to regulate these ratios is/are unknown. Therefore, we decided to characterize 
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nodules auxin/CK ratios at the cellular level in roots with typical and altered miR160 

levels and to investigate miR160’s target(s).  

The auxin/CK ratios were examined as mentioned in Fisher et al 2018 using auxin 

and cytokinin transcriptional output sensors. In this study, we evaluated the auxin/CK 

ratios in six different nodule developmental stages. They presented unique patterns 

suggesting a tight cell type-level hormonal regulation during nodule organogenesis. 

Based on these patterns we hypothesize that auxin bursts promote primordium initiation 

and cytokinin bursts promote differentiation.  

Additionally, STTM160 soybean roots were examined to determine changes in 

cell type-level of the auxin/CK ratios. Based on the results, we hypothesize that lower 

auxin/CK ratio in nodule initials allow development of more primordia but delay their 

maturation. These findings provide key insights on hormonal control of cell 

differentiation during nodule development, nodule cell identity and nodule maturation. 

Outcomes from these studies include genetic markers that correspond to distinct 

auxin/CK ratios in nodule tissues which can be used to breed soybeans with higher 

number of nodules that mature slowly providing a continuous supply of nitrogen. 

3.3. Material and methods 

 

3.3.1. Plasmid construct 
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The AuxCysensor vector carries an auxin transcriptional sensor (DR5rev:eGFP2-

NLS) and a cytokinin transcriptional sensor (TCSn:tdTomato-NLS) as described in 

Fisher et al. 2018. AuxCysensor STTM160 carries a sequence complementary to miR160 

(STTM160) expressed by a constitutive pine SuperUbiquitin promoter and was generated 

via LR recombination between the binary destination vector AuxCysensor and the entry 

vector pCR8GW:STTM160 (Parizotto, Dunoyer et al. 2004, Nizampatnam, Schreier et al. 

2015) . mTagBFP2 was PCR amplified from pBAD-mTagBFP2 (Addgene) and cloned 

into pmH40ENTR4-mTagBFP2-NLS-miR160sensor. pmH40ENTR4-mTagBFP2-NLS-

NOmiR160sensor was restriction digested by NcoI and XbaI to remove the miR160 

sensor and ligated to generate pmH40ENTR4-mTagBFP2-NLS-NOmiR160sensor. 

AuxCyBFP2-NLS-miR160sensor and AuxCyBFP2-NLS-NOmiR160sensor were created 

by LR recombination between the AuxCysensor and pmH40ENTR4-mTagBFP2-NLS-

miR160sensor or pmH40ENTR4-mTagBFP2-NLS-NOmiR160sensor respectively. A 

mCer3-NLS-miR160sensor 1046 base pairs gblocks gene fragments (Integrated DNA 

Technology) was cloned into pCR8/GW/TOPO (Thermofisher) to generate pCr8mCer3-

NLS-miR160sensor. pCR8mCer3-NLS-miR160sensor was digested by PacI and XbaI to 

remove the miR160 sensor and generate pCR8mCer3-NLS-NOmiR160sensor. 

AuxCymCer3-NLS-miR160sensor and AuxCymCer3-NLS-NOmiR160sensor were 

created by LR recombination between the AuxCysensor and pCR8mCer3-NLS-

miR160sensor or pCR8mCer3-NLS-NOmiR160sensor respectively.  
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3.3.2. Plant transformation and rhizobia treatments  

 

Vectors were electroporated into Agrobacterium rhizogenes K599 cells and 

Soybean William 82 transgenic composite plants were generated as described by Collier 

in 2005 (Collier, Fuchs et al. 2005). Roots were screened 4 weeks after plant 

transformation, placed into pots (3:1 vermiculite: perlite mix) watered with nitrogen free 

plant nutrient solution (N− PNS) and inoculated with Bradyrhizobium diazoefficiens 

USDA 110 (previously named Bradyrhizobium japonicum USDA 110) or 

Bradyrhizobium diazoefficiens USDA 110 expressing the nptII:GUS construct (a kind 

gift from Gary Stacey, Divisions of Plant Sciences and Biochemistry, University of 

Missouri, Columbia, MO, USA) as mentioned in (Fisher, Gaillard et al. 2018).  

3.3.3. Imaging of nodule primordia and premature nodule with the 

AuxCysensor strategy  

 

Intact AuxCysensor and AuxCysensor STTM160 primordia were observed at 3 

days post inoculation (dpi) (stage 1), 4dpi (stage2), 5dpi (stage3) and 7dpi (stage4). 

Premature nodule (PMN) were harvested at 10dpi. PMNs fresh tissues were hand-

sectioned with a razor blade to generate section between 250 and 500µm prior imaging. 

Samples were observed with an Olympus FV1000MPE multiphoton scanning laser 

microscope to produce 3D image volumes as previously described (Fisher, Gaillard et al. 
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2018). Laser intensity was gradually and manually increased as the scanning was 

effectuated from the surface to the center of the sample.  

3.3.4. Imaging of nodule primordia colonized by Bradyhizobium 

diazoefficiens USDA 110 GUS 

 

Wild type roots inoculated with Bradyrhizobium diazoefficiens USDA 110 GUS 

were harvested at 7dpi, vacuumed infiltrated for 6 hours with GUS buffer and x-Gluc and 

placed at 37°C for 24 hours in the dark. Then they were fixed for 2 days with 4% 

glutaraldehyde 4°C and cleared with 10% Clorox during 1 hour before imaging. Images 

were acquired with an AX70 upright microscope, DP70 digital camera and CellSens 

software (Version 2.1, Olympus, Shinjuku, Tokyo, Japan) with a resolution of 4080 × 

3072 pixels.  

3.3.5. Nodule primordium counting 

 

Twenty-one AuxCysensor and AuxCysensor STTM160 roots inoculated with 

Bradyrhizobium diazoefficiens USDA 110 were harvested at 15 and 22dpi. Their number 

of emerging and mature nodule were compared using zero inflated Poisson distribution 

package available in R. 

3.3.6. Image post-processing 
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Images were analyzed using 3D particle segmentation or local maxima detection 

method (LMDM)  in MATLAB as described previously (Fisher et al., 2018). Briefly, 

constant background level was subtracted from the images and nuclei were detected based 

on the LMDM with three adjustable parameters: voxel size, an intensity threshold, and a 

minimum separation distance. The parameters were varied to obtain the closest match to 

the average nucleus size and brightness, with minimal overlap between neighboring nuclei. 

Our methods was adapted from the LMDM originally developed by Weeks and adapted by 

Kilfoil (Gao and Kilfoil 2009). The code works by identifying local intensity maxima in 

the image and a predefined volume mask. Each maximum is fit to an ellipsoidal mask and 

the centroid X, Y, Z is determined. The summed intensity for each ellipsoid is compared 

to a threshold value empirically set to minimize false positives. Our adaptation of local 

LMDM is contained in the file LocalMax3DRG.m used for all analyses. The code adds the 

green/auxin channel to the red/cytokinin channel and uses the sum to find local maxima 

using code in feature3dMB.m where LMDM is applied to detect the nuclei. After all nuclei 

are found and their XYZ positions obtained, these positions are used to obtain the nuclei 

intensity in the green and red channels.  

Auxin to cytokinin ratio was analyzed based on specific regions of interest (ROIs), 

such as “cell division”, “cortical cells”, etc. For root nodule development we applied a 

rectangular box and / or cylindrical ROIs.  𝑝1, 𝑝2, 𝑝3 are coordinates at the corner of the 

base of the box while 𝑝4 was coordinate at the corner of top box which is colinear with 𝑝1. 

The rectangular box sides were determined by a vector: 𝑣1 ⃗⃗⃗⃗  ⃗ = 𝑝2 − 𝑝1 , 𝑣2 ⃗⃗⃗⃗  ⃗ = 𝑝3 −
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𝑝1 𝑎𝑛𝑑 𝑣3 ⃗⃗⃗⃗  ⃗ = 𝑝4 − 𝑝1 where   𝑣1⃗⃗ ⃗⃗⃗⃗  , 𝑣2⃗⃗⃗⃗  , 𝑣3 ⃗⃗ ⃗⃗   are all orthogonal. A point 𝑝 is within this box if 

it satisfies the inequalities below: 

0 ≤ (𝑝 − 𝑝1) ∙ (𝑝2 − 𝑝1) ≤ (𝑝2 − 𝑝1) ∙ (𝑝2 − 𝑝1) 

0 ≤ (𝑝 − 𝑝1) ∙  (𝑝3 − 𝑝1) ≤ (𝑝3 − 𝑝1) ∙ (𝑝3 − 𝑝1) 

0 ≤ (𝑝 − 𝑝1) ∙ (𝑝4 − 𝑝1) ≤ (𝑝4 − 𝑝1) ∙ (𝑝4 − 𝑝1) 

While cylindrical ROI was drawn starting with an infinite cylinder in 3D space 

which was colinear with an input vector. Then the cylinder was capped by two planes on 

both endpoints of an input vector. Mathematically for a given vector 𝑣 = 𝑝2 − 𝑝1 where 

𝑝1 and 𝑝2 were points in 3D coordinates system distance of any arbitrary point 𝑝 to a line 

colinear with  �̅� is  

𝑑 =
|(𝑝 − 𝑝1⃗⃗  ⃗) × (𝑝 − 𝑝2⃗⃗⃗⃗ )| 

|𝑝1⃗⃗  ⃗ − 𝑝2⃗⃗⃗⃗ |
 

𝑟2 =
|(𝑝 − 𝑝1⃗⃗  ⃗) × (𝑝 − 𝑝2⃗⃗⃗⃗ )|2

|𝑝1⃗⃗  ⃗ − 𝑝2⃗⃗⃗⃗ |2
 

Where r is the radius of the cylinder in the equation above and can be described in 

the Cartesian coordinate as below:  

𝑟2 =
((𝑦 − 𝑦1)(𝑧 − 𝑧2) − (𝑧 − 𝑧1)(𝑦 − 𝑦2))

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

2

+ 
((𝑧 − 𝑧1)(𝑥 − 𝑥2) − (𝑥 − 𝑥1)(𝑧 − 𝑧2))

2

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

+
((𝑥 − 𝑥1)(𝑦 − 𝑦2) − (𝑦 − 𝑦1)(𝑥 − 𝑥2))

2

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2
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Equation above is used to draw indefinite cylinder in 3D, in this case any point p is 

within this cylinder if 𝑟 ≥ 𝑑 A cylinder of a finite length determined by 𝑣  has two planes 

normal to 𝑣  at  𝑝1and 𝑝2 .   A point can be determined from the dot products of 𝑣  and the 

vectors from points 𝑝1 and 𝑝2 𝑡𝑜 𝑝𝑜𝑖𝑛𝑡 𝑝 as defined by  

 

𝑎 = (𝑝2 − 𝑝1) ∙ (𝑝 − 𝑝1) 

𝑏 = (𝑝2 − 𝑝1) ∙ (𝑝 − 𝑝2) 

 

At any point 𝑝 is between these two planes and within the cylinder if the following 

relationships are true:   

𝑎 ≥ 0 ≥ 𝑏 

𝑟 ≥ 𝑑 

For cylindrical ROI, auxin to cytokinin ratio was measured radially (a disk ROI). 

For analysis, we choose a mask with voxel size 7x7x9 based on the smallest 

diameter of the nuclei, with minimum separation equal to diameter/2 for dense particles to 

avoid nuclei loss. The total number of voxels was 253 for a volume mask of 7x7x9, for 

images with a background noise of 100, the total intensity is 25,300.  Because auxin and 

cytokinin channel were added for the detection a 50,000-intensity threshold was chosen 

per nuclei as a start. The intensity threshold was adjusted and validated for each image by 

overlapping raw images with nuclei detected by LMDM. Images were manually inspected 

in a 3D manner by Arivis Vision4D.  
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For soybean stage 1-1 cell file and stage1-2 cell files, the ROI’s were three 

rectangular boxes with height/Z slices of 10µm, 30µm and 60 µm corresponding to “cell 

division”, “cortical cells”, and “root cells” ROI. The nuclei in cortical cells were acquired 

by subtracting the nuclei in the middle box with the smallest box while root cell ROIs are 

obtained by subtracting all nuclei detected in the biggest ROI with the second biggest 

(middle) rectangular box. For Soybean at stage 2, the ROIs were a combination of 

rectangular boxes and cylinders, the height/Z slices are 20µm, 30µm and 60µm for nodule 

primordium, cortical cell, and root cells. The ROIs for soybean root nodule stage 3 and 4 

are cylindrical with height/Z equal to 20 µm. ROIs were divided into three different zones 

by drawing cylinders with zone 1 being a third of the radius of zone 3, and zone 2 radius 

being two-thirds of the radius of zone 3. The ROI for soybean premature nodules was 

categories into 3 areas: an infection zone at the center, parenchyma at the periphery, and 

vascular bundles at the periphery. Cylinders ware drawn with a height of 15µm and radius 

varies depending on the area that is being examined. 

Auxin/cytokinin ratio was mapped and compared statistically at different stages of 

nodule development. In this analysis, violin plots were generated using GraphPad Prism 

version 8 which shows the frequency distribution of data and plot lines at the median and 

quartiles. (Unpaired t) test and one-way ANNOVA (Tukey test) were used to measure 

statistical analysis of two groups and more than two groups of data respectively.  P-value 

higher than 0.05 means the value is not significant (ns), P value less than or equal to ≤0.05, 
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≤0.01, ≤0.001 and ≤0.0001 mean significant difference which correspond to *, **, ***, 

and **** respectively.   

The number and the surface area of vascular bundle in AuxCysensor and 

AuxCysensor STTM160 from 4 independent PMNs nodule was calculated using ImageJ 

and compared with Student’s t-test. The presence and surface of the vascular bundle was 

determined by: 1- absence of autofluorescence, contrary to the surrounding parenchyma 

and neighboring infection zone, the vascular bundle doesn’t auto-fluoresce when excited 

in the 400–450 nm bandpass filter. 2- nuclei size and arrangement, in vascular bundles, 

nuclei have a reduced size, are clustered and oriented toward each other contrary to the 

nuclei present in other tissues types.  

3.3.7. Gene Expression Assays 

 

To test whether the STTM160 insert present in the AuxCysensor STTM160 roots 

was reducing the level of miR160, quantitative PCRs were performed as described in 

Turner et al., 2013. Gene expression levels were normalized to those of  GmmiR1515 

(Turner, Nizampatnam et al. 2013) and compared using the 2-ΔΔCT method (Livak and 

Schmittgen 2001). 
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3.4. Results 

 

3.4.1. Auxin-cytokinin relative output ratios spatio-temporal dynamic 

 

3.4.1.1. Auxin-cytokinin relative output ratio is high in nodule 

initials, low in young primordia and displays a radial pattern in 

maturing primordia 

 

We quantified nodule primordium auxin-cytokinin relative output (ACRO) ratios at 6 

different stages of soybean nodule development. Stage 1-1 corresponds to primordium 

initiation where the first anticlinal cell divisions occur and was frequently found at 3 

days-post-inoculation (dpi) (Figure 3.4.1.1a). Stage 1-2 is comprised of primordia with 

anticlinal and periclinal cell divisions and was also present at 3dpi (Figure 3.4.1.1b). In 

stage 2 nodule primordia appear spherical and were frequently observed at 4dpi (Figure 

3.4.1.1c).  For stages 1 and 2, three regions of interest (ROIs) were selected for 

quantification of ACRO ratios: 1) The dividing cells of the nodule primordium, 2) Two 

layers of cortical cells surrounding the nodule primordium, and 3) The rest of the root 

cells in the field of view. We quantified the ACRO ratios of each ROI in nodule 

primordia derived from 5-6 independent transgenic roots for each stage. In addition, we 
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also visualized the ACRO ratios using a 4-color map scale to determine local specificities 

and variations in an unbiased manner at cellular resolution (Fisher, Gaillard et al. 2018). 
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Figure 3.4.1-1: Auxin-cytokinin relative output (ACRO) ratios during soybean 

nodule primordium initiation. Nodule development is represented at the stage 1-1 (A), 

1-2 (B) and 2 (C). Diagrams of roots represent the ROIs used for the analysis. The red 

rectangles at stage 1-1 and 1-2 and the red circle at stage 2 represent dividing cells and 

nodule primordia respectively. Yellow and blue rectangles at stage 1-1, 1-2 and 2 

correspond to cortical and root cells respectively. Violin plots lines at the median and 

quartile and shows distribution of the values of the average ACRO ratios for each ROI 

and compared to each other at stage 1-1 (D), 1-2 (E) and 2 (F). Root single nucleus 

ACRO ratios are represented using a 4-color map scale. Red color corresponds to ACRO 

from 0 to 0.4, blue from 0.4 to 0.6, yellow from 0.6 to 1 and green 1 and higher. Scale 

bar=100µm. Statistical analysis using one way-ANOVA with multiple comparison using 

Tukey test with confidence level 0.05. P value of * is <0.05, ** is <= 0.01, *** is <= 

0.001 and **** is <= 0.0001, ns means non-significant. 

At stage 1.1, the average ACRO ratio of the dividing cells (0.96±0.06) and the 

surrounding cortex cells (0.83±0.06) were significantly higher than the root cells 

(0.64±0.02; Figure 3.4.1.1d). At stage 1.2, the average ACRO ratio was significantly 

higher in the dividing cells (1.07±0.07) than in the surrounding cortex cells (0.712±0.03) 

which themselves had a significantly higher ACRO ratio than that of the root cells 

(0.56±0.01; Figure 3.4.1.1e). Moreover, the 4-color ACRO map scale represented the 
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dividing cells with an ACRO ratio higher than one (green color) and the ACRO ratios are 

lowering (from 1 to 0) as the cells are distant from the dividing cells (Figure 3.4.1.1g and 

3.4.1.1h). This observation suggested that nodule initial cell division might require a high 

auxin-CK ratio.  

At stage 2, the average ACRO ratio in the nodule primordium cells was 

(0.40±0.01) which was significantly lower compared to those in the surrounding cortex 

(0.53±0.02) and root cells (0.52±0.01; Figure 3.4.1.1f). The ACRO ratio color mapping 

indicated a low ACRO ratio (between 0 and 0.4) in the primordium cells (cluster of red 

nuclei), while the surrounding cells have primarily a higher ACRO ratio associated with 

yellow colored nuclei (between 0.6 and 1) and the roots have ACRO ratios between 0 and 

0.6 represented by blue and red nuclei (Figure 3.4.1.1i).  
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Figure 3.4.1-2: ACRO ratios during soybean nodule primordium development. 

Nodule development is represented at the stage 3 (A) and 4 (B). Diagrams of roots 

represent the ROIs used for the analysis. Nodule primordia at stage 3 and 4 have three 

ROIs, there is a red inner circle (Zone 1), a yellow middle ring (Zone 2) and a blue outer 

ring (Zone 3). Average ACRO ratios were quantified for each ROI and compared to each 

other at stage 3 (C) and 4(D). C and D were represented via violin plots where lines at 

the median and quartile showed distribution of the values. Single nucleus ACRO ratios of 

zones 1, 2 and 3 were represented using a 4-color map scale at stage 3 (E) and 4 (F). 

Red color corresponds to ACRO from 0 to 0.4, blue from 0.4 to 0.6, yellow from 0.6 to 1 

and green 1 and higher. White arrow indicates putative vascular bundle. Scale 

bar=100µm. Statistical analysis using one way-ANOVA with multiple comparison using 

Tukey test with confidence level 0.05. P value of * is <0.05, ** is <= 0.01, *** is <= 

0.001 and **** is <= 0.0001, ns means non-significant. 

Nodule primordium stage 3 corresponds to an enlarge primordium that has not 

emerged out from the root and was present at 5dpi (Figure 3.4.1-2a). Stage 4 represents 

nodule primordium emerging from the root and was present at 7dpi (Figure 3.4.1-2b). 

Three ROIs marked by equidistant concentric circles going from the center to the 

periphery of the nodule primordia were selected in stages 3 and 4 for ACRO ratios 

quantification. At stage 3, the average ACRO ratio in the central zone of the primordium 

(0.72±0.03) was significantly higher compared to the middle zone (0.60±0.01) which was 

not significantly different from that of the outer zone (0.64±0.02; Figure 3.4.1-2c). These 
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traits were confirmed by the 4-color map scale as most of the nuclei in the central zone 

are represented by a yellow color, while the middle and peripheric regions contain yellow 

blue and red nuclei (Figure 3.4.1-2e). At stage 4, it seems that a higher relative ACRO 

ratio in the center of the primordium compared to the periphery might be required for 

nodule growth (Figure 3.4.1-2d). The average ACRO ratio pattern from zone to zones is 

similar to the stage 3 (Figure 3.4.1-2f). Interestingly, local auxin accumulation can 

specifically be observed at the primordia periphery (Figure 3.4.1-2f). 

 

Figure 3.4.1-3: ACRO ratios in PMN. (A): diagram of PMN section with its ROIs. Red 

corresponds to the infection zone, yellow to vascular bundles and blue to parenchymatic 

cells. (B): Violin plots lines at the median and quartile and shows distribution of the 

values of the average ACRO ratios for each ROI and compared to each other. (C) 4-color 

map scale representing the different ACRO ratio per nuclei in a PMN section. Red color 

corresponds to ACRO from 0 to 0.4, blue from 0.4 to 0.6, yellow from 0.6 to 1 and green 

1 and higher. White arrow indicates putative vascular bundle. Scale bar=100µm. 

Statistical analysis using similar method to Figure 3.4.1 2. 
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The pre-mature nodules (PMNs) composed of three distinct ROIs, the infection zone at 

the center, the surrounding parenchyma and the vascular bundles were frequently present 

at 10dpi (Figure 3.4.1-3a). We reanalyzed PMNs ACRO ratios from Fisher et al., 2018 

with similar results, but used violin plots to better represent the ACROs distribution. The 

average ACRO ratio of PMNs in the infection zone (0.11±0.00) is significantly lower 

compared to the parenchymatic tissue (0.14±0.00), itself significantly lower than the 

vascular bundles (0.95±0.05; Figure 3.4.1-3b). Green nuclei in a position associated with 

the vascular bundles stand out from the parenchymal nuclei colored in blue and red, 

while the nuclei in the infection are predominantly red, illustrating a tissue specific 

ACRO ratio (Figure 3.4.1-3c). Based on both representations it was clear that distinct 

nodule zones (represented by the ROIs) has distinct ACRO ratios. It is likely that the 

changes in ACRO ratios dictate the development of these nodule zones.  

3.4.1.2. The average ACRO ratios present during nodule 

primordium development follow an oscillation pattern  

 

We compared ACRO ratios of the same cell types and/or nodule zones at different 

developmental stages. The average ACRO ratios of dividing cells in stages 1-1 

(0.96±0.06) and 1-2 (1.07±0.07) were similar, but the ACRO ratio of the corresponding 

zone in stage 2 was significantly lower (0.40±0.01; Figure 3.4.1-4a). The average ACRO 

ratios in cortical cells and root cells of the stages 1-1, 1-2, and 2 decrease gradually and 

significantly as nodule development progresses (from 0.83±0.06 and 0.64±0.02 to 
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0.72±0.03 and 0.56±0.01 to 0.53±0.02 and 0.52±0.01 respectively; Figure 3.4.1-4b and 

3.4.1-4c). The inner circle (Zone 1), the middle ring (Zone 2) and the outer ring (Zone 3) 

of stage 3 nodule primordia (0.72±0.03; 0.60±0.01 and 0.64±0.02 respectively; Figure 

3.4.1-4d, 3.4.1-4e and 3.4.1-4f) had significantly higher average ACRO ratios than the 

corresponding zones in stage 4 (0.41±0.01; 0.35±0.01 and 0.35±0.01respectively; Figure 

3.4.1-4d, 3.4.1-4e and 3.4.1-4f). The PMNs being a category by its own, they were not 

compared to the other nodule primordia stages. 
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Figure 3.4.1-4: Comparison of zone specific ACRO ratios from stages 1 to 4. Average 

ACRO ratios at stage 1-1, 1-2 and 2 in the diving cells (A), cortical cells (B) and root 

cells (C). Average ACRO ratios at stage 3 and 4 in Zone 1 (D), Zone 2 (E) and Zone 3 

(F). A to F were represented via violin plots where lines at the median and quartile 

showed distribution of the values. Statistical analysis using one way-ANOVA with 

multiple comparison using Tukey test with confidence level 0.05. P value of * is <0.05, 

** is <= 0.01, *** is <= 0.001 and **** is <= 0.0001, ns means non-significant.   

 

Figure 3.4.1-5: Schematic representation of the ACRO ratios during nodule 

development. Average ACRO ratios presented at stage 1-1 (A), 1-2 (B), 2 (C), 3 (D), 4 

(E) and PMN (F). Average ACRO ratios are represented by a color scale going from 

dark red associated with a low ACRO ratio to dark green associated with a high ACRO 

ratio. 
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If we follow ACRO ratios over nodule initiation and development, an oscillation 

pattern appears. First, a high average ACRO ratio in the dividing cells is associated with 

nodule primordium initiation (Figure 3.4.1.1d, 3.4.1.1e, 3.4.1-4a, 3.4.1-5a and 3.4.1-5b). 

Then, the early primordium at stage 2 is associated with a low average ACRO ratio 

(Figure 3.4.1.1f, 3.4.1-4a and 3.4.1-5c). Finally, a high average ACRO ratio is present in 

the stage 3 primordium and significantly reduces at stage 4 (Figure 3.4.1-2c, 3.4.1-2d, 

3.4.1-4d, 3.4.1-4e, 4f, 3.4.1-5d and 3.4.1-5e). Given that primordium formation and 

development is the result of successful rhizobia infection and cell division, we decided to 

evaluate the average ACRO ratio present in the infected and colonized cells. 

3.4.2. Low ACRO ratio in stage 2 coincides with colonization by rhizobia 

We imaged different nodule developmental stages infected by B. diazoefficiens 

constitutively expressing the nptII:GUS reporter construct to determine if the infection 

and colonization processes are associated with specific ACRO ratios dynamics. At stages 

1.1 and 1.2, the infection process has started, and GUS activity from B. diazoefficiens 

was present in the epidermal cells, the root hairs and in the dividing cortical cells (Figure 

3.4.2-1a and 3.4.2-1b). Even though we demonstrated a disparity of the average ACRO 

ratios between diving cells and the rest of the root, colonization by B. diazoefficiens 

seemed homogenous between the different cell types based on GUS staining. 
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Figure 3.4.2-1: B. diazoefficiens nptII:GUS infection and colonization during 

soybean nodule development. Fixed and cleared soybean roots were GUS stained and 

imaged at stage 1-1 (A), 1-2 (B), 2 (C) and 4 (D).    

At stage 2, the blue staining is darker in the center of the primordium indicating a 

higher bacterial abundance and suggesting colonization of the primordium by the bacteria 

(Figure 3.4.2-1c). Interestingly, the enrichment in B. diazoefficiens GUS correlates with a 

very low and specific ACRO ratio present in the stage 2 primordium. Unfortunately, 
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stage 3 was disregarded as we were unable to obtain enough images representative of this 

developmental stage. 

 The central zone and the inner middle zone of the stage 4 nodules displayed 

bacteria colonization while the surrounding zones did not (Figure 3.4.2-1d), in agreement 

with previous study (Suzaki et al., 2012). Note that the stage 4 staining appears less 

intense due to tissue thickness attenuating the signal intensity. The low average ACRO 

ratio and the B. diazoefficiens GUS colonization are both occurring at stage 2 in the 

primordium, suggesting a causal relationship between these processes. To further study 

the ACRO ratio requirements and dynamics during nodulation we investigated roots 

displaying a reduced sensitivity to auxin and an enhanced sensitivity to cytokinin.  

3.4.3. AuxCysensor STTM160 roots have more but delayed nodule 

primordium and altered average ACRO ratio 

 

3.4.3.1. AuxCysensor STTM160 roots phenocopies STTM160 

roots associated with a diminution of miR160’s expression 

 

In 2015 we created miR160 silenced roots (STTM160) that had higher relative 

expression levels of the ARF 10/16/17 gene family members. In agreement with the 

prediction of ARF10/1/6/17 family members as repressors of auxin responsive gene 

expression, STTM160 roots were less sensitive to auxin (Nizampatnam, Schreier et al. 
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2015). Interestingly, there were also more sensitive to cytokinin and produced more 

nodule primordia that appeared have a delay in maturation.  

 

Figure 3.4.3-1: Nodulation phenotype in AuxCysensor STTM160. Average number of 

emerging, mature and total nodule per root at 15 (A) and 22 dpi (B) in AuxCysensor and 

AuxCysensor STTM160 roots. (C): Relative qPCR expression of miR160, miR166, 

miR393 and U6 in AuxCysensor and AuxCysensor STTM160 roots. Error bars represent 

standard deviation of the mean. P value of * is <0.05, ** is <= 0.01, *** is <= 0.001 

and **** is <= 0.0001. 

We characterized ACRO ratios in these roots to determine potential roles of 

miR160 in regulating ACRO ratios dynamics during nodulation.  

The number of emerging and mature nodules in AuxCysensor STTM160 roots 

were counted at 15 and 22dpi to confirm that they have a similar nodulation phenotype as 
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the STTM160 roots at 14 and 21dpi (Nizampatnam, Schreier et al. 2015). At 15dpi, 

AuxCysensor STTM160 roots had significantly more emerging nodules (16.19±4.64) 

compared to the vector control (8.71±1.54), and significantly less mature nodules 

(2.24±0.70) than the vector control (9.10±2.39; Figure 3.4.3-1a). At 22 dpi, STTM160 

roots had significantly more emerging and total nodules (19.33±4.10 and 27.38±4.35 

respectively) when compared to the vector control (10.62±4.71 and17.19±4.73, Figure 

3.4.3-1b). The average number of mature nodules at 22dpi in AuxCysensor STTM160 

(8.05±1.80) and vector control roots (6.57±1.68) was similar (Figure 3.4.3-1b), 

corroborating the maturation delay previously characterized in STTM160 at 21dpi.  

To further confirm that this phenotype was due to a miR160 reduction, we 

quantified the relative presence of mature miR160 in the AuxCysensor STTM160 roots 

compared to the vector control roots. miR160 is 2.5 less present in AuxCysensor 

STTM160 compared vector control (Figure 3.4.3-1c). There was no significant difference 

in the levels of miR166, miR393 and the house kipping geneU6 indicating that STTM160 

specifically reduced miR160 levels (Figure 3.4.3-1c). Hence, AuxCysensor STTM160 

roots with a higher number of emerging nodules that are delayed in their maturity were 

used to investigate relative ACRO ratios during nodule organogenesis.  

3.4.3.2. AuxCysensor STTM160 nodule primordium initials have 

low average ACRO ratio and display altered ACRO ratio 

patterns in stage 3 and 4 

 



132 
 
 

 

 

 

Figure 3.4.3-2: Average ACRO ratios in AuxCysensor STTM160 during soybean 

nodule primordium initiation. Average ACRO ratios in dividing, cortical and root cells 

at the stages 1-1 (A), 1-2 (B) and 2 (C). A to C were represented via violin plots where 

lines at the median and quartile showed distribution of the values. (D to F): Root single 

nuclei 4-color map scale image at stages 1-1, 1-2 and 2 respectively. Scale bar=100µm. 

Statistical analysis using one way-ANOVA with multiple comparison using Tukey test 

with confidence level 0.05. P value of * is <0.05, ** is <= 0.01, *** is <= 0.001 and 

**** is <= 0.0001, ns means non-significant. 

In 2015, our lab reported that miR160 activity was sparsely detected at the base of 

emerging nodule and widely in mature nodule using a miR160 GFP sensor 
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(Nizampatnam, Schreier et al. 2015). In AuxCysensor STTM160 roots, three types seem 

primarily impacted. The dividing cells during early primordium formation (stage 1), the 

primordium during nodule maturation (stage 3 and 4) which then becomes infection zone 

at the PMN stage and PMN vascular bundles. Contrary to the stage 1-1 AuxCysensor 

(Figure 3.4.3-2a), the average ACRO ratio in the AuxCysensor STTM160 stage1-1 

dividing cells (0.43±0.03) was significantly lower compared to their surrounding cortical 

cells (0.70±0.06) and the rest of the root (0.67±0.03; Figure 3.4.3-2a). No differences 

were observed between the different cell types of the AuxCysensor STTM160 at stage 1-

2 (Figure 3.4.3-2b), while the dividing cells at stage 1-2 in the AuxCysensor roots had a 

higher average ACRO ratio compared to the rest of the root (Figure 3.4.1.1b). Indeed, the 

green (ACRO ratio higher than 1) nuclei files present in the dividing cells at both stages 1 

in the AuxCysensor roots (Figure 3.4.1.1c and 3.4.1.1d) were not present in the 

AuxCysensor STTM160 and these nuclei have a red to yellow coloration (ACRO ratio 

from 0 to 1; Figure 3.4.3-2d and 3.4.3-2e). Similar to stage 2 AuxCysensor primordia 

(Figure 3.4.1.1c), average ACRO ratio of stage 2 AuxCysensor STTM160 primordia 

(0.43±0.03) was significantly lower compared to that in the surrounding cortical cells 

(0.55±0.02) and arranged as a cluster of red nuclei (Figure 3.4.3-2c). In case of the stage 

2 AuxCysensor STTM160 the average ACRO ratio of the cortical cells (0.55±0.02) is 

also significantly lower compared to the rest of the root (0.67±0.02; Figure 3.4.3-2c). 

AuxCysensor STTM1610 stage 3 primordium were presenting two distinct patterns after 

imaging. Five of the ten were looked predominantly cytokinin enriched and the 5 others 
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auxin enriched. The average ACRO ratios was significantly higher in the central zone 

(0.47±0.02) compared to the peripheral zone (0.56±0.01; Figure 3.4.3-3a). More 

importantly, the ACRO ratios distribution represented by violin plots showed two 

segregating population within each zone (Figure 3.4.3-3a). Indeed, ACRO ratios were not 

following a normal distribution and one population presented a positive ACRO ratio 

close to 1, and the other had a negative ACRO (Figure 3.4.3-3a). The 4-color map scale 

ACRO ratio indicated that five of the ten AuxCysensor STTM160 roots stage 3 nodule 

primordia, showed a very low ACRO ratio (nuclei principally red, similar to 

AuxCysensor roots stage 2 primordia) while the other 5 showed a pattern similar to the 

stage 3 AuxCysensor nodule primordia: a neutral ACRO ratio in the center (yellow) and a 

lower ratio surrounding it (blue to red) (Figure 3.4.1-2e and 3.4.3-3d).  
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Figure 3.4.3-3: Average ACRO ratios in AuxCysensor STTM160 during soybean 

nodule primordium development. Average ACRO ratios in Zone 1, 2 and 3 at the stage 

3 (A) and 4 (B) and in the infection zone, vascular bundles and parenchyma in PMN (C). 

A to C were represented via violin plots where lines at the median and quartile showed 

distribution of the values. Single nuclei 4-color map scale image of zones 1, 2 and 3 at 

stage 3 (D) and 4 (E) and whole PMN section (F). Note that in stage 3 and in stage 4, the 

4-color map scale images are equally distributed into two representative and exclusive 

categorizes. White arrow indicates putative vascular bundle. Scale bar=100µm. 

Statistical analysis using one way-ANOVA with multiple comparison using Tukey test 

with confidence level 0.05. P value of * is <0.05, ** is <= 0.01, *** is <= 0.001 and 

**** is <= 0.0001, ns means non-significant. 

AuxCysensor STTM1610 stage 3 primordium were presenting two distinct 

patterns after imaging. Five of the ten were looked predominantly cytokinin enriched and 

the 5 others auxin enriched. The average ACRO ratios was significantly higher in the 

central zone (0.47±0.02) compared to the peripheral zone (0.56±0.01; Figure 3.4.3-3a). 

More importantly, the ACRO ratios distribution represented by violin plots showed two 

segregating population within each zone (Figure 3.4.3-3a). Indeed, ACRO ratios were not 

following a normal distribution and one population presented a positive ACRO ratio 

close to 1, and the other had a negative ACRO (Figure 3.4.3-3a). The 4-color map scale 

ACRO ratio indicated that five of the ten AuxCysensor STTM160 roots stage 3 nodule 

primordia, showed a very low ACRO ratio (nuclei principally red, similar to 
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AuxCysensor roots stage 2 primordia) while the other 5 showed a pattern similar to the 

stage 3 AuxCysensor nodule primordia: a neutral ACRO ratio in the center (yellow) and a 

lower ratio surrounding it (blue to red) (Figure 3.4.1-2e and 3.4.3-3d).  

At stage 4 two distinct population were also observed. Overall, the ACRO ratios 

were higher in the central zone and gradually decreased towards the periphery 

(0.84±0.02, 072±0.01 and 0.62±0.01 respectively; Figure 3.4.3-3b). In each zone one 

population of ACRO ratio was close to 1 and the other to 0.5 and the ACRO ratios were 

not following a normal distribution Figure 3.4.3-3b). Three of the seven stage 4 

AuxCysensor STTM160 root nodule primordia, were similar to the stage 3 AuxCysensor 

roots as they have a high ACRO ratio in the center (higher than 1), that declines toward a 

lower ACRO ratio in the periphery (1 to 0.4) (Figure 3.4.3-3d and 3.4.3-3e). The 4 other 

primordia had ACRO patterns similar to the stage 4 AuxCysensor nodule primordium:  

an ACRO ratio between 0.4 and 0.6 at their center (blue) and a lower ACRO ratio at their 

periphery (red) at the exception of little groups of green and yellow nuclei (Figure 3.4.1-

2f and 3.4.3-3e).  

ACRO ratios of AuxCysensor STTM160 PMNs were very broad, going from 0.1 

to 1 with an average at 0.59±0.02 (Figure 3.4.3-3c). Contrary to AuxCysensor roots 

(Figure 3.4.1-3b), the ACRO ratio of AuxCysensor STTM160 PMNs in the infection 

zone was significantly higher than in the parenchyma (0.24±0.01; Figure 3.4.3-3c). Like 
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AuxCysensor PMNs, the average ACRO ratio of the vascular bundles (1.64±0.11) is 

significantly higher than the other cell types (Figure 3.4.1-3b and 3.4.3-3c).  

PMNs vascular bundles in AuxCysensor (Figure 3.4.1-3c) and AuxCysensor 

STTM160 (Figure 3.4.3-3f) are both represented by cluster of green nuclei in the PMN. 

However, AuxCysensor identity in the infection zone (red nuclei) and parenchyma (blue 

nuclei) seem to be switched in AuxCysensor STTM160 (from yellow to red and red 

respectively, Figure 3.4.1-3c and 3.4.3-3f). AuxCysensor and AuxCysensor STTM160 

roots were compared to further investigate the impact on the ACRO ratio for these roots 

having an altered auxin and cytokinin sensitivity. 

3.4.3.3. STTM160 impacts the ACRO ratios in most of nodule cell 

types  

 

Direct comparison of the average ACRO ratios between AuxCysensor and 

AuxCysensor STTM160 roots confirmed the significative reduction in the dividing cells 

of AuxCysensor STTM160 compared to AuxCysensor at stage 1-1 and 1-2 respectively 

(0.43±0.03 VS 0.96±0.06  
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Figure 3.4.3-4: Cell type comparison of the average ACRO ratios between 

AuxCysensor and AuxCysensor STTM160. Stage 1-1 (A), 1-2 (B), 2 (C), 3 (D), 4 (E) 

and PMN (F) were compared. At stage 1-1 and 1-2 dividing, cortical and roots cells were 

compared between AuxCysensor and AuxCysensor STTM160. At stage 2 nodule 

primordia, cortical and roots cells were compared between AuxCysensor and 

AuxCysensor STTM160. At stage 3 and 4, zone1, 2 and 3 were compared between 

AuxCysensor and AuxCysensor STTM160. In PMN, infection zone, vascular bundles and 

roots were compared between AuxCysensor and AuxCysensor STTM160. A to F were 

represented via violin plots where lines at the median and quartile showed distribution of 

the values. Statistical analysis using one way-ANOVA with multiple comparison using 

Tukey test with confidence level 0.05. P value of * is <0.05, ** is <= 0.01, *** is <= 

0.001 and **** is <= 0.0001.  
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and 0.79±0.09 VS 1.07±0.07; Figure 3.4.3-4a and 3.4.3-4b). Interestingly, the other cell 

types do not differ at the exception of the root cells at stage 1-2, for which AuxCysensor 

STTM160 average ACRO ratio (0.68±0.04) is slightly higher than in AuxCysensor 

(0.56±0.01; Figure 3.4.3-4b).  

At stage 2, there were no significant differences in ACRO ratios in cell division 

and cortical cell, AuxCysensor STTM160 average ACRO ratio in root cells (0.69±0.03) 

was significantly higher than in AuxCysensor roots (0.52±0.01); Figure 3.4.3-4c). Note 

that even though AuxCysensor STTM160 produce more primordia, the ACRO ratio is 

not impacted at stage2. Total stage 3 AuxCysensor STTM160 zones 1, 2 and 3 have 

significantly a lower average ACRO ratio (0.47±0.02, 0.53±0.01 and 0.56±0.01) than in 

stage 3 AuxCysensor zones 1, 2 and 3 (0.72±0.03, 0.60±0.01 and 0.64±0.02 respectively; 

Figure 3.4.3-4d). It is the opposite in total stage 4 primordium, as AuxCysensor 

STTM160 roots zones 1, 2 and 3 have significantly higher average ACRO ratios 

(0.84±0.02, 0.72±0.01 and 0.62±0.01 respectively) than in AuxCysensor roots 

(0.41±0.01, 0.35±0.01 and 0.35±0.01 respectively; Figure 3.4.3-4e).  

The average ACRO ratio of AuxCysensor STTM160 PMNs in the infection zone 

(0.59±0.02) and in the vascular bundles (1.64±0.11) is significantly higher than in 

AuxCysensor roots (0.11±0.00 and 0.95±0.05 respectively), while the average ACRO 

ratio in the parenchyma is not altered (0.14±0.00 and 0.24±0.01; Figure 3.4.3-4f). 

Interestingly, a higher number of nodule primordium is associated with a lower ACRO 
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ratio during early primordium organogenesis, while delayed maturation is associated with 

a higher ACRO ratio. 

 

Figure 3.4.3-5: Schematic representation of the ACRO ratios in AuxCysensor 

during nodule development. Average ACRO ratios were represented at stage 1-1 (A), 1-

2 (B), 2 (C), 3 (D), 4 (E) and PMN (F). Note that stage 3 and stage 4 are equally 

distributed into two representative and exclusive categorizes. Average ACRO ratios are 

represented by a color scale going from dark red associated with a low ACRO ratio to 

dark green associated with a high ACRO ratio. 

In summary, the AuxCysensor STTM160 initial dividing cells seem to have a 

lower ACRO ratio (Figure 3.4.3-5a and 3.4.3-5b) and a subset of the stage 3 and 4 

primordia show an altered ACRO ratio phenotype (Figure 3.4.3-5d and 3.4.3-5e), while 

AuxCysensor STTM160 PMNs have an unexpectedly broad ACRO ratio (Figure 3.4.3-

5f). 
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3.4.3.4. STTM160 vascular bundle surface area is reduced in PMNs 

 

 

Figure 3.4.3-6: Average vascular bundle surface area and number comparison 

between AuxCysensor and AuxCysensor STTM160 PMNs. (A): Average vascular 

bundle surface area in AuxCysensor and AuxCysensor STTM160 PMNs. (B): Average 

vascular bundle number per PMN in AuxCysensor and AuxCysensor STTM160 PMNs. 

Error bars represent standard deviation of the mean. P value of * is <0.05. ns= non-

significant. 

In the STTM160 mature nodule, Nizampatnam et al 2015 hypothesized that a 

vasculature deficit was responsible of the nodule development delay. To address this 

question, PMNs vascular bundles were digitally sectioned counted and their area were 

calculated. It is reduced in PMNs AuxCysensor STTM160 (Figure 3.4.3-6a). The mean 
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area for 15 vascular bundles out of 4 independents AuxCysensor PMNs is 

12243±4315µm which is significantly higher compared to 8622±3820µm, the mean of 15 

vascular bundles out of 4 independent AuxCysensor STTM160 PMNs. Interestingly the 

number of vascular bundles per PMN was similar between AuxCysensor (4.75±0.5) and 

AuxCysensor STTM160 (4.75±0.9; Figure 3.4.3-6b). 

3.5. Discussion 

 

 

Figure 3.5-1: Dynamic of the ACRO ratio in AuxCysensor and AuxCysensor STTM160 

over different nodule developmental stages.   
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Figure 3.5-2: Auxin and cytokinin intensity in AuxCysensor and AuxCysensor STTM160 

PMNs. 

 

 

Figure 3.4.3: AuxCysensor coupled to a fluorescent miR160 sensor. AuxCymBFP2-NLS-

NOmiR160sensor in the left AuxCyBFP2-NLS-miR160sensor on the right.  
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Previously, our team demonstrated that microRNA 160 controls the number and 

maturation of nodules via the regulation of the auxin/CK sensitivity. Here, we 

characterized auxin/CK ratios in individual cells of different nodule zones at different 

nodule developmental stages. To determine how these ratios are altered by miR160, we 

also evaluated these ratios in roots with reduced levels of miR160. Different cell types 

and nodule zones showed very specific auxin/CK ratios associated with specific stages of 

nodule development. At stage 1-1 and 1-2, the dividing cells have a high ACRO ratio, 

while the rest of the root has a lower ACRO ratio. Similarly, founder cell identity 

establishment during the initiation of lateral root primordia is correlated with auxin 

maxima (De Smet, Tetsumura et al. 2007). Such auxin accumulation is probably 

necessary to trigger cell division to give rise to nodule primordium initiation. Note that 

even though the root QC has a very high ACRO ratio, cell division is repressed by the 

cell cycle switch gene CCS52A2 (Vanstraelen, Baloban et al. 2009, Fisher, Gaillard et al. 

2018). 

At stage 2, the primordium has very low ACRO ratio, compared to the stage 1-1 

and 1-2 and compared to the rest of the root. This is consistent with previous studies in L. 

japonicus, where cytokinin responses were observed during primordium initiation in the 

outer cortex and the third cortical cell layer (Szczyglowski, Shaw et al. 1998, van 

Spronsen, Grønlund et al. 2001). As observed in Figure 3.4.1-1c, stage 2 primordium are 

infected by rhizobia, and this coincides with low ACRO ratios. It is possible that this 

cytokinin accumulation might be required to produce a primordium with differentiated 
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cells able to host the bacteria. Moreover, cytokinin treated roots or roots presenting a high 

cytokinin sensitivity produce psendonodule and more initial primordia respectively 

(Cooper and Long 1994, Heckmann, Sandal et al. 2011, Nizampatnam, Schreier et al. 

2015). Therefore, cytokinin might promote the transition of primordia from stage 1 to 

stage 2 and lead to successful nodulation. Indeed, cytokinin is present in the cortex after 

inoculation and auto-active cytokinin receptor mutants are able to produced nodule in the 

absence of the symbiotic bacteria (Tirichine, Sandal et al. 2007).  

At the stage 3, the center of the primordium has a relatively higher ACRO ratio 

compared to its periphery. It is conceivable that the ACRO ratio drops associated with 

stage 2, might needs to be followed by a higher ACRO ratio in order to form a transient 

meristem responsible a providing enough cells to create a new organ. The periphery of 

the primordia has a relatively lower ACRO ratio. This looks similar to soybean lateral 

root primordia (LRP), or soybean root apical meristem for which central cells have a high 

ACRO ratio that triggers cell division to give rise to a new organ and/or promotes its 

growth. In the periphery cells of the LRP and RAM cells have a low ACRO ratio as they 

are entering in their differentiation program (Fisher, Gaillard et al. 2018).  

Stage 4 has a similar trend as stage 3, where the highest ACRO ratio is at the 

center and it lowers at the periphery. At stage 4, the primordium is emerging from the 

root and becoming more mature. It is possible that in the central zone of stage 4 nodules, 

most of the cells have been produced, the meristem has stopped its activity, and the auxin 

enrichment is no longer present. Additionally, the overall cells require a lower ACRO 
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ratio in order to be differentiated and go towards nodule maturation. Thus stage 4 zones 

might have lower ACRO ratios compared to their respective stage 3 zones due to these 

combined effects. The peripheric region of the stage 4 presents a low ACRO ratio where 

cells have probably acquired different cell identities such as parenchyma and endodermis. 

Interestingly we can notice that the peripheral cells are not infected and are mostly likely 

acting as an oxygen barrier to favor the nitrogen fixation, while the central zone is 

colonized indicating that nitrogen fixation has probably started to occur. If we were to 

make a parallel between nodule primordium and lateral root primordium, we could say 

that in both cases the peripheral cells emerging from the root are associated with 

cytokinin enrichment and cell differentiation involved in nodule epidermis and root cap 

identity respectively. Note that clusters of local auxin maxima are also detected in the 

periphery of the stage 4. These are most likely responsible of the vasculature bundle 

establishment. Concomitant to the creation of a sclereid layer that insulates the infection 

zone from the surrounding tissues, the nodule creates a vasculature to enable exchange 

between the inside and the outside.  

In the PMN, the different ACRO ratios are correlated with different tissue types. 

The central zone that has infected cells and uninfected cells showed a low ACRO ratio. 

The parenchyma is also cytokinin enriched but relatively lesser than the center of the 

nodule. Vascular bundles clearly identifiable in PMN periphery show a clearly higher 

auxin output (Fisher, Gaillard et al. 2018). Indeed, it has been reported that auxin is 

required to the creation of xylem cells present in the vascular bundles (Kondo, Tamaki et 
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al. 2014). Therefore, the high ACRO ratio is present in the vascular bundle to allow cell 

division and the creation of a vasculature surrounding the nodule. 

Altogether, these data support the hypothesis made by Nizampatnam et al.; 2015 

suggesting that “an initial pulse of auxin causes primordium cell division, after which 

auxin activity is suppressed in the nodule primordium and cytokinin activity is largely 

responsible for its subsequent development, and that auxin activity is relegated to nodule 

parenchyma, where it promotes cell differentiation, including formation of vascular 

bundles”.   

The AuxCysensor STTM160 roots present a silenced miR160 activity and are 

associated with a modified auxin/CK balance and nodulation phenotypes. miR160 

functions to reduce the transcript levels of the ARF10/16/17 gene family which are 

thought to be repressors of auxin response. In the STTM160 roots, reduced miR160 

levels lead to higher levels of repressor ARF10/16/17 resulting in auxin hyposensitive 

roots (Nizampatnam, Schreier et al. 2015).  

Unlike AuxCysensor, the diving cells of AuxCysensor STTM160 at stages 1-1 

and 1-2 do not present an auxin maximum. In fact, they showed a lower ACRO ratio than 

the surrounding cortex cells. This is consistent with the auxin hyposensitive, cytokinin 

hypersensitive phenotype previously described for the STTM160 roots. Interestingly 

these cells are still able to divide to initiate nodule primordium which agrees with 

Libbenga et al., 1973 that described that both auxin and cytokinin were necessary to 
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trigger cell divisions in pea cortex cell explants (Libbenga, van Iren et al. 1973). 

Moreover, Zhang et al 2013, have also demonstrated that cytokinin can promote cell 

division in the root via the QC auxin transport regulation (Zhang, Swarup et al. 2013). It 

would be interesting to look at the rhizobia staining in AuxCysensor STTM160 at these 

stages to see if the infection is affected. Previous studies have reported that the root hair 

curling is not impacted while there is a higher number of infection thread in STTM160 

roots (Nizampatnam, Schreier et al. 2015).  

At stage 2, the ACRO ratio is similar in the cortical cells, but different in the 

overall roots cells of AuxCysensor STTM160 compared to AuxCysensor. It was 

unexpected as STTM160 roots have been described as auxin hyposensitive, but we have 

to keep in mind that this was based on whole root imaging and not cell type specific 

imaging (Nizampatnam, Schreier et al. 2015). 

Interestingly, half of the stage 3 AuxCysensor STTM160 nodule primordium had 

lower ACRO ratios compared to stage 3 AuxCysensor. In these primordia where the 

negative ARF10/16/17 auxin regulator is favored, the primordia lack the auxin 

accumulation characteristic of the AuxCysensor stage 3 primordium. As previously 

discussed, a low ACRO ratio might be required to engage the first stage1 nodule initials 

into further development and maturation. Therefore, the AuxCysensor STTM160 roots 

being more sensitive to cytokinin, they might allow more primordium to continue their 

development resulting in the higher number of emerging nodules observed in STTM160 

and AuxCysensor STTM160.  
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On the contrary, in the case of AuxCysensor, as their ACRO is higher, it is 

possible that a lower number of primordia transitions resulting in a higher abortion rate 

and a relatively lower number of emerging nodules. Interestingly, auxin treatment of the 

STTM160 roots was able to partially reduce the abnormal nodule number and restore the 

phenotype compared to the vector control (Nizampatnam, Schreier et al. 2015). This 

supports the role of a low ACRO ratio as a promotor of nodule organogenesis.  

In stage 4 AuxCysensor STTM160 3 out of 7 primordia present a different pattern 

compared to stage 4 AuxCysensor primordia and 4 out of 7 look similar. It is possible 

that the AuxCysensor STTM160 stage 3 primordia which were initially not able to 

increase their auxin output levels are able to do it, but at a later stage, at the stage 4. 

Similarly, AuxCysensor STTM160 PMNs have a higher ACRO ratio in the infection 

zone and vascular bundles suggesting that these primordia haven’t accomplished their 

maturation and are delayed compared to AuxCysensor PMNs. It seems that the delay 

initiated during the transition from stage 2 to stage 3 is still present at the PMN stage 

which could explain the overall nodule maturation delay observed in the AuxCysensor 

STTM160 roots (Figure 3.5-1). Here again, it would be interesting to look at the rhizobia 

abundance in AuxCysensor at stage 4 and PMNs to evaluate the impact of a higher 

ACRO ratio on the rhizobia occupation. 

To better understand this phenotype, we need to closely examine the pattern of 

miR160 expression at the same cellular resolution. miR160 expression is downregulated 

in the roots upon rhizobia inoculation (Subramanian, Fu et al. 2008). This is consistent 
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with the low ACRO ratio observed in early nodule primordia, the low ACRO ratio 

observed in AuxCysensor STTM160 and associated with a higher number of emerging 

nodules. Moreover, miR160’s level of expression is relatively low during early nodule 

formation and high in mature nodules. Using a fluorescence miRNA sensor revealed that 

miR160 is active the base of the nodule and in the nodule parenchyma of emerging 

nodules (stage 4) and broadly active in mature nodule. Additionally, emerging and 

mature STTM160 nodules show a reduction of their auxin transcriptional outputs 

compared to vector control (Nizampatnam, Schreier et al. 2015).  

Surprisingly, AuxCysensor STTM160 present a higher ACRO ratio at the PMN 

stage due to an overall higher auxin intensity (Figure 3.5-2). However, mature STTM160 

nodule expressing DR5rev:GUS presented a reduced auxin output in the vascular bundles 

(Nizampatnam, Schreier et al. 2015). This lower auxin signal observed in STTM160 

nodule is most likely due to a lower vascular bundle area as measured in AuxCysensor 

STTM160. Moreover, in the case of DR5rev:eGFP2-NLS, the use fluorescence 

microscopy coupled with the nuclear localization signals on the fluorophores enables 

detection and quantification of cellular level of  auxin outputs. This reporter strategy 

provides a higher response resolution than DR5:GUS nodule sections observed using a 

bright field under a compound microscope that only provide a qualitative description at 

the tissue-type level.  

To have better representation of the role played by miR160’s activity on the 

ACRO ratios we attempted to combine a sensor construct for miR160 to the 
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AuxCysensor (AuxCyBFP2-NLS-miR160sensor). As the AuxCysensor comprises eGFP 

and tdTomato, we chose a blue fluorophore to avoid spectral overlapping (Subach, 

Cranfill et al. 2011). In this fluorescent miR160 sensor the soybean superubiquitin 

promotor constitutively expresses BFP2 that is addressed to the nucleus (NLS) and fused 

to a miR160 binding site in the 3’ UTR (Figure 3.5-3) (Parizotto, Dunoyer et al. 2004). 

We also created an AuxCyBFP2-NLS-miR160sensor without the miR160 binding site 

(AuxCyBFP2-NLS-NOmiR160sensor) (Figure 3.5-1).  

AuxCyBFP2-NLS-NOmiR160sensor sensor was used to confirm proper BFP2 

expression and to compare its fluorescence intensity to the AuxCyBFP2-NLS-

miR160sensor. A reduction/absence of BFP2 fluorescence was expected to reveal 

miR160 activity in AuxCyBFP2-NLS-miR160sensor. Unfortunately, imaging of 

AuxCyBFP2-NLS-miR160sensor or AuxCyBFP2-NLS-NOmiR160sensor couldn’t 

provide any signal most likely due to its high susceptibility to photobleaching (Day and 

Davidson 2009). Alternatively, we replaced BFP2 by mCer3, another fluorescent protein 

in the blue spectral range (Markwardt, Kremers et al. 2011). However, no signal was 

detected for this fluorophore in the nucleus, while blue cell wall autofluorescence was 

observed indicating functional imaging methodology. AuxCymCer3-NLS-miR160sensor 

and AuxCymCer3-NLS-NOmiR160sensor roots were harvested and mCer3 mRNAs and 

proteins will be quantified to verify accurate mCer3 expression. 

The number of vascular bundles per PMN is similar between AuxCysensor 

STTM160 PMNs and AuxCysensor PMNs (Figure 3.4.3-6b). Hence, the vasculature 
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initiation didn’t seem to be impacted as observed in half of the stage 4 primordia (Figure 

3.4.3-3e). However, the vasculature area of AuxCysensor STTM160 PMNs is reduced 

compared to AuxCysensor PMNs (Figure 3.4.3-6a). This decrease is associated with an 

auxin enrichment. It is most likely that AuxCysensor STTM160 PMNs vasculature is in 

an active cell division phase and that the cell differentiation is reduced, contrary to 

AuxCysensor PMNs that are in a more advanced stage. Consequently, this results in a 

delayed maturation and a smaller vasculature area in AuxCysensor STTM160 PMNs.  

The differences observed in the AuxCysensor STTM160 ratios before and after 

the stage 2 might come from the constitutive silencing of miR160 levels solely, and/or 

from a combined effect of miR160 alteration and modified bacteria colonization. To 

address this, AuxCysensor STTM160 inoculated with B. diazoefficiens GUS will be 

imaged at stage 1-1 to 4, to examine if the infection and colonization pattern is impacted. 

Moreover, AuxCysensor and AuxCysensor STTM160 PMNs will also be sectioned and 

stained with a fluorescent dye to quantify and compare the relative bacterial abundance.  

To summarize, a higher number of nodule primordium is associated with a lower 

auxin/CK ratio during early primordium organogenesis, while delayed maturation is 

associated with a higher auxin/CK ratio. Biological Nitrogen fixation enables legumes to 

obtain part of their nitrogen requirement from the atmospheric dinitrogen via a symbiotic 

relation with diazotrophic bacteria. This association occurs in a specific organ named 

nodule; however, it doesn’t provide enough nitrogen to meet the overall plant demand 

(Harper 1974). Therefore, generation of optimal yield in legume crops is also relying on 
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fertilizer application which is costly and can be a source of pollution. Consequently, 

enhancing nodule capacity to fix more nitrogen is crucial to increase the soybean 

production in an ecofriendly manner. This study could lead to the creation of crop 

producing more nodule that are fixing for a longer period. 
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CHAPTER IV 

4. In vivo quantification of the relative auxin cytokinin ratios enabled by 

AuxCysensor plants. (status: manuscript in preparationc) 

4.1. Abstract 

 

The plant hormones auxin and cytokinin control cell proliferation and 

differentiation to promote plant development. Organs such as shoot apical meristems 

(SAM), root apical meristems (RAM) or lateral root primordia (LRP) are composed of 

different cell types ensuring specific function. Auxin and cytokinin dictate cell identity in 

these organs to determine organ initiation and development. Moreover, these hormones are 

known to act antagonistically and/or synergistically to control and regulate several plant 

developmental processes such as embryogenesis and shoot/root meristem maintenance. 

Although auxin and cytokinin have been individually extensively studied in plants, their 

relative ratios in specific cell types are unknown. We developed a strategy based on 

 
 

 

 

c Gaillard P, Nurmalasari NPD, Smith S, Subramanian S (2020) Auxin and cytokinin 

response ratios in soybean nodule primordium at different developmental stages 
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nuclear-localized fluorescent reporters coupled with multi photon microscopy and 

quantitative 3‐dimensional imaging to quantify in vivo transcriptional auxin-cytokinin 

relative outputs at the cellular level. The ACRO ratios estimated in Arabidopsis root tips, 

Medicago root tips, lateral roots tips, lateral root primordia and mature nodule in this study 

agreed with previously reported studies based on the individual fluorescent reporters. It 

indicated that the methodology is reliable and accurate. Further, we determined that 

specific ACRO ratios were associated with specific cell types in the different organs 

mentioned above. Interestingly, these specific cell type ACRO ratios also coincided with 

specific cell type functions (e.g. high ACRO in quiescent center associated with stem cell 

identity and stem cell maintenance and low ACRO ratios associated with lateral root cap 

and mature cell in the RAM). Additionally, we demonstrated that the Arabidopsis 

AuxCysensor line provide to dose-dependent response to exogenous auxin or cytokinin 

treatments. Finally, we used the AuxCysensor lines to illustrate instances where auxin and 

cytokinin might be controlling physiological processes such as stomata opening and 

closure and where the characterization of specific ACRO ratios might be crucial to 

understand these mechanisms. 

4.2. Introduction 

 

Auxin and cytokinin are two plant hormones involved in cell division and 

differentiation. Traditionally, these two hormones have been used in tissue culture and 

plant propagation where low auxin/cytokinin ratio induces shoots production and high 
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auxin/cytokinin triggers roots development (Skoog and Miller 1957). Distinct in planta 

auxin/cytokinin relative outputs determine shoot versus root meristematic identity. The 

shoot apical meristem (SAM) is the source of aboveground organs and the root apical 

meristem (RAM) along with lateral root primordia determine root system architecture.  

The SAM is composed of different regions corresponding to the central zone 

(CZ), the organizing center (OC), the peripheral zone (PZ), and the rib zone (RZ) 

(reviewed by (Fletcher and Meyerowitz 2000, Clark 2001, Sablowski 2007)). The CZ is 

at the top and center of the SAM where cells divide slowly. The bottom of the CZ 

overlaps with the top of the OC to form a reservoir of stem cells. At the periphery of the 

CZ, cells have a higher cell division rate in PZ and this balance is responsible for the 

organ size and number. Below the CZ and the OC, the RZ supplies multipotent cells with 

a higher cell division rate that generate a stem that support the SAM. The SAM size and 

structure result from the balance between cell division and differentiation. High levels of 

cytokinin in the OC are well known to the maintain stem cell identity in the SAM (Riou-

Khamlichi, Huntley et al. 1999, Kurakawa, Ueda et al. 2007) and consistently, the 

cytokinin reporter Two-Component-Output-Sensor: Green Fluorescent Protein 

(TCS:GFP) is expressed in OC cells (Yoshida, Mandel et al. 2011).  

On the other hand, the auxin peak associated with organ initiation and visualized 

by DR5:3xVENUS-N7 is detected in the leaf primordia (Heisler, Ohno et al. 2005). 

Therefore, the distribution of these two hormones coincides with different regions that 

are clearly separated and have different functions within the SAM. However, this 
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apparent dichotomy must be nuanced as auxin and cytokinin also act synergistically in 

the OC where auxin is enhancing cytokinin sensitivity.  

A perception sensor degraded in the presence of auxin also reports auxin maxima 

at the primordial tips from which new lateral organ are initiated (Vernoux, Brunoud et al. 

2011). It has been accepted that auxin patterning dictates primordia position. Young 

primordia act as auxin sinks and deplete auxin accumulation within surrounding cells. 

The new primordia are initiated by auxin maxima created via the action of auxin 

transporters and are located in the periphery of the SAM, well away from preexisting 

primordia.  

Like the SAM, the RAM possesses different regions involved in cell division and 

differentiation. The OC of the SAM has its equivalent in the RAM, the quiescent center 

(QC), a stem cell niche surrounded by cells having a low mitotic rate near the root tip  

(reviewed by (Benkova and Hejatko 2009, Stahl and Simon 2010)). There is also a 

proximal meristem where cells are dividing to continuously produce cells and ensure root 

growth. As cells progress along the proximo-distal axis, cells lower their division rate, 

start to elongate once they enter the elongation zone (EZ) and differentiate in the 

differentiation zone (DZ). Note that the proximal meristem zone and the elongation zone 

are separated by the transition zone (TZ) which is crucial for proper cell division and 

differentiation.  
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An auxin maximum is observed in the QC and it gradually decreases towards the 

TZ. It is responsible for the QC cell identity and maintenance of mitotic activity in the 

proximal meristem. Cytokinin accumulates in the TZ and induces cell differentiation. 

Interestingly, cytokinin regulates auxin transport while auxin negatively regulates 

cytokinin signaling and biosynthesis in plant roots. It creates two mutually inhibitory 

domains of actions required to create a balance between cell division and differentiation 

and control to root growth. 

Lateral roots are initiated along the longitudinal axis of the root from the RAM to 

the elongation zone depending on the plant species (Ilina, Kiryushkin et al. 2018). During 

this process, auxin accumulation can also be observed in at the opposite of a protoxylem 

pole in root pericycle (De Smet, Tetsumura et al. 2007). This often results in the 

“priming” of lateral root cells founders. Once initiated, cell division associated with high 

auxin levels is observed to promote primordia formation and its emergence. Cytokinin 

negatively regulates root primordium initiation in inhibiting lateral root founder cell 

priming. However, cytokinin activity is detectable at the base of the lateral root primordia 

and later in the vasculature, columella and root cap of emerging lateral root (Dobisova, 

Hrdinova et al. 2017).   

To summarize, even though SAM and RAM have very similar function and rely 

on specific hormonal requirements, the role of auxin and cytokinin in RAM and SAM are 

apparently reversed. The OC in the SAM is associated with high cytokinin accumulation 

while the QC of the RAM presents an auxin maximum. Similarly, cell differentiation 
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requires auxin in the periphery of the SAM, while cytokinin is responsible root cell 

identity. Additionally, auxin and cytokinin can regulate each other’s level and activity to 

control cell identity and specific auxin/CK ratios are responsible of specific 

developmental programs. Consequently, there is an urge to concomitantly characterize 

the activity of these hormones involved in every aspects of plant development.  

To the best of our knowledge, 4 teams have independently developed sensors to 

qualitatively report auxin and cytokinin levels over the last 4 years (Pernisová, Klíma et 

al. 2009, Muller, Larsson et al. 2017, Nadzieja, Stougaard et al. 2019, Smet, Sevilem et 

al. 2019). This represents interesting advancements in the understanding of the role 

played by auxin and cytokinin, however their balance has never been quantified. Here, 

we provide an advanced tool to calculate in vivo and cellular Auxin-cytokinin relative 

output (ACRO) ratios using transcriptional output sensors named “AuxCysensor”. 

The primary focus of our lab is to understand hormonal control of nodule 

development during the legume-rhizobia symbiosis. Nodules are specialized plant organs 

commonly produced by legumes through rhizobia symbiosis. Legumes derive a major 

portion of their nitrogen through symbiotic nitrogen fixation in nodules. Nodules are 

divided into two main categories:(i) determinate (presence of a transient meristem) or (ii) 

indeterminate (presence of a persistent and apical meristem) respectively (Ferguson, 

Indrasumunar et al. 2010). Auxin and cytokinin regulate multiple aspects of the legume-

rhizobia interaction including nodule initiation and development, but how they interact 
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during this process is still unclear. Hence, we generated AuxCysensor roots to understand 

these dynamics.  

We previously reported that distinct ACRO ratios corresponded to distinct nodule 

cell types in soybean (Glycine max) that produces determinate nodules (Fisher, Gaillard 

et al. 2018). We presently studied barrel clover (Medicago truncatula) indeterminate 

nodule to investigate if its different nodule cell types were also associated with specific 

ACRO ratios. Moreover, AuxCysensor Arabidopsis thaliana homozygote lines were 

created upon the request of the scientific community. Arabidopsis has been extensively 

used to study plant developmental due to its rapid seeds to seeds cycle, small genome and 

large mutant bank as reviewed by (Koornneef and Meinke 2010). Moreover, its anatomy 

is composed of few cell layers making it a perfect tool for in situ imaging.  

In this article, we present the AuxCysensor strategy applied to multiple 

Arabidopsis organs and Medicago root tips, primordia and nodules. The auxin/CK ratios 

reported agreed with previous studies and enabled a cell specific characterization of auxin 

and cytokinin relative sensitivity providing new insights in the study of plant 

development. 

4.3. Material and methods 

 

4.3.1. Plasmid construct 
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BAR resistance gene was PCR amplified from pBAR-Tnos vector, cloned into 

pCR8/GW/TOPO and recombined with the binary destination vector AuxCysensor 

containing DR5:GFP‐NLS, TCSn:tdTomato‐NLS, and pSubi:GW (Fisher, Gaillard et al. 

2018). 

4.3.2. Plant transformation 

 

AuxCysensor Arabidopsis thaliana stable lines were generated after 

transformation of the ecotype Columbia-O with the AuxCysensor plasmid (Fisher, 

Gaillard et al. 2018) carrying the bar gene conferring resistance to the herbicide 

bialaphos. Arabidopsis transformation was done using the floral dip method as described 

by (Clough and Bent 1998). A17 Medicago truncatula transgenic composite plant were 

generated using the same method as proposed by Collier at al., 2005 for soybean. 

Medicago seeds were scarified with sandpaper, both Arabidopsis thaliana and Medicago 

truncatula seeds were surface-sterilized with 70% ethanol for 2minutes, placed in ½ 

Murashige and Skoog plates (Caisson Laboratories) with 1% sucrose and 0.8% agar and 

stratified for 2 days at 4°C in the dark. Arabidopsis thaliana containing plates were 

vertically placed at 21°C for 5 days with 16 hours days 8 hours night and Medicago 

plates left horizontally in the dark for 4 days. Medicago seedlings were place in pots with 

Sunshine mix soil and placed at 21°C with 16 hours days 8 hours night. Four weeks after 

transformation, Medicago plants were screened for the presence of tdTomato 

epifluorescence at the root tip. Medicago composite plants were planted into 4″ pots 
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containing sterilized 3:1 vermiculite: perlite mix and watered with nitrogen free plant 

nutrient solution (N− PNS). 

4.3.3. Hormone and rhizobia treatments 

 

Responses to exogenous hormones were evaluated by treatment with 1-

Naphthaleneacetic acid (NAA, a synthetic form of auxin) and 6-Benzylaminopurine 

(BAP, a synthetic form of cytokinin). Five-day-old seedlings were transferred to new 

media containing either no addition or one of the following treatments: 10nM NAA (1-

Naphthaleneacetic acid), 100nM NAA, 1µM NAA, 10µM NAA, 100µM NAA, 10nM 

BAP (6-Benzylaminopurine), 100nM BAP or 1µM BAP for 24 hours then imaged. 

Concentrated stock solutions of 10 mM of these additives were dissolved in ethanol 

(NAA), or water (BAP) and added to agar medium cooled to 50°C. Seven days after 

transfer, each plant was inoculated with 25ml of Sinorhizobium meliloti cells resuspended 

in N− PNS to OD600nm of 0.15. 

4.3.4. Sample preparation and microscopic acquisition  

 

Twenty-four hours after treatment, Arabidopsis AuxCysensor lines were collected 

for imaging. For imaging Medicago nodules, plants were carefully removed from pots 

two or three weeks after inoculation and placed in petri dishes containing distilled water 

prior nodule sectioning. Mature Medicago nodules were sectioned longitudinally (Figure 
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4.4.7-1a) or transversally (Figure 4.4.7-1b) prior to imaging. Due to very high 

autofluorescence in the infection zone, detection parameters were individually optimized 

for each image. Biological samples were 3D imaged with multiphoton microscope as 

described in Fisher et al., 2018 to report eGFP2 and tdTomato presence along with light 

imaging.    

4.3.5. Image analysis 

 

For the detection methodology refer to Chapter III “Image post-processing”.  

Auxin to cytokinin ratio was analyzed based on specific regions of interest (ROIs). 

For cylindrical ROI, Auxin to Cytokinin ratio was measured radially (a disk ROI) or 

integrated over a distance from the tip of the meristem (a pipe ROI).  Radius (r) is calculated 

using the equation above, while distance (D) from the root tip to meristem is calculated 

using the equation below. x1, y1, z1 are the center of the cylinder on the root tip/top cylinder, 

x2, y2, z2 are the center of the cylinder on the bottom, and x,y,z are the centroid of nuclei 

inside the cylinder. 

𝐷 =
(𝑥 − 𝑥1)(𝑥2 − 𝑥1) + (𝑦 − 𝑦1)(𝑦2 − 𝑦1) + (𝑧 − 𝑧1)(𝑧2 − 𝑧1)

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2
 

 

For an annular or donut ROI, 2 concentric cylinders with different radii were 

chosen, the nuclei in the donut were measured by subtracting nuclei found using a smaller 
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cylinder with those found in the larger cylinder. Raw images were overlapped with the 

detected nuclei by LMDM and rendered in 3D by Arivis Vision 4D to optimize the 

parameters. 

4.3.5.1. Medicago analysis  

 

Medicago lateral root tip (LRT) and primary root tip (PRT) were analyzed by using 

parameters with a mask of 7x7x9 voxels validated based on manually inspecting the raw 

images and nuclei detected in 3D renderings. The ROI for Medicago LRT and PRT were 

three cylinders with a radius of 15µm; from the tip, meristem and vasculature. The 

cylinders were defined by connecting four coordinates that define the center four circles 

which when connected create the three cylindrical ROI’s. The middle slice of the image 

will show a rectangular slice of the ROI’s. The average of auxin to cytokinin ratio 3 to 5 

PRT and LRT was determined by normalizing each root by scaling the QC to the same 

size. ROI for Medicago stage VI vs emerged lateral root tip (LRP) was one cylinder with 

radius 15µm, this can be created by defining two points of the center for the top and base 

circle caps of the cylinder. The average of auxin to cytokinin ratio for LRP was calculated 

by overlapping all auxin to cytokinin ratio over distance. All segmented nuclei in PRT, 

LRT and LRP were characterized as a function of distance from the root apex along the 

drawn vector. Images of Medicago LRT, PRT and LRP were quite clear and no-

autofluorescence is observed in these ROIs; the LMDM was detecting the nuclei with high 

accuracy. 
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 Medicago longitudinal nodule and Medicago nodule sections had very high 

intensity not only on the nuclei but also in the cytoplasm which lead to false positives. For 

Medicago longitudinal nodules, we compared 2 ROIs in the infection zone at the center 

and meristem at the apex, we detected the nuclei separately based on ROIs and adjusted 

the intensity threshold to eliminate false positives but at the same time detect all nuclei. 

The ROIs were cylinders defined by elongating a circle by 15 µm for meristem and 40 µm 

for infection zone, in either direction along the z-axis, in this case, the radius of the cylinder 

is varied base on ROI size. For Medicago nodule section the ROIs for infection zone and 

vascular bundles are cylinders with a height of 15 µm. Each image for Medicago 

longitudinal nodule and Medicago nodule section was adjusted and validated manually. 

The drawback of this routine was that were not able to distinguish nuclei from background 

fluorescence above the intensity threshold.  

4.3.5.2. Arabidopsis analysis  

 

The parameters used to detect Arabidopsis roots were a mask with size 7x7x9 

voxels, minimum separation diameter/2 and 50,000 intensity threshold. The goal was to 

calculate auxin to cytokinin ratio in columella, lateral cap, QC, epidermis and vasculature. 

We used cylindrical ROIs in columella, QC, and vasculature. Donut shape ROIs were used 

for lateral cap and epidermis. The donut shape ROI was created by drawing two cylinders 

at the same center with different radii, the nuclei in the donut shape were acquired by 

subtracting nuclei in the smaller radius cylinder from those in the larger radius cylinder. 
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The primary output of the LMDM are auxin to cytokinin ratio which plots at different 

concentrations. In addition, the number of nuclei is detected from 4-6 roots at certain 

concentrations are also compared. 

Auxin cytokinin ratio was mapped and compared statistically at different stages of 

nodule development. In this analysis, violin plots were generated using GraphPad Prism 

version 8 which shows the frequency distribution of data and plot lines at the median and 

quartiles. (Unpaired t) test and one-way ANNOVA (Tukey test) were used to measure 

statistical analysis of two groups and more than two groups of data respectively.  P-value 

higher than 0.05 means the value is not significant (ns), P value less than or equal to ≤0.05, 

≤0.01, ≤0.001 and ≤0.0001 mean significant difference which correspond to *, **, ***, 

and **** respectively.   

4.4. Results 

 

4.4.1. Arabidopsis AuxCysensor pattern in different organs display the 

typical auxin and CK pattern 

Patterns of auxin and cytokinin transcriptional outputs in RAM and SAM of intact 

Arabidopsis AuxCysensor lines were evaluated using intravital multiphoton imaging. 

Cytokinin output was detected in the RZ which is associated with meristematic activity 

(Figure 4.4.1-1a). Additionally, cytokinin output was also present in the OC and the 

overlap between OC and CZ, where SAM stem cells are located (Figure 4.4.1-1a). Auxin 

outputs was detected in the CZ where it is involved in maintaining stem cell homeostasis 
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(Figure 4.4.1-1a). Moreover, auxin output was also reported in the peripheric zone, 

peaked at initiation site of leaf primordium and young leaf primordia (Figure 4.4.1-1a). In 

the RAM cytokinin outputs were primarily associated with the root cap where cells are 

differentiated (Figure 4.4.1-1b).  
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Figure 4.4.1-1: AuxCysensor in different organs of Arabidopsis thaliana. (A): Shoot 

apical meristem, blue dashed area indicates the central zone (CZ), red dashed circle 

indicates the organization center (OC), yellow dashed area indicates the rib zone (RZ), 

white dashed lines indicate the peripheral zone (PZ), white arrows indicate young leaf 

primordia and pink dashed area indicates the lateral primordium (LP). (B): Root apical 

meristem, red dashed circle contains the quiescent center (QC), orange dashed area 

contains proximal meristem and the vasculature (V), white dashed shape delimits the root 

cap (C) and pink dashed areas contain the epidermis (E). (C): Top view of leave 

epidermis. (D): close-up of dashed area in (C). (A): magenta represents tdTomato and 

green DR5ev (B): red represents tdTomato and green DR5ev. (C and D) magenta 

represents tdTomato, red DR5ev and green autofluorescence in the blue spectra. Scale 

bar: 100µm for (A and B) and 50µm for (C and D). 

Auxin outputs climaxed in the quiescent center where stem cells are located (Figure 

4.4.1-1b). Furthermore, auxin outputs were present in the epidermal and the vasculature 

cells (Figure 4.4.1-1b). Interestingly both auxin and cytokinin outputs were spatially 

distinct in RAM and SAM and did not visually overlap. 

Patterns of auxin and cytokinin transcriptional outputs in RAM and SAM of intact 

Arabidopsis AuxCysensor lines were evaluated using intravital multiphoton imaging. 

Cytokinin output was detected in the RZ which is associated with meristematic activity 

(Figure 4.4.1-1a). Additionally, cytokinin output was also present in the OC and the 

overlap between OC and CZ, where SAM stem cells are located (Figure 4.4.1-1a). Auxin 
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outputs was detected in the CZ where it is involved in maintaining stem cell homeostasis 

(Figure 4.4.1-1a). Moreover, auxin output was also reported in the peripheric zone, 

peaked at initiation site of leaf primordium and young leaf primordia (Figure 4.4.1-1a). In 

the RAM cytokinin outputs were primarily associated with the root cap where cells are 

differentiated (Figure 4.4.1-1b). Auxin outputs climaxed in the quiescent center where 

stem cells are located (Figure 4.4.1-1b). Furthermore, auxin outputs were present in the 

epidermal and the vasculature cells (Figure 4.4.1-1b). Interestingly both auxin and 

cytokinin outputs were spatially distinct in RAM and SAM and did not visually overlap. 

Leaf epidermis was imaged to provide an example of this technology applied to 

an organ where auxin and cytokinin pattern are still unclear. Autofluorescence in the blue 

spectra was false-colored in green and used to visualize cell morphology and determine 

cell identity (Figure 4.4.1-1c and 4.4.1-1d). The magenta color coding for cytokinin 

outputs was associated with guard cells and the red auxin signal to leaf epidermis (Figure 

4.4.1-1c and 4.4.1-1d). Here is a concrete case where the AuxCysensor strategy could be 

used to study auxin and cytokinin regulation of a physiological process such as stomatal 

opening and closure for which their roles are uncertain. 

4.4.2. Arabidopsis AuxCysensor shows a dose-dependent response to 

exogenous hormone treatments 
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Figure 4.4.2-1: ACRO responses in the AuxCysensor lines treated with exogenous 

auxin or cytokinin. (A): representation of the different root tissue types including the 

epidermis, the vasculature, the quiescent center (QC), the lateral root cap and the 

columella. (B to J): Representative images of the AuxCysensor roots with mock, 10nM 

BAP, 100nM BAP, 1µM of BAP, 10nM NAA, 100nM NAA, 1µM of NAA, 10µM of NAA 

or 100µM of NAA treatment respectively. For each categories 3 to 8 roots were imaged. 

White arrows represent peripheric vasculature in E. Scale bar is 100µm.   

To evaluate the sensitivity of the AuxCysensor to report auxin and cytokinin 

transcriptionnal outputs, we applied a range of exogenous auxin and cytokinin treatments 

(10nM BAP, 100nM BAP, 1µM of BAP, 10nM NAA, 100nM NAA, 1µM of NAA, 

10µM of NAA or 100µM of NAA). The responses to the diverse treatments were 

qualitatively compared in the different root tissue types corresponding to the epidermis, 

the vasculature, the quiescent center (QC), the lateral root cap and the columella (Figure 

4.4.2-1a).   
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Roots treated with 10nM BAP and 100nM BAP had a higher cytokinin output 

signal in the root cap compared to mock treated roots (Figure 4.4.2-1b to 4.4.2-1d). 1µM 

BAP-treated roots did not present the root cap ctyokinin enrichment but showed an 

abnormal cytokinin output in cell files bordeing the vasculature (Figure 4.4.2-1e). The 

BAP treatment did not induce drastic differences for the auxin output reports as the cell 

types reporting auxin acivity were the same among the different treatments (primarly QC, 

epidermis and 1-2 central cell files of the vasculature) (Figure 4.4.2-1b to 4.4.2-1e).  

NAA treatment did not visually induce cytokinin outputs, but the auxin reporter 

was presenting a dose-dependent response. In mock treated roots the strongest auxin 

reponse was observed in the QC and this response was present in additional cell types as 

the hormonal concentrations were increased. After the 10nM NAA treatment, the auxin 

response was observed in the QC and also the proximal mreristem and the columella. In 

100nM NAA treated roots, the response was present in the QC, surronding cells, and also 

observed in several layers of cortical, endodermal, epidermal, lateral root cap and 

columella initials cells (Figure 4.4.2-1g).  The response at 1µM of NAA was present in 

the same cells types as in the 100nM NAA treated roots (Figure 4.4.2-1g) and was 

extended to 3-4 additionnal cell layers (Figure 4.4.2-1h). After a tratement of 10µM of 

NAA, most of the diving cells presented an auxin response in the proximal meristematic 

cells and all initial cells (Figure 4.4.2-1i). 100µM NAA treated roots showed an auxin 

output response in every cell types except some cell that were most likely cortical and 

endodermal cells as inidcated by the white arrows in Figure 4.4.2-1j.  
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Based on these qualitative observations, the AuxCysensor line seemed to 

specifically respond to diverse hormone concentrations. After 10nM BAP or 100nM BAP 

teatments, AuxCysensor lines reported additionnal cytokinin transcriptionnal outputs in 

the lateral root cap. Similarly, 1µM BAP treatment elicited a cytokinin transcriptionnal 

outputs in the vasculature, but none of the BAP treatments induced an auxin 

transcriptionnal output compared to the mock treatment. After NAA treatments the 

overall auxin transcriptionnal outputs were induced in a dose-dependent maner, but the 

cytokinin transcriptionnal outputs were similar to the mock treatment. 

4.4.3. Arabidopsis AuxCysensor a tool to quantify auxin-cytokinin 

relative output (ACRO) and perceive hormone sensitivity 

 

 

AuxCysensor line not only gives the ability to visualize concomitant presence of auxin 

and cytokinin transcriptional outputs, it also provides the opportunity to quantify these. 

To further charaterize the AuxCysensor reponsivness to different auxin or cytokinin 

treatments, the relative intensity of the auxin and cytokinin transcriptionnal output 

reporters were measured and compared. The roots imaged were divided into different 

regions of interests (ROIs) 
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Figure 4.4.3-1: Comparison of the average ACROs ratio between different cell types 

in the AuxCysensor. (A): average ACRO ratio comparison between the 5 different cell 

types considered. (B and C): intensity detected in the different RAM tissues types of auxin 

and cytokinin respectively. Statistical analysis using one way-ANOVA with multiple 

comparison using Tukey test with confidence level 0.05. Non-significant differences are 

illustrated by ns, absence of ns indicates a significative difference at a P value of <= 

0.0001.   

corresponding to the different cell types indicated in Figure 4.4.2-1a. We calculated the 

ACROs in the root columella, the lateral root cap, the QC, the vascular tissue (4 cell files 

going from the proximal meristem to the elongation zone), and epidermis comprising the 

remaining peripheral vasculature, the pericycle, the endodermis, the cortex and the 

epidermis (Figure 4.4.3-1a).  
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In the AuxCysensor line roots, all the ACROs cell types were significantly 

different between each other.  The lowest average ACROs ratios was present in the 

columella (88.8±31.4) and in the lateral root cap (186.2±14.5), two tissue types 

associated with cytokinin activity (Figure 4.4.3-1b). In the epidermis (269±16.8) and the 

vasculature (228±35.1) the average ACRO ratios were intermediate, while in the QC, a 

cell type reported to have the highest auxin accumulation, the average ACRO ratio was 

high (730±108; Figure 4.4.3-1b).  

  As ACRO ratios result from average auxin and cytokinin outputs, auxin and 

cytokinin output intensities were separately analyzed. This enabled to determine if the 

specificities observed among the different cell types were the effect of changes in the 

output of either hormone individually, or a combined effect. Concerning the columella, it 

had the lowest average ACRO ratio, even though its auxin intensity (368653±27758) was 

significantly higher compared to the lateral root cap, vasculature and epidermis 

(259357±6550, 218665±19519 and 260186±4178 respectively) and was significantly 

lower than the QC (678888±23868; Figure 4.4.3-1c). Indeed cytokinin intensity in the 

columella (105424±16654) was primarily responsible of this high ACRO ratio as it was 

significantly higher than in the QC, the lateral root cap, the vasculature and the epidermis 

(6862±1428, 70903±5142, 2457±320 and 23701±1543 respectively; Figure 4.4.3-1d). 

Concerning the QC its high ACRO ratio was principally the results of a specific 

auxin accumulation. QC had the highest auxin intensity (678888±23868), compared to 

columella, lateral root cap, vasculature and epidermis (368653±27758, 259357±6550, 
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218665±19519 and 260186±4178 respectively; Figure 4.4.3-1c). In addition, QC’s 

cytokinin intensity (6862±1428) was statistically similar to the vasculature and the 

epidermis (2457±320 and 23701±1543 respectively). QC’s cytokinin intensity 

(6862±1428) was significantly higher than the lateral root cap (70903±5142) and 

significantly lower than the columella that was standing out (105424±16654; Figure 

4.4.3-1d).  

The lateral root cap auxin intensity (259357±6550) was statistically similar to 

vasculature and epidermis (218665±19519 and 260186±4178 respectively) and lower 

than columella and QC that had the highest values (368653±27758 and 678888±23868 

respectively; Figure 4.4.3-1c). Concerning the cytokinin intensity in the lateral root cap 

(70903±5142), it was significantly lower than the columella (105424±16654), but 

significantly higher than QC, vasculature and epidermis (6862±1428, 2457±321 and 

23701±1543 respectively; Figure4.4.3-1d). Consequently, the cytokinin accumulation in 

lateral root cap was primarily responsible of its relatively low ACRO ratio. 

Even though vasculature and epidermis had different average ACRO ratios, their 

auxin and cytokinin intensities were statistically similar. Auxin intensities in the 

vasculature (218665±19519) and the epidermis (260186±4178) were similar to the lateral 

root cap (259357±6550) but significantly lower compared to the columella and the 

vasculature (368653±27758 and 678888±23868 respectively; Figure 4.4.3-1c). The 

cytokinin intensities of the vasculature (2457±321) and the epidermis (23701±1543) were 

statistically similar between themselves and with the QC (6862±1428) and significantly 
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lower than the columella (105424±16654) and the lateral root cap (70903±5142; Figure 

4.4.3-1d). Therefore, the relative cytokinin abundance explained why average ACRO 

ratios in the vasculature and the epidermis were higher compared to lateral root cap.  

To summarize, low ACRO ratio in lateral root cap was due to a relatively high 

relative cytokinin intensity, high ACRO ratio in the QC was caused by a relatively high 

auxin intensity. Between these two extremes, vasculature and epidermis are quite similar 

between each other but diverge from lateral root cap as the latter has a higher cytokinin 

intensity. The effect of exogenous hormone treatments was then quantified in these 

different cell types to assess their sensitivity.  

4.4.4.   Cell-type response of the AuxCysensor after auxin or cytokinin 

treatments     

 

Transcriptional outputs within the different AuxCysensor root cell types treated 

with 10nM NAA, 100µM NAA, 10nM BAP or 1µM BAP were selected to assess the 

specificity of their sensitiveness. The average ACRO ratios in columella cells after 

treatment were not significantly different compared to mock treated columella cells. They 

were relatively low and comprised between 12.6±4.7 and 158±46 (Figure 4.4.4-1a).  

In the lateral root cap, the average ACRO ratios were significantly higher after 

NAA treatment with 291±17.6 and 348±18 at 10nM and 10µM respectively and 

significantly lower after BAP treatment with 87.4±5.4 and 129±12 at 10nM and 1µM 

respectively when compared to mock treated roots (186.2±14.5; Figure 4.4.4-1b). Even 
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though we observed a dose dependent response in the case of NAA treatment, BAP 

treatments were not significatively different from each other in the lateral root cap.  

   

 

Figure 4.4.4-1: ACRO ratios in the different cell types of the AuxCysensor lines 

after different treatments with auxin, or cytokinin. (A to E): comparison of the 

average ACRO ratio in the columella, lateral root cap, epidermis, QC and vasculature 

respectively. Roots were mock treated or treated with 10nM BAP, 1µM of BAP, 10nM 

NAA or 100µM of NAA. Statistical analysis using one way-ANOVA with multiple 

comparison using Tukey test with confidence level 0.05. P value of * is <0.05, ** is <= 

0.01, *** is <= 0.001 and **** is <= 0.0001, ns corresponds to non-significant. 
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In the epidermis, only the highest treatment concentrations significantly modified 

the ACRO ratios. Indeed, the average ACRO ratio in mock treated root (269±16.8) was 

similar to 10nM NAA (310±9.6) and 10nM BAP (215±8.8) treated roots, but 

100µMNAA had a higher (551.1±21.3) and 1µM BAP a lower (168±5.8) average ACRO 

ratio compared to mock treated roots (Figure 4.4.4-1c).  

Concerning the QC, the average ACRO ratio in the mock treated roots (730±108) 

was very high and statistically similar to the 10nM NAA treatment (472±59.4), and 

surprisingly 100µM NAA treated roots had a lower average ACRO ratio in the QC 

(340±53; Figure 4.4.4-1d). There was a response after BAP treatment as the average 

ACRO ratio in 10nM BAP treated roots (166±33.4) was significantly lower compared to 

mock treated roots (730±108). Moreover, average ACRO ratio at 1µM BAP (309±76.5) 

was significantly higher compared to 10nM BAP (166±33.4) and significantly lower 

compared mock treated root (730±108; Figure 4.4.4-1d). 

Vasculature of 10nM NAA treated roots (370±41.1) had a significantly higher 

average ACRO ratio compared to mock treated roots (238±35.1) and 100µM NAA 

treated roots (343±19.3) are statistically similar to 10nM NAA treated roots (370±59.4) 

and mock treated roots (288±35.1; Figure 4.4.4-1e). On the other hand, 10nM BAP and 

1µM BAP treated roots (34.7±5.4 and 40.9±5.8 respectively) had significantly lower 

average ACRO ratios than mock treated roots (Figure 4.4.4-1e). Furthermore, exogenous 

auxin treatment triggered auxin responses in additional cells of the vasculature.   
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Figure 4.4.4-2: Number of nuclei showing a response to auxin and/or cytokinin in 

AuxCysensor roots. (A to E): Comparison of the number of nuclei detected between 

mock, 10nM BAP, 1µM of BAP, 10nM NAA and 100µM of NAA treated AuxCysensor 

roots in the columella, lateral root cap, epidermis, QC and vasculature respectively. Bars 

represent mean of the average number of nuclei, line is the standard error and dots are 

the absolute value. Statistical analysis using one way-ANOVA with multiple comparison 

using Tukey test with confidence level 0.05. P value of * is <0.05 and **** is <= 0.0001. 

Even though the average ACRO ratio in the vasculature of 100µM NAA treated 

roots was like mock treated roots, it had significantly more nuclei detected (123±18) 

compared to the mock treated roots (18±2.5; Figure 4.4.4-2e). This suggests that 100µM 
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NAA treatment was able to trigger an auxin transcriptional response in additional cells. 

No other differences were observed for the number of nuclei detected within a specific 

cell type after a NAA or BAP treatments compared to the mock treated roots.  

There were more nuclei detected in the QC region after a 10nM NAA treatment 

compared to a 10nM BAP treatment (Figure 4.4.4-2d) and in the lateral root cap, after a 

10nM BAP treatment compared to a 100µM NAA treatment (Figure 4.4.4-2b). Therefore, 

exogenous hormonal treatments appear to induce or repress transcriptional outputs 

already active in specific cells, and also expand the tissue domain of response.      

4.4.5.  AuxCysensor applied to Medicago truncatula primary root tip 

 

Our laboratory being interested in the hormonal regulation of nodule 

development, we also created AuxCysensor roots in the plant model Medicago 

truncatula. AuxCysensor primary root tips were imaged to assess the reliability of this 

methodology in Medicago transgenic roots and compare the expression patterns to 

soybean transgenic roots. ACRO ratios were quantified in three tissues types similarly to 

previous soybean study (Fisher et al, 2018). 
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Figure 4.4.5-1: Quantification of auxin and CK outputs and average ACRO ratios 

along the central root axis of AuxCysensor primary root tip. (A): Representative 

image of a primary root tip, white rectangles correspond to tissue specific ROIs root 

columella, QC and vasculature. Vertical blue lines indicate the boundaries of root cap 

columella, QC, and proximal meristem. (B): Average auxin and CK outputs and (C): 

ACRO ratios obtained from four independent transgenic roots (n=4). Auxin and CK 

outputs and ACRO ratios in nuclei from 20 normalized segments (≈31µm each) in each 

root along the root axis were determined and averaged. Segments along the root axis for 

each root were normalized by scaling the QCs to the same size. Scale bar at 100µm. 

Cytokinin outputs were visible in the columella, lateral root cap and the 

epidermis, while auxin outputs were apparent in the QC, the initials and epidermal cells 
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(Figure 4.4.5-1a). ACROs ratio of four independent roots were quantified, normalized by 

scaling the QCs to the same size and plotted as a function of distance from the tip (Figure 

4.4.5-1b and 4.4.5-1c). The columella had an ACRO ratio below 1 and the lowest was 

present at the tip. The closer the columella cells were to the QC, the higher were their 

ACRO ratios (Figure 4.4.5-1c). As observed in soybean, QC cells had higher ACRO 

ratios compared to columella and had relatively higher auxin output vs. cytokinin output 

(Figure 4.4.5-1b and 4.4.5-1c). In the transition between QC and vasculature, cells had a 

high ACRO ratio that rapidly and gradually decreased toward a negative ACRO ratio 

(Figure 4.4.5-1c). To assess ACRO ratios in root lateral organs of Medicago, 

AuxCysensor lateral root tips and nodules were imaged.   

4.4.6. AuxCysensor applied to Medicago truncatula lateral root tip and 

primordia  

 

Primary root tips and lateral root tips had similar cell tissue types. Hence, similar ROIs 

were selected in lateral root tips including the columella, the QC and the vasculature 

(Figure 4.4.6-1a). Primary root tips and lateral root tips had similar cell tissue types. 

Hence, similar ROIs were selected in lateral root tips including the columella, the QC and 

the vasculature (Figure 4.4.6-1a). The pattern reported in the case of Medicago 

AuxCysensor lateral root tip (Figure 4.4.6-1a and 4.4.6-1c) was similar in Medicago 

AuxCysensor primary root tip (Figure 4.4.6-1a and 4.4.4-6c). 
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Figure 4.4.6-1: Quantification of auxin and CK outputs and ACRO ratios along the 

central root axis of AuxCysensor lateral root tips. (A): Representative image of lateral 

root, white rectangles correspond to tissue specific ROIs, root columella, QC and 

vasculature. Vertical blue lines indicate the boundaries of root cap columella, QC, and 

proximal meristem. (B): Average auxin and CK outputs and (C): ACRO ratios obtained 

from three independent transgenic roots (n=3). Auxin and CK outputs and ACRO ratios 

in nuclei from 20 normalized segments (≈17µm each) in each root along the root axis 

were determined and averaged. Segments along the root axis for each root were 

normalized by scaling the QCs to the same size. Scale bar at 100µm. 
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Meaning average ACRO ratios below 1 in the columella, a gradual transition from 

the root tip to the QC in which average ACRO ratios become higher than 1 and plateaued 

at the transition from QC to vasculature and a decrease of the average ratios (Figure 

4.4.6-1c). Primary root being more thick than lateral, additional cell types might be 

present within similar ROIs volume. It resulted in variation of the ACRO ratios present in 

the columella and vasculature. Indeed, average columella ACRO ratio goes from 

0.56±0.07 to 1.46±0.19 and from 0.12±0.01 to 0.78±0.27 in the primary and lateral root 

tip respectively. Additionally, vasculature ACRO ratios goes from 0.89±0.26 to 

0.16±0.04 and from 1.80±0.89 to 0.41± 0.00 in the primary and lateral root tip 

respectively. To further investigate on the ACRO ratios and cell types sensitiveness in 

Medicago AuxCysensor, lateral roots primordia were imaged at two different 

developmental stages.  

Lateral root primordia (LRP) emergence is associated with a specific cytokinin 

enrichment in newly root cap cells in soybean (Fisher et al 2018). Here, we evaluated two 

lateral root primordia developmental stages in Medicago to assess if similar hormonal 

specifications were present. At stage V, LRPs had reached the epidermis and were about 

to breached from the primary root (Herrbach, Remblière et al. 2014). They were 

primarily showing an auxin-related signal (Figure 4.4.6-2a). Interestingly, stage VI lateral 

roots primordia that had just breached the epidermal cells, the signal was mostly related 

to auxin and the exception of the nascent root vasculature were a red signal was present 

and the root cap cells presenting both hormonal outputs (Figure 4.4.6-2b).  
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Figure 4.4.6-2: ACRO ratios in stage V and stage VI AuxCysensor lateral root 

primordia. (A): Representative image of stage V lateral root primordia (B): 

Representative image of stage VI lateral root primordia. (A and B): white rectangles 

correspond to ROIs drawn along the central axis of lateral root primordia. (C): Average 

ACRO ratio in stage V compared to stage VI lateral root primordia. (D and E): ACRO 

ratios in each nucleus plotted as a function of distance from the tip of the lateral root 

primordia in stage V and VI lateral root primordia respectively. Each dot represents a 

nucleus. (F and G): Average ACRO ratios obtained from four independent transgenic 

roots (n=4) in stage V and stage VI lateral root primordia respectively by adding all the 

auxin to cytokinin ratio over distance. ACRO ratios in nuclei from 20 normalized 

segments (≈5µm for stage V and 7µm for stage VI) in each root along the lateral root 

axis were determined and averaged. Statistical analysis using method similar to Figure 

4.4.4-2. P value of * is <0.05, ** is <= 0.01, *** is <= 0.001 and **** is <= 0.0001, ns 

means non-significant. Scale bar at 100µm. 

Average ACRO ratios along the central lateral root primordia axis is higher 

(4.8±0.15) in stage V primordia than in stage VI ones (3.4±0.12; Figure 4.4.6-2c). 

Regarding the distribution of the ACRO ratio along that central axis, the majority of the 

nuclei had ACRO ratios higher than 1 at both stages (Figure 4.4.6-2d and 4.4.6-2e). Few 

nuclei were presenting ACRO ratios below 1 in the primordia tip, none is the 

meristematic zone, and some more in the vasculature in both stage VI and stage V lateral 

root primordia (Figure 4.4.6-2d and 4.4.6-2e). Average ACRO ratio declined from the tip 
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of the lateral root primordia toward the vasculature at both stages (Figure 4.4.6-2f and 

4.4.6-2g). Note that stage VI lateral root primordia were not significantly cytokinin-

enriched in the root cap or the vasculature contrary to soybean ones (Figure 4.4.6-2g; 

Fisher at al 2018). Medicago nodules were also imaged to determine if their different cell 

types were presenting specific ACRO signature.   

4.4.7. AuxCysensor applied to sectioned Medicago truncatula root 

nodules 

 

Medicago is the model plant for indeterminate nodule development studies. Here, 

AuxCysensor Medicago nodules were sectioned longitudinally (Figure 4.4.7-1a) or 

transversally (Figure 4.4.7-1b) and imaged. Longitudinal sections present a visible and 

active meristem at the nodule apex, that is followed by an infection and differentiation 

zone constituted of few cell layers only (Figure 4.4.7-1a and 4.4.7-1b). The infection 

zones of longitudinal sections occupy most of the nodule and a senescent zone is present 

before the nodule connects to the root (Figure 4.4.7-1a and 4.4.7-1c). Transversal 

sections were effectuated in the center of the nodule and are composed of the infection 

zone at the center and circular vascular bundles in the periphery (Figure 4.4.7-1b and 

4.4.7-1d). The average ACRO ratio in the meristem (16.7±1.3) is significantly higher 

than in the related infection zone (0.8±0.02±; Figure 4.4.7-1e) and the average ACRO 

ratio in the vascular bundles (4.8±0.5) is significantly higher than in the related infection 

zone (0.9±0.03±; Figure 4.4.7-1f). 
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Figure 4.4.7-1: ACRO ratios in AuxCysensor Medicago nodules. (A and B): 

schematic representation of indeterminate nodule comprising five different tissues zones, 

adapted from Dupont et al. 2012. I: apical meristem, II: infection and differentiation 

zone, III: fixation zone, IV: senescent zone and V: saprophytic zone. Nodule present a 

cortical cell layer, vascular bundles and central infected tissues. Blue line indicates the 

section made longitudinally (A) or transversally (B). (C and D:) Imaging of auxin (green 

dots), cytokinin (red dots) in longitudinal and transversal cross section respectively. 

Green circles represent ROIs containing the meristem and the vascular bundle in C and 

D respectively. Red circles represent ROIs corresponding to the infection zone (C and 

D). (E): average ACRO ratios comparison between the root nodule apical meristem and 

the infection zone of AuxCysensor nodule longitudinally sectioned. (F): average ACRO 

ratios comparison between the root nodule vascular bundle and the infection zone of 

AuxCysensor nodule transversally sectioned. Statistical analysis using one way-ANOVA 

with multiple comparison using unpaired t test with confidence level 0.05. P value of * is 

<0.05, ** is <= 0.01, *** is <= 0.001 and **** is <= 0.0001, ns means non-significant. 

Scale bar at 100µm.   

4.5. Discussion 

 

Here we present AuxCysensor Arabidopsis thaliana, a line able to report auxin-

CK relative outputs. This strategy has already been successfully used in soybean 

transgenic root of composite plants (Fisher, Gaillard et al. 2018). In that study we showed 
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that auxin and cytokinin patterns in soybean primary root tips and lateral root primordia 

agreed with previous studies underscoring the usefulness of AuxCysensor construct to 

monitor cell level auxin-cytokinin outputs. Moreover, we showed that relative 

quantification of auxin and cytokinin output was accurate and cell specific in these 

organs and in soybean pre-mature root nodule. 

  In the present article, we report auxin and cytokinin patterns in the SAM and 

RAM of Arabidopsis AuxCysensor lines. As expected, cytokinin outputs were detected in 

the RZ (Figure 4.4.1-1a) a tissue associated with meristematic activity and cellular 

division (Barton 2010). High cytokinin outputs were also detected in the OC and the 

overlap between OC and CZ (Figure 4.4.1-1a), where high cytokinin has been reported to 

maintain stem cells identity (Kurakawa, Ueda et al. 2007). Transcriptional auxin activity 

was detected in the peripheral zone (Figure 4.4.1-1a), where its accumulation is required 

to initiate new primordia, and in the CZ (Figure 4.4.1-1a) to ensure stem cell homeostasis 

(Yoshida, Mandel et al. 2011, Adibi, Yoshida et al. 2016). Additionally, high auxin 

outputs were also reported in the leaf primordium (Figure 4.4.1-1a) even though its role 

in regulating leaf dorsoventrality is still controversial (Bhatia, Åhl et al. 2019). Here we 

imaged the transcriptional output of auxin in relation to cytokinin to report their relative 

patterns and abundance and provide new insights of these.  

In the RAM auxin outputs culminate in the quiescent center where auxin is 

responsible for maintaining stem cell identity (Figure 4.4.1-1b). Auxin was also located 

in the proximal meristem (Figure 4.4.1-1b) where it acts to promote cell division (Lewis, 
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Negi et al. 2011). In the primary root tip, cytokinin can be detected in the lateral root cap 

and in the columella (Figure 4.4.1-1b) where it is associated with cell maturation and 

differentiation (Dobisova, Hrdinova et al. 2017). Imaging of the AuxCysensor reporter in 

the RAM and SAM agreed with literatures studies and is therefore a reliable tool to 

investigate concomitant auxin and cytokinin activity in these contexts. Moreover, auxin 

and cytokinin transcriptional outputs were spatially distinct in RAM and SAM and did 

not visually overlap. This agrees with their functions described as antagonistic toward 

each other, reviewed by (Su, Liu et al. 2011). Furthermore, the hormone tissue-specific 

prevalence indicates the crucial role played by auxin and cytokinin to control cell identity 

in an exclusive and opposite manner.   

The sensitivity of the AuxCysensor reporter line was then tested via exogenous 

auxin and cytokinin treatments at different concentrations. Cytokinin treatments induced 

a cytokinin response in the lateral root cap except at 1µM of BAP where it was observed 

in lateral vascular cells (Figure 4.4.2-1b to 4.4.2-1e). Regulatory mechanisms might be 

involved in the repression of the cytokinin reposnse in lateral root cap after the 1µM of 

BAP treatment to maintain cellular homeostasis. Additionnaly, it seems that vascular 

cells might be responsive to high cytokinin concentrations in the vasculature. It appears 

that AuxCysensor is responding to increased cytokinin concentration and can be a tool to 

estimate the state of cytokinin activity in situ. Similar observation was made after auxin 

treatment. The AuxCysensor reported a dose-dependent response to the various NAA 
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concentrations applied. Indeed, the more NAA concentrations were applied, the more 

cells were responding, until most of the root tip presented an auxin transcriptional output.  

In mock treated roots, the auxin output was primarly observed in the QC (Figure 

4.4.2-1a). After the 10nM NAA treatment, the auxin output was broadened and 

comprised the QC and surrondings cells (Figure 4.4.2-1e). In 100nM NAA treated roots, 

the response was present in the QC, surrounding cells, and in several layers of cortical, 

endodermal, epidermal, lateral root cap and columella initials cells (Figure 4.4.2-1f). 

Auxin response at 1µM of NAA was observed in similar cells types as in the 100nM 

NAA treated roots (Figure 4.4.2-1f) but in a broader number of cells (Figure 4.4.2-1g). 

After a tratement of 10µM of NAA, majority of the cells present in the proximal 

meristematic cells and all initial cells were reporting an auxin related signal (Figure 

4.4.2-1h). After a 100µM of NAA treatement, the overal root showed a positive auxin 

output signal except some cortical and endodermal cells (Figure 4.4.2-1i). It is possible 

that cortical and endodermal cells have a very low sensitivity to auxin and might not be 

able to reponsd to the 100µM of NAA treatement which is beyond physiological 

concentrations. Note that treatements were exogenous and that these tissue types might 

have a different accessibilities resulting in different outputs but not sensnitivity.  

Overall, the AuxCysensor provided a positive response to cytokinin treatments 

and a dose-dependent response to auxin treatments. Consequently, AuxCysensor lines 

could be used to classify different cell types according to their sensitivity to auxin or 
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cytokinin treatments. ACRO ratios were then quantified to further investigate the 

auxin/CK specificities from cell type to cell type and their responsiveness specificities.     

Auxin and cytokinin are involved in most of the plant growth and developmental 

processes and the abundance of one hormone over the other usually dictates specific 

developmental programs. They often interact in complex ways and although they have 

been independently described, their relative ratios are currently ignored. Therefore, we 

quantified the average ACRO ratios within different root cell types to identify specific 

ACRO ratios profiles. When compared to each other, the cell types present in the root tip 

(columella, lateral root cap, QC, the vascular tissue and epidermis) felt into three main 

categories according to their average ACRO ratios (Figure 4.4.3-1a and 4.4.3-1b). 

  The first group was composed of the columella and lateral root cap that had the 

lowest ACRO ratios. The cells composing these tissues are predominantly mature and a 

high cytokinin transcriptional activity was expected in agreement with cytokinin’s role in 

cell differentiation (Figure 4.4.3-1b). Vasculature and the epidermis have been reported 

to show a slight response using auxin transcriptional output reporter (Lewis, Negi et al. 

2011). Just as expected, vasculature and the epidermis were part of the second group and 

had medium average ACRO ratio. The QC represented the third category with a high 

ACRO ratio, a cell type where the auxin transcriptional outputs maxima had been 

reported multiples times (Ge, Peer et al. 2010, Lewis, Negi et al. 2011, Hayashi, 

Nakamura et al. 2014). Individual auxin and cytokinin outputs (intensity) were also 
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analyzed to understand if the respective ACRO ratios were the result of one hormone 

over the other or both effects combined.   

It appears that the hormone predominantly driving the cell function is also driving 

the ACRO ratio. In the case of the lateral root cap, the low average ACRO ratio was due 

to a high cytokinin intensity and not to a low auxin intensity (Figure 4.4.3-1c and 4.4.3-

1d). This is consistent as root cap functions as a protective layer of mature cells and 

cytokinin is involved in cell differentiation. High average ACRO ratio in the QC was 

caused by a high auxin intensity and not a low cytokinin intensity (Figure 4.4.3-1c and 

4.4.3-1d). This also agrees with auxin’s role in high concentration in the root which is to 

maintain and ensure stem cell identity, reviewed by (Stahl and Simon 2010). Between 

these two extremes, vasculature and epidermis are quite similar between each other but 

diverge from lateral root cap as the latest has a higher cytokinin intensity (Figure 4.4.3-1c 

and 4.4.3-1d). Once again this in agreement with the role of cytokinin which is to trigger 

cell differentiation like in the case of lateral root cap cell identity. Vasculature being in 

transition from dividing to elongation cells an average ACRO ratio involving both 

hormones was expected. Auxin transcriptional outputs in the epidermis were in 

agreement with previous study (Lewis, Negi et al. 2011). Epidermal auxin is involved in 

key aspects of plant development and responses such as root hair elongation (Santelia, 

Vincenzetti et al. 2005) and gravitropism (Swarup, Kramer et al. 2005).  

The ACRO ratios after exogenous hormone treatments were calculated to quantify 

the responsiveness specificity in the different cell types. To evaluate the sensitivity of the 
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AuxCysensor line, we selected the lowest and highest treatment concentrations (10nM 

BAP and 1µM BAP) for cytokinin and (10nM NAA or 100µM NAA) for auxin. No 

differences between 10nM BAP and 1µM BAP treatments in all the root tissues 

considered (Figure 4.4.4-1a to 4.4.4-1e). This suggests that 10nM BAP might be enough 

to trigger a cytokinin response maxima, or that beyond 10nM BAP, a negative feedback 

might happen. Considering that auxin and cytokinin are interdependently regulating their 

concentration in the RAM, comparisons between treatments should be taken with caution 

and emphasize should be made on the comparison from treated to mock treated roots.  

Columella cells are in an advanced differentiation state and their average ACRO 

ratios were relatively low and were not significatively impacted by any of the treatments 

compared to mock treated roots (Figure 4.4.4-1a). These cells don’t seem to be 

responsive to the treatments applied. This cellular identity is associated with a low auxin 

and cytokinin responsiveness that might be maintained and required to ensure their 

function. In the lateral root cap, a dose dependent response was observed after the NAA 

treatment (Figure 4.4.4-1b). Although lateral root cap cells are fully mature, they are still 

sensitive to both hormones. They responded to the NAA and BAP treatment, even though 

this cell type had a relatively low average ACRO ratio in the mock treated roots (Figure 

4.4.4-1b).  

Lateral root cap cells presented an auxin and cytokinin sensitivity, that might be 

involved in their function. The epidermis seems to be less sensitive to both hormones, as 

only high hormonal treatment concentrations induced a response in the AuxCysensor 
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lines (Figure 4.4.4-1c). The QC of mock treated roots is characterized by the highest 

average ACRO ratio. BAP treatments reduced the high auxin response (Figure 4.4.4-1d) 

and suggests a sensitivity to cytokinin. QC of 10nM NAA treated roots had a similar 

average ACRO ratio as in the QC of mock treated roots (Figure 4.4.4-1d). The average 

ACRO ratio being already very high in the mock treated root QC, this suggests that the 

auxin might be plateaued. Indeed, Hayashi et al 2014 did not report a visual increase of 

the auxin transcriptional output in the QC after a 10nM NAA root treatment (Hayashi, 

Nakamura et al. 2014). Surprisingly, 100µMNAA treated roots had a lower average 

ACRO compared to mock treated roots (Figure 4.4.4-1d). This might be due to negative 

feedback regulatory mechanisms in order to maintain the auxin maxima within 

physiological concentration in the RAM.  

In the vasculature, BAP treated roots had a lower average ACRO ratio, 10nM 

NAA treated roots had a higher average ratio, but 100µM NAA treated roots had a 

similar average ratio compared to the mock treated ones (Figure 4.4.4-1e). Thus, 

vasculature cells were responsive to BAP treatments and 100nM NAA treatment which 

makes sense as they relied on this sensitivity to both hormones to acquire new identities 

during their migration out of the meristem. 100µM NAA treatment did not induced a 

higher ACRO ratio but it induced a significatively higher number of cells providing a 

signal in the vasculature (Figure 4.4.4-1e and 5e).  

Interestingly, this is the only cell type for which a treatment had induced an 

altered number of nuclei detected compared to the mock treated roots. The vasculature of 



203 
 
 

 

 

100µM NAA treated roots presented a significantly higher number of cells reporting an 

output compared to the mock treated roots (Figure 4.4.4-2e). Considering that cells 

within the vasculature were transitioning from an active cell division state associated with 

high auxin and low cytokinin to an elongation state correlated with less auxin and more 

cytokinin it is not surprising that the cells remained auxin sensitive (Dello Ioio, Linhares 

et al. 2007). The cells detected were most likely composed of a gradient of cells going 

from cell dividing to cell elongating and they might have different auxin sensitivities. 

Therefore, the highest number of cells detected is probably composed of a population of 

cells having different sensitivities. This could explain why the average ACRO ratio in the 

vasculature at 100µM NAA is not significantly different from the ones present in roots 

treated with 10nM NAA or mock treated roots.  

To summarize, the different cell types at the exception of the columella responded 

to the hormonal treatment. These results agreed with Tobisova et al., 2017 that also 

reported an increased cytokinin transcriptional outputs after BAP treatment in the lateral 

root cap, quiescent center, vasculature and epidermis (Dobisova, Hrdinova et al. 2017). 

Moreover, similar to our results, higher auxin transcriptional outputs after NAA treatment 

in the lateral root cap, the epidermis and the vasculature were also previously reported 

(Hayashi, Nakamura et al. 2014).  

This helped to validate the accuracy of the methodology and the sensitivity of the 

AuxCysensor line. Additionally, the different ACRO ratios observed in different cell 

types concurs with the gradient of cytokinin observed along the root tip axe and the cell 
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type specific auxin/CK antagonistic relationship previously described (Antoniadi, 

Plačková et al. 2015). Furthermore, we reported the presence of specific average ACRO 

ratios being associated with specific cell types and mostly likely responsible of their 

identity. These ratios seem to be the driving force of plant development and to dictate 

plant cell and plant development status. It would be interesting to look at known auxin 

and/or cytokinin mutants with developmental phenotypes to characterize these in light of 

both hormones individually as well as their average ACRO ratios. 

Arabidopsis leaf epidermis imaging of concomitant auxin and cytokinin outputs 

was realized for the first time. Interestingly, cytokinin output seems to be associated with 

guard cells and the auxin to leaf epidermis (Figure 4.4.1-1c). As both of these cell types 

are differentiated and have a low division rate, this might indicate a potential involvement 

of these hormones in the regulation of physiological processes. The role played by auxin 

and cytokinin in stomatal opening and closure is ambiguous and cytokinin has been 

proposed to regulate the differentiation of stomatal cell lineages (Daszkowska-Golec and 

Szarejko 2013). Hence, the AuxCysensor can not only be used to assess auxin and 

cytokinin roles in plant development, but it also can be used to study their function.  

Here, leaf epidermal imaging gave an overview of the capability of the technique: 

auxin and cytokinin outputs imaging of intact plants to study their function in vivo. It 

would be interesting to place the AuxCysensor lines under (a)biotic stresses to observe 

the cell type ACRO ratios responses and if they are associated with stomal opening and 

closure. Such a philosophy could be extended to other plant functions in which auxin and 
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cytokinin transcriptional activity is important or ignored as long as imaging techniques 

allows it. 

The AuxCysensor was then evaluated in Medicago, a model plant of the 

symbiosis between rhizobia and legumes to assess auxin/CK root specificities and auxin 

and cytokinin requirements involved in nodule development. Medicago ACROs ratios 

patterns were similar in lateral and primary root tips (Figure 4.4.5-1c and 4.4.5-1e and 

figure 4.4.6-1c and 4.4.6-1e): low the columella, high in the QC and low in the 

vasculature. Note that there was a substantial variation in lateral root tip vasculature 

tissues and imaging a larger number of roots should provide a better representation of the 

ACRO ratios in this cell type.  

Additionally, these patterns were also observed in Arabidopsis and soybean 

primary root tip. In the case of soybean primary root tip and Medicago primary and 

lateral root tips, ACRO ratios in the columella (Figure 4.4.5-1c and 4.4.5-1c; Figure 

4.4.6-1c and 4.4.6-1e; (Fisher, Gaillard et al. 2018)) and vasculature (Figure 4.4.5-1c and 

4.4.5-1e; Figure 4.4.6-1c and 4.4.6-1e; (Fisher, Gaillard et al. 2018)) were lower than 1, 

but not in the case of Arabidopsis (Figure 4.4.3-1b). This indicates that similar tissues 

types ensuring similar biological functions have slightly different hormonal sensitiveness, 

especially in the case of cytokinin. However, the overall pattern is identical, justifying the 

importance of considering auxin and cytokinin as a ratio and not individually. That 

observation was also observed in the case of lateral root primordia emergence.  
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Fisher et al., 2018 described this process being associated with a specific 

cytokinin enrichment in newly root cap cells in soybean (Fisher, Gaillard et al. 2018). 

Here, non-emerged  stage V Medicago primordia were primarily auxin enriched (Figure 

4.4.6-2a, 4.4.6-2d and 4.4.6-2f) like in soybean (Fisher, Gaillard et al. 2018). However, 

Medicago stage VI emerged lateral root primordia were not presenting the cytokinin 

accumulation in root cap cells and nascent vasculature contrary to soybean (Fisher, 

Gaillard et al. 2018). Consequently, it appears that cytokinin sensitivity is not only 

species but also organ specific. The Medicago ACRO patterns being overall consistent 

with other plant species and literature reports, the accuracy of the methodology was 

validated, and we applied it to Medicago nodules for which less is known about auxin 

and cytokinin. 

Medicago produces indeterminate nodules type. These nodules have a persistent 

apical meristem that maintains mitotic activity and sustains nodule growth resulting in 

oblong nodule shape (Figure 4.4.7-1a). On the contrary, determinate nodules possess a 

transient meristem that initiates nodule organogenesis but ceases mitotic activity during 

nodule development resulting in a spherical nodule. Despite this difference, both nodules 

share similar functions ensured by two tissue types. Nitrogen is fixated by rhizobia in the 

infection zone and nutrients are exchanged between the infection zone and the rest of the 

plant tissues via vascular bundles. Fisher et al 2018 reported that these two tissues had 

specific auxin/ck relative ratios in determinate type nodules of soybean pre-mature 
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nodules (Fisher, Gaillard et al. 2018). We decided to study if these traits were conserved 

in indeterminate and images AuxCysensor mature nodules.  

Mature Medicago nodule have a higher average ACRO ratio in the apical 

meristem compared to the infection zone. Even though auxin and cytokinin have been 

reported in indeterminate nodule apical meristem (Plet, Wasson et al. 2011, Kohlen, Ng 

et al. 2018), we reported that auxin transcriptional outputs are relatively higher than 

cytokinin ones.  As mentioned, the presence of auxin in the meristem agreed with 

previous reports (Ng and Mathesius 2018) and is in agreement with auxin function in 

indeterminate nodule meristem: ensuring continuous nodule growth.  

Indeed, root and nodule meristems both ensure cell division to generate organ 

growth and this activity relies on auxin enrichment. Similarly to soybean, the infection 

zone of Medicago nodules presented a low average ACRO ratio (Figure 4.4.7-1c; (Fisher, 

Gaillard et al. 2018)). Additionally, vascular bundles of Medicago were associated with a 

high ACRO ratios (Figure 4.4.7-1d) as previously observed (Ng and Mathesius 2018) and 

observed in soybean (Fisher, Gaillard et al. 2018). Hence, even though soybean and 

Medicago have different nodule types, the same tissue types with similar functions and 

are associated with similar aux/CK balance.  

Multi-photon microscopy combined with the AuxCysensor line strategy enables 

to image in a non-destructive way living tissue and various developmental processes can 

be followed over time. This is particularly important in contexts where both hormones are 



208 
 
 

 

 

involved in developmental and/or functional processes, but their relationships are ignored 

or unclear. We demonstrated that specific ACRO ratio were associated with specific cell 

type in Arabidopsis and Medicago roots. Moreover, these specific ACRO ratios were 

associated with specific function (e.g. high average ACRO ratio associated with 

meristematic activity). Additionally, we demonstrated how the methodology can be to 

study plant development processes like LRP emergence where slight ACRO changes are 

associated with drastic developmental changes. Finally, we illustrated how the 

AuxCysensor lines could be used to study physiological processes such as stomata 

opening and closure where specific ACRO ratios might be crucial to control. 

Concomitant auxin and cytokinin output quantification in processes where 

unknown auxin/ck relative ratio regulates specific developmental programs could fill 

these gaps in knowledge and provide a wide range of discoveries and application. Stable 

AuxCysensor line have been obtained for Arabidopsis thaliana and Medicago truncatula 

and are currently being developed in wheat (Triticum aestivum), tomato (Solanum 

lycopersicum), soybean and peanut (Arachis hypogaea). Additionally, the AuxCysensor 

can be used in composite plant (Fisher, Gaillard et al. 2018) and our lab have used it in 

Agrobacterium-mediated transient expression in tobacco leaves (unpublished).   
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