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ABSTRACT 

DEVELOPMENT OF ANALYTICAL METHODS FOR TOXIC INHALED HAZARDS 

(TIH) AND THEIR METABOLITES 

OBED ADU GYAMFI 

2020 

     Toxic inhalation hazards (TIHs), such as methyl isocyanate (MIC) and hydrogen 

cyanide (HCN), are noxious gases and vapors that are harmful, and often deadly, to 

humans. However, because of their low cost and high reactivity, they are extensively used 

for industrial productions, creating risk of exposure for both industrial workers (e.g., 

occupational exposure) and civilians (e.g., accidental release during transport). The illicit 

use of TIHs, including as terrorist agents, is also concerning.  Considering the rapid toxicity 

of TIHs and the danger they pose to both human and animal lives, there is a critical need 

to develop of analytical methods for the analysis of TIH metabolites and therapeutic agents 

to verify their exposed and to help in further development of these therapeutics.  

One therapeutic strategy for TIH exposure is inhibition of the transient receptor 

potential ankyrin 1 (TRPA1) ion channel, since some TIH toxic effects are triggered by 

activation of this channel. Antagonists of TRPA1 have shown near complete attenuation 

of the noxious effects from TIH exposure. One of the TRPA1 antagonists, A-967079, has 

shown impressive efficacy, high selectivity, high potency, and oral bioavailability. 

However, no method for its analysis from any matrix is currently available. Hence, a simple 

HPLC-MS/MS method was developed and validated to quantify A-967079 in plasma. The 

method features an excellent LOD of 25 nM, a wide linear range (0.05–200 μM), and good 

accuracy and precision. The method was successfully applied to determine A-967079 from 
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treated animals and it may facilitate the development of A-967079 as a therapeutic agent 

against the noxious effects of TIH exposure.  

While there are a number of known metabolites of cyanide (CN), the interaction of 

CN with glutathione has not been explored. Therefore, we studied the interaction of CN 

and GSH to identify the novel CN metabolite, 2-aminothiazoline-4-oxoaminoethanioc acid 

(ATOEA). The production of ATOEA from cyanide exposure was confirmed by detection 

of both ATOEA and ATOEA-13C15N in rabbit plasma (N = 11 animals) following 

administration of NaCN:K13C15N (1:1), with a similar amount of ATOEA and ATOEA-

13C15N formed (R2 = 0.9924, p < 0.05). An HPLC–MS/MS method was developed and 

validated to analyze ATOEA from plasma, producing a linear range of 0.5–50 μM, a limit 

of detection of 200 nM, and excellent precision and accuracy. ATOEA concentrations were 

significantly elevated in the plasma of animals following cyanide exposure. Using this 

method, we showed that ATOEA is produced from interaction of CN and GSH and can 

serve as a biomarker of CN exposure.  

A field portable detection method was developed to detect the CN metabolite, 

thiocyanate, from fish blood to verify CN-fishing (an illegal fishing technique practice in 

Southeast Asia that has detrimental effect on aquatic life). The cyanide sensor was adapted 

via oxidation of thiocyanate to cyanide using KMnO4, microdiffusion, reaction of the 

cyanide with naphthalene dialdehyde and taurine, and fluorescence analysis of the resulting 

β-isoindole product. The method presented here features an excellent LOD (29 µg/L) and 

an acceptable linear range (59-590 µg/L), good accuracy (100±20%) and good precision 

(<20% relative standard deviation). The method was successfully applied to quantify 

thiocyanate from the blood of marine fish exposed to cyanide. The full development of the 
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proposed sensor would allow rapid field and laboratory analysis of suspected cyanide-

caught fish by government, aquarium trade and food agencies to help enforce this illegal 

practice.  
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Chapter 1. Introduction 

1.1. Overall Significance 

 Cyanide and other toxic inhalation hazards (i.e., methyl isocyanate (MIC), 

chlorine gas, chloroacetophenone, chloropicrin, etc.) have great importance for industries, 

including mining, agrochemicals, plastics, and pharmaceuticals. They have also been used 

for illicit activities like suicide, homicide, as chemical warfare agents and in illegal fishing 

activities (i.e., cyanide-fishing). Use of these chemicals poses severe risk to humans and 

the environment. Therefore, there is a critical need to improve ways to monitor the illicit 

use of these chemicals, to confirm human exposure to TIHs, and to develop effective 

therapeutics agents to battle their toxic effects. 

1.2. Project Objectives 

This dissertation is comprised of three main objectives: 1) Develop a simple and rapid 

analysis technique for the analysis of TRPA1 antagonist, A-967079, in plasma. 2) Identify 

novel metabolite of CN, produced by the interaction of CN with glutathione, 3) Develop a 

field portable analysis technique to determine SCN in fish blood, in order to monitor CN-

fishing. Chapter 2 addresses the analysis of TRPA1 antagonist, A-967079; in plasma, using 

high-performance liquid chromatography tandem mass-spectrometry. Chapter 3 details the 

metabolism of CN by glutathione, to produce the novel CN metabolite, 2-aminothiazoline-

4-oxoaminoethanoic acid. Chapter 4 describes the analysis of CN metabolite, SCN, in fish 

blood via modification of a field-portable CN sensor (i.e., the Cyanalyzer) to monitor CN 

fishing. Chapter 5 contains the conclusion and suggested future studies. 
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1.3. Toxic Inhalation Hazards  

 The increase in the world’s population has caused a huge demand on modern 

industrial production. These demands have led to the use of easy and cost-effective 

manufacturing practices, including the use of small molecule precursor chemicals. Many 

of these chemicals are toxic inhalation hazards (TIHs), noxious gases which are toxic to 

humans and other organisms.[1-3] The ease of producing these compounds and their low-

cost supply, in addition to their high reactivity makes them useful for synthesis of many 

industrially important products. They are also used themselves for a number of purposes 

including agriculture, mining, cleaning etc.[2, 4] For example, chlorine gas is used for 

water treatment, cleaning, antiseptics and chemical synthesis. Ammonia is used in the 

production of fertilizers.[4, 5] Methyl isocyanate (MIC), a  reactive TIH, is widely use in 

the production of pesticides, fungicides and polymers.[6] The mining and the metallurgy 

industries employ sodium cyanide in the extraction previous metals and other minerals.[7]  

The demand for TIHs poses risk of exposure to industrial workers, custodians, and 

farmers. Accidental leaks of TIHs in industries and highly populated areas during 

transportation have also injured and kill many.[7-12] TIHs, such as sulfur mustard, chlorine 

gas, cyanide, etc., have also been used as chemical warfare agents by many military and 

terrorist groups to kill and injure civilian population.[13-16]   

Exposure to most of reactive TIHs compromises the respiratory system by causing 

severe damage of the airways and lung.[1, 17] Following trace level, reactive TIHs are 

perceived as irritating, and induce sneezing, coughing, mucus secretion, tearing, and upper 

airway inflammation.[1, 18] These responses help neutralize, and expel these toxins, 

limiting damage to alveolar sacs.[19, 20] At higher levels, the noxious responses advanced 
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to uncontrollable coughing, profuse lacrimation, resistance to airflow by bronchospasm, 

mucus hypersecretion, and upper and lower airway inflammation and compounds 

preexisting respiratory condition such as triggering attack on asthmatic individuals.[21, 22] 

In severe and prolong exposure, TIHs causes severe lung damage and also damages the 

delicate alveolar sacs by reacting with the lung tissues.[23, 24] These physiological 

behavioral responses from TIHs are as results of its detection by the olfactory and 

nociceptive sensory systems that triggers signals to the brain by activating transient 

receptor potential (TRP) and acid-sensitive ion channels.[3, 25, 26]  

1.4. TRPA1 ion channel  

Transient receptor potential ankyrin 1 (TRPA1) is a member of the superfamily of 

transient receptor potential (TRP) ion channel.[27] TRPA1 has a tetrameric structure with 

each subunit containing six transmembrane spanning segments (S1-S6), and an 

intercellular NH2 and COOH termini domains.[28, 29] In between the S5 and the S6 

transmembrane helices domain is a pore-forming loop.[30, 31] TRPA1 also has a large 

cysteine and lysine-rich N-terminus that contains 14-18 predicted ankyrin repeats, which 

distinguishes it from other TRP ion channels (Fig 1.1).[32-34] TRPA1 is abundantly 

expressed in nociceptive neuron of dorsal root ganglion (DRG), jugular ganglia (JG), and 

trigeminal ganglion (TG) neurons, which are the main receptors responsible for the noxious 

effect response of TIH exposure (Table 1.1).[1] TRPA1 channels expressed on nociceptors 

are consider important chemosensors.  
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Figure 1.1. Diagram showing the structure of one subunit of TRPA1 

 

Table 1.1. Toxic inhalation hazards and their activating TRPA1 sensory neurons  

 

Type of Chemical 

 

TIH (Toxicant) 

 

Sensory Neuron 

Electrophile Trans-2-pentenal TG[35] 

Electrophile Toluene diisocyanate TG[36] 

Electrophile Methyl isocyanate DRG[3] 

Electrophile Hexamethylene diisocyanate DRG[3] 

Electrophile Benzyl bromide DRG[3] 

Electrophile Bromoacetone DRG[3] 

Electrophile Crotonaldehyde JG[37] 

Electrophile Acrolein JG, TG[37] 
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DRG = dorsal root ganglia, JG = jugular ganglia, TG = trigeminal ganglia 

 

Many types of chemical irritants and pharmacological agents activate TRPA1. 

Most especially, TRPA1 is activated many TIH including the reactive oxidizing and 

electrophilic chemical species (Table 1.1).[1, 41] TIH activation is initiated by covalent 

modification of the TRPA1 by electrophilic bonding (Michael’s Addition) of the reactive 

TIH to either the cysteine or the lysine residue of the TRPA1.[32, 33] Reactive TIHs are 

detected by peripherals sensory neuron after activating of the TRPA1 ion channel (Table 

1.1).[1, 29, 42] The activation of the ion channel following TIH exposure (i.e., electrophilic 

modification of TRPA1) induces neurogenic inflammatory and brain-mediated responses 

of the airways that lead to hypersensitivity of both the upper and lower airways causing 

noxious effects, including immediate unbearable irritation of the eye, nose, and throat, 

inducing sneezing, coughing, tearing, mucus secretion, upper airway inflammation, etc.[3, 

34, 41, 43, 44]  

Electrophile Allylisothiocyanate  TG[1] 

Electrophile tear gas Chloroacetophenone DRG[3] 

Electrophile tear gas Chlorobenzalmalononitrile DRG[38] 

Electrophile tear gas Dibenzoxazepine DRG[38] 

Electrophile air pollutant Cigarette smoke extract JG[37] 

Aldehyde Formalin DRG[39] 

Oxidant Chlorine DRG/TG[18] 

Oxidant Hydrogen peroxide DRG/TG[18, 40] 
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  The noxious effects cause by the activation of TRPA1 ion channel have led to 

scientists targeting this ion channel to develop therapeutics that could alleviate the acute 

effects of the lung diseases and disorders associated with reactive TIHs exposure.[17, 41] 

Evidence of the importance of this strategy was found when genetically deleted TRPA1 

mice showed near complete no noxious effect from the exposure to TIHs. In addition, many 

antagonists of TRPA1 have been effective in blocking noxious behavior induced by 

neurogenic inflammation.[45, 46]  

To date, a few promising TRPA1 antagonists have been reported, including AP18 

(IC50 of 3.1 to 6.9 µM), HC-030031 (IC50 of 1 to 41.8 µM) and A-967079 (IC50 of 51 to 

289 nM).[39, 47-49]  AP18 is selective for TRPA1 over several other TRP channels; 

however, it has poor bioavailability through oral and intraperitoneal dosing.[50, 51] HC-

030031 is bioavailable through various dosing and it is reported to be selective to other 

TRP ion channels, however, HC-030031 also inhibits other several pain-signaling 

proteins.[47, 52] A-967079 is potent, highly selective, and orally bioavailable TRPA1 

antagonist. Unlike other TRP antagonists, A-967079 does not produce locomotor or 

cardiovascular side effects and does not have an effect on body temperature.[46, 49, 53]  

1.5. History and Uses Cyanide  

1.5.1. History and Ancient Use 

Cyanide (HCN and CN- are inclusively represented as CN) is known as highly toxic 

chemical that can cause death within minutes of exposure and has been used as a poison 

for thousands of years.[7, 54, 55] The use of CN dates back to the times of the ancient 

Egyptians and Romans, where CN containing plants (e.g., cassava, bitter almonds, cherry 

laurel leaves, peach pits, etc.) were used for poisonings and judicial executions.[56-58] In 
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1679, Wepfer first described CN poisoning by extraction it from almond.[59] Although 

CN containing plants have been used as poison for centuries, Carl Scheele first identified 

CN in 1782 by isolating it from Prussian blue dye and further described CN as an acidic 

water-soluble flammable gas and named it “prussic acid”.[58, 60] In 1815, Gay-Lussac 

definitively determined that the molecular formula of cyanide contained no oxygen, which 

disputed the theory that all acids must contain oxygen.[59] He further identified CN as a 

gas with an almond-like flavor, which is colorless and poisonous and name it cyanogen.[59, 

61, 62] 

1.5.2. Military Use 

Military use of CN is dated back in the 1870s when Napoleon III ordered the use 

of CN as war weapon during the Franco-Prussian war (1870 war).[63] The use of CN as a 

chemical warfare agent (CWA) was officially documented during World War I (WWI), 

when the French used HCN in 1915. The use of HCN was discontinued by the French 

because HCN dispersed rapidly in open air.[58] In late 1916, the French and Austrians used 

cyanogen chloride and cyanogen bromide, respectively, to decrease diffusion in open air 

because they are less volatile and heavier than HCN.[14, 60] Later, the use of these 

derivatives of CN during the WWI was discontinue because they were unstable and 

corrosive.[14] During World War II (WWII) the Nazis used HCN (Zyklon B) to kill 

millions of civilians and soldiers in gas chambers. It was alleged that the Japans used CN 

on China during the WWII. In the 1980s, CN was used during the Iran-Iraq war to kill the 

Kurds of Iraq and Syria.[64-66] 
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1.5.3. Illicit Use (Cyanide Fishing) 

For many centuries, different fishing techniques such as netting, angling, trapping 

hand gathering, and spearfishing have been used to harvest fish. Because of low harvesting 

yield per unit effort from many of fishing techniques, illegal techniques such as cyanide-

fishing has been adopted in southeast Asia and many other regions.[67, 68] The use of CN 

to capture live fish for the marine aquarium trade was first reported in the Philippines at 

1960s.[69, 70] Since then the practice has rapidly spread throughout many countries 

including Indonesia, Malaysia, Maldives, Papua New Guinea, Sri Lanka, Thailand, 

Vietnam,[71, 72] not only for aquarium trade but also for the live reef fish food trade which 

target large-sized groupers, wrasses and coral trout for human consumption.[73, 74] In the 

mid-1980s, it was estimated that more than 80% of all fish collected in Philippines for 

aquarium trade supply were harvested by CN and in the 1990s, almost 90% of fishing 

vessel in the eastern island of Indonesia had CN on board.[75, 76] CN fishing is illegal in 

most countries where the technique is practice. About 78% of the 18 main exporting 

countries have passed anti-cyanide fishing law to curb this practice. Although it is illegal, 

because of the nature of the trade chain involved in this practice, enforcement of these laws 

has not been successful and CN-fishing is still commonly practiced today. [74, 77]  

CN fishing has led to population decline in moderately abundant target fish species, 

including Cheilinus undulates.[78, 79] Also, severe long-term effects on non-targeted 

species, including coral and other invertebrates, has been observed.[80] Exposure to very 

low concentration of CN causes reduction in respiration resulting in bleaching and eventual 

death of corals and anemones.[81, 82] Moreover, CN fishing  endangers the fishers 
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involved in this practice due to their use of large quantities of cyanide and minimal 

protective measures used .[82] 

1.6. Source of Cyanide 

1.6.1. Natural Sources  

CN is present in the environment in a number of forms. The major natural source 

of CN is edible plants that contain cyanide as cyanogenic glycosides, which release cyanide 

through hydrolysis.[83, 84] Several species (i.e., 800 species) of these edible plants and 

fruits have been identify to produce cyanide, including cassava, almonds, sweet potatoes, 

yams, peaches, apple, pears, sorghum, etc.[83, 85] Microorganisms (i.e., algae, bacteria 

and fungi) and several species of arthropod and insects such as centipedes, millipedes, 

moths, butterflies and beetles synthesize and excrete cyanide as a self-defense 

mechanism.[83, 86, 87] Volcanic eruptions can release HCN into the atmosphere by carried 

ash leading to the potential contamination of the air and nearby water.[88] The abundance 

of cyanogenic plants, insects, and microorganisms pose risk of cyanide exposure to people 

including survivalist, nature enthusiasts, farmers, and ranchers. Therefore, caution should 

be taken when choosing the type of plants and insects they eat, grow or touch to keep them 

from accidental cyanide exposure. 

1.6.2. Anthropogenic Sources 

Currently, anthropogenic exposure to CN occurs through industrial operations, 

metal extraction, fire/smoke inhalation, chemical synthesis, etc.[89, 90] About 1.4 million 

tons of CN is estimate to be produced annually.[89] HCN, the gaseous form of CN, is 

produced by three main processes, namely Andrussow, Degussa, and Shawinigan.[91-93] 

The Andrussow process utilizes reaction of methane and ammonia to produce HCN in the 
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presence of oxygen and a platinum catalyst.[92] The Degussa process of producing HCN 

also involves reaction of methane and ammonia to produce HCN using platinum as a 

catalyst, but does not utilize oxygen.[93] In the Shawinigan Process, HCN is produced by 

the reaction of ammonia and propane gas in the presence of coke.[94] CN salts (i.e., NaCN 

and KCN) are produce by reacting of HCN with the respective alkali metal. Extraction of 

precious metals such as gold, silver, zinc, etc. from their ore is one of the major uses of 

CN, due to CN strong binding capacity to these metals.[7, 61] In addition to its use to 

extract metals, CN is also used in the synthesis of pharmaceuticals, pesticides, dyes, fibers 

and polymers and pigments. Due to the large production CN and its extensive use in 

industry, there is an increased risk of occupational CN exposure.  

Although occupation exposure to CN is alarming, smoke inhalation from household 

or industrial fires and cigarette smoke is the leading source of exposure.[95, 96] The 

production of HCN from cigarettes ranges from 10-400 μg/cigarette and the amount in 

secondhand smoke ranges from 0.006-0.27 μg/cigarette.[90] Another source of CN-

containing smoke is the incomplete combustion of nitrogen-containing materials and 

compounds such as plastic, wool, silk, nylon, melamine and polyurethane.[96] Reports 

have shown that victims of fire accidents may have been exposure to both carbon monoxide 

(CO) and CN, and majority of the death resulting from these incidence are attributed to 

CN-poisoning.[55, 96] 

1.7. Toxicity of Cyanide 

The onset of CN exposure is rapid (i.e., symptoms can occur in as little as 15 

seconds) and death may occur within minutes depending upon the level and route of 

exposure.[7, 59] A blood concentration of 19 μM is considered toxic, and it could be 
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considered fatal at blood concentrations greater than 115 μM.[97, 98] The primary effect 

of CN toxicity is the impairment of oxidative phosphorylation, a process whereby oxygen 

is utilized for production of ATP, an essential cellular energy source.[60, 99] This process 

involves the transfer of electrons from NADH to oxygen through a series of electron 

transfer steps. This process is catalyzed by cytochrome c oxidase enzyme, found in 

complex IV of the electron transport chain (Figure 1.2).[100-102] Upon exposure, CN 

inhibits cytochrome c oxidase by binding to Fe3+ found in the heme A3 moiety of the 

enzyme, resulting in loss of structure integrity and hence, the effectiveness of the 

enzyme.[103] Inhibition of cytochrome c oxidase prevents electron transfer, leading to 

impairment of cellular respiration.[96, 104] In addition, the disruption of H+ gradient 

ceases the production of ATP. In order to compensate for ATP loss, glucose is broken down 

via glycolysis, leading to the production of pyruvate that reduces to lactic acid.[58] As 

lactic acid concentration increases in blood, the body pH decreases leading to the 

impairment of several physiological processes, ultimately leading to cell death.[58, 89, 

105]  
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Figure 1.2. Diagram showing the inhibition of cytochrome c oxidase within the electron 
transport chain in the mitochondrial membrane.[102] 

1.8. Metabolism of Cyanide 

 The strong reactivity and volatility of CN in biological environments leads to 

multiple metabolism pathways (Figure 1.3).[106] The most important naturally occurring 

CN metabolic pathway is the detoxification CN by a sulfur donor to form the much less 

toxic thiocyanate ion (SCN‒),[107] accounting for about 80% of the total CN 

metabolism.[60] The two major enzymes that catalyze this process are rhodanese and 3-

mercaptopyruvate sulfurtransferase.[107-109] An alternative metabolism pathway for CN 

is its conversion to 2-amino-2-thiazoline-4-carboxylic acid (ATCA).[60] CN is 

metabolized into ATCA by its direct interaction with cysteine in the physiological 

environment.[110] This non-enzymatically catalyzed pathway accounts for about 0.10-

9.19% of the total CN detoxification.[55, 111]  
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Figure 1.3. Metabolic pathway of cyanide and major ways of release. Diagram adapted 
from Logue et al.[111] Thiocyanate ion (SCN‒), 2-amino-2-thiazoline-4-carboxylic acid 
(ATCA), 2-iminothiazolidine-4-carboxylic acid (ITCA) 

Other minor metabolites of CN exposure have been reported, but information about 

them is limited. One of these minor metabolites is α-ketoglutarate cyanohydrin (α-KgCN) 

which is formed from the reaction of CN with α-ketoglutarate (α-Kg) in biological 

environments.[112-114] The reversible reaction of cyanide with hydroxocobalamin to 

form cyanocobalamin is another minor metabolic pathway of CN.[115] CN-protein 

adducts, which are formed by the interaction of CN with disulfide bonds in human plasma 

proteins, has also been reported.[116] 
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Chapter 2. Analysis of Trpa1 Antagonist, A-967079, in Plasma Using High-

Performance Liquid Chromatography Tandem Mass-Spectrometry 

2.1. Introduction 

Toxic inhalation hazards (TIHs) are noxious gases and vapors (methyl isocyanate 

(MIC), chlorine, chloroacetophenone, chloropicrin, etc.) that are harmful and often deadly 

when inhaled.[1, 3, 13, 117] However, because of their low cost and ease of manufacture 

along with their high toxicity and relatively short half-life, they are used for many purposes, 

including fumigation, fungicide, disinfection, pest control, and cleaning. Many TIHs are 

also important for metallurgy, plastics, pharmaceuticals, and semiconductors.[1, 2, 6] 

Therefore, industrial demand for TIHs, and their  transport through highly populated areas, 

significantly increases the risk of exposure.[10, 118] The potential use of TIHs by terrorists 

to injure and kill civilians is also concerning.[13-16] The risk of TIH exposure is most 

infamously illustrated by the tragic accident in Bhopal, India (1984) where more than 8000 

people died within few minutes of methyl isocyanate (MIC) exposure.[8, 9]  

Many TIHs are detected by olfactory neurons and peripheral sensory neurons by 

activating transient receptor potential (TRP) cation channels,[29, 42, 119] and acid-

sensitive ion channels (ASICs).[25, 26] The activation of these channels, following TIH 

exposure, triggers signaling to the brain which leads to immediate unbearable irritation of 

the eye, nose, and throat, and induces sneezing, coughing, mucus secretion, upper airway 

inflammation, and tearing.[3, 25, 34, 43] At prolonged or high-dose exposure, these 

responses progress to severe pain, intense coughing, profuse flow of tears, and resistance 

to airflow by bronchospasm, mucus hyper-secretion, and pneumonitis.[1, 41, 44] TRP 

ankyrin 1 (TRPA1), a member of the TRP ion channel family expressed on nociceptive 

primary afferent C-fibers, is a main receptor for the noxious effect response of TIH 
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exposure and is activated by about 40% of all TIHs, including all oxidizing and 

electrophilic TIHs (e.g., tear gas agents and MIC).[1, 3, 41, 43] The importance of TRPA1 

in TIH response has been shown experimentally with both TRPA1-knockout (Trpa1−/−) 

mice and TRPA1 antagonist-treated mice showing complete cessation of the noxious 

effects of TIHs.[17, 41, 45, 46, 52]  

To date, very few TRPA1 antagonists have entered into pre-clinical trials. The 

major setbacks of this therapeutic strategy is a lack of potency, selectivity, and 

bioavailability.[50, 120] For example, AP18 (4-(4-Chlorophenyl)-3-methyl-3-buten-2-one 

oxime, Fig 2.1) is potent and selective for TRPA1 over other TRP ion channels,[50, 51, 

121] but shows poor bioavailability following intraperitoneal and oral administration. 

Similarly, HC-030031 (2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-

(4-isopropylphenyl)acetamide, Fig 2.1) is also selective for TRPA1 over other TRP 

channels, but it has been reported to also inhibit several non-TRP pain signaling 

proteins.[47, 52]  

The limitations of TRPA1 agonist compounds have necessitated the continued 

search for more efficacious antagonists. Recently, (1E,3E)-1-(4-Fluorophenyl)-2-methyl-

1-pentene-3-one oxime (A-967079, Fig 2.1) has shown impressive efficacy as an 

antagonist to TRPA1 and has multiple advantages over other compounds, including high 

selectivity, potency, and oral bioavailability.[46, 49] A-967079 has IC50 values of 67 and 

289 nM for human and rat TRPA1 receptors, respectively. It displays 1000-fold selectivity 

for TRPA1 over other TRP channels, and greater than >150-fold selectivity over 75 other 

ion channels, enzymes and G-protein-coupled receptors.[46, 49, 53, 122] Other advantages 

of A-967079 including no locomotor or cardiovascular effects, a common side effect of 
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other TRP antagonists. Oral administration of A-967079 in rats produced robust 

bioavailability and analgesic efficacy for TIH-induced pain response (i.e., sneezing, 

tearing, coughing, etc.) and osteoarthritic pain.[49, 122] Intravenous injection of A-967079 

has also shown to decrease the reactive gas response of wide dynamic range (WDR, i.e. to 

about 61% from baseline levels in rat) and pain specific-neurons.[46, 122] 

In spite of the potential advantages of A-967079, there is no currently available 

validated analytical method for its quantification. Therefore, the objective of this study was 

to develop and validate a high-performance liquid chromatography tandem mass 

spectrometry (HPLC-MS/MS) method for the analysis of A-967079 in plasma, which can 

be used in  further development of A-967079 as a countermeasure for TIH exposure. 

 

 

 

Figure 2.1.  Chemical structures of TRPA1 antagonists with their respective identification.
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2.2. Materials and Methods 

2.2.1. Materials 

All reagents and solvents were at least HPLC grade, unless otherwise specified. 

Ammonium formate was obtained from Sigma-Aldrich (St. Louis, MO, USA). Acetone, 

ethanol, and methanol (LC–MS grade) were purchased from Fisher Scientific 

(HanoverPark, IL, USA). A-967079 (>98% purity), supplied by Dr. Carl W. White 

(Pediatrics-Pulmonary Medicine, University of Colorado-Denver, Denver, CO, USA), was 

purchased from Med Chem 101 (Plymouth Meeting, PA, USA; 98% Purity; Lot X101075). 

Polymeric reversed phase column, PLRP-S 300Å (50 × 2.1 mm, 3.0 μm, part #:PL1912-

1301) was purchased from Agilent (Santa Clara, CA 95051). Water was purified to 18.2 

MΩ-cm by reverse osmosis using a Lab Pro polishing unit from Labconco (Kansas City, 

KS, USA). A-967079 was dissolved in ethanol:water (1:1) to  make a stock solution of 10 

mM concentration, which was further diluted to 5 mM in mobile phase A (pH~4), and 

stored  at 4 °C. The stock solution of A-967079 (5 mM, in mobile phase A) was further 

diluted to 0.025‒500 µM with either mobile phase A or plasma to produce working 

standard solutions.  

2.2.2. Biological Samples 

 For analytical method development and validation, rabbit plasma (non-sterile with 

EDTA) was purchased from Pel-Freeze Biologicals and was stored at -80 °C until used. 

Rabbit plasma was used to develop the method presented here because we planned to 

utilize a rabbit model developed by our collaborators to prove the applicability of the 

analytical method for the analysis of A-967079 concentrations plasma. However, at the 
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time we were finalizing the method validation, efficacy studies of A-967079 were 

transitioned to a rat model. Plasma samples from A-967079-treated male Sprague-Dawley 

rats were obtained from the Pediatrics-Pulmonary Medicine, University of Colorado-

Denver, Denver, CO, USA.  Rats (250–350 g) were separated into eight groups (n=3 for 

each group) and each group was intraperitoneally administered 100 mg/kg A-967079 in 

5% DMSO/sesame oil. Animals from groups 1‒8 were euthanized at 0.25, 0.5, 1, 1.5, 2, 4, 

8, and 24 h post-treatment, respectively, and blood was collected. Another group (n=3) was 

euthanized without A-967079 treatment and blood was collected as control (blank). 

Collected blood was placed in clean plastic tubes with EDTA anti-coagulant and 

centrifuged to separate the plasma from erythrocytes. Plasma was then transferred to a 

clean centrifuge tube, flash frozen, and shipped on dry ice (overnight) to South Dakota 

State University. Upon receipt, the plasma was stored at -80 °C until analysis was 

performed. All animals were cared for in compliance with the “Principles of Laboratory 

Animal Care’’ formulated by National Society for Medical Research and the “Guide for 

the Care and Use of Laboratory Animals” prepared by the National Institutes of Health. 

The University of Colorado-Denver and Institutional Animal Care and Use Committee 

(IACUC) approved the animal study. 

2.2.3. Sample preparation for HPLC-MS/MS analysis 

Plasma (100 µL) was added to a 2-mL centrifuge tube. Acetone (300 µL) was added 

to the plasma to precipitate proteins. The sample was vortexed for about 3 min, and then 

cold centrifuged (8 °C) at 10,000 rpm (12,300 × g) for 5 minutes. An aliquot (300 μL) of 

the supernatant was transferred into a 4-mL glass screw-top vial and evaporated to dryness 

(at room temperature) using nitrogen. The contents of the glass vial were then reconstituted 
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with 100 µL of 0.1% ammonium formate in water (pH ~4). The solution was thoroughly 

mixed, filtered using a 0.22-µm tetrafluoropolyethylene membrane syringe filter, and 

transferred into an HPLC vial with glass insert (100 µL) for analysis.  

2.2.4. HPLC-MS/MS Analysis 

Liquid chromatography was performed on a Shimadzu HPLC (LC-20AD, 

Shimadzu Corp., Kyoto, Japan). The chromatographic separation was performed on an 

Agilent polymeric reversed phase column, PLRP-S 300Å (50 × 2.1 mm, 3.0 μm) protected 

by a guard cartridge with column temperature maintained at 40°C. Mobile phase A was 

0.1% ammonium formate in water and mobile phase B was 0.1% ammonium formate in 

methanol, both with a pH of 4. The chromatographic separation was achieved using 

gradient elution at a flow rate of 0.35 mL/min as 20% B held constant for 2 minutes, 

increased linearly to 100% over another 2 minutes, held constant for 2 minutes, decreased 

to 20% B over 2 minutes, and held constant for 2 minutes to equilibrate between injections. 

A volume of 10 µL was injected for HPLC-MS/MS analysis. 

A tandem mass spectrometer (AB Sciex Q-Trap 5500 MS) equipped with an 

electrospray ionization interface operating in the positive polarity was used to detect the 

A-967079. The mass spectrometric conditions were optimized by directly infusing A-

967079 standard solution into mass spectrometer at a flow rate of 10 µL/min where A-

967079 (m/z = 207), as an oxime, undergoes Beckmann rearrangement under acidic 

conditions to gain two protons to form its precursor A-967079 (m/z = 209).[123-125] 

Nitrogen (50 psi) was used as both the curtain and nebulization gas. The ion spray voltage 

and source temperature were 4,500 V and 500 °C, respectively with both nebulizer (GS1) 

and heater (GS2) gas pressures at 90 psi. The collision cell was operated with an entrance 
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potential of 10.0 V and a collision cell exit potential of 11.0 V at a medium collision gas 

flow rate. A-967079 was analyzed in multiple reactions monitoring mode (MRM) and the 

chromatograms were acquired with the Analyst software program. The MS/MS operating 

parameters and MRM transitions are listed in Table 2.1. 

 

Table 2.1. MRM transitions, optimized collision energies (CEs), and declustering 
potentials (DPs) for the detecting of A-967079 by MS–MS analysis. 

Compounds Q1 (m/z) Q3 (m/z) Time (ms) CE (V) DP (V) 

A-967079 (identification) 209 191 100 13.37 116.93 

A-967079 (quantification) 209 162 100 46.97 46.97 

 

2.2.5. Calibration, quantification, and limit of detection 

The developed analytical method was validated using the Food and Drug 

Administration (FDA) bioanalytical method validation guidelines.[126, 127] To determine 

the limit of detection (LOD), multiple concentrations of A-967079 were prepared in plasma 

and analyzed by HPLC-MS/MS. The LOD was defined as the lowest concentration of A-

967079 that reproducibly produced a signal-to-noise (S/N) of 3. The noise was determined 

as peak-to-peak noise in the blank samples over the elution time of A-967079.   

For the calibrators, a working standard of A-967079 was prepared in rabbit plasma. 

From the working solution, calibration standards of A-967079 with concentration range of 

0.025‒500 μM (0.025, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 3, 5, 10, 30, 50, 100, 200 and 500 μM) 

were prepared in rabbit plasma.  All calibration standards were analyze in triplicate. The 

average peak areas were plotted as a function of A-967079 concentration in plasma to 

obtain the linearity, accuracy, and precision of the calibration standards. Both non-
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weighted and weighted (1/x and 1/x2) calibration curves were constructed using linear least 

squares and calibrator accuracy was used to determine the best model for quantification. 

The lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) were 

defined as satisfying the inclusion criteria of <15% relative standard deviation (RSD, as a 

measure of precision), and a percent error (as a measure of accuracy) of 100±20% back-

calculated from the nominal concentration for all calibration standards within the linear 

range. The goodness-of-fit of the calibration curves was determined using percent residual 

accuracy (PRA) (i.e., PRA values ≥ 90% are indicative of a good fit).[128, 129]  

The accuracy and precision of the method were evaluated by analyzing three 

different quality control (QC) standards, 2 μM (low QC), 20 μM (medium QC), and 60 μM 

(high QC), not included in the calibration curve. QCs were analyzed in quintuplicate over 

three days (within 7 calendar days). Intraassay precision and accuracy were calculated for 

each individual day, and interassay precision and accuracy were calculated from 

comparison of the data gathered over three separate days. 

2.2.6. Recovery, matrix effect and stability 

The assay recovery of A-967079 was determined by the analysis of low, medium 

and high QC standards from spiked plasma as a ratio of the same concentration of QCs 

spiked in water. Recovery (i.e., signal recovery) was determined as a percentage of the 

ratio of  the analyte peak areas from spiked plasma which underwent the sample preparation 

procedure listed above to the peak areas of dried aqueous QC standards reconstituted in 

Mobile Phase A which contained the amount of A-967079 corresponding to 100% 

recovery. The matrix effect was determined by creating calibration curves in both aqueous 

and plasma matrices, and comparing their slopes. A slope ratio (plasma slope/aqueous 
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slope) from the calibration curves greater than one indicates enhancement of the analyte in 

plasma, whereas slope ratio less than one indicates suppression of the analyte signal by 

plasma matrix. 

The short- and long-term storage stability of A-967079 was evaluated by analyzing 

plasma spiked with high and low QCs stored at different temperatures at multiple storage 

times. The stability (i.e., signal stability) of A-967079 was determined as a percentage of 

the initial signal. A-967079 was considered stable in plasma at a specific temperature if the 

signal was within 15% of the initial signal. Short-term stability of the QCs was assessed 

for 24-h both in the autosampler (at 15 °C) and on the benchtop (at room temperature). 

Freeze-thaw stability was evaluated over three freeze-thaw cycles where four different sets 

of both low and high QCs were prepared. One set of both QCs was analyzed in triplicate 

on the same day, while the other sets were stored at -80 °C. For each cycle, all QC standards 

were thawed unassisted at room temperature. One set of the thawed QCs was analyzed in 

triplicate as first cycle. The remaining two sets of QCs were again stored at -80 °C. This 

procedure was repeated twice more to evaluate the remaining two freeze-thaw cycles. For 

the long-term stability studies, QC standards were stored at various storage conditions (-

80, -30, and 4 °C) and analyzed over 30 days (0, 1, 3, 5 10, 20, and 30 days). 

2.2.7. Pharmacokinetic Analysis 

Pharmacokinetics parameters were determined using the plasma concentration 

data. The first order rate constants (k) associated with both distribution phase (kdis), and 

elimination phase (kel) of the curve were estimated via linear regression of the log plasma 

A-967079 concentration-time curve. The plasma distribution half-life (t1/2,dis) and 
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elimination half-life (t1/2,el) were calculated using natural logarithm (2)/k. The area under 

the plasma A-967079 concentration-time curve was calculated by trapezoidal rule. 

2.3. Results and Discussion 

2.3.1. HPLC-MS-MS Analysis of A-967079 

The analytical method for A-967079 from plasma reported here features a rapid and 

simple one-pot sample preparation method, consisting of protein precipitation, 

centrifugation, and transfer and drying of the supernatant and subsequent reconstitution in 

aqueous mobile phase for HPLC-MS/MS analysis. The overall sample preparation time 

was less than 20 min, with the total chromatographic analysis time of 10 min (including 

equilibration following sample analysis). The ESI(+)-MS of A-967079 ([M·]+ = 209 m/z), 

with corresponding proposed assignments of fragments is shown Figure 2.2. Transitions 

209→162 and 209→191 m/z were used for quantification and identification of A-967079, 

respectively. The optimized DPs and CEs for quantification and identification of A-967079 

are shown in Table 2.1. 
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Figure 2.2. Representative ESI(+) mass spectra of A-967079 and identification of the 
abundant ions. A-967079 (207 Da) undergoes Beckmann rearrangement to produce a 209 
Da product. 
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Figure 2.3. Representative HPLC-MS/MS chromatograms of spiked (5 μM) and non-
spiked A-967079 in rabbit plasma. The chromatograms represent signal response to the 
MRM transitions of A-967079 (209 → 191 and 209 → 162 m/z). 

 Representative HPLC-MS/MS chromatograms of the A-967079 analyzed from 

spiked plasma are shown in Figure 2.3. Although the sample preparation protocol was 

simple, the method produced excellent selectivity. The A-967079 showed a sharp peak 

eluting at approximately 5.2 min, which was completely resolved from other components 
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in the matrix. Although the A-967079 peak tailed slightly (As= 1.80), the tailing did not 

affect quantification of A-967079. 

2.3.2. Linear range, calibration and limit of detection 

Standard curves were constructed over the concentration range of 0.025‒500 μM 

A-967079 in rabbit plasma. The 0.025 and 500 μM calibrators were outside the linear range 

based on the accuracy and precision criteria. Therefore, the linear range of the method was 

0.5 μM (LLOQ) to 200 μM (ULOQ) as best described by 1/x2 weighted linear regression. 

The linear range of the method was large, spanning over three orders of magnitude, which 

is excellent for bioanalytical HPLC-MS/MS methods[127, 130] and should be very useful 

for studies were analysis of a wide range of A-967079 concentrations is necessary. The 

calibration curves were found to be stable over three days as determined by consistency of 

the calculated slopes and the excellent fit of the data over the entire linear range for each 

day, as defined by the PRA (Table 2.2). Moreover, the method showed an excellent LOD 

of 25 nM in plasma as validated by analysis of multiple A-967079-spiked samples below 

the LLOQ over a 3-day period.  

 

Table 2.2. Linear equations, coefficients of determination (R2), and percent residual 
accuracy (PRA) for calibration curves created over 3 days. 

Day Equation R2 PRA(%) 

1 y = 1.24e5x – 926 0.9867 95 

2 y = 1.24e5x – 1021 0.9974 94 

3 y = 1.24e5x – 1296 0.9962 92 
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2.3.3. Accuracy and precision 

The accuracy and precision of the method were estimated by quintuplicate analysis 

of low, medium and high QCs on three different days (Table 2.3). The intraassay and 

interassay accuracies were both 100±10.5% of the nominal QC concentrations, 

respectively. The precision of the method was good, with all QCs producing %RSDs 

<15%. The accuracy and the precision of the method were within the FDA-acceptable 

range for method validation from a biological matrix.[127, 129, 130]  

 

Table 2.3. The intra- and interassay accuracies and precisions of A-967079 analysis from 
spiked rabbit plasma by HPLC-MS/MS. 

aAggregate of three days of QC method validation (n = 15) 

 

2.3.4. Matrix effect, recovery and stability 

To determine the effect of the plasma matrix on the analysis of A-967079, the 

slopes of standard curves of A-967079 spiked in aqueous and plasma solutions were 

Conc 

(µM) 

 Intraassay  Interassay 

 Accuracy (%)  Precision (%RSD)  Accuracy 

(%)a 

Precision 

(%RSD)a  Day 1 Day 2 Day 3  Day 

1 

Day 

2 

Day 

3 

 

0.75  100±7.8 100±6.2 100±3.8  14.2 4.3 11.3  100±7.8 <14.2 

7.5  100±6.2 100±3.5 100±10.5  10.8 5.1 9.5  100±10.5 <10.5 

35  100±8.2 100±1.8 100±8.3  7.5 6.3 6.8  100±8.3 <7.5 
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compared. The plasma to aqueous standard curve slope ratio was approximately 0.24, 

showing about 76% of suppression of A-967079 signals via the current method.  The 

recoveries for low, medium, and high QCs of A-967079 from plasma were 22%, 23%, and 

26% respectively. Since the % recovery value is the combination of matrix effect and 

recovery, the 24% average recovery is likely due exclusively to the 76% matrix effect 

suppression of A-967079 signals in rabbit plasma. Although there is a strong matrix effect, 

it was extremely consistent, and therefore, did not affect quantification of the A-967079. If 

desired, the signal suppression could be corrected via an internal standard, but over the 

course of method development, the consistency and accuracy of quantification of A-

967079 via the method allowed for external standardization. 

For the benchtop stability, A-967079 was stable for 10 h in plasma and started 

degrading below 85% of the control. Furthermore, A-967079 showed excellent stability, 

with not more than 15% deviation from the control, in plasma (-80 °C) over three freeze-

thaw cycles evaluated. Moreover, the prepared A-967079 plasma samples were stable for 

24 h in the autosampler, with each signal at least 85% of the initial signal. The long-term 

stability of A-967079 was evaluated at multiple temperatures. It was stable for 10 days at 

4 °C and showed excellent stability (i.e., not more than 15% deviation from the control) in 

plasma at both -30 °C and -80 °C for 30 days. From the results of the stability studies, we 

recommend that when storage is necessary, plasma samples should be stored at either -30 

°C or -80 °C, and can be thawed and refrozen 3 times for analysis. If samples are to be 

analyzed within 10 days, they can be stored at 4 °C. 
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Figure 2.4. HPLC-MS/MS chromatogram from the plasma of A-967079-treated rats and 
rat plasma obtained prior to A-967079 treatment. The chromatograms represent signal 
response to MRM quantification transition of A-967079 (209 → 162 m/z). 
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Figure 2.5. Plasma concentration-time pharmacokinetic profile of A-967079 following 
intravenous administration of A-967079 to rats. Error bars represent standard error of the 
mean (SEM, n=3). Inset: Representation of elimination constant (Kel) of A-967079 by log 
concentration-time graph. 

 

2.3.5. Method application and pharmacokinetics 

 The validated method was applied to the analysis of plasma from rats treated with 

A-967079. Chromatograms from HPLC-MS/MS analysis of plasma of rats treated with A-

967079 and rat plasma obtained prior to treatment are shown in Figure 2.4. In the plasma 

of treated rats, A-967079 was elevated as a prominent peak eluting at 5.20 min, whereas 

no peak was present in the plasma obtained from rats prior to A-967079 treatment. This 
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result confirmed the applicability of the method to analyze A-967079-treated animals, and 

further verified the selectivity of the method.  

 The pharmacokinetic profile of A-967079 for a single dose in rats is shown in 

Figure 2.5 with pharmacokinetic parameters listed in Table 2.4. The profile shows a rapid 

increase and subsequent quick decrease in A-967079 concentration, with a Cmax and tmax of 

26.6 µM and 1.50 h, respectively. The distribution half-life (t1/2,dis) and distribution 

constant (Kdis) were 1.8 h and 0.3943 h-1, respectively. These results show that A-967079 

is quickly absorbed and distributed in the rat. Elimination was slower, with a t1/2,el of 9.76 

h. The large area under the curve (i.e., AUC=56.3 µM*h) along with relatively slow 

elimination of A-967079 indicate the relatively slow clearance. This suggests that A-

967079 may have the ability to treat victims of TIH exposure for extended periods 

following treatment. 

Table 2.4. Pharmacokinetic parameters of A-967079 in a rat.  

Cmax (µM) t1/2,dis (h) t1/2,el (h) Kdis (h-1) Kel (h-1) AUC (µM*h) 

26.60 1.757 9.76 0.3943 0.0710 56.30 

 

2.4. Conclusion 

A simple and sensitive HPLC-MS/MS method for the determination of A-967079 

in plasma was developed. The method presented here is the first validated method for the 

detection of A-967079 in any matrix. The method features simple sample preparation, rapid 

analysis, an excellent detection limit, and a wide linear range of 0.05‒200 μM (i.e., covered 

over 3 orders of magnitude). The method presented has the ability to analyze A-967079 
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from plasma of treated animals, which will allow further drug development of A-967079 

as therapy for pain and other noxious effects from TIH exposure. 
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Chapter 3.  Metabolism of Cyanide by Glutathione To Produce The Novel Cyanide 

Metabolite, 2-Aminothiazoline-4-Oxoaminoethanoic Acid 

3.1. Introduction 

Exposure to cyanide (HCN or CN-, inclusively represented as CN) can occur by the 

consumption of foods that contain cyanogenic glycosides (e.g., almonds),[131, 132] and 

from the use of CN in electroplating, plastic production, synthesis of pesticides, and mining 

(extraction of gold and silver).[55] Other sources of exposure include smoke from 

cigarettes, fires, vehicles, and the use of CN in homicides, suicides or terrorist 

activities.[95, 133-135] The toxic effects of CN are rapid and can lead to death. Therefore, 

the confirmation of CN exposure is important for forensic and diagnostic 

applications.[136] Confirmation of cyanide exposure can be accomplished by detection of 

either protonated (HCN, pKa = 9.2) or non-protonated (CN-) forms of CN,[137] where 

HCN is highly volatile and CN- is a strong nucleophile.[55, 138] Although direct analysis 

is the most straightforward way to verify CN exposure, CN is relatively quickly eliminated 
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from biological fluids (t1/2 = 0.34-1.0 h in biological fluids) due to its volatility and 

reactivity. Therefore, confirmation of CN exposure through direct analysis is unreliable in 

many circumstances, especially after a relatively long period of time has elapsed.[111] 

These limitations have led to the exploration of more stable markers to confirm CN 

exposure. 

Free thiocyanate (SCN-) is the major metabolite of cyanide, formed from the 

reaction of cyanide with sulfur donors in the presence of rhodanese (Figure 3.1.).[107] Due 

to its longer half-life in biological fluids,[55, 113] thiocyanate is a longer-lived marker for 

cyanide exposure. However, thiocyanate has limitations as a marker to confirm cyanide 

exposure.[106, 138] Ballantyne reported a low recovery of thiocyanate and concentration 

instability during various storage conditions in whole blood.[139] Furthermore, edibles like 

broccoli, cauliflower and cabbage are known to contain significant amounts of 

thiocyanate.[140, 141] Thiocyanate can also be formed by metabolism of other compounds 

beside cyanide.[132] These issues contribute to the large and variable background 

thiocyanate concentrations in biological fluids (i.e., average SCN− concentrations are 

approximately 30.9 ± 13 μM, 130.2 ± 55 μM, and 568.0 ± 128 μM, for blood, urine, and 

saliva, respectively),[55, 136] rendering the analysis of free thiocyanate to confirm CN 

exposure inconsistent.  
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Figure 3.1. Current metabolic pathway of cyanide and major ways of release. Diagram 
adapted from Logue et al.[111] Pyroglutamic acid (PGA), 2-amino-2-thiazoline-4-
carboxylic acid (ATCA), 2-iminothiazolidine-4-carboxylic acid (ITCA), 2-
aminothiazoline-4-oxoaminoethanoic acid (ATOEA), 2-iminothiazolidine-4-
oxoaminoethanoic acid (ITOEA), and glutathione (GSH). 
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The conversion of CN to 2-amino-2-thiazoline-4-carboxylic acid (ATCA) by the 

reaction of cyanide with cysteine, as shown in Figure 3.1, is an alternative metabolism 

pathway for CN.[77, 138] The reaction of CN with cysteine leads to the formation of 

ATCA, and its tautomeric form, 2-iminothiazolidine-4-carboxylic acid (ITCA) (Figure 

3.1).[110] ATCA (ITCA and ATCA are referred to inclusively as ATCA) is formed in the 

physiological environment by direct interaction of cyanide with cysteine. Moreover, 

ATCA is not formed from other known processes,[136] does not metabolize further after 

its formation,[77, 138, 142] and it is highly stable in biological samples (i.e., ATCA has 

been shown to be stable for months under various storage conditions).[110, 111]  However, 

Petrikovics et al.[143] reported that, at sublethal doses of CN, the concentration of ATCA 

in plasma does not increase significantly, suggesting that ATCA might not be a good 

biomarker for sublethal cyanide exposure. Conversely, Bhandari et al,[89] reported that 

ATCA concentrations generally followed CN concentrations (i.e., quick elimination in 

three animal species and that only a very small amount of ATCA was formed) for sublethal 

doses of ATCA. While ATCA may not be a good marker for diagnosis because of its low 

abundance and relatively short half-life, its stability makes it extremely promising for 

forensic purposes (i.e., post-mortem verification of cyanide exposure).[144, 145]A number 

of other markers of CN exposure have been discovered, but information is limited for these 

markers. CN reacts with α-ketoglutarate (α-Kg) in biological environments to form α-

ketoglutarate cyanohydrin (α-KgCN).[113, 114] The studies by Mitchell et al.[112, 146] 

reported α-KgCN absorption and elimination kinetics were similar to CN and ATCA. Also, 

low recovery and poor stability of α-KgCN was demonstrated at various storage conditions 

except for −80◦C, where it was stable for 30 days. The reversible reaction of cyanide with 
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hydroxocobalamin to form cyanocobalamin is another important metabolic pathway of 

CN.[115] Although cyanocobalamin is a promising marker, hydroxocobalamin, a 

precursor of cyanocobalamin, is an antidote for cyanide poisoning which would convolute 

detection when this antidote is delivered.[147, 148] Also equilibrium between 

hydroxocobalamin and cyanocobalamin causing concentration instability and the photo-

degradability of cyanocobalamin[149, 150] limits its use as a marker to confirm cyanide 

exposure.  In 2007, Fasco et al.[116] discovered cyanide-protein adducts (formed by the 

interaction of CN with disulfide bonds in proteins) in human plasma proteins. Others also 

confirmed the presence of these markers following CN exposure.[151, 152] Because many 

proteins have long half-lives (e.g., 25 days for albumin and 55 days for hemoglobin),[16, 

153] the analysis of cyanide protein adducts may be an excellent forensic marker for 

confirming cyanide exposure, but little information is currently available on the usefulness 

of these adducts. Because of the limitations of each marker of CN exposure, other markers 

of CN exposure may address the disadvantages of the currently known markers.    

The affinity of CN for biological thiols, as observed with the production of SCN-, 

ATCA, and protein-adducts, likely indicates CN also reacts with other sulfur containing 

molecules such as glutathione. Glutathione (GSH; (2S)-2-amino-4-[[(1R)-

[(carboxymethyl) carbamoyl]-2-sulfanylethyl] carbamonyl] butanoic acid) is a ubiquitous 

tripeptide in mammals and is an excellent antioxidant. GSH molecules are kept in a reduced 

state in animal cells, where its intracellular concentration can be as high as 10 mM. GSH 

reduces any disulfide bond formed within cytoplasmic proteins to cysteine by acting as an 

electron donor. In the process, GSH is converted to its oxidized form, glutathione disulfide 

(GSSG).[154, 155] The detoxification of cyanide with GSH or GSSG may be a first-line 
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defense against cyanide intoxication, as studies have demonstrated a reduced toxicity of 

cyanide in glutathione and glutathione-disulfide-pretreated mice.[156] Although the 

mechanism of reduced toxicity is unknown, it is likely that CN is converted to a less-toxic 

compound based on its interaction with GSH. Supporting this hypothesis is a study by 

Okafor et al.[157, 158] who studied the effects of CN generated by cassava (i.e., 

cyanogenic glycosides in cassava can produce a large concentration of CN) on endogenous 

GSH in rats, and reported a reduction in glutathione concentration in rats fed with cassava.  

The objective of this study was to investigate the interaction of cyanide with 

glutathione with structural identification of biomarkers of cyanide exposure. A secondary 

objective was to develop an analytical method to quantify this biomarker. A tertiary 

objective was to evaluate the toxicokinetics of this marker. 

3.2. Materials and Methods 

3.2.1. Materials 

All reagents were high-performance liquid-chromatography (HPLC) grade. 

Acetone and methanol were obtained from Fisher Scientific (Hanover Park, IL, USA). 

Reduced glutathione, oxidized glutathione, pyroglutamic acid, and ammonium formate 

were supplied by Sigma-Aldrich (St. Louis, MO, USA). Cyanamide (NH2CN) was 

purchased from Acros Organic (Morris Plains, NJ, USA). Isotopically-labeled cyanamide 

(15NH2
13C15N) was obtained from Cambridge Isotope Laboratories (Andover, MA, USA). 

Water was purified to 18 MΩ-cm using a Water PRO PS polisher (Labconco, Kansas City, 

KS, USA). All stock solutions were stored at 4 °C. Working ATOEA solutions were 

obtained from stock solutions of ATOEA (2 mM) or ATOEA-13C15N (1 mM) via serial 

dilutions to the desired concentration. 
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3.2.2. Synthesis of ATOEA and ATOEA-13C15N 

The proposed reaction scheme for the synthesis of ATOEA is shown in Figure 3.1. 

The synthesis of ATOEA was achieved by the modification of Nagasawa et al.[60] method 

for the synthesis of ATCA. Cyanamide (NH2CN, 1.77 g, 41.2 mmol) was added to L-

glutathione (GSH) (dissolved in 100 mL of H2O, 12.70 g, 41.3 mmol) with stirring. The 

resulting clear solution was heated by refluxing under a continuous stream of nitrogen gas 

until the pH of the entrained gas dropped from 11 to about 8 (as measured by wetted pH 

indicator paper). The reaction mixture was stirred overnight at room temperature, and then 

concentrated on a rotary evaporator until a white sticky product formed. Following 

overnight refrigeration, the solid was collected, recrystallized from ethanol/H2O (5:1), and 

the product was dried in a vacuum desiccator over phosphorus pentoxide (P4O10) to yield 

approximately 43% ATOEA. Characterization was achieved by 1H-NMR Spectroscopy 

along with ESI-MS operated in positive polarity mode.1H-NMR (D2O, 400 MHz) δ 1.1 (td, 

2H) 3.5-3.6 (m, 2H) 3.7 (s, 2H) 3.85 (t, 1H).  ESI (+)-MS: m/z 158.0, 101.0, 74.2, 59.0. An 

isotopically labeled standard, ATOEA-13C15N was synthesized as described above for 

ATOEA, with NH2CN replaced with 15NH2
13C15N. ESI (+)-MS: m/z 160.1, 103.0, 74.1, 

59.0.  

3.2.3. Biological Samples 

Rabbit plasma (ethylenediaminetetraacetic acid anti-coagulant) for analytical 

method development was purchased from Pel-Freeze Biologicals and stored at -80 °C until 

used. Plasma from CN-exposed, New Zealand White rabbits was obtained from the 

University of California, Irvine. In one experiment rabbits (N = 8) were infused 

intravenously with 20 mg of NaCN in 60 mL of 0.9% NaCl at continuous rate of 1 mL/min 
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until apnea. Blood samples were drawn prior to infusion to establish a baseline. Blood 

samples were also drawn at 15, 25, 35 min following initiation of CN exposure, apnea, and 

5, 7.5, 10, 15, 30 min post-apnea (without administration of antidote). In another 

experiment, stable isotope labeled CN was used to confirm the production of ATOEA from 

CN. Rabbits (N = 11) were administered lethal doses of 10 mg NaCN (50%) and 13.7 mg 

K13C15N (50%) in 60 mL of 0.9% NaCl (1 mL/min continuous intravenous infusion) and 

blood samples were drawn prior to exposure (baseline), and 15, 25, and 35 min following 

initiation of cyanide infusion. A blood sample was also drawn at apnea. Glyoxylate (200 

mg in 2 mL of 0.9% NaCl) was administered as an antidote and blood samples were drawn 

at 5, 7.5, 10, 15, 25, 30, 60, and 90 min post-administration of antidote.  

After blood was drawn from rabbit, it was placed in EDTA tubes, and centrifuged 

to separate the plasma. Plasma was then transferred to a clean centrifuge tube, flash frozen, 

and shipped on dry ice (overnight) to South Dakota State University for analysis of 

ATOEA and ATOEA-13C15N. Upon receipt, the plasma was stored at -80 °C until analysis 

was performed. All animals were cared for in compliance with the “Principles of 

Laboratory Animal Care’’ formulated by National Society for Medical Research and the 

“Guide for the Care and Use of Laboratory Animals” prepared by the National Institutes 

of Health. The CN exposure study was approved by UCIs and Institutional Animal Care 

and Use Committee (IACUC). 
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Table 3.1. MRM transitions, optimized declustering potentials (DPs), and collision 
energies (CEs) for the detection of ATOEA, ATOEA-13C15N, and PGA by MS–MS 
analysis 

 

3.2.4. Sample preparation for HPLC-MS-MS analysis 

Plasma samples (100 µL) were analyzed in triplicate. Initially, acetone (400 µL) 

was added to precipitate the proteins. The contents were allowed to stand for 5 minutes at 

room temperature. The sample was vortexed briefly (<10 s), then cold centrifuged (8 ⁰C) 

at 13,200 rpm (16,200 × g) for 10 minutes.  An aliquot (300 μL) of the supernatant was 

transferred into a 4-mL glass screw-top vial, and nitrogen dried for 10 min at room 

temperature. The dried samples were then reconstituted with 200 µL of 1 mM aqueous 

ammonium formate, and mixed thoroughly, filtered with a 0.22-µm 

tetrafluoropolyethylene membrane syringe filter, and analyzed using HPLC-MS-MS.  

3.2.5. HPLC-MS-MS Analysis 

HPLC tandem mass spectrometry (HPLC-MS-MS) was conducted on a Shimadzu 

HPLC (LC-20AD, Shimadzu Corp., Kyoto, Japan) coupled to an AB Sciex Q-Trap 5500 

Compounds Q1 (m/z) Q3 (m/z) Time (ms) DP (V) CE (V) 

ATOEA (quantitation) 204 101 100 90 26 

ATOEA (identification) 204 158 100 116 21.7 

ATOEA-13C15N 

(quantitation) 
206 103 100 95.6 22 

ATOEA-13C15N 

(identification) 
206 160 100 94 29.6 

PGA (identification) 130 84 100 56.4 18.3 
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MS. The chromatographic separation was achieved using an Agilent Poroshell 120 C18 

(150 × 3.0 mm, 2.7 μm) column. The chromatographic separation was carried out with 

mobile phase components of aqueous 1 mM ammonium formate as solvent A and 1 mM 

ammonium formate in methanol as solvent B. The sample was stored in a cooled 

autosampler (15 ⁰C) and 10 µL was injected. Separation was achieved using gradient 

elution at a flow rate of 0.35 mL/min with 20% B held constant for 2 minutes, increased 

linearly to 100% over 2 minutes, held constant for 2 minutes, decreased to 20% B over 2 

minutes, and held constant for 2 minutes to equilibrate between injections. 

ATOEA and PGA were detected using positive polarity electron spray ionization 

(ESI)-MS-MS. Standard solutions of ATOEA, ATOEA-13C15N, and PGA were directly 

infused (10 μL/min) to determine optimum MRM transitions. After infusion of ATOEA, 

ATOEA-13C15N and PGA standard solutions into the ESI, molecular ions of m/z 204 

([M+1]+), m/z 206 ([M+1]+), and m/z 130 ([M+1]+) respectively, were identified. The most 

abundant product ions of ATOEA, ATOEA-13C15N, and PGA are listed in Table 3.1. 

Nitrogen gas (50 psi) was used as the curtain and nebulization gas. The ion spray voltage 

and temperature source were 4,500 V and 500 °C with both nebulizer (GS1) and heater 

(GS2) gas pressures at 90 psi. The collision cell was operated with an entrance potential of 

10.0 V and a collision potential of 11.0 V at a medium collision gas flow rate. The total 

mass spectrometry acquisition time was 5 min. ATOEA, ATOEA-13C15N, and PGA were 

analyzed in multiple reaction monitoring (MRM) mode via the parameters outlined in 

Table 3.1.  
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Figure 3.2. Proposed scheme for the synthesis of ATOEA (with pyroglutamic acid as a 
byproduct) from the reaction of GSH with NH2CN. GSH is proposed to react with NH2CN 
to form a GS-CN[116, 159] adduct which likely cyclizes to form ITOEA and glutamic 
acid.[116, 160] ITOEA then interconverts to form ATOEA.[60] Glutamic acid then 
cyclizes to produce pyroglutamic acid (PGA).[160, 161] 

 

3.2.6. Calibration, quantification, and limit of detection 

The validation of the analytical method was achieved by generally following the 

FDA bioanalytical method validation guidelines.[126, 130] The lower limit of 

quantification (LLOQ) and upper limit of quantification (ULOQ) were defined as 

satisfying the inclusion criteria of <15% relative standard deviation (RSD, as a measure of 

precision), and a percent deviation within ±20% back-calculated from the nominal 

concentration (as a measure of accuracy) for all calibration standards within the linear 
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range. The limit of detection (LOD) was determined by analyzing multiple concentrations 

of ATOEA below the LLOQ and determining the lowest concentration which reproducibly 

produced a signal-to-noise ratio of at least 3. The percent residual accuracy (PRA) was 

used to determine the goodness-of-fit of the calibration curves (i.e., PRA values ≥ 90% are 

indicative of a good fit).[128] 

From the ATOEA stock solution, calibration standards for ATOEA (0.2, 0.5, 1, 3, 

5, 10, 20, 35, 50, 100, 200 and 300 μM) were prepared in rabbit plasma. Following analysis 

of the calibration standards, calibration curves were plotted using the peak area of the 

analyte (ATOEA) as a function of the ATOEA concentration in plasma. Both weighted 

(1/x and 1/x2) and unweighted calibration curves were created using linear least squares. A 

weighted 1/x2 fit was chosen as the best model to fit the calibration data.  

QC standards (N = 5) were prepared in rabbit plasma at three different concentrations: 0.75 

(low QC), 4 (medium QC), and 30 μM (high QC) for ATOEA.  The QC standards were 

analyzed in quintuplicate each day for 3 days and were run in parallel with the calibration 

standards. Intraassay precision and accuracy were calculated from each day’s analysis, and 

interassay precision and accuracy were calculated from comparison of the data gathered 

over three separate days. 

3.2.7. Recovery, matrix effect and stability 

The recovery of ATOEA was determined by the analysis of five QC replicates (low, 

medium and high concentrations) prepared in aqueous solution compared with equivalent 

QCs in plasma. Recovery (i.e., signal recovery) was determined as a percentage by dividing 

the analyte signal peak area from spiked plasma by the peak area of the equivalent aqueous 

QC standard. Calibration curve equations for calibrators prepared in DI water and plasma 
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were compared to evaluate matrix effects. A slope ratio (plasma slope/aqueous slope) from 

the calibration curves <1 indicates suppression effect, whereas slope ratio >1 indicates an 

enhancement effect. 

The stability of ATOEA in plasma was evaluated by analyzing low and high QCs 

stored at various temperatures at multiple storage times. The stability (i.e., signal stability) 

of ATOEA was calculated as a percentage of the initial signal, with ATOEA considered 

stable at a particular temperature if the signal was within 15% of the initial signal. Short-

term stability was assessed in the autosampler for 24-hrs, on the bench top (at room 

temperature) for 24 hr, and over multiple (3) freeze-thaw cycles. Long-term stability 

experiments were conducted under various storage conditions (-80, -20, and 4 ⁰C) for 0, 2, 

4, 6 10, 20, and 30 days. 

3.2.8. Toxicokinetic Analysis 

The toxicokinetic behavior of ATOEA after intravenous administration of CN at 

different time points was modeled with a two-compartment model.[162] The maximum 

concentration (Cmax) of ATOEA in plasma, time taken to reach maximum concentration 

(Tmax), distribution constants (Kdis), elimination constants (Kel), distribution half-life 

(t1/2,dis) and elimination half-life (t1/2,el) were obtained from the concentration-time curve. 

Area under curve (AUC) after apnea was also obtained from the concentration-time curve 

using trapezoidal rule. The correlation between the concentrations of ATOEA and 

ATOEA-13C15N after intravenous administration of CN and
 13C15N (1:1) was determined 

by student t-test 
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3.3. Results and Discussion 

3.3.1. Mechanism of glutathione-cyanide interaction  

Previous studies on the cyanylation of sulfhydryl groups of peptides and proteins 

have demonstrated that CN reacts with thiol of the cysteine residue in a peptide/protein to 

form a covalently bonded peptide/protein-CN adduct at pH values slightly above 

neutral.[116, 159, 160]  In 1974, Dagani[160] demonstrated that at pH 8-10, the adduct 

cyclizes at the N-terminus of the cysteine residue, which then cleaves to form a 2-

iminothiazolidine derivative. In this study we modelled the interaction of CN with 

sulfhydryl groups of peptides/proteins[116, 159, 160] using glutathione (GSH) as the 

peptide. Figure 3.1 shows the proposed reaction scheme for the reaction of GSH with 

NH2CN. In summary, the thiol group of GSH is proposed to react with the CN of  NH2-

CN to form a glutathione-CN adduct (GS-CN),[116, 159] releasing ammonia gas (NH3) in 

the process.[60] This reaction is supported by a number of studies.[60, 116, 159, 160] As 

the reaction proceeds, more NH3 gas is released into the reaction contents, increasing their 

basicity (pH=11).[60] Subsequently, the NH3 gas escapes the reaction contents and the pH 

of the contents decrease.[60] Once the pH of the reaction contents decreases to between 8-

10, the GS-CN adduct likely undergoes intramolecular cyclization between the N-terminus 

of the cysteine residue and the C≡N bond,[160] which cleaves the glutamate-cysteine 

peptide bond to produce 2-iminothiazolidine (i.e., ITOEA, which tautomerizes to 2-

aminothiazoline derivative (ATOEA))[60, 116, 160] similar to ATCA.[159] The 

cyclization also produces glutamic acid,[159] which cyclizes to produce pyroglutamic acid 

(PGA) as a byproduct.[161] 
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3.3.2. ATOEA and PGA as biomarkers 

To confirm the formation of ATOEA from CN exposure, analytical methods were 

developed to quantify pyroglutamic acid and ATOEA in plasma of cyanide-exposed rabbit. 

The mass spectra of ATOEA and ATOEA-13C15N are shown in Figure 3.2. Figure 3.2a 

shows the mass spectrum of ATOEA produced by ESI(+)-MS with the molecular ion 

structure ((M+H)+, m/z = 204) inset. The mass spectrum of ATOEA-13C15N ((M+H)+, m/z 

= 206) with its abundant ions identified as produced by ESI(+)-MS is shown Figure 3.2b. 

For ATOEA, transitions 204→101 and 204→158 were used for quantification and 

identification, respectively. The quantification and identification transitions for ATOEA-

13C15N were 206→103 and 206→160, respectively. The optimized MS-MS parameters for 

the detection of both  ATOEA, ATOEA-13C15N and PGA are shown in Table 3.1. 

Figure 3.0 shows the HPLC-MS-MS chromatograms of ATOEA (Fig 3.3a) and 

PGA (Fig 3.3b) analyzed from spiked rabbit plasma, and plasma from pre- and post-

cyanide exposed rabbits. The representative HPLC-MS-MS chromatograms of the MRM 

transitions of ATOEA analyzed from spiked water are also depicted in Figure 3.3c. The 

ATOEA eluted at approximately 3.1 min with only small endogenous ATOEA signal 

visible in the pre-exposed samples. PGA eluted at approximately 2.4 min with large 

endogenous concentrations of PGA in pre-CN exposed samples. Therefore, although we 

were able to consistently verify increasing concentrations of PGA following CN exposure, 

the relatively large endogenous concentration of PGA in non-exposed animals limits the 

usefulness of PGA as cyanide biomarker. Therefore, ATOEA was the focus of the rest of 

the study. Although ATOEA was the focus of the study, the increase in both ATOEA and 
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PGA in the plasma of CN-exposed animals supports the reaction scheme shown in Figure 

3.1 as the biological process responsible for the production of ATOEA.  
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Figure 3.3. ESI(+) mass spectra of ATOEA (A), and ATOEA-13C15N (B) with 
identification of the abundant ions.  Insets: Structures of ATOEA (A), and ATOEA-13C15N 
(B) with abundant fragments indicated. 
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Figure 3.4. HPLC-MS-MS chromatograms of ATOEA (A),  PGA (B) and ATOEA MRM 
transitions (C). A: ATOEA-spiked rabbit plasma and the plasma of a cyanide-exposed 
rabbit, pre-exposure, and post-exposure. B: PGA-spiked rabbit plasma and the plasma of a 
cyanide-exposed rabbit, pre-exposure, and post-exposure. C: Signal response to the MRM 
transition of ATOEA (10 µM) spiked aqueous standards (204→101, 204→59.0, 
204→74.1, and 204→158.0). The chromatograms represent the signal response of the 
MRM transition 204.0→101, and 130.0→84 m/z for ATOEA (A) and PGA (A), 
respectively. Inserts: Peak areas of pre-CN exposure and post-CN exposure (25 min 
infusion) plasma sample for ATOEA (A) and PGA (B).  
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3.3.3. HPLC-MS-MS Analysis of ATOEA 

The analytical method for ATOEA involved quick and simple sample preparation, 

consisting of protein precipitation, centrifugation, transfer of supernatant, drying, and 

reconstitution in aqueous ammonium formate, for HPLC-MS-MS analysis. Even with this 

simple sample preparation protocol an internal standard was not necessary to correct for 

matrix effects or incomplete recovery. The sample preparation time was approximately 20 

min and the HPLC-MS-MS analysis time was 10 min. Despite the quick and simple sample 

preparation and analysis, the ATOEA was completely resolved from other components in 

the matrix and showed a sharp peak eluting at approximately 3.1 min, but considerable 

tailing (As= 2.31).  

ATOEA calibration curves were constructed in rabbit plasma within the 

concentration range of 0.2-300 μM. The 0.2, 100, 200 and 300 μM calibrators fell outside 

the entire linear range based on the accuracy and precision criteria, producing a linear range 

of 0.5 to 50 μM, which was best described by a 1/x2 weighted linear regression. The percent 

residual accuracy (PRA) values of all the calibration curves analyzed were ≥ 95%, 

indicating excellent fit of the data over the entire linear range (i.e., PRA values ≥ 90% are 

indicative of a good fit).[128] 

The accuracy and precision of the method were determined by quintuplicate 

analysis of three different QC standards (0.75, 4, and 30 μM) on three different days (Table 

3.2). The precision of the method was excellent, with both the intraassay and interassay 

analysis producing percent relative standard deviation (%RSD) values of <6%. The 

accuracy for intraassay and interassay analyses was also excellent (100±8% of nominal 
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QC concentration). The LOD was 0.2 μM ATOEA in plasma as validated by analysis of 

multiple ATOEA-spiked samples over a 3-day period.  

 

Table 3.2. The accuracy and precision of ATOEA analysis from spiked rabbit plasma by 
HPLC-MS-MS. 

 

Conc (μM) 

Intraassay Interassay 

Accuracy 

(%)a 

Precision (%RSD)a Accuracy (%)b Precision (%RSD)b 

0.75 100±2.4 4.19 100±7.8 5.63 

4 100±7.6 3.75 100±5.0 3.71 

30 100±7.4 4.08 100±6.9 3.49 

aQC method validation (N = 5) for day 3 

bMean of three different days of QC method validation (N = 15) 

 

The matrix effect was assessed by comparing the slopes of standard curves of 

ATOEA in aqueous calibrators (deionized (DI) water) and plasma. The slope of the 

aqueous curve was approximately 2 times the slope of plasma calibration curve. Therefore, 

a significant matrix effect exists for the analysis of ATOEA from plasma via the current 

method. Recovery for low, medium, and high QCs were 59%, 45%, and 55% respectively. 

Because the % recovery value is the combination of matrix effect and recovery, the 

recovery values can be attributed to the matrix effect suppression of the ATOEA signal 

instead of low recovery. 

The long-term stability of ATOEA was evaluated for 30 days at -80, -20, and 4 ⁰C. 

ATOEA was stable at -80 ⁰C for 30 days, at -20 ⁰C for 4 days, but degraded rapidly at 4 
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⁰C (i.e., stable for only 2 days). For short-term stability, prepared samples of ATOEA were 

stable for at least 20 h on the autosampler but were only stable for 6 h on the bench-top, 

showing that ATOEA degraded relatively quickly in plasma at room temperature. 

Additionally, ATOEA was stable in plasma for 3 freeze-thaw cycles. From the results of 

the stability studies, we recommend that when storage is necessary, that plasma samples 

are stored at -80 ⁰C and can be thawed and refrozen 3 times for analysis. If samples are to 

be analyzed within 4 days, they can be stored at -20 ⁰C. 

3.3.4. Toxicokinetics of ATOEA in rabbits following cyanide exposure 

To definitively confirm the direct relationship between cyanide exposure and the 

production of ATOEA, rabbits were exposed to a 1:1 mixture of labeled (13C15N-) and 

unlabeled (CN-) cyanide. The concentrations of ATOEA and ATOEA-13C15N in plasma of 

cyanide-exposed rabbits mirror each other, as shown in Figure 3.4. ATOEA was below the 

LOD in pre-exposed rabbit plasma. The concentration of both ATOEA and ATOEA-13C15N 

increased rapidly during the infusion of CN- and 13C15N-, and then decreased quickly after 

apnea (at Cmax) following stopping CN administration and the administration of antidote. 

The decrease of ATOEA concentration when the cyanide infusion was stopped (after 

apnea), and after glyoxylate was administered may be due the ability of carbonyl group of 

glyoxylate to bind with free cyanide to form cyanohydrin or the rapid distribution and 

elimination of CN.[163] There was excellent agreement (R2 = 0.9924, p < 0.05) between 

the concentrations of ATOEA and ATOEA-13C15N from plasma of cyanide exposed 

rabbits.  

The identification of ATOEA-13C15N in rabbit plasma after 13C15N was the 

administered, confirms that ATOEA is produced during the metabolism of CN. The 
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percentage of cyanide converted to ATOEA was estimated at about 1.25-4.10%. This 

estimation was based on the measured ATOEA and cyanide concentration after factoring 

in the estimated percentage of cyanide that detoxified to ATCA and thiocyanate as reported 

by Bhandari et al,[89] and the percent distribution of cyanide between plasma and RBCs 

(i.e., 70-96% of the blood cyanide is found in RBCs).[106] 

 

Table 3.3. Toxicokinetic parameters of ATOEA in rabbits following intravenous infusion 
of CN. These parameters are likely a combination of ATOEA elimination and sequestration 
of CN by glyoxylate. 

 

Table 3.3 shows the toxicokinetic parameters for ATOEA. The formation of 

ATOEA in rabbits was rapid and it mirrored the cyanide dose. Once the cyanide infusion 

was stopped, the ATOEA was distributed and eliminated. A two-compartment model best 

described the toxicokinetic behavior of ATOEA, with a calculated elimination half-life 

(t1/2,el) of 92.2 min (Kel = 7.5 ×10-3 min-1).  

Cmax (µM) t1/2dis (min) t1/2el (min) Kdis Kel AUC (µM*min) 

3.79 14.87 92.20 0.0466 0.0075 55.60 
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Figure 3.5. Plasma concentrations of ATOEA and ATOEA-13C15N following exposure of 
rabbits to equal amounts of CN- and 13C15N. Pre-exposure, 15 min, 25 min, and 35 min, 
following cyanide exposure are designated as time -25, -20, -15, and -10 respectively. 
Apnea is represented by time zero. Error bars represent standard error of the mean (SEM). 
Inset: Representation of elimination constant (Kel) of ATOEA by log concentration-time 
graph. 

 

3.3.5. ATOEA as a biomarker of cyanide exposure 

ATOEA may be a better long-term biomarker for cyanide exposure than cyanide 

itself because of its slower elimination half-life (t1/2,el), and large area under the curve (55.6 
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early detection of ATOEA, within a few minutes of CN exposure, suggest that ATOEA can 

also be used as a diagnostic biomarker for both acute and high-dose CN poisoning. 

Although ATOEA has many advantages as a marker of cyanide poisoning, its limitation is 

its poor stability in plasma at temperatures above -80 ⁰C. Future work should identify the 

degradation product of ATOEA in biological samples and the stability of this product. 

3.4. Conclusions 

A novel cyanide metabolite, ATOEA was found based on the interaction of 

glutathione and cyanide. A rapid and simple HPLC-MS-MS with excellent accuracy and 

precision was successfully developed to quantify ATOEA in plasma and applied to analyze 

plasma of rabbits exposed to cyanide. The toxicokinetics of ATOEA from rabbits exposed 

to cyanide confirms that it is a promising biomarker that can serve as both a diagnostic and 

potentially forensic biomarker for cyanide exposure. 
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Chapter 4. Verification of Cyanide-Poisoned Fish By Field Portable Detection of The 

Cyanide Metabolite, Thiocyanate From Fish Blood 

4.1.  Introduction 

Since the 1930s, live reef fish have been legally harvested for the marine aquarium 

trade (MAT) and live reef fish for food trade (LRFFT) industries.[69] The demand for live 

reef fish in these industries increased in the middle of the 20th century, resulting in the 

integration of illegal methods, such as cyanide fishing, to meet this demand.[164] The use 

of cyanide fishing first originated in the Philippines in the early 1960s,[69, 70] and the 

practice has spread throughout many regions including China, Indonesia, Malaysia, the 

Maldives, Papua New Guinea, Sri Lanka, Thailand and Vietnam.[71-74] Cyanide fishing 

involves the use of cyanide (abbreviated as CN, representing both hydrogen cyanide and 

cyanide ion) to stun and disorient valuable fish hiding in coral reefs, making them easier 

to collect. Cyanide fishing is accomplished via two main techniques: 1) the manual 

spraying of a saturated solution of CN salt from a squirt bottle at a fish hiding in a coral 

reef, and 2) pumping large volumes (about 200 L) of saturated CN solution from a fishing 

boat into a coral reef area and collecting stunned fish by hand netting.[76, 165, 166] 

Because CN fishing is much more immediately profitable compared to legal fishing 

methods (2.5-10 times),[67, 68, 167] it has become so popular that an estimated 150-640 

metric tons of CN are used for CN-fishing annually.[75] Although it is more profitable in 

the near term, it is a major threat to the health of coral reefs, marine life which depend on 

these reefs, the coastal and ocean environments, and the future fishing industry in the West 

Pacific Ocean.[168]  

CN has many deleterious effects on the marine ecosystem and the fish trade. Firstly, 

CN can damage targeted fish, which can ultimately result in death.[72] Studies have shown 
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that 5-75% of the targeted fish collected by CN for aquarium trade die a few hours post-

harvest, with more than 90% mortality rate recorded from collection to consumer.[72, 80] 

Additionally, many targeted species, such Cheilinus undulates, are on the verge of 

extinction as result of the effectiveness of CN fishing.[78, 79] CN fishing also affects non-

targeted species.[81] One of the most concerning effects of CN-fishing is its impact on 

coral reefs. CN interrupts coral-algal symbiosis, a process that provides nutrients to the 

coral, resulting in a process called “bleaching,” where colored coral becomes white and 

pale.[82, 169, 170]  

The damage to marine ecosystems produced by CN fishing has led to about 80% 

of fish exporting countries banning the practice.[74, 171] Although CN fishing is banned 

in most exporting countries, the technique is still commonly practiced[67, 68] because 

enforcement of anti-CN fishing laws is difficult, partially due to the lack of a reliable test 

to determine if fish were CN caught.[172] The availability of a reliable testing technology 

to detect CN exposure post-harvest would not only help in the enforcement of the anti-

cyanide fishing laws by government authorities, but may also allow testing by wholesalers 

and retailers.[172, 173] 

While the direct analysis of CN from biological fluids can be used to confirm CN 

exposure immediately following an exposure event, it is increasingly unreliable as the time 

post-exposure increases.[111] This is because CN is reactive and volatile, leading to a very 

short half-life in most animals (e.g., 0.34–1.00 hr in humans; see Table 1) and instability 

in biological matrices.[55, 60, 137] Therefore, indirect analysis of stable markers of CN 

has been proposed as a means to confirm CN exposure, especially at times greater than a 

few hours post-exposure. Thiocyanate (SCN-; represented as SCN herein) is the major 
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metabolite of CN, accounting for about 80% of the total CN metabolism.[55, 89, 137] SCN 

is a longer-lived marker of CN exposure (Table 1), with half-lives ranging from 4.95-192 

hr in mammals and 2.4-144 hr in fish.[55, 107, 113, 174] The main drawback of using SCN 

as a marker for CN exposure in most animals is that SCN is consumed or produced via 

diet. This leads to large and highly variable background concentrations of SCN in 

mammalian blood (474-32900 µg/L) resulting from sources other than CN exposure (Table 

1). Therefore, the use of SCN to confirm CN exposure in mammals is highly 

questionable.[55, 136] Similarly, while data is limited and inconsistent, previous studies 

have suggested that some freshwater fish have high levels of SCN in their blood (not 

detected-5100 µg/L) from sources other than CN exposure.[175-178] Conversely, marine 

fish have much lower endogenous SCN concentrations (<50 µg/L) than mammals, likely 

because they have diets low in SCN-containing and SCN-producing foods.[174, 179] 

Therefore, acute CN exposure should lead to highly elevated SCN concentrations in fish. 

Additionally, since SCN has a long half-life relative to CN in both fish and mammals, 

elevated levels of SCN should persist for relatively long periods of time following CN 

exposure.[178, 180, 181] Breen et al. (2019) demonstrated both greatly elevated SCN 

levels following CN exposure and long-lived elevation of SCN concentrations (i.e., 41 days 

post-exposure) in CN-exposed fish.[179] A recent study also reported high elevation of 

SCN concentration in blood plasma of marine fish following CN.[174] Therefore, the 

properties of SCN in fish appear to be ideal for the use of SCN as a promising marker for 

determination of CN-caught fish.[178]  

In recent years, researchers have proposed two potential matrices for the analysis 

of SCN to determine CN-caught fish: holding seawater or blood.[178-180, 182, 183] 
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Holding seawater is fresh seawater to which CN-caught fish are transferred in order to 

revive the fish and hold them for transport. It is suggested that SCN is excreted in the urine 

of CN-caught fish into the holding seawater. In fact, analysis of excreted SCN in seawater 

to confirm CN-fishing has been previously reported,[180, 181, 184] but several attempts 

to replicate these findings by other scientist have failed.[185, 186] Bonanno et al. (2020) 

reported that marine fish (A. clarkii) do not excrete SCN after CN exposure and can absorb 

low concentrations of SCN from water refuting these studies.[174] Although this approach 

has advantages of being non-invasive, non-destructive, and easy,[180] this approach has 

not be reproducibly verified. Moreover, fishers could easily replace or adulterate the 

holding seawater (e.g., by using masking agents) to avoid being caught by authorities. The 

analysis of SCN from fish blood is very difficult to adulterate and long-term elevation of 

SCN in fish blood following CN exposure has been shown.[179] While both the analysis 

of holding seawater and blood have advantages, blood SCN is the most definitive way to 

monitor CN-fishing.  

Scientists have developed and suggested multiple analytical SCN testing methods 

to monitor CN fishing.[71, 180, 181] In the late 1990s, Barber and Pratt developed an ion 

selective electrode technique to monitor CN-fishing, but the method produced low 

sensitivity, accuracy, and recovery.[71, 182, 187] More recently, Vaz et al. (2012 and 

2017) reported two analytical techniques (i.e., HPLC-optic fiber and HPLC-UV) to 

analyzed SCN from sea water, with the purpose of detecting SCN excreted from CN-caught 

fish into the sea water used to hold fish.[180, 181] Though the Vas et al. methods feature 

rapid sample preparation and are non-invasive, they require sophisticated instrumentation, 

are not portable, and the results were not reproducible.[185, 186] Breen et al.[185] also 
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used the Bhandari et al.[137] LC-MS/MS method for analysis of SCN from seawater to 

verify concentration found from the HPLC-UV technique. This method provided featured 

quick and easy sample preparation, very good accuracy, linearity, and sensitivity, but it 

required expensive and sophisticated instrumentation and was not rapid or field portable.  

Breen et al.[179] reported an HPLC-UV method to analyze SCN in fish plasma for 

toxicokinetic studies of SCN in CN-exposed fish. The method was featured excellent 

sensitivity and simple sample preparation, but required sophisticated instrumentation, 

somewhat difficult preparation of chromatographic media, utilized plasma as opposed to 

whole blood (i.e., creating the additional requirement of blood component separation, 

adding time and complexity to the analysis), and was not field-portable. While these 

methods proved useful for research studies, each has its drawbacks for monitoring CN-

fishing, including the fact that none of the methods are truly rapid (i.e., as defined as sample 

preparation and analysis times of less than about 5 min), field-portable or simple, which 

may be essential for monitoring CN-fishing.[179-181, 184]  

Recently, our lab developed and validated an automated field-portable 

fluorescence-based sensor for the analysis of CN in blood to confirm exposure.[7, 54, 188] 

The technology features a short analysis time (60 s), a small sample volume (25 µL), field 

portability (approximate dimensions of 24.2 × 16.7 × 10.8 cm (L × W × H) and a mass 

<0.1 kg), and user-friendly operation that does not require special expertise. The sensor 

was successfully used to analyze CN from the blood of CN-exposed mammals (i.e., rabbits 

(N = 205)). While the sensor was excellent for measuring CN, it was not designed to 

analyze SCN.    
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Considering the effect of CN-fishing on marine ecosystems and economies, there 

is a critical need to develop a reliable, field-portable, and easy to operate technology to 

confirm CN exposure in fish caught from countries where CN-fishing is practiced. 

Therefore, the objectives of this study were to extend the CN sensor technology developed 

in our lab for the analysis of blood SCN, to validate the analytical characteristics of the 

sensor, and to confirm its ability to accurately quantify elevated SCN levels from the blood 

of marine fish exposed to CN. 
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Table 4.1. Endogenous blood concentrations and half-lives of cyanide and thiocyanate 
from acute exposures of cyanide for multiple animal models. Adapted and updated from 
Logue et al.[55]  

 

Animal 
Marker of CN 

Exposure 
Species Half-life (hr) 

Endogenous Concentration 

Range (µg/L) 

Mammals 

CN 

Human 

Pig 

Rat 

Goat 

Rabbit 

0.34-1.0[55, 189] 

0.54[190] 

0.64[190] 

1.28[190] 

2.95[89] 

0.52-2.10[110, 191] 

229.3[89, 192] 

5.0-280[193] 

ND 

99.8-145.9[89, 192] 

SCN 

Human 

Pig 

Rat 

Goat 

Rabbit 

96-192[189] 

4.95[190] 

5.8-50[89, 190] 

13.9[190] 

ND 

1792-32944[55, 117, 194] 

473.9-2384[89, 190, 195] 

1160-3074[190, 196] 

ND 

501[192] 

Fish SCN 

Rainbow Trouta 

Salmonb 

Clownfishc  

Clownfishd 

48.5[178] 

ND 

144[178, 179] 

2.4-28.8[174] 

ND-5100[175-177]e 

58 

<50[179]f 

34[174] 

ND = Not determined. aOncorhynchus mykiss. bSalmo salar, Current study. cClownfish (A. 
ocellaris).  dClownfish (A. clarkii). eMultiple Rainbow Trout studies were conducted with SCN not 
detected in two groups with N= 6 and 10, respectively, and mean concentrations of 360, 820, and 
5100 ppb for groups of N= 9, 6, and 6, respectively.  fEndogenous concentration was below the 
LOQ (50ppb) of the method. 
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4.2. Materials and Methods 

4.2.1. Materials 
All reagents and solvents were at least HPLC grade. Sodium cyanide (NaCN), 

sodium hydroxide (NaOH), sulfuric acid (H2SO4), ethanol, methanol, potassium 

dihydrogen phosphate (KH2PO4), and dibasic potassium phosphate (K2HPO4) were 

purchased from Fisher Scientific (Hanover Park, IL). Taurine (2-aminoethane sulfonic 

acid) and sodium metaboratetetrahydrate (NaBO2·4H2O) were purchased from Alfa Aesar 

(Ward Hill, MA). Sodium thiocyanate (NaSCN) was obtained from Acros Organics 

(Morris Plains, NJ). Potassium permanganate (KMnO4) was purchased from Science 

Company (Lakewood, CO) NDA (2,3-Naphthalene dialdehyde) was obtained from TCI 

America (Portland, OR). Tricaine methanesulfonate was obtained from Western Chemical 

Inc. (Ferndale, WA). Water was purified to 18.2 MΩ-cm by reverse osmosis using a Lab 

Pro polishing unit from Labconco (Kansas City, KS, USA).  

A stock solution of NaOH (1 M) and phosphate/borate buffer (0.1 M:0.05 M; pH 

8.5) were prepared in DI water. Stock solutions of NaCN (2 mM) and NaSCN (1 mM) 

were prepared in 10 mM NaOH. H2SO4 (2 M) was prepared as 50:50 v/v aqueous and 

ethanol. Taurine (0.1 M) solution was prepared in phosphate borate buffer. A stock solution 

of NDA (2 mM) was prepared in phosphate borate buffer and 40% methanol. A saturated 

solution of KMnO4 was prepared in DI and its concentration (0.6 M) was determined by 

titrating it against 0.2 M oxalic acid.  

Caution: CN is highly toxic to humans and animals. Therefore, CN solids and 

solutions must be handled with care. All CN solutions were handled in a hood and prepared 

as basic aqueous solutions (10 mM NaOH) to ensure CN remained as non-volatile CN-. 
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4.2.2. Fish Blood for SCN Analysis 

Salmon whole blood (EDTA anti-coagulant) used for analytical method 

development was purchased from EastCoast Bio (North Berwick, ME) and stored at -80 °C 

until used. Salmon whole blood was used instead of blood from a marine fish because we 

were unable to identify a source of large quantities of marine fish whole blood.  

Fish blood from CN-exposed and control marine fish was obtained from 

Department of Chemistry and Physics, Roger Williams University, Bristol, RI, USA. 

Marine fish (5.1-21 g), A. clarkii, approximately 6-12 months of age, were split into three 

groups, each group having 10-12 fish. Each group was placed in a basket and immersed in 

a CN solution (at 50 ppm) or control for 45 s. After exposure, the fish were transferred into 

a seawater bath free of CN for rinsing. After rinsing, fish were housed in 20 L 

polycarbonate tanks containing CN-free filtered seawater with light aeration. After 72 hr, 

fish were removed from the holding tanks for blood collection. Firstly, fish were 

anesthetized with tricaine methanesulfonate at a concentration of 200 ppm, buffered 2:1 

with sodium bicarbonate in seawater, and then dried and weighed. Upon severance of the 

caudal peduncle with a #21 surgical blade, blood was collected in 125 µL heparinized 

microcapillary blood collection tubes. Blood was similarly collected from a control group, 

which was not exposed to CN. Collected blood was placed in clean plastic centrifuge tubes, 

flash frozen, and shipped on dry ice (overnight) to South Dakota State University. Upon 

receipt, the blood was stored at -80 °C until analysis was performed.   

The Roger Williams University Institute of Animal Use and Care Committee 

(Approval #R180820) approved all fish experiments. Fish were cultured in captivity at 

Roger Williams University or Sea & Reef Aquaculture, Franklin, ME, thereby ensuring 
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they were not collected with cyanide. For all experiments, the water temperature was 

maintained by housing fish in a temperature-controlled room or placing buckets containing 

fish in a warm water bath both held at 25 oC. All fish were fed pelletized food (Skretting 

Green Granule 1 mm) once per day unless otherwise noted. Water quality was maintained 

through daily water changes (100%) at a salinity of 30 with light aeration. 

4.2.3. Sensor Analysis of SCN  

The analysis of fish blood was performed using a previously developed sensor 

prototype (Figure 4.1) which consists of a self-contained sample preparation cartridge 

(Figures 4.1A and B) and a detection system (Figures 4.1C and D). The CN sensor 

chemistry was modified for the analysis of SCN by adding KMnO4 to oxidize SCN to CN, 

with the resulting CN analyzed as described in Bortey-Sam et al.[188] Briefly, a saturated 

aqueous solution of KMnO4 (80 µL of a 94 mg/mL solution) was added to the sample 

chamber of the cartridge (Figure 4.1A & 4.1B) and the water was completely dried. Fish 

whole blood (25 µL of non-spiked, SCN-spiked, or CN-spiked salmon blood or blood from 

CN-exposed or non-CN-exposed marine fish) was carefully added to the sample chamber, 

avoiding contact with the dried KMnO4, water (80 µL) was then added to dissolve the 

KMnO4. The cartridge was capped, placed into the fluorometric reader, and the analysis 

was started. H2SO4 (2 M, 200 µL) was automatically added to the sample chamber and 200 

µL each of NDA, taurine, and base solutions were automatically added to the capture 

chamber. In the sample chamber, the KMnO4 was dissolved via addition of the H2SO4 

solution and SCN was oxidized into CN by KMnO4. The CN was then liberated from the 

blood matrix in the sample chamber by acidification with H2SO4 to form HCN gas. 

Ambient air (approximately 200 mL/min for 34 s) was used as carrier gas to transfer the 
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HCN from the sample chamber into the capture chamber (Figure 4.1A), where it was 

captured by the NaOH solution, forming CN-. Taurine and NDA reacted with the captured 

CN- in a linear fashion to form a fluorescent β-isoindole product. Throughout this process, 

the capture solution was mixed by bubbling air via a specific protocol, aiding the β-

isoindole formation. A high-powered LED was directed into the capture solution through 

a focusing lens to illuminate the mixture and the fluorescence of the β-isoindole product 

was measured at 400-650 nm (Figure 4.1D) to quantify the SCN concentration. Most of 

the steps described above are automated (i.e., initiated by the user by pushing a single 

button).  

4.2.4. KMnO4 Oxidation of SCN to CN   

The ability of KMnO4 to completely oxidize SCN to CN was evaluated by 

analyzing CN-spiked blood without KMnO4 (5 µM, as a positive control), and the same 

concentration of SCN-spiked blood with KMnO4 (as a sample) and without KMnO4 (as a 

negative control). Non-spiked blood samples with KMnO4 and without KMnO4 oxidation 

were also analyzed as a sample blank and negative control blank, respectively. The blank 

subtracted average signals of the positive and negative control samples were compared to 

the blank subtracted average signal of SCN-spiked blood to evaluate the ability of KMnO4 

to oxidize the SCN to CN. 

4.2.5. Analysis of Total CN 

 To evaluate if the sensor was measuring total CN (CN + SCN) in the blood matrix 

or SCN only, the same concentrations (1-10 µM, 58-580 µg/L) of CN and SCN were 

prepared separately in salmon blood. The sensor was used to analyze the concentrations of 

both CN and SCN in these samples.  In addition, standards of both CN and SCN were 
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spiked in the same fish blood to create mixed standards of 1-10 µM (58-580 µg/L) each for 

CN and SCN (i.e., CN + SCN concentrations of 2-20 µM, 116-1160 µg/L). Blank signals 

were evaluated using non-spiked and KMnO4 oxidized salmon blood. The blank-corrected 

sum of signals of the individually spiked CN and SCN samples was compared to the signal 

of the sample containing both CN and SCN. 

4.2.6. Background Concentration of SCN in Salmon Blood 

 The background concentration of SCN in salmon blood was determined using 

standard addition. Briefly, different concentrations of SCN working standard were spiked 

into the same volume of salmon blood to produce final spiked concentrations of 0, 0.5, 1, 

3, and 5 µM (0, 29, 58, 174, and 290 µg/L). These samples were analyzed in triplicate using 

the sensor and the mean signals were plotted as a function of the nominal spiked 

concentration to obtain a linear curve with a non-zero Y-intercept. The curve was 

extrapolated to the concentration axis (x-axis) to find the background concentration of SCN 

in salmon blood. This experiment was repeated 3 times and the mean background SCN 

concentration, along with its confidence level, was calculated. The confidence level was 

calculated at the 95% confidence interval. Enough marine fish blood could not be collected 

to perform the standard addition method.  
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FIGURE 1A 

 

  

 

 

 

 

 

 

 

 

 

FIGURE 1B 
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FIGURE 1C 
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   FIGURE 1D 

Figure 4.1. Schematics of the sample preparation cartridge and fluorescence detection 
system for the analysis of SCN in fish blood adopted from Bortey-Sam et. al.[188] A) The 
sample preparation cartridge “front” view highlighting carrier gas channels, the sample 
chamber and the capture chamber. B) The sample preparation cartridge “back” view 
highlighting the reagent storage “bubbles,” the reagent flow channels, the sample chamber 
and the capture chamber. C) The fluorescence detection system highlighting the sample 
preparation cartridge holder, the carrier gas pump, the linear actuator for depression of the 
reagent bubbles, the touch screen, and the microprocessor. D) The sample preparation 
cartridge showing the position of the optical components for fluorometric analysis of the 
CN-NDA-taurine complex.  
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4.2.7. Analytical Method Development and Validation 

The analytical method for the analysis of SCN in salmon blood via the sensor was 

validated following the FDA bioanalytical method validation guidelines.[126] From the 

SCN stock solution, a working standard of SCN was prepared from dilution with salmon 

blood. From the working standard, calibration standards of SCN, blank, 0.3, 0.5, 1, 3, 5, 8, 

10, and 20 μM (blank, 17.4, 29, 58, 174, 290, 464, 580, and 1160 µg/L) were prepared via 

dilution with fish blood and analyzed in triplicate by the sensor. Following analysis, the 

average signals measured by the sensor were plotted as a function of the concentration of 

SCN spiked in blood to obtain the linearity, accuracy, and precision of the calibration 

standards. Calibration curves were created using non-weighted linear least squares to 

obtain the equation of the line. The lower limit of quantification (LLOQ) and upper limit 

of quantification (ULOQ) were defined as satisfying the inclusion criteria of a precision of 

≤20% relative standard deviation (RSD), and accuracy of a percent deviation within ±20% 

of the nominal concentration for all calibration standards within the linear range. The 

goodness-of-fit of the calibration curves was determined using both Percent Residual 

Accuracy (PRA)[128] and the coefficient of determination (R2). The limit of detection 

(LOD) was defined as the lowest concentration of SCN that produced a signal equal to the 

summation of the mean blank signal and 3 times the standard deviation of the blank.  

The accuracy and precision of the method were determined by analyzing three QC 

standard concentrations of SCN prepared in fish blood with concentrations of 2 μM (116 

µg/L, low QC), 4 μM (232 µg/L, medium QC), and 7 μM (406 µg/L, high QC).  All the 

QCs were within the calibration range but not included in the calibration curve and 

analyzed in quintuplicate each day for 3 days. Intraassay precision and accuracy were 
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evaluated from each day’s analysis, and interassay precision and accuracy were calculated 

from comparison of the data gathered over three separate days.  

4.3. Results and Discussion 

4.3.1. Sensor Analysis of SCN and CN  

A CN sensor previously developed in our lab proved to be excellent for the rapid, 

simple and field-portable analysis of CN from blood.[188] Considering the excellent 

performance of the sensor for CN, we hypothesized that incorporation of KMnO4 to oxidize 

SCN to CN would allow conversion of the CN sensor to an SCN sensor. While the practical 

implementation of KMnO4 into the sensor was challenging, the overall hypothesis was 

confirmed, with KMnO4 converting SCN to CN and subsequent analysis of CN via the 

previous CN analysis method. Because the CN sensor was modified to allow SCN analysis, 

the SCN sensor features all the advantages of the CN sensor. Most importantly for 

monitoring CN fishing, the overall sample preparation and analysis time is only 60 s, it 

requires a very small volume of blood (i.e., allowing monitoring of CN fishing without 

requiring the sacrifice of the fish tested and allowing testing of even very small fish), it is 

portable, and it is easy to use. Additionally, the reagents are stable, with the dry KMnO4 

evaluated as stable in the cartridge for at least 30 days (longest period tested). In addition, 

the simplicity of the analysis should allow all stakeholders to monitor CN-fishing, i.e., 

operation does not require special expertise and all sample preparation steps are automated. 

It should be noted that obtaining blood from live fish would require special expertise, but 

once the blood is obtained, analysis of SCN via the sensor is rapid and simple.   

The fundamental difference in the SCN and CN sensors was the use of KMnO4 to 

initially oxidize SCN to CN, with analysis of the CN produced as previously 
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described.[188] Therefore, the analysis of SCN via the current sensor relied on consistent 

conversion of SCN to CN via oxidation by KMnO4. Consistent oxidation of SCN was 

evaluated by repeated comparison of the blank-corrected signals produced from fish blood 

spiked with the same concentrations (5 µM/290 µg/L) of CN (no KMnO4 oxidation), SCN 

(no KMnO4 oxidation), and SCN with KMnO4 oxidation over three days (N = 3). Signals 

produced from non-spiked, fish blood (no KMnO4 oxidation) were comparable to signals 

produced from SCN-spiked fish blood (no KMnO4 oxidation). Equivalent signals from 

these two samples confirmed that oxidation is necessary for the analysis of SCN via the 

sensor. The signal produced from SCN-spiked KMnO4-oxidized fish blood was 

significantly above the non-oxidized blood samples, but equivalent to the signals from CN-

spiked fish blood. This indicates that the oxidation of SCN to CN was efficient, likely 

converting essentially all the spiked SCN to CN, and that KMnO4 did not create significant 

matrix effects for the analysis of SCN, although it did produce slightly larger background 

signals.   

  Directly following CN exposure, the majority of CN in an organism has yet to be 

converted to SCN. Therefore, the detection of both CN and SCN from biological fluids 

using the same technology would be advantageous, allowing the determination of CN-

caught fish in both the early stages of exposure and long after the exposure occurred. The 

current sensor technology was evaluated for the potential of analyzing both CN and SCN 

as “total CN”. To evaluate the ability of the sensor to measure total CN, the sum of signals 

of the separately spiked CN and SCN blood was compared to the signal of the blood sample 

containing both CN and SCN, as shown in Figure 4.2. Overall, the sum of the signals 

produced from the individually spiked fish blood are not significantly different from the 
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signal produced by CN and SCN spiked blood for each concentration above 58 µg/L. These 

higher concentrations produced signal recoveries of ~92-99% of the “total CN”, generally 

confirming the efficiency and consistency of the KMnO4 oxidation of SCN to CN. The 

disparity between the sum of signals of the individually spiked blood and the CN/SCN 

spiked blood at 58 µg/L is because the signal produced from analysis of the lowest 

concentration CN-spiked blood standard (58 µg/L/1 µM) was similar to signals produced 

from non-spiked (i.e., blank) blood. The minimal signal produced from the smallest 

concentration of CN was likely due to reaction of CN- with electrophilic centers in the 

blood. CN- is a strong nucleophile and will bind to many components of blood. These 

binding sites are relatively plentiful for lower concentrations of CN but become less 

available as the amount of CN increases.  Even though total CN was not measured over the 

entire concentration range tested, the sensor was capable of analyzing total CN when high 

concentrations of cyanide were present, which is likely to occur in the early stages 

following CN exposure. Considering the results in Figure 2, the sensor is able to detect 

both CN and SCN such that at times immediately following CN exposure, where high 

blood CN concentration and low SCN concentrations are present, the sensor will still allow 

verification of cyanide-caught fish. After some time, when some of the CN has been 

converted to SCN, the sensor will detect both these analytes. At longer times following 

exposure, CN concentrations will be low and likely undetectable by the sensor, but SCN 

concentrations will be elevated, allowing verification of CN-caught fish. Therefore, the 

sensor should be able to determine CN-caught fish soon after capture and during later time 

periods following CN exposure, until SCN concentrations fall below the LOD of the 

sensor.      
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Figure 4.2. Bar graph showing the comparison of the sum of blank-corrected signals of the 
individually spiked CN and SCN samples (CN+SCN (individually spiked sample), in blue) 
to the signal of the sample containing both CN and SCN spiked together (CN-SCN spiked 
sample, in orange). 

 

4.3.2. Background Concentration of SCN in Salmon Blood 

Endogenous concentrations of SCN have been previously found in fish blood 

(Table 1.1). When performing preliminary evaluation of calibration curves in salmon blood 

for the current study, non-zero intercepts, indicative of the presence of SCN in non-spiked 
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blood, were observed. In order to quantify the endogenous SCN in the salmon blood used 

in this study, standard addition was carried out. Endogenous SCN concentrations were 

analyzed over three days, producing concentrations ranging from 0.5-1.5 µM (29-87 µg/L) 

with a mean of 1 µM (58±29 µg/L).  

4.3.3. SCN Sensor Method Validation  

Calibration curves were initially constructed within the concentration range of 0.3-

20 μM (17.4-1160 µg/L). Based on the accuracy and precision criteria, the calibrators 0.3, 

0.5, and 20 μM (17.4, 29, and 1160 µg/L) fell outside the entire linear range. Therefore, 

the linear range of the method was 58 µg/L (LLOQ) to 580 µg/L (ULOQ) as best described 

by non-weighted linear regression. All the calibration curves were stable over three days 

of validation, as determined by consistency of their slopes (Table 3), producing an excellent 

fit of the calibrators over the entire linear range with PRA values ≥ 93% and an average R2 

value of 0.9846. The LOD of the current method was 0.5 μM (29 µg/L) in fish blood as 

defined by the lowest concentration of SCN that produced a signal equal to the summation 

of the mean blank signal and 3 times the standard deviation of the blank.    

 

Table 4.2. Linear equations, coefficients of determination (R2), and percent residual 
accuracy (PRA) for calibration curves created over 3 separate days. 

Day Equation R2 PRA (%) 

1 y = 1.291x + 216 0.9865 94 

2 y = 1.297x + 156 0.9797 93 

3 y = 1.301x + 163 0.9885 95 
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Table 4 shows the accuracy and precision of the method as evaluated by 

quintuplicate analysis of low, medium and high QCs on three different days. The precision 

and accuracy determined from each day’s analysis (intraassay) ranged from 4.7 to 15.1% 

RSD and 100±19.7% for precision and accuracy, respectively. The precision and accuracy 

calculated from comparison of the data gathered over 3 separate days (interassay) were 

17.9% RSD and 100±6.9% for precision and accuracy, respectively. Both the intraassay 

and interassay accuracy and precision of the sensor found from the 3-day validation meet 

the accuracy and precision inclusion criteria of 100±20% and ≤ 20% RSD.    

 

Table 4.3. The intra- and inter-assay accuracy and precision of SCN analysis from spiked 
fish blood  

aAggregate of three days of QC method validation (N = 15) 

 

Conc 

(µM) 

 Intraassay  Interassay 

 Accuracy (%)  Precision (%RSD)  
Accuracy 

(%)a 

Precision 

(%RSD)a  Day 1 Day 2 Day 3  Day 1 
Day 

2 

Day 

3 
 

 

2.0 
 

 

100±3.2 

 

100±8.2 

 

100±2.1 
 

 

15.1 

 

11.8 

 

14.6 
 

 

100±1.0 

 

<17.9 

 

4.0 
 

 

100±2.8 

 

100±19.7 

 

100±0.9 
 

 

8.6 

 

5.5 

 

5.5 
 

 

100±6.9 

 

<9.5 

 

7.0 
 

 

100±0.9 

 

100±3.4 

 

100±3.1 
 

 

10.5 

 

9.6 

 

4.7 
 

 

100±3.1 

 

<9.0 
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4.3.4. Application of the Method 

The validated method was used to analyze SCN from the blood of marine fish (A. 

clarkii, commonly known as clownfish) exposed to CN. The concentrations of SCN 

obtained from the blood of CN-exposed fish (N = 3) were each well above the LLOQ 

(159.1, 176.4 and 183.2 µg/L; average = 172.9±14.0 µg/L). The endogenous SCN 

concentration was above the LOD but below the LLOQ, so it could not be quantified, but 

appeared to be near the LOD (29 µg/L). The amount of blood available precluded the use 

of standard addition to quantify the concentration of SCN in the non-CN-exposed fish. The 

ability of the sensor to differentiate between CN-exposed and non-exposed fish supports 

the capability of the SCN sensor to determine CN-caught fish.   

4.4. Conclusions 

Considering the danger CN-fishing poses to aquatic ecosystems, a rapid and field 

portable sensor was developed to analyze the major CN metabolite, SCN, in fish blood. 

This method features simple sample preparation, short analysis time (<60 s), small sample 

volume requirements (25 µL), minimal required expertise to operate and is fully field 

portable. The accuracy and precision of the method were acceptable, and the method 

produced an LOD of 29 µg/L, below endogenous SCN concentrations found for most fish 

species studied. The method was found to detect both CN and SCN in fish blood and was 

successfully applied to quantitate SCN from the blood of fish exposed to CN. The current 

method is a promising technology that could be used by various stakeholders involve in 

fighting the practice of CN-fishing to monitor the practice in the field.  
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Chapter 5. Conclusions, Broader Impacts, and Future Work 

5.1 Conclusions 

            A simple, direct, and rapid novel HPLC-MS/MS method was developed for 

analysis of TRPA1 antagonist A-967079 from plasma. The method was successfully 

applied to evaluate the pharmacokinetics in A-967079 from plasma of treated animals. A 

novel cyanide metabolite ATOEA, was discovered based on the metabolism of cyanide by 

glutathione. The kinetics of ATOEA in CN-exposed animals confirms that it is a promising 

biomarker to confirm cyanide exposure. A field portable fluorescent detection method was 

developed to determine the CN metabolite thiocyanate, from fish blood. The method 

features a short analysis time, an excellent accuracy and precision and was successfully 

applied to analyze SCN from fish exposed to CN to verify CN-fishing.   

5.2 Broader Impacts  

Toxic inhaled hazards are useful in industrial manufacturing but pose major global 

threat to humanity. Researching to better understand the toxicological behavior of these 

hazards, development of technologies to determine their exposure, and development of 

effective therapeutic agents are crucial to defend against the effects of TIHs exposure. The 

novel method for the analysis of A-967079 presented here will allow for further 

development of A-967079 as a promising therapeutic agent against the noxious effect of 

TIHs exposure. In addition, the discovery of a novel cyanide metabolite ATOEA, has 

provided additional insight into the metabolism of cyanide and can serve as a potential 

marker to confirm CN exposure.  Furthermore, rapid, easy and field portable method 

developed for SCN analysis in fish blood will allow government, aquarium trade and food 

agencies to monitor the CN-fishing and enforce laws to curb this illegal practice. Overall, 
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the work presented here will contribute to the development methods to confirm exposure 

to TIH and the development of therapeutic agents for TIH. 

5.3 Future Work  

Future work should include the application of the A967079 developed method to 

expand the pharmacokinetic studies of A967079 in many animal models before extending 

to human studies for full development of A967079 as therapeutics. The toxicokinetics of 

ATOEA in other animal models should be evaluated to better understand the kinetics of 

ATOEA, and also future work should identify degradation product(s) of ATOEA in 

biological samples and evaluate the stability of the product(s). Lastly, the thiocyanate 

method should be apply to analyze fish blood samples from areas where CN-fishing is 

practice to further evaluate the technology. 

 

 

 

 

 

 

 

 

 

 



83 
 

References 

1. Bessac, B.F. and S.-E. Jordt, Sensory detection and responses to toxic gases: 
mechanisms, health effects, and countermeasures. Proceedings of the American 
Thoracic Society, 2010. 7(4): p. 269-277. 

2. Evans, R.B., Chlorine: state of the art. Lung, 2005. 183(3): p. 151-167. 
3. Bessac, B.F., et al., Transient receptor potential ankyrin 1 antagonists block the 

noxious effects of toxic industrial isocyanates and tear gases. The FASEB 
Journal, 2009. 23(4): p. 1102-1114. 

4. Brown, J., An internet database for the classification and dissemination of 
information about hazardous chemicals and occupational diseases. American 
journal of industrial medicine, 2008. 51(6): p. 428-435. 

5. Dotson, A., P. Westerhoff, and S.W. Krasner, Nitrogen enriched dissolved 
organic matter (DOM) isolates and their affinity to form emerging disinfection 
by-products. Water Science and Technology, 2009. 60(1): p. 135-143. 

6. Logue, B.A., et al., Determination of methyl isopropyl hydantoin from rat 
erythrocytes by gas-chromatography mass-spectrometry to determine methyl 
isocyanate dose following inhalation exposure. Journal of Chromatography B, 
2018. 1093: p. 119-127. 

7. Jackson, R., et al., Development of a fluorescence-based sensor for rapid 
diagnosis of cyanide exposure. Analytical chemistry, 2014. 86(3): p. 1845-1852. 

8. Mehta, P.S., et al., Bhopal tragedy's health effects: a review of methyl isocyanate 
toxicity. Jama, 1990. 264(21): p. 2781-2787. 

9. Goswami, H., Cytogenetic effects of methyl isocyanate exposure in Bhopal. 
Human genetics, 1986. 74(1): p. 81-84. 

10. Greskevitch, M., et al., Respiratory disease in agricultural workers: mortality and 
morbidity statistics. Journal of agromedicine, 2008. 12(3): p. 5-10. 

11. Lillienberg, L., et al., A population-based study on welding exposures at work and 
respiratory symptoms. Annals of Occupational Hygiene, 2008. 52(2): p. 107-115. 

12. Rushton, L., Occupational causes of chronic obstructive pulmonary disease. 
Reviews on environmental health, 2007. 22(3): p. 195-212. 

13. Manandhar, E., et al., Rapid analysis of sulfur mustard oxide in plasma using gas 
chromatography-chemical ionization-mass spectrometry for diagnosis of sulfur 
mustard exposure. Journal of Chromatography A, 2018. 1572: p. 106-111. 

14. Greenfield, R.A., et al., Microbiological, biological, and chemical weapons of 
warfare and terrorism. The American journal of the medical sciences, 2002. 
323(6): p. 326-340. 

15. Franz, D.R. and N. Jaax, Medical aspects of chemical and biological warfare. 
Sidell, F., Takafuji, E., Franz, D., Eds, 1997: p. 631À642. 

16. Noort, D., H. Benschop, and R. Black, Biomonitoring of exposure to chemical 
warfare agents: a review. Toxicology and applied pharmacology, 2002. 184(2): p. 
116-126. 

17. Lehto, S.G., et al., Selective antagonism of TRPA1 produces limited efficacy in 
models of inflammatory-and neuropathic-induced mechanical hypersensitivity in 
rats. Molecular pain, 2016. 12: p. 1744806916677761. 

18. Bessac, B.F., et al., TRPA1 is a major oxidant sensor in murine airway sensory 
neurons. The Journal of clinical investigation, 2008. 118(5): p. 1899-1910. 



84 
 

19. Alarie, Y., Irritating properties of airborne materials to the upper respiratory 
tract. Archives of Environmental Health: An International Journal, 1966. 13(4): p. 
433-449. 

20. Kuwabara, Y., et al., Evaluation and application of the RD50 for determining 
acceptable exposure levels of airborne sensory irritants for the general public. 
Environmental Health Perspectives, 2007. 115(11): p. 1609-1616. 

21. McLoud, T.C., Occupational lung disease. Radiologic Clinics of North America, 
1991. 29(5): p. 931-941. 

22. Nowak, D., Chemosensory irritation and the lung. International archives of 
occupational and environmental health, 2002. 75(5): p. 326-331. 

23. Francis, H.C., et al., Defining and investigating occupational asthma: a consensus 
approach. Occupational and environmental medicine, 2007. 64(6): p. 361-365. 

24. Springer, J., et al., Neurokinin‐1 receptor activation induces reactive oxygen 
species and epithelial damage in allergic airway inflammation. Clinical & 
Experimental Allergy, 2007. 37(12): p. 1788-1797. 

25. Wemmie, J.A., R.J. Taugher, and C.J. Kreple, Acid-sensing ion channels in pain 
and disease. Nature Reviews Neuroscience, 2013. 14(7): p. 461. 

26. Xiong, Z.-G., et al., Acid-sensing ion channels (ASICs) as pharmacological 
targets for neurodegenerative diseases. Current opinion in pharmacology, 2008. 
8(1): p. 25-32. 

27. Jaquemar, D., T. Schenker, and B. Trueb, An ankyrin-like protein with 
transmembrane domains is specifically lost after oncogenic transformation of 
human fibroblasts. Journal of Biological Chemistry, 1999. 274(11): p. 7325-7333. 

28. Clapham, D.E., TRP channels as cellular sensors. Nature, 2003. 426(6966): p. 
517-524. 

29. Nilius, B. and G. Owsianik, The transient receptor potential family of ion 
channels. Genome biology, 2011. 12(3): p. 218. 

30. Nilius, B., et al., Transient receptor potential cation channels in disease. 
Physiological reviews, 2007. 87(1): p. 165-217. 

31. Nilius, B., G. Owsianik, and T. Voets, Transient receptor potential channels meet 
phosphoinositides. The EMBO journal, 2008. 27(21): p. 2809-2816. 

32. Hinman, A., et al., TRP channel activation by reversible covalent modification. 
Proceedings of the National Academy of Sciences, 2006. 103(51): p. 19564-
19568. 

33. Macpherson, L.J., et al., Noxious compounds activate TRPA1 ion channels 
through covalent modification of cysteines. Nature, 2007. 445(7127): p. 541-545. 

34. Baraldi, P.G., et al., Transient receptor potential ankyrin 1 (TRPA1) channel as 
emerging target for novel analgesics and anti-inflammatory agents. Journal of 
medicinal chemistry, 2010. 53(14): p. 5085-5107. 

35. Inoue, T. and B.P. Bryant, Multiple cation channels mediate increases in 
intracellular calcium induced by the volatile irritant, trans-2-pentenal in rat 
trigeminal neurons. Cellular and molecular neurobiology, 2010. 30(1): p. 35-41. 

36. Taylor-Clark, T.E., et al., Transient receptor potential ankyrin 1 mediates toluene 
diisocyanate–evoked respiratory irritation. American journal of respiratory cell 
and molecular biology, 2009. 40(6): p. 756-762. 



85 
 

37. Andrè, E., et al., Cigarette smoke–induced neurogenic inflammation is mediated 
by α, β-unsaturated aldehydes and the TRPA1 receptor in rodents. The Journal of 
clinical investigation, 2008. 118(7): p. 2574-2582. 

38. Brone, B., et al., Tear gasses CN, CR, and CS are potent activators of the human 
TRPA1 receptor. Toxicology and applied pharmacology, 2008. 231(2): p. 150-
156. 

39. McNamara, C.R., et al., TRPA1 mediates formalin-induced pain. Proceedings of 
the National Academy of Sciences, 2007. 104(33): p. 13525-13530. 

40. Sawada, Y., et al., Activation of transient receptor potential ankyrin 1 by 
hydrogen peroxide. European Journal of Neuroscience, 2008. 27(5): p. 1131-
1142. 

41. Caceres, A.I., et al., A sensory neuronal ion channel essential for airway 
inflammation and hyperreactivity in asthma. Proceedings of the National 
Academy of Sciences, 2009. 106(22): p. 9099-9104. 

42. Julius, D., TRP channels and pain. Annual review of cell and developmental 
biology, 2013. 29: p. 355-384. 

43. Salat, K., A. Moniczewski, and T. Librowski, Transient receptor potential 
channels-emerging novel drug targets for the treatment of pain. Current 
medicinal chemistry, 2013. 20(11): p. 1409-1436. 

44. Facchinetti, F. and R. Patacchini, The rising role of TRPA1 in asthma. The Open 
Drug Discovery Journal, 2010. 2(1). 

45. Fujita, F., et al., Intracellular alkalization causes pain sensation through 
activation of TRPA1 in mice. The Journal of clinical investigation, 2008. 118(12): 
p. 4049-4057. 

46. McGaraughty, S., et al., TRPA1 modulation of spontaneous and mechanically 
evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. 
Molecular pain, 2010. 6(1): p. 14. 

47. Eid, S.R., et al., HC-030031, a TRPA1 selective antagonist, attenuates 
inflammatory-and neuropathy-induced mechanical hypersensitivity. Molecular 
pain, 2008. 4(1): p. 48. 

48. Wei, H., et al., Attenuation of mechanical hypersensitivity by an antagonist of the 
TRPA1 ion channel in diabetic animals. Anesthesiology: The Journal of the 
American Society of Anesthesiologists, 2009. 111(1): p. 147-154. 

49. Chen, J., et al., Selective blockade of TRPA1 channel attenuates pathological pain 
without altering noxious cold sensation or body temperature regulation. Pain, 
2011. 152(5): p. 1165-1172. 

50. DeFalco, J., et al., Oxime derivatives related to AP18: agonists and antagonists of 
the TRPA1 receptor. Bioorganic & medicinal chemistry letters, 2010. 20(1): p. 
276-279. 

51. Brozmanova, M., et al., Comparison of TRPA1-versus TRPV1-mediated cough in 
guinea pigs. European journal of pharmacology, 2012. 689(1-3): p. 211-218. 

52. Birrell, M.A., et al., TRPA1 agonists evoke coughing in guinea pig and human 
volunteers. American journal of respiratory and critical care medicine, 2009. 
180(11): p. 1042-1047. 

53. Xie, Z. and H. Hu, TRP channels as drug targets to relieve itch. Pharmaceuticals, 
2018. 11(4): p. 100. 



86 
 

54. Jackson, R. and B.A. Logue, A review of rapid and field-portable analytical 
techniques for the diagnosis of cyanide exposure. Analytica chimica acta, 2017. 
960: p. 18-39. 

55. Logue, B.A., et al., The analysis of cyanide and its breakdown products in 
biological samples. Critical Reviews in Analytical Chemistry, 2010. 40(2): p. 
122-147. 

56. Baskin, I., and Brewer, TG Cyanide poisoning. in Textbook ofMilitary Medicine, 
Medical Aspects of Chemical and Biological Warfare eds. F. R. Sidell, E. T. 
Takafuji, and D. R. Franz (Borden 

Institute, Washington, DC, , 1997. Ch. 10: p. 271–286. 
57. Brenner, M., et al., Comparison of cobinamide to hydroxocobalamin in reversing 

cyanide physiologic effects in rabbits using diffuse optical spectroscopy 
monitoring. Journal of biomedical optics, 2010. 15(1): p. 017001. 

58. Baskin, S.I., et al., Cyanide poisoning. Medical aspects of chemical warfare, 
2008. 11: p. 372-410. 

59. Sykes, A., Early studies on the toxicology of cyanide. Cyanide in Biology, 1981: 
p. 1-9. 

60. Nagasawa, H.T., S.E. Cummings, and S.I. Baskin, THE STRUCTURE OF 
“ITCA”, A URINARY METABOLITE OF CYANIDE. Organic preparations and 
procedures international, 2004. 36(2): p. 178-182. 

61. Alzhrani, E., Development of a High Performance Liquid Chromatography 
Method for the Analysis of Next-generation Cyanide Antidote, 3-
mercaptopyruvate, in Plasma. 2018. 

62. Stutelberg, M.W., Liquid Chromatography-tandem Mass Spectrometry of Next-
generation Cyanide Antidotes, 3-mercaptopyruvate and Cobinamide, with the 
Pharmacokinetic Analysis of 3-mercaptopyruvate. 2015. 

63. Weider, B. and J. Fournier, The death of Napoleon. The American Journal of 
Forensic Medicine and Pathology, 2000. 21(3): p. 303-305. 

64. Lang, J., et al., Is the “protector of lions” losing his touch. US News & World 
Report, 1986. 10: p. 29. 

65. Heylin, M., US decries apparent chemical arms attack. Chem Eng News, 1988. 
66: p. 23. 

66. Ali, J., Chemical weapons and the Iran‐Iraq war: A case study in noncompliance. 
The Nonproliferation Review, 2001. 8(1): p. 43-58. 

67. Bacalso, R.T.M., et al., Effort reallocation of illegal fishing operations: A 
profitable scenario for the municipal fisheries of Danajon Bank, Central 
Philippines. Ecological modelling, 2016. 331: p. 5-16. 

68. Bacalso, R.T.M. and M. Wolff, Trophic flow structure of the Danajon ecosystem 
(Central Philippines) and impacts of illegal and destructive fishing practices. 
Journal of Marine Systems, 2014. 139: p. 103-118. 

69. Halim, A., Adoption of cyanide fishing practice in Indonesia. Ocean & Coastal 
Management, 2002. 45(4-5): p. 313-323. 

70. Rubec, P.J. The effects of sodium cyanide on coral reefs and marine fish in the 
Philippines. in The First Asian Fisheries Forum. 1986. Manila, Philippines: Asian 
Fisheries Society. 



87 
 

71. Barber, C.V. and V.R. Pratt, Sullied seas: Strategies for combating cyanide 
fishing in Southeast Asia and beyond. 1997. 

72. Wabnitz, C., From ocean to aquarium: the global trade in marine ornamental 
species. 2003: UNEP/Earthprint. 

73. Barber, C.V. and V.R. Pratt, Poison and profits: cyanide fishing in the Indo-
Pacific. Environment: Science and Policy for Sustainable Development, 1998. 
40(8): p. 4-9. 

74. Dee, L.E., S.S. Horii, and D.J. Thornhill, Conservation and management of 
ornamental coral reef wildlife: successes, shortcomings, and future directions. 
Biological Conservation, 2014. 169: p. 225-237. 

75. Dzombak, D.A., et al., Anthropogenic cyanide in the marine environment, in 
Cyanide in Water and Soil. 2005, CRC Press. p. 221-236. 

76. Calado, R., et al., Caught in the Act: How the US Lacey Act can hamper the fight 
against cyanide fishing in tropical coral reefs. Conservation Letters, 2014. 7(6): 
p. 561-564. 

77. Wood, J.L. and S.L. Cooley, Detoxication of cyanide by cystine. J Biol Chem, 
1956. 218(1): p. 449-57. 

78. Mous, P., et al., Cyanide fishing on Indonesian coral reefs for the live food fish 
market-what is the problem. Collected essays on the economics of coral reefs. 
Kalmar, Sweden: CORDIO, Kalmar University, 2000: p. 69-76. 

79. Hodgson, G., A global assessment of human effects on coral reefs. Marine 
Pollution Bulletin, 1999. 38(5): p. 345-355. 

80. Rubec, P.J., et al., Cyanide-free net-caught fish for the marine aquarium trade. 
Aquarium Sciences and Conservation, 2001. 3(1-3): p. 37-51. 

81. Cervino, J.M., et al., Changes in zooxanthellae density, morphology, and mitotic 
index in hermatypic corals and anemones exposed to cyanide. Marine Pollution 
Bulletin, 2003. 46(5): p. 573-586. 

82. Ward, S., P. Harrison, and O. Hoegh-Guldberg. Coral bleaching reduces 
reproduction of scleractinian corals and increases susceptibility to future stress. 
in Proceedings of the Ninth International Coral Reef Symposium, Bali, 23-27 
October 2000. 2002. 

83. Eyjolfsson, R., Recent advances in the chemistry of cyanogenic glycosides, in 
Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of 
Organic Natural Products. 1970, Springer. p. 74-108. 

84. Peterson, S.C., N.D. Johnson, and J.L. LeGuyader, Defensive regurgitation of 
allelochemicals derived from host cyanogenesis by eastern tent caterpillars. 
Ecology, 1987. 68(5): p. 1268-1272. 

85. Vetter, J., Plant cyanogenic glycosides. Toxicon, 2000. 38(1): p. 11-36. 
86. Wong-Chong, G.M., et al., Natural sources of cyanide, in Cyanide in Water and 

Soil. 2005, CRC Press. p. 37-52. 
87. Duffey, S., Cyanide and arthropods. Cyanide in biology, 1981: p. 385-414. 
88. Simeonova, F.P., L. Fishbein, and W.H. Organization, Hydrogen cyanide and 

cyanides: human health aspects. 2004. 
89. Bhandari, R.K., et al., Cyanide toxicokinetics: the behavior of cyanide, 

thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal 
models. J Anal Toxicol, 2014. 38(4): p. 218-25. 



88 
 

90. Taylor, J., Toxicological profile for cyanide. 2006: US Department of Health and 
Human Services, Public Health Service, Agency …. 

91. Lee, S., Methane and its Derivatives. Vol. 70. 1996: Crc Press. 
92. Andrussow, L., Über die katalytische Oxydation von Ammoniak‐Methan‐

Gemischen zu Blausäure. Angewandte Chemie, 1935. 48(37): p. 593-595. 
93. Endter, F., Die technische Synthese von Cyanwasserstoff aus Methan und 

Ammoniak ohne Zusatz von Sauerstoff. Chemie Ingenieur Technik, 1958. 30(5): p. 
305-310. 

94. McKetta, J.J., Inorganic chemicals handbook. 1993. 
95. Way, J.L., Pharmacologic aspects of cyanide and its antagonism. Cyanide in 

biology. Academic Press, New York, 1981: p. 29-40. 
96. Lawson-Smith, P., E.C. Jansen, and O. Hyldegaard, Cyanide intoxication as part 

of smoke inhalation-a review on diagnosis and treatment from the emergency 
perspective. Scandinavian journal of trauma, resuscitation and emergency 
medicine, 2011. 19(1): p. 14. 

97. Jackson, R.E., The development of a field sensor for the rapid detection of 
cyanide exposure. 2014. 

98. Cherian, M. and I. Richmond, Fatal methane and cyanide poisoning as a result of 
handling industrial fish: a case report and review of the literature. Journal of 
clinical pathology, 2000. 53(10): p. 794-795. 

99. Blackledge, W.C., et al., New facile method to measure cyanide in blood. 
Analytical chemistry, 2010. 82(10): p. 4216-4221. 

100. Hall, A.H., G.E. Isom, and G.A. Rockwood, Toxicology of cyanides and 
cyanogens. 2015: Wiley Online Library. 

101. Way, J.L., et al. The mechanism of cyanide intoxication and its antagonism. in 
Ciba Found Symp. 1988. Wiley Online Library. 

102. Vos, M., P. Verstreken, and C. Klein, Stimulation of electron transport as 
potential novel therapy in Parkinson's disease with mitochondrial dysfunction. 
2015, Portland Press Ltd. 

103. Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry/Jeremy M. Berg, John L. 
Tymoczko, Lubert Stryer, 2007: p. 524-560. 

104. Gracia, R. and G. Shepherd, Cyanide poisoning and its treatment. 
Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2004. 
24(10): p. 1358-1365. 

105. Petrikovics, I., et al., Past, present and future of cyanide antagonism research: 
From the early remedies to the current therapies. World journal of methodology, 
2015. 5(2): p. 88. 

106. Lundquist, P., H. Rosling, and B. Sörbo, Determination of cyanide in whole 
blood, erythrocytes, and plasma. Clinical chemistry, 1985. 31(4): p. 591-595. 

107. Frankenberg, L., Enzyme therapy in cyanide poisoning: effect of rhodanese and 
sulfur compounds. Archives of toxicology, 1980. 45(4): p. 315-323. 

108. Stutelberg, M.W., et al., Determination of 3-mercaptopyruvate in rabbit plasma 
by high performance liquid chromatography tandem mass spectrometry. Journal 
of Chromatography B, 2014. 949: p. 94-98. 



89 
 

109. Spallarossa, A., et al., The “rhodanese” fold and catalytic mechanism of 3-
mercaptopyruvate sulfurtransferases: crystal structure of SseA from Escherichia 
coli. Journal of molecular biology, 2004. 335(2): p. 583-593. 

110. Lundquist, P., et al., Analysis of the cyanide metabolite 2-aminothiazoline-4-
carboxylic acid in urine by high-performance liquid chromatography. Analytical 
biochemistry, 1995. 228(1): p. 27-34. 

111. Logue, B.A., et al., Determination of the cyanide metabolite 2-aminothiazoline-4-
carboxylic acid in urine and plasma by gas chromatography–mass spectrometry. 
Journal of Chromatography B, 2005. 819(2): p. 237-244. 

112. Mitchell, B.L., G.A. Rockwood, and B.A. Logue, Quantification of α-
ketoglutarate cyanohydrin in swine plasma by ultra-high performance liquid 
chromatography tandem mass spectrometry. Journal of Chromatography B, 2013. 
934: p. 60-65. 

113. Flora, S., et al., Pharmacological perspectives of toxic chemicals and their 
antidotes. 2004: Springer Science & Business Media. 

114. Norris, J.C., W.A. Utley, and A.S. Hume, Mechanism of antagonizing cyanide-
induced lethality by α-ketoglutaric acid. Toxicology, 1990. 62(3): p. 275-283. 

115. Houeto, P., et al., Relation of blood cyanide to plasma cyanocobalamin 
concentration after a fixed dose of hydroxocobalamin in cyanide poisoning. The 
lancet, 1995. 346(8975): p. 605-608. 

116. Fasco, M.J., et al., Cyanide adducts with human plasma proteins: albumin as a 
potential exposure surrogate. Chemical research in toxicology, 2007. 20(4): p. 
677-684. 

117. Gyamfi, O.A., et al., Metabolism of cyanide by glutathione to produce the novel 
cyanide metabolite, 2-aminothiazoline-4-oxoaminoethanoic acid. Chemical 
research in toxicology, 2019. 

118. Koontz, M.D. and L. Niang, Respiratory disease in agricultural workers; 
mortality and morbidity statistics. 2007. 

119. Cortright, D.N. and A. Szallasi, TRP channels and pain. Current pharmaceutical 
design, 2009. 15(15): p. 1736-1749. 

120. Leffler, A., et al., Activation of TRPA1 by membrane permeable local anesthetics. 
Molecular pain, 2011. 7(1): p. 62. 

121. Andersson, D.A., C. Gentry, and S. Bevan, TRPA1 has a key role in the somatic 
pro-nociceptive actions of hydrogen sulfide. PLoS One, 2012. 7(10): p. e46917. 

122. Banzawa, N., et al., Molecular Basis Determining Inhibition/Activation of 
Nociceptive Receptor TRPA1 Protein A SINGLE AMINO ACID DICTATES 
SPECIES-SPECIFIC ACTIONS OF THE MOST POTENT MAMMALIAN TRPA1 
ANTAGONIST. Journal of Biological Chemistry, 2014. 289(46): p. 31927-31939. 

123. De Luca, L., G. Giacomelli, and A. Porcheddu, Beckmann rearrangement of 
oximes under very mild conditions. The Journal of organic chemistry, 2002. 
67(17): p. 6272-6274. 

124. Heitmann, G., G. Dahlhoff, and W. Hölderich, Catalytically active sites for the 
Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. Journal of 
Catalysis, 1999. 186(1): p. 12-19. 

125. Peng, J. and Y. Deng, Catalytic Beckmann rearrangement of ketoximes in ionic 
liquids. Tetrahedron Letters, 2001. 42(3): p. 403-405. 



90 
 

126. Shah, V.P., et al., Bioanalytical method validation—a revisit with a decade of 
progress. Pharmaceutical research, 2000. 17(12): p. 1551-1557. 

127. Shabir, G.A., Validation of high-performance liquid chromatography methods for 
pharmaceutical analysis: Understanding the differences and similarities between 
validation requirements of the US Food and Drug Administration, the US 
Pharmacopeia and the International Conference on Harmonization. Journal of 
chromatography A, 2003. 987(1-2): p. 57-66. 

128. Logue, B.A. and E. Manandhar, Percent residual accuracy for quantifying 
goodness-of-fit of linear calibration curves. Talanta, 2018. 189: p. 527-533. 

129. Bhadra, S., et al., Analysis of potential cyanide antidote, dimethyl trisulfide, in 
whole blood by dynamic headspace gas chromatography–mass spectroscopy. 
Journal of Chromatography A, 2019. 1591: p. 71-78. 

130. Causon, R., Validation of chromatographic methods in biomedical analysis 
viewpoint and discussion. Journal of Chromatography B: Biomedical Sciences 
and Applications, 1997. 689(1): p. 175-180. 

131. Eminedoki, D., M. Monanu, and E. Anosike, Thiocyanate levels of mainly dietary 
origin in serum and urine from a human population sample in Port Harcourt, 
Nigeria. Plant Foods for Human Nutrition, 1994. 46(4): p. 277-285. 

132. Murray, S., et al., Effect of cruciferous vegetable consumption on heterocyclic 
aromatic amine metabolism in man. Carcinogenesis, 2001. 22(9): p. 1413-1420. 

133. Schnepp, R., Cyanide: sources, perceptions, and risks. Journal of emergency 
nursing, 2006. 32(4): p. S3-S7. 

134. Wolnik, K.A., et al., The Tylenol tampering incident-tracing the source. 
Analytical chemistry, 1984. 56(3): p. 466A-474A. 

135. Eckstein, M., Cyanide as a chemical terrorism weapon. JEMS: a journal of 
emergency medical services, 2004. 29(8): p. suppl 22-31. 

136. Logue, B.A., et al., The analysis of 2-amino-2-thiazoline-4-carboxylic acid in the 
plasma of smokers and non-smokers. Toxicology Mechanisms and Methods, 
2009. 19(3): p. 202-208. 

137. Bhandari, R.K., et al., Simultaneous high-performance liquid chromatography-
tandem mass spectrometry (HPLC-MS-MS) analysis of cyanide and thiocyanate 
from swine plasma. Analytical and bioanalytical chemistry, 2014. 406(3): p. 727-
734. 

138. Baskin, S., et al., Insights on cyanide toxicity and methods of treatment. 
Pharmacological perspectives of toxic chemicals and their antidotes, 2004: p. 105-
146. 

139. Ballantyne, B., Factors in the analysis of whole blood thiocyanate. Clinical 
toxicology, 1977. 11(2): p. 195-210. 

140. Sanchez, C., et al., Perchlorate, thiocyanate, and nitrate in edible cole crops 
(Brassica sp.) produced in the lower Colorado River region. Bulletin of 
environmental contamination and toxicology, 2007. 79(6): p. 655-659. 

141. Heaney, R.K. and G.R. Fenwick, The analysis of glucosinolates in Brassica 
species using gas chromatography. Direct determination of the thiocyanate ion 
precursors, glucobrassicin and neoglucobrassicin. Journal of the Science of Food 
and Agriculture, 1980. 31(6): p. 593-599. 



91 
 

142. Weuffen, W., et al., Studies on the relationship between 2-iminothiazolidine-4-
carboxylic acid and the thiocyanate metabolism in the guinea-pig (author's 
transl). Die Pharmazie, 1980. 35(4): p. 221-223. 

143. Petrikovics, I., et al., Organ-distribution of the metabolite 2-aminothiazoline-4-
carboxylic acid in a rat model following cyanide exposure. Biomarkers, 2011. 
16(8): p. 686-690. 

144. Rużycka, M., et al., Application of 2-Aminothiazoline-4-carboxylic Acid as a 
Forensic Marker of Cyanide Exposure. Chemical research in toxicology, 2017. 
30(2): p. 516-523. 

145. Luliński, P., et al., A highly selective molecularly imprinted sorbent for extraction 
of 2-aminothiazoline-4-carboxylic acid–Synthesis, characterization and 
application in post-mortem whole blood analysis. Journal of Chromatography A, 
2015. 1420: p. 16-25. 

146. Mitchell, B.L., et al., Toxicokinetic profiles of α-ketoglutarate cyanohydrin, a 
cyanide detoxification product, following exposure to potassium cyanide. 
Toxicology letters, 2013. 222(1): p. 83-89. 

147. Hall, A.H., R. Dart, and G. Bogdan, Sodium thiosulfate or hydroxocobalamin for 
the empiric treatment of cyanide poisoning? Annals of emergency medicine, 
2007. 49(6): p. 806-813. 

148. Borron, S.W., M. Stonerook, and F. Reid, Efficacy of hydroxocobalamin for the 
treatment of acute cyanide poisoning in adult beagle dogs. Clinical Toxicology, 
2006. 44(sup1): p. 5-15. 

149. Karmi, O., et al., Measurement of vitamin B12 concentration: A review on 
available methods. IIOAB J, 2011. 2(2): p. 23-32. 

150. Ahmad, I. and W. Hussain, Stabiliiy of cyanocobalamin solutions insunlight and 
artificial light. Pakistan journal of pharmaceutical sciences, 1993. 6(1): p. 23-28. 

151. Youso, S.L., et al., Determination of cyanide exposure by gas chromatography–
mass spectrometry analysis of cyanide-exposed plasma proteins. Analytica 
chimica acta, 2010. 677(1): p. 24-28. 

152. Youso, S.L., G.A. Rockwood, and B.A. Logue, The analysis of protein-bound 
thiocyanate in plasma of smokers and non-smokers as a marker of cyanide 
exposure. Journal of analytical toxicology, 2012. 36(4): p. 265-269. 

153. Turner, P.C., et al., Detectable levels of serum aflatoxin B1-albumin adducts in 
the United Kingdom population: implications for aflatoxin-B1 exposure in the 
United Kingdom. Cancer Epidemiology and Prevention Biomarkers, 1998. 7(5): 
p. 441-447. 

154. Pompella, A., et al., The changing faces of glutathione, a cellular protagonist. 
Biochemical Pharmacology, 2003. 66(8): p. 1499-1503. 

155. Pastore, A., et al., Determination of blood total, reduced, and oxidized glutathione 
in pediatric subjects. Clin Chem, 2001. 47(8): p. 1467-9. 

156. Hatch, R., D. Laflamme, and A. Jain, Effects of various known and potential 
cyanide antagonists and a glutathione depletor on acute toxicity of cyanide in 
mice. Veterinary and human toxicology, 1990. 32(1): p. 9-16. 

157. Okafor, P., et al., The role of low-protein and cassava-cyanide intake in the 
aetiology of tropical pancreatitis. Global Journal of Pharmacology, 2008. 2(1): p. 
6-10. 



92 
 

158. Okafor, P., V. Anyanwu, and H. Onyema, The effects of cassava cyanide on the 
antioxidant (Glutathione) status and some clinically important enzymes of rats. 
Journal of Pharmacology and Toxicology, 2010. 5(7): p. 389-395. 

159. Catsimpoolas, N. and J.L. Wood, Specific cleavage of cystine peptides by cyanide. 
Journal of Biological Chemistry, 1966. 241(8): p. 1790-1796. 

160. Degani, Y. and A. Patchornik, Cyanylation of sulfhydryl groups by 2-nitro-5-
thiocyanobenzoic acid. High-yield modification and cleavage of peptides at 
cysteine residues. Biochemistry, 1974. 13(1): p. 1-11. 

161. Chelius, D., et al., Formation of pyroglutamic acid from N-terminal glutamic acid 
in immunoglobulin gamma antibodies. Analytical chemistry, 2006. 78(7): p. 
2370-2376. 

162. Clason, B., W. Langston, and G.-P. Zauke, Bioaccumulation of trace metals in the 
amphipod Chaetogammarus marinus (Leach, 1815) from the Avon and Tamar 
estuaries (UK): comparison of two-compartment and hyperbolic toxicokinetic 
models. Marine environmental research, 2004. 57(3): p. 171-195. 

163. Sips, P.Y., et al., Identification of specific metabolic pathways as druggable 
targets regulating the sensitivity to cyanide poisoning. PloS one, 2018. 13(6): p. 
e0193889. 

164. McAllister, D.E., N.L. Caho, and C. Shih, Cyanide fisheries: where did they start. 
Secretariat of the Pacific Community Live Reef Fish Information Bulletin, 1999. 
5: p. 18-21. 

165. Johannes, R.E. and M. Riepen, Environmental, economic, and social implications 
of the live reef fish trade in Asia and the Western Pacific. 1995. 

166. Jones, R.J., T. Kildea, and O. Hoegh-Guldberg, PAM chlorophyll fluorometry: a 
new in situ technique for stress assessment in scleractinian corals, used to 
examine the effects of cyanide from cyanide fishing. Marine Pollution Bulletin, 
1999. 38(10): p. 864-874. 

167. Pet-Soede, L. and M. Erdmann, How fresh is too fresh? The live reef food fish 
trade in Eastern Indonesia. SPC Live Reef Fish Information Bulletin, 1997. 3: p. 
41-45. 

168. Clark, T.R., et al., Historical photographs revisited: A case study for dating and 
characterizing recent loss of coral cover on the inshore Great Barrier Reef. 
Scientific reports, 2016. 6: p. 19285. 

169. Jones, R.J. and O. Hoegh-Guldberg, Effects of cyanide on coral photosynthesis: 
implications for identifying the cause of coral bleaching and for assessing the 
environmental effects of cyanide fishing. Marine Ecology Progress Series, 1999. 
177: p. 83-91. 

170. McManus, J.W., R.B. Reyes Jr, and C.L. Nanola Jr, Effects of some destructive 
fishing methods on coral cover and potential rates of recovery. Environmental 
management, 1997. 21(1): p. 69-78. 

171. King, T.A., Wild caught ornamental fish: A perspective from the UK ornamental 
aquatic industry on the sustainability of aquatic organisms and livelihoods. 
Journal of fish biology, 2019. 94(6): p. 925-936. 

172. Murray, J.M., et al., Detecting illegal cyanide fishing: Establishing the evidence 
base for a reliable, post-collection test. Marine Pollution Bulletin, 2020. 150: p. 
110770. 



93 
 

173. Madeira, D. and R. Calado, Defining research priorities to detect live fish 
illegally collected using cyanide fishing in Indo-Pacific coral reefs. Ecological 
Indicators, 2019. 103: p. 659-664. 

174. Bonanno, J.A., et al., Where does it go? The fate of thiocyanate in the aquarium 
water and blood plasma of Amphiprion clarkii after exposure to cyanide. bioRxiv, 
2020. 

175. Lanno, R.P. and D.G. Dixon, Chronic toxicity of waterborne thiocyanate to the 
fathead minnow (pimephales promelas): A partial life‐cycle study. Environmental 
Toxicology and Chemistry: An International Journal, 1994. 13(9): p. 1423-1432. 

176. Lanno, R.P. and D.G. Dixon, Chronic toxicity of waterborne thiocyanate to 
rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic 
Sciences, 1996. 53(9): p. 2137-2146. 

177. Lanno, R., The chronic toxicity of thiocyanate to rainbow trout and fathead 
minnow. 1993. 

178. Brown, D., et al., HPLC determination of plasma thiocyanate concentrations in 
fish blood: application to laboratory pharmacokinetic and field-monitoring 
studies. Ecotoxicology and environmental safety, 1995. 30(3): p. 302-308. 

179. Breen, N.E., et al., On the half-life of thiocyanate in the plasma of the marine fish 
Amphiprion ocellaris: implications for cyanide detection. PeerJ, 2019. 7: p. 
e6644. 

180. Vaz, M.C., et al., Excreted thiocyanate detects live reef fishes illegally collected 
using cyanide—a non-invasive and non-destructive testing approach. PloS one, 
2012. 7(4). 

181. Vaz, M.C., V.I. Esteves, and R. Calado, Live reef fish displaying physiological 
evidence of cyanide poisoning are still traded in the EU marine aquarium 
industry. Scientific reports, 2017. 7(1): p. 1-5. 

182. Rubec, P.J., M. Frant, and M.B. Manipula, Methods For Detection of Cyanide 
and Its Metabolites In Marine Fish. 2008. 

183. Moffitt, C.M. and J.A. Schreck, Accumulation and depletion of orally 
administered erythromycin thiocyanate in tissues of chinook salmon. Transactions 
of the American Fisheries Society, 1988. 117(4): p. 394-400. 

184. Rong, L., L. Lim, and T. Takeuchi, Determination of iodide and thiocyanate in 
seawater by liquid chromatography with poly (ethylene glycol) stationary phase. 
Chromatographia, 2005. 61(7-8): p. 371-374. 

185. Breen, N.E., et al., Can excreted thiocyanate be used to detect cyanide exposure 
in live reef fish? PloS one, 2018. 13(5). 

186. Herz, N., et al., High-performance liquid chromatography to detect thiocyanate in 
reef fish caught with cyanide: A practical field application. SPC Live Reef Fish 
Information Bulletin, 2016. 21: p. 8-16. 

187. Mak, K.K., H. Yanase, and R. Renneberg, Cyanide fishing and cyanide detection 
in coral reef fish using chemical tests and biosensors. Biosensors and 
Bioelectronics, 2005. 20(12): p. 2581-2593. 

188. Bortey-Sam, N., et al., Diagnosis of cyanide poisoning using an automated, field-
portable sensor for rapid analysis of blood cyanide concentrations. Analytica 
Chimica Acta, 2020. 1098: p. 125-132. 



94 
 

189. Ansell, M. and F. Lewis, A review of cyanide concentrations found in human 
organs. A survey of literature concerning cyanide metabolism,'normal', non-fatal, 
and fatal body cyanide levels. Journal of forensic medicine, 1970. 17(4): p. 148. 

190. Sousa, A.B., et al., Toxicokinetics of cyanide in rats, pigs and goats after oral 
dosing with potassium cyanide. Archives of toxicology, 2003. 77(6): p. 330-334. 

191. Vinnakota, C.V., et al., Comparison of cyanide exposure markers in the biofluids 
of smokers and non-smokers. Biomarkers, 2012. 17(7): p. 625-633. 

192. Bhandari, R.K., The Toxicokinetic Behavior of Cyanide, Thiocyanate and 2-
Amino-2-Thiazoline-4-Carboxylic Acid Following Cyanide Exposure in Multiple 
Animal Models Utilizing Novel Methods of Detection. 2013. 

193. Tor-Agbidye, J., Dietary deficiency of cystine and methionine in rats alters thiol 
homeostasis required for cyanide detoxification. Journal of Toxicology and 
Environmental Health Part A, 1998. 55(8): p. 583-595. 

194. Hasuike, Y., et al., Accumulation of cyanide and thiocyanate in haemodialysis 
patients. Nephrology Dialysis Transplantation, 2004. 19(6): p. 1474-1479. 

195. Manzano, H., et al., Effects of long-term cyanide ingestion by pigs. Veterinary 
research communications, 2007. 31(1): p. 93-104. 

196. Leuschner, J., A. Winkler, and F. Leuschner, Toxicokinetic aspects of chronic 
cyanide exposure in the rat. Toxicology letters, 1991. 57(2): p. 195-201. 

 


	Development of Analytical Methods for Toxic Inhaled Hazards (TIH) and Their Metabolites
	Recommended Citation

	Microsoft Word - 747210_pdfconv_879400_2968890E-A1E4-11EA-BE29-5803322D2AC4.docx

