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ABSTRACT 

VOLCANIC IMPACT ON STRATOSPHERIC CHLORINE CHEMISTRY AND 

PERCHLORATE FORMATION: EVIDENCE FROM ICE CORES 

JOSHUA KENNEDY 

2020 

 

Perchlorate, suspected to be chemically formed in both the troposphere and 

stratosphere, has been recently measured in Arctic snow and ice cores.  These comprise 

both discontinuous snow and ice cores from the Canadian Arctic and a continuous record 

of perchlorate was compiled from an analysis of Greenland ice cores.  While the 

background perchlorate concentration typically is very low, a few spikes in concentration 

coinciding with deposition of volcanic sulfate were observed in the Greenland record, 

suggesting that perchlorate levels in the atmosphere may be impacted by volcanic 

eruptions.  As of yet, no work has been done to investigate the connection between 

volcanic eruptions and perchlorate formation.  It was not known 1) whether the volcanic 

perchlorate response is limited to samples collected in Greenland, 2) if the volcanic 

perchlorate response is just limited to certain eruptions, 3) what factors influence the 

magnitude of the response, and 4) what chemistry drives the volcanic perchlorate 

response.   

In this work, detailed analysis and careful examination of the data collected from 

Antarctic, Alaskan, and Greenland ice cores show no seasonal oscillation during 

nonvolcanic periods prior to the 1980s, indicating a relatively small role for stratospheric 
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photochemical production pathways in the Arctic during these times.  The development 

of a strong seasonal oscillation in perchlorate concentration in snow since 1980 

corresponds with a drastic increase in stratospheric organic chlorine throughout the late 

20th century, indicating that the relative contribution of stratospheric photochemical 

processes to the perchlorate deposition in the Arctic has increased as a result of increased 

stratospheric organic chlorine.  Correlation of annual perchlorate flux with mean annual 

ozone abundance in recent decades suggests that the abundance of both ozone and 

perchlorate are influenced by stratospheric chlorine. 

The analysis of ice cores from the South Pole containing the sulfate fallout from 

several large volcanoes revealed that volcanic perchlorate response is not restricted to 

the Arctic and occurs in the Antarctic as well.  The large flux of perchlorate deposition 

during periods perturbed by volcanic eruptions relative to background levels in snow 

during nonvolcanic periods indicate volcanism is a significant source of perchlorate in the 

environment.  Perchlorate formation and deposition in response to some eruptions easily 

exceed decades of perchlorate deposition during nonvolcanic periods.   

The flux of sulfate is highly correlated with the flux of perchlorate during 

volcanically perturbed periods in the stratosphere, indicating that the impact of volcanic 

aerosol on stratospheric chlorine chemistry results in increased formation of perchlorate.  

Examination of proposed perchlorate chemistry and formation mechanisms leads to the 

conclusion that chlorine activation is likely the key process.  Volcanic eruptions enhance 

perchlorate formation through injections of aerosol-forming sulfur, promoting formation 

of chlorine radicals and other important perchlorate intermediates. 
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Unlike sulfate, perchlorate in snow experiences post-depositional change. The 

main characteristic of that change is probably diffusion in the firn column.  The 

perchlorate response in ice cores exhibits what appears to be high effective diffusivity 

relative to sulfate.  The diffusivity for perchlorate is modeled based upon the perchlorate 

response of the 1912 eruption of Katmai and estimated to be about 10-5 m2 yr-1.  

Comparison of volcanic perchlorate response signals in ice cores from multiple time 

periods and sampling locations support diffusion in the firn layer. 
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1.0 Introduction 

1.1 Volcanic Eruptions and the Environment 

Earth is home to a staggering array of intertwined physical and chemical processes 

that have interacted for eons, changing the air, water, and surface to give rise to the 

planet we know today.  Wind, water, and gravity weather massive landforms and sculpt 

the landscape on shorter timescales, while tectonic movement of plates dramatically 

reshapes the surface over long periods of time.  These physical processes change weather 

patterns on the surface and contribute to long and intense periods of climate variation.  

Other processes, such as the dissolution of limestone or formation of an oxygenated 

atmosphere are chemical in nature, rather than physical, but nonetheless are just as 

important in shaping Earth, and supporting life.  Some natural events on Earth have far-

reaching physical and chemical impacts, however, and few can match volcanic eruptions 

in either the scale or intensity of their impacts upon the environment. 

The physical impacts of volcanic eruptions are diverse and vary in terms of scale 

and environmental impact.  In the local vicinity of the eruption, lahars and pyroclastic 

flows decimate all life forms in their wake and can result in massive deforestation and 

redirection of river basins.  Ash fall can form thick deposits many miles from the vent and 

can remain thick across vast continental regions, rapidly changing entire ecosystems.  The 

fine ash that is injected into the stratosphere after major eruptions scatters solar 

radiation, reducing the amount reaching the surface, and may result in multi-year cooling 

and sea ice expansion. In addition, these physical impacts of eruptions can displace 
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populations, cause crops to fail, and change the biosphere for many years (Cole-Dai, 2010; 

Ayris and Delmelle, 2012). 

Volcanic eruptions do not just cause physical disruption of the environment, but 

also may have significant impact upon the chemical processes that occur in nature.  

Eruptions may emit high amounts of acid halides, leading to deaths from respiratory 

distress in many living things.  The sulfur dioxide emitted from volcanic eruptions is 

converted to sulfuric acid in the atmosphere, leading both to the buildup of the 

aforementioned stratospheric aerosol, and precipitating long distances from the vicinity 

of the volcano with rain, along with much of the emitted halogen halides.  The chemical 

impact of eruptions on the environment, however, is quite complex and poorly 

understood.  The study of the impacts that eruptions have upon chemistry in the 

environment benefits from the construction of records of explosive volcanism.  These 

records may be constructed from various sources of information and environmental 

measurements, such as written or oral accounts, tree-ring analysis, geologic evidence, 

and ice core chemical measurements and tephra analysis. 

Of course, detailed and well-dated written histories from direct observation of the 

eruptions would be most valuable, but records such as these are largely limited to the last 

few centuries, and then are highly constrained in both accuracy and quality by the 

technological advancement of the observing civilization.  Fortunately, both physical and 

chemical evidence of volcanic eruptions are preserved in various media on the Earth’s 

surface, and these records may be used to construct longer timelines of volcanic activity 

and impact.  While both types of evidence may be found in the lithosphere, and very long 
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records of volcanic eruptions may be constructed, the absolute dating and time resolution 

of geologic records is quite poor, and in many cases the uncertainty of an eruption date 

may be thousands of years or more.  Ice cores though, strike a good balance between 

length of the record, resolution of events, completeness of the record, and precision is 

assigning dates to the signals.   

Multiple types of artifacts have been observed in ice cores pertaining to volcanic 

eruptions, such as pieces of tephra and strata of high concentrations of sulfuric acid.  

However, what ice cores gain in those regards, they lose in the ability to confidently assign 

an actual volcano to the observed signal.  While tephra may help in this regard, usually 

the samples collected for analysis are quite small and few in number, leading to some 

uncertainties in their interpretation.  Sulfate on the other hand, leaves no signature of its 

emission source.  Few other reliable chemical signals exist, but some recent work has 

shown that perchlorate levels in ice cores become elevated following some eruptions, 

showing promise for its use in discerning details about the chemical impact of large 

eruptions on the environment. 

1.2 Perchlorate in the Environment 

Perchlorate, ClO4
-, is a water-soluble anion with tetrahedral geometry where the 

chlorine atom is in its most oxidized state, +7.  Owing to its somewhat high activation 

energy required for reduction and relative stability in an aqueous matrix (Urbansky, 1998; 

Urbansky, 2002; Brown and Gu, 2006; Gu and Coates, 2006), perchlorate persists for long 

periods in groundwater (Sturchio et al., 2014).  Due to the readily soluble nature of 
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perchlorate, groundwater constitutes one of the primary reservoirs of environmental 

perchlorate.  Low levels of perchlorate occur across the planet other matrices, however.  

Not only has perchlorate been detected in subsurface waters and groundwater totally 

isolated from possible human sources of pollution, but it has also been found in certain 

hyper arid environments as well.  These arid areas include the Atacama Desert, Antarctic 

Dry Valleys, High Plains of Texas and New Mexico in the US, and the deserts of the 

American Southwest (Urbansky, 2002; Plummer et al., 2006; Rajagopalan et al., 2006; Rao 

et al., 2007; Catling et al., 2010; Kounaves et al., 2010; Lybrand et al., 2013), where soils 

can possess high levels of perchlorate salts, spared from dissolution by precipitation.  

Some mineral deposits with high nitrate content from Chile also contain high levels of 

perchlorate, which has been detected in products using this nitrate source, such as 

fertilizer and projectile propellants (Urbansky et al., 2001), though the release of 

perchlorate to the environment from these sources is not significant. 

Perchlorate has negative health effects in humans.  Exposure to perchlorate can 

impair thyroid function in humans by interfering with normal iodine uptake (Kirk, 2006; 

Sijimol et al., 2015; Knight et al., 2017).  This leads to a wide array of health issues, 

including symptoms of hyperthyroidism or hypothyroxinemia, and low birth weights of 

infants born to women exposed to perchlorate (Rubin et al., 2017).  Some populations, 

such as those living in Nanchang, China, experience much higher exposure levels than 

most of the sampled population of China (Zhang et al., 2010).  Routes of perchlorate 

exposure also comprise milk, where in some cases, perchlorate concentrations in human 

breast milk have been measured to be much higher than animal milk (Kirk et al., 2005).  
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Perchlorate may also be taken up into agricultural crops in areas experiencing perchlorate 

contamination in soil or water, increasing human exposure in some cases (Lawrence et 

al., 2000; Dasgupta et al., 2006; Sijimol et al., 2015; Steinmaus, 2016). 

1.3 Sources of Environmental Perchlorate 

Sources of environmental perchlorate may be either anthropogenic in nature or 

the result of natural chemical reactions (discussed in section below).  Recently, interest 

has focused on perchlorate as an emerging contaminant, though very high perchlorate 

levels in the environment tend to be localized areas of pollution, such as the lower 

Colorado River in the southwestern United States (Urbansky, 2002; Kumarathilaka et al., 

2016).  Anthropogenic sources may comprise both release during normal use and 

production of perchlorate containing chemicals, and large pollution events, such as the 

1988 explosion at the PEPCON chemical plant in Henderson, Nevada.  Formed through 

electrolysis of saturated aqueous sodium chloride solutions, perchlorate pollution 

associated with production has been a recurring issue in the southwestern United States 

(Steinmaus, 2016).   

Products which may release perchlorate to the environment through normal use 

include flares, fireworks, and certain rocket fuels (Motzer, 2001; Silva, 2003; Dasgupta et 

al., 2006), though the contribution from these sources is thought to be small.  Disposal, 

recycling, and demilitarizing of munitions also pose risks to the environment in terms of 

perchlorate pollution (Trumpolt et al., 2005).  Perchlorate has been measured at many US 

government facilities at a wide range of concentrations, but cleanup activities and 
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remediation actions are both slow and ongoing (Stephenson, 2011).  To adequately 

quantify how much perchlorate naturally occurs in the environment, and to establish 

some regulatory threshold for exposure, records of environmental perchlorate are 

needed. 

Records of perchlorate in the environment are sparse.  Largely, measurements 

obtained on isolated and discontinuous samples provide only limited information as to 

how perchlorate in the environment has varied through time.  Continuous records are of 

critical importance, however, for purposes of evaluating typical background levels in the 

environment, identifying short- or long-term deviations from background levels, and 

identifying causes for departures from said background. 

A record of perchlorate in wet deposition across the United States and Puerto Rico 

was constructed that covered the time period from October 2004 to October 2007 from 

16 sampling locations (Rajagopalan et al., 2009).  The average concentration was 

determined to be 14.1 ± 13.5 ppt, with the maximum concentrations reaching above 100 

ppt.  Though this study was of limited duration, a slight seasonality was detected with 

perchlorate concentration reaching a maximum in the summer, but only for two years of 

the study.  A key shortcoming of liquid precipitation measurements, however, is that an 

archive is not generated; samples may only be collected at time of deposition.  Clearly, 

some long-lasting archive of environmental perchlorate would be useful, and ice core 

records have proved to be valuable in this regard.   
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A record of perchlorate in Arctic snow from 1996 CE to 2005 CE was obtained from 

snow pit samples from the Devon Island ice cap in Nunavut, Canada (75° 20N, 82° 40W at 

1797 masl) in the spring of 2006 (Furdui and Tomassini, 2010).  The snow pit was 6.8 

meters in depth, with sample resolution of 20 to 25 cm.  The mean perchlorate 

concentration reported in this study was 5.5 ± 3.9 ppt, far lower than that reported by 

Rajagopalan, et al. (2009), and ranged from <1 to about 8 ppt, with the highest values in 

the years 1996 and 1997.  Though the temporal resolution of this record was quite low in 

terms of samples per year, several key observations were made.  First, the researchers 

speculate that the high flux of perchlorate in 1996 and 1997 is due to lingering 

stratospheric aerosol from the eruption of Mt. Pinatubo in 1991.  The role of volcanic 

activity as a supplier of chlorine to the atmosphere was later considered by Dasgupta et 

al. (2005).  Since the abundance of perchlorate-laden deposits in arid regions cannot be 

explained over geologic time frames by the normal abundance of chlorine in the 

atmosphere, it was suggested that at some point in the Earth’s history additional sources 

of chlorine to the atmosphere were needed, such as volcanic emission (Dasgupta et al., 

2005).  Second, similar summertime high seasonality was observed here as that reported 

by Rajagopalan et al. (2009).  The authors postulated this is due to reliance upon 

photochemical reactions for at least one pathway of perchlorate formation, though the 

low number of samples per year in this study limits confidence in the exact timing of 

maximum concentration during the year.  Finally, correlations were observed for both 

chloride (R2 = 0.8494) in samples with high perchlorate concentrations, and for ozone (R2 

= 0.6153) when peaks in perchlorate concentrations were removed.  Here, the authors 
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speculate that this may be the result of two formation pathways, one proceeding from a 

chloride radical and involving ozone, and another from oxidation of a chloride ion. 

Results from ice cores from the Upper Fremont Glacier (UFG) in the Wind River 

Range, Wyoming (43°07′ N, 109°37′ W, elevation 4100 masl) and the Eclipse Icefield, 

Yukon Territory, Canada (60.51° N, 139.47° W, elevation 3017 masl), were used to 

construct records spanning the pre- and post-Industrial Revolution periods (Rao et al., 

2012).  It was not a continuous record though, with only selected time periods analyzed 

in the Eclipse core, and a discontinuous series of samples representing annual layers in 

the UFG core.  Here, consistent seasonal variation such as that observed in the study by 

Furdui and Tomassini (2010) was not seen in the Eclipse core and could not be evaluated 

in the UFG core due to low resolution.  Concentrations of perchlorate, however, were 

broadly consistent with the Devon Island core.  In the Eclipse core, overall concentrations 

ranged from less than 0.2 ppt to 8.8 ppt.  The average perchlorate concentrations for the 

years 1970 to 1973 CE was 0.6 ± 0.3 ppt, from 1982 to 1986 CE the average concentration 

was 2.3 ± 1.7 ppt, and from 1999 to 2002 CE was 2.2 ± 2.0 ppt.  Higher variance was 

observed post-1980 in the Eclipse core.  In the UFG core the concentrations ranged from 

less than 0.2 ppt to 2.6 ppt, with a post-1980 average of 1.8 ± 0.7 ppt.  In contrast to the 

results reported by Furdui and Tomassini (2010), there was no correlation between 

chloride and perchlorate for any time period at either sampling location, though 

correlation with nitrate and sulfate was observed post-1980. 

A detailed ice core record of perchlorate covering the years 1950 to 2007 CE and 

1701 to 1753 CE was constructed from a Summit, Greenland ice core (Peterson et al., 
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2015b).  This study provided relatively high resolution, with typically 9 to 12 samples per 

year measured for perchlorate, and as with the measurements from the Upper Fremont 

Glacier by Rao et al. (2012), the record was used to compare preindustrial perchlorate 

with that of modern years from the same sampling location.  Here, it was found that 

perchlorate concentrations at Summit, Greenland varied from between 0.1 and 11.9 ppt 

during the time periods covered by the core.  As with prior studies (Furdui and Tomassini, 

2010; Rao et al., 2012), an increase of perchlorate post-1980 was observed, from a pre-

1980 average concentration of 0.8 ± 2.6 ppt to an average of 2.7 ± 2.1 ppt.  Importantly, 

however, a correlation between increased sulfate deposition and elevated levels of 

perchlorate following the 1991 eruption of Mt. Pinatubo was observed here, similar to 

that found in the Devon Island core (Furdui and Tomassini, 2010).  Further, a seasonal 

pattern, similar that recorded at Devon Island, was observed. 

A record of perchlorate in Antarctic snow was later generated (Jiang et al., 2016) 

from three locations; from a 15 m firn core taken from the South Pole (Ferris et al., 2011), 

a 2.8 m deep snow pit dug near the West Antarctic Ice Sheet (WAIS) Divide ice core site 

(79°28′S, 112°05′W, elevation 1766 masl), and from a 3 m deep snow pit dug at Dome A 

(80°22′S, 77°22′E, elevation 4093 masl) on the East Antarctic Plateau (Jiang et al., 2012).  

As with the work by Furdui and Tomassini, (2010), the number of samples per year in all 

three locations is quite low, about 2 years per sample at Dome A, 2 samples per year at 

South Pole, and about 7 samples per year at WAIS Divide.  At Dome A and South Pole, no 

information about seasonality of the perchlorate signal could be deduced, but clear 

seasonality was observed at WAIS Divide.  Due to the high resolution at that site, the exact 
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timing of the peak could be better deduced, appearing to peak in late-summer or autumn.  

The authors indicate that the seasonality is related to stratospheric ozone concentration, 

but that would require that perchlorate produced in the stratosphere to be immediately 

removed to the troposphere and deposited with snow (Jiang et al., 2016).  Though a 

mechanism such as that cannot technically be ruled out, such rapid removal of molecules 

from the stratosphere has not been observed, and in all cases, ozone exists far in excess 

of any stratospheric chlorine species.  Regardless, this work shows that a clear and 

widespread increase in perchlorate seemingly in concert with increased stratospheric 

chlorine occurs in the last few decades in Antarctica similar to that observed in Greenland 

(Peterson et al., 2015b), and that pronounced seasonality exists for the perchlorate signal 

in snow at WAIS Divide. 

The repository of ice core records of environmental perchlorate was expanded 

with a continuous record spanning the years 1936 to 2007 CE from an ice core collected 

from the Agassiz Ice Cap (80.7°N, 73.1°W, elevation 1670 masl) located in Nunavut, 

Canada (Furdui et al., 2017).  While the annual resolution was quite low (3-5 samples per 

year) in this study, it further confirmed the post-1980 increase in perchlorate deposited 

to the Arctic, and the seasonality of the perchlorate signal.  However, the authors found 

that volcanic eruptions did not influence perchlorate deposition here, calling into 

question the hypothesis of volcanically enhanced perchlorate production following the 

eruption of Mt. Pinatubo seen in earlier work (Furdui and Tomassini, 2010; Peterson et 

al., 2015b), and that aerosol had no impact upon perchlorate levels at this sampling 

location and in fact they assert that the presence of aerosol suppresses perchlorate 
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formation in the stratosphere after 1979.  Further, this study indicates that the dominant 

pre-1980 process for perchlorate formation at this site is tropospheric formation by 

lightning. 

The most comprehensive and detailed record of perchlorate in the environment 

was generated (Cole-Dai et al., 2018) upon completion of the analysis of the Summit, 

Greenland core started in earlier work (Peterson et al., 2015b).  This record spans over 

three centuries (1700-2007) at very high resolution (9-12 samples per year).  Three key 

findings emerged: 1) that the onset of the industrial revolution did not impact perchlorate 

levels though large quantities of pollutants were released; 2) that the post-1980 increase 

in perchlorate is likely due to the release of organic chlorine to the atmosphere, and 

subsequent atmospheric formation of perchlorate; and that 3) some explosive volcanic 

eruptions appear to increase perchlorate concentrations in ice cores.   

1.4 Overview of Ice Core Chemistry 

To understand how perchlorate in the environment is formed, and to constrain 

the variables that govern its production, it would be useful to measure perchlorate and 

related chemical species in the atmosphere.  Many factors such as the low levels 

speculated to exist in air and limitations in atmospheric measurement equipment render 

this either impossible or impractical.  For example, measurements in a volcanic plume 

pose issues for the operation of analytical platforms, and the intermittent nature of 

eruptions makes prepositioning of measurement devices difficult.  In other cases, analyte 

concentrations in the stratosphere may be far too low to measure reliably.   
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Ice cores provide a means to obtain data that may be extrapolated to atmospheric 

chemistry.  As precipitation droplet sizes grow, chemicals in the atmosphere become 

trapped inside.  When this precipitation falls to Earth as rain or snow, these atmospheric 

components are then brought to the surface; in the case of snow, which is well-preserved 

in polar regions, this is called air-snow transfer.  This transfer of impurities from the air to 

the ice sheet then allows for reconstruction of atmospheric composition and studying of 

both chemical and physical atmospheric processes. 

Ice cores provide long records of climate variation, which may be caused by a 

multitude of forcings.  These forcings include large amounts of sulfate aerosol which can 

be generated by explosive volcanic eruptions.  The eruption can then be detected in ice 

cores as layers with increased sulfate concentration, where the forcing can be evaluated.  

In contrast to these chemical measurements of forcings in ice cores are environmental 

archives such as tree rings.  Narrow tree rings are also a response to climate forcing, i.e. 

cold periods.  However, the cause of forcing in this example (volcanic eruption) and the 

effect of the event (narrow rings) are not independent of each other.  This property makes 

interpretation of tree ring width problematic when used to investigate a relationship 

between climate forcing and the resultant change in climate, whereas in ice cores, the 

forcing (chemical measurement of sulfate) and the response (change in isotopic 

composition of water due to temperature change) are completely independent.  Ice cores 

in this fashion, allow detailed study of both the forcings and climate effect without 

interference. 
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One of the most useful characteristics of ice cores is that with careful site 

selection, the chronological order of precipitation is preserved in the ice stratigraphy.  This 

extremely helpful property allows for assignment of a date to any layer in the ice core.  

The accuracy of assignment of dates to layers of ice is affected by accumulation rate.  In 

places where there is very high accumulation, ice core records of a given depth may be 

shorter in length of time covered, but the ability to discern each year is very good, leading 

to extremely high confidence in date assignment.  In places with low accumulation the 

length of the records can be very long, while confidence in annual layer assignment may 

be lower.   

Lastly, certain locations of ice collection may capture some chemical or physical 

processes better than others.  For example, Greenland is an excellent choice for analyzing 

for human impact on the atmosphere, while Antarctic ice cores are relatively free of 

human influence, as the majority of human activities impacting the environment take 

place in the Northern Hemisphere.  Therefore, we may use site selection for ice core 

retrieval to tune the objectives of record length, annual resolution, and which processes 

(chemical and physical) are captured in the snow. 

1.5 Research Objectives 

This work comprises the following objectives:  1) Investigate how proposed 

perchlorate formation pathways contribute to background perchlorate concentrations in 

snow, 2) Investigate the extent of occurrence of and conditions under which atmospheric 

formation of perchlorate occurs in response to volcanic eruptions, 3)  Evaluate the 
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magnitude and specific features of the perchlorate concentration in snow as a response 

to volcanic eruptions such as timing and post-depositional change, and 4) Investigate how 

major perchlorate formation pathways are perturbed after volcanic eruptions. 
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2.0 Methods 

2.1 Sample Collection 

Several shallow ice cores were drilled during June and July, 2007 near Summit 

Station, Greenland (73.6° N, 38.5° W).  The top 97.98 meters of one core (SM07C2, 211 

m) was analyzed for perchlorate and major ions, except for a few short intervals (19.29-

20.28, 27.405-28.42, 67.45-69.48, 76.49-76.84, 83.35-84.32, and 86.19-87.14 m) where 

ice had been consumed for other purposes.  A section (95.665 to 124.365 m) of another 

Summit, Greenland core (SM07C4) from the same location as SM07C2 was also analyzed 

for major ions, and the section from 120.350 to 124.365 m depth was analyzed for 

perchlorate.  All ice core sections were wrapped in clean plastic lay-flat tubings and kept 

frozen during transport from the field to the laboratory, where they were maintained at 

or below ‒20° C until chemical analysis. 

The South Pole Ice Core (SPICEcore) project yielded a 1750 m ice core collected  

from a location about 2 km (89.99° S, 98.16° W, elevation 2835 masl) from the South Pole 

Station over the years 2014 to 2016.  As part of the SPICE project, several shallow cores 

were drilled in addition to the main core, and two short sections (29.630 to 32.635 m, and 

66.530 to 69.288 m depth) from one of these cores were used in this study.  Cores were 

kept frozen until analysis, where each sample was measured for major ions and 

perchlorate. 

In January 2013, a 2.6m deep snow pit was dug by hand near the West Antarctic 

Ice Sheet (WAIS) Divide ice core location (112.085°W, 79.467°S).  Samples were taken 



16 
 

 
 

from the wall of the snow pit at 0.03 m intervals.  Samples were transported frozen to 

South Dakota State University where each sample was measured for major ions and 

perchlorate.  Exact sampling procedures are discussed elsewhere (Crawford et al., 2017). 

The Denali ice core (DIC) data is derived from two ice cores (DIC1 and DIC2, each 

208 m long) collected from the Mt. Hunter summit plateau (62°56′N, 151°5′W, 3900 masl) 

in Denali National Park, Alaska (Winski et al., 2017).  A section from DIC1 (117.699 to 

121.456 m depth) was measured for major ions and perchlorate. 

2.2 Sample Preparation 

Samples were prepared for both perchlorate and major ion measurement in the 

same way, and detailed procedures can be found elsewhere (Peterson et al., 2015a).  

Briefly, for the SM07 cores, each sample was cut individually from a length of ice core 

using an electric bandsaw in a cold room (freezer) and samples below 57 m were 

decontaminated by washing away the outer portion of each sample with 18.2 MΩ 

ultrapure water until approximately 50% volume reduction was achieved.  These samples 

were then melted and prepared in sample cups and vials washed with ultrapure water. 

Firn samples (Summit samples above 57 m, and South Pole samples) were 

prepared by cutting away the outer surfaces of each sample with a clean bandsaw in a 

freezer.  The Denali ice core samples were decontaminated by scraping the outer surfaces 

with a ceramic blade.  Decontaminated samples were then placed into clean sample cups 

that had been washed with ultrapure water and air-dried in a clean bench, then capped 

and left to melt.  Once melted, an aliquot of sample was decanted into test vials for 
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analysis that had been cleaned with ultrapure water and air-dried in a hood on a clean 

bench.   

2.3 Analytical Methods 

2.3.1 Ion Chromatography/Conductivity Detection 

Samples were analyzed for major anions (Cl-, NO3
-, and SO4

2-) and cations (Na+, K+, 

Mg2+, and Ca2+) using ion chromatography.  Stock 1000 ppm solutions were prepared for 

each major ion from pure reagents and 18.2 MΩ ultrapure water.  Reagents used to 

prepare stock solutions were K2SO4 (F.W. =  174.259), NaNO3 (F.W. = 84.995), NaCl (F.W. 

= 58.44, Certified ACS, Fisher Chemical), MgCl2 · 6 H2O (F.W. = 203.31, Acros Organics), 

Na2CO3 (F.W. = 105.99, HPLC Grade, Fisher Chemical), KCl (F.W. = 74.56, Certified ACS, 

Fisher Chemicals), and CaCl2 · 2 H2O (F.W. = 147.01, Acros Organics).  Intermediate 

 

Figure 1.  Chromatogram of 25 µg kg-1 cation calibration standard, CS12 analytical 
column (2mm x 250mm), 12 mM H2SO4, 0.5 mL min-1. (1) Na+, 2.45 min; (2) NH4

+, 
2.72 min; (3) K+, 3.38 min; (4) Mg2+, 4.31 min; (5) Ca2+, 5.13 min. 
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solutions, typically between 1 and 10 ppm, containing either all of the major cations or 

anions were diluted from stock solutions, and daily calibration standards were prepared 

from the intermediates. 

The analytical apparatus comprised two Thermo-Fisher (Dionex) ICS-1500 Ion 

Chromatography Systems, and a Dionex AS-AP Autosampler.  The anion system used an 

IonPac AS11 (2mm x 250mm, Dionex) ion-exchange column, and sodium hydroxide 

mobile phase.  This system was equipped with an ASRS 300 2mm electrolyte suppressor 

column using about 5 mA of current, which was tuned for the exact eluent concentration.  

The cation system used an IonPac CS12A (2mm x 250mm, Dionex) ion-exchange column, 

and isocratic elution with a sulfuric acid mobile phase.  This system was equipped with 

CSRS 300 2mm electrolyte suppressor column using about 36 mA current.  Both IC 

systems used a 125 µL injection loop.  The AS-AP autosampler was configured with a 5.0 

 

Figure 2.  Chromatogram of 25 µg kg-1 anion calibration standard, AS11 analytical 
column (2mm x 250 mm), 3.8 mM NaOH, 0.5 mL min-1. (1) Cl-, 1.43 min; (2) NO3-, 
1.83 min; (3) CO32-, 2.57 min; (4) SO42-, 3.29 min. 
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mL syringe to allow one-pull filling of the 1.2 mL injection buffer loop, and to 

simultaneously inject the sample to both IC systems.  The typical run time for the ion 

analysis was 7.0 minutes but was varied by ±1 minute to accommodate variations in 

eluent strength.  Typical chromatograms for cations and anions are shown in Figure 1 and 

Figure 2, respectively. 

The chromatographic data (retention time, peak identification, peak size, peak 

area, calibration curves, etc.) was collected and processed using Chromelion 7.2 (Thermo-

Fisher).  All peak assignments, calibration curves, and peak integrations were performed 

using user-programmed processing methods in the software.   

2.3.2 Ion Chromatography/Tandem Mass Spectroscopy 

Perchlorate concentrations in polar snow and ice were found to be extremely low; 

less than 1 µg kg-1 (Furdui and Tomassini, 2010; Crawford et al., 2017; Cole-Dai et al., 

2018).  The low concentration and necessary chromatographic conditions for perchlorate 

analysis make the measurement of perchlorate in ice cores difficult with ion 

chromatography. 

The procedures to prepare decontaminated Greenland ice core samples for 

measurement of perchlorate and other species have been described by Peterson et al. 

(2015a).  Samples and procedural blanks were analyzed for perchlorate using ion 

chromatography-tandem mass spectrometry with electrospray ionization (IC-ESI-MS/MS) 

as described previously (Peterson et al., 2015a).  Perchlorate was eluted from a Dionex 

IonPac® AS16 (2 x 250 mm) analytical column with 60 mM NaOH at 0.3 mL min‒1.  The 
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effluent from the ion chromatograph was mixed with an acetonitrile/water solution 

(90/10% v/v at 0.3 mL min‒1).  This mixture was delivered to the ionization/nebulization 

inlet of an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer.  Negative ion 

mode was used to detect 35ClO4
‒ and 37ClO4

‒ using multiple reaction monitoring of the 

m/z 99.0 to 83.0 and m/z 101.0 to 85.0 transitions, respectively.  Quantification was 

performed using the 35ClO4
‒ peak area with external calibration.  The limit of detection 

and lower limit of quantification of the method were 0.1 and 0.3 ng kg‒1, respectively 

(Peterson et al., 2015a). 

2.4 Ice Core Dating 

2.4.1 Annual Layer Counting 

Determining the age of ice at a given depth in an ice core, or the development of 

the depth-age relationship, is a crucial step in studies of ice cores.  Several methods exist 

to determine dates in an ice core. They utilize annual layer counting (ALC), modelling, 

dated reference horizons, or exploit changes in insolation.  Selection of an appropriate 

method is governed by required accuracy, snow accumulation rate at the coring site, and 

the time period under consideration.  The ice cores used for this study were dated using 

the technique of ALC. 

The amount, or concentration in snow, of some chemical species is different at 

various times of a year; an annual cycle is formed when the concentration proceeds 

through a maximum and a minimum in a year.  As a result of this annual cycling, the 

distance (depth) between two peaks or troughs indicates a complete year (Legrand and 
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Mayewski, 1997).  The species used for annual layer identification and counting in this 

study are discussed in detail below.  ALC also yields the length, or thickness, of each year 

(annual cycle), which is equal to the accumulation rate (in ice) of that year. The method 

requires a minimum of about 6 samples in a year-long period to accurately discern the 

annual cycle in concentration.  Ideally, an annual layer should comprise 10 or more 

samples per year.  At 6 or fewer samples per year, however, significant risk of counting 

errors is present.  Establishing an age scale based upon mean accumulation rate may be 

necessary if ALC is not possible due to lack of temporal resolution in the ice core, when 

the number of samples per year is insufficient to resolve annual cycles.  The mean-annual-

accumulation-rate method has the advantage of being usable with poorly resolved annual 

signals, but the mean accumulation rate is inaccurate in years when the annual 

accumulation is significantly different than the average. At a given ice coring site, the 

accumulation rate can easily deviate from the mean accumulation by 50% or more.  While 

over a long period of time, tens or hundreds of years, the assignment of date does not 

incur large cumulative error due to the normal distribution of accumulation rates, a 

specific year can easily have a 1-2 year uncertainty in age assignment.  Additional 

uncertainty may arise when using average accumulation rate to assign age if 

accumulation is higher or lower for a period of several consecutive years. 

When a chemical concentration or physical property of an ice core varies in an 

annual cycle as described previously, these cycles may be used to count the number of 

years beginning from a layer with known year.  The  ALC methodology began in the 1960s 

using oxygen isotopes in water (Dansgaard, 1964).   It was realized there that the isotopic 
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composition of water was dependent upon temperature, thereby allowing summer and 

winter seasons to be discerned.  Other chemical species with regular annual 

concentration cycles such as nitrate, sulfate, calcium, sodium, and hydrogen peroxide 

may be used to differentiate years as well in various instances.  In addition to chemical 

signatures of seasonal change, some physical properties change throughout the year.  Ice 

density, hoar layers, and bubble density all have characteristic patterns attributable to 

seasonal change (Gow, 1965) and, therefore, may be useful as ALC markers.   

In this study three chemical signals were used for ALC: the ratio of Cl-/Na+, and the 

concentrations of both NO3
- and Ca2+.  The first signal used to resolve annual layers is the 

mass ratio of chloride to sodium.  The dominant source of both chloride and sodium in 

ice cores is sea-salt aerosol (Blanchard and Woodcock, 1980; Legrand and Mayewski, 

1997).  This aerosol is produced from bursting bubbles generated from ocean surface by 

wind.  As water evaporates from the droplets, the brine and aerosol particles are left in 

the air and carried to other locations by wind.  The ratio in un-altered marine aerosol is 

close to 1.8, that of bulk seawater (Buat-Menard et al., 1974), but work has revealed that 

the ratio in snow can deviate significantly (Martens et al., 1973; Hitchcock et al., 1980; 

Kritz and Rancher, 1980; Song and Carmichael, 1999).  Other observations have identified 

HCl in the marine atmosphere (Duce et al., 1965; Duce, 1969; Kritz and Rancher, 1980).   

Legrand and Delmas sought to explain their observations of highly variable Cl/Na 

ratios in Antarctic snow in this context (Delmas et al., 1982; Legrand and Delmas, 1984; 

Legrand and Delmas, 1985).  It was determined that the ratio varies in response to two 

main factors: distance from the coast, and the age of the air mass (Legrand and Delmas, 
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1988).   Changes in aerosol mass and chemical composition take place, as air mass 

containing sea salt aerosols move from the ocean into the ice sheet. A schematic 

representation is shown in Figure 3 to illustrate the changes.  

As aerosol particles move further from the coast, HCl is volatilized to the gas phase 

by reaction of sulfuric acid with NaCl in sea salt.  A schematic representation is shown in 

Figure 3.  The heavy particles fall near the coast, containing more sodium relative to 

chloride compared with the composition in the original sea salt aerosols. As the air mass 

continues to move inland, the loss of sodium continues, and chloride is enriched in the 

remaining aerosol mass.  Sodium is said to be fractionated or lost in relation to chloride, 

resulting in an excess of HCl, and an increase in the chloride/sodium ratio occurs 

(Mulvaney et al., 1993).  Since sulfuric acid is more abundant in the summer months, the 

 

Figure 3.  Schematic representation of sea salt aerosol fractionation.  Mean 
particle size decreases and the ratio of chloride to sodium increases as the aerosol 
moves away from the coast.  



24 
 

 
 

fractionation is more pronounced in summer resulting in higher chloride/sodium ratio, 

while in the winter where the mass ratio is close to 1.8, that of seawater, indicating little 

or no fractionation (Legrand and Mayewski, 1997).  This yields an effective ALC proxy, as 

seen in Figure 4, along with nitrate and calcium concentrations. 

As seen in Figure 4, ratio minima are very close to 1.8, with significant departures 

from that ratio occurring in summer months.  In the case of SM07C2, this ratio can exceed 

50 in the summer, dropping back to about 1.8 over the winter.  As with any annual signal, 

however, discerning annual cycles greatly depends upon the number of samples taken 

 

Figure 4.  Nitrate concentration, Cl-/Na+ mass ratio, and calcium concentration in 
the top 8 meters of the SM07C2 core.  Red arrows indicate years that were counted 
in the nitrate concentration, but discarded based upon the other two datasets, and 
blue arrows indicate poorly resolved years that were identified by the strong 
nitrate peak. 
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over a one-year thick layer of ice, with some years difficult or impossible to resolve, 

leading to uncertainty in the age of the ice layers. 

The second annual signal evaluated in this work for chronology development in 

the SM07 core is nitrate, one of the major anions present in snow.  In general, nitrate 

results from the reaction of nitrogen oxides (NOx) with ozone and hydroxyl radicals.  There 

are many sources of NOx and its precursors (e.g., NH3) to the atmosphere, including 

biomass burning, fossil fuel combustion, emissions from soil and biosphere, and lightning.  

Owing to the nature of these sources, during pre-industrial periods nitrate exhibits well 

defined minima in the winter, and maxima in the summer (Legrand and Mayewski, 1997).  

The winter minima make this a convenient annual signal, since the minima corresponds 

to the start of a calendar year, as opposed to calcium, discussed below.  Nitrate is subject 

to several post depositional processes in the snowpack, such as photolysis and 

evaporative loss of HNO3. However these do not appreciably change the seasonality of 

the nitrate signal in ice in high accumulation locations (Legrand and Kirchner, 1990; Dibb 

et al., 2002; Rothlisberger et al., 2002).  A complication with nitrate during modern times, 

however, is the impact of pollution upon nitrate levels.  Human emissions in North 

America after the onset of the industrial revolution constitute a source that can impact 

the concentrations measured in snow.  In Figure 4, nitrate maxima are seen in the winter 

(red arrows), and if this were the primary ALC proxy, would have been counted as 

additional years. 

Finally, calcium is an effective annual marker, with maxima occurring in the spring 

(Legrand and Mayewski, 1997).  While annual layers are quite well defined (Figure 4), the 
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spring maxima can be problematic for dating purposes, as the start and end of the year 

do not align with those of calendar years.  If an approximation for the beginning of the 

calendar year is needed to examine seasonal variation, calcium is not particularly well-

suited, requiring a different ALC proxy to be used.  However, calcium is invaluable in 

resolving annual layers when other measurements such as chloride, sodium, and nitrate 

do not provide clear annual oscillation.  In Figure 4, the blue arrows at about 6 meters in 

depth are an example, where the nitrate signal does not have a well resolved annual peak 

from the following year, and the peak for the chloride to sodium ratio is quite small.  The 

presence of the calcium peak that occurs just before, however, indicates that the 

beginning of a year starts at about 5.8 and 6.1 meters, rather than at 5.4 and 6.1 meters, 

which may have been the case if only the chloride to sodium mass ratio and nitrate were 

used. 

Stratigraphic time markers are used in multiple ways concerning ice core dating.  

The use of stratigraphic time markers or tie-ins may be used to verify date assignment or 

used as a dating method by computing average accumulation rate under some 

circumstances.  Certain signals, such as those from very large volcanic eruptions, may 

appear in multiple ice cores or other environmental archives from distant sampling 

locations.  These events may then be used to assign a specific date to an ice layer through 

synchronization, providing an estimate of uncertainty at that layer and year, and 

indicating the needed correction.  Stratigraphic time markers may synchronize cores on a 

continental or hemispheric scale, in the case of high-latitude volcanic eruptions, or in the 
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case of some large low-latitude eruptions, may be used to synchronize dating schemes 

between poles.   

By combining the three chemical signals discussed above with reference horizons, 

an annual dating scheme is established with relatively little possibility of missing a year or 

identifying extra years.  Figure 5 depicts a section of ice with all ALC signals used here, 

and a volcanic eruption as a reference horizon.   

 

Figure 5.  Measurements of nitrate, chloride/sodium ratio, calcium, and sulfate in a 
5-meter section of ice from the SM07C2 core.  Red lines indicate annual picks with 
some uncertainty.  The blue line indicates the year 1912, which assigned based 
upon the June 6, 1912 eruption of Novarupta seen in the sulfate signal at about 
38.9 meters in depth. 
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In the SPICE Upstream cores, three reference horizons were used to synchronize 

to the WAIS Divide 2014 timescale (Sigl et al., 2016).  A comparison of continuous ECM 

measurements was used to identify three eruptions, those of Tambora, the 1809 Event, 

and a large eruption in 1458, likely that of Kuwae (Global Volcanism Program, accessed 

April 29, 2020).  The Denali Ice Core was dated using ALC, and is described in detail 

elsewhere (Winski et al., 2017). 

2.4.2 Sub Annual Dating 

Whereas annual layers present themselves as oscillations in a chemical time series 

measured in an ice core, no such simple method exists to assign the samples within each 

year to a specific season, month, or other time interval.  Sub annual assignment of dates 

(or “decimal years”) to samples is critical, however, to evaluate a time series in relation 

to processes that shape the atmosphere and environment throughout the year.   

Regardless of how a decimal year is assigned, assumptions on accumulation must 

be made.  While rates of accumulation vary widely on short timescales such as days, 

weeks, or months, we first assume that accumulation rates are constant throughout the 

year.  This assumption should be evaluated for feasibility though, given the context of 

varying accumulation.  The average accumulation at Summit between 1700 and 2007 is 

22.5 cm yr-1 water equivalent, and the average number of samples per year is 10.4, thus 

each sample on average, is about 1.15 months and averages about 2.2 cm water 

equivalent.  The precipitation at Summit Station falls most heavily in the summer than in 

the winter (Koyama and Stroeve, 2019), constraining the sub annual uncertainty.  

Assuming that precipitation consistently follows this pattern, even considering actual 
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monthly variation, the cumulative error introduced by using the constant accumulation 

assumption for decimal year assignment is small, about 1 month. 

To assign the decimal date, first the fraction of annual accumulation, FAA, is 

assigned for each sample by dividing the sample size (in water) by the total annual layer 

thickness (also in water).  The FAAs of samples since the beginning of the year are then 

summed to get the cumulative yearly fraction, CYF, for the 𝑛௧  sample of each year, 

where the first sample of each year is 𝑖 = 1:   

𝐶𝑌𝐹 =  ∑ 𝐹𝐴𝐴𝑖
𝑛
𝑖=1  (E1) 

Finally, the CYF is added to the calendar year containing the samples to yield the 

decimal date (DD) for the bottom depth of each sample.  An excerpt of the DD assignment 

for the major ion time series in the SM07C2 core is shown in Table 1. 

Table 1.  DD assignment for the year 1996 in the SM07C2 core.  This interval comprised 
12 samples and covers the depths from 7.124 to 6.514 meters (27.59 cm w.e.). 

Sample Size 
(cm w.e.) 

n FAA CYF DD 

1.98 1 0.07 0.93 1996.93 
1.98 2 0.07 0.86 1996.86 
1.98 3 0.07 0.78 1996.78 
1.99 4 0.07 0.71 1996.71 
1.99 5 0.07 0.64 1996.64 
2.48 6 0.09 0.55 1996.55 
2.00 7 0.07 0.48 1996.48 
2.36 8 0.09 0.39 1996.39 
2.00 9 0.07 0.32 1996.32 
3.86 10 0.14 0.18 1996.18 
2.96 11 0.11 0.07 1996.07 
2.01 12 0.07 0.00 1996.00 
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2.6 Data Processing 

2.6.1 Flux Calculation and Use 

When chemical measurements are made on meltwater from ice core samples, the 

concentration of the impurity in the meltwater is determined.  This concentration, usually 

in units of mass analyte per mass of the meltwater or ice, as in µg kg-1 (parts per billion, 

ppb), or ng kg-1 (parts per trillion, ppt), is then applied to the entire depth interval of the 

sample.  Practically, concentration is a useful measure of analyte content within a matrix.  

However, when it comes to deposition, what is important in many cases is the flux – 

amount of mass per unit area for a certain time – rather than concentration.  To illustrate 

the issue with using concentration in lieu of flux, we can consider a situation where the 

precipitation varies greatly.  If a fixed mass of analyte is deposited with a varying amount 

of precipitation, the concentration varies with precipitation.  However, the actual mass of 

analyte deposited does not change, so if the same mass of analyte is deposited in two 

locations with differing accumulation, the concentrations would be different.  During 

periods of low accumulation at the same location, the concentration will be high, and 

during periods of high accumulation, the concentration will be low.  Likewise, if there are 

for example, two identical eruptions from the same volcano occurring at times with 

different accumulation rates, they may produce different results for concentration, even 

if the mass (or flux) of analyte deposited, which may be a true measure of the impact of 

the eruptions, is the same. To quantify deposition, use of flux removes the effect of varied 

accumulation rates. 
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Flux, Φ, can be defined as the mass, 𝑚, of analyte deposited on a specific area, 𝐴, 

over some amount of time, 𝑡, as in E2.   

Φ =


 × ௧
 (E2) 

Since the time is governed by the length of time corresponding to the sample, and 

we are using annual totals, time may be then omitted from E2.  To perform the flux 

calculation, the mass needed to be computed from the measured concentration, which 

requires that the volume of the ice sample be converted to volume of the meltwater 

sample, or the water equivalent volume.  As snow becomes buried on the ice sheet, it is 

compacted from soft snow to solid ice.  When ice cores are drilled, the volume of the core 

and a measurement of its mass allows construction of a function that models the density 

change of the snow due to burial.  For flux calculation from units of volume, an analogy is 

that of measuring rainfall.  When rain falls over an area, the true desired measurement is 

the volume of water, or flux, falling over a specific area in a given amount of time, but 

rain is measured in units of length, i.e. cm or inches.  Since the area of the rain gauge is 

known, however, the volume may be calculated.  With chemicals to be measured in ice 

cores, the cross sectional area and vertical size of the sample is known.  So, by multiplying 

the sample concentration by its length in water equivalent, the flux for that sample is 

computed for the time covered by the sample.  Then the fluxes over the year are summed 

for all samples in the year, giving the total mass of analyte deposited over a given unit of 

area per year.  Annual flux is quite convenient and expedient to calculate since relatively 
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consistent demarcation of annual layers is usually possible and provides a clear and useful 

metric to gauge the deposition rate of an analyte to the ice sheet.   

2.6.2 Time Series Smoothing 

Continuous ice core measurements, after creation of the depth-age scale, 

generate what is known as a time series, which is defined as the magnitude of a signal as 

a function of time.  Generally, the time series generated from measurements of ions 

contained in ice cores displays noise, as is common with all analytical measurements.  In 

some cases, there arises a need to examine the time series with reduced interference 

from noise, i.e., to improve the signal-to-noise ratio (S/N), so some technique of 

smoothing the data may be needed.  In general, the easiest method used to increase S/N 

is a running mean.   

The running mean, RM, of the Sample j concentration, �̅�, is calculated via a simple 

algorithm, which may be customized by varying the window size (number of samples in 

the window), 𝑚, around a measurement in the time series, 𝑥 , over the interval, 𝑖 =

[
ଵି

ଶ
,

ିଵ

ଶ
] as shown below in (E3): 

�̅� =  
ଵ


∑ 𝑥𝑗+𝑖

𝑚−1

2

𝑖=
1−𝑚

2

 (E3) 

The RM is simple to calculate, but the bias introduced through assigning equal 

weight to all measurements becomes more extreme as the window size increases, 

approaching the arithmetic mean of the dataset.  In addition, while a single extreme 

measurement (large or small) is dealt with well, the occurrence of two extreme signals 
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may cause unintended biasing of �̅�.  In some cases, this may even have the extreme effect 

of inverting peaks and troughs in the time series.  Any use of the RM or adjustment in 𝑚 

must be carefully evaluated for adverse effects on the time series.  Obviously, as 𝑚 → ∞, 

the time series approaches the arithmetic mean of the entire dataset.  The second 

consideration to make when employing the RM is consistency of 𝑥 over the time domain.  

Since the total accumulation is proportional to the elapsed time, the measurements 

should have a consistent depth interval.  If the depth interval for 𝑥 is not consistent, then 

the RM must be weighted for the sample size, derived from the weighted arithmetic 

mean, as in E4, where 𝑤 is the weight of the 𝑖௧ measurement: 

�̅� =  
ଵ

∑ ௪

సభ

 ∑ 𝑤𝑥

ୀଵ   (E4) 

The weight in this case is equal to the ratio of the depth interval, 𝑧 , of each 

measurement divided by the depth interval of the window, 𝑧.  The weighted running 

mean, WRM, for a set of 𝑛 observations can be calculated for a window of size 𝑚 after 

substituting this ratio for weight, as in (E5): 

�̅� =  
ଵ

௭
 ∑ 𝑧ା𝑥ା;           

ିଵ

ଶ
≤ 𝑗 ≤ 𝑛 −

ିଵ

ଶ

షభ

మ

ୀ
భష

మ

  (E5) 

Alternatively, the weight may be assigned to preserve the overall shape of the raw 

signal, in which case the derivation of E4 yields E6, and where 𝛼 is a set of weights for 

the 𝑖௧ measurement: 

�̅� =  
ଵ

∑ ఈ
 ∑ 𝛼𝑥ା;           

ିଵ

ଶ
≤ 𝑗 ≤ 𝑛 −

ିଵ

ଶ

షభ

మ

ୀ
భష

మ

  (E6) 
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Such weighting may be necessary to pick either the exact minima or maxima of an 

oscillating signal, where the weighted running mean, may shift the minima or maxima by 

one sample in either direction along the z-axis.  If the presence of extreme values is 

perturbing the time series, some variation of a Savitzky-Golay filter (SGF) may be applied.  

This method was designed to retain the spectral character (e.g., peak magnitude) of a 

series of data while removing noise (Savitzky and Golay, 1964; Steinier et al., 1972).  In 

general, the SGF smooths data by convolution, fitting a sub-set of adjacent data points to 

a polynomial using least-squares analysis.  The set of 𝑛  observations of a dependent 

variable, 𝑦, across a window of size 𝑚 are fit with a set of convolution coefficients, 𝐶, as 

in (E7): 

  𝑌 =  ∑ 𝐶𝑦ା

షభ

మ

ୀ
భష

మ

;           
ିଵ

ଶ
≤ 𝑗 ≤ 𝑛 −

ିଵ

ଶ
 (E7) 

The convolution coefficients depend on the degree polynomial used for the least-

squares analysis may be obtained from a published table (Savitzky and Golay, 1964) or 

derived, but such derivation is beyond the scope of this work.  A macro was developed 

for Excel to execute this function and is shown in Appendix A for 𝑚 = 5, 11, and 29.  

While the SGF excels at retaining the information in the time series while removing noise, 

it fails when the sample intervals are not similar, and at the ends of the window.  This is 

the same method as locally estimated scatterplot smoothing (LOESS), which was 

rediscovered and named as such by William Cleveland II in 1979 (Cleveland, 1979), and 

later refined into the locally weighted scatterplot smoothing (LOWESS) method 

(Cleveland and Devlin, 1988).  
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When smoothing is used to present data here, the smoothing method, if any, will 

be described. 

2.6.3 Frequency Domain Time Series Analysis 

A useful method for identifying seasonal signals a time series is fast Fourier 

transform (FFT).  Ice core records are collected in the space domain (by depth), then 

converted to the time domain by assigning a time to each measured signal.  Fourier 

analysis allows conversion of the signal from either space or time domains to the 

frequency domain.  Jean-Baptiste Joseph Fourier recognized that the discrete sinusoids 

comprising a periodic signal could be separated in the frequency domain (Fourier, 1808; 

Fourier, 1822).  This work provided the foundation for a generalized solution, to quickly 

perform this task for a wide range of applications (Cooley and Tukey, 1965). 

A requirement of these generalized methods, however, is that the series (in time 

or space) comprise discrete samples of equal weight.  Ice core samples do not usually 

have the same time interval; so, we must first perform some imputation to generate a 

discrete series.  Imputation in general represents some method for assigning a value for 

a missing data point.  In the case of an ice core time series this means that we are solving 

for a data point that should lie at some discrete time interval, for example each month or 

each year, when the measured data points are non-discrete.  In general, four approaches 

are used, cold-deck, hot-deck, mean substitution, and regression.   

Briefly, cold-deck and hot-deck methods fill the missing point by selecting a donor 

from another dataset or record, including carrying the last observation forward.  Both of 
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these methods introduce bias to the dataset and are generally not currently used since 

computing power is no longer a limitation.  Mean substitution uses the mean of all 

observations of the variable as the missing point.  While there are some advantages for 

this method, it cannot be used for a time series where each observation lies in context to 

neighboring observations.  Therefore, the most useful imputation method for ice core 

time series is regression imputation, where the relationship of neighboring 

measurements is represented by some function, where any intermediate predicted 

observation may be interpolated through the regression function.   

The simplest and easiest to implement regression imputation is linear imputation, 

where the domain and range in between two consecutive observations is modeled as a 

linear function.  Here, linear imputation is performed on the SM07C2 dataset to generate 

a new time series with an interval of exactly one month between data points.  Figure 6 

Figure 6.  The imputed perchlorate time series (red) is overlaid upon the observed 
measurements in the time series (black), showing extremely close agreement. 
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depicts the original perchlorate measurements and imputed concentrations for a section 

of the SM07C2 perchlorate record from 1967 to 2007.  It can be seen that very little bias 

is introduced, and the now discrete time series closely matches the actual observed time 

series.  Once the discrete time series has been generated, fast Fourier transform was 

carried out using the periodogram function in the TSA package for R.  The scripts written 

to produce these periodograms are presented in Appendix B. 

2.6.4 Time Domain Time Series Decomposition 

A time series may be decomposed into three components, the trend, the seasonal 

or recurring component, and noise using time domain time series decomposition.  The 

trend is how the time series is changing overall, whereas the seasonal component is an 

oscillating change with some period, be it a day, month, year, etc.   The noise is the 

component of the time series that cannot be explained by the trend or seasonal 

component.  A time series model may be one of two types, additive or multiplicative.  In 

a multiplicative time series, the values of seasonal component and the trend for a data 

point are multiplied together.  The net result is that as a trend increases, the magnitude 

of the seasonal component of the observed series also increases, and vice versa, because 

the variation of the seasonal component is proportional to the total signal.  In an additive 

time series, the variation of the seasonal signal does not change with respect to the trend, 

because the seasonal signal is independent of the magnitude of the total signal. 

In this work, the statistical program R is used to evaluate the SM07C2 monthly 

perchlorate dataset as an additive time series for the occurrence and magnitude of the 

perchlorate seasonal signal.  The R script for performing this analysis is included in 
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Appendix C.  The additive time series decomposition represents an observed signal as a 

summation of the noise, seasonal, and trend components.  As such, the trend in this case 

will always be a positive integer.  The seasonal and noise components are a positive or 

negative integer centered on zero that is added to the trend.  Summing the noise, 

seasonal signal, and the trend, then yields the observed measurement for that instance 

in time.  Ideally, the noise should be normally distributed around zero, while there are 

neither limits to the magnitude of the seasonal component in either the positive or 

negative direction, nor a need to have a normal distribution around zero.  
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3.0 Relationship of Perchlorate to Stratospheric Chlorine Chemistry and Ozone  

Continuous measurements of perchlorate in ice cores from polar regions allow, 

for the first time, investigation into chlorine chemistry in the atmosphere through analysis 

of an environmental archive.  The chemistry of halogens in the environment is quite 

complex, and in the case of chlorine, tied closely with stratospheric ozone.  Ozone in the 

stratosphere is critical for the maintenance of life on Earth, providing an effective shield 

against the intense ultraviolet radiation that constantly bombards the planet.  Indeed, 

exposure to UV radiation is closely tied to the occurrence of skin cancer in humans.  While 

in recent decades, ozone depletion has been linked to anthropogenic halogen emissions, 

natural phenomenon such as volcanic eruptions have recently been shown to reduce 

ozone concentrations in the atmosphere.  The effect that volcanic eruptions have had on 

ozone in the past is largely unknown, as is knowledge of how the ozone layer may have 

changed over time before anthropogenic emission of CFCs. 

In the stratosphere, perchlorate is thought to form from reactions involving 

chlorine radicals and ozone, and thus may provide a valuable tool for investigation of 

stratospheric chemistry.  While ice cores provide a valuable medium for reconstructing 

records of atmospheric processes, records which allow investigation of halogen chemistry 

and ozone do not exist.  In this chapter, an overview is provided with respect to general 

stratospheric chlorine chemistry and proposed perchlorate formation mechanisms; this 

is followed by a detailed analysis of how ice core perchlorate records are reflective of 

chemical processes involving chlorine and ozone occurring in a stratosphere unperturbed 

by volcanic eruptions. Finally, in Chapter 4, the evidence of enhancement of perchlorate 
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production in the stratosphere by volcanic eruptions is presented, accompanied by an 

assessment of how perchlorate formation mechanisms are probably affected by volcanic 

eruptions. 

3.1 Overview of Stratospheric Chlorine Chemistry  

Chlorine is found in the stratosphere in a variety of chemical forms.  The forms 

include radicals (Cl or ClO, referred to as ClOx or active chlorine), inorganic compounds 

(mostly HCl, ClONO2, and HOCl), the diatomic molecule (Cl2), and organic compounds 

(CCl4, CFCs, or referred to as CCly).  Stratospheric chlorine chemistry can largely be 

grouped into three categories, gas-phase chemistry, heterogeneous chemistry, and 

nitrogen coupling.  In all three categories, formation of chlorine radicals is directly coupled 

with ozone chemistry and, therefore can affect the abundance of ozone, and 

consequently the ozone layer.  In contrast to active chlorine species, the chemically inert 

reservoir species HCl and ClONO2 contain the vast majority of chlorine in the stratosphere. 

The distribution between these two groups (active and reservoir) is in constant change, 

with chlorine atoms moving between active moieties and reservoir molecules, largely 

through interaction with atomic oxygen, molecular oxygen, hydroxyl radicals, methane, 

various nitrogen species, and ozone.  These three categories (chlorine, oxygen, and 

nitrogen species) interact with each other and respond to various conditions such as the 

amount of light from the sun and the temperature of the atmospheric regions where 

reactions are taking place.  Each will be briefly discussed, then perchlorate formation 

mechanisms will be examined in the context of these categories. 
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Chlorine in the stratosphere exhibits what is known as partitioning, where the 

distribution of chlorine species varies by altitude and is a critical consideration when 

investigating stratospheric chemistry.  The concentration of chlorine in the stratosphere 

is quite low, in the range of about 3.7 ppbv (Nassar et al., 2006).  Of this amount at high 

Northern latitudes (60° - 82° N), HCl accounts for about 0.7 ppbv at 15 km altitude, to 

almost 100% of total chlorine at 55 km.  For the same latitudes, the other reservoir 

species, ClONO2, is largely absent relative to HCl at altitudes above 37 km and accounts 

for only about 0.2 ppbv at 15 km, with the highest concentration found around 27 km.  

Active chlorine, as ClO, occurs primarily at altitudes between 30 and 55 km, with the 

greatest concentration (about 0.8 ppbv) at 40 km.  Organic chlorine, which makes up the 

bulk of chlorine species in the lower stratosphere and troposphere, does not occur in a 

significant amount above about 30 km, while at 15 km makes up about 60% of all chlorine 

 

Figure 7.  Major gas-phase stratospheric chlorine chemistry.  The orange box 
encompasses ClOx, and the green box indicates coupling to nitrogen chemistry. 
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species.  These profiles vary seasonally, and with latitude, but the general partitioning 

behavior remains consistent (Nassar et al., 2006).   

Important gas phase chlorine chemistry is shown in Figure 7.  In general, HCl is 

converted to ClOx through reaction with hydroxyl radicals, and ClOx can revert back to HCl 

through reaction with methane.  However, methane is also converted to water vapor and 

CO2 in the stratosphere through reaction with hydroxyl radicals, competing with both 

activation of HCl and formation of HCl (Noël et al., 2018).  Chlorine is also activated from 

the ClONO2 reservoir through photolysis.  This reaction, however, is strongly seasonal in 

the polar stratosphere, since models show that, at high solar zenith angles, rates of 

ClONO2 formation can easily exceed photolysis rates (Solomon et al., 1993).  In any case, 

largely owing to the low concentrations of all gaseous and radical species in the 

stratosphere, gas phase reactions are quite slow. 

 

Figure 8.  Heterogeneous chlorine chemistry in the stratosphere. 
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Heterogeneous activation of chlorine (Figure 8), however, can be faster and have 

a greater impact upon the ozone layer in polar regions, than gas- phase activation: 

Step 1a: HCl + ClONO2 → HNO3 + Cl2 

Step1b: HCl + HOCl → H2O + Cl2 

Step 2:  Cl2 + ħν → 2Cl 

In general, reservoir species react on the surface of polar stratospheric clouds 

(PSCs) or aerosols, forming Cl2.  In the absence of sunlight during polar winter, Cl2 

accumulates.  When sunlight reaches the stratosphere in late winter and early spring, Cl2 

is rapidly photolyzed into chlorine radicals, whereupon catalytic destruction of ozone 

begins.  However, in the Arctic, temperatures rarely get cold enough (below 195 K) for 

PSCs to form, mitigating the ozone loss that may have otherwise occurred.  In the 

Figure 9.  Coupling of the nitrogen cycle to chlorine nitrate in the stratosphere. 
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Antarctic, temperatures in the stratosphere routinely dip below 185 K, giving rise to more 

common PSC formation and more extensive chlorine activation, giving rise to catalytic 

ozone loss, and leading to formation of the springtime Antarctic ozone hole.  This process 

may also occur during periods of high aerosol surface area density, the surface area per 

volume of aerosol, such as after major volcanic eruptions. 

The last major component discussed here is the coupling of the ClONO2 reservoir 

to the nitrogen cycle in the stratosphere, shown in Figure 9.  The coupling of nitrogen and 

chlorine chemistry is an important part of chemistry in the stratosphere.  Chlorine nitrate 

sequesters about 30% of chlorine in the stratosphere, an important chlorine reservoir, 

but it is subject to abundance of NOx, and denitrification of the stratosphere can reduce 

the abundance of chlorine nitrate through causing denitrification: 

NO2 + NO3 + M → N2O5 

N2O5 + H2O → 2HNO3 

Which reduces the NO2 available to form ClONO2.  In particular, during periods of 

sunlight, when ClONO2 can be photolyzed to ClO, this is especially a consideration for 

catalytic ozone loss since the formation of chlorine nitrate is hampered during periods of 

heavy denitrification.  Aerosol particle density is a critically important parameter in how 

quickly N2O5 is formed (von Glasow, 2010), as is the abundance of water, which 

hydrolyzes N2O5 into 2 molecules of HNO3.  At sufficiently high aerosol particle densities, 

the fraction of nitrogen present as HNO3 can be over 90%, effectively inhibiting the 

conversion of ClO into chlorine nitrate. 
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3.2 Mechanisms of Atmospheric Perchlorate Formation 

Atmospheric formation of perchlorate is thought to occur in both the troposphere 

and the stratosphere.  Tropospheric processes comprise mainly the direct oxidation of 

chloride (or HCl) by hydroxyl radicals and ozone, or formation of perchlorate via lightning 

generated chlorine radicals.  Stratospheric processes focus upon the role of chlorine 

radicals, ozone, and heterogeneous chemistry.  In the stratosphere, the abundance and 

production rate of perchlorate may be crucial to balancing the budget of inorganic 

chlorine species, chiefly HCl, ClONO2, and chlorine radicals, where a discrepancy has been 

noted between total observed inorganic chlorine and that which is projected to exist 

based upon known sources and sinks (Prasad and Lee, 1994; Jaeglé et al., 1996).   

Based upon previous work showing that Cl2O7 was the final product of chlorine 

photolysis in the presence of ozone (Byrns and Rollefson, 1934; Cohen and Heicklen, 

1972), Simonaitis and Heicklen proposed that perchloric acid is formed in a possible chain 

terminating step for removal of odd-electron chlorine chemical species in the 

stratosphere (Simonaitis and Heicklen, 1975): 

Cl + O2+ O3 → ClO3 + O2 

ClO3 + OH → HClO4 

  At the time of that work, however, perchlorate had not been measured in the 

environment, making this a speculative conjecture based upon an estimation of rate 

coefficients.   
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Measurements of oxygen isotopes in perchlorate in groundwater and soils 

showed that at least one oxygen comes from ozone (Bao and Gu, 2004; Jackson et al., 

2010), and that photodecomposition of chlorine dioxide is an important intermediate for 

stratospheric production (Kang et al., 2006; Hatzinger et al., 2017).  In addition, if ozone 

is required, some detectable correlation between ozone and perchlorate may be 

observed.  Some correlations between perchlorate and ozone (Furdui and Tomassini, 

2010; Furdui et al., 2017) were found in snow perchlorate concentrations and ozone 

column measurements from the Arctic, but other work (Cole-Dai et al., 2018) did not 

arrive at the same conclusions, and it had been previously shown in laboratory 

experiments that direct oxidation of chloride by ozone produced very little perchlorate 

(rate of perchlorate production was 2 to 3 orders of magnitude lower than rate of chloride 

consumption) relative to other formation experiments, and that increasing ozone 

abundance has diminishing returns on the rate of perchlorate production, suggesting that 

once a sufficient amount of ozone is present, the addition of excess has little impact on 

perchlorate production (Rao et al., 2010).  

The laboratory experiments conducted by Rao et al. (2010, 2011) provided several 

other key constraints and findings on perchlorate production.  First, it was found that 

perchlorate production in their experiments was favored at low pH.  They concluded that 

low pH favored the in-situ generation of HClO2, leading to a chlorine dioxide radical 

intermediate.  Second, their findings show that production of perchlorate through 

electrical discharge was favored in conditions of low humidity.  Finally, the isotopic 
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measurements of the perchlorate produced in their laboratory experiments confirm that 

ozone is a reactant. 

Ultimately, perchlorate production mechanisms were summarized, with 

consideration of all field and laboratory work in a large volume by Hatzinger et al. in 2017.  

There it was found that perchlorate is produced via a relatively small set of reactions in 

the atmosphere, the first step of which in all likely cases is formation of either a chlorine 

radical or gaseous and/or aqueous HOCl from chloride.  Pathways with the initial step of 

forming HOCl: 

Step 1a: O3 + Cl-(aq) → OCl-(aq) + O2 

Step 1b: O3 + HCl(g) → HOCl(g) + O2 

Which may form a chlorine radical via: 

OH + HOCl → OCl + H2O 

HOCl may also react with HCl to form Cl2: 

HCl + HOCl + M → H2O + Cl2 

Which undergoes photolytic decay into two chlorine radicals. 

The initial steps investigated by Hatzinger et al. considered oxidation of chloride 

as the first step in the overall mechanism, but it must be clearly understood that in the 

atmosphere, many other pathways of generating a variety of perchlorate-producing 

intermediates (ClONO2, ClO2, Cl, ClO, etc.) exist besides oxidation of chloride, and will be 

discussed below.   
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The two chain-terminating steps involve conversion of a chlorine dioxide radical 

to perchlorate via reactions with ozone and hydroxyl radical: 

Chain Termination Step 1:  ClO2 + O3 → ClO3 + O2 

Chain Termination Step 2:  ClO3 + OH → HClO4 

The most likely pathways involve non-catalytic net destruction of between 2.5 and 

4 ozone molecules per molecule of perchlorate formed (Hatzinger et al., 2017), suggesting 

that ozone is an important precursor and directly linked to perchlorate abundance.  These 

pathways are shown in Figure 10, as part of the stratospheric chlorine chemistry 

introduced above.  For clarity, formation of ClO from HOCl will not be shown on diagrams 

(other than Figure 35, when discussed later in context of volcanic eruptions) but is 

considered when discussing chlorine activation.  On this and similar diagrams, species 

 

Figure 10.  Perchlorate production pathways integrated into stratospheric chlorine 
chemistry. 
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with an acidic hydrogen may be shown either protonated or not, since the exact form of 

these species may vary and is not precisely known at any given time; rather, the particular 

species thought to be involved in a given step is shown.  Heterogeneous chlorine 

chemistry is not shown here but is shown later in Figure 33.   

An important note must also be made here concerning the formation of chlorine 

dioxide.  This molecule occurs in two isomers, OClO, and ClOO, and here a distinction is 

not made between the two since both can form ClO3.  In the figures presented here, the 

reaction 

BrO + ClO + ħν → ClO2 + Br 

is not shown, though it is thought to be the primary pathway to generating chlorine 

nitrate in the stratosphere (Cicerone, 1981; Solomon et al., 1993).  Experiments have, 

however, shown that the self-reaction (ClO + ClO) to produce OClO does indeed occur, 

and may be significant (Birk et al., 1989).  Regardless, the reaction pathways discussed 

here are those deemed pertinent by Hatzinger et al. (2017).  Under typical conditions, 

namely before significant anthropogenic input or injection of volcanic HBr, the abundance 

of bromine in the stratosphere is quite limited.  For this reason, formation pathway 

involving bromine for chlorine activation will be discussed later, in the context of 

enhanced perchlorate production during a volcanic eruption. 

Upon inspection of proposed perchlorate formation mechanisms in the context of 

stratospheric chlorine chemistry, several features become apparent.  First, ozone is 

required in all pathways, as mentioned above.  The number of ozone molecules varies by 
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specific path but is required even in the pathway not proceeding through chlorine 

radicals.  Second, all pathways have the same chain terminating steps (shown above), the 

addition of an oxygen atom from ozone, and addition of a hydroxyl radical.  Third, while 

sunlight is not required in all pathways (except in the generation of NOx and ozone), it is 

required for pathways beginning with chlorine nitrate, and for one pathway to generate 

chlorine dioxide from a ClO radical, indicating that perchlorate production may be 

enhanced in periods of sunlight if the rate limiting step involves photolysis.  These three 

characteristics have significant ramifications for interpreting perchlorate records in ice 

cores and will be discussed further in Chapter 4. 

3.3 Seasonality of Perchlorate 

Early measurements of perchlorate in precipitation during recent decades 

indicated that the rate of deposition appears to vary according to a seasonal cycle 

(Rajagopalan et al., 2009; Furdui and Tomassini, 2010) in some North American locations.  

Recent work on Antarctic perchlorate also identified that the concentration of 

perchlorate in snow appears to vary seasonally (Jiang et al., 2016; Crawford et al., 2017).  

In addition, a seasonal oscillation in perchlorate appears present in the SM07C2 record, 

shown in Figure 11.  As seen in the figure, annual oscillations are easily identified in the 

calcium and nitrate concentrations, while comparison of perchlorate and sulfate signals 

reveals that the perchlorate concentration in snow appears to reach a maximum in the 

fall. 
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Here, the seasonality of perchlorate is quantitatively evaluated through spectral 

and time-series analysis.  This evaluation includes an examination of the periodicity of the 

perchlorate signal, the relative timing of the perchlorate maxima and minima, and a 

search for changes in seasonality over time. 

3.3.1 Spectral Analysis of the Summit Perchlorate Record 

The perchlorate concentration data was converted to the time domain using 

procedures described in methods.  A time period with high levels of atmospheric organic 

chlorine, from 1980 to 2007, is analyzed.  This period overlaps with those in previous 

studies where seasonality was observed (Rajagopalan et al., 2009; Furdui and Tomassini, 

2010).  The periodogram (depicting spectral density) generated using the program R is 

 

Figure 11.  Nitrate, calcium, sulfate (black), and perchlorate (red) concentrations 
from the top 10 meters of the SM07C2 core.  Data has been smoothed with a 
weighted 3 sample running mean. 
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depicted in Figure 12 (see Appendix for code).  It appears that the highest spectral density 

occurs at the f = 0.083, which corresponds to a period of exactly 12 months (t = 1/f).  The 

second and third strongest frequency correspond to a period of 3 years and 1.5 years, but 

these are likely artifacts from the trend of data over this 27 year length of time, discussed 

later.   

To evaluate the impact of anthropogenic organic chlorine emission on perchlorate 

seasonality, a period of time (1967 to 1980) with low levels of organic chlorine in the 

environment is investigated, and the results are shown in Figure 13.   

In Figure 13, it can be seen that no significant signal at f = 0.083 is present, 

indicating that during periods of low perchlorate levels, there is no perchlorate 

 

Figure 12.  The FFT of the perchlorate SM07C2 time series from 1980 to 2007.  
Units on the Periodogram axis are [(µg kg-1)2]/f, and units of frequency are in 
cycles per month.  The signal with a 12-month period is highlighted in red. 
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seasonality at Summit.  Given evidence of the relationship between perchlorate and 

organic chlorine in the stratosphere (Cole-Dai et al., 2018), this suggests that seasonality 

and high levels of stratospheric organic chlorine are related.   

The bipolar nature of perchlorate seasonality is confirmed by performing FFT on 

the perchlorate signal from a WAIS Divide snow pit, shown in Figure 14.  Here, the 

maximum frequency corresponds to a period of 12.8 months.  Given the short length of 

time for this record, this appears to be broadly consistent with an approximately 1 year 

period. 

The FFT is not sensitive to the absolute magnitude of the measurement, but rather 

the relative magnitude of variation of the component sinusoids.  These findings suggest 

 

Figure 13.  The FFT for the perchlorate time series from the year 1967 to 1980.  
Units on the Periodogram axis are [(µg kg-1)2]/f, and units of frequency are in cycles 
per month. 
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that at very low perchlorate concentrations, either measurement noise is occluding the 

seasonal signal due to small magnitude of the seasonal signal, or indeed the seasonal 

component is nonexistent.    To the effect of signal magnitude on whether seasonality is 

detectable, and to evaluate the seasonal variation of the perchlorate concentration of the 

time series in detail, time-domain time series decomposition is used. 

3.3.2 Time Series Decomposition of the Summit Perchlorate Record 

Three time periods were selected for this analysis: 1980 to 2007, 1967 to 1979, 

and 1916 to 1925.  The first two intervals were selected based upon analysis of the 

spectral power density from each period, representing two periods with vastly different 

spectral power in the 0.083 cycles/month band.  The interval from 1916 to 1925 was 

selected because it was not influenced by volcanic activity or any other large 

 

Figure 14.  The FFT for the WAIS Divide snow pit samples covering the years 2008 to 2013.  
Units on the Periodogram axis are [(µg kg-1)2]/f, and units of frequency are in cycles per 
month.  The red box indicates a signal with a period of 12.8 months. 



55 
 

 
 

perturbations, and it represented a time long before atmospheric chlorine concentrations 

were influenced by anthropogenic chlorine emission. 

In Figure 15, a prominent annual signal is seen, which is superimposed upon a 

relatively stable level of background noise, and on a trend clearly showing the effect of 

the 1991 eruption of Mt. Pinatubo.  Also reflected in the trend is the effect of the rise and 

decline of anthropogenic chlorine emission (Cole-Dai et al., 2018) in this time period.  The 

decomposed seasonal signal for perchlorate is from -1.12 ppt from the trend in January, 

to +0.96 ppt in August.  This equates to inducing a change from the trend of 2.08 ppt peak 

to peak, a quite strong variation.  For this time period, the mean concentration in August 

is about 3.2 ppt, while in January through March is consistently about 1.8 ppt (Figure 15).  

However, the absolute lowest measurements are made in January, and while the mean 

concentration in July and August is similar, concentrations in August can regularly exceed 

any observed in July.  The average perchlorate concentration for these years is 2.76 ppt, 

so the relative magnitude of variance in the seasonal signal is -40.6% to +34.8% of the 

mean for this period. 

When considering the seasonality of perchlorate during this time period, it is 

important to consider the effect of chlorofluorocarbon (CFC) emission.  When CFCs reach 

the stratosphere, they are destroyed via photolysis and ultimately release a chlorine 

radical.  Thus, since perchlorate levels in snow at Summit have been shown to have 

increased with total chlorine in the atmosphere, the seasonal component must be 

evaluated against a period of time before increased atmospheric chlorine to determine if 

CFC emission amplifies the seasonal signal.   
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Figure 15.  Time series decomposition (top), and plot of monthly concentrations 
(bottom) for the period 1980 to 2007 in the SM07C2 core.  The decomposition 
depicts the observed signal, trend, seasonal component, and noise. 
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The years 1967-1979 displayed a very weak seasonal signal, depicted in Figure 16, 

a period when CFC use first became widespread.  It is immediately seen that the 

magnitude of the seasonal signal is much lower, only -0.15 ppt in January, with a high of 

+0.20 ppt in September, or 0.35 ppt peak to peak, than the seasonality observed in the 

period from 1980 to 2007.  In addition, the monthly mean concentrations are much more 

consistent and very close to the average perchlorate concentration for these years of 0.76 

ppt.  This yields a relative magnitude for the seasonal variance from the mean of between 

-19.7% and 26.3%, about half that observed from 1980 to 2007.  

Finally, the period, 1916 through 1925, that was not impacted by either volcanic 

eruptions or organic chlorine emission was selected for time series analysis.  The time 

series decomposition is shown in Figure 17.  Clearly, no seasonal signal is present, even 

though the average concentration of perchlorate is not significantly different from that in 

the period 1967-1979 (p-value = 0.9268).  Accordingly, in the boxplot for this period, no 

large variation between the monthly means is seen, indicating that in this period 

perchlorate production was not constrained by a mechanism reliant upon photolysis 
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Figure 16.  Time series decomposition (top), and plot of monthly concentrations 
(bottom) for the period 1967 to 1979 in the SM07C2 core. 
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Figure 17.  Time series decomposition (top), and plot of monthly concentrations 
(bottom) for the period 1916 to 1925 in the SM07C2 core. 
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After imputation and time series decomposition, the sarima function in R, which 

generates an autoregressive integrated moving average (ARIMA model) allows 

forecasting.  The R script for forecasting as used here is shown in Appendix D.  Taking the 

period from 1980 to 2007, the forecast perchlorate signal in snow for Summit, Greenland 

is displayed in Figure 18.  While samples could now be collected to cover this period, the 

model predicts that seasonality will continue to be a dominant factor in perchlorate 

deposition in snow deposited after 2007, when the core was collected. 

The time series analyses for these three time periods support the conclusion 

(Cole-Dai et al., 2018) that the emission of CFCs has played a role in atmospheric 

perchlorate production in recent decades.  The increase in seasonal signal magnitude in 

 

Figure 18.  Forecasting prediction for perchlorate at Summit for the years 2008 and 
2009, with +/- 1σ and 2σ prediction bands in dark and light gray, respectively. 
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polar regions in 1980 is indicative of a relative increase in photolytic production.  

However, a critical piece of the CFC/ozone relationship must be resolved, since 

perchlorate in snow appears to be at its maximum in the late summer, when it has been 

repeatedly observed that ozone destruction rates peak in the early spring.  This is 

addressed in the following section. 

3.4 Relationship to Ozone 

Stratospheric chlorine is directly linked to ozone and can affect its abundance.  

Mario Molina, Sherwood Roland, and Paul Crutzen demonstrated the impact that the 

oxidizing power of ozone and the reactive potential of chlorine radicals can have upon 

chemical processes in the stratosphere.  As shown in the sections and figures above, both 

ozone and chlorine radicals are an integral part of stratospheric perchlorate formation, 

so here the link is investigated in detail. 

3.4.1 Sub Annual Relationship 

If indeed ozone and active chlorine are critical to perchlorate formation, a 

predictable seasonal change should exist based upon current understanding of the 

seasonality of ozone abundance and chlorine activation.  The seasonality of perchlorate 

has been mentioned in recent work (Furdui and Tomassini, 2010; Jiang et al., 2016; 

Crawford et al., 2017), and some early attempts at interpreting the seasonality with 

respect to ozone have been made (Peterson, 2016).  However, conflicting conclusions 

have been reached, where the work of Furdui and Tomassini contrasted with other 

research in terms of seasonal variation of perchlorate.  While they observed seasonal 



62 
 

 
 

variation in the Arctic, measurements of perchlorate at several North American sites 

found no such annual variation (Rao et al., 2012).   

In the work of Furdui and Tomassini (2010), a relatively strong correlation (R2 = 

0.6153) between total column ozone and levels of perchlorate in snow was found; 

however, at WAIS Divide in Antarctica, perchlorate appeared to reach its maximum 

concentration in the autumn, when ozone levels were still low and recovering from large 

losses during the spring (Jiang et al., 2016; Peterson, 2016; Crawford et al., 2017).  It 

should be noted, that only in the case of the work of Furdui and Tomassini was a 

correlation analysis conducted.  All of these analyses though, treat the perchlorate 

concentration in snow as contemporaneous with real-time ozone measurements.   

The transfer of a chemical from the stratosphere to the surface through 

scavenging or sedimentation does not occur instantly, and to perform a correlation 

analysis with such an assumption is quite problematic.  Through comparison of optical 

aerosol measurements and sulfate analysis of well dated ice samples, it was shown that 

the sulfate formed after volcanic eruptions of Mt. Pinatubo and Cerro Hudson may have 

taken several months to reach the surface from the stratosphere (Cole-Dai et al., 1997).  

In addition, 10Be measurements in a more recent work revealed that stratospheric aerosol 

has a residence time of between 103 and 205 days, or between about 3 and 7 months 

before descending to the troposphere (Długosz-Lisiecka and Bem, 2012).  While many 

variables can affect the movement of particles from the stratosphere to the troposphere, 

it is clear that the assumption that perchlorate measurements at the surface are 

contemporaneous with ozone measurements should not be considered valid. 
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However, this type of correlation does serve as an initial starting point for 

evaluating the relationship between perchlorate and ozone.  A program of weekly 

monitoring of ozone was started in 2005 at Summit Station in Greenland (NOAA; Frith et 

al., 2012).  The measurements of total column ozone taken there are shown along with 

perchlorate concentrations in the well-dated SM07C2 core in Figure 19.  Though only 2 

years of the ice core overlaps with the ozone measurements, some useful conclusions can 

be made regarding timing. 

By far, most ozone resides in the lower stratosphere.  In the year 2005, ozone 

reaches its maximum concentration of about 400 DU in spring, April-May, whereas the 

maxima in the perchlorate concentration (≈ 6 ppt) occurs in the autumn, in about 

September, which is consistent with the analysis of seasonality conducted above.  In 2006, 

the ozone maxima (≈ 450 DU) occurs in March, and the Perchlorate maxima (≈ 4 ppt) that 

year occurs in summer, around July or August.  In each case, there is about 5-6 months in 

 

Figure 19.  Ozone sonde measurements (black circles) made at Summit Station and 
ice-core perchlorate concentrations (red circles).  Data treated with LOESS 
smoothing (red and black lines). 
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between the relative maxima of ozone and perchlorate, within the window for 

stratospheric aerosol residence times discussed above.  Second, and more importantly, 

the wintertime ozone levels coming out of 2005 appear generally lower than those in the 

winter of 2005-6.  The perchlorate levels are higher in 2005 and 2006, suggesting that 

there may be an underlying common link, though the assumption that perchlorate 

concentration and ozone abundance are directly related in terms of cause and effect must 

not be made.  The air-snow transfer of perchlorate is not well understood, though, making 

a sub annual analysis difficult.  Examination of annual data gives a way to expand this 

analysis without the confounding effect of air to snow transfer.  Since annual totals and 

averages are used, an extrapolation made possible so long as the transfer of perchlorate 

to snow is less than a year. 

3.4.2 Annual Relationship 

To evaluate the relationship between perchlorate and ozone on an annual 

timescale, the annual perchlorate deposition flux was calculated; and annual zonal mean 

total ozone (ZMO) abundance from 35-65° N wad calculated from the NASA Solar 

Backscatter Ultraviolet (SBUV) Merged Ozone Dataset (McPeters et al., 2013) for the 

years 1980 to 2007.  The plots are shown in Figure 20 as a function of time.  It should be 

noted that the ozone scale is inverted to better investigate the correlation.  A scatterplot 

of ZMO vs perchlorate flux for the same period is shown in Figure 21.   

The slight lack of fit in 1982 (Figure 20) is the result of high ZMO abundance, and 

very high perchlorate flux for that year.  It is plausible that this is the result of unusual 

perturbation by the eruption of either Mt. St. Helens in 1980 or El Chichon in 1982, or 
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both.  Such a scenario could possibly be expected of a large release of chlorine to the 

upper troposphere, where interaction with ozone was limited, but long-range dispersion 

may still be possible.  At this time, however, that line of reasoning is only speculation. 

Regardless, the negative correlation between ZMO and perchlorate flux over the 

27-year period is quite good (R2 = 0.4785).  This is in direct contrast to the findings by 

Furdui and Tomassini (2010), where a positive correlation was found between ozone and 

perchlorate.  First, the question must be asked if a positive or negative correlation may 

be expected.  As shown earlier, the link between ozone and perchlorate in the 

stratosphere is through chlorine radicals.  As the abundance of chlorine radicals increases 

and begin to catalytically destroy ozone, ozone abundance decreases, and given the 

excess of ozone relative to chlorine an increase in perchlorate is expected.  With the 

ozone concentration in the stratosphere being vastly greater than the abundance of 

chlorine, much less chlorine radicals, ozone abundance is likely not a limiting reagent in 

 

Figure 20.  Zonal mean total ozone from 35-65°N (black squares), and perchlorate 
flux (red circles) from the SM07C2 ice core.  Data are fitted (solid curves) with a 
LOESS algorithm. 
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the formation of perchlorate.  One explanation put forth by Furdui and Tomassini for the 

positive correlation observed in their work may be that an important source of 

perchlorate is in the troposphere.  The coastal location of their study sites may subject 

those locations to a larger contribution of chloride from sea salt aerosol relative to central 

Greenland, leading to increased tropospheric production from a chloride precursor.     

As mentioned earlier, it has been noted that chloride may be oxidized into 

perchlorate without transitioning through a chlorine or chlorine monoxide radical.  In 

addition, the background level of perchlorate observed by Furdui and Tomassini is much 

higher ( �̅� . = 5.5 ± 3.9  ppt) than that at Summit ( �̅� . = 1.2 ± 1.2  ppt), 

 

Figure 21.  Annual zonal mean total ozone from 35-65°N and annual perchlorate 
flux from the SM07C2 ice core.  The regression (black line), prediction interval (blue 
line), and 95% confidence interval (red line) are shown. 
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indicating that there is a difference in the magnitude or number of sources.  The latitudes 

of the Furdui and Tomassini study sites are not significantly different than the latitude of 

Summit Station, and the initial assumption made here is that the stratospheric deposition 

of perchlorate should be consistent zonally across the Arctic.   

  A plausible hypothesis could be formed here where ozone is a limiting reactant 

in perchlorate production in the troposphere at those locations, whereas the location of 

Summit, far from the coast, is isolated from a sea-salt chloride perchlorate source (i.e., a 

tropospheric source) , thus sea salt chloride is the limiting reagent for tropospheric 

production.  While the authors agree that a positive correlation between ozone and 

perchlorate can only be possible if ozone is a limiting reagent, they state that this must 

happen at stratospheric altitudes.  However, the abundance of ozone in the stratosphere, 

even during the lowest periods is still several orders of magnitude greater than the 

abundance of chloride or chlorine radicals, whereas in the upper troposphere, the 

abundance of organic chlorine and chloride far exceeds that of ozone.   The hypothesis 

seeking to explain the positive correlation between perchlorate and ozone in their works 

neglects to address those relative abundances and the rather strong seasonal variation in 

ozone at altitudes between 5 and 10 km, which decreased by about 80% at 10 km in their 

dataset during the year 2004.  At these extremely low ozone levels, it is conceivable that 

ozone may be a limiting factor in perchlorate production via oxidation of chloride in a 

region with high levels of sea-salt aerosol.   

Furdui and Tomassini state that there is a small amount of perchlorate that is not 

produced from chloride, but rather must stem from a chlorine radical precursor.  In that 
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work, it was determined that if the perchlorate generated from a chloride precursor is 

excluded, there should be about 1.0 ppt in snow remaining that is generated via a chlorine 

radical precursor, extremely close to that observed during nonvolcanic periods prior to 

the 1970s at Summit.  These factors support several conclusions: that the bulk of 

perchlorate deposited at Summit is stratospheric in nature, and that the negative 

correlation of perchlorate with ozone observed at Summit on an annual scale and the 

positive correlation observed in the Furdui and Tomassini work on a sub annual scale are 

not mutually exclusive.  The implications are that the correlation of ozone and perchlorate 

conveys a great deal of information regarding formation pathway and layer of the 

atmosphere where the bulk of the generation is occurring. 
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4.0 Response of Perchlorate to Volcanic Eruptions 

Increased perchlorate levels in 1996 were noted in an ice core collected from 

Devon Ice Cap in Canada by Furdui and Tomassini (2010).  The researchers suspected that 

volcanic eruptions such as the 1991 eruption of Pinatubo would enhance perchlorate 

production based upon speculation by others (Jaeglé et al., 1996), but no conclusive 

evidence could be found since that ice core only dated as far back as 1996.  Later, a link 

between volcanic eruptions are perchlorate formation was again proposed (Rao et al., 

2012) in an analysis of perchlorate in wet deposition from sites across North America, but 

conclusive evidence was still not found. 

Another investigation into volcanic perchlorate was published by Furdui et al. 

(2017).  Here, the relationships between perchlorate, chloride, and sulfate were 

investigated to determine the contribution of volcanic activity to perchlorate production 

relative to nonvolcanic periods.  However, no conclusions were reached from their 

chemical analysis on how or to what extent volcanic activity perturbs perchlorate 

production.  In that work, aerosol depth was also investigated because it is a direct 

response to volcanic emission, but it was concluded that stratospheric volcanic aerosol 

had little effect on perchlorate levels observed at Agassiz Ice Cap (80°30’N, 075°00’W). 

Other recent work, however, has found clear evidence of a perchlorate response 

to some large eruptions (Peterson, 2016; Cole-Dai et al., 2018).  Peterson only identified 

a few eruptions, with no particularly large perchlorate response.  Several volcanic 

eruptions were identified by Cole-Dai et al. (2018) through an increase in volcanic sulfate 
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where the snow also had an increased concentration of perchlorate.  Cole-Dai et al. (2018) 

examined more eruptions, found perchlorate response to several eruptions, and 

identified a very large volcanic perchlorate signal.  It was also found in the 300-year 

perchlorate record that only large eruptions with stratospheric impact have a perchlorate 

response.   

However, the only perchlorate response to volcanic eruptions at this time has only 

observed at Summit; so, whether this phenomenon could be found at other sampling 

locations, including the Southern Hemisphere, remained unclear.  In addition, detailed 

features of the perchlorate response, which may preserve some aspects of the 

atmospheric chemistry of perchlorate formation, has never been conducted. 

4.1 Observation of Volcanic Perchlorate Signals 

The phenomenon of a perchlorate response to some large volcanic eruptions 

could not be readily extended globally, or considered a general response to eruptions, 

based upon the sparse suite of measurements made on the Summit, Greenland ice cores. 

Additional analyses were needed to confirm that volcanic impact on perchlorate 

production is a large-scale (hemispheric and/or global) atmospheric phenomenon.  To 

verify that the perchlorate response to some eruptions was not confined locally to 

Greenland, a section of core from Denali, Alaska dated to around the 1912 eruption of 

Katmai (details about and discussion on Katmai are presented later in this work) was 

analyzed.  This section of ice indeed contained high concentrations of perchlorate co-

deposited with the volcanic sulfate from that eruption (discussed later in more detail, 
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Figure 32), consistent with those observed at Summit.  Indeed, the magnitude of the 

perchlorate signal was even larger than the response seen at Summit, but the background 

levels of perchlorate were also higher than at Summit, similar to the background levels 

observed at other sites near the coast and at other North American sites (Rajagopalan et 

al., 2009; Furdui and Tomassini, 2010; Rao et al., 2012; Furdui et al., 2017).  This finding 

confirms that this phenomenon is probably across the Northern Hemisphere, not 

restricted to Greenland. 

Evidence that the perchlorate response could be observed in the Southern 

Hemisphere was needed to confirm that perchlorate would respond to an eruption 

globally.  Two short sections from the Antarctic SPC14 core were dated by synchronizing 

continuous ECM measurements to the WAIS Divide ECM record (Winski et al., 2019).  The 

sulfate deposition of three large eruptions (Tambora, a widely-known but unattributed 

event in the early 19th century, and the suspected eruption of Kuwae in the 15th century) 

 

Figure 22.  Volcanic sulfate signals (black, bottom), and perchlorate responses (red, 
top) of the suspected eruption of Kuwae (left), and of Tambora and the 1809 
Unidentified Event (right) in the SPICE Core. 
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was identified in the two sections, and perchlorate measurements were made for the 

same samples.   

Strong perchlorate responses were observed in concert with the sulfate response 

for all three of these eruptions (Figure 22), indeed verifying that the perchlorate response 

could be extended to the Southern Hemisphere.  The list of eruptions analyzed for this 

study producing a perchlorate response are shown in Table 2. 

Table 2.  Table of volcanic eruptions where a clear perchlorate response was 
identified. 

Ice Core Sample Location Year Volcano 
SM07 Summit, Greenland 1991 Pinatubo1 

SM07 Summit, Greenland 1982 El Chichon1 

SM07 Summit, Greenland 1912 Katmai1 

SM07 Summit, Greenland 1883 Krakatoa1 

SM07 Summit, Greenland 1835 Cosigüina1 

SM07 Summit, Greenland 1831 Babuyan Claro1 

SM07 Summit, Greenland 1815 Tambora1 

SM07 Summit, Greenland 1601 Huaynaputina2 

DIC Denali, AK, USA 1912 Katmai2 

SPC14 South Pole, Antarctica 1815 Tambora2 

SPC14 South Pole, Antarctica 1809 Unknown2 

SPC14 South Pole, Antarctica 1453 Kuwae2 

1Cole-Dai, et al., 2018 
2This work 

The fact that the perchlorate response to volcanic eruptions has been found in ice 

cores from both the Arctic and Antarctica demonstrates that volcanic impact on 

perchlorate production is global.  The volcanic eruptions in Table 2 are large enough to 

inject material into the stratosphere.  In the SM07 core, two known Icelandic eruptions 

were investigated that showed a well-defined sulfate signal, those of the 1728 CE 
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eruption of Öraefajökull, and the 1768 CE eruption of Hekla (Global Volcanism Program, 

Smithsonian Institution).   

While both very large (VEI 4), these eruptions were not thought to have injected 

material into the stratosphere (Global Volcanism Program, Smithsonian Institution).  The 

sulfate and perchlorate concentrations for these eruptions are shown in Figure 23.  In 

Figure 23, the blue line indicates the mean perchlorate concentration, and it is seen that 

at no point does the perchlorate concentration exceed even one standard deviation in 

perchlorate concentration (± 1.2 ppt) for this period, indicating that neither of these 

 

Figure 23.  The sulfate (bottom, black), and perchlorate (top, red) concentrations 
measured in SM07 for Öraefajökull (1728 CE, 90.2 meters), and Hekla (1768 CE, 
80.9 meters).  The mean perchlorate concentration is shown as a horizontal blue 
line. 
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eruptions produced a detectable perchlorate response. This suggests that large eruptions 

without stratospheric injection do not elicit a perchlorate response. 

4.2 Magnitude of Perchlorate Response to Katmai and Huaynaputina 

Here, the perchlorate responses in the SM07C4 core to the June 6, 1912 eruption 

of Novarupta (Katmai) and a second eruption of similar magnitude, the 1600 eruption of 

Huaynaputina, are examined in detail.  Though Novarupta is the geological name of the 

volcano, due to its proximity and formation of a caldera on neighboring Mt. Katmai the 

volcano is colloquially referred to as Katmai and will be referred to as such in this work.  

Both of these massive eruptions are from stratovolcanoes located in continental volcanic 

arcs, where an oceanic plate is being subducted by continental crust and were of similar 

explosive magnitude in the Volcanic Explosivity Index (VEI), VEI 6.  Katmai lies at the base 

of the Alaskan Peninsula, about 300 miles southwest of Anchorage, AK (Figure 24).  The 

eruption occurred about 10.5 km from the summit of Mt. Katmai, where the magma 

chamber was actually located.  During the eruption, emptying of the Katmai magma 

chamber through a series of interconnected sills and vents caused the summit of Katmai 

to collapse, leaving a 600 m deep, 12 km2 caldera (Brantley, 1996).  The eruption of Katmai 

emitted an estimated rhyolitic/dacitic magma volume of 13 km3 over three eruptive 

phases in a span of only 60 hours, and produced a plume reaching a modeled altitude of 

up to 26 km, well above the tropopause (Fierstein and Hildreth, 1992; Hildreth et al., 

2003).   
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Huaynaputina is located in the Central Volcanic Zone of the Andes in southern 

Peru (Figure 24), one of three igneous provinces in South America arising from subduction 

of the Nazca Plate.  The eruption took place in three phases between February 19 and 

March 6, 1600 and is the largest historic eruption known in South America (Global 

Volcanism Program, Smithsonian Institution).  It contributed to the coldest Northern 

 

Figure 24.  Map of the Western Hemisphere depicting the relative locations of 
Katmai, Denali, Huaynaputina, and Summit, Greenland. 
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Hemisphere summers in 600 years, comparable to the climate impact of the 1815 

eruption of Tambora.  Tambora, in what is now Indonesia, was the largest volcanic 

eruption in recorded history (Adams et al., 2001).  Models of the climate impact indicate 

that the eruption altered the Atlantic meridional overturning current, increased Arctic sea 

ice extent for several years, and strengthened Little Ice Age climate conditions (Slawinska 

and Robock, 2018).  Unlike Katmai, severe human impacts followed the eruption, 

including disease, widespread famine, flooding, and the complete burial of several villages 

by ash (Adams et al., 2001; Finizola et al., 2017).  It erupted an estimated volume of 11 

km3 chiefly dacitic magma, with an estimated 85% ejected during the 20-hour long first 

phase (Adams et al., 2001).  The plume height during the Plinian phase of the 

Huaynaputina eruption reached an estimated altitude of 27-35 km (Thouret et al., 2002), 

deep into the stratosphere, similar to Katmai. 

To evaluate the magnitude of a chemical signal in ice cores, an appropriate 

background must be established.  The background represents the concentration 

measured in snow, or the flux of a species being deposited, that is the result of processes 

unrelated to that which causes an unusual signal response.  In the case of sulfate, the 

marine emissions of sulfur-containing products which are oxidized to sulfuric acid 

comprise the source of sulfate in polar snow and ice during non-volcanic time periods.  

This amount varies throughout the year, with the largest concentration occurring during 

times of high marine productivity, in the late spring and summer.  For perchlorate, the 

background is usually very low, and for most of the record shows no seasonal change.  

The response or signal associated with an event such as a volcanic eruption is then 
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superimposed upon this background; thus, to evaluate the magnitude of the chemical 

signal for a volcanic event, an appropriate threshold above which the chemical 

concentration or deposition is no longer attributable to the background, must be 

calculated or estimated.  Background levels of both sulfate and perchlorate will be 

discussed in the appropriate sections below, in the context of the signals for the 

investigated volcanic eruptions. 

Typical nonvolcanic sulfate concentrations for the early 20th century lie in the 

range of 50 to 75 µg kg-1, whereas the peak sulfate concentration for the eruption of 

Katmai reaches 440.6 µg kg-1 around October of 1912 (Figure 25).  A second sulfate peak 

of 343.9 µg kg-1 appears about June 1913.  At around these depths, we detected a very 

large perchlorate signal in the ice core.  Background levels of perchlorate at Summit, 

Greenland have been shown to be about 1.2 ng kg-1 before the late 20th Century, and 

 

Figure 25.  Perchlorate response (top, red) and volcanic sulfate (bottom, black) 
deposition recorded at Summit, Greenland to the eruption of Katmai in 1912. 
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stable throughout several hundred years (Cole-Dai et al., 2018).  For the eruption of 

Katmai, perchlorate levels reach a maximum of 50.0 ng kg-1 in late June 1912, with a 

second peak (37.1 ng kg-1) in about January of 1913.  The period of elevated perchlorate 

for this eruption is about 2 years in length.  Without anthropogenic influence, or that of 

volcanic eruptions, the distribution of the perchlorate background flux is not quite 

lognormal, so here the flux attributed to volcanic eruptions is calculated by summing that 

portion of perchlorate flux during the event above the mean plus two standard deviations 

for 1916-1930, a period with an unperturbed background.  For Katmai, the perchlorate 

flux deposited at Summit and attributed to influence from the eruption is 12.9 g km-2, or 

about 7.2 g km-2 yr-1 for the duration of the signal. 

The peak sulfate concentration for the Huaynaputina eruption is 367.5 µg kg-1 in 

about January of 1602, and a second smaller peak (304.4 µg kg-1) appears earlier, in March 

 

Figure 26.  Perchlorate response (top, red) and volcanic sulfate (bottom, black) 
deposition recorded at Summit, Greenland to the eruption of Huaynaputina in 
1600. 
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1601 (Figure 26).  As with Katmai, typical background sulfate concentrations comprise a 

range of about 50 to 75 µg kg-1.  A period of high of perchlorate concentration was also 

encountered around this volcanic signal and there are two perchlorate maxima.  The first 

maximum occurs in January 1601 and reaches a concentration of 24.7 ng kg-1, and the 

second occurs in November 1601, reaching 50.6 ng kg-1.  Here, the period of perchlorate 

deposition higher than the background level is almost 4 years.  Flux for Huaynaputina is 

calculated in the same manner as for Katmai using the years 1604-1607 as a background.  

For this eruption, the total perchlorate flux attributed to the eruption is about 8.1 g km-2 

for the duration of the signal or about 2.3 g km-2 yr-1. 

The perchlorate flux from these two eruptions is extremely large compared to 

both that of the typical background levels.  For instance, the flux of perchlorate from 1980 

to 2007 is 16.8 g km-2, and averages about 0.6 g km-2 yr-1 from all sources (Cole-Dai et al., 

2018).  From 1916 to 1980, the perchlorate flux is much lower, 10.9 g km-2, or <0.2 g km-

2 yr-1.  The chlorine atom in perchlorate may be contributed either from a chlorine species 

present in the stratosphere prior to the eruption or emitted from the eruption.  In either 

case, however, perchlorate deposited after these two eruptions may represent a large 

sink for chlorine in the Arctic atmosphere during volcanic eruptions, supporting earlier 

hypotheses (Simonaitis and Heicklen, 1975; Jaeglé et al., 1996).   

If significant HCl is injected into the stratosphere, it may be that the large increase 

in the supply of chlorine-containing source material is helping drive production of 

perchlorate.  Whether the chlorine in perchlorate is injected to the atmosphere from the 

eruption or removed from existing chlorine reservoirs without additional chlorine 
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injection is unclear.  This amount of perchlorate removed from the stratosphere following 

a volcanic eruption appears to be inconsistent with historically low pre-anthropogenic 

stratospheric chlorine levels. The discrepancy suggests that at least some of the chlorine 

in perchlorate is injected directly from the eruption (Dasgupta et al., 2005). 

The quantitative relationship between perchlorate flux and sulfate flux was 

examined to characterize the relationship between perchlorate production and volcanic 

aerosol.  Since the stratospheric HCl injection from volcanic eruptions can vary easily from 

almost none to over 10% of gaseous emissions (Cadle, 1975; Textor et al., 2003; Kutterolf 

et al., 2015), how the perchlorate response is related to the sulfate produced from the 

eruption may indicate the degree to which perchlorate production is related to 

stratospheric aerosol versus chlorine emission.  The total perchlorate flux was calculated 

for each of the volcanic events in Table 2, and is shown in Table 3, and the sulfate flux for 

the same depth interval was also calculated.  These results are shown in Figure 27.   

Table 3.  Volcanic sulfate signals and perchlorate responses for identified eruptions, 
with total sulfate and perchlorate fluxes for that section of ice. 

Ice Core SO4
2- (kg km-2) ClO4

- (g km-2) 
Eruption 

Year 
Volcano 

SM07 102.1 6.4 1991 Pinatubo 

SM07 252.2 2.1 1982 El Chichon 

SM07 101.2 13.9 1912 Katmai 

SM07 60.3 3.9 1883 Krakatoa 

SM07 45.1 1.6 1835 Cosigüina 

SM07 58.0 2.9 1831 Babuyan Claro 

SM07 79.5 9.7 1601 Huaynaputina 

DIC 178.2 27.2 1912 Katmai 

SPC14 60.6 5.3 1815 Tambora 

SPC14 71.5 7.3 1809 Unknown 

SPC14 137.5 21.6 1458/9 Kuwae 
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The 1982 eruption of El Chichon in Southern Mexico proved to be a peculiar case 

and was omitted from the regression (triangle in Figure 27).  First, the perchlorate 

response was not very pronounced.  Second, this eruption occurred during a period where 

the sulfate background was unusually high and variable, at the peak of sulfur dioxide 

emission to the environment.  The fluctuating background can lead to under- or 

overestimation of both perchlorate and sulfate background levels, resulting in large errors 

in volcanic flux calculation.  With these considerations, the signal of El Chichon is not 

included in this examination.   

 

Figure 27.  Perchlorate flux plot as a function of sulfate flux for eruptions recorded 
at Summit, Greenland (black), the South Pole (red), and at Denali, Alaska (green).  
The 1982 eruption of El Chichon (blue triangle), is not included in the regression. 
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The correlation between sulfate and perchlorate deposition fluxes is extremely 

high (R2 = 0.9231), suggesting that perchlorate formation is strongly related to the 

presence of sulfuric acid aerosol in the stratosphere.  Observations of volcanic gas 

composition have shown that the relative abundances of HCl and SO2 vary considerably 

(Textor et al., 2003; Kutterolf et al., 2015; Carn et al., 2017), and it is assumed that this 

behavior extends to this suite of eruptions when no direct gas measurements were 

possible.  The correlation between perchlorate and sulfate fluxes exists across volcanoes 

producing plumes with widely varying chemical composition and in samples collected 

from wide-ranging locations.  This indicates both that the volcanic production of 

perchlorate is largely independent of volcanic HCl injection into the stratosphere, rather 

that the dominant formation pathway following these large eruptions is dependent upon 

increased aerosol abundance. 

To compare volcanic correlation to nonvolcanic periods, the annual sulfate and 

perchlorate fluxes for two periods of nonvolcanic years (1870 to 1840, and 1775 to 1725 

CE) were examined for correlation (Figure 28).  As seen here, the correlation is low (R2 = 

0.1719) during periods with no volcanic sulfate signals.  During nonvolcanic periods, the 

variance in the perchlorate concentration is high relative to the mean of the signal (1.2 ± 

1.2 ng kg-1).  The poor correlation during these periods suggest that during periods with 

low levels of stratospheric aerosol, perchlorate formation in both the troposphere and 

stratosphere gives rise to the background abundance.  Because sulfate during nonvolcanic 

periods originates from marine emissions of organic sulfur, the non-correlation suggests 



83 
 

 
 

that perchlorate formation is largely independent of variation in marine sulfate input to 

the atmosphere. 

4.3 Perchlorate Response Signal Characteristics 

There are two primary differences between the volcanic sulfate and perchlorate 

signals.  First, their timing appears to be slightly different in terms of when the peaks 

begin to appear in the ice core, and when maxima and minima are reached.  Second, the 

shape of the leading and trailing edges of the perchlorate signals differs significantly from 

those of the sulfate signal.  Since the volcanic sulfate and the ice core perchlorate 

response are from the same volcanic event, the differences in shape and timing between 

the two ice core signals are likely due to differences in (1) atmospheric chemistry 

 

Figure 28.  Annual total perchlorate flux plot as a function of annual total sulfate 
flux for the years 1870-1840 and 1775-1725. 
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(formation from precursors), (2) deposition (removal from atmosphere), and/or (3) signal 

preservation in snow.   

4.3.1 Timing of Perchlorate and Sulfate Concentration Peaks 

The sulfate signal from the eruption of Katmai is found in the depth interval of 

from 38.90 to 38.58 meters in SM07C2, corresponding approximately to the time period 

of August 1912 to August 1913 (Figure 24).  The depth interval of elevated perchlorate 

concentration is from 39.26 to 37.93 meters, from about October 1911 to May 1915, 

about 3.5 years.  For Huaynaputina, the sulfate signal appears between 122.48 to 122.18 

meters in SM07C4, of from about March 1601 to July 1602 (Figure 25).  The perchlorate 

signal associated with this eruption spans from 121.92 to 122.78 meters in depth, or from 

about February 1600 to August 1603.   

 If chlorine activation occurs solely from heterogeneous activation of HCl or 

ClONO2 on sulfuric acid aerosol, perchlorate and sulfate should be co-deposited. The early 

appearance of the perchlorate peaks, relative to the sulfate peaks, may indicate that 

perchlorate deposition began earlier than sulfate, suggesting that alternative pathway(s) 

to chlorine activation and perchlorate production exist.  In addition, this difference in 

peak deposition timing may be due to how efficiently and by what mechanism these 

species are scavenged from the stratosphere.   

One possibility is extremely rapid chlorine activation, immediately after or 

concurrent with the eruption and independent of sulfate aerosol, which takes some time 

to form (Cole‐Dai et al., 1997).  Uptake of chlorine in sulfuric acid aerosol is favored at 
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low temperatures and dilute concentrations (Hanson and Ravishankara, 1993; Hanson 

and Ravishankara, 1994), and it is also possible that the young aerosol is neither cold nor 

dilute enough to promote extremely rapid chlorine activation.  Alternatively, rapid 

chlorine activation may occur from HCl adsorbed on volcanic ash.  The uptake and 

activation of HCl on the surface of ash has been experimentally shown to favor low 

temperatures and certain chemical compositions of ash, but can also occur in higher-

temperature plume conditions (Zelenski and Taran, 2012; Ayris et al., 2014; Gutiérrez et 

al., 2016).  However, the positive correlation between sulfate and perchlorate deposition 

fluxes supports that chlorine activation is strongly dependent on the abundance of sulfate 

aerosol, which suggests that this timing difference must be due to scavenging efficiency 

and mechanism. 

Finally, another possibility for the difference in signal onset timing may be that the 

transport of impurities was somehow stratified in the atmosphere after the eruption, 

leading to an offset in timing between the perchlorate and sulfate peaks.  The eruption of 

Katmai consisted of multiple phases; the eruption plume of the initial phase reached as 

high as 30 km, whereas the later plume height reached only 15-20 km (Palais and 

Sigurdsson, 1989).  This is an important consideration for interpretation of volcanic 

evidence in ice cores if rapid transport from the eruption location to the sampling site in 

the upper troposphere occurred, followed by deposition of impurities from the 

stratosphere some months later.  Rapid ash transport near the tropopause coupled with 

high HCl adsorption may have led to rapid chlorine activation and subsequent perchlorate 

deposition months before deposition of sulfate from the stratosphere occurred.   
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While identifications of ash and tephra from specific eruptions are both limited in 

number, and pose significant uncertainties with regard to the physical processes that led 

to ash deposition at the sample location (from eruption plume, or remobilization from 

areas remote from the sample site), ash readily scavenges HF from the atmosphere and 

leads to a high fluoride to sulfate deposition flux ratio (Óskarsson, 1980).  The ash from 

Katmai was observed over Europe within two weeks of the eruption (Volz, 1975).  Indeed, 

in a core collected from Summit, Greenland, an increase in fluoride was observed to occur 

shortly before the sulfate signal for Katmai (De Angelis and Legrand, 1994), and it was 

concluded that the signal characteristics reflected both rapid transport in the upper 

troposphere, and slower stratospheric transport.  Further, this hypothesis is supported by 

H2O2 measurements made at summit, that show rapid transport of SO2 to Greenland just 

weeks after the eruption (Laj et al., 1990). 

4.3.2 Diffusion of Perchlorate in Ice Cores 

In Figures 25 and 26, it can be seen that perchlorate concentration begins to 

increase from its background before sulfate, and it continues to be elevated after sulfate 

concentration has returned to baseline levels.  In addition, the rates of concentration 

reduction from the last maxima to baseline levels are not the same for perchlorate and 

sulfate. This suggests differences in their deposition mechanisms and removal rates from 

the stratosphere, or diffusion in snow. 

While some portion of the elevated perchlorate may begin being deposited before 

sulfate due to different deposition mechanisms, deposition cannot explain the early onset 

of elevated perchlorate as observed in SM07C2, or the seemingly long duration of 
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elevated perchlorate concentration in the eruption records of both Katmai and 

Huaynaputina.  A possible explanation for the shape and broadening of the perchlorate 

peak may, however, be that diffusion of perchlorate, following deposition, occurs in snow 

or ice.   

Fick’s First Law governs diffusion rates, and relates diffusion flux, 𝐽, to the diffusion 

coefficient (or diffusivity), 𝐷, concentration (ϕ) gradient: 

𝐽 = −𝐷
ௗఝ

ௗ௫
 (E8) 

Diffusivity then, in terms of unit area per unit time, is the rate at which the 

concentration gradient changes.  In an ice sheet, each layer of snow can be modeled as 

an infinitely thin plane with a uniform concentration of impurity, where the 𝑧-axis is the 

depth of the layer of snow below the surface.  As the layer of snow becomes buried, the 

concentration of impurities slowly begins to diffuse in a Gaussian manner from layers of 

high concentration to adjacent layers in the depth direction.  In this diffusion model to 

account for the perchlorate peak shape, the layer of high concentration begins as an 

infinitely thin center of molecules; over time, diffusion results in a Gaussian peak and the 

standard deviation increases with time at a rate determined by the diffusivity.  Fick’s 

Second Law then relates diffusivity to the relative changes of concentration gradient as a 

function of distance and time: 

డఝ

డ௧
= 𝐷

డమఝ

డ௫మ
 (E9) 

Which has the general solution: 
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Comparison with the Gaussian distribution, 
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yields the substitution: 

𝜎 = √2𝐷𝑡 

 This provides a method for estimating the  effective diffusivity, 𝐷, from the 

standard deviation of the Gaussian peak and when the amount of time for diffusion is 

known (E11), where 𝑙  is the diffusion length, i.e., standard deviation of the Gaussian 

curve, and 𝑡 is the elapsed time (Johnsen, 1977):   

𝐷 =
మ

ଶ௧
 (E11) 

 In an ice core, the diffusion rate or diffusivity is not constant as snow is compacted 

into ice.  Thus, for ice cores, we can assign the square of the overall diffusion length, 𝑙, as 

that part of the signal standard deviation due to effective diffusion.   

The observed signal shape of an impurity in ice cores may be caused by other 

processes than diffusion, such as transport and gradual deposition, as discussed above. 

To determine the diffusion length, the perchlorate signal must be compared to a 

reference with known diffusion characteristics.  In the case of volcanic signals, sulfate is a 

convenient reference, since perchlorate and sulfate are generally deposited at the same 

time (from the same precipitating event, assuming the same transport and deposition 
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processes for sulfate and perchlorate.  The diffusion of sulfate in ice cores has been 

studied, and is well characterized (Barnes et al., 2003).  The proposed diffusion 

mechanism for sulfate yields little diffusion over the span of one or a few hundred years.  

Sulfate is non-volatile, undergoes negligible diffusion in the gas phase, and in ice has 

effective diffusion coefficients (𝐷) in the range of between 2.4 x 10-8 and 4.7 x 10-8 m2 

yr-1 (Barnes et al., 2003).  For 𝑡 = 95 years (for Katmai) and 𝐷 =  4.7 x 10ି଼ m2 yr-1, the 

diffusion length of sulfate is only about 3 mm (𝑙ଶ = 8.9 x 10-6 m2), if we take the upper 

limit of the effective diffusion coefficient for sulfate.  Since this is a negligible contribution 

to the overall variance of the sulfate signal, we can assume the peak shape of sulfate in 

the case of Katmai is entirely due to non-diffusive processes.  The sulfate signal is then 

taken as an undiffused initial condition to evaluate perchlorate diffusion rate and 

estimate the diffusion coefficient.   

 

Figure 29.  Sulfate measurements (solid black circles) and fitted Gaussian curve (red 
line) for the eruption of Katmai. 
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To estimate the diffusive length of perchlorate, the variance of the leading edges 

of the recorded sulfate and perchlorate signals are compared.  A gaussian model is used 

to construct a shape to fit the data of the leading edge of the peak by minimizing sums of 

squares.  The variance of the sulfate model (i.e., the variance due to non-diffusive 

processes) may then be subtracted from the variance of the fit to the perchlorate peak to 

yield that portion of the perchlorate signal due to diffusion.  The sulfate signal and fit are 

shown in Figure 29.  For the perchlorate signal, the interval from 38.879 to 39.381 meters 

was selected for evaluation and is shown in Figure 30 with a gaussian curve fitted. 

The variance of the sulfate fit was 1.764 x 10-3 m2 (Figure 29), and that of the 

perchlorate fit (Figure 30) is 6 x 10-3 m2.  Taking the square root of the difference in 

variances yields a diffusion length of about 6.5 cm (≈ 3.6 months, based upon decimal 

 

Figure 30.  Perchlorate measurements (solid black circles) and fitted Gaussian curve 
(red line) for the eruption of Katmai. 
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year calculation as explained in Chapter 2) and an estimated effective diffusion coefficient 

of 2.2 x 10-5 m2 yr-1.  This diffusion length, however, appears too short, so an evaluation 

of leading edge selection is warranted.  Location of the top of the Gaussian function is of 

critical importance for this method.  If the first slight dip of the perchlorate signal is 

considered to be a low reading due to measurement uncertainty and the peak of the 

perchlorate signal is selected slightly later, as in Figure 31, the estimated effective 

diffusivity is 5.4 x 10-5 m2 yr-1, with a diffusion length of 10.1 cm (≈ 5.5 months), a better 

fit with the observed data for Katmai. 

 To test the validity of the estimated diffusion coefficient, it is applied to the signal 

of Huaynaputina, though the low quality symmetry of the peak shape makes any 

quantitative estimation from it difficult.  For Huaynaputina t = 407 years, yielding a 

perchlorate diffusion length of between 13.4 and 21.0 cm (≈ 7.3 – 11.5 months), generally 

consistent with the observed breadth of the signal (diffusion length decreases in 

 

Figure 31.  Alternate selection of perchlorate measurements (solid black circles) 
and fitted Gaussian curve (red line) for the eruption of Katmai. 
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proportion to the square root of time).  Also, like Katmai, an effective diffusivity towards 

the high end of the estimate range appears to give the best fit with observations.  

If diffusion is only occurring in the firn layer, i.e., no significant diffusion in solid 

ice or below the pore close-off depth, sampling sites subject to high accumulation rates 

and higher strain rates experience less diffusion than other locations due to rapid 

densification (Morris and Wingham, 2014).  The signal for the 1910 Katmai eruption in an 

ice core (Figure 32) collected from Denali, Alaska, was analyzed for major soluble ions 

including sulfate, and for perchlorate.  The signal for the Katmai eruption occurs much 

deeper in the DIC1 core; about 122 meters in depth, compared to about 39 meters at 

Summit.  In the DIC1 core, no diffusion is seen at the onset of the perchlorate signal.   

Figure 32.  Perchlorate response (top, red) and volcanic sulfate (bottom, black) 
deposition recorded at Denali, Alaska to the eruption of Katmai in 1912. 
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Densification of snow into ice creates very different environments for diffusion to 

take place, from rapid gas phase diffusion in the upper unconsolidated snow, to very slow 

diffusion in solid ice.  The depth at which air bubbles are closed off during densification is 

the pore close-off depth.  Below this depth, gas phase diffusion can no longer occur, as 

the air bubbles are now closed off from each other.   

The signal for Katmai in the SM07 core is still far from pore close-off depth; at 39 

meters in depth, the density is still only about 0.69 g cm-3 (unpublished data).  In DIC1, 

the density of solid ice (≈ 0.91 g cm-3) is reached at about 75 meters in depth 

(corresponding to about 38 years of accumulation), whereas at Summit, this depth is at 

about 120 meters (about 370 years of accumulation).  If we apply an effective diffusion 

constant of 2.2 x 10-5 m2 yr-1 to about 38 years of diffusion in the firn at Denali, a diffusion 

length of only 3.9 cm is expected; this indicates that no diffusion could be observed, since 

the sample resolution of perchlorate analysis was approximately 4.2 cm per sample.  If 

the effective diffusion coefficient 2.2 x 10-5 m2 yr-1 is applied to the DIC1 data for 𝑡 = 104 

(from 2016 to 1912 CE), the diffusion length becomes 6.8 cm.  This equates to 1.9 months 

on the time domain and would indicate that there should only be a 1- or 2-sample lead of 

increasing perchlorate concentration vs. increasing sulfate concentration.   

Similarly, using the upper estimate for perchlorate diffusivity and a 35-year time, 

the diffusion length would be 6.1 cm.  This suggests that the diffusive process slows down 

with more rapid densification, and that diffusion is occurring predominantly in the firn 

layer of the ice column.  A complicating factor, however, could be the proximity of the 

DIC1 sampling site with respect to Katmai, which lies only a few hundred kilometers away.  
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The cause of the large sulfate signal towards the middle of 1913 in the DIC1 core is 

unexplained and is coincident with a large spike in dust content and nitrate (Osterberg, 

2017, personal communication).  Interestingly, the profile of perchlorate appears to 

match closely with that of sulfate in the years following the eruption. 

Finally, a major cause for variation in diffusivity is the dependence of 𝐷 upon 

densification characteristics of the sample site.  The effective diffusivity, if taken as an 

overall metric from the snow surface to the signal depth, comprises a wide range of 

effects resulting from variations, as the peak depth increases, in vertical strain, density, 

and temperature, all of which have an effect upon diffusion rate.  Applying diffusivity for 

sulfate derived from a sample site in Antarctica to a site in Greenland carries some 

uncertainty as to suitability a static initial condition to estimate diffusivity of perchlorate, 

although this is largely mitigated by the extremely slow diffusion of sulfate in snow.  

However, in the case of perchlorate, the application of the 𝐷 derived at Summit to 

other sites must be taken with caution in light of the difference in densification rates 

between those sites.  Nevertheless, these estimates show that the effective diffusivity for 

perchlorate in snow is on the order of 10-5 m2 yr-1, or 10-9 cm2 s-1, somewhere in the range 

of diffusivity of liquid to that of solid (Haynes, 2015). 

4.4 Perchlorate Formation after Major Volcanic Eruptions 

Here, perchlorate formation in the atmosphere perturbed by large and explosive 

eruptions is explored in the context of stratospheric chlorine chemistry outlined above.  

The strong correlation between volcanic sulfate and volcanic perchlorate flux indicates 
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that primary perchlorate formation pathways likely perturbed during these large 

eruptions involve heterogeneous chlorine activation and possibly reaction of chlorine and 

bromine radicals.  Other pathways experiencing perturbation when volcanic aerosol is 

present in the stratosphere are gas phase formation from hydrogen chloride with or 

without a chlorine radical intermediate and gas phase formation from chlorine nitrate.  

The hypothesis under investigation here is that perchlorate responds so heavily to 

volcanic eruptions as a result of extremely rapid and widespread chlorine activation.  The 

following sections discuss how volcanic eruptions perturb these pathways, leading to 

chlorine activation, and to increases in important immediate perchlorate precursors such 

as chlorine nitrate. 

4.4.1 Primary Volcanically Perturbed Pathways 

4.4.1.1  Heterogeneous Chlorine Activation 

As depicted above, the correlation between perchlorate flux and volcanic sulfate 

flux indicates a clear connection between perchlorate production rates and sulfate 

aerosol abundance.  This connection indicates that the significant perturbation to primary 

perchlorate production pathways during a stratospheric volcanic eruption likely arises 

from heterogeneous chlorine activation, shown in Figure 33, rather than from injection 

of volcanic HCl.  Activation of chlorine on sulfuric acid aerosol is similar to activation in 

PSCs, where the heterogeneous reaction between HCl and ClONO2 or HOCl on aerosol 

results in the formation and release of Cl2 gas.  This Cl2 gas can subsequently be 

photolyzed to generate chlorine radicals:   
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Step 1a: HCl + ClONO2 → HNO3 + Cl2 

Step1b: HCl + HOCl → H2O + Cl2 

Step 2:  Cl2 + ħν → 2Cl 

In fact, the heterogeneous chlorine activation on sulfuric acid aerosol surface has 

been shown to be a significant source of ozone depletion in the few years immediately 

following eruptions with plumes reaching the stratosphere (Solomon et al., 1993).   

The photolytic decomposition of chlorine gas in this formation pathway suggests 

that seasonality in the perchlorate signal should be observed in samples collected from 

polar regions.  In the case of Katmai, the second perchlorate peak occurs in the boreal 

winter, as do both peaks for the Huaynaputina volcanic perchlorate response.  Time series 

analysis indicates, however, that peak perchlorate concentrations are typically reached in 

 

Figure 33.  Formation of perchlorate from heterogeneous chlorine activation. 



97 
 

 
 

the autumn.  During non-volcanic years, aerosol abundance is low, and in the Arctic PSCs 

rarely form, thus chlorine activation occurs slowly.  In polar regions, Cl2 builds up over the 

winter and is then photolyzed rapidly as soon as the atmosphere is exposed to sunlight 

again.  However, in the spring, PSCs no longer form and the photolytic decay rate of Cl2 

greatly exceeds its formation rate, rapidly and completely depleting the temporary Cl2 

reservoir, explaining the timing of the ozone hole in a non-volcanically perturbed 

stratosphere.  

In the case of a volcanic eruption injecting sulfur to the stratosphere, a different 

picture emerges.  In this case, aerosol density in the stratosphere can be several orders 

of magnitude above the background level, along with injection of water and ash.  Under 

these conditions, particle surface area is abundant, facilitating widespread chlorine 

activation which can lead to unusual and unseasonal active chlorine abundances, such as 

those observed in the Antarctic stratosphere after the eruption of Mt. Pinatubo (Solomon 

et al., 1993).   

4.4.1.2  Bromine Coupled Chlorine Activation 

In all of the mechanisms discussed in this work, chlorine dioxide, a key perchlorate 

precursor, is depicted as a product of the ClO + ClO reaction, or oxidation of ClO by ozone:   

ClO + ClO + ħν → ClO2 + Cl 

ClO + O3 → ClO2 + O2 
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However, the reaction of BrO with ClO is also thought to be a source of ClO2 in the 

stratosphere, and becomes important during large volcanic eruptions, which can emit 

significant quantities of HBr (von Glasow, 2010): 

ClO + BrO + ħν → ClO2 + Br 

The bromine radical is then rapidly converted to BrO through reaction with ozone.  

Unlike chlorine, there is no reservoir for bromine in the stratosphere, resulting in higher 

ozone-destroying efficiency by bromine than chlorine.  Important bromine-chlorine 

coupling reactions are shown in Figure 34.  It should be noted, however, that bromine 

does not activate chlorine, and therefore some other mechanism of chlorine activation 

must precede ClO2 formation via BrO. 

In the volcanic plume, bromine has only been measured as HBr and as BrO, which 

is thought to account for the majority of ozone destruction in the plume immediately 

 

Figure 34.  Stratospheric bromine chemistry shown coupled to chlorine activation. 
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after eruption from the vent and in the following few hours (von Glasow, 2010).  Bromine 

as HBr appears to become rapidly converted to BrO in volcanic plumes, driving chlorine 

dioxide concentrations to high levels.  This mechanism is thought to have been 

responsible for the high chlorine dioxide levels observed after the eruption of Pinatubo 

(Solomon et al., 1993).  Since high levels of bromine enhance abundance of chlorine 

dioxide, this leads to speculation that volcanic eruptions featuring large bromine emission 

may enhance perchlorate production through more extensive and rapid chlorine dioxide 

formation, but this will not be investigated here. 

4.4.2 Other Volcanically Perturbed Pathways 

4.4.2.1  Gas Phase Oxidation of HCl 

If eruptions emit significant amounts of HCl to the atmosphere, it can be oxidized 

to perchlorate via the pathways shown in Figure 35.  The relative significance of these 

pathways as contributors to perchlorate after large explosive eruptions is undetermined, 

however.  While volcanic eruptions do emit significant quantities of HCl, little reaches the 

 

Figure 35.  Gas phase formation of perchlorate without a Cl or ClO intermediate. 
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stratosphere due to washout by condensing water vapor in the rapidly cooling plume 

during the eruption.  While the plume in certain eruptions where reaches stratospheric 

altitudes, estimates of the amount of HCl that is not washed out and enters the 

stratosphere vary widely, from almost none to about 10%.  In addition, formation via ClO2
- 

requires the formation of a rather unusual ozonide (O3
-) molecule through oxidation by 

ozone, which to this authors knowledge, has not been measured in the environment: 

ClO- + O3 → ClO2
- + O2 

ClO2
- + O3 → ClO2 + O3

- 

However, it should be noted that this pathway does not require aerosol or sunlight 

(except for indirectly for ozone formation), so may, if valid, proceed both during polar 

night and in a non-volcanic atmosphere.  Such conditions may help explain the 

discrepancy between this work and Furdui and Tomassini (2010) with respect to 

ozone/perchlorate correlation.  In the troposphere, and particularly locations where 

chloride concentrations are high and ozone concentrations are low, a positive correlation 

between ozone and perchlorate and ozone may be expected with pathways such as this.  

Extensive formation of the perchlorate observed after volcanic eruptions in polar ice via 

this mechanism, then, would be restricted to cases in which a massive injection of HCl to 

the stratosphere occurs. 

Due to the pronounced seasonality observed at Summit, and the lack of reliance 

of this mechanism upon a seasonal component such as sunlight, this pathway likely has a 

relatively small contribution to perchlorate production in the stratosphere.  In addition, 



101 
 

 
 

the strong negative correlation between ZMO and annual flux (discussed in Chapter 3) of 

perchlorate indicates strong coupling between ozone and perchlorate, and in this 

pathway, there is no catalytic ozone loss occurring.  Due to the rather large discrepancy 

between ozone concentration and chlorine concentration, even though 4 molecules of 

ozone are involved for each molecule of chlorine in this pathway, the ozone loss is 

negligible, even if 100% of HCl was converted to perchlorate. 

Gas-phase mechanisms of chloride oxidation may also involve formation of a Cl 

radical from HCl as an initial step, as in Figure 36: 

HCl + OH → Cl + H2O 

 

Figure 36. Gas phase formation of perchlorate from oxidation of HCl with Cl or ClO 
intermediate. 
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Here, the initial step is attack of HCl by a hydroxyl radical, which generates a 

chlorine radical that can participate in catalytic ozone destruction.  Also, an important 

factor with this mechanism is that there is a photolytic component, and a non-photolytic 

component; the conversion of Cl to ClO does not require sunlight, and ClO can proceed 

to ClO2
- through reaction with a hydroxyl radical (Hatzinger et al., 2017): 

ClO + OH → ClO2
- + H+ 

Typically, the ratio of Cl to OH in the stratosphere is about 10 (Li et al., 2018), with 

values of about 105 molecules cm-3 for OH, and 104 molecules cm-3 for Cl.  For comparison, 

not only are OH concentrations in the troposphere on average an order of magnitude 

greater than those in the stratosphere, but also display a large variation due to variations 

in relative strengths of tropospheric sources and sinks (Lelieveld et al., 2016).  In volcanic 

plumes however, OH is thought by some to be rapidly consumed during the conversion 

of SO2 to H2SO4 and little would be available for formation of Cl (Pinto et al., 1989; von 

Glasow et al., 2009; von Glasow, 2010), and thought by others to be generated in some 

conditions (Gerlach, 2004).  That OH concentrations are not enhanced, and indeed most 

likely depleted in the volcanically perturbed atmosphere indicates that activation of HCl 

to Cl radicals is likely not a significant initial step responsible for perchlorate generation, 

nor the intermediate reaction of ClO with OH. 

However, measurements of OH after the eruptions of Eyjafjallajökull (1728 CE) 

and Hekla (1768 CE) support that excess OH was not generated (Millard et al., 2006; Rose 

et al., 2006), but the concentrations of Cl radicals increased; in the case of Eyjafjallajökull, 
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the tropospheric OH/Cl ratio was about 37 (rather than >100 under quiescent conditions), 

indicating significant chlorine activation in the plume itself.  Such a case opens the door 

for significant generation of perchlorate by direct generation of Cl or ClO inside the plume, 

both in the troposphere and the stratosphere, in conjunction with catalytic ozone loss.  

Also, this pathway may proceed in polar day and night since there is both a photolytic and 

a non-photolytic pathway between ClO and ClO2. 

4.4.2.2  Chlorine Activation from ClONO2 

One pathway to generation of chlorine radicals is the photolysis of chlorine 

nitrate, shown in Figure 37: 

ClONO2 + ħν → ClO + NO2 

ClONO2 + ħν → Cl + NO3 

and indirectly via Cl2 in the heterogeneous reaction sequence: 

Step 1:  ClONO2 + HCl + M → Cl2 + HNO3 

Step 2:  Cl2 + ħν → 2Cl 

Finally, the following aqueous phase reaction takes place in sulfuric acid aerosol: 

ClONO2 + H2O → HOCl + HNO3 

where the HOCl is photolyzed to ClO as discussed in Chapter 3. 
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The radical-forming reaction ensembles above exist in a delicate balance with the 

gas-phase reaction that generates chlorine nitrate and consumes a chlorine radical 

(deactivation): 

ClO + NO2 + M → ClONO2 

The steady state abundance of chlorine nitrate, then, is a function of the 

abundance of sunlight, which is required for all radical generating reactions involving 

chlorine nitrate, and the abundance of NO2.  In conditions of adequate sunlight, the rate 

of photolysis of chlorine nitrate can exceed the formation rate from NO2, whereas in 

conditions of little sunlight, i.e., polar winter, ClONO2 can accumulate, especially in 

conditions where there are no particles to support heterogeneous reaction with HCl. 

 

Figure 37.  Gas-phase formation of perchlorate from the chlorine nitrate reservoir. 
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In the volcanically perturbed stratosphere, however, all of the pathways involving 

chlorine nitrate are highly perturbed.  In sulfuric acid aerosol, the reaction: 

N2O5 + H2O + M → 2HNO3 

proceeds rapidly, due to the large dependence of this reaction to aerosol surface density, 

inducing denitrification of the stratosphere (Hanson et al., 1994; Borrmann et al., 1997; 

von Glasow et al., 2009).  This in turn limits the NO2 available for formation of ClONO2.  

Without sufficient NOx for chlorine nitrate formation, an important mechanism for 

removal of ClO from the stratosphere becomes very slow.  Following the eruption of Mt. 

Pinatubo, where very high aerosol surface density was present in the Antarctic 

stratosphere, very high levels of chlorine dioxide, a critical perchlorate precursor, were 

observed due to the impact of volcanic aerosol upon chlorine nitrate chemistry (Solomon 

et al., 1993).  Also, of importance is that this mechanism can provide significant chlorine 

activation at temperatures far too warm (≈ 215K) for the formation of PSCs to form when 

heterogeneous activation occurs rapidly. 
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5.0 Conclusions and Future Work  

5.1 Conclusions 

Ice cores from Greenland, Antarctica, and Alaska were analyzed to investigate the 

effect of volcanic eruptions on the level of perchlorate in polar snow, the chemistry of 

perchlorate formation during nonvolcanic periods, and the impact on perchlorate 

formation chemistry by volcanic eruptions.  A perchlorate response was found in both the 

Arctic and the Antarctic, and in a coastal Alpine glacier in North America.  This response 

was observed in those eruptions occurring both before and during high levels of 

anthropogenic chlorine in the stratosphere.   

Only very large eruptions were found to increase perchlorate deposition, but it 

was unknown whether additional HCl was injected into the stratosphere after the 

eruption.  It is important to note that for this study, perchlorate response is found for 

every stratospheric volcanic eruption identified by a sulfate signal.  The largest volcanic 

perchlorate deposition flux (12.9 g km-2) is measured following the eruption of Katmai in 

1912. 

Careful analysis of the ice core perchlorate data and atmospheric ozone levels lead 

to a picture where perchlorate formation is driven by chlorine activation.  Perchlorate 

deposition at Summit, Greenland shows significant seasonality, implying at least one 

major photochemical pathway is present.  This seasonality has been enhanced over the 

last few decades, probably by the increased organic chlorine in the environment.  The 

correlation of mean ozone levels to perchlorate flux on an annual time scale indicates that 
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both are related to stratospheric chlorine activation, and that the lag of 4-5 months 

between perchlorate deposition and ozone column concentration at Summit is due to 

perchlorate transport from the stratosphere to the snow surface.  This implies that 

perchlorate production in the volcanically quiescent stratosphere peaks in the polar 

spring, likely from photolysis of Cl2 and/or ClONO2. Some characteristics of the volcanic 

perchlorate response may be related to seasonal activation patterns, such as timing of 

peak perchlorate deposition. 

During volcanic eruptions emitting large quantities of SO2 to the stratosphere, a 

high correlation is seen between perchlorate and sulfate fluxes.  This high correlation 

indicates that sulfate aerosol is the driving factor in perchlorate formation during volcanic 

eruptions and that perchlorate formation arises from enhanced heterogeneous chlorine 

activation when the stratosphere is perturbed by high aerosol abundance.   

The diffusion of perchlorate in snow was investigated in the perchlorate and 

sulfate signals of one eruption at two sampling locations of different accumulation rates, 

and of two eruptions separated by time from the same sampling location. It is found that 

perchlorate diffusion occurs at an effective rate (diffusion coefficient) of 10-5 m2 yr-1.  

Diffusion of perchlorate, which happens about 103 times faster than sulfate, is still 

relatively slow compared to diffusion of in aqueous solution and appears to happen in the 

firn column before densification turns firn into ice.   
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5.2  Future Work 

When perchlorate formation begins is important to understanding the 

characteristics of the signal in ice cores.  If perchlorate formation critically depends upon 

chlorine activation, then any activation mechanism other than heterogeneous activation 

(i.e., on sulfate aerosols) should result in enhanced production.  Since chlorine activation 

is known to occur immediately at the vent, and continuously as the plume evolves, 

perchlorate may begin to be deposited before sulfate (formed gradually), and some 

evidence suggests that formation of perchlorate in the upper troposphere may be 

important.  Therefore, perchlorate measurement in situ in eruption plumes would 

demonstrate whether heterogenous activation is a dominant pathway.  However, 

logistics of deploying and designing suitable analytical equipment and predicting the 

location where the equipment must be deployed make this a daunting proposition.   

Likewise, measurement of perchlorate in the stratosphere will help determine the 

lag time between peak perchlorate concentration and the annual ozone minimum.  The 

characterization of air-snow transfer is critical to understanding the timing of perchlorate 

deposition signal, and how perchlorate is scavenged from the atmosphere.  Variations of 

sulfate and perchlorate concentrations in snow reveal differences in how these two 

chemicals are removed from the atmosphere; however, without a better understanding 

of perchlorate air-snow transfer, a comparison of their physical deposition cannot be 

made. 
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Post-depositional change of perchlorate concentrations in snow and ice should be 

investigated further.  The diffusion modeling presented here was based upon an analysis 

of limited data from a small number of samples, as these ice cores were not analyzed to 

investigate diffusion.  Two experiments should be conducted as expansion of those 

performed here.  First, to fully evaluate perchlorate diffusion, a high-resolution 

measurement of perchlorate and sulfate concentrations in the same samples are needed 

for the same event in multiple ice core locations.  The extremely small sample volumes 

for the DIC1 core permitted only coarse resolution, and no repeat analyses.  Second, more 

high-quality data need to be obtained on signals in a single core.  While the signals for 

Katmai and Huaynaputina are unusual in their magnitude, that they are observed in a 

300-year period indicates that such signals are not exceedingly rare.  However, only the 

signal of Katmai has sufficiently well-preserved features to allow a study of diffusion.  

Other eruptions with large perchlorate responses should be identified for diffusion 

examination. 

As suggested by Jaegle et al. (1996), the incorporation of perchlorate into 

stratospheric chlorine chemistry models would serve to satisfy several objectives.  First, 

the propensity and extent to which perchlorate acts as a sink for stratospheric chlorine 

can be better evaluated.  It is unknown how and to what extent the addition of volcanic 

HCl to the stratosphere affects perchlorate formation, but modelling can help answer if 

increased perchlorate requires an additional source of chlorine atoms to the 

stratosphere.  In turn, better understanding the role of volcanic HCl can help constrain 

overall perchlorate formation rates.  Also, modelling will help in understanding the 
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mechanism(s) by which perchlorate is scavenged from the stratosphere, possibly helping 

to explain some of the differences between features of the sulfate and volcanic 

perchlorate response. 
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Appendix A, Visual Basic LOESS Smoothing Macro for Excel 

The following VBA code programs an Excel macro that allows selection of 5, 11, 

and 29 sample window sizes.  The code may be altered to any window size of an odd 

integer by substituting appropriate coefficients. 

 

Sub SG_five() 
    '5 Point Savitzky-Golay Smoothing Filter 
    'Multiple InputBoxes are used so the macro is self-contained. 
    'Note that this is a fixed output calculation and does not 

update if input data is changed. 
    On Error GoTo NotValidInput 
    Dim i As Integer       'counter 
    Dim Lrow As Integer    'low cell of data column 
    Dim Urow As Integer    'high cell of data column 
    Dim Ic As Integer      'column NUMBER for input data 
    Dim Cnum As Integer    'column NUMBER for output 
    Ic = InputBox("Enter column NUMBER of input data (A=1, B=2 

etc.)") 
    Lrow = InputBox("Enter row number of first data cell.") 
    Urow = InputBox("Enter row number of last data cell.") 
    Cnum = InputBox("Enter column NUMBER for output (A=1, B=2 

etc.).") 
    '5 point S-G coefficients are -3, 12, 17, 12, -3 and the divisor 

is 35 
    For i = (Lrow + 2) To (Urow - 2) 
         Cells(i, Cnum).Value = (-3 * Cells(i - 2, Ic).Value + 12 

* Cells(i - 1, Ic).Value _ 
                               + 17 * Cells(i, Ic).Value + 12 * 

Cells(i + 1, Ic).Value - 3 * Cells(i + 2, Ic).Value) / 35 
    Next i 
    Exit Sub 
NotValidInput: 
    MsgBox ("Non valid entry- terminating.") 
     
End Sub 
 
Sub SG_eleven() 
    '11 Point Savitzky-Golay Smoothing Filter 
    'Multiple InputBoxes are used so the macro is self-contained. 
    'Note that this is a fixed output calculation and does not 

update if input data is changed. 
    On Error GoTo NotValidInput 
    Dim i As Integer       'counter 
    Dim Lrow As Integer    'lower cell of data column 
    Dim Urow As Integer    'uppper cell of data column 
    Dim Ic As Integer      'column NUMBER for input data 
    Dim Cnum As Integer    'column number for output 
    Ic = InputBox("Enter column NUMBER of input data (A=1, B=2 

etc.)") 
    Lrow = InputBox("Enter row number of first data cell.") 
    Urow = InputBox("Enter row number of last data cell.") 
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    Cnum = InputBox("Enter column NUMBER for output (A=1, B=2 
etc.).") 

    For i = (Lrow + 5) To (Urow - 5) 
         Cells(i, Cnum).Value = (-36 * Cells(i - 5, Ic).Value + 9 

* Cells(i - 4, Ic).Value + 44 * Cells(i - 3, Ic).Value + 69 * Cells(i - 
2, Ic).Value _ 

                                + 84 * Cells(i - 1, Ic).Value + 89 
* Cells(i, Ic).Value + 84 * Cells(i + 1, Ic).Value + 69 * Cells(i + 2, 
Ic).Value _ 

                                 + 44 * Cells(i + 3, Ic).Value + 9 
* Cells(i + 4, Ic).Value - 36 * Cells(i + 5, Ic).Value) / 429 

    Next i 
    Exit Sub 
NotValidInput: 
    MsgBox ("Non valid entry- terminating.") 
     
End Sub 
 
Sub SG_twentynine() 
    '29 Point Savitzky-Golay Smoothing Filter 
    'Multiple InputBoxes are used so the macro is self-contained. 
    'Note that this is a fixed output calculation and does not 

update if input data is changed. 
    On Error GoTo NotValidInput 
    Dim i As Integer       'counter 
    Dim Lrow As Integer    'lower cell of data column 
    Dim Urow As Integer    'uppper cell of data column 
    Dim Ic As Integer      'column NUMBER for input data 
    Dim Cnum As Integer    'column NUMBER for output data 
    Ic = InputBox("Enter column NUMBER of input data (A=1, B=2 

etc.)") 
    Lrow = InputBox("Enter row number of first data cell.") 
    Urow = InputBox("Enter row number of last data cell.") 
    Cnum = InputBox("Enter column NUMBER for output data (A=1, B=2 

etc.)") 
    For i = (Lrow + 14) To (Urow - 14) 
         Cells(i, Cnum).Value = (-351 * Cells(i - 14, Ic).Value - 

216 * Cells(i - 13, Ic).Value + -91 * Cells(i - 12, Ic).Value _ 
                                 + 24 * Cells(i - 11, Ic).Value + 

129 * Cells(i - 10, Ic).Value + 224 * Cells(i - 9, Ic).Value _ 
                                + 309 * Cells(i - 8, Ic).Value + 

384 * Cells(i - 7, Ic).Value + 449 * Cells(i - 6, Ic).Value _ 
                                + 504 * Cells(i - 5, Ic).Value + 

549 * Cells(i - 4, Ic).Value + 584 * Cells(i - 3, Ic).Value _ 
                                + 609 * Cells(i - 2, Ic).Value + 

624 * Cells(i - 1, Ic).Value + 629 * Cells(i, Ic).Value _ 
                                + 624 * Cells(i + 1, Ic).Value + 

609 * Cells(i + 2, Ic).Value + 584 * Cells(i + 3, Ic).Value _ 
                                + 549 * Cells(i + 4, Ic).Value + 

504 * Cells(i + 5, Ic).Value + 449 * Cells(i + 6, Ic).Value _ 
                                + 384 * Cells(i + 7, Ic).Value + 

309 * Cells(i + 8, Ic).Value + 224 * Cells(i + 9, Ic).Value _ 
                                + 129 * Cells(i + 10, Ic).Value + 

24 * Cells(i + 11, Ic).Value - 91 * Cells(i + 12, Ic).Value _ 
                                - 216 * Cells(i + 13, Ic).Value - 

351 * Cells(i + 14, Ic).Value) / 8091 
    Next i 
    Exit Sub 
NotValidInput: 
    MsgBox ("Non valid entry- terminating.") 
     
End Sub 
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Appendix B, Fast Fourier Transform Script for R 

# load file path and file 
setwd("file path") 
my.data <- read.table(file="file_name.csv",sep=",") 
 
library(TSA) 
p = periodogram(my.data) 
title(main = "periodogram title") 
dd = data.frame(freq=p$freq, spec=p$spec) 
order = dd[order(-dd$spec),] 
top2 = head(order, 2) 
 
# display the 2 highest "power" frequencies 
top2 
 
# convert frequency to time periods 
time = 1/top2$f 
time 
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Appendix C, Time Series Analysis Script for R 

# load file path and file 
setwd("file path") 
data<-

read.table(file="file_name.csv",sep=",",row.names=1,header=TRUE) 
data 
my.ts <- ts(data = data, start = 1916, frequency = 12) 
is.ts(my.ts) 
class(my.ts) 
start(my.ts) 
end(my.ts) 
summary(my.ts) 
frequency(my.ts) 
plot(my.ts) 
cycle(my.ts) 
aggregate(my.ts) 
aggregate(my.ts, FUN = mean) 
plot(aggregate(my.ts)) 
boxplot(my.ts~cycle(my.ts),  
        names=c("Jan", 

"Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"),  
        xlab = "Month", ylab = "Perchlorate (ppt)", ylim = 

c(0,1.5)) 
decompose(my.ts) 
plot(decompose(my.ts)) 
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Appendix D, Forecasting Script for R 

# must be performed after construction of an R time series 
# Will perform autocorrelation analysis, quantiles analysis, 
# and provide useful data such as monthly means 
 
library(astsa) 
 
diff12=diff(my.ts, lag = 12) 
plot(diff12) 
acf2(diff12) 
diff1and12 = diff(diff12, lag = 1) 
acf2(diff1and12) 
acf2(my.ts, max.lag = 48) 
sarima(diff1and12, 1,0,0,0,1,1,12) 
sarima(diff12, 1,0,0,0,1,1,12) 
sarima(my.ts, 1,0,0,0,1,1,12) 
sarima(my.ts, 12,0,0,0,1,1,12) 
sarima.for(my.ts, 24, 1,0,0,0,1,1,12) 
themodel = arima(my.ts, order = c(1,0,0), seasonal = list(order = 

c(0,1,1), period = 12)) 
themodel 
predict(themodel, n.ahead=24)  
tsm = matrix(my.ts, ncol=12,byrow=TRUE) 
col.means=apply(tsm,2,mean) 
plot(col.means,type="b", main="Monthly Means", xlab="Month", 

ylab="Mean") 
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