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INTRODUCTION 

The oil embargo of 1973 ushered in an era of energy 

consciousness in the United States. Steadily increasing 

energy costs and several nation-wide petroleum shortages 

since then have kept considerations of energy cost and 

availability in the forefront of economic planning in both 

the private and public sectors. Among the most severely 

affected 1s the agriculture industry, because petroleum 

consumption is crucial to the efficient production of food 

and fiber. Conservation measures have been implemented 

and tractor designers are striving for more fuel-efficient 

vehicles, but the pressing need to reduce agriculture's 

dependence on unstable foreign oil supplies will only be 

met when alternate energy sources can feasibly power farm 

vehicles. 

The development of electric agricultural vehicles 

could provide the means to reduce agriculture's petroleum 

dependence. Electric vehicles have been quite successful 

for some applications where advantages of less maintenance, 

longer 1 fe, lower energy operating costs, better efficiency 

in start and stop conditions, and easier starting have been 

noted. A~~itionally, electric vehicles could utilize off-peak 

electric supply capabilities. The sale of such electric 

energy results in savings to the farmer and increased 

efficiency for the generating facility. 



It appears that electric vehicles have potential 

for agriculture. Therefore research was initiated with 

the overall goal of assessing electric vehicle feasibility 

for eastern South Dakota agriculture. 

Specific objectives were: 

2 

~ 1. Determine vehicle requirements as functions or 

specific farm tasks for eastern South Dakota farm operations. 

2. Define electric vehicle performance character­

istics based on current technology and projected 1990 

technology. 

). Analyze the technical feasibility or replacing 

conventional tractors with electric vehicles. 

4. Assess the current economic reasibillty or 

electric vehicles and project the 1990 feasibility. 

·'•. 
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REVIEW OF LITERATURE 

Task Requirements 

Farm vehicle requirements for performing field tasks 

have been documented in several references. Kepner et al. 

(19?8) specify normal ranges of draft, energy, power, and 

forward speed requirements for performing typical field tasks, 

including plowing, d1sk1ng, cultivating, planting, and 

harvesting. Specific energy requirements are expressed in 

units of energy per weight of crop material processed, 

specific power requirements in units of power per implement 

width, and specific draft requirements in terms of force 

per cross-s~~tional tilleU. area. or force pei: im}Jl~m~ul, width. 

Gill and Vanden Berg (1967) conducted extensive studies of 

soil dynamics and tillage ~nd have published a text including 

representative draft and power requirements for certain field 

tasks. Similar information is included in machinery manage­

ment texts by Hunt (1977) and Barger et al. (196?). The 

American Society of Agricultural Engineers Yearbook (ASAE, 

1980) also specifies vehicle requirement ranges for per­

forming farm field tasks. 

Task requirements are expressed as ranges rather 

than as average values because variations in soil type, 

farming practices, and implement designs result in a 

variety of draft, power, and energy requirements. Although 

the ranges indicated in the sources mentioned are not 

· ·'·, 
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identical, there is good general agreement among the sources 

concerning draft and power requirements for the field tasks 

listed. For instance, Kepner (1978) specifies the draft 

range for field cultivating five inches deep as 200 to 600 

pounds per foot of implement width, while ASAE (1980) lists 

the draft for field cultivating as 150 to 650 pounds per 

foot of implement width. 

Vehicle requirements data in these texts were deter­

mined by numerous researchers using generally similar tech­

niques. Draft forces were measured for various implements 

by using drawbar dynamometers, usually hydraulic or strain 

gage type (Clyde, 1937 and -Taylor, 1967). Speed was nor­

mally determined by timing a measured or automatically 

recorded distance, or with a tachometer generator driven 

from a ground wheel (Bowers, 1970). 

Livestock production and general utility task re­

quirements generally are not as well defined as are field 

task requirements. This is partly because there is more 

variation in farming practices, conditions, and equipment 

for these types of tasks among farms. For instance, farm 

loader re uirements may vary from less than 20 hp on one 

farm to nearly 100 hp on another. The Farm and Industrial 

Equipment Red Book (Implement and Tractor, 1977) notes· 

power requirements for augers, loaders, feeder wagons, feed 

grinders, fertilizer spreaders, hay grinders, and other 

farm equipment used f or livestock production and general 

. , .. ,. 
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utility tasks. All of these implements are produced in a 

variety of sizes ·and the power required to operate the 

equipment also varies with farming practices. Farm size, 

number of livestock maintained, and farmer preference affect 

the choice of implement size for each farm operation. 

Annual time available to perform each farm task 

depends on the agricultural product and climatic conditions. 

The South Dakota Crop and Livestock Reporting Service 

(USDA, 1970) publishes information based on thirty year 

averages which allows computation of time available to 

perform each of the field tasks without reducing crop yields. 

Lytle (1980) provided additional climatological data which 

corroborated the USDA data, and which could be used to 

determine the time available for each task in any specific 

year in recent history. 

Less information is available for specifying vehicle 

noise level, weight range, safety, physical size, and 

maneuverability requirements for performing specific farm 

tasks. The Nebraska Tractor Test Facilities have recorded 

the above information for each tractor tested since 1970. 

Nebraska Tractor Tests are accepted nationally as the most 

authoritative source of information on tractor performance 

capabilities. 

Acceptable maintenance time is that required to 

prevent a significant portion of equipment breakdowns that 

would result in loss of field time. The probability of 
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breakdown 1s inversely related to machine reliability, which 

is the statistical probability that a machine will function 

satisfactorily under specified conditions during a given 

period of time (Barger et al., 1967). Hunt (1971) determined 

that the manner in which equipment was maintained was an 

important factor in determining machine reliability. A 

general guide for recommended tractor maintenance was 

suggested by Bowers (1975). 

The previously listed literature does not, by itself. 

provide a comprehensive definition of vehicle requirements 

for farm tasks in a specific area, such as eastern South 

Dakota, because of variations in climate, soil types, and 

farming practices across the nation. 

Electric Vehicle Capabilities 

There has been little research on designing electric 

vehicles for agriculture. However, electric vehicle tech­

nology is already well established for some applications. 

Private industry and the Department of Energy are supporting 

considerable electric vehicle research. Electric fork lifts, 

garden tractors, and industrial tow tractors are common in 

the United States, as are electric trains, streetcars, and 

delivery vans in other parts of the world. 

The Department of Energy (DOE, 1979a) is studying 

electric vehicle components, primarily for passenger vehicle 

production, but much of the technology could be adapted for 

electric agricultural vehicles. Developmental activity is 
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not focused just on the -improvement of individual components, 

1t also stresses the interactions among components. Projects 

on motor controllers seek to achieve high efficiency in the 

controller itself and also to match the controller to the 

electric motor and battery characteristics. Department of 

Energy (DOE, 1979a) goals for some of the component research 

are as follows: 

1. Motors: lower cost and weight, smaller size. 

2. Controllers: lower cost, better power handling 

capability and greater efficiency 

J. Transmissions: lower weight, continuously 

variable, multi-ratio 

4. Vehicle Mass: lower weight, lower material 

costs and better fabrication concepts 

5. Batteries: higher ~nergy densities, lower 

cost, ~onger cycle life 

6. Auxiliary devices: better heaters, air 

conditioners, chargers, state-of-charge indicators, and 

protection devices. 

The Department of Energy's assessment of state-of­

the-art electric vehicle component efficiencies includes 

an 81 per cent charger efficiency, a 48 per cent battery 

turn-around (includes charge and discharge) efficiency, 

a 90 per cent motor efficiency, and a 90 per cent controller 

efficiency (DOE, 1980). Present day lead-acid batteries 

have an energy density of approximately 18 watt-hours per 



pound based on a one hour discharge time. The effective 

energy density may be increased from 25 to 50 per cent 

by increasing the discharge period to 4 to 15 hours 

(Bishara, 1981). 

The Department of Energy (DOE, 1980) predicts the 

use of nickel-iron and/or nickel-zinc batteries for elec-

8 

tric vehicles by 1985. These -batteries would have energy 

densities ranging from 32 to J6 watt-hours per pound. Also 

predicted are an improvement in charger efficiency from 81 

to 90 per cent, an increase in battery turn-around effi­

ciency from 48 to 68 per cent and an increase in both 

motor and controller efficiencies from 90 to 95 per cent. 

The effect of these predicted improvement s would be an 

increase from a 32 per cent conversion efficiency to a 

55 per cent conversion efficie~cy between electric power 

supply and motor output, a 72 per cent increase. 

Electric vehicles, other than passenger cars, 

currently produced in the United States include garden 

tractors, fork lifts, and industrial tow tractors. 

Wheelhorse (Greenwalt, 1981) manufactures two models of 

electric garden tractors, one in the 8 to 10 hp class and 

one in the 12 to 14 hp class. These tractors operate on 

standard lead-acid batteries for two to six · hours depending 

on the model and the power-take-off attachments in use. 

The batteries are expected to last five years and cost about 

the same as overhauling a conventional engine. Operating 
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costs are estimated to be 50 to 75 per cent lower than those 

of a gasoline powered garden tractor. Other reported advan­

tages include: quieter operation; no toxic fumes, smoke or 

odor; less vibration; easier starting ; and less maintenance. 

Hyster (Kelleher, 1980) produces fork lifts and 

industrial tow tractors of both conventional and electric 

design. The electric models are preferred for indoor use 

because of quiet and pollution-free operation. At present 

the electric models have purchase prices that exceed those 

of comparable conventional models by the cost of the battery 

set, but the electric vehicles are expected to have lower 

operating and maintenance costs. Hyster also has manufac­

tured an electric, industrial tow tractor capable of starting 

and moving a 50,000 pound rolling load. With minor modifi­

cations this vehicle could perform a variety of agricultural 

tasks. 

Sand S Engineering (Bishara, 1981) currently 

markets low profile electric vehicles used by miners to 

load coal into conveyor systems. Some of these vehicles 

operate for an eight-hour shift on one battery charge. 

S and S Eng ineering reports lower operating and maintenance 

costs for electric vehicles than for conventional vehicles, 

but the electrics have higher purchase prices. 

Higher initial costs for electric vehicles arise 

Principally from production scale economics because electric 

Vehicles are not produced in as large a quantity as are 



conventional vehicles. Increased production scale and 

anticipated technological advances . in electric vehicle 

components and manufacturing could reduce the initial cost. 

The cost of lead-acid batteries per unit energy stored is 

projected to decrease by 60 per cent from 1980 to 1984 

(Electric Vehicle Council, 1980). 

Battery performance is also predicted to improve 

greatly in the near future. The Department of Energy 

10 

(DOE, 1979b) foresees electric vehicle batteries with turn­

around energy efficiencies near 72 per cent, up from today's 

50 per cent turn-around efficiency. Nickel-zinc batteries 

may be available soon with energy densities of J6 watt-hours 

per pound, double that of present-day lead-acid electric 

vehicle batteries (Bhate et al., 1980). The turn-around 

energy efficiency for the nickel-zinc battery is expected to 

be about 70 per cent. General Research Corporation predicts 

battery energy densities of 27 watt-hours per pound for 

nickel-iron batteries, 41 watt-hours per pound for nickel­

zinc batteries, and up to 55 watt-hours per pound for several 

exotic battery types (DOE, 1980). Klunder and Katz (1979) 

project en rgy densities of 2J, 27, and 32 watt-hours per 

pound for lead-acid, nickel-iron, and nickel-zinc batteries, 

respectively, in 1986. In addition, battery life is expected 

to increase from 250 cycles to 1200 cycles for the 1986 

nickel-iron batteries. Beyond this decade, sodium-sulfur 

batteries may have energy densities in excess of 64 watt-hours 
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per pound (Klunder and Katz, 1979). Argonne National Labo­

ratory researchers predict the f ol l owing energy densities 

for batteries i n 1984: lead-acid 25 watt-hours per pound, 

nickel-iron 32 watt-hours per pound, and nickel-zinc 39 

watt-hours per pound (Yao et al., 1980). Scientists a t 

Argonne National Laboratory project nickel-iron batteries 

will have useful lives of about 2000 charge-discharge cycles. 

Eagle-Picher has tested a nickel-iron battery with a turn­

around energy efficiency of 67 per cent (Yao et al., 1980). 

Electric vehicle performance predictions by researchers 

at the Jet Propulsion Laboratory indicate that, if range 

is strictly t he performance objective, the nickel-iron 

battery is the prime candidate of the s tate-of-the-art 

batteries, and that, if the constraints of technology read­

iness and cycle life are ignored, the b est overall battery 

of those studied would be the nickel-z inc battery (Schmidt 

and Graf, 1980 ). 

Assessing Feas ibility 

Even without the projected improvements, electric 

vehicles can c ompete favorably with c onventional vehicles 

in the are s o f operating and maintenance costs. A series 

of comparisons between electric a n d conventional vehicles 

1n England, where electric vehicles have been used to 

deliver milk for the past forty years, revealed that energy 

costs for electric vehicles were from 10 to 75 per cent less 

than those for c onventional vehicles with the average energy 
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cost savings greater than 50 per cent. The maintenance 

costs for electric vehicles in England were found to average 

more than one-third less than those for internal combustion 

engine vehicles (Harrow et al •• 1979). Similar operating 

and maintenance cost savings were documented for electric 

vehicles under study in other European countries and Japan 

(Harrow et al., 1979). The United States Postal Service 

conducted an extens ive test of both electric and conven­

tional mail delivery trucks and noted that operating costs 

per mile were 54 per cent less for the electric vehicles 

(Lead Industries Association, 1974). 

Matching electric vehicles to specific tasks and 

then comparing the electric vehicles with conventional 

farm tractors is not simply a matter of selecting equal 

sized motors. Two factors must be considered when making 

such comparisons. The first is the difference in motor 

performance characteristics, which allows an electric 

vehicle to be temporarily overloaded without ·stalling. 

Ir ·a conventional vehicle were replaced by an electric 

vehicle of the same power rating, the electric vehicle would 

have excess power and an unattractively high purchase price. 

The second is the difference in on-vehicle energy storage 

feasibility, which economically penalizes excess battery 

capacity. This is due to the relatively low energy density 

and high cost of currently available batteries. 

There are also -differences between the methods of 

rating power for conventional engines and electric motors. 
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Internal combustion engines are rated at maximum power; any 

attempt to produce more power results in a decrease in 

power output. Electric motors are rated at continuous duty 

power, and may produce up to twice that much power for short 

periods of overload (DOE, 1979b). If properly matched to 

task requirements, electric vehicles can have lower oper­

ating and maintenance costs and can compete economically in 

terms of purchase costs. 

For example, the S and S Corporation determined 

that electric vehicles with power ratings equal to those 

of existing conventional tow tractors in use at United 

States' airports were not feasible for replacing the 

conventional vehicles. Research was conducted to determine 

the specific task requirements. Much of the peak power 

demand resulted from breakaway draft required to start 

heavy loads rolling. The peak loads were found to be of 

short duration and thus suited to electric vehicles with 

lower power ratings (Bishara, 1981). The resulting electric 

vehicle design was economically and technically competitive 

with the conventional vehicles. 

Once the replacement electric vehicles have been 

properly sized, economic analyses must be conducted to 

dete~ine electric vehicle feasibility. Operating costs 

are of _primary importance and must be projected for the 

near future for both electric and petroleum energy. 

3 78 2 0 1 

' - [ . 'I A 
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Calkins and Black (1980) developed a set of energy 

cost inflation scenarios which pr edicts energy costs in 

1990 (Table 1) . The first column is the economists' 

estimate of the most likely percentage price rise, expressed 
I 

in real terms, from 1980 to 1990. The next two columns 

indicate the smallest and largest percentage energy . cost 

increases that could be expected. The last two columns 

are the electricity optimistic a nd electricity pessimistic 

energy cost inflation scenarios. The electricity optimistic 

scenario has the price of electricity i ncreasing at its 

lowest expected rate while the prices of petroleum products 

increase at the most likely rates~ The electricity pe~si-

mistic scenario has petroleum products increasing in price 

by the lowest expected rates and the price of electricity 

increasing at its most likely rate (Table 1). 



TABLE :. 

Estimated Percentage Price Increases in RE~al Terms OVer the Period 1980-1990 
Under Five Energy Sc .. ~narios (Calkins and Black, 1980) 

SCENAR?:O 
Electricity4 

Pe!;simistic2 
Electricity) 

Most Likely Optimisticl Optimistic Pessimistic 

FUEL OR INPUT 

Diesel 6J )4 159 6J J4 
Gasoline 6) J4 159 63 J4 
Oil & Lubricants 63 34 159 6J 34 
L. P. Gas 97 51 270 97 51 
Natural Gas 97 51 270 97 51 
Electricity 34 0 63 0 J4 

1. All fuels and inputs expected to increase at lowest likely rate. 

2. All fuels and inputs expected to increase at highest likely rate. 

). Electricity increases at lowest expected rate while other fuels and inputs 
increase at most likely rate. 

4. Petroleum based inputs and fuels increase at lowest expected rate while 
electricity increases at most likely rate. 

~ 

\.1\ 
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PROCEDURE 

The objective of t his research was to determine the 

feasibility of electric vehicles for agricultural uses in 

eastern South Dakota. To accomplish this objective, tqe 

following procedural steps wer e established: 

1. Determine task requirements for vehicles as 

functions of task type, farm size, and type of operation 

for typical eastern South Dakota farms. 

2. Establish performance ca pabilities for electric 

vehicles ranging in size from 15 t o 40 hp based on current 

technology, and project capabilities by 1990 for electric 

vehicle~ ~n~5!ng frore 25 to 60 hp. 

J. Determine the technical feasibility of electric 

vehicles for p e r forming agricultural t asks in eastern South 

Dakota by comparing task requirement s with electric vehlcle 

capabilities. 

4. Assess the economic feas ibility of electric 

vehicles for a griculture in eastern South Dakota by comparing 

1n1tial and operating cos ts bet ween electric vehicles and 

conventional f arm tractors . 

Data Collection 

Initially , twenty farm operators in the Brookings, 

South Dakota, area agreed t o participate in the study and 

to help with data collect i on. Five of these later withdrew 

from the program and two more were added to make up the 



seventeen farm operators who cooperated in the completed 

study. Since selection was based on willingness to co­

operate, it i s unlikely that thi s is an unbiased sample. 

17 

Data were obtained by t wo means from these farm 

operators. First, dally fuel use records were maintain ed 

by the farmers. Second, each f armer was personally inter­

viewed several times to obtain information regarding crop 

yields, field and utility tasks p erformed, field sizes, 

and any atypical circumstances affe c ting the data. 

Each of the farm operators was asked to keep re­

cords of farm vehicle fuel usage, usage times, date of 

use, purpos e of use, and acreage covered, daily, for two 

growing seasons. These data were recorded on forms pro­

vided to the farm operators in booklets (Figure 1). These 

farmer-maintained records were intended to provide a means 

of quantifying the total energy use, which when co-evaluated 

with actual performance tests of each farmer's tractors and 

the farmer interview information would define vehicle per-

formance task requirements. 

Each of the seventeen farm operators was personally 

interviewed s everal times to assess data collection pro­

gress and to collect information pertinent to determining 

vehicle performance task requirements . A map, developed 

from standard t ownship maps, wa s compiled for each of the 

farmer's fie lds in the event that s oil type would be a 



DATE FIELD LOCATION FIELD EQUIPNENT USED HOURS 
IN FIELD 

6-14 Darrel's alfalfa across road Chopper 8.5 

6-21 Greg's corn 8-row cultivator 10 

6-22 Corn across road 8-row cultivator 12 

6-23 Shaw's alfalfa Chopper 5 

6-25 Peterson's beans 4-row cultivator 16 

6-26 Corn North 1/4 8-row cultivator 12 

6-28 George's beans B-row cultivator 8.5 

SDSU DEPARTMENT OF AGRICULTURAL ENGINEERING 

- - ·------- ----- -------- -

Figure 1. Fuel use record form, with sample data 

GALLONS FUEL 

45 

32 

38 

36 

32 

46 

28 

~ 
()) 



factor. For each field the following information was 

gathered: crop type and y ield, fertilizer type and 

application r ate, and chemical type and application 

rate. Fuel r ecord informat ion was discussed to determine 

which dally entries pertained to each field. A complete 

list of all tractor operations performed in each field 

was compiled (Figure 2). During the interview each 

farmer was a sked to describe each of the different tasks 

performed in crop or livestock product ion for that farm 

operation. The description included : which tractor 

was used, an estimate of the percentage of that tractor's 

available power that was utilized in performing the task, 

ground speed for the tractor and implement, implement size, 

operating d ur ation {hours per day) f or performing the task 

and tractor maintenance time, min/day, associated with 

performing that task. 

In order to quantify the vehicle performance re­

quirements for each farm, it was necessary to determine the 

performance capabilities of the tractors already in use on 

that farm. For instance if a farmer r eported that disking 

required 90 to 100 per cent of the available power of brand 

X, model Y tractor, and that parti c ular tractor was in need 

of performance-improving maintenance, the accuracy of the 

results-.would s uffer unless the capability of that partic­

ular tractor was adjusted accordingly . To accomplish this 

19 



r 

FIELD 
NUMBER . ACRES CROP FERTILIZER C~r:MICALS 

100 lbs 
1 125 Corn 7-21-7 Eradicane 

80 lbs NH
3 

Dyfonate 

2 70 Oats 100 lbs 2-4-D 
30-20-10 

3 30 Flax None 2-4- D 

100 lbs 

4 70 Corn 7-21-7 Lasso 
80 lbs NH

3 
Dyfonate 

Figure 2. Field data form, with sample information 

:r ELD NAME 
[N DATA 
BOOK 

Greg's East 
side 

Greg's oats 

Across road 

George's 
corn 

FIELD 
OPERATIONS DONE 

Chop s talks 
Disk 
Vibra-shank 
Disk-plant 
Anhydrous 
cultivate 

Disk 
Disk 
Drill 
Spray 
Chisel-plow 

Disk 
Vibra-shank 
Drill 
Spray 

Vibra-shank 
Disk 
Disk-plant 
Anhydrous 
cultivate 

YIELD 

90 bu/ac 

95 bu/ac 

22 bu/ac 

93 bu/ac 

l\) 

0 



dynamometer and fuel consumption tests were performed on 

two, and in some cases three, of each farmer's tractors. 
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Additionally the f ollowing information about each 

of the farmer 's tractors was requested: fuel type, tractor 

noise level at the operator 's position as rated by the 1 

farmer, number and sizes of tractor tires, and the loca­

tion and we ight of any added ballast. 

Task Requirements 

Vehicle requirements to perform agricultural tasks 

were quantif ied for each individual task identified on the 

seventeen eastern South Dakota farms which formed the basis 

for this study. To facilitate data collection and analysis, 

farm tasks were grouped into the g en eral categories of row 

crop, small grain, hay, and livestock production plus util­

ity, which i ncluded the general farmstead tasks not attrib­

utable to any specific production category. Within each 

general category, specific tasks were identified (e.g. plow­

ing, cultivat ing, windrowing) according to the practices on 

each individual farm operation. Fourteen vehicle perfor­

mance parameters were selected which, when quantified for 

an individual task and compared with a vehicle's capabil­

ities, indicated whether the v ehicle was suitable for per­

forming that farm task. The f ourteen vehicle performance 

paramet.ers are as follows: 



1. Productive capacity: For field tasks this 

is specified in acres per hour based on the implement size 

and the ground speed. This figure implies 100 per cent 

field efficiency which is unrealistic, but which is valid 

for making comparisons when all such ~ntries are computed 

in the same manner. 

2. Power range: This is the farmer's estimate 

of the percentage of available power used, by the partic­

ular tractor to perfo~m the task. In several instances 

it seemed apparent that the farmer's estimate of power 

used was in error, or the farmer declined to make an 

estimate. For these cases, an estimate based on infor­

mation obtained from the literature, Kepner (1978) and 

ASAE (1980), was added and documented as such. 

J. Speed range: Speed for each task was indicated 

by the farmers, and since most tractors were equipped with 

speedometers, these estimates were deemed reliable. 

4. Draft, torque, or 11ft: These values were 

calculated from the power and -speed parameters. 
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5. Operating duration: This is the number of hours 

per day tha the farmer spends performing the given task, 

and was obtained from farmer interviews and from exam1na- . 

tion of fuel use records. 



6. Annual operat ing time: This quantity, in 

hours, was calculated from the field charts (Figure 2) 

and the productive capacity. For instance, if from the 

field charts it was determined that a total of .600 acres 

were disked, and if the productive capacity for disklng 

on that farm was six acres per hour; then the annual 

operating t ime would be 100 hours. 
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?. Noise level: Farmers rated each tractor used 

for noise l evel at the operator 's position, using a scale 

of one to t en, where one was like a sewing machine and ten 

hurt the ears. 

Be Weight range: Thi s value, expressed in pounds 

per square inch, is the pressure the tractor exerts on the 

soil at the rear wheels and was calculated by dividing the 

tractor's total weight including ballast by the rear tire 

bearing area and multiplying by 0. 8 since approximately 80 

per cent o f the tractor's weight i s carried by the rear 

wheels when the tractor is under load. (Barger et al., 1967). 

9. Maintenance time: This is the average time, in 

minutes per day, attributable t o each specific task that the 

farmer spends for preventive ma int enance and checks on the 

tractor used to perform that t ask. Maintenance time values 

were obtained from the farmer i n terviews. 

·10. Physical size: Physical size parameters are the 

wheelbase a n d treadwidth range, i n inches, of the tractor 
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the farmer uses t o perform the task. 

11. Maneuv erability: Maneuverability is the turn­

ing radius, in inches , required for a turn without brake 

application for the particular tractor model involved. 

These values were obta ined from Nebraska Tractor Test data 

for the tract or model u sed by each farmer for each task 

and may not necessarily represent the maximum acceptable 

turning radii. 

12. Annual time available to perform task: This 

indicates t h e time, in hours , that is available to perform 

a given task based on climat ic conditions and crop devel­

opment, as reported by Durland (1980). 

13. Pollution problems: This perrormance param­

eter, while important, would be difficult to quantify; 

and since electric vehicles prod uce virtually no emis­

sions, there was no attempt t o establish a requirement in 

this area. 

14 . Safety requirements: Safety ~eatures of cur­

rently produced late model tractors were assumed accept­

able for meet ing the safe ty r equ irements of agricultural 

tasks. 

Placing the vehicle performance parameters on the 

vertical axis and the tasks , grouped under the general 

task categories on the h orizontal axis, a matrix was 

formed which served as the principal data storage and 
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analysis tool (Figure J). The completed matrix for a given 

farm often involved four tractors and all five task cate­

gories, with nearly a thousand entries. 

Electric Vehicle Capabilities 

A decision was made to assess electric vehicle , 

capabilities in 1980 and to project capabilities by .1990 

for use in analyzing the feasibility of electric vehicles 

for agricultural purposes. This decision was to accomodate 

the directives of the Department of Energy (Christianson, 

1980), which was partially funding this study. 

Preliminary analysis of electric vehicle advantages 

and disadvantages indicated that electric vehicles would · be 

most likely feasible in the lower size range. Through co­

operation with the Department of Energy (Christianson, 1980), 

hypothP.tical vehicle sizes of 15, 25, and 40 hp were se­

lected for 1980 and 25, 40, and 60 hp for 1990. Larger 

sizes were not chosen because preliminary analysis of 

weights of high-powered electric vehicles indicated that 

such vehicles would be excessively heavy, causing unaccept­

able soil compaction if used for many field operations. 

Additionally many farmers buy large tractors to have a 

power reserve in the event that timeliness is an important 

factor due to climatic conditions; and analysis of the . 

optimal · large tractor size would involve a timeliness study 

beyond the scope of this research. 

Electric vehicie capabilities were determined 



JOHN 
DEERE 
4020 

94.9 hp 
@· 1161 
pto rpm 
1.3 to 
17.6 mph 

11,250 lbs 
@ 2. 6 mph ... 
795ft-lbs 
2.7 to 
6.0 gph 

9125 lbs 

Wheelbase 
100" tread 
width 60"-
91" 

150" 
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ROW CROP PRODUCTION ~~\ 
~ r---------.---------~------~ 

PRODUCTIVE 
CAPACITY 

FIELD 
CULTIVATE 
15' 

7.7 A/Hr 

STALK 
CHOP 
ll-38" 

6.1 A/hr 

HAUL 
SILAGE 
12 TON 

POWER 
RANGE 61.2 hp 32.6 hp 49-57 hp 

SPEED 
RANGE 4-4.5 mph 4 mph 5-15 mph 

DRAFT., TORQUE 5390 lbs 
OR LIFT RANGE 

OPERATING 
DURATION 
REQUIRED 
ANNUAL 
OPERATING 
TIME REQUIRED 
ACCEPTABLE 
NOISE LEVEL 

WEIGHT RANGE 

10 hrs 

26 hr/yr 

7 

REQUIRED 3.7 psi 

ACCEPTABLE 
MAINTENANCE 1/2 hr /day 
TIME REQUIRED 
TIME 176-219 
AVA! LABLE hr/yr 

PHYSICAL 
SIZE 

TURNING 
RADIUS 

132-465 lbs 1224_1426 
292 ft-lb lbs 
pto 

6 hrs 

8 hr/yr 

7 

7.5 psi 

1/2 hr/day 

})8 hr/yr 

3-4 hrs 

4 hr/yr 

7 

7.5 psi 

1/2 hr/day 

96-160 
hr/yr 

Figure 3. Sample task requirements matrix columns, with data 



through study of electric vehicles currently produced in 

the United States and in foreign countries, and through 

analyses of electric vehicle component capabilities. 

Specific electric vehicles, which are currently produced 

and operated on a commercial scale in several European 

countries and Japan, were studied. These included auto­

mobiles, vans, and delivery trucks of various sizes. 

Commercially produced and marketed United States electric 

vehicles analyzed included electric fork lifts, garden 

tractors, and industrial tow tractors. 

Batteries, motors, controllers, transmissions, 

and other components, which could be adapted for agri­

cultural use, have been researched by the Department of 

Energy and private industry. Current component capa­

bilities have been assessed and future capabilities 

projected by the Department of Energy (Electric Vehicle 

Council, 1980). 

Technical and Economic Analyses 

The overall feasibility of electric vehicles for 

agriculture in eastern South Dakota depends on two major 

criteria. First, technical feasibility, which implies a 

comparison between the task requirements and the electric 

vehicle capabilities to determine which tasks ·specific 

sized v~hicles could perform. Second, economic feasi­

bility, which involves comparing the initial, operating, 

and maintenance costs b~tween conventional and electric 
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vehicles. 

Technical Feasibility 

Prior to detailed quantitative comparisons between 

task requirement parameters and electric vehicle capa­

bilities. the task requirements parameter list was reduced 

by removing those parameters which electric vehicles could 

satisfy in a manner comparable or superior to conventional 

vehicles with no major design difficulties. These included 

noise level, pollution problems, physical size, maneuver­

ability, safety, and maintenance time requirements. Fur­

ther study of the vehicle performance parameters list indi~ 

cated that electric vehicles could satisfy the requirements 

of the whole list, if the following three basic conditions 

were met: (1) sufficient power to perform the specific 

task, (2) sufficient operating duration capability to 

perform the task for a reasonable length of time between 

battery charges or changes, and (J) weight low enough to 

avoid excessive soil compaction and energy consumption. 

Once the matrices, discussed previously, had been 

completed for each farm operation, entries were studied 

and it was f und that the tasks could be grouped according 

to a second scheme of heavy, medium, and light field work, 

livestock production, and general utility tasks. Analysis 

of the .data revealed that minimal information would be 

lost by such a grouping, and that a grouping was needed 



to reduce the volume of raw data to a more manageable 

level. Tasks were grouped in this manner to delineate 

important differences among the tasks which reflected 

the capability of a specific sized vehicle to perform 

the tasks. 
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Vehicle requirements for heavy, medium, and light 

field tasks, livestock production, and utility functions 

were further grouped according to farm size. According to 

the latest agricultural census 26 per cent of the eastern 

South Dakota farms are from one to 219 acres, 55 per cent 

are from 220 to 1000 acres, and 19 per cent are larger than 

1000 acres (U. S. Census, 1974). For purposes of thls re­

search, farms under 200 acres were termed small, those from 

200 to 1000 acres medium , and those over 1000 acres large. 

Of the seventeen farms represented in this study, 

there were no small farms, twelve medium farms, and five 

large farms. The ratio of medium to large farms in this 

study was similar to that noted by the agricultural census 

data for eastern South Dakota. Fifteen of the seventeen 

farms included livestock operations; of the two that didn't, 

one was medium and one was large. The average size of the 

medium farms was 615 acres; the large farms averaged 1,650 

acres. Fifteen of the seventeen farm operations were thus 

categorized as (1) medium sized with livestock, or (2) large 

sized with livestock. Since there was only one farm in each 

size range without livestock, no conclusions were drawn 



concerning non-livestock farms, but the corresponding 

data were included in the overall averages. 
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To determine the technical feasibility of electric 

vehicles, daily energy requirements for a given task group 

and the energy capabilities of the four proposed electric 

vehicles sizes were compared. Vehicle energy requirements 

in horsepower-hours were expressed in terms of required 

power and operating duration. 

These comparisons were made under two different 

assumptions, which were designed to produce a range of 

electric vehicle feasibilities that bracketed the true 

feasibility. The first assumption was that the farmer 

would not use an electric vehicle unless the tasks could 

be performed in the same manner and at the same times as 

currently performed by conventional tractors. In the 

second case it was assumed that the farmer could readjust 

work schedules to make maximum use of the electric vehicle 

on an annual basis. In each case the percentage of the 

energy requirement for a task group that could be met by 

each of the four proposed electric vehicle sizes was cal­

culated. 

Economic Feasibility 

Once the technical feasibility of electric vehicles 

had been studied, efforts were directed toward assessing 

the economic feasibility. The initial cost of an electric 

Vehicle is expected to e xceed that of a conventional vehicle 
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of similar capacity by t h e pri c e of the battery set (Buck, 

1980) and (Kel leher , 1980 ). 

Present-day lead-acid batteries cost $100 per 

kilowatt-hour (kwh) . Nickel- iron batteries are expected 

to cost $70 per kwh by 1984 (El e ctri c Vehicle Council, 1980). 

Since battery capacity must increase with electric vehi.ole 

power rating, the larger electric vehicles would have a 

greater initial cost disadvantage, compar e d to conventional 

farm tractors, than would the smaller vehicles. However 

the larger electric vehicles would generat e greater oper­

ating and maintenance cost savings. Cost of the battery 

set was amort ized over the expected life o f the battery to 

distribute the initial cost of t he battery set on an hourly 

basis. 

To make operating cost c omparisons for vehicles 

performing agr icultural tasks , a specific fuel consumption 

of 14.6 horsepower-hours per ga llon of d iesel fuel was used 

for conventional vehicles. This figure r epresents an average 

for the twelve mos t fuel efficient tractors of 40 hp or less 

tested at the Nebraska Tractor Test facil ity (Ewing, 1980). 

Current dies 1 fue l prices were obtained on May 2 0, 1981, 

from six Brookings, South Dakota, area farm del ivery fuel 

dealers: Buskrud Oi l Co., Cenex Fuel Co ., Farmers Union 

Co-op Oil co., Hillestad Oil Co., Jackrabbit 011 & Tire Co., 

and Standard Oil co . Electric vehicle operating e fficien­

cies included conversion losses for the motor, controller, 



battery, and charger. For 1980, motor and controller 

efficiencies were 90 per cent, battery turn-around effi­

ciency was 50 per cent, and charger efficiency was 81 per 

cent (DOE, 1979a). Efficiencies for 1990 were based on 

Department of Energy projections as follows: motor and 

controller efficiencies of 95 per cent, a battery turn­

around efficiency of 67 per cent, and a charger efficiency 

of 90 per cent (DOE, 1979a). Electric energy costs on 

farms in eastern South Dakota were obtained on May 20, 

1981, from six eastern South Dakota rural electric coop­

eratives: Codington-Clark Electric at Watertown, H-D 

Electric at Clear Lake, Inter-County Electric at Mitchell, 

Sioux Valley Electric at Colman, Tri-County Electric at 

Plankington, and Whetstone Valley Electric at Milbank. 

To project the operating cost comparisons to 1990, 

energy cost inflation scenario~ developed for the study by 

economists at Michigan State University in cooperation with 

the Department of Energy were used (Table 1). The electric 

pessimistic scenario has diesel fuel increasing in real 
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cost (adjusted for inflation) by 34 per cent over the decade, 

and has electricity increasing in cost by 34 per cent. The 

electric optimistic scenario predicts that in ten years 

dies~l fuel will cost 63 per cent more and electricity will 

cost the same in real terms as it does today. These two 

scenarios establish a range within which the most likely 

energy cost inflation scenario lies, which is a real cost 



increase of 63 per cent for diesel and J4 per cent for 

electricity. The wide range results from the interna­

tional uncertainty concerning energy supplies. 

Although lower maintenance costs and useful 

vehicle service life appear to favor electric vehicles 

(Harrow et al., 1979), those factors were not included 
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in this economic analysis. Operating costs of conventional 

and electric vehicles were compared for 1980 and 1990 using 

each of the three energy cost inflation scenarios. The 

economic feasibility of electric vehicles was determined by 

ascertaining whether or not the operating cost savings 

would equal or exceed the extra initial co-st, within the . 

normal wear-out life of a conventional tractor. or the 

life of the battery set, whichever is shorter. 
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RESULTS AND DISCUSSION 

Three basic steps were per~ormed to accomplish the 

objective of determining the ~easibility o~ electric 

vehicles for agricultural uses in eastern South Dakota. 

First, the vehicle performance task requirements were 

determined. Second, capabilities of electric vehicles 

were researched and projected for the present and for 1990. 

Third, task requirements and electric vehicle capabilities 

were compared to determine technical ~eas1bil1ty, and costs 

were compared to determine economic feasibility. 

Task Requirements 

The vehicle performance task requirements in a~~i­

culture were determined by quantifying the ~ourteen vehi­

cle performance parameters, identified in the Procedure, 

for each specific farm task. This was accomplished by 

(1) reviewing existing literature and by (2) analyzing 

vehicle performance requirements on seventeen Brookings, 

South Dakota, area farms. 

Particularly valuable references were Kepner's 

(1978) Principles of Farm Machinery and the Agricultural 

Engineers' Yearbook published by ASAE (1980). 

Literature Values 

1. Power range: The power required to perform 

heavy. medium, and light ~ield work, livestock production, 

and general utility tasks on small,- medium and large farms 



ranges from 10 to 175 hp, Kepner {1978) and ASAE (1980), 

(Tables 2, J, and 4). 

2. Speed range: Values for speed requirements 

range from zero to fifteen miles per hour, Kepner ( 1978). 

Barger (196?), and ASAE {1980), {Tables 2, J, and 4). 

J. Draft, torque, or lift: These requirements, 

along with the speed values, determine the power require­

ments. The values were ~btained from Kepner (1978) and 

ASAE (1980) for each task (Tables 2, J, and 4). 

4. Operating duration: The literature did not 

specifically give operating durations required because 

these vary with the amount of work to be done. The range 

of one to twelve hours would be acceptable in most cases 

(Tables 2, J, and 4). 

S. Annual operating time: This was based on the 

assumed farm size, recommended implement sizes for the 

given farm size, the speeds determined earlier, and tasks 

generally required to produce the average crop and live­

stock mix reported in the literature, Hunt (1977). The 

values for annual operating time, as well as the values 

for the first four parameters listed, were subdivided to 

provide a range of requirements for each task group and 

farm size mentioned (Tables 2, J, and 4). 
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TABLE 2 

Principal vehicle performance requirements for tasks typical of 1-199 acre farms in 
Eastern South Dakota, as determined from review of literature. 

Power Range 
(Drawbar Horsepower) 

Speed Range (mph) 

Draft (lbs) 
Torque(ft-lbs at PTO) 
Lift (lbs) 

Operating Duration 
Time (hrs) 
Energy (hp-hrs) 

Annual Operating 
Time (hrs) 

Energy (hp-hrs) 

Medium Light 
Heavy 1 Field2 Field3 Livestock 4 Genera15 Tillage Work Work Production Utility 

60-70 40-50 20-30 25-35 10-20 

4-6 

3750-6550 

8-10 
585 

98 

6370 

3-15 

980-4325 
170-455 

5-10 
337.5 

174 

7830 

2-15 

70-2970 
136-292 

1500 

2-10 
150 

195 

4875 

1-15· 1-6 

700-5000 100-1500 
136-435 146 

1000-2500 1000 

1-6 3-7 
105 75 

300-350 ' 45 

9750 675 

1. 
2. 

Tasks include moldboard plowing, chisel plowing and field cultivating. 

3. 

4. 
5. 

Tasks include disking, fertilizing, silage c!hopping, combining, baling and hauling 
heavy loads. · 
Tasks include seeding, windrowing, light hru1ling, mowing, raking, dragging, spraying, 
stalk chopping, planting, row cultivating and corn picking. 
Tasks include grinding, loader work, sewage handling, livestock moving and snow moving. 
Tasks include operating augers and elevator:3 ,. digging post holes, moving machinery 
and hauling rock. 

\.N 
0\ 



TABLE 3 

Principal vehicle performance requirements for performing tasks typical of 200-1000 acre 
farms in Eastern South Dakota, as determined from review of literature. 

------------------------------------~----~----------~~~~~~~~~-~~~~~~.--~,~~------~~~~~~~--~~~~~~--~~--~~----~----._~~--------P-

Power Range 
(Drawbar Horsepower) 

Speed Range (mph) 

Draft (lbs) 
Torque(ft-lbs at PTO) 
Lift (1bs) 

Operating Duration 
Time (hrs) 

Energy (hp-hrs) 

Annual Operating 
Time (hrs) 

Energy (hp-hrs) 

Medium Light 
Heavy 1 Field2 Field3 Livestock 4 General5 Tilla~e Work Work Production Utility 

100-110 55-65 20-30 30-40 10-20 

3-6 3-15 3-15 1-15 1-6 

4140-10,525 820-7565 70-3495 1000-7500 100-1500 
170-525 136-292 230-450 225 

1500 1000-2500 1500 

8-12 5-10 4-11 2-8 3-8 

1050 450 187 175 82.5 

290 410 420 700-1000 50 

30,450 24,600 10,500 29,750 750 

l. 
2. 

Tasks include moldboard plowing, chisel plowing and field cultivating. 

3. 

Tasks include disking, fertilizing, silage chopping,combining, baling and hauling 
heavy loads. 
Tasks include seeding, windrowing, light hauling, mowing, raking, dragging, spraying, 
stalk chopping, planting, row cultivating and corn picking. 

4. 
5.· 

Tasks include grinding, loader work, sewage handling, livestock moving and snow moving. 
Tasks include operating augers and elevators, digging post holes, moving machinery 
and hauling rock. \N 

~ 



TABLE L~ 

Principal vehicle performance requirements for tasks typical of 1000 acres or more farms 
in Eastern South Dakota, as determined from review of literature. 

Medium Light 
Heavy Fie1d2 Fie1d

3 
Livestock 4 Genera1

5 Tillaf5e1 Work Work Production Uti1it;I 
Power Range 165-175 75-85 30-40 45-55 10-20 
(Drawbar Horsepower) 

Speed Range (mph) 3-6 3-15 3-15 l-15 1-6 

Draft (lbs) 6540-18,065 820-11,260 70-4670 700-10,000 100-1500 
Torque(ft-lbs at PTO) 170-525 136-292 350-780 225 
Lift (lbs) 1500 1000-2500 1500 

Operating Dux-ation 
Time (hrs) 8-12 5-12 4-12 2-8 3-8 
Energy (hp-hrs) 1700 680 280 250 82.5 

Annual Operating 
Time (hrs) 475 680 535 700-1000 70 
Energy (hp-hrs) 80,750 54,400 18,725 42,500 1050 

1. Tasks include moldboard plowing, chisel plowing and field cultivating. 
2. Tasks include disking, fertilizing, silage chopping, combining, baling and hauling 

heavy loads. 
3. Tasks include seeding, windrowing, light hauling, mowing, raking, dragging, spraying, 

stalk chopping, planting, row cultivating and corn picking. 
4. Tasks include grinding, loader work, sewage handling, livestock moving and snow moving. 
5. Tasks include operating augers and elevators, digging post holes, moving machinery 

and hauling rock. \N 
~ 



6. Productive capacity: This is the product of 

implement size and speed and is given in units such as 

acres per hour. 

7. Allowable noise level: Limits have been 

established at levels that will not cause hearing loss. 

Noise level may safely go as high as 115 dB A if exposure 

1s limited to fifteen minutes per day. For an eight hour 

duration, 90 dB A 1s allowed (OSHA, 1978). 
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8. Pollution problems: This parameter would be 

difficult to quantify in meaningful terms. Problems with 

vehicle pollutants are particularly acute when the vehicle 

is operated inside farm buildings. In any case, the elec­

tric vehicle, being virtually pollution free, could easily 

satisfy any pollution standards. 

9. Weight range: It was assumed that conventional 

tractors are already near the upper weight limit in terms 

of pounds of weight per square inch of tire bearing area 

since soil compaction may be a problem, in some cases, with 

conventional tractors. Therefore the range of weight per 

unit area values was determined to be that of vehicles just 

large enoug to accomplish the specific task. Values range 

from 7.0 to 1).6 psi. 

10. Safety requirements: Vehicle task requirements 

for safe operation include: uncluttered operator's posi­

tion; shields, steps, and handholds; rear fenders; conve­

niently located controls; starter safety switch; adequate 
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lighting; protective non-skid surfaces on controls; and 

electrical systems standard safety precautions (ASAE, 1980). 

11~ Acceptable maintenance time: This was the 

time that could reasonably be spent performing maintenance 

and adjustments on the tractor without causing production 

losses. These timeliness figures were developed from in­

formation provided by the U.S. Crop and Livestock Reporting 

Service (Kepner, 1978). When the annual operating time for 

a task was low, the matrix entry for acceptable maintenance 

time indicated that there was no shortage of time to per­

form task-related maintenance on the tractor. 

12. Physical size: The wheelbase and treadwidth 

range were given, in inches, for the average of those 

tractors in the power range required to perform the task 

on the given farm size. 

13. Maneuverability: The turning radius, in 

inches, was noted for the average tractor described in (12) 

above. 

14. Annual time available to perform task: These 

values were based on climatic information (Lytle, 1980} 

and the crop being produced (Durland, 1980), and were 

recorded as hours per year. 

Farm Research Values 

The second method of determining vehicle performance 

task requirements was to research farm tasks currently 

performed by farm operators in the Brookings, South Dakota, 
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area to determine the method of task completion. A matrix 

containing vehicle performance criteria for all tasks was 

constructed for each tractor on each of seventeen farms 

(Figure J). The list of performance parameters was slightly 

different from that given for the literature review method 

of determining task requirements. The list is as follows: 

1. Productive capacity: This is the product of 

speed and implement size, given in units such as acres per 

hour. This is a function of the power range for the given 

task. 

2. Power range: Actual farm data give task power 

requirements ranging from 5 to 140 hp. This compares w~th 

the 10 to 175 hp range from the literature review method. 

The discrepancy probably results from the difference in 

size of the large farms used in the two methods. For the 

first method, a large farm size of JOOO acres was assumed, 

while the average size of the five large Brookings, South 

Dakota. area farms studied was 1650 acres. 

J. Speed range: Farm operators reported a range of 

speed requirements for tasks performed from zero to twenty 

miles per h ur. This compares with a ~peed range of from 

zero to fifteen miles per hour from the first method. 

4. Draft. torque. or 11ft: Draft, torque, or lift 

values are functions of the power range and speed. and thus 

agree closely with those of the first method for medium 

farms and are slightly smaller than the first method results 
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for large farms. 

5. Operating duration required: Daily operating 

durations given by farm operators ranged from one to six­

teen hours. This exceeded the one to twelve hour operating 

duration range from the literature review method, however 

operating durations in excess of twelve hours were reported 

by only two farm operators. 

6. Annual operating time required: These values 

are functions of farm size and productive capacity. Anal­

ysis of farm operator data resulted in annual operating 

times ranging from 1 to 1004 hours depending on the task. 

This compares favorably with the annual operating time 

range of from 45 to 1000 hours from the literature revlew 

method of determining vehicle performance task requirements. 

Tables 5 and 6 summarize the five important vehicle 

performance parameters: power range; speed range; draft, 

torque, or lift; operating duration required; and annual 

operating time required. These values were obtained from 

the farmer interviews and were tabulated by task groups in 

the same manner as were the results of the literature review 

method (Tables J and 4). Analysis of the two sets of vehi­

cle performance requirements shows general agreement of the 

results from both methods of determining task .requirements. 

The farm interview data for power range and speed range 

covered a wider range of values than did the literature 

review data, but the averages of each of the ranges 



TABLE 5 
Principal vehicle performance requirements for performing tasks determined from medium 

(200-1000 acres) farms near Brookings, South Dakota. 
Medium Light 

Heavy 1 Field2 Field3 Livestock 4 Genera1
5 Tillage Work Wo:r:'_k ___ ~ __ P_ro_duc tion ___ U_tili!;_y 

Power Range 66-125 18-116 5-79 10-115 9-25 
(Drawbar Horsepower) 

Speed Range (mph) 2.5-6 0-20 0-17.6 0-18 0-15 

Draft (1bs) 1500-10,375 450-9524 70-5156 80-16,000 500-3500 
Torque(ft-lbs at PTO) 720-827 145-584 49-770 97-778 49-249 
Lift (lbs) 1000-3000 1000-2500 2500 

Operating Duration 
Time (hrs) 2-14 2-13 1-14 l/6-10 l-8 

Energy(hp-hrs)(avera~e) 916.1 471.0 234.7 138.0 67.8 
(range 360-1392 69-1287.5 20-754 3-7-632.5 30-160 

Annual Operating 
Time (hrs) (average) 106.8 149.5 199.4 622.1 73.6 

(range) 40-189 66.2-292 78.6-295-5 15-1172 5-244 

Energy (avera~e) 9528 10,448 7589 23,556 1078 
(hp-hrs) (range 2387-21,803 3834-26,017 2064-12,178 555-49,777 75-3265 

l. Tasks include moldboard plowing, chisel plowing and field cultivating. 
2. Tasks include disking, fertilizing, silage chopping, combining, baling and hauling 

heavy loads. 
3. Tasks include seeding, windrowing, light hc=·.uling, mowing, raking, dragging, spraying, 

stalk chopping, planting, row cultivating c=nd corn picking. 
4. Tasks include grinding, loader wo:rk, sewagE handling, livestock moving and snow moving. 
5. Tasks include operating augers and elevators, digging post holes, moving machinery ~ 

and hauling rock. ~ 



TABLE 6 
Principal vehicle performance requirements for performing tasks determined from large 

(over 1000 acres) farms near Brookings, South Dakota. 
-· - ~ - ~ 

rredium Liglr L · · ·· 
Heavy 1 Field2 Field

3 
Livest ock 4 Genera15 Tillage Work Work Production Utility 

Power Range 15-135 35-140 12- 93 6- 137 8-25 
(Drawbar Horsepower) 

Speed Range (mph) 

Draft (lbs) 
Torque(ft- lbs at PTO) 
Li f t (lbs) 

3-5-9 2. 5- 18 

2409-11 ,593 350-8727 
1206-1284 170- 729 

Operating Durat i on 
Time (hrs ) 2- 15 l-16 

(average) 1007.9 
Energy(hp-hrs) (range) 52 .5-1600 

Annual Operating 
Ti me (hrs) (average) 

(range) 
177.8 

107-297 

850.3 
49-1525 

261.1 
147-575 

0-18 

70- 6054 
146-778 

1000-1500 

2- 16 

316 .6 
48-930 

348.4 
158-744 

(average) 20,282 25,366 12,944 
Energy(hp-hrs) (range) 13,224-29,144 8927-58,337 4256-26,761 

0- 18 

213- 20 , 000 
90- 1381 

1000-3800 
-
l/2-12 

381.9 
9-1350 

987.6 
50-2395 

58,519 
4760-175,048 

l. Tasks include moldboard plowing, chisel plowing and field cultivating. 

0- 15 

240-3745 
97-243 
2000 

l-8 

53.8 
30-160 

174.2 
0-631 

1096 
1135-1705 

2. Tasks include disking, fertilizing, silage chopping, combining, baling and hauling 
heavy loads. 

3. Tasks include seeding, windrowing, light hauling, mowing, raking, dragging, spraying, 
stalk chopping, planting, row cultivating cUld corn picking. 

4. Tasks include grinding, loader wo2k, sewage handling, livestock moving, and snow moving. 
5. Tasks include operating augers and elevators, digging post holes, moving machinery ~ 

and hauling rock. .;:-
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exhibited a mean difference of less than twenty per cent. 

Draft, torque, or lift values, as functions of power range, 

compared in a similar manner. Operating duration ranges 

were wider for farm interview data than for literature 

review data, but average values were nearly identical. 

Average daily energy requirements from both methods were 

nearly the same. Annual operating t ·imes and energy require­

ments from the farm interviews were less than those from 

the literature review method for the three field task groups. 

This is probably due to recent improvements in field task 

management practices. Annual operating times and energy 

requirements from both methods are similar for the live­

stock production and general utility task groups. 

?. Noise level: These values are the subjective 

ratings on a scale of one to ten given by the farm opera­

tors for each tractor used. One implies a very quiet 

tractor at the operator's position and ten corresponds 

to a very loud tractor at the operator's position. Farmers• 

responses covered the whole range from one to ten. 

8. Weight range required: The calculations to 

produce thes e values were based on the characteristics 

of existing tractors. The numbers recorded were weight 

per unit of tire bearing area, given in pounds per square 

inch. It was assumed that existing tractors are already 

in the upper portion of the allowable weight per unit 

area range. 
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9. Allowable maintenance time required: These 

values represent the average daily time spent for maintenance 

and adjustments on the tractor used to perform the task. 

Maintenance times varied from two to thirty minutes per day. 

10. Time available: This parameter remains un­

changed from the results of the literature review method, 

since it is primarily dependent upon climatic and crop 

factors. 

11. Physical size: Wheelbase and treadwidth 

range are given in inches for the tractor used to perform 

the task. 

12. Turning radius: This is given in inches and 

is the minimum for the tractor, without using brakes, that 

currently performs the task. Both physical size and turn­

ing radius of existing tractors are considered adequate by 

farm operators. 

The foregoing list of twelve vehicle performance 

task requirements appears to include any necessary infor­

mation to describe the parameters involved in performing 

a given task. The five most important parameters were 

quantified a nd summarized by task groups for the literature 

review method {Tables J and 4) and for the farm interview 

method (Tables 5 and 6). 

Electric Vehicle Capabilities 

Preliminary analysis of electric vehicle capabil­

ities indicates that electric vehicles could equal or 



exceed performance capabilitites of conventional tractors 

in all areas except operating duration and weight range. 

Electric vehicl e s have been used to deliver milk 

in England for over forty years. The United States Postal 

Service has a large numbe r of electric vehicles in its 

fleet. Electric automobiles were in existence in the 

first decade of this century. Modern electric cars have 

highway cruising speeds and can travel distances of one 

hundred mi les or more on a single charge. Battery powered 

fork lifts and tow trucks are widely used in industry and 

warehouses. Coal miners use l ow profile electric vehicles 

to load coal into conveyor s y stems. 
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Electric vehicles may be manufactured with a wide 

range of motor sizes. Most r ailroad locomotives are pro­

pelled by e lectric motors. In some areas electric trains 

are common for commuter transit systems. Large power 

shovels d o open pit mining powered by electric motors. 

While thes e three types of vehicles are not battery 

powered. it is apparent that electric motors and associated 

control s ystems can handle far more power than is currently 

needed on S uth Dakota farms . 

There are virtually no polluting emissions from 

electr·ic veh i cles. This f eature could be especially impor­

tant fq~ o peration inside farm buildings. At the same time 

electric v ehicles would produce much less noise pollution 

than conven t ional tractors . For intermittent use tasks 



an electric vehicle would be switched off no matter how 

short the period of non-use, during which time it would 
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be completely silent and pollution-free. Conventional 

tractors are usually left running during short idle periods. 

Although noise may not be a serious problem, many tractor 

engines emit excessive pollutants at low speeds because of 

a fuel-air mixture designed for efficient operation at 

rated engine speeds. 

Electric vehicles are not as susceptible to fuel 

shortages as are petroleum powered tractors. Electricity 

is generated from a variety of energy sources including 

hydroelectric potential, nuclear fuel, coal, and solar · 

radiation, as well as petroleum. The nature of agricultural 

production in the United States requires that many of the 

tasks must be performed within a very limited length of 

time. If developments in foreign countries resulted 1n 

a cutoff of imported oil to the United States - at a critical 

time for agriculture, the resulting delay 1n performing 

certain tasks could be economically disastrous. Since most 

of the electricity in agricultural regions is produced from 

sources other than oil, electric vehicles would have a more 

stable energy supply. In addition, charging of the battery 

set or sets could be done late at night during off-peak 

electric power demand times. This would provide savings 

for the farm operator and the electric power supplier. 



Electric vehicles require less maintenance than 

conventional gas or diesel powered vehicles. In a series 

of actual on-the-job comparisons between electric and 

petroleum powered vehicles in England, maintenance costs 

ranged rrom 32 to 42 per cent less for the electric vehi­

cles (Harrow et al., 1979). 

The study of fork lifts, tow trucks, automobiles, 

and delivery trucks indicates that electric vehicles can 

be made to meet the same physical size and turning radius 

limitations as conventional vehicles. It is reasonable 

to assume that electric tractors need not be any more 

cumbersome than conventional tractors. 

Capabilities for electric vehicles at the present 

time appear adequate to meet all of the vehicle perform­

ance requirements except operating time or weight range. 

Either of these two parameters may be satisfied. but at 

the expense of the other. This is because the energy 

density of present day batteries is too low to allow 

batteries with sufficient energy content for all farm tasks 

without excessive vehicle weights. The lead-acid batteries 

available today have energy densities of 18 to 19 watt-hours 

per pound (Electric Vehicle Council, 1980). The proposed 

electric vehicle designs for 1981 indicate, f6r instan~e, 

that the battery required to operate a 25 hp electric 

tractor for four hours, using the efficiencies and depth 

of discharge listed in the design, would weigh 8500 

' 
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pounds (Table 7). Extra weight is considered a disadvantage 

ror field tasks because of soil compaction (Gill and Vanden 

Berg, 1967), but for certain livestock production and 

general utility tasks, the extra weight may be an advantage. 

Battery technology advancements are projected to include 

the availability of nickel-iron batteries with energy 

densities of )2 watt-hours per pound or more by 1990 

(Electric Vehicle Council, 1980). Referring to the pro­

posed electric vehicle designs, and using the efficiencies 

and depth of discharge therein, the battery required to 

operate a 25 hp electric tractor for four hours in 1990 

would weigh only 4175 pounds or 51 per cent less than 

today's lead-acid battery (Table 8). 

If the weight range maximums are considered to be 

those ' of conventional tractors, in terms of weight per 

unit bearing area, then electric vehicles could not meet 

this requirement unless additional bearing area was pro­

vided. Total tractor weight must also be considered as 

a factor in soil compaction. 

When considering electric vehicle capabilities and 

studying the proposed designs for 1981 and 1990, it should 

be noted that batteries were sized ~or four hours of contin­

uous operation at full rated power. If the task performed 

required less than full rated power or less than continuous 

operation, the effective energy density of the battery 

would increase and operating time would be extended. It 



TABLE 7 

Electric Vehicle Hypothetical Designs for 1981 

A. 15 HP1 
PrO: 
l{ydraulics: 
Motor: 

Battery: 
Type: 
Size·: 
Cost: 
Life: 

Transmission: 

Clutch: 
Drive: 
Vehicle Weight: 

B. 25 HP1 
PrO: 
Hydraulics: 
Motor: 

Battery: 
Type: 
Size: 
Cost: 
Life: 

Transmission: 

Clutch: 
Drive: 
Vehicle weight: 

C. 40 HP1 
PTO: 
Hydraulics: 
Motor: 

Battery: 
Type: 
Size: 
Cost: 
Life: 

540 rpm standard 
Optional, 2000 psi, 6 gpm 
15 hp compound wound d.c., with 
speed and reversing control 

Lead-acid (19 wh/lb) 
97.3 kwh rated2. 5100 lbs. 
$9.730 
500 cycles 
8-speed standard shift (4 gears 
plus high-low)3 
Standard disk type4 
Two Wheel 
7000 lbs. 

514-0 rpm standard 
Standard, 2000 psi, 6 gpm 
25 hp compound wound d.c •• with 
speed and reversing control 

Lead-acid (19 wh/lb) 
162.1 kwh rated2, 8500 lbs. 
$16,210 
500 cycles 
8 speed standard shift (4 gears 
plus high-low)3 
Standard disk type4 
Two wheel 
10,500 lbs. 

540 rpm standard 
Standard, 2000 psi, 6 gpm 
40 hp compound wound d.c •• with 
speed and reversing control 

Lead-acid (19 w~/lb) 
259.4 kwh rated • 13,600 lbs. 
$25,940 
500 cycles 

51 
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TABLE 7 (continued) 

Transmission: 8 speed standard shift, (4 gears 
plus high-low)J 

Clutch: Standard disk type 4 
Drive: Four wheel, 20" to 26" wheels 

depending on weight distribution 
and traction requirements, crab 
steering 

Vehicle Weight: 17,800 lbs. 

1. Vehicle components sized to deliver rated hp at the PTO 
ror 4 continuous duty hours. 

2. Rated capacity is calculated assuming 90% motor effi­
ciency, 71% battery discharge efficiency, 80% depth _ 
of discharge, 90% controller efficiency and 4 hours 
of operation at rated hp. 

J. No reverse gear is needed, the motor can be reversed. 

4. Clutch serves primarily -as an emergency disconnect 
and racilitates shifting while moving. 
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TABLE 8 

Electric Vehicle Hypothetical Designs for 1990 

A. 25 HP1 
PI'O: 
Hydraulics: 
Motor: 

Battery: 
Type: 
Size: 
Cost: 
Life: 

Transm1ssion3: 

Clutch: 
Drive: 
Vehicle Weight: 

B. 40 HP1 
Pl'O: 
Hydraulics: 
Motor: 

Battery: 
Type: 
Size: 
Cost: 
Life: 

TransmissionJ: 
Clutch: 
Drive: 

Vehicle Weight: 

C. 60 HP1 
PrO: 
Hydraulics: 
Motor: 

Battery: 
Type: 
Size: 
Cost: 
Life: 

540 rpm standard 
Standard, 2000 psi, 6 gpm 
25 hp, reversing, compound wound 
d.c., speed control optional 

Nickel-iron (J2 wh/lb) 
133.0 kwh rated2 , 4175 lbs. 
$9.310 
2000 cycles 
Continuously Variable Transmission, 
(CVT) 
None needed 
Two wheel 
7000 lbs. 

9~0 rpm standard 
Standard, 2000 psi, 6 gpm 
40 hp, 3 phase synchronous with 
phase converter, reversing, no 
~peed control required 

Nickel-iron (J2
4
wh/lb) 

201.6 kwh rated , 6325 lbs. 
$14,113 
2000 cycles 
CVT 
None needed 
Four wheel with 20" to 26" wheels, 
crab steering 
11,500 lbs. 

540 rpm standard 
Standard, 2000 psi, 6 gpm 
60 hp, J phase synchronous with 
phase converter, reversing, no 
speed control required 

Nickel-iron (32 wh/lb) 
302.4 kwh ra.ted4, 9475 lbs. 
$21,169 
2000 cycles 



TABLE 8 (continued) 

Transmission3: 
Clutch: 
Drive: 

Vehicle weight: 

CVT 
None needed 
Four wheel with 24" to JO" wheels, 
art~culated steering 
17,000 lbs. 

1. Vehicle components sized to deliver rated hp at the PTq 
ror 4 continuous duty hours. 

2. Rated capacity is calculated assuming 90% motor effi­
ciency, 82% battery discharge efficiency, 80% depth 
of discharge, 95% controller efficiency and 4 hours 
or operation at rated hp. 

J. Ratios variable across entire speed range, direct drive, 
no reverse needeu. 

4. Rated capacity is calculated assuming 95% motor effi­
ciency, 82% battery discharge efficiency, 80% depth 
of discharge, 95% controller efficiency and 4 hours 
of operation at rated hp. 



55 

should be noted that if the electric vehicles were designed 

such that the battery set could be easily removed and 

replaced, then one extra battery set would allow eight 

hours or more of operation each day. 

Feasibility of Electric Vehicles 

Electric vehicles can meet or exceed most task 

requirements for agriculture; therefore the assessment 

of technical and economic · feasibility of electric vehicles 

in agriculture hinges on relatively few performance criteria. 

Technical Feasibility 

Technical feasibility of electric vehicles in agri­

culture is determined by the degree to which the task re­

quirements can be met by electric vehicle capabilities. 

The most basic of the vehicle task requirements is the 

power range. Speed, draft, torque, 11ft, and productive 

capacity are all functions of the available power at the 

motor output. The second basic requirement is the operating 

time, considered both on a daily and an annual basis. The 

corresponding electric vehicle capability depends on the 

two basic parameters: power and operating duration. 

These two pa rameters may be combined into a single energy 

term, namely horsepower-hours. Comparison between task 

energy requirement and electri~ vehicle energy capability 

determines the feasibility of the electric vehicle to 

perform the task. This comparison, on both daily and 

annual bases, indicates the percentage of the required 



work the electric vehicle is capable of performing in 

the time under consideration. 

The first two methods of comparing the task re­

quirements with electric vehicle capabilities involve 

consideration of requirements and capabilities on a daily 

basis. Analysis of farm interview data yielded average 

daily energy requirements for each task group on each 

farm {Table A-1). Tables A-2, A-3. and_ A-4 depict the 

percentage of the average energy requirement in each of 

the five task groups that could be met by each of the 
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four proposed electric vehicle sizes. The most conservative 

estimate of electric vehicle feasibility was constructed 

using the average daily energy requirement for each task 

group and considering only those electric vehicles with 

power capability equal to or greater than the average power 

requirement as given by each farmer cooperator (Table A-2). 

This effectively depicts the percentages of each farmer 

cooperator's work requirement that could be accomplished 

by an electric vehicle if the farmer made no management 

changes. That is, the time to do each task remains the 

same, the types of tasks remain the same, and the farmer 

works full days on a specific task. 

The second comparison of task energy requirements 

and electric vehicle energy capabilities is similar to the 
. ·. 6 ·.··- . . 

first except that it shows feasibility percentages for 

electric vehicle sizes with less power than the average 
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requirement. This assumes that the farmer could adjust 

speed or implement size so that the task could be done with 

less power (Table A-J). The daily energy requirement was 

not changed. 

The third method of comparing task requirements with 

electric vehicle capabilities considers energy requirements 

and capabilities on an annual basis. This most optimistic 

estimate of electric vehicle feasibility was constructed 

considering the total annual energy requirement for each 

task group. The annual electric vehicle capability was 

calculated by multiplying the daily capability for each 

electric vehicle size by 150 days for the field work task 

groups or by JOO days for the livestock and general utility 

task groups (Table A-4). This assumes that the farmer 

cooperator would adjust work schedules to maximize utili­

zation of the electric vehicle. For instance if there are 

normally twenty days per year during which disking could be 

performed based on timeliness studies, but this is typically 

done by the farmer cooperator in five days. Tab~e A-4 

assumes that the farmer will disk for part of twenty days 

to make optimal use of the electric vehicle. 

It ~hould be noted that if the electric vehicle is 

designed in such a way that the battery set could be easily 

changed, then one extra battery set would double the daily 

operating time. This would double .all of the feasibility 

percentages (Tables A-2, A-3. and A-4). None of these 



tables alone accurately portrays the potential ror re­

placing farm tractors with electric vehicles. Realisti­

cally the farmer cooperators could make some management 

changes to accomodate electric vehicles, but it would not 

be reasonable to try to utilize all available field days 

for each task where a substantial yield penalty results 

from delays. Tables A-2 and A-4 define a range of feasi­

bilities, and the practical replacement potential of con­

ventional farm tractors by electric vehicles is within 

this range. By assuming a battery change during the day, 

the upper and lower limits of the range are doubled. 

When farm size and type were considered, the data 

indicated that a large percentage of the tra~to1· wurA 

requirement on medium farms (200 - 1000 acres) with live­

stock operations could be ~ompleted with electric vehicles 

(Table A-J). For instance, a 40 hp electric vehicle on 

the average of such farms could do 18 per cent of the 

heavy field work, 34 per cent of the medium field work, 
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?2 per cent of the light field work, or 100 per cent of 

the livestock and general utility work, calculated on the 

basis of daily energy requirements . The percentages 

averaged one-fourth lower for large farms (over 1000 acres) 

with livestock operations {Table A-J). 

Economic Feasibility 

Comprehensive comparisons of economic and energy 

efficiencies between electric and conventional farm 
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tractors are di~~icult. A macro-scale study would involve 

costs and efficiencies all the way from the ultimate energy 

source to the agricultural work accomplished. The important 

point to consider when determining the extent of economic 

and energy efficiency studies is that electricity has a 

number o~ sources such as coal, nuclear fuels, hydro­

electric potential, geo~hermal heat, and solar radiation 

in addition to petroleum. These additional sources of 

electricity are more abundant and less susceptible to 

foreign interruptions than is petroleum. For these reasons 

the energy e~ficiency analyses contained herein are limited 

to on-the-farm ef~iciencies. Economic ~easibility of elec­

tric vehicles was studied from the farmer's perspective, 

and is based on costs and efficiencies realized by the ~arm 

operator. 

On-the-farm energy efficiencies of electric vehicles 

compare favorably with those of the most fuel efficient 

diesel tractors marketed today. State-0~-the-art battery 

powered electric tractors could be JJ per cent efficient at 

converting electricity to PTO {power take-off) shaft output. 

Projected advances could bring this to 54 per cent by 1990, 

while the average ~uel e~ficiency was only JO per cent for 

the ten most ~uel efficient diesel tractors tested at the 

Nebraska Tractor Test facility up through 1979 (Ewing, 1980). 

The range of efficiencies for dies~l tractors currently in 

use on farms is from 20 to JO per cent. 



60 

From the proposed electric vehicle designs, it is 

evident that the initial cost of an electric vehicle would 

probably be equal to the cost of a comparable conventional 

tractor plus the cost of the battery set. The operating 

and maintenance costs must be lower for the electric vehicle 

to be economically attractive and the analysis may be 

described as determining how quickly an electric vehicle 

can repay its additional initial cost with operating and 

maintenance cost savings. Using energy cost inflation 

scenarios for 1980 and 1990 (Table 1) and assuming a 

linear increase in energy costs for the years in between, 

Figure 4 compares operating costs by showing the ratio · 

of diesel fuel costs to electric costs per unit of useful 

work output. First, no improvements in ·electric vehicle 

component efficiencies were considered, and second, the 

improvements listed in the proposed 1990 electric vehicle 

designs (Table 8) were included. The lower line in each 

graph indicates the ratio of energy costs, if the con­

ditions for the electric pessimistic energy cost inflation 

scenario {Table 1) hold true; the upper line indicates the 

cost ratio, if the electric optimistic scenario (Table 1) 

1s correct. The most likely fuel cost ratio falls between 

the first two and is also shown on the graphs. By 1990 an 

improved electric vehicle would probably operate from 

J8 to 62 per cent more economically than a conventional 
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tractor (Figure 4). 

The operating time necessary for each of the pro­

posed electric vehicles to recover the cost of the battery 

set through reduced operating costs was calculated (Table 9). 

This aspect of economic feasibility is confirmed lf the time 

to recover the additional initial cost of the electric 

vehicle is less than the wear-out life of a conventional 

tractor. or less than the useful life of the battery set • 

whichever is smaller. • Normal wear-out life of a conven-

tional tractor is considered to be 10.000 hours (Kepner. 

1978); useful battery life is included in the proposed 

electric vehicle designs (Tables 7 and 8). 

The final aspect of economic feasibility of elec-

tric versus conventional tractors concerns the maintenance 

and repair costs associated with each. During the wear-out 

life of a conventional tractor these costs can be expected 

to equal the new cost of the vehicle, but should be much 

less with an electric vehicle. In actual comparisons 

between electric and diesel vehicles in England, the elec-

tric vehicles had maintenance and repair costs that averaged 

36 per cent less than those for diesel ve~lcles. Downtime 

for the electric vehicles ranged from 4) to 91 per cent less 

than for the diesel vehicles (Harrow et al., 1979). 

Electric vehicles seem to be feasible for the medium 

and large farms having livestock operations involved in this 

study. Since these types of farm operations make up nearly 



TABLE 9 
Operating Time Required for Proposed Electric Vehicles to Recover the Cost of a Battery 

Set Through Energy Cost Savings Compa~ed with Conventional Tractors 

Operating Time to 
Energy Cost Vehicle Size Cost of Recover Battery 

Year Inflation Scenario (h ) Battery Set Cost hours 
1981 Present Costs3 15 $ 9,730 Negative 

25 $ 16,210 Negative 
4-0 $ 25,940 Negative 

19901 Electric Pessimistic4 25 $ 9,310 Negative 
40 $ 14,113 Negative 
60 $ 21,169 Negative 

Most Likely5 25 $ 9,310 16,915 
4C $ 14,113 16,027 
6C $ 21,169 16,044 

Electric Optimistlc6 2C: $ 9,310 7,566 / 

4C $ 14,113 7,168 
60 $ 21,169 7,172 

1990
2 Electric P~ssimistic4 25 $ 9,310 9,777 

40 $ 14,113 8,452 
6C $ 21,169 8,456 

Most Likely5 2C: 
/ $ 9,310 6,067 

40 $ 14,113 5,425 
60 $ 21,169 5,427 

Electric Optimistic6 25 $ 9,310 4,729 
40 $ 14,113 4,330 
60 $ 21,169 4,331 

l. Electric vehicle efficiencies currently attainable (Table 7) 
2. Electric vehicle efficiencies projected for 1990 (Table.B) 
3. Electricity $0.036/kwh; Diesel $1.172/gal. 
4. 34% increase electricity; 34% increase diesel; real terms 
5. 34% increase electricity; 63% increase diesel; real terms 
6. No increase electricity; 63% increase diesel; real terms 

0\ 
w 
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three-fourths of all farms in eastern South Dakota, it 

appears that electric vehicles could be practical replace-

ments for many of the lower-powered internal combustion 

engine tractors in this state. Considering that the 

electric vehicle advantages of improved energy efficiency, 

lower fuel costs, less expensive maintenance, quiet and 

pollution-free operation, and reduced do~mtime are inde-

pendent of location, it seems that electric vehicles may 

be feasible in a large segment of United States agri­

culture. Finally, when the reliability or electric 

• 

vehicle energy sources is considered, along with tech­

nological goals for electric vehicle advances beyond this 

decade, the electric vehicle in agriculture seems almost 

a certainty. 



65 

CONCLUSIONS 

Vehicle performance task requirements were 

identified and quantified for agricultural tasks on farms 

typical of eastern South Dakota. Information was collected 

in two ways; first, general information was obtained through 

analysis of previous research, and second, specific task 

requirement information was determined through extensive • • 
data collection on seventeen farm operations near Brookings, 

South Dakota. 

Electric vehicle capabilities were defined for the 

present and projected for 1990 based on industry and govern­

ment goals and predictions. State-of-the-art electric 

vehicles could be JJ per cent efficient at converting farm 

electricity to PTO shaft power and projected 1990 vehicles 

could be 55 per cent efficient. This compares with a JO 

per cent energy conversion efficiency for the ten most fuel 

efficient tractors tested at the Nebraska Tractor Test 

Facility. 

Electric vehicles technically could replace 12 to 100 

per cent of agricultural vehicle fuel use by utilizing one 

60 HP electric tractor per farm. On the average of the 

medium (200 - 1000 acres) farms studied, electric vehicles 

could perform up to 27 per cent of the heavy tillage, up 

to 52 per cent of the medium field work, 40 to 100 per 



cent of the light field work, and up to 100 per cent of 

the livestock production and general utility work. On 

the average large (over 1000 acres) farm with livestock 

66 

studied, electric vehicles could perform up to 25 per ent 

of the heavy tillage, up to 34 per cent of the medium field 

work, 45 to 67 per cent of the light field work, and 13 to 

61 per cent of the livestock production and general utility 

work. 
• 

Electric vehicles are not currently economical, 

assuming no special rates for electricity, but it appears 

that economic feasibility will be attainable by 1990. 

Operating costs for electric vehicles could be up to 35 per 

cent less than those for conventional vehicles by 1990 if 

no improvements were made in electric vehicle component 

efficiencies. If the efficiencies predicted by the Depart­

ment of Energy are realized by 1990, electric vehicles will 

have operating costs from 37 to 62 per cent less than those 

for conventional vehicles. 

Factors such as reduced rates for off-peak electri-

city, battery technology breakthroughs, or sharp curtail­

ments of petroleum availability could lead to immediate 

economic feasibility for electric vehicles. 
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APPENDIX 



TABLE A-1 
Power and Energy Requirements for Seventeen Grain and Livestock 

Farms Near Brookings, South Dakota 
Dally Energy 

Farmer Farm Size Power Range Daily Operating Requirement 
and Type Task GrouE (HP2 Duration ~Hrs2 (HP-HR/Day) 

Range Ave. Range Ave. Range Ave. 

A Medium Heavy 1 71-83 77.0 5-10 8.8 622-710 666.3 
with Medium 2 34-60 45.3 2-6 4.2 74-288 188.1 Livestock 

Light3 17-49 3~·.8 3-10 7.4 80-480 260.6 
Livestock4 25-82 39-5 1-4 2.2 28-205 87.4 
Uti1ity5 9-17 1~·- 7 2-5 3-3 31-68 44.3 

B Medium Heavy1 
77 77.0 12 12.0 924 924.0 

with Medium 2 31-70 49.4 3-12 6.9 136-840 379.0 Livestock 
Light3 15-64 33.0 4-12 6.9 60-588 257.1 
Livestock4 10-55 34.1 1/6-8 3.1 3-296 103.3 
Uti1ity5 15-23 19.0 2-6 3.5 46-75 60.5 

c Medium Heavy 1 116 116.0 10-14 11.0 1160-1392 1276.0 
with Medium 2 45-116 72.0 6-8 7-7 360-928 557-7 Livestock 

Light3 15-64 37.0 4-10 6.7 76-576 253.8 
Livestock4 

25-70 49.8 1-10 4.4 25-531 243.5 
Uti1ity5 15 15.0 3-4 3.5 52-53 52.5 

• 

~ ._. 



Farm Size 
Farmer - and Type Task Grou12 

D Medium Heavy1 
with Medium 2 
Livestock 

Light3 

Livestock4 

Uti1ity5 

E Medium Heavyl 
with Medium 2 
Livestock 

Light3 

Livestock4 

Uti1ity5 

F Medium Heavy r 
with Medium 2 
Livestock 

Light3 

Livestock4 

Utility5 

TABLE A-1 (Continued) 

Daily Energy 
Power Range Daily Operating Requirement 

~HP2 Duration ~Hrs2 (HP-HR/Da;y:2 
Range Ave. Range Ave. Range Ave. 

71-79 73-? 5-10 9.2 532-790 677-5 
18-76 47.0 2-10 5-9 72-760 322.1 

8-79 33 .. 5 3-10 7-5 44-510 252.6 

23-79 41 .6 2-6 3.2 46-192 123.6 
20-23 22.5 2-4 3.0 46-80 63.0 

87-93 91 .. 0 10-14 11.3 930-1209 1032.0 

29-97 65 .. 3 4-10 7-5 203-970 497.2 

5-58 24 .. 0 2-14 8.8 20-754 248.3 
20-60 36.8 1-8 3.4 20-296 123.2 

15 15.0 4-6 5.0 60-90 75.0 

89-110 99 .. 5 9-10 9.8 : 845-1100 972.8 
51-115 65.8 4-8 7.0 204-920 475.8 I 

I 

13-74 32.6 4-11 7.2 I 

97-592 232.9 I 

14-115 52.? 1/2-6 1.8 14-633 135.5 
10-15 12.5 1-8 4.5 15-80 47.5 

. " 
--...:2 
N 



Farm Size 
Farmer and Type Task Grou12 

G Medium Heavy 1 
with Medium 2 
Livestock 

Light3 

Livestock4 

Utility5 

H Medium Heavy r 
with Mediwn 2 
Livestock 

Light3 

Livestock4 

Utility5 

I Medium Heavyr 
with Medium 2 
Livestock 

Light3 

Livestock4 

Utility5 

TABLE A-1 (Continued) 

Daily Energy 
Power Range Daily Operating Requirement 

. ~HP2 Duration ~Hrs2 ~HP-HR/Da;yJ 

Range Ave. Range Ave. Range Ave. 

89 89 .. 0 12 12.0 1068 1068.0 
29-82 59 .. 3 2-12 6.8 94-984 463.8 
12-64 28.2 1-13 7.0 30-455 195.1 

23-51 37.0 3-5 4.0 69-255 155.0 

20-25 22.5 2-3 2.5 · 50-60 55.0 

75-82 79.0 4-12 7.8 360-820 618.3 

23-78 44·.0 2-10 6.8 69-624 316.7 
10-50 24.9 2-12 6.2 35-500 170.3 
20-60 37.8 1-10 3 1 6 20-440 146.0 

15 15.0 4-5 415 67-68 67.5 

88 88.0 12-13 12.~ 1100 1100.0 
38-103 70.6 2-13 8. 100-1288 713.7 
14-40 22.0 2-13 5.4 35-500 155.3 
11-90 49.0 1-6 2.8 " 30-402 146.7 
15 15.0 4-5 4.5 67-68 67.5 

~ 

" \.,.) 



TABLE A-1 (Continued) 

Daily Energy 
Farm Size Power Range Daily Operating Requirement 

Farmer and Type Task GrouE (RP2 Duration (Hrs2 ( HP-HR/Day 2 
Range Ave. Range Ave. Range Ave. 

J Medium Heavy 1 66-76 72 .. '7 10 10.0 660-760 726.7 
with Medium 2 

32-76 56.8 10-12 10.4 320-836 598.4 Livestock 
Light 3 12-55 29 .. 5 6-12 9-3 72-550 286.8 
Livestock4 10-58 33.4 1-6 4.2 10-232 154.1 
Uti1ity5 20 20ce0 8 8.0 , 160 160.0 

K Medium Heavyl 93-125 107.0 2-11 6.8 372-1313 767.5 
with Medium 2 46-110 75.6 4-10 7.2 211-1045 593.1 Li•restock 

Light3 
6 

17-44 30.8 2-10 4,4 48-380 147.3 
Livestock4 20-55 40 .• 3 1-6 3.1 40-200 126.6 
Utility5 12-20 15 -~7 1-5 3.2 30-54 45.5 

-
Averages for Heavy1 66-125 88.2 2-14 10}1 893.6 
1'1edi urn Farms Medium 2 18-116 59 .. 2 2-13 7.2 464.2 with Livestock 

Light3 5-79 29.9 1-14 7.0 223.6 
Livestock4 10-115 41.1 1/6-10 3-3 140.4 
Uti1ity5 9-25 16.9 1-8 4.1 67.1 

ff · -
~ .;:-



Farm Size 
Farmer and Type Task Grou12 

L Large Heavy1 
with Medium2 
Livestock 

Light:? 
-4 Livestock 

Uti1ity5 

M Large Heavy1 
with Medium 2 
Livestock 

Light3 

Livestock4 

Utility5 

N Large Heavy1 
with Medium 2 
Livestock 

Light3 

Livestock4 

Uti1ity5 

TABLE A-1 (Continued) 

Power Range Daily Operating 
~HP2 Duration ~Hrs2 

Range Ave. Range Ave. 

15-118 79-3 2-10 5.4 
47-89 62.2 3-10 6.1 

19-47 32.3 3-10 6.8 
40 40 .. 0 2-4 ).0 

8-20 14.0 1-7 ).8 

135 135 .. 0 10 10.0 
120-135 127 .. 5 10 10.0 

34-84 54.7 2-12 7.6 
32-135 72.2 1-10 6.7 
20 20.0 2-8 5.0 

69-128 98~5 4-15 8.3 

35-140 7L~.l 1-12 5.9 
.12-32 36. ~) 4-16 7-7 · 
25-121 69.1 1/2-10 4.5 

• 

Daily Energy 
Requirement 
~HP-HRiDai2 

Range Ave. 

52-756 454.1 
171-711 391.9 

77-423 223.8 
120 120.0 

30-48 39.0 

1350 1350.0 
1200-1350 1275.0 

150-840 403.3 
88-1350 543.4 
40-160 100.0 

276-1600 938.0 

49-1470 580.4 

48-480 214.7 

18-837 351.6 

-...l 
\.1\ 



TABLE A-1 (Continued) 

Daily Energy 
Farm Size Power Range Daily Operating Requirement 

Farmer and TyPe · Task Grou:2 (HP2 Duration ~Hrs2 ~HP-HR/Da~2 
Range Ave. Range Ave. Range Ave. 

0 Large Heavy1 118-128 123.3 6-10 9-3 1024-1240 1148.0 
with Medium2 48-132 79 •1+ 2-12 6.7 98-1518 601.9 Livestock 

Light3 15-93 45.2 3-12 8.0 52-930 403.5 
Livestock4 6-135 70.0 1-12 4.2 9-1236 346.7 
Uti1ity5 10-25 16.7 3-5 4.2 45-113 70.0 

Averages for Heavy1 15:-135 109.0 2-15 8.3 972.5 
Large Farms Medium 2 35-140 85.8 1-12 7.2 712.3 with Livestock 

Light3 12-93 42.2 2-16 7-5 311.3 
Livestock4 6-135 62.8 1/2-12 4.6 34D.4 
Uti1ity5 8-25 12.7 1-8 3-3 52.3 

p Medium Heavy1 
97 97.0 12 12.0 1164 1164.0 

No Medium 2 
29-93 59.'7 4-12 8.3 116-837 545.7 Livestock 

Light3 18-64 38.0 5-12 8.3 90-640 356.5 
Livestock4 

37 37.0 3 3.0 111 111.0 
Uti1ity5 19 19.0 4 4.0 76 76.0 

• - -
~ 
()\ 



TABLE A-1 (Continued) 

Daily Energy 
Farm Size Power Range Daily Operating Requirement 

Farmer and Type Task Grou:e ~1IP2 Duration ~Hrs2 ~HP-HR/Da~2 

Range Ave. Range Ave. Range Ave. 

Q Large Heavy1 108-128 116.0 8-12 10 .. 0 1024-1344 1149.3 
No Medium 2 122-128 125.0 9-16 11.3 1280-1525 1402.5 Livestock 

Light3 15-58 L~ Q.8 6-10 8.0 90-464 
Livestock4 137 1~·7 .o 4 4.0 548 
Utility5 20 20.0 3 3.0 60 

Averages for Heavy1 15-135 S5.2 2-15 9.8 
All 17 Farms Medium 2 18-140 E9.4 1-16 7-5 

Light3 5-93 33-9 1-16 7.2 
Livestock4 6-137 51.6 1/6-12 3.6 
Utility5 8-25 16.2 1-8 3-9 

1. Tasks include moldboard plowing, chisel plowing, and field cultivating. 
2. Tasks include disking, fertilizing, silage chopping, combining, baling and 

hauling heavy loads. 
3. Tasks include seeding, windrowing, light hauling, mowing, raking, dragging, 

spraying, stalk chopping, planting, row cultivating, and corn picking. 

338.0 
548.0 
60.0 

943.1 
582.6 
258.8 
209.7 

63.7 

4. Tasks include grinding, loader work, sewage handling, livestock moving, and 
snow moving. • 

5. Tasks include operating augers and elevators., digging post holes, moving 
machinery, and hauling rock. 

6. Medium farms are 200 to 1000 acres; large farms are over 1000 acres. ~ 
....:! 



TABLE A-2 
Percentages of Daily Energy Requirements That Could be Met by Proposed Electric Vehicles 

with No Changes in Task Reg,uirements or Tractor Ca:Qabilities 

Farm Size6 Daily EnE~rgy Proposed Vehicle Size 
Requirement 

15hE7 22hE7 40hE7 60hE7 Farmer and Type Task Grou12 (hE-hrs) 
A Medium Heavy1 666.3 O% O% O% O% 

with Medium 2 188.1 O% O% O% 100+% Livestock 
Light3 260.6 O% O% 62% 92% 
Livestock4 87.4 O% O% 100+% 100+% 
Utility5 44.3 100+% 100+% 100+% 100+% 

B Medium Heavyr 924.0 O% O% O% O% 
with Medium 2 

379.9 O% O% O% 63% Livestock 
Light3 257.1 O% O% 62% 93% 
Livestock4 103.3 O% O% 100+% 100+% 
Utility5 60.5 O% 100+% 100+% 100+% 

-
c Medium Heavy1 1276.0 O% O% O% O% 

with Medium2 
557-7 O% O% O% O% Livestock 

Light3 253.8 O% O% 63% 95% 
Livestock4 243.5 O% O% O% 99% 
Utility5 52.5 100+% 100+% 100+% 100+% 

•· -
~ 
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TABLE A-2 (Continued) 

Farm Size6 Daily Energy 
Requirement 

15hE7 Farmer and Type Task Group (hp-hrs) 

D Medium Heavy 1 
677-5 O% 

with Medium 2 322.1 O% Livestock 
Light3 252.6 O% 
Livestock4 123.6 O% 
Utility5 63.0 O% 

E Medium Heavy l 1032.0 O% 
with r1edium2 497.2 O% Livestock 

Light3 248.3 O% 
Livestock4 123.2 O% 
Utility5 75.0 80% 

F Medium Heavyl 972.8 O% 
with Medium 2 475.8 O% Livestock 

Light:? 232.9 O% 
Livestock4 

135-5 O% 
Utility5 47.5 100+% 

Proposed ·Vehicle Size 

22hE7 40h:E7 

O% O% 
O% O% 
O% 63% 
O% O% 

100+% 100+% 

O% O% 
O% O% 

40% 64% 
O% 100+% 

100+% 100+% 

O% O% 
O% O% 

O% 69% 
O% O% 

100+% 100+% 

• 

60h:E7 

O% 

75% 
95% 

100+% 
100+% 

O% 
O% 

97% 
100+% 
100+% 

O% 
O% 

100+% 
100+% 
100+% 

~ 
\0 



TABLE A-2 (Continued) 

Farm Size6 Daily Energy 
Requirement 

12hE7 Farmer and Type Task Grou:2 (h}2-hrs) 
G Medium Heavy1 1068.0 O% 

with Medium 2 463.8 O% Livestock 
Light3 195.1 O% 
Livestock4 155.0 O% 
Utility5 55.0 O% 

H Medium Heavy 1 618.; O% 
with l"'edium 2 316.7 O% Livestock 

Light3 170.3 O% 
Livestock4 146.0 O% 
Uti1ity5 67.5 89% 

I Medium r Heavy 1100.0 O% 
with Medium 2 

713.7 0% Livestock 
Light 3 155-3 O% 
Livestock4 146.7 O% 
Uti1ity5 67.5 89% 

Proposed Vehicle Size 

25hE7 40hE7 

O% O% 
O% O% 
O% 82% 

O% 100+% 
100+% 100+% 

O% O% 
O% O% 

59% 94% 
O% 100+% 

100+% 100+% 

O% O% 
O% O% 

64% 100+% 

O% O% 
100+% 100+% 

•· 

60hE7 

O% 
52% 

100+% 
100+% 
100+% 

O% 
76% 

100+% 
100+% 
100+% 

O% 
O% 

100+% 

100+% 
100+% 

0> 
0 



Farmer 

J 

K 

TABLE A-2 (Continued) 

6 Daily Energy Proposed Vehicle Size 
Farm Size Requirement 
and Type Task Group (hp-hrs) _____ 15ll.~-~_9_hl>7 40hp7 60h_Q7 

Medium Heavy1 726.7 O% O% O% O% 

~t~~stock Medium
2 

598.4 O% O% O% 40% 
Light3 286.8 O% O% 56% 84% 

Medium 
with 
Livestock 

Livestock4 154.1 O% O% 100+% 100+% 
Utility5 160.0 O% 63% 100% 100+% 

Heavy l 767.5 O% Q% O% O% 
Medium 2 

593.1 O% O% O% O% 
Light3 147.3 O% O% 100+% 100+% 

Livestock4 126.6 O% O% O% 100+% 
Utility5 45.5 100+% 100+% 100+% 100+% 

Averages for 
Medium Farms 
with Livestock 

Heavy 1 

Medium 2 

Light3 

893.6 

464.2 

O% O% O% O% 

O% O% O% 52% 

223.6 O% O% 72% 100+% 

Livestock4 
140.~· O% O% O% 100+% 

Utility5 67.1 O% 100+% 100+% 100+% 

• 

(X) .... 



TABLE A-2 (Continued) 

6 Daily Energy 
Farm Size Requirement 

15hE7 Farmer and Type Task GrouE (hp-hrs) 

L Large Heavy 1 454.1 O% 
with Medium 2 391.9 O% Livestock 

Light3 223.8 O% 
Livestock4 120.0 O% 
Uti1ity5 39.0 100+% 

M Large Heavyl 1350.0 O% 
with Medium 2 1275.0 O% Livestock 

Light3 403.3 O% 
Livestock4 543.4 O% 
Uti1ity5 100.0 O% 

N Large Heavy r 938.0 O% 
with Medium 2 580.4 O% Livestock 

Light3 214 . 7 O% 
Livestock4 351.6 O% 
Utility5 

Proposed Vehicle Size 

25hl27 40hJ27 
, O% O% 

O% O% 
O% 71% 
O% 100+% 

100+% 100+% 

O% O% 
O% O% 
O% O% 
O% O% 

100% 100+% 

O% O% 
O% O% 
O% 75% 
O% O% 

• 

60hJ27 

O% 
O% 

100+% 
100+% 
100+% 

O% 
O% 

60% 
O% 

100+% 

O% 
O% 

100+% 

O% 

()) 
1\) 



TABLE A-2 (Continued) 

Farm Size6 Daily Energy 
Requirement 

l5hE7 Farmer and Type Task Grou12 (hJ2-hrs) 
0 Large Heavy1 1148.0 O% 

with :Medium 2 601.9 O% Livestock 
Light3 403.5 O% 
Livestock4 346.7 O% 
Uti1ity5 70.0 O% 

Averages for Heavy1 972.5 O% 
Large Farms :Medium 2 712.3 O% with Livestock 

Light3 311.3 O% 
Livestock4 340.4 O% 
Uti1ity5 52.3 100+% 

p :Medium Heavy r 1164.0 O% 
No Medium 2 

545.7 O% Livestock 
Light3 356.5 O% 
Livestock4 111.0 O% 
Utility5 76.0 O% 

Proposed Vehicle Size 

25h:Q7 40h:Q7 

O% O% 
O% O% 
O% O% 
O% O% 

100+% 100+% 

O% O% 
O% O% 
O% O% 
O% O% 

100+% 100+% 

O% O% 
O% O% 

O% 45% 
O% 100+% 

100+% 100+% 

•· 

60h:Q7 

O% 
O% 

59% 
O% 

100+% 

O% 
O% 

77% 
O% 

100+% 

O% 
44% 

67% 
100+% 
100+% 

Q) 
\N 



TABLE A-2 (Continued) 

6 Daily Energy Proposed Vehicle Size 

Farmer 
Farm Size Requirement 
and TYJ?e Task Group (hp-hrs) 15h:p 7 25h:p 7 40hp? 60hp 7 

Q Large Heavy1 1149. 3 O% O% O% O% 

~~vestock Medium
2 

1402.5 O% O% O% O% 
Light 3 338.0 O% O% O% 71% 
Livestock4 548.0 O% O% O% O% 
Utility5 60.C O% 100+% 100+% 100+% 

Averages for Heavy1 943.1 O% O% O% 
All 17 Farms Medium 2 582.E O% O% O% 

Light3 258.8 O% O% 62% 
Livestock4 209.7 O% O% O% 
Utility5 63.7 O% 100+% 100+% 

1. Tasks include moldboard plowing, chisel plowing, and field cultivating. 
2. Tasks include disking, fertilizing, silage chopping, combining, baling and 

hauling heavy loads. 
3. Tasks include seeding, windrowing, light hauling, mowing, raking, dragging, 

spraying, stalk chopping, planting, row cultivating, and corn picking. 
) 4. Tasks include grinding, loader work, sewage handling, livestock moving, and 

snow moving. 
5. Tasks include operating. augers and elevators, digging post holes, moving 

machinery, and hauling rock. 
6. Medium farms are 200 to 1000 acres; large farms are over 1000 acres. 
7. Horsepower ratings are based on continuous duty capabilities for four hours 

with no battery change. 

O% 
O% 

93% 
100+% 
100+% 
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TABLE A-3 

Percentages of Daily Energy Requirements That Gould Be Met by Proposed Electric Vehicles 
if Tractor Power ~lay be Reduced 

Farm Size6 Daily Energy Proposed Vehicle Size 
Requirement 

l5hl2 7 25h:Q7 40hJ27 60hJ27 Farmer and Type Task Grou12 ~hJ2-hrs2 
A :Medium Heavy1 666.3 9% 15% 25% 36% 

with :Medium 2 188.1 32% 53% 85% 100+% Livestock 
Light3 260.6 23% 38% 62% 92% 
Livestock4 87 .Lt- 69% 100+% 100+% 100+% 
Utility5 44.3 100+% 100.+% 100+% 100+% 

B :Medium Heavy1 924.0 6% 11% 17% 26% 
,ri th :Medium 2 

379-9 16% 26% 42% 63% Livestock 
Light3 257.1 23% 39% 62% 93% 
Livestock4 103.3 58% 97% 100+% 100+% 
Uti1ity5 60.5 99% 100+% 100+% 100+% 

c Medium Heavy1 1276.0 5% 8% 13% 19% 
with :Medium 2 

557-7 11% 18% 29% 43% Livestock 
Light3 253.8 24% 39% 63% 95% 
Livestock4 243.5 25% 41% 66% 99% 
Utility5 52.5 100+% 100+% 100+% 100+% 
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TABLE A-3 (Continued) 

Farm Size6 Daily Energy 
Requirement 

12hE7 Farmer and Type Task GrauE ~hE-hrs2 
D Medium Heavy 1 

677-5 9% 
with Medium 2 322.1 19% Livestock 

Light3 252.6 24% 
Livestock4 123.6 49% 
Uti1ity5 63.0 95% 

E Medium Heavy1 1032.0 6% 
with Medium 2 497.2 12% Livestock 

Light3 248.3 24% 
Livestock4 123.2 49% 
Utility5 75.0 80% 

F Medium Heavyr 972.8 6% 
with Medium 2 

475.8 13% Livestock 
Light3 232.9 26% 
Livestock4 

135.5 44% 
Uti1ity5 47.5 100+% 

Proposed Vehicle Size 

22hE7 40hE7 

15% 24% 

31% 50% 
40% 63% 
81% 100+% 

100+% 100+% 

10% 16% 
20% 32% 
40% 64% 
81% 100+% 

100+% 100+% 

10% 16% 
21% 34% 

43% 69% 
74% 100+% 

100+% 100+% 

• 

60hE7 

35% 
75% 
95% 

100+% 
100+% 

23% 
48% 
97% 

100+% 
100+% 

25% 
50% 

100+% 

100+% 
100+% 
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Farmer 

G 

H 

I 

TABLE A-3 (Continued) 

6 Daily Energy Proposed Vehicle Size 
Farm Size Requirement 
and Type Task Group (hp-hrs) 15hp7 25hp7 40hp7 60hp7 

Medium Heavy1 1068.0 6% 9% 15% 22% 

~~~~stock Medium
2 

463.8 13% 22% 34% 52% 
Light3 195.1 31% 51% 82% 100+% 

Medium 
with 
Livestock 

Medium 
with 
Livestock 

Livestock4 155.0 39% 65% 100+% 100+% 
Utility5 55.0 100+% 100+% 100+% 100+% 

Heavy1 

Medium2 

Light3 

Livestock4 

Uti1ity5 

Heavy1 

Medium2 

Light3 

Livestock4 

Uti1ity5 

618.3 

316.7 

170.3 
146.0 

67.5 

1100.0 

713.7 

155.3 
146.7 

67.5 

10% 

19% 

35% 
41% 

8o/fo 

5% 
8% 

39% 
41% 

89% 

•· 

16% 

32% 

59% 
68% 

100+% 

9% 
14% 

64% 

68% 

100+% 

26% 

51% 

94% 
100+% 

100+% 

15% 
22% 

100+% 

100+% 

100+% 

39% 
76% 

100+% 

100+% 

100+% 

22% 

34% 
100+% 

100+% 

100+% 

(X) 
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Farmer 

J 

K 

TABLE A-3 (Continued) 
• 

6 Daily Energy Proposed Vehicle Size 
Farm Size Requirement 
and Type Task GrouQ_____~Ql_l)_.-})rs) 15hp7 25hp7 40hp7 60h_p? 

Medium Heavy1 726.7 8% 14% 22% 33% 

~t~~stock Medium
2 

598.4 10% 17% 27% 40% 
Light3 286.8 21% 35% 56% 84% 

Medium 
with 
Livestock 

Livestock 4 15L~ .1 39% 65% 100+% 100+% 

Uti1ity5 160.0 38% 63% 100% 100+% 

Heavy l 767.5 8% 13% 21% 31% 
Medium 2 

593.1 10% 17% 27% 40% 
Light3 147.3 41% 68% 100+% 100+% 

Livestock4 12E.6 47% 79% 100+% 100+% 
Utility5 · 45.5 100+% 100+% 100+% 100+% 

Averages for 
Medium Farms 
with Livestock 

Heavy1 

Medium 2 

Light3 

893.6 
464.2 

7% 11% 18% 27% 

13% 22% 34% 52% 

223.6 27% 45% 72% 100+% 

Livestock4 140.4 43% 71% 100+% 100+% 
Uti1ity5 67.1 89% 100+% 100+% 100+% 

()) 
()) 



TABLE A-3 (Continued) 

Farm Size6 Daily Enargy 
Requirement 

15hE7 Farmer and Type Task GrouE ~hE-hrsd 
L Large Heavy1 454.1 13% 

with Medium 2 
391.9 15% Livestock 

Light3 223.8 27% 
Livestock4 120.0 50% 
Utility5 39.0 100+% 

M Large Heavy 1 1350.0 "4% 
with Medium 2 1275.0 5% Livestock 

Light3 403.3 15% 
Livestock4 543.4 11% 
Uti1ity5 100.0 60% 

N Large Heavy1 938.0 6% 
with Medium 2 580 .Lt- 10% Livestock 

Light3 214.7 28% 
Livestock4 351.6 17% 
Utility5 

Proposed Vehicle Size 

25hE7 40hJ27 

22% 35% 
26% 41% 
45% 71% 
83% 100+% 

100+% 100+% 

7'% 12% 
8% 13% 

25% 40% 
18% 29% 

100% 100+% 

11% 17% 
17% 28% 

47% 75% 
28% 46% 

• 

60hE7 

53% 
61% 

100+% 
100+% 
100+% 

18% 
19% 
60% 
44% 

100+% 

26% 
41% 

100+% 
68% 

()) 
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TABLE A-3 (Continued) 

Farm Size6 Daily Energy 
Requiremt.~nt 

15hE7 Farmer and Type Task Grou12 (h:f2-hrs2 
0 Large Heavy l 1148.0 5% 

with Medium 2 601.9 10% Livestock 
Light3 403.5 15% 
Livestock4 346.7 17% 
Utility5 70.0 86% 

Averages for Heavyl 972.5 6% 
Large Farms Medium 2 712.3 8% with Livestock 

Light3 311.3 19% 
Livestock4 340.4 18% 
Utility5 52.3 100+% 

p Medium Heavy r 1164.0 5% 
No Medium 2 545.7 11% Livestock 

Light3 356.5 17% 
Livestock4 111.0 54% 
Utility5 76.0 79% 

Proposed Vehicle Size 

25h:E7 40hE7 

9% 14% 

17% 27% 
25% 40% 
29% 46% 

100+% 100+% 

10% 16% 
14% 22% 
32% 51% 
29% 47% 

100+% 100+% 

9% 14% 
18% 29% 
28% 45% 
90% 100+% 

100+% 100+% 

e : 

60h:f27 

21% 
40% 

59% 
69% 

100+% 

25% 
34% 
77% 
71% 

100+% 

21% 
44% 

67% 
100+% 
100+% 

\0 
0 



TABLE A-3 (Continued) 

6 Daily Energy Proposed Vehicle Size 

Farmer 
Farm Size Requirement 
and Type _ Task (J.r_oup (hp-hrs) ].5]:).1>_~-- _ 25hp 7 40hp 7 60hp 7 

Q l Large Heavy 1149.3 5% 9% 14% 21% 

~~vestock Medium
2 

1402.5 4% 7% ll% 17% 
Light3 338.0 18% 30% 47% 71% 
Livestock4 548.0 11% 18% 29% 44% 
Utility5 60.0 100% 100+% 100+% 100+% 

Averages for Heavy1 943.1 6% 11% 17% 
All 17 Farms Medium 2 582.6 10% 17% 27% 

Light3 258.8 23% 39% 62% 
Livestock4 209.7 29% 48% 76% 
Utility5 63.7 94% 100+% 100+% 

1. Tasks include moldboard plowing, chisel plowing, and field cultivating. 
2. Tasks include disking, fertilizing, silage chopping, combining, baling and 

hauling heavy loads. 
3. Tasks include seeding, windrowing, light hauling, mowing, raking, 'dragging, 

spraying, · stalk chopping, planting, row cultivating, and corn picking. 
4. Tasks include grinding, loader work, sewage handling, livestock moving, and 

snow moving. 
5. Tasks include operating augers and elevators, digging post holes, moving 

machinery, and hauling rock. 
6. Medium farms are 200 to 1000 acres; large farms are OVEtr 1000 acres. 
7. Horsepower ratings are based on continuous duty capabilities for four hours 

with no bat"tery change. 

25% 
41% 

93% 
100+% 
100+% 
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TABLE A-l~ 

Percentages of Annual Energy Requirements That Could be Met by Proposed Electric Vehicles 
for Typical Eastern South Dakota Farmsl 

Farm Size6 Proposed Vehicle Size 
Annual Energy 

15hE2 25hE
2 40hE2 60hE2 Farr!:er andTlJ2e Task GrouE Reguirement 

A I'Iedium Field Tasks3 16,042 56% 94% 100+% 100+% 
viith Livestock & Utility Tasks4 15,911 100+% 100+% 100+% 100+% Livestock 

Total5 31,953 56% 94% 100+% 100+% 

B I'1ediwn Field Tasks3 22,319 40% 67% 100+% 100+% 
'VIith Livestock & Utility Tasks4 15,643 100+% 100+% 100+% 100+% Livestock 

Total5 37 '962 47% 79% 100+% 100+% 

c I1edium Field Tasks3 35,613 25% 42% 67% 100+% 
vri th Livestock & Utility Tasks4 22,405 80% 100+% 100+% 100+% Livestock 

'l'otal5 58,018 31% 52% 83% 100+% 

D I'ledium Field Tasks3 3:t-,OOO 26% 44% 71% 100+% 
with Livestock & Utility Tasks4 41,725 43% 72% 100+% 100+% Livestock 

Total5 75,725 24% 40% 63% 95% 

E l'ledium Field Tasks3 2'7,153 33% 55% 88% 100+% 
with Livestock & Utility Tasks4 33,076 54% 91% 100+% 100+% Livestock 

Total5 60,229 29% 50% 80% 100+% 

\() .. N 



TABLE A-4 (Continued) 

Farm Size6 Annual Energy 
Farmer andT;:z:Ee Task Grou12 Reguirement 2 2 E 

F Medium Field Tasks; 23,841 38% 63% 100+% 100+% 
with Livestock & Utility Tasks4 49,997 36% 60% 96% 100+% Livestock 

Tota15 . 73,838 24% 41% 65% 98% 

G Medium Field Tasks3 22,919 39% 65% 100+% 100+% 
with Livestock & Utility Tasks LJ. 9,220 100+% 100+% 100+% 100+% Livestock 

Tota15 32,139 56% 93% 100+% 100+% 

H Medium Field Tasks 24,331 37% 62% 99% 100+% 
\>lith Livestock & Utility Taskf~ 24,615 73% 100+% 100+% 100+% Livestock 

Total5 48,946 37% 61% 98% 100+% 

I Medium Field Tasks; 33,361 27% 45% 72% 100+% 
with Livestock & Utility Taskn4 21,305 84% 100+% 100+% 100+% Livestock 

Total5 54,666 33% 55% 88% 100+% 

J Medium Field Tasks 26,815 34% 56% 90% 100+% 
with Livestock & Utility Tasku4 28,285 64% 100+% 100+% 100+% Livestock 

Total5 55,100 33% 54% 87% 100+% 

K Medium Field Tasks; 43,627 21% 34% 55% 82% 
with Livestock & Utility Tasko4 32,260 56% 93% 100+% 100+% Livestock 

Total5 75,887 24% 40% 63% c.- -! \() .,1~ /:J 
\..,) 



TABLE A~ (Continued) 

Farm Size6 Annual Energy 
Farmer andTIEe Task Grou:e Reguirement :z E :z E 
Averages for Field Tasks; 28,184 32% 53% 85% 100+% 
Medium Farms Livestock & Utility TasksJ.t. 26,767 67% 100+% 100+% 100+% with Livestock 

Total5 54,951 33% 55% 87% 100+% 

L Large Field Tasks 44,611 20% 34% 54% 81% 
with Livestock & Utility TasksJ.t. 5,895 100+% 100+% 100+% 100+% Livestock 

Tota15 50,506 36% 59% 95% 100+% 

M Large Field Tasks 64,946 14% 23% 37% 55% 
with Livestock & Utility TaskE 4 59,719 30% 50% 80% 100+% Livestock 

Tota15 124,665 14% 24% 38% 58% 

N Large Field Tasks3 -40,883 22% 37% 59% 885~ 
with Livestock & Utility TaskE4 47,660 38% 63% 100+% 100+% Livestock 

Total5 88,543 20% 34% 54% 81% 

0 Large Field Tasks 99,726 9% 15% 24% 36% 
with Livestock & Utility Tasks4 176,753 10% 17% 27% 41% Livestock 

Total5 276,479 6% 11% 17% 26% 

Averages for Field Tasks3 62,541 14% 24% 38% 58% 
Large Farms Livestock & Utility Tasks4 72,507 25% 41% 66% 99% with Livestock 

Tota15 135,048 #13% 22% 36% 5~ ;~ / \0 .. no +=" 



TABLE A-4 (Continued) 

6 Proposed Vehicle Size 

Farmer 
Farm Size Annual Energy 2 2 and Type _·Task Group Requirement 15hp 25hp2 40hp 60hp2 

p 

Q 

Medium Field Tasks3 20,764 43% 72% 100+% 100+% 

~~vestock Livestock & Utility Tasks4 1,163 100+% 100+% 100+% 100+5~ 
Tota15 21,927 82% 100+% 100+% 100+% 

Large 
No 
Livestock 

Field Tasks3 

Livestock & Utility Tasks4 

Total5 

42,794 
8,050 

50,844 

21% 
100+% 

35% 

35% 
: 100+% 

59% 

56% 
100+% 

94% 

84% 

100+% 
100+% 

Averages for 
All 2. 7 Farms 

Field Tasks3 36,691 
Livestock & Ut~.lity Tasks4 34,922 
Tota15 71,613 

24% 
52% 
25% 

41% 
86% 
42% 

65% 95)b 

100+% 100+% 

1. 

2. 

3. 
4. 
5. 
6. 

67% 100+% 

Based on analysis of field practice records and fuel records for 17 Brookings, South 
Dakota, farms in 1979 and average weather records. 
Horsepower ratings are based on continuous duty capabilities for four hours with no 
battery change. 
Includes heavy, medium, and light field work, and assumes 150 work days per year. 
Includes livestock and general utility tasks, and assumes 300 work days per year. 
Includes all five task groups, and assumes 300 work days per year. 
Medium farms are 200 to 1000 acres; large farms are over 1000 acres. 

• \0 
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TABLE . A-5 

Farmers Cooperating in This Study 

/ 1. Morris Apland 
Bruce, South Dakota 

, 2. Arlen Berwald 
Estelline, South Dakota ,...., ol.) 

V' ). Jerry Hayden · : ~--
Brookings, South Dakota 

"'4. James Hegg 
Bruce, South Dakota 

v5. Terry Hill 1<~ 

Brookings, South Dakota 

,.. 6. Don Lars on ,7 ~ 1_, () ;-·-
lit " Brookings, South Dakota 

7. Greg Nelson 
Aurora, South Dakota 

'8. Wayne Ness 
Toronto, South Dakota 

· 9. Jerry Oines , ~.:.._ ·.-
Brookings, South Dakota 

10. Marvin Rentsch 
Bruce, South Dakota ' - 1 

ll. David Rusten 
White, South Dakota 

12. Palmer Skovlund a 
Bruce, South Dakota 

vlJ. Charles Slocum 
Aurora, South Dakota 

,., 14. Robert and Eric Sterud r- 3 
Brookings, South Dakota 



TABLE A-5 {continued) 

J 15. Ivan Sundal ¥--:1- > 

Brookings, South Dakota 

' 16. Larry Vander Wal J.- ~3 
Brookings, South Dakota 

y 17. Mason Wheeler 
Aurora; South Dakota 
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