South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Electronic Theses and Dissertations

2020

Examining Biodiversity Metrics and the Utility of DNA Barcoding in the Northern Great Plains

Sarah Herzog South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Part of the Ecology and Evolutionary Biology Commons, Environmental Sciences Commons, and the Genetics and Genomics Commons

Recommended Citation

Herzog, Sarah, "Examining Biodiversity Metrics and the Utility of DNA Barcoding in the Northern Great Plains" (2020). *Electronic Theses and Dissertations*. 4109. https://openprairie.sdstate.edu/etd/4109

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

Examining Biodiversity Metrics and the Utility of DNA Barcoding in the Northern Great Plains

BY SARAH HERZOG

A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Natural Resource Management South Dakota State University 2020

THESIS ACCEPTANCE PAGE

Sarah Herzog

This thesis is approved as a creditable and independent investigation by a candidate for the master's degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.

> Maribeth Latvis Advisor

Date

Michele R. Dudash Department Head

Date

Dean, Graduate School

Date

This thesis is dedicated to the strong women that surround and inspire me. To my mom, Melissa, who has always supported me and my endeavors, regardless of what it was (or how bad it smelled). To my grandmothers, Shirley and Margaret, that took me outside to look for bugs and poke at pond scum. To my advisor, Maribeth, for being a prime example of a female scientist. To my gal pals, for reminding me that female friends are the best of friends. And to all the women in botany and natural resource management that came before me and broke through the glass ceiling. And lastly, my dad, Steve, for believing in my strength and raising a river rat as a daughter.

ACKNOWLEDGEMENTS

South Dakota State University is located on the ancestral territory of the Oceti Sakowin [oh-CHEH-tee SHAW-koh-we], meaning Seven Council Fires which is the proper name for the people commonly called Sioux. The tribal alliance, made up of individual bands, of the Seven Council Fires is based on kinship, location and dialects: Santee-Dakota, Yankton-Nakota and Teton-Lakota. The seven tribes now occupy nine reservations in South Dakota: Cheyenne River Sioux Tribe, Crow Creek Sioux Tribe, Flandreau Santee Sioux Tribe, Lower Brule Sioux Tribe, Oglala Sioux Tribe, Rosebud Sioux Tribe, Sisseton-Wahpeton Oyate, Standing Rock Sioux Tribe and Yankton Sioux Tribe.

This project would not have been possible without the help of many people. I would first like to thank South Dakota State University and my committee, Drs. Charles Fenster, Lora Perkins, Christine Stewart, and particularly my advisor, Dr. Maribeth Latvis. It has been an honor to be your first graduate student, Maribeth. Thank you for trusting me in the responsibilities you gave me (and for letting me organize all the fancy new lab equipment, it was a dream come true). And of course, I must thank my parents for their unwavering support through this emotional rollercoaster.

Thank you to my undergraduate technician, Allison Shorter, for all your top quality aid in organizing and identifying my collections; your cheerful presence was a joy to be around. Thank you, Jordan Purintun, for your botanical expertise and company throughout this journey. And Isabela (Izzy) Vilella-Arnizaut for her help in site selection and her wonderful company as a friend and roommate.

The Department of Natural Resource Management has been a wonderful place to spend two years, due to the wonderful people that make up the department. The NRM office staff are the glue that keeps everything functioning and are magnificent people: Kate Tvedt, Ji Young Kim, and Beth Byre. Thank you to all the land owners that were kind enough to give me permission enjoy their flowers: South Dakota Game Fish and Parks , U.S. Fish and Wildlife Services, The Nature Conservancy, and the City of Brookings. Thank you to Drs. Jose Gonzalez and Yeyan Qiu at the Genomics Sequencing Facility of SDState for their flexibility and expertise. I would also like to thank Kevin Brandt, Chad Julius, Luke Gassman, and Roberto Villegas-Diaz in the SDState Research Computing Group for their help with my endless coding questions. Thank you to SDState Oak Lake Field Station and Extension. Drs. Dave Tank, Fay-Wei Li, and Carl Rothfels were very helpful for last minute questions regarding Fluidigm2PURC modifications. And finally, this project would not have been possible without funding so graciously given by South Dakota State University and USDA (USDA NIFA 1016764), in addition to travel grants provided by The Missiouri Botanic Gardens and the Natural History Collections Club network (NHCC).

ACKNOWLEDGEMENTS	IV
LIST OF FIGURES	VII
LIST OF SUPPLEMENTARY FIGURES	VIII
LIST OF TABLES	IX
LIST OF SUPPLEMENTARY TABLES	X
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: UTILITY OF DNA BARCODING	7
2.1 Abstract	7
2.2 INTRODUCTION	7
2.3 Methods	
2.3.1 Sampling	
2.3.2 DNA extraction, amplification, and sequencing	
2.3.3 Read processing	
2.3.4 BLAST	13
2.3.5 Analyses	14
2.4 Results	14
2.5 Discussion	19
2.6 CONCLUSIONS	21
CHAPTER 3: PHYLOGENETIC DIVERSITY	22
3.1 Abstract	
3.2 Introduction	
3.3 Methods	27
3.3.1 Sites	27
3.3.2 Sampling	27
3.3.3 Phylogeny	28
3.3.4 Metrics	29
3.4 Results	31
3.5 Discussion	34
3.6 CONCLUSIONS	37
OVERALL CONCLUSIONS	38
LITERATURE CITED	40
APPENDIX A	52
APPENDIX B	63

TABLE OF CONTENTS

LIST OF FIGURES

FIGURE 2.1-1: THE PRAIRIE COTEAU, LOCATED PRIMARILY IN SOUTH DAKOTA, SPANS FROM NORTH DAKOTA SOUTH THROUGH
South Dakota into Minnesota and Iowa
FIGURE 2.4-1 SEQUENCE RETRIEVAL SUCCESS OF AMPLICONS OUT OF 286 SPECIMENS SAMPLED
FIGURE 2.4-2: MY SUCCESS OF RETRIEVING AMPLICONS AFTER PCR AND SEQUENCING DO NOT APPEAR TO BE IMPACTED BY THE
YEAR THE SPECIMEN WAS COLLECTED. PEARSON CORRELATION SHOWN
FIGURE 2.4-3 SUCCESS OF IDENTIFICATION FOR BARCODES. UNDERSCORED BARCODE NAMES INDICATE CONCATENATED LOCUS
BARCODES. NOTE THAT MATK3 WAS EXCLUDED FROM CONCATENATION
FIGURE 2.4-4: PAIRWISE PROPORTION TESTS INDICATE SIGNIFICANT DIFFERENCES IN SPECIES IDENTIFICATION SUCCESS
FIGURE 2.4-5: BARCODE SUCCESS IN THE FOUR MOST DIVERSE FAMILIES. ONLY BARCODES WITH MORE THAN FIVE REPLICATES
SHOWN
FIGURE 3.2-1 ONLY A COUPLE OF FAMILIES ARE RESPONSIBLE FOR THE MAJORITY OF DIVERSITY IN THE TALLGRASS PRAIRIES.
HERE ARE SOME OF THE HIGHEST DIVERSITY FAMILIES IN THE REGION BASED ON REGIONAL HERBARIUM COLLECTIONS IN
THE CONSORTIUM OF NORTHERN GREAT PLAINS HERBARIA
FIGURE 3.3-1 FIELD SITES WERE LOCATED ACROSS THE PRAIRIE COTEAU. 20 SITES WERE IN SOUTH DAKOTA AND ONE SITE IN
Minnesota
FIGURE 3.4-1 SPECIES RICHNESS VARIED ACROSS SITES, RANGING FROM 9 TO 48
FIGURE 3.4-2 REGIONAL TREE OF ALL SPECIES AT SAMPLED SITES. THE FOUR MOST DIVERSE FAMILIES HAVE BEEN HIGHLIGHTED,
MAKING UP OVER HALF OF ALL SAMPLED DIVERSITY
FIGURE 3.4-3 CORRELATION BETWEEN PD, MPD, AND MNTD VERSUS SPECIES RICHNESS FOR BOTH UNWEIGHTED (TOP ROW)
and abundance-weighted (bottom row) calculations. Shape of the tree (clustered or overdispersed) is
INDICATED BY POINT COLOR, AND SIGNIFICANCE IS INDICATED BY POINT SHAPE
FIGURE 3.4-4 CORRECTED PD VALUES FOR FAITH'S PD, MPD, AND MNTD FOR BOTH UNWEIGHTED (A) AND ABUNDANCE-
WEIGHTED (B) CALCULATIONS FOR EACH SITE. COLOR INDICATES CORRECTED VALUE OF PD METRIC
WEIGHTED (B) CALCULATIONS FOR EACH SITE. COLOR INDICATES CORRECTED VALUE OF PD METRIC
WEIGHTED (B) CALCULATIONS FOR EACH SITE. COLOR INDICATES CORRECTED VALUE OF PD METRIC
WEIGHTED (B) CALCULATIONS FOR EACH SITE. COLOR INDICATES CORRECTED VALUE OF PD METRIC
WEIGHTED (B) CALCULATIONS FOR EACH SITE. COLOR INDICATES CORRECTED VALUE OF PD METRIC

LIST OF SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURE 1: UNCORRECTED FAITH'S PD, MPD, AND MNTD VALUES ACROSS SITES VERSUS SPECIES RICHNESS
FOR UNWEIGHTED (TOP ROW) AND ABUNDANCE-WEIGHTED (BOTTOM ROW) METRICS. SPEARMAN'S CORRELATION
shown61
SUPPLEMENTARY FIGURE 2: SPECIES RICHNESS OF THE TALLGRASS PRAIRIE OF THE NORTHERN GREAT PLAINS BY FAMILY OVER
THE GROWING SEASON. SPECIES OCCURRENCE DATA COLLECTED FROM THE CONSORTIUM OF NORTHERN GREAT PLAINS
HERBARIA. FAMILIES ORDERED BY SPECIES RICHNESS. (POLYGON: 49.735908 -98.370117,42.274134 -
98.326172,42.404066 -92.085938,44.163366 -92.920898,45.225458 -95.733398,46.721859 -
96.392578,48.731625 -96.568359,49.536684 -97.183594,49.735908 -98.370117)62

LIST OF TABLES

TABLE 2.3-1: SELECTED LOCI AND PRIMERS FOR TESTED DNA BARCODES.	12
TABLE 3.3-1: CALCULATED PHYLOGENETIC DIVERSITY METRICS USING R PACKAGE PICANTE. STANDARDIZED EFFECT SCORES	
(SES), or corrected PD, were calculated for Faith's PD, MPD, and MNTD. Abundance weighting was	
conducted using the option "abundance.weighted = T'' in each function, except for weighted Faith's PD,	,
WHICH WAS CALCULATED USING CUSTOM CODE. OUTPUT FROM "SES." FUNCTIONS PRODUCE OBSERVED PD, EXPECTED	
PD and standardized effect values.	30

LIST OF SUPPLEMENTARY TABLES

SUPPLEMENTARY TABLE 1: OAK LAKE FIELD STATION SPECIES LIST. PRIMARILY COMPILED BY DR. GARY LARSON (RETIRED)52
SUPPLEMENTARY TABLE 2: IMPACT OF INCREASING NUMBER OF LOCI IN BARCODE ON SUCCESSFUL IDENTIFICATION AT THE
SPECIES, GENUS, AND FAMILY LEVELS. NUMBER OF SEQUENCES AND PROPORTIONS GIVEN.
SUPPLEMENTARY TABLE 3: IDENTIFICATION SUCCESS FOR TESTED BARCODES (INDIVIDUAL AND CONCATENATED LOCI).
CONCATENATED LOCI BARCODES INDICATED BY INDERSCORE. NUMBER OF SEQUENCES AND PROPORTION SUCCESS
provided. Sequencing success is the ability to amplify and retrieve sequences and is reported in percent. 57
SUPPLEMENTARY TABLE 4: P-VALUES FROM R FUNCTION <i>PROP. TEST</i> WHEN TESTING IDENTIFICATION SUCCESS RATES BETWEEN
ALL BARCODES AND THE NUMBER OF LOCI INCLUDED IN BARCODES AT THREE TAXONOMIC LEVELS: FAMILY, GENUS, AND
SPECIES
SUPPLEMENTARY TABLE 5: PLANT COMMUNITIES SAMPLED. TNC = THE NATURE CONSERVANCY
SUPPLEMENTARY TABLE 6: SPECIES RICHNESS, FAITH'S PD, MPD, AND MNTD VALUES FOR OBSERVED (OBS.) AND NULL
(RAND.) COMMUNITIES. VALUES INCLUDE: PD, MEAN, STANDARD DEVIATION (.SD), RANK, STANDARDIZED EFFECT SCORE
(.Z), AND P-VALUE (.P) FOR ABUNDANCE-WEIGHTED (WT.) AND UNWEIGHTED METRICS59
SUPPLEMENTARY TABLE 7: VOUCHER INFORMATION FOR SAMPLED SPECIMENS AT OAK LAKE FIELD STATION AND C.A. TAYLOR
(SDState) Herbarium for DNA barcoding (Chapter 2)63

Abstract

EXAMINING BIODIVERSITY METRICS AND THE UTILITY OF DNA BARCODING IN THE NORTHERN GREAT PLAINS Sarah Herzog 2020

Due to heavy threats to remaining global floral and faunal diversity, it is imperative we can identify species and quantify ecosystem health to find best practices for land management and conservation. The tallgrass prairies of the Northern Great Plains are one example of a heavily imperiled ecosystem. The tallgrass prairies have been reduced to less one percent of their historical extent and are facing continued loss. Genetic approaches and evolutionary theory offer insights for identifying species and assessing how biodiversity metrics may correlate with ecosystem processes. My two projects aim to address two facets imperative to conservation in the tallgrass prairie plant communities of the Prairie Coteau, a region defined by its relatively higher elevation to surrounding: 1) identification of regional flora using DNA barcodes and 2) incorporating evolutionary history (phylogenetic diversity, PD) into biodiversity assessments of plant communities. I assessed high throughput sequencing methods for DNA barcoding using four DNA regions and evaluated their success in identifying species occurring at Oak Lake Field Station at South Dakota State University. I found moderate success for species level identification and high success rates for genus and family level identifications. Including multiple loci resulted in higher success than one-locus barcodes. Phylogenetic diversity was compared to species richness by taking floristic surveys of 21 sites across the Prairie Coteau. PD only weakly correlated with species richness. Many of the sites sampled experienced lower PD than expected. My results indicate 1) DNA barcoding has potential to act as an extension service for regional plant identification, and 2) increasing species richness is not sufficient when aiming to maximize PD.

CHAPTER 1: INTRODUCTION

Healthy ecosystems are vital for the long term survival of species and ecosystem functioning. Biodiversity impacts aquatic and terrestrial processes, with many studies finding higher diversity produces better functioning systems (Tilman 1996, Tilman et al. 2006, Cardinale et al. 2012, Cadotte 2013). Additionally, higher species diversity increases the ability of a system to withstand invasion and disturbance, including climate change (Davies et al. 2011, Isbell et al. 2015).

Humans benefit from numerous ecological processes. The Millenium Ecosystem Assessment (2005) defined these benefits to humans, ecosystem services, as belonging in three categories: provisioning (production of food, water, wood, timber, and fiber), regulating (affecting climate, floods, disease, wastes, and water quality), cultural (recreational, aesthetic, and spiritual), and supporting (soil formation, photosynthesis, and nutrient cycling). Protection of these services is imperative for the continued health of humans and the natural world (Cardinale et al. 2012). A 2019 UN report (Díaz et al. 2019) shows just how dependent humans are on ecosystems. Two billion people rely on wood fuel as their primary energy, and four billion people rely on natural medicines and numerous drugs are natural or based on natural products. Additionally, more than 75 percent of global food crop types are reliant on animal pollination.

Evidence suggests reducing biodiversity in an ecosystem results in reduced services, such as biomass production (Naeem 1994, Tilman 1996, Hector et al. 1999). Additionally, high levels of plant diversity have been shown to lead to higher carbon storage (Hungate et al. 2017, Binder et al. 2018). Recent estimates place ecosystem service contributions globally at US\$125 trillion per year with US\$24 trillion per year in the Americas alone (Costanza et al. 2014, IPBES 2018, World Wildlife Fund 2018a). Staggering losses of diversity have already occurred, with 60 percent population declines in animals over the last 40 years, and these losses have profound impacts on the functioning of global natural processes (World Wildlife Fund 2018a). By one estimate, 65% of ecosystem services are in decline, with 21% declining sharply (IPBES 2018). The situation becomes more dire when evidence indicates increased rate of species loss with ongoing species loss (Hooper et al. 2012).

IPEB's 2019 Global Assessment Report on Biodiversity and Ecosystem Services indicates the massive amount of biodiversity lost and threatened globally (Díaz et al. 2019). The report shows terrestrial native species abundances have fallen, at minimum, 20 percent since 1900, and population loss is likely accelerating. Additionally, 75 percent of Earth's land surface has been significantly altered by human activity, leading to lost productivity in 23 percent of terrestrial systems. An average of 25 percent of the assessed plant and animal groups were threatened, suggesting nearly one million species are facing extinction, many of those within decades if current trends in resource exploitation are maintained. If no action is taken, it is likely the global extinction rate will continue to increase; the current rate is already estimated to be "at least tens to hundreds of times higher than it has averaged over the past 10 million years" (Díaz et al. 2019).

Of the many ecosystems under threat, grasslands are particularly impacted. Temperate grasslands are one of the most altered biomes globally and the least protected (Hoekstra et al. 2005, Peart 2008, Newbold et al. 2016). Grasslands cover about eight percent of terrestrial surfaces, occurring on every continent except Antarctica (Peart 2008). Between 1700 and 1992, approximately 20 percent of global grasslands were converted, with conversion rates in the United States substantially greater than the cumulative global average during this period, resulting in a nearly 50 percent loss of grasslands in the United States (Ramankutty and Foley 1999).

Once covering an extensive amount of North America in the United States and Canada, the native grassland communities of the Great Plains have seen massive losses in extent. Only around half of these communities remain, and of the areas that do remain, 87 percent of those are on poor and marginal quality soils (World Wildlife Fund 2018b). Additionally, in recent years the Great Plains have lost a greater proportion of intact grassland than that of the Brazilian Amazon rainforest (World Wildlife Fund 2018b). Although all native ecosystems in the Great Plains have suffered extensive range loss, none of its habitat types have experienced as drastic of losses as the tallgrass prairie (Samson et al. 2004). Rates of loss have been particularly high within the Western Corn Belt (WCB) of the United States, where over 99 percent of pre-settlement tallgrass prairie has been lost largely due to conversion to row-crop agriculture and non-native grass species for grazing (Samson et al. 2004, Wright and Wimberly 2013, Lark et al. 2015, Wright et al. 2017).

In recent decades, South Dakota, located in the WCB, has experienced some of the highest rates of grassland loss, primarily east of the Missouri river where tallgrass prairies become dominant on the landscape (Wright and Wimberly 2013, Larkin et al. 2015, Wright et al. 2017). This is particularly problematic for a state that receives US\$1.3 million annually in spending from fishing, hunting, trapping, wildlife watch, boating, state park visitation, and snowmobiling (Southwick Associates 2017). Ecologically, this high rate of grassland conversion loss is concerning. Within South Dakota, the Coteau des Prairies (referred to as the Prairie Coteau for the rest of this thesis) is characterized by its higher elevation from the surrounding landscape of eastern South Dakota and its location in the Prairie Pothole Region (Figure 2.1-1). The Prairie Coteau is a plateau created during the Wisconsin glaciation period, rising 275 m above the surrounding plains and located primarily in eastern South

Figure 2.1-1: The Prairie Coteau, located primarily in South Dakota, spans from North Dakota south through South Dakota into Minnesota and Iowa.

Dakota and stretching 200 miles long and 100 miles wide, from southern North Dakota to southwestern Minnesota and northwestern Iowa. Precipitation ranges from 600 mm in the northwest to 800 mm in the southeast. Vegetation on the Prairie Coteau ranges from mixed-grass prairie on the western edges of the Coteau to northern tallgrass prairie on the eastern portion. Land cover is predominantly cropland, with remnant, untilled grassland, non-native seeded hayfield and pasture, and native or non-native retired cropland (such as land in the Conservation Reserve Program) contributing to the matrix of land covers. Ownership is primarily private.

A concerted effort between private and government organizations toward conservation in the region has been underway. Of the remaining grasslands and woodlands on the Prairie Coteau, 39 percent of those are under permanent protection, totaling 3.7 percent of the total Prairie Coteau (Bauman et al. 2014). Much of the conservation work regionally has been focused on the Prairie Pothole Region (PPR) due to its continental importance as breeding grounds for waterfowl (Batt et al. 1989), and is a major migration route for many other bird species (Skagen et al. 1999, Igl et al. 2017). The PPR extends from North Dakota, South Dakota, Iowa, Minnesota, and Montana in the United States, to Alberta, British Columbia, Manitoba, and Saskatchewan in Canada and is the result of historical glaciation creating thousands of depressions on the landscape, which are then filled by snowmelt or precipitation. Globally, over 85 percent of wetlands have been lost, and the PPR has not been an exception to this trend. The PPR has been experiencing the highest rates of conversion in the region, with one estimate at greater than 16.5 percent loss between 2008 and 2012 (Lark et al. 2015, Wright et al. 2017). Wetlands are critical for many services including water filtration, food supply, and climate regulation and these services are declining due to rapid wetland loss (IPBES 2018).

To manage this region for its long-term health and survival, it is essential that managers can 1) rapidly and correctly identify species and 2) understand how different calculations quantifying an ecosystem can impact management. Traditional methods of species identification usually relies on the presence of mature individuals with characteristic morphology. This requires sufficient training and identification is not always feasible when individuals are damaged or are not in an appropriate stage of development. In addition to problematic and slow species identifications, there are numerous proposed calculations for describing ecosystems and no clear universal metric. It is therefore critical to understand how metric selection can impact conclusions (Humphries et al. 1995, Kenchington and Kenchington 2013, Moreno et al. 2017). We must balance including as much descriptive power as possible, while minimizing costs to ensure it is feasible to employ these measurements.

To address these two questions for tallgrass prairie plant communities occurring on the Prairie Coteau, I developed two projects: 1) examining the utility of DNA barcoding for rapid regional plant identification and 2) comparing biodiversity metrics to inform "best practice" measures for research, management, and restoration, with a focus on the comparison of multiple phylogenetic diversity metrics with species richness. Although some studies have included species occurring in the region (Braukmann et al. 2017), there have been no community-wide assessments on DNA barcoding, nor have any studies examined the use of phylogenetic diversity and its relationship to species richness in native prairies.

CHAPTER 2: UTILITY OF DNA BARCODING

2.1 Abstract

DNA barcoding, the use of genetic data for identification, has been shown to be useful in many settings. Barcoding has aided in rapid species identification in both plants and animals for conservation, management, and regulation. I examine the success of using four common DNA barcoding regions (ITS, matK, psbA-trnH, rbcL) to identify plants of the tallgrass prairies of the Northern Great Plains using high throughput sequencing. Using species occurring at Oak Lake Field Station in eastern South Dakota, I collected tissue from herbaria collections and amplified the four barcode regions to test success at identifying samples to family, genus, and species using BLAST in a public DNA sequence database. Species level identification ranged from 21% to 66%. Genus and family level identification were generally successful (84-100% and 91-100% respectively) and showed no significant differences. Increasing the number of loci included in a barcode increased success of correct identification, generally. Results indicate the inclusion of ITS and *rbcL* to be beneficial for the identification of regional taxa. Species-level identification was low, however genus and family-level identification showed high success at discrimination, which may be appropriate for applications not needing precise species-level identification.

2.2 INTRODUCTION

Research involving time consuming species identification needs to drastically accelerate to understand the continued loss of imperiled systems (DeSalle and Amato 2004). Many monitoring programs have sacrificed accuracy due to the time it takes to identify plants to species level but in doing so are failing to capture critical information that can be used in further research. For example, as discussed in Love and Cane (2019), prior failure to record detailed herbaceous plant species, and instead grouping plants into the ambiguous category of "forb," precluded further research, in this case regarding native insect pollinators. Many field technicians are not fully trained to accurately identify species by sight, and identification using technical dichotomous keys adds additional time to projects. Morphological plasticity in populations, cryptic species, and dependency on life stage are some of the largest issues facing current methods for species identification (Hebert et al. 2003, Hollingsworth et al. 2016). Further compounding the problem is the increasing lack of taxonomists in the field (Drew 2011). So, although morphology is extremely important for identification of species though diagnosable species concepts and in the field, it takes time to do so accurately and requires an expertise that is becoming more scarce (Tewksbury et al. 2014).

DNA barcoding offers one potential solution. DNA barcoding uses small segments of DNA to identify species (Hebert et al. 2003). For example, sequences of the mitochondrial cytochrome oxidase I gene (COI) have been effectively used as a barcode for species-level identification of many animal groups (Hebert et al. 2003), acting as a type of bio-identification system useful for species identification (Handy et al. 2011), invasive species control (Floyd et al. 2010), forensics (Savolainen and Lundeberg 1999), and regulatory enforcement (Parveen et al. 2016), among others. Though DNA barcoding is unlikely to replace field identification of species, it is another tool for when morphological features are not available, whether due to disturbance (e.q. grazing or burning), analyzing fecal material, or needing verification for morphological identification. DNA barcoding may circumvent the previously mentioned issues involved in morphological based species identification, as all that is needed is a small amount of tissue, regardless of developmental stage. The advent of high-throughput sequencing (HTS) has opened even more potential to DNA barcodes, as numerous loci and individuals can be sequenced at once, reducing time and cost. Additionally, as costs for HTS continue to decline, there is potential to increase the amount of genetic data retrieved, allowing for increased species identification success (Parks et al. 2009, Nock et al. 2011, Steele and Pires 2011, Kane et al. 2012).

A universal barcode for plants has remained elusive, however. The problem lies with finding a region with high sequence variation between species to create genetic diversity but with low enough variation to allow sequences to be grouped by species, all while being retained across groups. Multiple studies have examined the issue but have yet to find a single gene region able to differentiate taxonomic groups at both small and large scales. The most effective method appears to be a combination of gene regions, such as *matK* and *rbcL* (CBOL Plant Working Group 2009). The CBOL Plant working group found that an average of 72% of tested species can be distinguished using these two regions. Additionally, other gene regions have been proposed to supplement these regions including ITS, *rpoc1, rpoB, psbA-trnH* and *trnL* (Kress et al. 2005, Chase et al. 2007, Hollingsworth et al. 2009, Syme et al. 2013), though they have not been demonstrated to be universally usable across plant groups.

Geographic and taxonomic scales appear to impact success rates of barcodes. For example, Braukmann et al. (2017) examined the utility of barcodes for plant species found across Canadian ecosystems (5108 species) and found success rates when using individual gene regions (*rbcL, matK,* ITS2) ranging from 91-98% in correctly identifying specimens to genus and 44-81% identifying to species. They concluded DNA barcoding "is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is highest." Kress et al. (2009) found success of >98% when identifying woody trees, shrubs, and palms of Panama when using a threelocus barcode (*rbcL, matK,* and *psbA-trnH*). However, studies examining closely related species have resulted in far lower success rates even when using multiple regions (Seberg and Petersen 2009, Spooner 2009).

One ecosystem that could benefit from DNA barcoding is temperate grasslands, one of the most threatened and least protected ecosystems globally (Hoekstra et al. 2005). For sustained use of natural resources in temperate grasslands, species identification is essential. However, identifying plant species can be difficult due to disturbance (*e.g.* grazing and/or burning) and developmental stage. Additionally, many of the species in tallgrass prairies are closely related and can be difficult to distinguish without a taxonomic key and magnification (*e.g.* species in Poaceae, Cyperaceae, Asteraceae). However, the community composition of tallgrass prairies (highly diverse and closely related clades) could potentially hinder the successful application of DNA barcodes for species identification (Seberg and Petersen 2009, Braukmann et al. 2017).

The use of DNA barcodes holds promise for the identification of these plants regardless of management, disturbance, developmental stage, or cryptic morphology. DNA barcodes have the potential to inform both land managers and researchers on species present in prairie communities to make management decisions and complete research projects where otherwise impossible. This study aims to examine the feasibility of using DNA barcoding to identify tallgrass prairie species. My objectives are to 1) find regions most effective to act as a DNA barcode for identifying tallgrass prairie plant species in the Northern Great Plains and 2) examine feasibility of using DNA barcodes for the identification of regional flora.

2.3 Methods

2.3.1 SAMPLING

Leaf material was removed from herbarium samples (C.A. Taylor Herbarium [SDC] and Oak Lake Field Station's herbarium at South Dakota State University) based on the Oak Lake Field Station (OLFS) species inventory list (see Supplementary Table 1 and Appendix B for species list and voucher information respectively). This species list consists of 269 species in 63 families, with nearly half of species in Asteraceae, Poaceae, Cyperaceae, and Fabaceae (18, 13, 10, and 8 percent respectively). I prioritized voucher specimens collected at OLFS and as recent of collection as possible. For inventoried species lacking vouchers from the OLFS property, I sampled from herbarium sheets from localities in close proximity to OLFS. Additional specimens collected at OLFS with species not included in the species list also included. Taxonomic names were updated and standardized using Global Names Resolver (GNR, version 0.9.8) from *taxize* R package version 0.9.92 (Chamberlain and Szocs 2013, Chamberlain et al. 2020).

2.3.2 DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING

From each sample, 0.02-0.03 mg of tissue was weighed out for total genomic DNA extraction using a modified 2x CTAB approach (Doyle and Doyle 1987). DNA extractions were then visualized on a gel to assess DNA quality and concentration.

Four loci were selected for this study due to their prominence as "universal" plant barcode regions (ITS, *rbcLa, matK, psbA-trnH*; Table 2.3-1). *matK* was amplified in two portions to accommodate sequencing read length restrictions in HTS approaches, resulting in five total amplicons being examined as barcodes. These primers were selected due to their ability to amplify across Angiosperm families and produce amplicon lengths compatible with the Illumina (San Diego, California, USA) MiSeq high-throughput sequencing platform limit of 300 base pair (bp) paired-end reads (CBOL Plant Working Group 2009, China Plant BOL Group et al. 2011, Braukmann et al. 2017).

I followed a modified 16S Illumina library construction protocol (Illumina Inc. 2013) with optimized annealing temperatures for each primer set (OligoAnalyzer Tool, Integrated DNA Technologies). This process consists of an initial amplification of target regions by site specific primers ("PCR 1"), with an additional adapter sequence tag added to the 5' end of the oligonucleotide synthesis (sequences obtained from Illumina). These tags allow for the addition of an 8 bp index sequence by acting as a binding site for an additional pair of primers in a second round of PCR ("PCR 2"), which allow for the identification of samples once amplified sequences have been pooled. Library construction used Phusion Hot Start II High-Fidelity PCR Master Mix (Thermo Fisher Scientific; Waltham, Massachusetts, USA) and the Nexterra XT Index Kit v2 (Illumina). All five

ble 2.3-1: Selected loci and primers for tested DNA barcodes.	lartad Rawardae
Table	Color

S
P
•
ပ္
m
B
ted
ected
lected
elected

Region	Abbreviation	5' primer	5' primer sequence from 5' end	3' primer	3' primer sequence from 5' end	Amplicon length	References
ITS2 (nuclear)	STI	UniPlantF	TGTGAATTGCARRATYCMG	UniplantR	CCCGHYTGAYYTGRGGTCDC	300	(Moorhouse-Gann et al. 2018)
matK (chloroplast)	matK4	matK-1F	ACTGTATCGCACTATGTATCA	matK-4R	GCATCTTTTACCCARTAGCGAAG	400-600	(Bremer et al. 2002)
matK (chloroplast)	matK3	matK-3F	AAGATGCCTCTTCTTTGCAT	matK-3R	GATCCGCTGTGATAATGAGA	400-600	(Sang et al. 1997)
rbcLa (chloroplast)	rbcL	rbcLa-F	ATGTCACCACAAACAGAGACTAAAGC	rbcLa-R	GTAAATCAAGTCCACCRCG	550	(Kress and Erickson 2007)
psbA-trnH (chloroplast)	trnH	psbA3_f	GTTATGCATGAACGTAATGCTC	trnHf_05	CGCGCATGGTGGATTCACAATCC	500	(Sang et al. 1997)

amplicons for each individual were pooled after PCR1, which gave each individual the same index for identification, while still allowing each region to be identified by primer sequence. Bead cleanup was conducted after PCR2 to remove unwanted reaction components (*e.g.* fragments less than 50 bp) using HighPrep PCR Clean-up System magnetic beads (MAGBIO, Gathersburg, Maryland, USA) in an Apollo 324 System automated library preparation system (IntegenX Inc., Pleasanton, California, USA). All samples were pooled after PCR2 using relative success rates visualized in gel electrophoresis and quantified with QUIBIT 4 Fluorometer (Invitrogen, Waltham, Massachusetts, USA) to standardize concentrations. The pooled library was then sequenced in one run on an Illumina MiSeq platform using 300 bp paired end reads.

2.3.3 READ PROCESSING

Data were received through BaseSpace (cloud-based Illumina software; basespace.Illumina.com) pre-demultiplexed to individual and with index sequences removed. Pooled reads for each individual were run through Fluidigm2PURC (Blischak et al. 2018) on default settings, which trims sequences, combines paired reads, and converts FASTQ file type to fasta format. Because data was pre-demultiplexed by Illumina software, I used a custom script to further group sequences by amplicon and then remove primers (locus_assigner; Fey-Wei Li, Cornell University, personal communication). Consensus sequences were generated using purc_recluster2 (Rothfels et al. 2016) with clustering values of 0.92 and 0.93, and the largest consensus cluster used for downstream analysis. Cleaned sequences were then concatenated in all possible combinations between four single-locus barcodes in Geneious Prime version 2019.2.3 (https://www.geneious.com).

2.3.4 BLAST

Individual loci and concatenated loci (both hereafter referred to as "barcodes") were compared against sequences in the GenBank nucleotide

database, a public nucleotide database of all available sequences (Clark et al. 2016), using Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990, Camacho et al. 2009). The top hit for each sequence was used. These results were then compared to original taxon list from OLFS. Family names were generated and species names updated using the Catalogue of Life: 2019 Annual Checklist (http://www.catalogueoflife.org/annual-checklist/2019/) with *taxize* in R for both BLAST results and the original OLFS species list. Success was determined based on family, genus, and species level identification. Results indicating sequencing errors (*e.g.* fungal contaminants, etc.) were removed from analysis.

2.3.5 ANALYSES

To evaluate identification success, I used *prop.test* in the base R package "stats" (version 3.5.1) to run a proportion test examining if the proportion of identification success for each barcode was equal (alpha of 0.05). *prop.test* uses Pearson's chi-squared test statistic. If significant identification was found, a pairwise proportion test was used (*pairwise.prop.test* in R package "stats") using the Holm (1979) correction method.

2.4 Results

(Barcodes referred to as these abbreviations: ITS2 = ITS, *rbcLa* = *rbcL*, *psbA-trnH* = *trnH*, *matK*1F4R = *matK4*, *matk*3F3R = *matK3*)

After updating taxonomic names in *taxize*, I had 266 distinct species for my 286 samples, as some updates combined taxa. *matK3* failed to amplify for most species, with only 22 sequences retrieved (Figure 2.4-1). Due to this low success, *matK3* was excluded from concatenation. *rbcLa* had the highest amplification success with 249 retrieved sequences. Of the 266 taxa at OLFS, 9 species were not represented in GenBank. Additionally, coverage of the tested regions in GenBank varied. 253 of the 266 species had representation for the *rbcLa* region (97%), 246 species were covered by ITS2 (94%), 239 by *matK* (91%), and 123 by *psbA-trnH* (47%). Species not in GenBank were still included in results, as I was looking for an overall view of barcoding success for regional flora identification. Age of specimen had no correlation with amplification success (mean year collected: 1994, range: 1920-2013; Figure 2.4-2).

Overall, concatenated barcodes had higher success rates than relying on individual loci. matK4, matK3, and rbcLa were the least successful individual loci for species level identification (21%, 29%, and 33% respectively), with psbA-trnH fifth worst (39%). ITS2 had the highest success of the single-locus barcodes at 53%. The combination of ITS2, matk4, rbcLa, and psbA-trnH proved to be the most successful at species discrimination, at 66% (Figure 2.4-3; Supplementary Table 2, 3 and 4). When examining the single-locus barcodes, I found significant variation in proportion of correct species-level identification between ITS2 and rbcLa and between ITS2 and matk4. With the inclusion of concatenated barcodes, I saw additional significant differences in species-level identification success (Figure 2.4-4). Successful genus identification ranged from 84-100% and successful family level identification ranged from 91-100%. There were no significant differences in genus or family-level identification success between barcodes. The number of loci included in the barcode significantly impacted species resolution success but did not impact correct genus or family-level identification success (Supplementary Table 4).

Breaking down the results by the four most diverse families (Asteraceae, Poaceae, Cyperaceae, and Fabaceae with 49, 35, 25, and 22 specimens sampled respectively), I found ITS and *rbcLa* were the most successful in amplification success (Figure 2.4-5). *rbcLa* was most successful in amplification for Asteraceae (30/49), Fabaceae (20/22), and Cyperaceae (23/25), with ITS and *psbA-trnH* performing the best in Poaceae (25/35). The barcode that performed the best at species-level identification varied for each family, with the *rbcLa* and *psbA-trnH* concatenated barcode performing the best in Asteraceae (65%), ITS alone and ITS in combination with *rbcLa* were highest in Fabaceae (69%) and Cyperaceae (43%). The ITS, *rbcLa*, and *psbA-trnH* concatenated barcode performed the best for Poaceae (35%).

Figure 2.4-1 Sequence retrieval success of amplicons out of 286 specimens sampled.

Figure 2.4-2: My success of retrieving amplicons after PCR and sequencing do not appear to be impacted by the year the specimen was collected. Pearson correlation shown.

Figure 2.4-3 Success of identification for barcodes. Underscored barcode names indicate concatenated locus barcodes. Note that matK3 was excluded from concatenation.

Figure 2.4-4: Pairwise proportion tests indicate significant differences in species identification success.

Figure 2.4-5: Barcode success in the four most diverse families. Only barcodes with more than five replicates shown.

2.5 DISCUSSION

My results indicate DNA barcoding is successful at the identification of species at the genus and family taxonomic levels across tested barcodes, but only had low to moderate success at the species level. One-locus barcodes had lower success at species level identification than multi-locus barcodes, in accordance with previous studies. I found significant variation in barcode ability to successfully identify individuals at the species level (21-66% correct identification), with no significant variation in successful identification at the genus or family levels (84-100% and 91-100% respectively). *matK* and *rbcLa* were particularly poor at identifying species when used as a single-locus barcode. Poaceae, one of the families that would likely be of most interest for regional land managers, had low success across examined barcodes.

The low success rate in species discrimination when using *matK* alone contrasts with other studies, where *matK* was one of the most successful barcoding regions for identification in plants (Lahaye et al. 2008, CBOL Plant Working Group 2009, Braukmann et al. 2017). A major limitation in using *matK*, as also noted by previously listed studies, is the difficulty of finding universal primer pairs (Hollingsworth et al. 2011), which is likely why one of my selected barcode regions failed to amplify (*matK3*). In contrast, though *rbcLa* only has moderate identification success, it has been shown to amplify well across taxa, which has led to it being promoted as a good candidate for inclusion in a multi-locus barcode (CBOL Plant Working Group 2009, China Plant BOL Group et al. 2011, Hollingsworth et al. 2011).

The combination of *matK* and *rbcL* has been promoted as one of the most promising universal two-locus plant barcodes (CBOL Plant Working Group 2009). Failure of this two-locus barcode in some systems for species identification, particularly with closely related taxa (Seberg and Petersen 2009, Roy et al. 2010, Parmentier et al. 2013), has resulted in the recommendation of including a nuclear-encoded ribosomal internal transcribed spacer, ITS2 (Chen et al. 2010, China Plant BOL Group et al. 2011, Hollingsworth et al. 2011). My results correspond with previous studies that the inclusion of ITS is beneficial. The universal presence of ITS2 across plant taxa and its short length (~350) make it a promising barcode for use in community assessments and HTS approaches for DNA barcoding. The high success of sequence recovery and species identification of ITS2 and *rbcLa* in my community, particularly when used jointly, indicate these two regions would be effective for barcoding regional tallgrass prairie plant species.

The poor amplification success of *matK* could be due to several reasons. Increasing age of herbarium specimens has been shown to reduce ability to amplify loci due to the low quality of DNA due to degradation over time (Pyle and Adams 1989, Savolainen et al. 1995, Adams and Sharma 2010, Staats et al. 2011, Sarkinen et al. 2012, Brewer et al. 2019), however my amplification successes and failures do not indicate a trend regarding the date of collection (Figure 2.4-2). The most likely issue is with my chosen primer pairs.

Overall, my results indicate a combination of loci is beneficial, which corresponds with previous studies (Chase et al. 2007, Lahaye et al. 2008, CBOL Plant Working Group 2009, Kress et al. 2009, China Plant BOL Group et al. 2011). Additionally, as costs of HTS continue to decrease, it is more feasible to increase the number of sequenced regions, leading to the proposal of whole plastid genome sequencing for species discrimination (Parks et al. 2009, Nock et al. 2011, Steele and Pires 2011, Kane et al. 2012). For increased success in older herbarium specimens, probe sets such as Angiosperm 353, which targets nuclear singleprotein-coding regions, would be beneficial, as the short, conserved regions are well suited for degraded tissue and identification at shallow taxonomic levels (Johnson et al. 2018, Brewer et al. 2019, Larridon et al. 2020).

Additionally, it is important to consider where barcode regions originate, whether nuclear or plastid. Although there are benefits for sequencing the entirety of the chloroplast genome, nuclear regions have the benefit of showing mixed inheritance. Where chloroplast genomes are inherited maternally, nuclear genes are bi-parentally inherited and can indicate hybridization events (Rieseberg and Soltis 1991, Soltis and Kuzoff 1995). Likely the best methodology for DNA barcoding of regional prairie plant species would be through the creation of a specific probe set suited for this region's plant community, as done for *matK* by Heckenhauer et al. (2016) in their system. This will be especially important for improving the success rates of my most regionally diverse families.

The creation of a regional database (versus large collections such as GenBank), will likely result in increased taxonomic differentiation success. The presence of international species in global database results in more closely related species than are found regionally, lowering species resolution (Parmentier et al. 2013). Additionally, there are multiple species/loci missing from GenBank, so concentrated effort to collect tissue from these species will be of benefit. The creation of a regionally managed database using verified specimens will likely reduce errors.

2.6 CONCLUSIONS

My results indicate there is potential for the use of DNA barcoding for tallgrass prairie plant species of the Northern Great Plain, particularly at the family and genus level. Species-level identification rates could be limited, depending on the resolution needed. The optimization of primers for prairie species and the creation of a regional database remain promising future directions that will likely increase in successful identification at these shallow taxonomic scales. I have shown DNA barcoding has potential to identify this regional flora and provides a promising tool to use when morphology-based identification is not feasible in this critically threatened system.

CHAPTER 3: PHYLOGENETIC DIVERSITY

3.1 Abstract

The drastic decline of the once extensive prairies of the Great Plains is of concern, not only for the population declines of many species, but also the decline of ecosystem functionality. Traditional methods of quantifying ecosystems do not include evolutionary history of communities, or phylogenetic diversity (PD), an important feature that can capture genetic diversity and functioning in a community. With costs of sequencing decreasing and availability of prebuilt trees increasing (synthesis phylogenies), it now feasible to cheaply and quickly include measures of evolutionary diversity in management conversations. Twenty-one field sites across the Prairie Coteau of eastern South Dakota were used to examine the relationship between several common PD metrics and species richness of late season tallgrass prairie plant communities. I found little correlation between PD and species richness across sites, and less phylogenetic diversity than expected from the regional pool. This lack of correlation indicates increasing plant species diversity does not result in an expected behavior of PD, which has the potential to impact conservation priorities and management strategies. Fortunately, the low cost and ease of using prebuilt trees makes the inclusion of PD measurements achievable.

3.2 INTRODUCTION

Understanding biodiversity loss hinges upon adequate metrics that capture the presence and role of species. Some metrics, such as species richness (SR), Simpson's diversity index (Simpson 1949), and Shannon's diversity index (Shannon 1948), weigh all species as equally important in a community. Although these metrics are straightforward to calculate, they fail to account for inherent differences in functionality between species in a community. SR has remained one of the dominant metrics due to the ease of calculation (as no additional information is needed than species occurrence) and the ability to compare across sites (Scott et al. 1987, Myers et al. 2000, Meir et al. 2004, Jenkins et al. 2013, Howard et al. 2020). And although Simpson's index and Shannon's diversity are more informative than SR through their inclusion of community evenness, they do not capture the functioning of the system and species relatedness (Cavender-Bares et al. 2009).

Originally proposed as a proxy measurement for functional diversity, phylogenetic diversity (PD) diversity quantifies the amount, distribution or evenness of evolutionary information contained within a community or groupings of species through measuring the evolutionary distance (*i.e.* branch lengths within a phylogeny) between species. Historically, the inclusion of genetics in conservation would have been inhibited by cost of sequencing and expertise needed to work with sequencing data to generate phylogenetic trees. Where in the early 2000s the cost to sequence one megabase (a million bases) of DNA sequence would run upwards of \$10,000, costs have now fallen to roughly \$0.01 per megabase (Wetterstrand 2019). With increasing accessibility to DNA sequencing, large databases (*i.e.* GenBank) have amassed significant collections that can be mined to create phylogenies.

Mega-trees based on these data, including those by The Angiosperm Phylogeny Group (2009), Zanne et al. (2014), and Smith and Brown (2018), can be used for the creation of regional synthesis phylogenies. Jantzen et al. (2019) and Li et al. (2019b) found synthesis phylogenies result in PD values strongly correlating with PD values from phylogenies built from gene sequence data (purpose built phylogenies; additionally see Allen et al. (2019)). Similarly, Latvis and Herzog (2019) found PD metrics strongly correlate between synthesis phylogenies and purpose built phylogenies for NGP communities, though there may be an overestimation of PD depending on which backbone topology is used to create the regional synthesis tree (also echoing results in Li et al. 2019b). When deciding which tree to use it is important to understand the underlying assumptions. Where branch lengths of phylograms are indicative of divergence in *features*, branch lengths of chronograms indicate divergence in *time*. Interpretations of metrics calculated from either type of tree should reflect this foundational difference. Additionally, some studies have found chronograms to result in increased error versus phylograms (Elliott et al. 2018, Allen et al. 2019, Jantzen et al. 2019).

Multiple forms of PD have been proposed to measure communities (Webb et al. 2002, Cavender-Bares et al. 2009, Cadotte et al. 2010) and examine patterns of diversity or distinctiveness of a set of species, *i.e.* evolutionary distinctiveness (Faith 1992, Isaac et al. 2007, Cadotte and Davies 2010). A benefit to using PD is its promise to capture functional diversity (FD), defined by Tilman (2001) as "the value and range of those species and organismal traits that influence ecosystem functioning", genetic diversity (Cadotte et al. 2012, Moquet et al. 2012, Winter et al. 2013), and evolutionary potential (Forest et al. 2007). The inclusion of PD is beneficial when inventorying communities, as more phylogenetically diverse communities are more productive (Cadotte et al. 2008), stable (Cadotte et al. 2012), diverse at higher trophic levels (Dinnage et al. 2012), and resistant to invasion (Davies et al. 2011, Li et al. 2015). Additionally, PD has a flexibility that can be customized to research priorities. For example, branches on a phylogenetic tree, can be given different weights depending on a variety of factors including, but not limited to, abundance, extinction factor, functionality, and desirability. PD appears to capture more variation in biomass production than taxonomic richness alone, indicating evolutionary relationships capturing trait variation are at least partially responsible for loss of ecosystem functioning when biodiversity decreases (Cardinale et al. 2012). However, some studies have shown PD fails to capture FD as the assumptions of trait conservatism and trait divergence following Brownian motion are violated in some trait groups and clades (Safi et al. 2011, Mazel et al. 2017).

Despite the benefits of using PD and other ecological indicators, SR is pervasively used. Studies have found mixed results on the relationship between
PD and SR. There is evidence between the correlation between SR and PD that would signify maximizing SR would thereby maximize PD (Pérez-Losada et al. 2002, Rodrigues and Gaston 2002). However, there are cases with poor correlation between the metrics that could impact conservation prioritization depending on which metric is used (Forest et al. 2007). The cause for this discrepancy is likely due to the layout of branches (topology) of the regional phylogenetic tree (Rodrigues et al. 2005, Tucker and Cadotte 2013). A phylogeny with anciently diverging branches, with their long terminal branches, would mimic SR, resulting in a high correlation between SR and PD. Conversely, when a tree contains many recently diverging taxa (short terminal branches and long internal branches) SR and PD should share a weaker correlation (Cadotte and Davies 2010). Additionally, when a tree has a few monophyletic groups (common ancestor and all its descendants, or clade) sharing more evolutionary diversity within themselves than other groups, the correlation between SR and PD is weaker (Tucker and Cadotte 2013). An asymmetrical tree such as this would result from regions experiencing unequal rates of extinction or radiation between taxonomic groups (Tucker and Cadotte 2013).

Grasslands are dominated by the diverse and closely related family Poaceae (grasses). This results in a large clade on a phylogenetic tree with a high species diversity but low evolutionary diversity. In the tallgrass prairies of the Northern Great Plains (NGP), Asteraceae, Fabaceae, and Cyperaceae are also species rich (Figure 3.2-1). Communities in the region are thereby dominated by distantly related, large clades, which I hypothesize will likely result in weaker correlation between SR and PD. Few estimates of biodiversity in the region have included evolutionary diversity. Should my predicted disparity between SR and PD hold true, conservation/restoration best management practices would likely be impacted.

With the increasing concern for including evolutionary diversity in conservation considerations (DeSalle and Amato 2004), PD has the potential to

provide more insight into communities than ecological indicators that do not include evolutionary relationships. Understanding how metrics capture a community composition, function, and evolutionary makeup will allow for robust prioritizations in management and conservation. Should SR and PD strongly correlate, it would be a simple task to find and prioritize sites with high SR and thereby maximize the evolutionary diversity. However, if the metrics fail to correlate, decision makers will need to make conscious decisions about how they desire to prioritize sites: low cost species richness or more labor-intensive evolutionary analyses.

This study aims to explore when and why correlation occurs between PD and SR in tallgrass prairies of the Prairie Coteau, a glacial uplift area in the NGP, primarily in South Dakota. With the dominance of a few very diverse but distantly related plant families, correlation between PD and SR were expected to have only weak correlation to each other.

Figure 3.2-1 Only a couple of families are responsible for the majority of diversity in the tallgrass prairies. Here are some of the highest diversity families in the region based on regional herbarium collections in the Consortium of Northern Great Plains Herbaria.

3.3 Methods

3.3.1 SITES

The Prairie Coteau is a Wisconsin-age glacial moraine, extending from just north of the North Dakota-South Dakota border in Sargent County, ND through 17 counties in South Dakota and 11 counties in Minnesota. Elevation of the Prairie Coteau ranges from 1250 to over 2000 feet above sea level. The high concentration of tracts of conserved land allowed for the selection of tallgrass prairies in a range of conditions and diversity including sites dominated by invasive non-natives, untilled remnants, seeded, grazed and burned sites. In total, 21 transects were placed at 19 sites (two sites were large and had varying management practices employed and were treated as separate samples; Figure 3.3-1 and Supplementary Table 5). Sites were selected based on the expertise of South Dakota Game Fish and Parks, U.S. Fish and Wildlife Services, The Nature Conservancy (TNC) and South Dakota State University (SDState) Extension Office personnel. Landowners included South Dakota Game Fish and Parks, U.S. Fish and Wildlife Services, TNC, and City of Brookings. Owner permission was acquired for each site.

3.3.2 SAMPLING

Sites were visited once between 6 August and 29 August 2019. Sites ranged in size from 20 to 1674 acres. Methods were based off of Barak et al. (2017): two 50 m transects were randomly placed at each site. A random number generator was used to dictate direction of the transect and number of steps from entry point. 0.25 m² square quadrats were placed every 5 m, resulting in 10 quadrats placed for each transect. Quadrats were randomly placed 2 to 7 m (1 m increments) away from main transect line on the left or right. Photographs were taken of each transect. Abundances for each species was estimated using six cover classes (Daubenmire 1959). All species with sufficient populations and in reproductive condition found in quadrats were collected in triplicate and pressed for vouchered herbarium preservation. Taxa were identified, regardless of phenological stage, to the species level using Van Bruggen (1985) with verification from taxonomic experts. Additionally, species in immediate vicinity of transects (~10 m) were collected but were excluded from analysis. All species collected during this study have been digitized and are curated by the C.A. Taylor Herbarium at SDState with records available on the Consortium of Northern Great Plains Herbaria (<u>http://ngpherbaria.org/</u>). Additionally, leaf tissue was preserved in silica gel to create a DNA repository from all possible collected specimens and deposited at SDState.

Figure 3.3-1 Field sites were located across the Prairie Coteau. 20 sites were in South Dakota and one site in Minnesota.

3.3.3 PHYLOGENY

To create a phylogenetic tree across all sites (regional tree), I used the R (R Core Team 2018) package V.PhyloMaker version 0.1.0 by Jin and Qian (2019). V.Phylomaker uses a dated mega-tree derived from Zanne et al. (2014) and Smith and Brown (2018), and includes 74,533 species covering all extant vascular plant families. My tree was constructed using 'scenario 3' to place new genus branches (those genera not in the mega-tree) where tips of a new genus are "bound to the half-way point of the family branch (the branch between the family root node and basal node), unless the family branch is longer than 2/3 of the whole family branch length, in which case the new genus will be bound to the upper 1/3 point of the family branch length." Additional species were bound to the basal node of the genus. For non-monophyletic genera, the most recent common ancestor of the clade with the highest number of branches for genus was used (*build.nodes.1*; see Jin and Qian (2019) for more details). For species found in transects that were identified to the genus level, I used the *add.species.to.genus* function (phytools package in R) to add a "*Genus sp.*" branch from the most recent common ancestor node for the genus. In the one instance of a family level identification (Cyperaceae), the observation was removed.

3.3.4 METRICS

Three commonly used phylogenetic diversity metrics were calculated for each site (Table 3.3-1): Faith's phylogenetic diversity (PD_{Faith}), mean pairwise distance (MPD), and mean nearest taxon distance (MNTD). PD_{Faith} measures the sum of all phylogenetic branch lengths at a site (Faith 1992). MPD is the mean pairwise phylogenetic distance between all pairs of taxa (Webb 2000), where MNTD is the mean distance between taxa and their closest relative (Webb et al. 2002). Because MPD summarizes all phylogenetic distances between species in a tree, this metric captures overall phylogeny patterns including deep branching patterns, whereas MNTD captures more recent patterns of closely related species in the terminal branches. Additionally, abundance-weighted metrics were calculated using estimated abundance (percent cover). Species richness (SR) was also calculated for each site.

As SR increases, PD is influenced by the additional branches (Vellend et al. 2011). To remove these effects, standardized effect sizes (SES) were calculated for all three metrics [SES = (observed – expected)/(standard deviation of expected)]. Null (expected) phylogenies were created using 'tip shuffling' and 999 randomizations using ses.mpd and ses.mntd in the R package picante (version 1.8). This method of randomization shuffles the names of taxa across the phylogenetic tree, resulting in branch length randomization and no modification of the distribution or length. Null models test whether species are being pulled from non-random groups in a phylogeny. SES of PD_{Faith} was calculated using a custom function which maintained 'tip shuffling' randomization (based off code from Swenson (2014)). SES values (referred to as "corrected values" for the rest of this paper) were tested using the p-value (quantile) of observed vs. null communities (observed rank / # runs + 1). Positive values for corrected MPD and MNTD indicate taxa in the community are more distantly related to each other than would be expected by chance (phylogenetic overdispersion), whereas negative values indicate taxa are more closely related to each other than random chance (phylogenetic clustering). Positive corrected PD_{Faith} indicates higher PD than would be expected from a randomly assembled community. Spearman's correlation coefficients were calculated to test relatedness among metrics (alpha=0.05).

Metric	Definition	Calculation	R function	Citation
PD _{Faith}	Faith's phylogenetic diversity	Sum of total branch lengths in	pd	(Faith 1992)
		community.		
PD _{SES}	Standardized effect size of PD	Compare observed PD to null	ses.pd	(Webb et al. 2008)
		communities (expected PD).		
MPD	Mean pairwise distance	Average evolutionary distance	ses.mpd	(Webb 2000)
		between all pairwise species;		
		deep tree relatedness.		
MNTD	Mean nearest taxon distance	Average branch lengths	ses.mntd	(Webb et al. 2002)
		connecting each species to its		
		nearest relative; relatedness at		
		tips of tree.		

Table 3.3-1: Calculated phylogenetic diversity metrics using R package picante. Standardized effect scores (SES), or corrected PD, were calculated for Faith's PD, MPD, and MNTD. Abundance weighting was conducted using the option "abundance.weighted = T" in each function, except for weighted Faith's PD, which was calculated using custom code. Output from "ses." functions produce observed PD, expected PD and standardized effect values.

3.4 RESULTS

In total, 928 specimens were collected from the 21 sites representing 47 families and 194 species. SR at each site ranged from 9 to 48 (Figure 3.4-1). The regional phylogenic tree was created from 154 species (representing 39 families and 144 species + 10 identifications to genus level) found in all transects (Figure 3.4-2). Of the 39 families found in the transects, Asteraceae, Poaceae, and Fabaceae were the most diverse (38, 32, and 14 species respectively), representing 58% of the total species pool.

Corrected PD_{Faith} had no significant correlation with SR (R=0.27, p=0.24) (Figure 3.4-3). Corrected MPD and MNTD were not correlated with SR (R=0.19, p=0.41; R=0.43, p=0.052 respectively). Most corrected metric values were negative, though a few were positive, particularly for the unweighted metrics. See Supplementary Table 6 and Supplementary Figure 1 for uncorrected metric values and additional information. Abundance weighting the metrics resulted in no significant correlation with SR for all three PD metrics (R=-0.082, p=0.72; R=0.38, p=0.091; and R=0.11, p=0.63 for PD_{Faith}, MPD, and MNTD respectively).

Multiple communities significantly departed from null communities across the three metrics I evaluated (Figure 3.4-4). When abundance-weighted, more communities deviated from null communities than unweighted communities. Generally, when PD_{Faith} significantly deviated, MPD, and MNTD deviated as well.

Figure 3.4-2 Species richness varied across sites, ranging from 9 to 48.

Figure 3.4-1 Regional tree of all species at sampled sites. The four most diverse families have been highlighted, making up over half of all sampled diversity.

Figure 3.4-3 Correlation between PD, MPD, and MNTD versus species richness for both unweighted (top row) and abundance-weighted (bottom row) calculations. Shape of the tree (clustered or overdispersed) is indicated by point color, and significance is indicated by point shape.

Figure 3.4-4 Corrected PD values for Faith's PD, MPD, and MNTD for both unweighted (A) and abundance-weighted (B) calculations for each site. Color indicates corrected value of PD metric.

3.5 DISCUSSION

My results indicate substantial phylogenetic clustering, or lower PD, in many sites than would be expected from random sampling of the regional tree. I had negative values for almost all metrics at all three levels measured (PD_{Faith} = full tree, MPD = branch behavior across tree, MNTD = terminal branch behavior). When my three metrics were weighted by species abundance, I saw an increased level of clustering. This is unsurprising, as the most abundant species were predominantly those occurring in the species rich clades (*i.e.* Poaceae, Asteraceae, and Fabaceae). Clustering occurs when communities are filtered (i.e. due to high levels of disturbance, seasonality, limited precipitation, etc.), resulting in the success of closely related species, versus unfiltered communities not experiencing these stressors tending to exhibit over-dispersion (more distantly related taxa) due to increased competition in closely related species (Dayton 1971, Grime 1973, Connell and Slatyer 1977, Webb 2000, Dinnage 2009). Clustering of my sampled communities is unsurprising, as temperate prairies (due to their limited water, reliance on disturbance, and seasonality) are likely historically phylogenetically clustered and, with increased anthropogenic disturbance and climate change, likely to become increasingly less phylogenetically diverse (Wiens and Donoghue 2004, Kerkhoff et al. 2014, Larkin et al. 2015, Li et al. 2019a, Zhu et al. 2019).

My results also indicate no strong correlation between PD and SR when looking across all sites. Thus, managers/biologists cannot increase species richness and gain an expected increase in PD. This corresponds with previous studies that have found a disconnect between historical conservation prioritization that focused on protecting the greatest number of species, which may not correspond with the most evolutionarily diverse sites (Forest et al. 2007, Brum et al. 2017, Pollock et al. 2017, Rosauer et al. 2017, Daru et al. 2019). My results indicate that future studies are strongly advised to take further action to calculate PD metrics, rather than relying on species richness alone. The inclusion of PD is beneficial when inventorying communities, as more phylogenetically diverse communities are more productive (Cadotte et al. 2008), stable (Cadotte et al. 2012), diverse at higher trophic levels (Dinnage et al. 2012), and resistant to invasion (Davies et al. 2011, Li et al. 2015).

This study was conducted as a snapshot of the Prairie Coteau's tallgrass prairies in August 2019, capturing predominantly warm-season species present during this time of year. Additionally, 2019 experienced one of the wettest years on record for the region (NWS Sioux Falls NOAA), which may influence some species presence and abundance results. My inclusion of Equisetaceae when sampling resulted in the addition of large branch lengths to my trees; inclusion of these distantly related taxa (and other non-flowering clades) could impact conclusions if they are not consistently added or excluded from measurements.

Sampling at one time of the growing season has the potential to influence observed PD by undersampling taxonomic diversity (Park et al. 2018, Jantzen et al. 2019) due to temporal phenological niche separation and phenological conservatism (i.e. flowering time) (Kochmer and Handel 1986, Wright and Calderon 1995, Davies et al. 2013). However, my sampling methods included all living individuals, regardless of phenology, reducing potential sampling effects. In comparison to a regional phylogeny I created from regional species documented in the Consortium of Northern Great Plains Herbaria, my August sampling covers the breadth of regional taxa (Figure 3.5-1). However, there are many regionally rare clades that were not captured in my sampling that could add significant evolutionary history, which could be due to seasonality or my restricted sampling area. Increasing the area covered by transects would result in increased taxon coverage and include more regionally rare species. Examining occurrence data from the Consortium of NGP Herbaria, August sampling captures the majority of regional plant families indicating PD results may not be greatly impacted by reduced sampling (Supplementary Figure 2). The PD effects of seasonally biased

Figure 3.5-1: My August sampled species in relation to all species occurrence records for the region (data collected from the Consortium of the Northern Great Plains Herbaria) covers the breadth of regional taxonomic diversity. The first ring outside of the tree indicates species that have been sampled (red dash = sampled). The next ring out indicates the four most diverse families. The outermost ring shows the seven most diverse orders.

sampling were outside the scope of this project, but would be beneficial for future study to optimize sampling techniques.

My results, in addition to other recent studies, indicate projects need not incur the high costs associated with sequencing genetic information, nor need the expertise to create phylogenies from sequences and can instead rely on prebuilt trees to calculate common PD metrics (Allen et al. 2019, Jantzen et al. 2019, Latvis and Herzog 2019, Li et al. 2019b). There are some important considerations when creating these trees. Care should be taken when making trees that the conclusions match the input data. Choice of tree type, phylogram or chronogram, and which taxa are included (*e.g.* just angiosperm or all plant species) is critical when interpreting results to ensure accurate conclusions.

Future work regarding the relationships between PD and FD (functional diversity) in the tallgrass prairies of the Northern Great Plains will be informative

for multiple fields. Early studies of PD supported the idea that more closely related species will share a high degree of functional diversity (Webb et al. 2002, Cadotte et al. 2011, Flynn et al. 2011). Though this has been found in some cases, there are multiple cases where this assumption has not held true (Mouquet et al. 2012, Mazel et al. 2017). Even if the original promise of PD as a proxy for capturing FD may not hold in all cases, it may still be wise to use it as a bethedging strategy (Forest et al. 2007). Using PD to inform restoration efforts can be of benefit as well, as utilizing PD's potential to capture ecosystem function can inform restoration (Verdú et al. 2012, Barak et al. 2017, Barber et al. 2017). Understanding how grazing, a dominant use of land globally, impacts plant communities can help guide management to preserve the benefits of highly diverse plant communities (Larkin et al. 2015, Zhu et al. 2019).

3.6 CONCLUSIONS

Multiple studies have found the addition of evolutionary history to be important when trying to understand ecosystem health and functionality (Frankham 2010, Brodersen and Seehausen 2014, Di Marco 2019). Barriers of cost and computation for DNA sequencing have been greatly reduced in recent years, allowing for their increased inclusion into the conservation. My results that PD and SR do not correlate indicate the pervasive use of maximizing SR is likely not maximizing PD and the benefits it can provide for ecosystems. With the drastic decrease in the once widespread tallgrass prairies of North America, it is critical we can understand communities to make informed best management decisions.

OVERALL CONCLUSIONS

Biodiversity is being lost at an alarming rate globally. Population declines, extinctions, and loss of ecosystem functionality will have major implications for future community assemblages. The prairies of the Northern Great Plains are one such system that has been greatly reduced, now occupying less than half of its historical range and experiencing continued conversion. Likely one of the most impacted systems in the Northern Great Plains are the tallgrass prairies, which have been reduced to less than one percent of their historical extent. There has been much effort in the Prairie Coteau region of South Dakota to conserve and protect the plant and animal populations for long-term survival. To make best management practices, decision makers need to 1) be able to identify species rapidly and accurately and 2) know how to best quantify communities. My two projects aimed to address these through 1) DNA barcoding for the identification of regional plant species and 2) exploring the relationship between species richness and phylogenetic diversity.

The results of my DNA barcoding study indicate we are able to successfully identify species to genus and family level at high rates, but identification to the species level is likely not sufficient. ITS and *rbcL* are beneficial when included in a multi-locus barcode. Additionally, the inclusion of more than one loci increases identification success. Future work should examine the benefits to creating a regional database and utilizing high throughput sequencing to increase the genetic coverage to potentially increase identification success.

I found little correlation between PD and SR for regional tallgrass prairie plant communities. If managers desire to incorporate the benefits from increasing PD, increasing SR will not result in predictable PD results. Additionally, many of the sites sampled were less phylogenetically diverse than expected, indicating there is potential benefit to managing these areas to increase evolutionary diversity. Fortunately, the inclusion of PD is not onerous, as mega-phylogenies can be used and already developed programs make the creation of a regional phylogeny straightforward for non-experts.

LITERATURE CITED

- Adams, R. P., and L. N. Sharma. 2010. DNA from herbarium specimens: I. Correlation of DNA size with specimen age. Phytologia **92**:346-353.
- Allen, J. M., C. C. Germain-Aubrey, N. Barve, K. M. Neubig, L. C. Majure, S. W. Laffan, B. D. Mishler, H. L. Owens, S. A. Smith, W. M. Whitten, J. R. Abbott, D. E. Soltis, R. Guralnick, and P. S. Soltis. 2019. Spatial Phylogenetics of Florida Vascular Plants: The Effects of Calibration and Uncertainty on Diversity Estimates. iScience 11:57-70. doi:10.1016/j.isci.2018.12.002
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J Mol Biol **215**:403-410. doi:10.1016/s0022-2836(05)80360-2
- Barak, R. S., E. W. Williams, A. L. Hipp, M. L. Bowles, G. M. Carr, R. Sherman, and D. J. Larkin. 2017. Restored tallgrass prairies have reduced phylogenetic diversity compared with remnants. Journal of Applied Ecology 54:1080-1090. doi:10.1111/1365-2664.12881
- Barber, N. A., H. P. Jones, M. R. Duvall, W. P. Wysocki, M. J. Hansen, and D. J. Gibson. 2017. Phylogenetic diversity is maintained despite richness losses over time in restored tallgrass prairie plant communities. Journal of Applied Ecology 54:137-144.
- Batt, B. D. J., M. G. Anderson, C. D. Anderson, and F. D. Caswell. 1989. Use of prairie potholes by North American Ducks. Pages 204-227 in A. G. van der Valk, editor. Northern Prairie Wetlands. Iowa State University Press, Ames, IA.
- Bauman, P., J. Blastick, C. Grewing, and A. Smart. 2014. Quantifying Undisturbed Land on South Dakota's Prairie Coteau. Report, The Nature Conservancy.
- Binder, S., F. Isbell, S. Polasky, J. A. Catford, and D. Tilman. 2018. Grassland biodiversity can pay. Proceedings of the National Academy of Sciences 115:3876. doi:10.1073/pnas.1712874115
- Blischak, P. D., M. Latvis, D. F. Morales-Briones, J. C. Johnson, V. S. Di Stilio, A. D. Wolfe, and D. C. Tank. 2018. Fluidigm2PURC: Automated processing and haplotype inference for double-barcoded PCR amplicons. Applications in Plant Sciences 6:e01156. doi:10.1002/aps3.1156
- Braukmann, T. W., M. L. Kuzmina, J. Sills, E. V. Zakharov, and P. D. Hebert. 2017. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada. PLoS One **12**:e0169515. doi:10.1371/journal.pone.0169515
- Bremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M.
 Källersjö, and E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol Phylogenet Evol 24:274-301. doi:10.1016/s1055-7903(02)00240-3
- Brewer, G. E., J. J. Clarkson, O. Maurin, A. R. Zuntini, V. Barber, S. Bellot, N. Biggs, R. S.
 Cowan, N. M. J. Davies, S. Dodsworth, S. L. Edwards, W. L. Eiserhardt, N.
 Epitawalage, S. Frisby, A. Grall, P. J. Kersey, L. Pokorny, I. J. Leitch, F. Forest, and

W. J. Baker. 2019. Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Frontiers in Plant Science **10**. doi:10.3389/fpls.2019.01102

- Brodersen, J., and O. Seehausen. 2014. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evolutionary applications **7**:968-983. doi:10.1111/eva.12215
- Brum, F. T., C. H. Graham, G. C. Costa, S. B. Hedges, C. Penone, V. C. Radeloff, C. Rondinini, R. Loyola, and A. D. Davidson. 2017. Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences **114**:7641. doi:10.1073/pnas.1706461114
- Cadotte, M. W. 2013. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc Natl Acad Sci U S A **110**:8996-9000. doi:10.1073/pnas.1301685110
- Cadotte, M. W., B. J. Cardinale, and T. H. Oakley. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences **105**:17012. doi:10.1073/pnas.0805962105
- Cadotte, M. W., K. Carscadden, and N. Mirotchnick. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology **48**:1079-1087. doi:10.1111/j.1365-2664.2011.02048.x
- Cadotte, M. W., and T. J. Davies. 2010. Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Diversity and Distributions **16**:376-385. doi:10.1111/j.1472-4642.2010.00650.x
- Cadotte, M. W., T. J. Davies, J. Regetz, S. W. Kembel, E. Cleland, and T. H. Oakley. 2010. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett **13**:96-105. doi:10.1111/j.1461-0248.2009.01405.x
- Cadotte, M. W., R. Dinnage, and D. Tilman. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology **93**:S223-S233. doi:10.1890/11-0426.1
- Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics **10**:421. doi:10.1186/1471-2105-10-421
- Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani,
 G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B.
 Grace, A. Larigauderie, D. S. Srivastava, and S. Naeem. 2012. Biodiversity loss and
 its impact on humanity. Nature 486:59-67. doi:10.1038/nature11148
- Cavender-Bares, J., K. H. Kozak, P. V. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecol Lett **12**:693-715. doi:10.1111/j.1461-0248.2009.01314.x
- CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proc Natl Acad Sci U S A **106**:12794-12797. doi:10.1073/pnas.0905845106
- Chamberlain, S., and E. Szocs. 2013. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Research **2**. doi:10.12688/f1000research.2-191.v2

- Chamberlain, S., E. Szoecs, Z. Foster, Z. Arendsee, C. Boettiger, K. Ram, I. Bartomeus, J. Baumgartner, J. O'Donnell, J. Oksanen, B. G. Tzovaras, P. Marchand, V. Tran, M. Salmon, G. Li, and M. Grenié. 2020. taxize: Taxonomic information from around the web.
- Chase, M. W., R. S. Cowan, P. M. Hollingsworth, C. van den Berg, S. Madrinan, G.
 Petersen, O. Seberg, T. Jorgsensen, K. M. Cameron, M. Carine, N. Pedersen, T. A.
 J. Hedderson, F. Conrad, G. A. Salazar, J. E. Richardson, M. L. Hollingsworth, T. G.
 Barraclough, L. Kelly, and M. Wilkinson. 2007. A Proposal for a Standardised
 Protocol to Barcode All Land Plants. Taxon 56:295-299.
- Chen, S., H. Yao, J. Han, C. Liu, J. Song, L. Shi, Y. Zhu, X. Ma, T. Gao, X. Pang, K. Luo, Y. Li, X. Li, X. Jia, Y. Lin, and C. Leon. 2010. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS One 5:e8613. doi:10.1371/journal.pone.0008613
- China Plant BOL Group, D.-Z. Li, L.-M. Gao, H.-T. Li, H. Wang, X.-J. Ge, J.-Q. Liu, Z.-D.
 Chen, S.-L. Zhou, S.-L. Chen, J.-B. Yang, C.-X. Fu, C.-X. Zeng, H.-F. Yan, Y.-J. Zhu, Y.-S. Sun, S.-Y. Chen, L. Zhao, K. Wang, T. Yang, and G.-W. Duan. 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences 108:19641-19646. doi:10.1073/pnas.1104551108 %J Proceedings of the National Academy of Sciences
- Clark, K., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers. 2016. GenBank. Nucleic acids research **44**:D67-D72. doi:10.1093/nar/gkv1276
- Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. The American Naturalist **111**:1119-1144. doi:10.1086/283241
- Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S. J. Anderson, I. Kubiszewski, S. Farber, and R. K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26:152-158. doi:10.1016/j.gloenvcha.2014.04.002
- Daru, B. H., P. C. le Roux, J. Gopalraj, D. S. Park, B. G. Holt, and M. Greve. 2019. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Global Ecology and Biogeography 28:757-766. doi:10.1111/geb.12888
- Daubenmire, R. 1959. A canopy-coverage method of vegetational analysis. Northwest Science **33**:43-64.
- Davies, K. F., J. Cavender-Bares, and N. Deacon. 2011. Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Diversity and Distributions **17**:35-42.
- Davies, T. J., E. M. Wolkovich, N. J. B. Kraft, N. Salamin, J. M. Allen, T. R. Ault, J. L.
 Betancourt, K. Bolmgren, E. E. Cleland, B. I. Cook, T. M. Crimmins, S. J. Mazer, G.
 J. McCabe, S. Pau, J. Regetz, M. D. Schwartz, and S. E. Travers. 2013. Phylogenetic conservatism in plant phenology. Journal of Ecology 101:1520-1530. doi:10.1111/1365-2745.12154

- Dayton, P. K. 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs **41**:351-389.
- DeSalle, R., and G. Amato. 2004. The expansion of conservation genetics. Nature Reviews Genetics **5**:702-712. doi:10.1038/nrg1425
- Di Marco, S. 2019. Integrating Ecology and Evolutionary Theory: A Game Changer for Biodiversity Conservation? Pages 317-337 *in* E. Casetta, J. Marques da Silva, and D. Vecchi, editors. From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges. Springer International Publishing, Cham.
- Díaz, S., J. Settele, E. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. Brauman, K. C. Stuart Butchart, L. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. R. Chowdhury, Y.-J. Shin, I. Visseren-Hamakers, K. Willis, and C. Zayas. 2019. IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services., IPBES secretariat, Bonn, Germany.
- Dinnage, R. 2009. Disturbance Alters the Phylogenetic Composition and Structure of Plant Communities in an Old Field System. PLoS One **4**:e7071. doi:10.1371/journal.pone.0007071
- Dinnage, R., M. W. Cadotte, N. M. Haddad, G. M. Crutsinger, and D. Tilman. 2012. Diversity of plant evolutionary lineages promotes arthropod diversity. Ecology Letters 15:1308-1317. doi:10.1111/j.1461-0248.2012.01854.x
- Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin **19**:11-15.
- Drew, L. W. 2011. Are We Losing the Science of Taxonomy?: As need grows, numbers and training are failing to keep up. BioScience **61**:942-946. doi:10.1525/bio.2011.61.12.4
- Elliott, M. J., N. J. Knerr, and A. N. Schmidt-Lebuhn. 2018. Choice between phylogram and chronogram can have a dramatic impact on the location of phylogenetic diversity hotspots. Journal of Biogeography **45**:2190-2201. doi:10.1111/jbi.13399
- Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation **61**:1-10.
- Floyd, R., J. Lima, L. Humble, and R. Hanner. 2010. Common goals: policy implications of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions 12:2947-2954.
- Flynn, D. F. B., N. Mirotchnick, M. Jain, M. I. Palmer, and S. Naeem. 2011. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573-1581. doi:10.1890/10-1245.1
- Forest, F., R. Grenyer, M. Rouget, T. J. Davies, R. M. Cowling, D. P. Faith, A. Balmford, J. C. Manning, Ş. Procheş, M. van der Bank, G. Reeves, T. A. J. Hedderson, and V. Savolainen. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757. doi:10.1038/nature05587

- Frankham, R. 2010. Challenges and opportunities of genetic approaches to biological conservation. Biological Conservation **143**:1919-1927. doi:https://doi.org/10.1016/j.biocon.2010.05.011
- Grime, J. P. 1973. Competitive Exclusion in Herbaceous Vegetation. Nature **242**:344-347. doi:10.1038/242344a0
- Handy, S. M., J. R. Deeds, N. V. Ivanova, P. D. Hebert, R. H. Hanner, A. Ormos, L. A. Weigt, M. M. Moore, and H. F. Yancy. 2011. A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J AOAC Int **94**:201-210.
- Hebert, P. D., A. Cywinska, S. L. Ball, and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proc Biol Sci **270**:313-321. doi:10.1098/rspb.2002.2218
- Heckenhauer, J., M. H. J. Barfuss, and R. Samuel. 2016. Universal multiplexable matK primers for DNA barcoding of angiosperms. Applications in Plant Sciences
 4:apps.1500137. doi:10.3732/apps.1500137
- Hector, A., B. Schmid, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G.
 Dimitrakopoulos, J. A. Finn, H. Freitas, P. S. Giller, J. Good, R. Harris, P. Högberg, K. Huss-Danell, J. Joshi, A. Jumpponen, C. Körner, P. W. Leadley, M. Loreau, A. Minns, C. P. H. Mulder, G. O'Donovan, S. J. Otway, J. S. Pereira, A. Prinz, D. J. Read, M. Scherer-Lorenzen, E. D. Schulze, A. S. D. Siamantziouras, E. M. Spehn, A. C. Terry, A. Y. Troumbis, F. I. Woodward, S. Yachi, and J. H. Lawton. 1999. Plant Diversity and Productivity Experiments in European Grasslands. Science 286:1123-1127.
- Hoekstra, J. M., T. M. Boucher, T. H. Ricketts, and C. J. E. I. Roberts. 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8:23-29.
- Hollingsworth, M. L., A. Andra Clark, L. L. Forrest, J. Richardson, R. T. Pennington, D. G. Long, R. Cowan, M. W. Chase, M. Gaudeul, and P. M. Hollingsworth. 2009.
 Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439-457. doi:10.1111/j.1755-0998.2008.02439.x
- Hollingsworth, P. M., S. W. Graham, and D. P. Little. 2011. Choosing and using a plant DNA barcode. PLoS One **6**:e19254-e19254. doi:10.1371/journal.pone.0019254
- Hollingsworth, P. M., D. Z. Li, M. van der Bank, and A. D. Twyford. 2016. Telling plant species apart with DNA: from barcodes to genomes. Philos Trans R Soc Lond B Biol Sci **371**. doi:10.1098/rstb.2015.0338
- Holm, S. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics **6**:65-70.
- Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt, and M. I. O'Connor. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105-108. doi:10.1038/nature11118
- Howard, C., C. H. Flather, and P. A. Stephens. 2020. A global assessment of the drivers of threatened terrestrial species richness. Nature Communications **11**:993. doi:10.1038/s41467-020-14771-6

- Humphries, C. J., P. H. Williams, and R. I. Vane-Wright. 1995. Measuring biodiversity value for conservation. Annual review of ecology and systematics **26**:93-111.
- Hungate, B. A., E. B. Barbier, A. W. Ando, S. P. Marks, P. B. Reich, N. van Gestel, D. Tilman, J. M. H. Knops, D. U. Hooper, B. J. Butterfield, and B. J. Cardinale. 2017. The economic value of grassland species for carbon storage. Science Advances 3:e1601880. doi:10.1126/sciadv.1601880
- Igl, L. D., J. A. Shaffer, D. H. Johnson, and D. A. Buhl. 2017. The influence of local- and landscape-level factors on wetland breeding birds in the Prairie Pothole Region of North and South Dakota: U.S. Geological Survey Open-file Report 2017-1096. Page 65 *in* U. S. G. Survey, editor.
- Illumina Inc. 2013. 16s metagenomic sequencing library preparation.
- IPBES. 2018. Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for the Americas of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES, IPBES secretariat, Bonn, Germany.
- Isaac, N. J. B., S. T. Turvey, B. Collen, C. Waterman, and J. E. M. Baillie. 2007. Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny. PLoS One 2:e296. doi:10.1371/journal.pone.0000296
- Isbell, F., D. Craven, J. Connolly, M. Loreau, B. Schmid, C. Beierkuhnlein, T. M. Bezemer, C. Bonin, H. Bruelheide, E. de Luca, A. Ebeling, J. N. Griffin, Q. Guo, Y. Hautier, A. Hector, A. Jentsch, J. Kreyling, V. Lanta, P. Manning, S. T. Meyer, A. S. Mori, S. Naeem, P. A. Niklaus, H. W. Polley, P. B. Reich, C. Roscher, E. W. Seabloom, M. D. Smith, M. P. Thakur, D. Tilman, B. F. Tracy, W. H. van der Putten, J. van Ruijven, A. Weigelt, W. W. Weisser, B. Wilsey, and N. Eisenhauer. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574-577. doi:10.1038/nature15374
- Jantzen, J. R., W. M. Whitten, K. M. Neubig, L. C. Majure, D. E. Soltis, and P. S. Soltis. 2019. Effects of taxon sampling and tree reconstruction methods on phylodiversity metrics. Ecology and evolution **9**:9479-9499. doi:10.1002/ece3.5425
- Jenkins, C. N., S. L. Pimm, and L. N. Joppa. 2013. Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences 110:E2602. doi:10.1073/pnas.1302251110
- Jin, Y., and H. Qian. 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography **42**:1353-1359. doi:10.1111/ecog.04434
- Johnson, M. G., L. Pokorny, S. Dodsworth, L. R. Botigué, R. S. Cowan, A. Devault, W. L. Eiserhardt, N. Epitawalage, F. Forest, J. T. Kim, J. H. Leebens-Mack, I. J. Leitch, O. Maurin, D. E. Soltis, P. S. Soltis, G. K.-s. Wong, W. J. Baker, and N. J. Wickett. 2018. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Systematic Biology 68:594-606. doi:10.1093/sysbio/syy086
- Kane, N., S. Sveinsson, H. Dempewolf, J. Y. Yang, D. Zhang, J. M. M. Engels, and Q. Cronk. 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole

chloroplast genomes and nuclear ribosomal DNA. American Journal of Botany **99**:320-329. doi:10.3732/ajb.1100570

- Kenchington, T., and E. Kenchington. 2013. Biodiversity Metrics for Use in the Ecosystem Approach to Oceans Management.
- Kerkhoff, A. J., P. E. Moriarty, and M. D. Weiser. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences of the United States of America **111**:8125-8130. doi:10.1073/pnas.1308932111
- Kochmer, J. P., and S. N. Handel. 1986. Constraints and Competition in the Evolution of Flowering Phenology. Ecological Monographs **56**:303-325. doi:10.2307/1942549
- Kress, W. J., and D. L. Erickson. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508. doi:10.1371/journal.pone.0000508
- Kress, W. J., D. L. Erickson, F. A. Jones, N. G. Swenson, R. Perez, O. Sanjur, and E. Bermingham. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences **106**:18621. doi:10.1073/pnas.0909820106
- Kress, W. J., K. J. Wurdack, E. A. Zimmer, L. A. Weigt, and D. H. Janzen. 2005. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A **102**:8369-8374. doi:<u>https://doi.org/10.1073/pnas.0503123102</u>
- Lahaye, R., M. van der Bank, D. Bogarin, J. Warner, F. Pupulin, G. Gigot, O. Maurin, S. Duthoit, T. G. Barraclough, and V. Savolainen. 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences 105:2923. doi:10.1073/pnas.0709936105
- Lark, T. J., J. Meghan Salmon, and H. K. Gibbs. 2015. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environmental Research Letters **10**:044003. doi:10.1088/1748-9326/10/4/044003
- Larkin, D. J., A. L. Hipp, J. Kattge, W. Prescott, R. K. Tonietto, S. K. Jacobi, and M. L. Bowles. 2015. Phylogenetic measures of plant communities show long-term change and impacts of fire management in tallgrass prairie remnants. Journal of Applied Ecology 52:1638-1648. doi:10.1111/1365-2664.12516
- Larridon, I., T. Villaverde, A. R. Zuntini, L. Pokorny, G. E. Brewer, N. Epitawalage, I. Fairlie, M. Hahn, J. Kim, E. Maguilla, O. Maurin, M. Xanthos, A. L. Hipp, F. Forest, and W. J. Baker. 2020. Tackling Rapid Radiations With Targeted Sequencing. Frontiers in Plant Science 10:1655-1655. doi:10.3389/fpls.2019.01655
- Latvis, M., and S. Herzog. 2019. Disparities between biodiversity metrics in prairie communities: implications for ecosystem services and management. Botany 2019, Tucson, Arizona.
- Li, D., J. E. D. Miller, and S. Harrison. 2019a. Climate drives loss of phylogenetic diversity in a grassland community. Proceedings of the National Academy of Sciences **116**:19989. doi:10.1073/pnas.1912247116
- Li, D., L. Trotta, H. E. Marx, J. M. Allen, M. Sun, D. E. Soltis, P. S. Soltis, R. P. Guralnick, and B. Baiser. 2019b. For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology **100**:e02788. doi:10.1002/ecy.2788

- Li, S. p., T. Guo, M. W. Cadotte, Y. j. Chen, J. I. Kuang, Z. s. Hua, Y. Zeng, Y. Song, Z. Liu, and W. s. Shu. 2015. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. Journal of Applied Ecology 52:89-99.
- Love, B. G., and J. H. Cane. 2019. Mortality and Flowering of Great Basin Perennial Forbs After Experimental Burning: Implications for Wild Bees. Rangeland Ecology & Management **72**:310-317. doi:10.1016/j.rama.2018.11.001
- Mazel, F., A. O. Mooers, G. V. D. Riva, and M. W. Pennell. 2017. Conserving Phylogenetic Diversity Can Be a Poor Strategy for Conserving Functional Diversity. Syst Biol 66:1019-1027. doi:10.1093/sysbio/syx054
- Meir, E., S. Andelman, and H. P. Possingham. 2004. Does conservation planning matter in a dynamic and uncertain world? Ecology Letters **7**:615-622. doi:10.1111/j.1461-0248.2004.00624.x
- Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, D.C.
- Moorhouse-Gann, R. J., J. C. Dunn, N. de Vere, M. Goder, N. Cole, H. Hipperson, and W.
 O. C. Symondson. 2018. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Sci Rep 8:8542. doi:10.1038/s41598-018-26648-2
- Moquet, N., V. Devictor, C. N. Meynard, F. Munoz, L.-F. Bersier, J. Chave, P. Couteron, A. Dalecky, C. Fontaine, D. Gravel, and Others. 2012. Ecophylogenetics: advances and perspecitves. Biological reviews **87**:769-785.
- Moreno, C. E., J. M. Calderón-Patrón, V. Arroyo-Rodríguez, F. Barragán, F. Escobar, Y. Gómez-Ortiz, N. Martín-Regalado, A. P. Martínez-Falcón, M. Á. Martínez-Morales, E. Mendoza, I. J. Ortega-Martínez, C. X. Pérez-Hernández, E. Pineda, R. Pineda-López, C. L. Rios-Díaz, P. Rodríguez, F. Rosas, J. E. Schondube, and I. Zuria. 2017. Measuring biodiversity in the Anthropocene: a simple guide to helpful methods. Biodiversity and Conservation 26:2993-2998. doi:10.1007/s10531-017-1401-1
- Mouquet, N., V. Devictor, C. N. Meynard, F. Munoz, L.-F. Bersier, J. Chave, P. Couteron, A. Dalecky, C. Fontaine, D. Gravel, O. J. Hardy, F. Jabot, S. Lavergne, M. Leibold, D. Mouillot, T. Münkemüller, S. Pavoine, A. Prinzing, A. S. L. Rodrigues, R. P. Rohr, E. Thébault, and W. Thuiller. 2012. Ecophylogenetics: advances and perspectives. Biological reviews 87:769-785. doi:10.1111/j.1469-185X.2012.00224.x
- Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature **403**:853-858. doi:10.1038/35002501
- Naeem, S. 1994. Declining biodiversity can alter the performance of ecosystems. Nature **368**:734-737.
- Newbold, T., L. N. Hudson, A. P. Arnell, S. Contu, A. De Palma, S. Ferrier, S. L. L. Hill, A. J. Hoskins, I. Lysenko, H. R. P. Phillips, V. J. Burton, C. W. T. Chng, S. Emerson, D. Gao, G. Pask-Hale, J. Hutton, M. Jung, K. Sanchez-Ortiz, B. I. Simmons, S. Whitmee, H. Zhang, J. P. W. Scharlemann, and A. Purvis. 2016. Has land use

pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science **353**:288. doi:10.1126/science.aaf2201

- Nock, C. J., D. L. E. Waters, M. A. Edwards, S. G. Bowen, N. Rice, G. M. Cordeiro, and R. J. Henry. 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnology Journal **9**:328-333. doi:10.1111/j.1467-7652.2010.00558.x
- Park, D. S., S. Worthington, and Z. Xi. 2018. Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Molecular Ecology 27:1296-1308. doi:10.1111/mec.14520
- Parks, M., R. Cronn, and A. Liston. 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology **7**:84. doi:10.1186/1741-7007-7-84
- Parmentier, I., J. Duminil, M. Kuzmina, M. Philippe, D. W. Thomas, D. Kenfack, G. B. Chuyong, C. Cruaud, and O. J. Hardy. 2013. How Effective Are DNA Barcodes in the Identification of African Rainforest Trees? PLoS One 8:e54921. doi:10.1371/journal.pone.0054921
- Parveen, I., S. Gafner, N. Techen, S. J. Murch, and I. A. Khan. 2016. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations. Planta Med 82:1225-1235. doi:10.1055/s-0042-111208
- Peart, B. 2008. Life in a Working Landscape: Towards a Conservation Strategy for the World's Temerate Grasslands.*in* The World Temperate Grasslands Conservation Initiative Workshop. IUCN World Commission on Protected Areas, Hohhot, China.
- Pérez-Losada, M., C. Jara, G. Bond-Buckup, and K. Crandall. 2002. Conservation phylogenetics of Chilean freshwater crabs Aegla (Anomura, Aeglidae): Assigning priorities for aquatic habitat protection. Biological Conservation 105:345-353.
- Pollock, L. J., W. Thuiller, and W. Jetz. 2017. Large conservation gains possible for global biodiversity facets. Nature **546**:141-144. doi:10.1038/nature22368
- Pyle, M. M., and R. P. Adams. 1989. In situ preservation of DNA in plant specimens. Taxon **38**:576-581.
- R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria.
- Ramankutty, N., and J. A. Foley. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles **13**:997-1027. doi:10.1029/1999GB900046
- Rieseberg, L. H., and D. E. Soltis. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants **5**:65-84.
- Rodrigues, A. S. L., T. M. Brooks, and K. J. Gaston. 2005. Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference? Phylogeny and conservation.
- Rodrigues, A. S. L., and K. J. Gaston. 2002. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation 105:103-111.

- Rosauer, D. F., L. J. Pollock, S. Linke, and W. Jetz. 2017. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proceedings of the Royal Society B: Biological Sciences **284**. doi:10.1098/rspb.2017.0627
- Rothfels, C., K. Pryer, and F.-W. Li. 2016. Next-generation polyploid phylogenetics: Rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. The New phytologist **213**. doi:10.1111/nph.14111
- Roy, S., A. Tyagi, V. Shukla, A. Kumar, U. M. Singh, L. B. Chaudhary, B. Datt, S. K. Bag, P. K. Singh, N. K. Nair, T. Husain, and R. Tuli. 2010. Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species. PLoS One 5:e13674. doi:10.1371/journal.pone.0013674
- Safi, K., M. V. Cianciaruso, R. D. Loyola, D. Brito, K. Armour-Marshall, and J. A. F. Diniz-Filho. 2011. Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 366:2536-2544. doi:10.1098/rstb.2011.0024
- Samson, F. B., F. L. Knopf, and W. R. Ostlie. 2004. Great Plains ecosystems: past, present, and future. Wildlife Society Bulletin **32**:6-15.
- Sang, T., D. Crawford, and T. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot **84**:1120.
- Sarkinen, T., M. Staats, J. E. Richardson, R. S. Cowan, and F. T. Bakker. 2012. How to open the treasure chest? Optimising DNA extraction from herbarium specimens.
 PLoS One 7:e43808. doi:10.1371/journal.pone.0043808
- Savolainen, P., and J. Lundeberg. 1999. Forensic evidence based on mtDNA from dog and wolf hairs. Journal of Forensic Science **44**:77-81.
- Savolainen, V., P. Cuénoud, R. Spichiger, M. D. Martinez, M. Crèvecoeur, and J.-F. Manen. 1995. The use of herbarium specimens in DNA phylogenetics: evaluation and improvement. Plant systematics and Evolution **197**:87-98.
- Scott, J. M., B. Csuti, J. D. Jacobi, and J. E. Estes. 1987. Species Richness. BioScience 37:782-788. doi:10.2307/1310544
- Seberg, O., and G. Petersen. 2009. How Many Loci Does it Take to DNA Barcode a Crocus? PLoS One **4**:e4598. doi:10.1371/journal.pone.0004598
- Shannon, C. E. 1948. A mathematical theory of communication. Bell system technical journal **27**:379-423.
- Simpson, E. H. 1949. Measurement of Diversity. Nature **163**:688-688. doi:10.1038/163688a0
- Skagen, S. K., P. B. Sharpe, R. G. Waltermire, and M. B. Dillon. 1999. Biogeographical profiles of shorebird migration in midcontinental North America. GEOLOGICAL SURVEY FORT COLLINS CO BIOLOGICAL RESOURCES DIV.
- Smith, S. A., and J. W. Brown. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany **105**:302-314. doi:10.1002/ajb2.1019
- Soltis, D. E., and R. K. Kuzoff. 1995. DISCORDANCE BETWEEN NUCLEAR AND CHLOROPLAST PHYLOGENIES IN THE HEUCHERA GROUP (SAXIFRAGACEAE). Evolution **49**:727-742. doi:10.1111/j.1558-5646.1995.tb02309.x
- Southwick Associates. 2017. Economic Impact of Outdoor Activities Managed by South Dakota Department of Game, Fish and Parks. Fernandina Beach, FL.

- Spooner, D. M. 2009. DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. American Journal of Botany **96**:1177-1189.
- Staats, M., A. Cuenca, J. E. Richardson, R. Vrielink-van Ginkel, G. Petersen, O. Seberg, and F. T. Bakker. 2011. DNA damage in plant herbarium tissue. PLoS One 6:e28448. doi:10.1371/journal.pone.0028448
- Steele, P. R., and J. C. Pires. 2011. Biodiversity assessment: State-of-the-art techniques in phylogenomics and species identification. American Journal of Botany 98:415-425. doi:10.3732/ajb.1000296
- Swenson, N. G. 2014. Functional and phylogenetic ecology in R. Springer.
- Syme, A. E., F. Udovicic, V. Stajsic, and D. J. Murphy. 2013. A test of sequence-matching algorithms for a DNA barcode database of invasive grasses. DNA Barcodes **1**. doi:10.2478/dna-2012-0002
- Tate, J., and B. Simpson. 2003. Paraphyly of Tarasa (Malvaceae) and Diverse Origins of the Polyploid Species. Systematic Botany **28**:723. doi:10.1043/02-64.1
- Tewksbury, J. J., J. G. T. Anderson, J. D. Bakker, T. J. Billo, P. W. Dunwiddie, M. J. Groom,
 S. E. Hampton, S. G. Herman, D. J. Levey, N. J. Machnicki, C. M. del Rio, M. E.
 Power, K. Rowell, A. K. Salomon, L. Stacey, S. C. Trombulak, and T. A. Wheeler.
 2014. Natural History's Place in Science and Society. BioScience 64:300-310.
 doi:10.1093/biosci/biu032
- The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society **161**:105-121. doi:10.1111/j.1095-8339.2009.00996.x
- Tilman, D. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature **379**:718-720.
- Tilman, D. 2001. Functional Diversity. Encyclopedia of biodiversity 2:109-120.
- Tilman, D., P. B. Reich, and J. M. H. Knops. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature **441**:629-632. doi:10.1038/nature04742
- Tucker, C. M., and M. W. Cadotte. 2013. Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions 19:845-854. doi:doi:10.1111/ddi.12087
- Van Bruggen, T. 1985. The Vascular Plants of South Dakota. Second edition. Iowa State University Press, 2121 South State Ave, IA 50010.
- Vellend, M., W. K. Cornwell, K. Magnuson-Ford, and A. Mooers. 2011. Measuring phylogenetic biodiversity. Oxfor Uniersity Press, Oxford.
- Verdú, M., L. Gómez-Aparicio, and A. Valiente-Banuet. 2012. Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis. Proceedings: Biological Sciences **279**:1761-1767.
- Webb, C. O. 2000. Exploting the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist **156**:475-505.
- Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual review of ecology and systematics **33**:475-505. doi:10.1146/annurev.ecolysis.33.010802.150448

- Wetterstrand, K. 2019. DNA Sequencing Costs: Data frm the NHGRI Genome Sequencing Program (GSP) Available at: <u>www.genome.gov/sequencingcostsdata</u>.
- Wiens, J. J., and M. J. Donoghue. 2004. Historical biogeography, ecology and species richness. Trends in Ecology & Evolution **19**:639-644. doi:https://doi.org/10.1016/j.tree.2004.09.011
- Winter, M., V. Devictor, and O. Scheweiger. 2013. Phylogenetic diversity and nature conservation: where are we? Trends in Ecolgy & Evolution **28**:199-204.
- World Wildlife Fund. 2018a. Living Planet Report 2018: Aiming Higher. WWF, Gland, Switzerland, WWF, Gland, Switzerland.
- World Wildlife Fund. 2018b. The Plowprint Report: 2018. World Wildlife Fund.
- Wright, C. K., B. Larson, T. J. Lark, and H. K. Gibbs. 2017. Recent grassland losses are concentrated around US ethanol refineries. Environmental Research Letters 12:044001.
- Wright, C. K., and M. C. Wimberly. 2013. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc Natl Acad Sci U S A **110**:4134-4139. doi:10.1073/pnas.1215404110
- Wright, S. J., and O. Calderon. 1995. Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology:937-948.
- Zanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, B. C. O'Meara, A. T. Moles, P. B. Reich, D. L. Royer, D. E. Soltis, P. F. Stevens, M. Westoby, I. J. Wright, L. Aarssen, R. I. Bertin, A. Calaminus, R. Govaerts, F. Hemmings, M. R. Leishman, J. Oleksyn, P. S. Soltis, N. G. Swenson, L. Warman, and J. M. Beaulieu. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506:89-92. doi:10.1038/nature12872
- Zhu, J., Y. Zhang, W. Wang, X. Yang, N. Chen, R. Shen, L. Wang, and L. Jiang. 2019.
 Species turnover drives grassland community to phylogenetic clustering over long-term grazing disturbance. Journal of Plant Ecology. doi:10.1093/jpe/rtz057

APPENDIX A

Scientific Name	
Achillea millefolium	
Aesculus glabra	
Agoseris glauca	
Agrimonia striata	
Agrostis stolonifera	
Allium stellatum	
Ambrosia artemisiifolia	
Ambrosia psilostachya	
Amelanchier alnifolia	
Amorpha canescens	
Amorpha fruticosa	
Amphicarpaea bracteata	
Andropogon gerardii	
Anemone canadensis	
Anemone cylindrica	
Anemone patens	
Apocynum cannabinum	
Arctium minus	
Artemisia frigida	
Artemisia ludoviciana	
Asclepias incarnata	
Asclepias speciosa	
Asclepias syriaca	
Asclepias verticillata	
Asclepias viridiflora	
Aster ericoides	
Aster lanceolatus	
Aster nova-angliae	
Aster oblongifolius	
Aster sericeus	
Astragalus crassicarpus	
Bidens frondosa	
Bouteloua curtipendula	
Bromus inermis	
Calamagrostis canadensis	
Calamagrostis stricta	
Caltha palustris	
Calylophus serrulatus	
Calystegia macounii	
Calystegia sepium	
Capsella bursa-pastoris	
Caragana arborescens	
Cardamine bulbosa	
Carduus nutans	
Carex aquatilis	
Carex blanda	
Carex brevior	
Carex cristatella	
Carex emoryi	
Carex granularis	
Carex gravida	
Carex hystericina	
Carex meadii	
Carex molesta	
Carex pellita	
Carex sartwellii	

Supplementary Table 1: Oak Lake Field Station species list. Primarily compiled by Dr. Gary Larson (retired).

Carex sprengelii Carex stricta Carex tenera Carex tetanica Carex utriculata Carex vulpinoidea Celastrus scandens Celtis occidentalis Ceratophyllum demersum Cicuta bulbifera Cicuta maculata Cirsium arvense Cirsium flodmanii Cirsium vulgare Comandra umbellata Conyza canadensis Cornus sericea Crataegus succulenta Cryptotaenia canadensis Cypripedium candidum Dalea purpurea Delphinium virescens Dicentra cucullaria Dichanthelium acuminatum Dichanthelium oligosanthes var. scribnerianum Dichanthelium wilcoxianum Echinacea angustifolia Elaeagnus angustifolia Eleocharis erythropoda Eleocharis palustrus Elymus repens Elymus villosus Elymus virginicus Epilobium leptophyllum Equisetum arvense Equisetum laevigatum Erigeron philadelphicus Erigeron strigosus Eriophorum angustifolium Erysimum cheiranthoides Eupatorium maculatum Eupatorium perfoliatum Eupatorium rugosum Euthamia graminifolia Festuca subverticillata Fragaria virginiana Fraxinus pennsylvanica Galium aparine Galium boreale Galium trifidum Galium triflorum Gentiana puberulenta Geum aleppicum Geum canadense Geum triflorum Gleditsia triacanthos Glyceria grandis Glyceria striata Glycyrrhiza lepidota Grindelia squarrosa Helenium autumnale Helianthus grosseserratus Helianthus maximiliani Helianthus nuttallii Helianthus pauciflorus Heliopsis helianthoides

Hierochloe hirta Hordeum jubatum Hydrophyllum virginianum Impatiens capensis Juncus dudleyi Juncus nodosus Juniperus virginiana Koeleria macrantha Kuhnia eupatorioides Lactuca canadensis Lathyrus palustris Lathyrus venosus Lemna trisulca Lemna turionifera Lepidium densiflorum Liatris aspera Liatris punctata Liparis loeselii Lithospermum canescens Lithospermum incisum Lobelia spicata Lonicera tatarica Lycium barbarum Lycopus americanus Lycopus asper Lycopus uniflorus Lygodesmia juncea Lysimachia ciliata Lysimachia thyrsiflora Matricaria matricarioides Medicago lupulina Medicago sativa Melilotus albus Melilotus officinalis Mimulus glabratus Mirabilis nyctaginea Monarda fistulosa Muhlenbergia cuspidata Oenothera biennis Onosmodium molle Osmorhiza longistylis Oxalis stricta Oxalis violacea Panicum virgatum Parthenocissus vitacea Pedicularis lanceolata Penstemon albidus Phalaris arundinacea Phleum pratense Phlox pilosa Phryma leptostachya Physalis virginiana Picea abies Picea glauca Pinus ponderosa Plantago major Platanthera hyperborea Poa palustris Poa pratensis Polygonatum biflorum Polygonum amphibium Polygonum aviculare Polygonum coccineum Populus deltoides Populus X jackii Potentilla anserina

Prunus americana Prunus virginiana Psoralea argophylla Psoralea esculenta Pyrus baccata Quercus macrocarpa Ranunculus hispidus Ratibida columnifera Rhamnus cathartica Rhus glabra Ribes americanum Ribes missouriense Rorippa palustris subsp. fernaldiana Rosa arkansana Rubus occidentalis Rudbeckia laciniata Rumex crispus Rumex orbiculatus Salix alba Salix amygdaloides Salix exigua Sambucus canadensis Schizachyrium scoparium Scirpus microcarpus Scirpus pallidus Scirpus tabernaemontani Scrophularia lanceolata Scutellaria lateriflora Senecio plattensis Senecio pseudaureus Setaria glauca Setaria viridis Shepherdia argentea Silphium perfoliatum Sisyrinchium campestre Smilacina stellata Solidago canadensis Solidago gigantea Solidago missouriensis Solidago rigida Sorghastrum nutans Sparganium eurycarpum Spartina pectinata Sphenopholis obtusata Sporobolus compositus Sporobolus heterolepis Stachys palustris Stellaria longifolia Stellaria media Stipa spartea Stipa viridula Symphoricarpos occidentalis Taraxacum officinale Thalictrum dasycarpum Toxicodendron rydbergii Tradescantia bracteata Tragopogon dubius Trifolium pratense Trifolium repens Typha angustifolia Typha latifolia Typha X glauca Ulmus americana Ulmus pumila Urtica dioica Verbena bracteata

Verbena hastata	
Verbena stricta	
Vernonia fasciculata	
Veronica anagallis-aquatica	
Veronica peregrina	
Vicia americana	
Viola canadensis	
Viola nephrophylla	
Viola pedatifida	
Viola sororia	
Vitis riparia	
Zigadenus elegans	
Zizia aptera	
Zizia aurea	

Supplementary Table 2: Impact of increasing number of loci in barcode on successful identification at the species, genus, and family levels. Number of sequences and proportions given.

Number of Loci

Loci	Sequences	Family	Genus	Species	PropFamily	PropGenus	PropSpecies
1	584	560	530	224	0.96	0.91	0.38
2	485	463	439	227	0.95	0.91	0.47
3	225	216	208	116	0.96	0.92	0.52
4	35	35	35	23	1.00	1.00	0.66

Locus	Sequences	Family	Genus	Species	PropFamily	PropGenus	PropSpecies	SequecingSuccess
ITS	170	163	155	90	0.96	0.91	0.53	59.44
ITS_matk	64	60	57	28	0.94	0.89	0.44	22.38
ITS_matk_rbcL	63	59	56	27	0.94	0.89	0.43	22.03
ITS_matk_rbcL_trnH	35	35	35	23	1.00	1.00	0.66	12.24
ITS_matk_trnH	35	35	35	22	1.00	1.00	0.63	12.24
ITS_rbcL	158	151	145	79	0.96	0.92	0.50	55.24
ITS_rbcL_trnH	82	80	76	46	0.98	0.93	0.56	28.67
ITS_trnH	84	82	77	47	0.98	0.92	0.56	29.37
matk_rbcL	78	75	67	27	0.96	0.86	0.35	27.27
matk_rbcL_trnH	45	42	41	21	0.93	0.91	0.47	15.73
matK3	17	17	17	5	1.00	1.00	0.29	5.94
matK4	72	69	61	15	0.96	0.85	0.21	25.17
rbcL	208	204	191	69	0.98	0.92	0.33	72.73
rbcL_trnH	101	95	93	46	0.94	0.92	0.46	35.31
trnH	117	107	106	45	0.91	0.91	0.38	40.91

Supplementary Table 3: Identification success for tested barcodes (individual and concatenated loci). Concatenated loci barcodes indicated by inderscore. Number of sequences and proportion success provided. Sequencing success is the ability to amplify and retrieve sequences and is reported in percent. Barcode Success

Supplementary Table 4: p-values from R function *prop.test* when testing identification success rates between all barcodes and the number of loci included in barcodes at three taxonomic levels: family, genus, and species.

Test	Level	p-value
All Barcodes	Species	8.95E-08
	Genus	0.299
	Family	0.288
Number of Loci	Species	1.11E-04
	Genus	0.237
	Family	0.633

Supplementary Table 5: Plant communities sampled. TNC = The Nature Conservancy.

Sites

Site	Latitude	Longitude	County	State	Elevation (m)	Date Sampled	Owner
7-mile	44.75	-96.53	Deuel	South Dakota	504	7-Aug-19	TNC
Altamont Prairie	44.89	-96.53	Deuel	South Dakota	443	9-Aug-19	TNC
Brookings Prairie	44.25	-96.81	Brookings	South Dakota	483	29-Aug-19	City of Brookings
Coteau Lake	44.82	-96.74	Deuel	South Dakota	563	11-Aug-19	State
Coteau Prairie	44.89	-96.71	Deuel	South Dakota	545	13-Aug-19	Federal
Cox	44.71	-97.11	Hamlin	South Dakota	535	21-Aug-19	Federal
Crystal Springs	44.82	-96.66	Deuel	South Dakota	574	9-Aug-19	State
Deer Creek	44.46	-96.50	Brookings	South Dakota	535	27-Aug-19	State
Gary Gulch E	44.79	-96.47	Deuel	South Dakota	474	14-Aug-19	State
Gary Gulch W	44.79	-96.47	Deuel	South Dakota	474	8-Aug-19	State
Hole in the Mountain	44.24	-96.30	Lincoln	Minnesota	565	22-Aug-19	TNC
Jacobson Fen	44.79	-96.63	Deuel	South Dakota	529	7-Aug-19	TNC
Lake Ketchum	44.81	-96.68	Deuel	South Dakota	538	12-Aug-19	State
McKillican	44.95	-97.29	Codington	South Dakota	535	15-Aug-19	State
Overland	45.13	-96.92	Codington	South Dakota	580	19-Aug-19	Federal
Punished Woman Grazed	45.12	-96.94	Codington	South Dakota	575	16-Aug-19	State
Punished Woman Seeded	45.12	-96.93	Codington	South Dakota	569	19-Aug-19	State
Round/Bullhead	44.95	-96.82	Deuel	South Dakota	575	13-Aug-19	State
Severson	44.71	-96.49	Deuel	South Dakota	525	6-Aug-19	Federal
Sioux Prairie	44.03	-96.79	Moody	South Dakota	517	23-Aug-19	TNC
Wike	45.51	-97.16	Roberts	South Dakota	599	20-Aug-19	Federal

site	ntaxa	sqo.pa	pd.rand.mean	pd.rand.sd	pd.obs.rank	z.sdo.ba	a.sdo.ba	wt.pd.obs	wt.pd.rand.mean	wt.pd.obs.z	wt.pd.obs.p	wt.pd.rand.sd	sqo.pam	mpd.rand.mean	mpd.rand.sd	mpd.obs.rank	mpd.obs.z	a.sdo.bam	wt.mpd.obs	wt.mpd.rand.me	wt.mpd.rand.sd	wt.mpd.obs.rank	wt.mpd.obs.z	wt.mpd.obs.p	mntd.obs	mntd.rand.mean	mntd.rand.sd	mntd.obs.rank	mntd.obs.z	mntd.obs.p	wt.mntd.obs	wt.mntd.rand.me	wt.mntd.rand.sd	wt.mntd.obs.ran	wt.mntd.obs.z	wt.mntd.obs.p
7-mile	32	1888.24	2426.96	386.62	92	-1.39	60.0	1206.02	2380.87	-1.52	0.01	770.69	231.11	249.88	23.82	309	-0.79	0.31	143.56	218.80	46.28	£	-1.63	00.0	77.12	100.93	16.47	72	-1.45	0.07	39.47	98.93	34.61	10	-1.72	0.01
Altamont Prairie	31	2254.14	2368.69	381.57	414	-0.30	0.41	1816.16	2311.81	-0.69	0.25	717.34	255.19	250.39	24.64	527	0.19	0.53	179.38	218.31	50.85	73	-0.77	0.07	93.41	101.64	16.57	325	-0.50	0.33	65.77	99.31	37.50	157	-0.89	0.16
Brookings Prairie	35	2550.67	2590.82	383.21	437	-0.10	0.44	1196.58	2523.96	-1.75	0.00	759.54	288.70	250.54	22.85	915	1.67	0.92	169.31	220.61	44.35	15	-1.16	0.02	80.71	97.55	15.20	147	-1.11	0.15	24.86	96.82	35.24	1	-2.04	0.00
Coteau Lake	15	670.98	1374.21	302.89	1	-2.32	0.00	424.41	1401.33	-1.40	0.00	696.76	180.37	250.36	38.51	2	-1.82	0.00	72.84	153.55	48.01	£	-1.68	0.00	50.47	125.02	29.54	2	-2.52	0.00	22.57	121.89	67.93	1	-1.46	00.0
Coteau Prairie	38	2726.20	2767.41	376.80	414	-0.11	0.41	2071.87	2656.55	-0.88	0.17	661.15	279.80	249.63	21.44	867	1.41	0.87	236.21	229.16	41.76	781	0.17	0.78	85.57	95.08	14.56	277	-0.65	0.28	61.01	94.11	28.26	98	-1.17	0.10
Сох	15	815.09	1382.94	306.88	4	-1.85	0.00	682.74	1342.00	-1.40	0.03	470.35	208.88	251.41	39.75	42	-1.07	0.04	68.32	197.42	61.82	£	-2.09	0.00	55.99	125.88	30.19	9	-2.32	0.01	34.60	122.68	54.47	10	-1.62	0.01
Crystal Springs	41	1918.21	2882.37	380.47	m	-2.53	0.00	1355.43	2838.91	-1.63	0.01	911.50	216.07	249.18	20.18	6	-1.64	0.01	124.82	217.98	43.65	1	-2.13	0.00	64.18	93.03	13.45	14	-2.15	0.01	31.42	90.74	35.69	9	-1.66	0.01
Deer Creek	6	698.34	942.40	255.14	112	-0.96	0.11	469.12	928.85	-1.07	0.07	430.74	217.83	252.27	51.54	148	-0.67	0.15	29.41	130.12	59.46	£	-1.69	0.00	102.45	148.64	41.93	132	-1.10	0.13	40.11	148.73	85.80	49	-1.27	0.05
Gary Gulch E	29	1953.07	2244.83	362.06	278	-0.81	0.28	2121.57	2194.23	-0.07	0.54	992.61	225.59	250.20	26.14	160	-0.94	0.16	174.67	183.19	51.54	541	-0.17	0.54	98.49	104.33	18.75	389	-0.31	0.39	82.83	103.71	55.40	456	-0.38	0.46

Supplementary Table 6: Species richness, Faith's PD, MPD, and MNTD values for observed (obs.) and null (rand.) communities. Values include: pd, mean, standard deviation (.sd), rank, standardized effect score (.z), and p-value (.p) for abundance-weighted (wt.) and unweighted metrics.

Severson	Round/Bullhead	Punished Woman Seeded	Punished Woman Grazed	Overland	McKillican	Lake Ketchum	Jacobson Fen	Hole in the Mountain	Gary Gulch W
24	26	23	23	22	14	19	38	25	38
2158.05	1291.20	1199.60	1728.34	1406.45	923.86	1010.82	2900.33	1279.89	2280.35
1952.22	2073.33	1900.48	1888.74	1853.25	1308.18	1653.55	2724.37	2028.38	2741.50
352.68	364.73	357.16	349.36	356.77	297.45	333.11	387.86	355.82	382.19
658	æ	ĸ	425	81	46	4	625	3	150
0.58	-2.14	-1.96	-0.46	-1.25	-1.29	-1.93	0.45	-2.10	-1.21
0.66	00.0	0.00	0.43	0.08	0.05	0.00	0.63	0.00	0.15
1545.09	1114.31	1037.16	1292.02	949.94	681.67	696.81	1964.41	949.21	1566.44
1924.78	2028.17	1852.14	1835.43	1783.48	1281.84	1601.37	2655.36	1966.50	2687.48
-0.40	-1.45	-1.24	-0.83	-1.31	-1.08	-1.71	-0.67	-1.41	-1.13
0.39	0.02	0.04	0.17	0.02	0.06	0.00	0.24	0.02	0.06
946.01	630.15	656.70	657.63	635.09	555.63	530.43	1025.80	722.25	996.15
275.44	213.79	208.59	252.26	226.35	220.55	207.95	258.04	207.43	225.70
250.60	249.44	249.62	250.57	250.01	249.11	249.07	250.03	249.74	250.16
28.74	27.18	29.41	30.09	30.65	38.76	32.84	21.38	27.99	21.67
767	19	12	612	203	148	17	619	10	113
0.86	-1.31	-1.40	0.06	-0.77	-0.74	-1.25	0.37	-1.51	-1.13
0.77	0.02	0.01	0.61	0.20	0.15	0.02	0.62	0.01	0.11
106.05	160.89	158.92	174.42	140.56	68.38	99.86	175.22	116.46	136.32
167.32	213.68	209.82	206.31	203.53	168.79	207.47	205.34	202.96	208.40
54.39	48.41	49.86	57.57	57.73	60.98	57.85	51.49	50.05	43.89
27	28	34	157	25	7	£	128	5	£
-1.13	-1.09	-1.02	-0.55	-1.09	-1.65	-1.86	-0.59	-1.73	-1.64
0.03	0.03	0.03	0.16	0.03	0.01	0.00	0.13	0.01	0.00
115.98	62.91	65.25	87.94	86.91	82.06	67.48	105.03	71.57	90.55
110.26	107.53	111.31	110.86	113.01	128.81	117.96	95.13	108.69	95.55
20.61	18.73	21.62	21.81	21.70	29.40	25.39	14.07	21.21	13.98
616	8	12	151	112	49	13	754	29	359
0.28	-2.38	-2.13	-1.05	-1.20	-1.59	-1.99	0.70	-1.75	-0.36
0.62	0.01	0.01	0.15	0.11	0.05	0.01	0.75	0.03	0.36
46.86	39.68	38.08	36.78	37.97	48.30	36.95	56.87	45.75	43.47
108.47	106.30	111.59	111.17	111.20	125.79	115.71	94.12	106.63	94.72
62.30	43.20	46.80	46.50	47.48	64.06	45.76	43.71	46.57	43.33
102	6	8	12	8	57	4	166	37	54
-0.99	-1.54	-1.57	-1.60	-1.54	-1.21	-1.72	-0.85	-1.31	-1.18
0.10	0.01	0.01	0.01	0.01	0.06	0.00	0.17	0.04	0.05
Wike	Sioux Prairie								
---------	---------------								
48	34								
3239.31	1715.18								
3245.12	2550.32								
386.80	374.95								
426	2								
-0.02	-2.23								
0.43	0.00								
2005.93	1272.96								
3137.35	2473.64								
-1.35	-1.54								
0.05	0.01								
838.79	777.70								
246.15	217.19								
250.54	250.19								
18.43	23.85								
359	26								
-0.24	-1.38								
0.36	0.03								
184.56	180.29								
229.00	220.16								
44.79	47.44								
26	59								
-0.99	-0.84								
0.03	0.06								
93.71	68.62								
87.44	98.57								
11.53	15.96								
692	31								
0.54	-1.88								
0.69	0.03								
43.02	47.94								
87.54	97.29								
29.83	35.45								
21	27								
-1.49	-1.39								
0.02	0.03								

Supplementary Figure 1: Uncorrected Faith's PD, MPD, and MNTD values across sites versus species richness for unweighted (top row) and abundance-weighted (bottom row) metrics. Spearman's correlation shown.

Appendix B

Supplementary Table 7: Voucher information for sampled specimens at Oak Lake Fleld Station and C.A. Taylor (SDState) Herbarium for DNA barcoding (Chapter 2).

Last	First	#	Date	Species	Locality	Herbarium	Collection
Anders	Paul	24	9/8/84	Eupatorium perfoliatum	T113N R51W S24 NW, Peg munky Run, Deuel Co.	OLFS	Anders 24
Anderson	Monte D.	2	6/12/83	Galium aparine	Oakwood Lake, Brookings Co.	OLFS	Anderson 2
Anderson	Monte D.	17	6/22/83	Medicago Iupulina	T111N R50W S24 NE, SDSU Agronomy Farm, Brookings Co.	OLFS	Anderson 17
Anderson	Monte D.	9	6/12/83	Matricaria matricarioides	T112N R51W S5, Brookings Co.	OLFS	Anderson 9
Bauer	Daryl L.	42	8/18/86	Eupatorium rugosum	T12N R5E S34 SE, Minnehaha Co.	OLFS	Bauer 42
Beauzay	Patrick B.	296	7/17/95	Achillea millefolium	OLFS, Brookings Co.	OLFS	Beauzay 296
Beauzay	Patrick B.	323	8/8/95	Circuta bulbifera	OLFS, Brookings Co.	OLFS	Beauzay 323
Beauzay	Patrick B.	303	7/18/95	Plantago major	OLFS, Brookings Co.	OLFS	Beauzay 303
Beauzay	Patrick B.	282	7/17/95	Onosmodium molle	OLFS, Brookings Co.	OLFS	Beauzay 282
Beauzay	Patrick B.	352	8/8/95	Lysimachia ciliata	OLFS, Brookings Co.	OLFS	Beauzay 352
Beauzay	Patrick B.	330	8/8/95	Lobelia siphilitica	OLFS, Brookings Co.	OLFS	Beauzay 330
Beauzay	Patrick B.	257	7/13/95	Scirpus pallidus	OLFS, Brookings Co.	OLFS	Beauzay 257
Beauzay	Patrick B.	343	8/8/95	Setaria glauca	OLFS, Brookings Co.	OLFS	Beauzay 343
Beauzay	Gary	276	7/17/95	Trifolium pratense	OLFS, Brookings Co.	OLFS	Beauzay 276
Beauzay	Patrick B.	332	8/8/95	Cicuta maculata	OLFS, below Pioneer house	SDC	Beauzay 332
Beauzay	Patrick B.	322	8/8/95	Sium suave	OLFS, below Pioneer house	SDC	Beauzay 322

Beauzay	Patrick B.	327	8/8/95	Asclepias incarnata	OLFS, below Pioneer house	SDC	Beauzay 327
Beauzay	Patrick B.	326	8/8/95	Eupatorium maculatum	OLFS, below Pioneer house	SDC	Beauzay 326
Beauzay	Patrick B.	337	8/8/95	Solidago gigantea	OLFS, below Pioneer house	SDC	Beauzay 337
Beauzay	Patrick B.	330	8/8/95	Lobelia siphilitica	OLFS, below Pioneer house	SDC	Beauzay 330
Beauzay	Patrick B.	341	8/8/95	Cyperus odoratus	OLFS, T112N R47W S18 SW	SDC	Beauzay 341
Beauzay	Patrick B.	334	8/8/95	Oenothera biennis	OLFS, below Pioneer house	SDC	Beauzay 334
Beauzay	Patrick B.	351	8/8/95	Mimulus ringens	OLFS, below Pioneer house	SDC	Beauzay 351
Beauzay	Patrick B.	335	8/8/95	Impatiens capensis	OLFS, below Pioneer house	SDC	Beauzay 335
Beauzay	Patrick B.	317	8/8/95	Amorpha fruticosa	OLFS, N end of lake	SDC	Beauzay 317
Beauzay	Patrick B.	346	8/8/95	Lycopus americanus	OLFS, SW corner of lake	SDC	Beauzay 346
Beauzay	Patrick B.	342	8/8/95	Lycopus asper	OLFS, SW corner of lake	SDC	Beauzay 342
Beauzay	Patrick B.	347	8/8/95	Echinochloa muricata	OLFS, SW corner of lake	SDC	Beauzay 347
Beauzay	Patrick B.	325	8/8/95	Spartina pectinata	OLFS, below Pioneer house	SDC	Beauzay 325
Beauzay	Patrick B.	321	8/8/95	Polygonum amphibium	OLFS, below Pioneer house	SDC	Beauzay 321
Beauzay	Patrick B.	320	8/8/95	Polygonum lapathifolium	OLFS, below Pioneer house	SDC	Beauzay 320
Beauzay	Patrick B.	339	8/8/95	Polygonum punctatum	OLFS, below Pioneer house	SDC	Beauzay 339
Beauzay	Patrick B.	349	8/8/95	Agrimonia striata	OLFS, SW of lake	SDC	Beauzay 349
Beauzay	Patrick B.	319	8/8/95	Verbena hastata	OLFS, below Pioneer house	SDC	Beauzay 319
Bettross	Edward A.	51	9/6/86	Juncus dudleyi	2 mi S, 3 mi W of Marvin, Grant Co.	OLFS	Bettross 51
Bortnem	Robin	23	5/29/89	Mirabilis nyctaginea	T121N R50W S27, Marvin Gulch, Grant Co.	OLFS	Bortnem 23

Bortnem	Robin	2	4/26/89	Stellaria media	SDSU, Brookings Co.	OLFS	Bortnem 2
Bortnem	Robin	102	8/28/89	Solidago missouriensis	T110N R50W S35, Old Medary roadside, Brookings Co.	OLFS	Bortnem 102
Bortnem	Robin	110	9/18/89	Aster ericoides	T109N R50W S14, Brookings Co.	SDC	Bortnem 110
Bortnem	JM	sn	6/26/02	Dichanthelium oligosanthes	OLFS, T112N R48W S12 SW of SW	SDC	Bortnem sn
Christner	Tabitha	sn	6/18/09	Phleum pratense	43 18' 42.39' N 103 49' 5.04" W, Hwy 18 East of Edgemont, Brookings Co.	OLFS	Christner sn
Dirks	Brian J.	sn	9/7/88	Sporobolus compositus	Sexauer Park Brookings, Brookings Co.	OLFS	Dirks sn
Fairlee	Eric	54	6/3/97	Caragana arborescens	T127N R61W S14 S of NE, Hecla Sandhills, Brown Co.	OLFS	Fairlee 54
Fredrickson	Nicole L.	sn	9/9/97	Lemna turionifera	T109N R50W S36 SW, Brookings Co.	OLFS	Fredrickson sn
Genereux	Nick D.	sn	7/27/09	Elymus villosus	Sully Hill Game Preserve, T152 R65, Benson Co.	OLFS	Genereux sn
Hansen	Paul L.	852	9/3/81	Calamagrostis stricta	1.5 mi N Summit, Roberts Co	OLFS	Hansen 852
Jensen	Jill	sn	6/5/02	Zizia aurea	OLFS, NE of dining hall	SDC	Jensen sn
Jensen	Jill	sn	7/9/02	Apocynum cannibinum	OLFS, SW of shower station	SDC	Jensen sn
Jensen	Jill	sn	7/31/02	Asclepias verticillata	OLFS, W of shower station	SDC	Jensen sn
Jensen	Jill	sn	7/3/02	Echinacea angustifolia	OLFS, N of dining hall	SDC	Jensen sn
Jensen	Jill	sn	7/3/02	Echinacea angustifolia	OLFS, N of dining hall	SDC	Jensen sn
Jensen	Jill	sn	7/25/02	Helianthis maximilian	OLFS, W of shower unit	SDC	Jensen sn
Jensen	Jill	sn	7/25/02	Heliopsis helianthoides	OLFS, S of shower unit	SDC	Jensen sn

Jensen	Jill	sn	7/3/02	Ratiba columnifera	OLFS, N of dining hall	SDC	Jensen sn
Jensen	Jill	sn	5/30/02	Senecio plattnesis	OLFS, S of classroom	SDC	Jensen sn
Jensen	lliL	sn	7/31/02	Solidago canadensis	OLFS, E of Admin building	SDC	Jensen sn
Jensen	llit	sn	6/24/02	Tragopogon dubius	OLFS, S of Admin building	SDC	Jensen sn
Jensen	Jill	sn	7/25/02	Veronia fasiculata	OLFS, S of shower unit	SDC	Jensen sn
Jensen	Jill	sn	6/24/02	Convolvus sepium	OLFS, N of flag pole	SDC	Jensen sn
Jensen	llit	sn	8/13/02	Equisetum arvense	OLFS, N of Admin building	SDC	Jensen sn
Jensen	Jill	sn	5/30/02	Comandra pallida	OLFS, S of classroom	SDC	Jensen sn
Jensen	Jill	sn	5/30/02	Lithospermum angustifolium	OLFS, S of classroom	SDC	Jensen sn
Jensen	lil	sn	7/9/02	Amorpha canescens	OLFS, S of shower unit	SDC	Jensen sn
Jensen	JIII	sn	6/24/02	Psoralea esculenta	OLFS, S of Admin building	SDC	Jensen sn
Jensen	lliL	sn	6/17/02	Trifolium pratense	OLFS, W of Admin building	SDC	Jensen sn
Jensen	llit	sn	6/18/02	Vicia americana	OLFS, E of Admin building	SDC	Jensen sn
Jensen	llit	sn	7/22/02	Petalotemon purpueus	OLFS, W of Admin building	SDC	Jensen sn
Jensen	liit	sn	7/2/02	Lilium philadelphicum	OLFS, N of dining hall	SDC	Jensen sn
Jensen	Jill	sn	7/25/02	Bouteloua curtipendula	OLFS, S of shower unit	SDC	Jensen sn
Jensen	llit	sn	6/18/02	Aquilegia canadensis	OLFS, E of Admin building	SDC	Jensen sn
Jensen	Jill	sn	7/9/02	Delphinium virescens	OLFS, S of shower unit	SDC	Jensen sn
Jensen	llit	sn	6/18/02	Ranunculus macounii	OLFS, E of Admin building	SDC	Jensen sn
Jensen	Jill	sn	5/17/02	Geum triflorum	OLFS, E of dining hall	SDC	Jensen sn
Jensen	Jill	sn	6/24/02	Galium boreale	OLFS, N of flag pole	SDC	Jensen sn
Jensen	Jill	sn	6/3/02	Verbena stricia	OLFS, N of dining hall	SDC	Jensen sn
Johnson	James R.	419	6/26/97	Carduus nutans	OLFS, Brookings Co.	OLFS	Johnson 419
Johnson	James R.	420	6/26/97	Elaeagnus angustifolia	OLFS, Brookings Co.	OLFS	Johnson 420

Johnson	Emily	sn	6/21/10	Melilotus alba	OLFS, S of shower unit	SDC	Johnson sn
Johnson	Emily	sn	6/4/10	Melilotus officinalis	OLFS, S of shower unit	SDC	Johnson sn
Kanoute	Assetou	33	8/13/87	Elymus repens	T121N R50W S5 E, Grant Co.	OLFS	Kanoute 33
Kanoute	Assetou	92	8/11/87	Muhlenbergia cuspidata	T119N R51W S14 SW, Punished Woman Lake, Codington Co.	OLFS	Kanoute 92
King	Kevin	94	9/27/84	Apocynum cannabinum	T110N R50W S14 SE, Brookings Co.	OLFS	King 94
King	Kevin	103	9/19/84	Panicum virgatum	Oakwood Lakes, Brookings Co.	OLFS	King 103
Kjellsen	Mike	35	9/6/86	Glyceria striata	O' Farrell WPA, Near Marvin, Grant Co.	OLFS	Kjellsen 35
Корр	Christopher W.	225	6/16/02	Koeleria macrantha	N 45 37' 38" W 102 30' 57", Grand River National Grassland, Perkins Co.	OLFS	Корр 225
Larson	Gary	9922	9/23/83	Ambrosia psilostachya	Waterfowl Production Area	OLFS	Larson 9922
Larson	Gary	9917	9/23/83	Ambrosia artemisiifolia	T110N R51W S18 NE, Brookings Co.	OLFS	Larson 9917
Larson	Gary	sn	8/25/79	Helianthus grosseserratus	Aurora Prairie, Brookings Co.	OLFS	Larson sn
Larson	Gary	11732	8/20/96	Helianthus nuttallii	Hecla Sandhills, T128N R59W S18 W1/2 of NW, Marshall Co.	OLFS	Larson 11732
Larson	Gary	8980	6/30/83	Erigeron philadelphicus	T113N R50W S24 NE, Deuel Co.	OLFS	Larson 8980
Larson	Gary	11358	7/10/96	Calystegia macounii	Hecla Sandhills, T128N R59W S30 NE, Marshall Co.	OLFS	Larson 11358

Larson	Gary	11247	7/10/03	Calylophus serrulatus	Oakwood Lakes, T111N R52W S2 NW of NE, Brookings Co.	OLFS	Larson 11247
Larson	Gary	10982	8/10/92	Dichanthelium wilcoxianum	T1N R7E S5 NW, West Camp Rapid, Pennington Co.	OLFS	Larson 10982
Larson	Gary	11060	7/19/93	Dichanthelium acuminatum	T3S R5E S6 NE, Custer Co.	OLFS	Larson 11060
Larson	Gary	6680	8/15/81	Amphicarpa bracteata	W edge of Sica Hollow State Park, Marshall Co.	OLFS	Larson 6680
Larson	Gary	11240	7/1/03	Cornus sericea	T111N R51W S8 NW, Oakwood Lake Game Production Area, Brookings Co.	OLFS	Larson 11240
Larson	Gary	6963	9/11/81	Ceratophyllum demersum	0.5 mi N, 15.5 mi W Fort Pierre, Stanley Co.	OLFS	Larson 6963
Larson	Gary	11227	6/9/03	Celastrus scandens	Oakwood Lakes, Brookings Co.	OLFS	Larson 11227
Larson	Gary	9165	7/12/83	Carex utriculta	T123N R53W S16 SW, Waubay Nat'l Wildlife Refuge, Day Co.	OLFS	Larson 9165
Larson	Gary	sn	6/14/11	Carex tetanica	44 47' 26.2" N 96 37' 55.4" W, South Hamann Fen, Deuel Co.	OLFS	Larson sn
Larson	Gary	6396	5/31/80	Carex tenera	8 mi S of Brookings, Brookings Co.	OLFS	Larson 6396
Larson	Gary	11216	5/28/13	Carex sprengelii	T112N R51W S31 SW, Brookings Co.	OLFS	Larson 11216
Larson	Gary	sn	6/15/11	Carex sartwellii	44 46' 38.5" N 96 35' 43.0" W, Mud Lake, Deuel Co.	OLFS	Larson sn
Larson	Gary	9365	7/20/83	Carex molesta	T114N R47W S5 SE, Lake Cochrane, Deuel Co.	OLFS	Larson 9365

Larson	Gary	9270	7/15/83	Carex pellita	T126N R53W S33 SW, Cottonwood Lake, Marshall Co.	OLFS	Larson 9270
Larson	Gary	6395	5/31/80	Carex gravida	8 mi S of Brookings, Brookings Co.	OLFS	Larson 6395
Larson	Gary	11346	7/15/09	Carex granularis	OLFS, Brookings Co.	OLFS	Larson 11346
Larson	Gary	6393	5/31/80	Carex emoryi	8 mi S of Brookings, Brookings Co.	OLFS	Larson 6393
Larson	Gary	11132	6/14/96	Carex brevior	T128N R59W S5 W, Hecla Sandhills, Marshall Co.	OLFS	Larson 11132
Larson	Gary	11215	5/28/03	Carex blanda	T112N R51W S31 SW, Brookings Co.	OLFS	Larson 11215
Larson	Gary	9016	6/30/83	Lemna trisulca	T113N R53W S16 SE, Lake Norden, Hamlin Co.	OLFS	Larson 9016
Larson	Gary	9213	7/15/83	Galium trifidum	T124N R53W S26 NW, Pickeral Lake, Day Co.	OLFS	Larson 9213
Larson	Gary	6882	8/15/81	Galium triflorum	1 mi N, 8.5 mi E Lake City, west edge of Sica Hollow State Park, Marshall Co	OLFS	Larson 6882
Larson	Gary	11335	7/1/09	Erysimum cheiranthoides	OLFS, Brookings Co.	OLFS	Larson 11335
Larson	Gary	11340	7/1/09	Eriophorum angustifolium	OLFS, Brookings Co.	OLFS	Larson 11340
Larson	Gary	11336	7/1/09	Geum canadense	OLFS, Brookings Co.	OLFS	Larson 11336
Larson	Gary	11639	8/13/96	Eleocharis erythropoda	T128N R59W S8 SE, Hecla Sandhills, Marshall Co.	OLFS	Larson 11639
Larson	Gary	6380	4/27/80	Dicentra cucullaria	2 mi N, 6 mi E of White, Brookings, Co.	OLFS	Larson 6380
Larson	Gary	9140	7/13/83	Platanthera hyperborea	T123N R53W S16 SW, Waubay Nat'l Wildlife Refuge, Day Co.	OLFS	Larson 9140

Larson	Gary	11328	7/1/09	Platanthera aquilonis	OLFS, Brookings Co.	OLFS	Larson 11328
Larson	Gary	11234	6/9/03	Penstemon albidus	T111N R52W S2 NE of NW, W Oakwood Game Production Area, Brookings Co.	OLFS	Larson 11234
Larson	Gary	11212	6/16/96	Oxalis violaceae	T128N R59W S18 NW NW, Hecla Sandhills, Marshall Co.	OLFS	Larson 11212
Larson	Gary	8724	6/8/83	Osmorhiza longistylis	T115N R47W S27 W, Cobb Creek, Deuel Co.	OLFS	Larson 8724
Larson	Gary	9041	6/30/83	Melilotus officinalis	T113N R53W S35 NW, Lake Albert, Hamlin Co.	OLFS	Larson 9041
Larson	Gary	11421	7/10/96	Medicago sativa	T128N R59W S8 NE, Hecla Sandhills, Marshall Co.	OLFS	Larson 11421
Larson	Gary	11426	7/11/96	Lycopus uniflorus	T128N R59W S7 SW, Hecla Sandhills, Marshall Co.	OLFS	Larson 11426
Larson	Gary	sn	7/27/92	Lobelia spicata	T128N R59W S1 NE, Marshall Co.	OLFS	Larson sn
Larson	Gary	11327	7/1/09	Liparis loeselii	OLFS, Brookings Co.	OLFS	Larson 11327
Larson	Gary	9967	5/30/84	Packera pseudaurea	T107N R50 W S36 NE, Sioux Prairie, Moody Co.	OLFS	Larson 9967
Larson	Gary	8920	6/24/83	Packera paupercula	T117N R50W S16 NE, Deuel Co.	OLFS	Larson 8920
Larson	Gary	sn	6/14/11	Scirpus microcarpus	44 47' 28" N 96 37' 42" W, Deuel Co.	OLFS	Larson sn
Larson	Gary	11264	7/1/96	Salix interior	T109N R49W S7 NW, Brookings Co.	OLFS	Larson 11264
Larson	Gary	7023	5/15/82	Salix amygdaloides	8 mi S of Brookings, Brookings Co.	OLFS	Larson 7023
Larson	Gary	10437	5/22/91	Rubus occidentalis	1 mi S and 3 mi W of Vermillion, Clay Co.	OLFS	Larson 10437

Larson	Gary	8885	6/24/83	Ribes americanum	T116N R49W S29 SE, S. Coteau Lake, Deuel Co.	OLFS	Larson 8885
Larson	Gary	6925	8/15/81	Rhus glabra	1 mi N, 8.5 mi E Lake City, west edge of Sica Hollow State Park, Marshall Co.	OLFS	Larson 6925
Larson	Gary	6912	8/15/81	Rudbeckia laciniata	6 mi N, 8.5 W Sisseton; Sica Hollow State Park, Roberts Co.	OLFS	Larson 6912
Larson	Gary	11227	6/16/96	Populus tremuloides	T128N R59W S19 W, Hecla Sandhills, Marshall Co.	OLFS	Larson 11227
Larson	Gary	11565	7/18/96	Polygonum aviculare	T128N R59W S6 SW, Hecla Sandhills, Marshall Co.	OLFS	Larson 11565
Larson	Gary	7019	5/12/82	Viola sororia	8 mi S of Brookings, Brookings Co.	OLFS	Larson 7019
Larson	Gary	11219	5/28/03	Viola pedafida	T112N R51W S31 NE, Goodfellow Waterfowl Production Area, Brookings Co.	OLFS	Larson 11219
Larson	Gary	9985	5/27/86	Viola nephrophylla	T115N R48W S6 S SW, Crystal Springs Ranch, Deuel Co.	OLFS	Larson 9985
Larson	Gary	11214	5/28/03	Viola canadensis	T112N R51W S31 SW, Brookings Co.	OLFS	Larson 11214
Larson	Gary	11538	7/17/96	Vernonia fasciculata	T128N R59W S31 SE, Hecla Sandhills, Marshall Co.	OLFS	Larson 11538
Larson	Gary	9999	5/29/86	Veronica peregrina	SDSU, Brookings	OLFS	Larson 9999
Larson	Gary	10785	6/18/92	Veronica anagallis- aquatica	T3S R5E S6 NE, Custer State Park, Custer Co.	OLFS	Larson 10785
Larson	Gary	11559	7/18/96	Ulmus pumila	T128N R59W S6 SE, Hecla Sandhills, Marshall Co.	OLFS	Larson 11559

Larson	Gary	9117	7/9/83	Typha latifolia	T123N R53W S16 SW, Waubay Nat'l Wildlife Refuge, Day Co.	OLFS	Larson 9117
Larson	Gary	11386	7/10/96	Typha X glauca	T128N R59W S30 NW, Hecla Sandhills, Marshall Co.	OLFS	Larson 11386
Larson	Gary	11716	8/20/96	Toxicodendron rydbergii	T128N R60W S12 SE, Hecla Sandhills, Brown Co.	OLFS	Larson 11716
Larson	Gary	6651	8/19/80	Thalictrum dasycarpum	3 mi N and 7 mi W of Bruce, Brookings Co.	OLFS	Larson 6651
Larson	Gary	sn	6/15/11	Stellaria longifolia	44 46' 47.8" N 96 36' 05.1" W, Deuel Co.	OLFS	Larson sn
Larson	Gary	11508	7/16/96	Stachys palustris	T128N R59W S28 E, Hecla Sandhills, Marshall Co.	OLFS	Larson 11508
Larson	Gary	11341	7/1/09	Sphenopholis intermedia	OLFS, Brookings	OLFS	Larson 11341
Larson	Gary	8750	6/8/83	Smilacina stellata	T115N R47W S9 NE, Gary Creek State Game Management Area, Deuel Co.	OLFS	Larson 8750
Larson	Gary	8733	6/8/83	Sisyrinchium campestre	T115N R47W S27 W, Cobb Creek, Deuel Co.	OLFS	Larson 8733
Larson	Gary	9926	9/23/83	Solidago rigida	Waterfowl Production Area, T111N R51W S28 SW	SDC	Larson 9926
Larson	Gary	11330	7/1/09	Carex cristatella	OLFS, 44 30' 54.7" N 96 32' 27.5" W	SDC	Larson 11330
Larson	Gary	11337	7/1/09	Carex hystericina	OLFS, 40 31' 23.5" N 96 32' 31" W	SDC	Larson 11337
Larson	Gary	11329	7/1/09	Carex stricta	OLFS, 44 30' 59.5" N 96 32' 26.2" W	SDC	Larson 11329
Larson	Gary	11345	7/15/09	Carex vulpinoidea	OLFS, 44 31' 23" N 96 32' 29" W	SDC	Larson 11345

Larson	Gary	11331	7/1/09	Populus x jackii	OLFS, 44 31' 23.5" N 96 32' 32.5" W	SDC	Larson 11331
Larson	Gary	11325	7/1/09	Mimulus glabratus	OLFS, 44 31' 23.2" N 96 32' 32.2" W	SDC	Larson 11325
Larson	Gary	11334	7/1/09	Juncus nodosus	OLFS, 44 31' 22" N 96 32' 27" W	SDC	Larson 11334
Larson	Gary	6850	6/19/81	Poa pratensis	1 mi. W of Aurora	SDC	Larson 6850
Larson	Gary	sn	9/12/97	Sorghastrum nutans	Oakwood State Park, restored prairie	SDC	Larson sn
Larson	Gary	11341	7/1/09	Sphenopholis intermedia	OLFS, 44 30' 54.7" N 96 32' 27.5" W	SDC	Larson 11341
Larson	Gary	11332	7/1/00	Geum aleppicum	OLFS, 44 31' 22" N 96 32' 27" W	SDC	Larson 11332
Law	Mark E.	105	8/2/84	Conyza canadensis	Brookings Co., Agronomy Farm, Brookings	OLFS	Law 105
Law	Mark E.	73	9/10/84	Helianthus maximiliani	Near Brookings	OLFS	Law 73
Law	Mark E.	93	6/20/85	Lepidium densiflorum	7 mi N, 1 mi E, 1 mi S Brookings, Brookings Co.	OLFS	Law 93
Law	Mark E.	103	8/2/85	Verbena bracteata	Agronomy Farm, Brookings Co.	OLFS	Law 103
Lehman	Chad P.	38	8/14/03	Pinus ponderosa	UTM Z13 616200 E/4828110 N, Custer Co.	OLFS	Lehman 38
Lehman	Chad P.	179	7/19/01	Stipa viridula	UTM Z13 619010 E/4823100 N, Custer Co.	OLFS	Lehman 179
Leoschke	Mark J.	1531	6/23/95	Cypripedium candidium	T122N R52W S 18 N SW NE SE, ca 1 mi NW of Ortley, Roberts Co.	OLFS	Leoschke 1531
McLead	Scott	sn	6/19/92	Rorippa palustris	T124N R55W S13 NW, Day Co.	OLFS	McLead sn
Millar	James B.	37	9/6/86	Epilobium leptophyllum	7 mi N of Waubay, Day Co.	OLFS	Millar 37
Millar	James B.	11	9/6/86	Salix alba	7 mi N of Waubay, Day Co.	OLFS	Millar 11

Mixon	Kevin	sn	7/22/91	Cirsium arvense	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	8/5/91	Allium stellatum	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	8/20/91	Liatris punctata	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	8/5/91	Grindelia squarrosa	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	7/5/91	Asclepias syriaca	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	6/12/91	Lathyrus venosus	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	6/22/91	Oxalis stricta	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	7/5/91	Scrophularia lanceolata	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	8/20/91	Ratibida columnifera	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	6/11/91	Zigadenus elegans	T109N R49W S10 SW, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	7/5/91	Urtica dioica	OLFS, Brookings Co.	OLFS	Mixon sn
Mixon	Kevin	sn	8/20/91	Silphium perfoliatum	OLFS, Brookings Co.	OLFS	Mixon sn
Monteith	Kyle	sn	8/5/08	Fragaria virginiana	45 16' 22.24" N 97 53' 46.17" W, Day Co.	OLFS	Monteith sn
Monteith	Kyle	sn	8/5/08	Taraxacum officinale	45 16' 22.24" N 97 53' 46.17" W, Day Co.	OLFS	Monteith sn
Ode	D.J.	sn	7/11/79	Agrostis stolonifera	Aurora Prairie, Brookings Co.	OLFS	Ode sn
Ode	David J.	27- Dec	6/6/12	Celtis occidentalis	Little Bend Natural Area, ca. 30 mi W of Onida, Sully Co.	OLFS	Ode 44192
Ode	D.J.	83-57	5/21/83	Carex meadii	T101N R49W S1 SW SW, Cactus Hills, Minnehaha Co.	OLFS	Ode 83-57
Ode	D.J.	82-11	6/4/82	Carex aquatilis	T115N R48W S6 S SE, Jacob Springs, Deuel Co.	OLFS	Ode 82-11

Ode	D.J.	sn	6/26/80	Fraxinus pennsylvanica	T121N R71W S18 SE, Ryman WPA, Edmunds Co.	OLFS	Ode sn
Ode	David J.	Feb- 40	8/15/03	Euthamia graminifolia	T125N R51W S8 NW NW, Schmidt prairie, Roberts Co.	OLFS	Ode 14642
Ode	D.J.	84- 102	7/12/84	Cryptotaenia canadensis	Gilley's Grove, 1 mi N and 1 mi E of White, Brookings Co.	OLFS	Ode 84- 102
Ode	D.J.	84-97	7/12/84	Phryma leptostachya	Gilley's Grove, 5 mi E, 1 mi N and 1 mi E of White, Brookings Co.	OLFS	Ode 84-97
Ode	David J.	00-21	6/29/00	Pedicularis Ianceolata	T122N R52W S19 S of NE, ca 0.6 mi W of Ortley, Grant Co.	OLFS	Ode 00-21
Ode	D.J.	84- 107	7/13/84	Poa palustris	T113N R48W S7 S SW, Quail Prairie, Deuel Co.	OLFS	Ode 84- 107
Ode	David J.	7-Feb	6/11/02	Ranunculus hispidus	T122N R52W S18 N SW NE SE, ca 1 mi NW of Ortley, Roberts Co.	OLFS	Ode 43868
Ode	D.J.	sn	8/1/79	Polygonum coccineum	T109N R49W S10 W of NW, Brookings Co.	OLFS	Ode sn
Orth	Mandy R.	sn	9/16/09	Hordeum jubatum	44 19' 7.95" N 96 46' 31.44" W, SDSU campus, Brookings Co.	OLFS	Orth sn
Pauly	Brian	sn	8/31/10	Sporobolus heterolepis	44 14' 09.41" N 96 59' 3.22" W, SW of Volga, Brookings Co.	OLFS	Pauly sn
Pengra	R.M.	P-16- 75	6/16/75	Lathyrus palustris	T109N R49W, Trenton twp., Brookings Co.	OLFS	Pengra P- 16-75
Peterson	Altermott	sn	6/26/02	Carex praegracilis	OLFS, S of classroom	SDC	Peterson sn

Peterson	Altermott	sn	6/26/02	Bromus inermis	OLFS, S of classroom	SDC	Peterson sn
Pooler	P.D.	173	6/15/85	Agoseris glauca	Oakwood Lakes, Brookings Co.	OLFS	Pooler 173
Pooler	P.D.	84027	6/30/84	Agropyron cristatum	Oakwood Lakes, Brookings Co.	OLFS	Pooler 84027
Pooler	P.D.	84996	7/19/84	Calystegia sepium	N of Brookings on Hi-way 77, Brookings Co.	OLFS	Pooler 84996
Pooler	P.D.	186	6/5/85	Astragalus crassicarpus	Oakwood Lakes, Brookings Co.	OLFS	Pooler 186
Pooler	Paul	84045	5/18/84	Ribes missouriense	1 mi e of Oakwood Lakes, Brookings Co.	OLFS	Pooler 84045
Pooler	Paul	84029	6/30/84	Polygonum biflorum	Oakwood Lakes, Brookings Co.	OLFS	Pooler 84029
Pooler	P.D.	84028	6/30/84	Verbena stricta	Oakwood Lakes, Brookings Co.	OLFS	Pooler 84028
Purinton	Jordan	sn	5/24/12	Glenditsia triacanthos	44 9' 6.7" N 99 55' 44.2" W, Lyman Co.	OLFS	Purinton sn
Reese	R. Neil	sn	5/23/00	Crataegus rotundifolia	OLFS	SDC	Reese sn
Riley	Steve	51	6/8/84	Ulmus americana	T110N R50W S24 NW, Brookings Co.	OLFS	Riley 51
Roberts	R. Evelyn	sn	7/10/71	Physalis virginiana	T123N R54W S32, Waubay Nat'l Wildlife Refuge, Day Co.	OLFS	Roberts sn
Roberts	R. Evelyn	73-8- 19:1	8/19/73	Rumex orbiculatus	T122N R53W S15 SW SW, Day Co.	OLFS	Roberts 73- 8-19:1
Roberts	R. Evelyn	72-5- 28:6	5/28/72	Tradescanta bracteata	T123N R55W S13 S, Blocks Slough, Day Co.	OLFS	Roberts 72- 5-28:6
Roemmich	Aurora	114	9/16/08	Artemisia frigida	Oakwood Lake, Brookings Co.	OLFS	Roemmich 114
Roemmich	Aurora	81	9/8/08	Andropogon gerardii	N 44 21.702' W 96 47.266', Brookins Co.	OLFS	Roemmich 81

Roemmich	Aurora	98	9/18/08	Gentiana puberulenta	44 43.067" N 96 30.028" W, Orchid Meadow WPA, Brookings Co.	OLFS	Roemmich 98
Roemmich	Aurora	259	9/3/09	Scutellaria lateriflora	44 11' 49.04" N 96 47' 17.17" W, Conservation Park, Brookings Co.	OLFS	Roemmich 259
Roemmich	Aurora	82	9/8/08	Setaria viridis	44 21.702' N 96 47.266' W, N Meadary Ave, Brookings Co.	OLFS	Roemmich 82
Sargent	Douglas	sn	9/1/88	Bidens frondosa	T109N R49W S7 NW, Brookings Co.	OLFS	Sargent sn
Sletten	Kris	303	7/1/83	Glyceria grandis	T109N R47W S33 NE, Brookings	OLFS	Sletten 303
Sletten	Kris	305	7/1/83	Calamagrostis canadensis	T109N R47W S33 NE, Brookings Co.	OLFS	Sletten 305
Sletten	Kris	169	6/21/83	Eleocharis palustris	T113N R47W S9 NE, Fish Lake, Deuel Co.	OLFS	Sletten 169
Sletten	Kris	136	6/21/83	Phalaris arundinacea	T112N R47W S29 SW, Lake Hendricks, Brookings Co.	OLFS	Sletten 136
Sletten	Kris	273	6/25/83	Lysimachia thyrsiflora	T122N R51W S27 NW, Schuchard Waterfowl Production Area, Roberts Co.	OLFS	Sletten 273
Sletten	Kris	175	6/21/83	Vitis riparia	T113N R47W S9 NE, Fish Lake, Deuel Co.	OLFS	Sletten 175
Sletten	Kris	379	7/7/83	Sphenopholis obtusata	T117N R55W S11 NE, Long Lake, Codington Co.	OLFS	Sletten 379

Sletten	Kris	210	6/25/83	Sparganium eurycarpum	T120N R51W S26 SW, State Game Production Area, Grant Co.	OLFS	Sletten 210
Stahnke	April L.	sn	7/31/01	Quercus macropoda	OLFS, Brookings Co.	OLFS	Stahnke sn
Stahnke	April L.	sn	6/7/02	Osmorhiza longistylis	Sica Hollow, Roberts Co., SD	SDC	Stahnke sn
Stahnke	April L.	sn	7/13/00	Apocynum cannibinum	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/28/20	Asclepias incarnata	OLFS, N of highway	SDC	Stahnke sn
Stahnke	April L.	sn	8/15/00	Aster laevis	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	8/29/00	Helenium autumnale	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	8/16/00	Kuhnia eupatorioides	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/17/00	Liatris aspera	OLFS, SE of shower area	SDC	Stahnke sn
Stahnke	April L.	sn	10/7/99	Ratiba columnifera	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	8/15/00	Solidago mollis	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	8/16/00	Symphoricarpos occidentalis	OLFS, towards end of peninsula	SDC	Stahnke sn
Stahnke	April L.	sn	5/28/00	Lonicera tatarica	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/15/99	Typha angustifolia	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	5/4/00	Lithospermum canescens	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	5/15/00	Lithospermum incisum	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/13/00	Psoralea argophylla	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/13/00	Dalea candida	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/10/00	Dalea purpurea	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/15/99	Monarda fistulosa	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	7/10/00	Stachys alustris	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	6/25/02	Anemone cylindrica	Sioux Prairie, Moody Co.	SDC	Stahnke sn
Stahnke	April L.	sn	5/19/00	Anemone patens	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	8/10/99	Rhamnus cathartica	OLFS, peninsula	SDC	Stahnke sn
Stahnke	April L.	sn	5/4/00	Amelanchier alnifolia	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	8/3/99	Prunus americana	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	5/15/00	Prunus virginiana	OLFS	SDC	Stahnke sn
Stahnke	April L.	sn	6/17/99	Rosa arkansana	OLFS	SDC	Stahnke sn

Steinauer	Gerry	sn	6/2/87	Cardamine bulbosa	T115N R48W S3 SE, Deuel Co.	OLFS	Steinauer sn
Taylor	C. A.	7506	8/29/51	Artemisia Iudoviciana	Lake Poinsett, Brookings Co.	OLFS	Taylor 7506
Taylor	C. A.	sn	5/23/63	Aesculus glabra	Cultivated, Brookings, Brookings Co.	OLFS	Taylor sn
Taylor	С. А.	sn	5/14/70	Juniperus virginiana	escaped from cultivation, Oakwood Park, Brookings Co.	OLFS	Taylor sn
Taylor	C. A.	sn	6/25/63	Erigeron strigosus	T109N R49W S10 SW of NW, Brookings Co.	OLFS	Taylor sn
Taylor	C. A.	11799	10/9/80	Capsella bursa- pastoris	Brookings, Brookings Co.	OLFS	Taylor 11799
Taylor	C. A.	7540	6/8/52	Hydrophyllum virginianum	Sioux State Park, Dell Rapids, Minnehaha Co.	OLFS	Taylor 7540
Taylor	C. A.	sn	2/5/94	Picea glauca	Cultivated, Brookings, Brookings Co.	OLFS	Taylor sn
Taylor	C. A.	11723	9/15/77	Lycium barbarum	SDSU, Brookings Co.	OLFS	Taylor 11723
Troelstrup	Nels	sn	6/15/02	Zizia aptera	OLFS, west of dining hall	SDC	Troelstrup sn
Troelstrup	Nels	sn	7/25/02	Asclepias verticillata	OLFS, W of shower station	SDC	Troelstrup sn
Troelstrup	Nels	sn	8/19/04	Lygodesmia juncea	OLFS, T112N R48W S13 NW of NE	SDC	Troelstrup sn
Troelstrup	Nels	sn	8/26/04	Gentiana andrewsii	OLFS, T112N R48W S13 NW of NE	SDC	Troelstrup sn
Troelstrup	Nels	sn	5/30/02	Lithospermum canescens	OLFS, NW of dining hall	SDC	Troelstrup sn
Troelstrup	Nels	sn	5/30/02	Lathyrus polymorphus	OLFS, NW of dining hall	SDC	Troelstrup sn
Troelstrup	Nels	sn	9/4/04	Mentha arvensis	OLFS, T112N R48W S12 SW of SW	SDC	Troelstrup sn
Troelstrup	Nels	sn	6/25/02	Phlox pilosa	OLFS, T112N R48W S12 SW of SW	SDC	Troelstrup sn
Troelstrup	Nels	sn	6/15/02	Anemone canadensis	OLFS, west of dining hall	SDC	Troelstrup sn

Troelstrup	Nels	sn	5/15/02	Caltha palustris	OLFS, T112N R48W S12 SW of SW	SDC	Troelstrup sn
Unkenholz	Eric G.	sn	9/12/97	Rumex crispus	T111N R50W S34 NW, Mehegan State GPA, Brookings Co.	OLFS	Unkenholz sn
Van Sickle	Steve	586	9/15/82	Elymus virginicus	T109N R50W S36 SW, Brookings Co.	OLFS	Van Sickle 586
Van Sickle	Stephen	536	8/30/82	Schizachyium scaparium	Oakwood Lakes, Brookings Co.	OLFS	Van Sickle 536