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ABSTRACT 

BIODEGRADABLE CELLULOSE FILMS AS ALTERNATIVES TO PLASTICS 

CECILIA WANJUU 

2020 

Plastics are versatile and have desirable packaging characteristics such as flexibility, 

durability, and affordability. The production of plastics has increased over the years 

resulting in concerns about their single-usage and disposal. Since plastics are non-

biodegradable, they have been associated with detrimental health impacts due to the 

leaching chemicals from the landfills and their accumulation in the natural and marine 

environment. Cellulose obtained from agricultural residues is a viable substitute because 

of its low density, biocompatibility, biodegradability, low toxicity, and a strong and stiff 

structure. However, the extraction of cellulose has been less exploited because of its 

insolubility in water and common organic and inorganic solvents.  

The hypothesis is that cellulose is biodegradable and hence products such as cellulose films 

will be less toxic to the environment. The purpose of this study is to develop biodegradable 

films from cellulose extracted from corn stover and cassava peels. The cellulose films have 

been characterized by determining their physiochemical characteristics such as color, 

thickness, transparency, moisture content, water vapour permeability, tensile strength, and 

biodegradability. The physicochemical properties of films of binary mixture of starch (corn 

and potato) and microcrystalline cellulose have been carried out.  

The corn stover  and cassava peels cellulose extracts (1-3% w/w) were solubilized in 68% 

w/w ZnCl2  and 20 μL of HNO3 was added for further dissolution and then thoroughly 

mixed overnight in a water bath at 85 ℃. The starch-cellulose films have been prepared by 

mixing 65% (w/v) of ZnCl2, 3% (w/v) of microcrystalline cellulose, 0.2-0.8% (w/v) of 

starch and 0.1% (w/v) crosslinking agent CaCl2.The films from extract of corn stover and 

cassava peels are brown in color while those from starch-cellulose blend are white. They 

are thin, homogeneous, and the opacity, thickness, moisture absorption, and tensile strength 

significantly depend on the source of starch, cellulose, and amount of crosslinking agent. 

The films disintegrate in the soil within 30 days. Overall, the cellulose-based films are a 

sustainable substitute for petroleum-based packages and an economical alternative to help 
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reduce environmental contamination. The use of agricultural residues to develop 

biodegradable films will expand the utilization of agriculture by-products hence value-

addition.  

Keywords: Cellulose, starch, stovers, cassava peels, crosslinking, 
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CHAPTER 1: INTRODUCTION 

Since the 1950s, production of petroleum-based packaging materials has outpaced that of 

almost every other product. The world’s largest producers of plastic packages are America, 

European Union and Japan, while most of the waste is generated in Asia (UN 2018). The 

plastics are designed for single-use purposes and are disposed almost immediately (North 

and Halden, 2013; Raman Sharma and Sharma, 2014). Consequently, petroleum-based 

packages accounts for more than half of the non-biodegradable waste in the world. The 

environment is already overwhelmed by the ability to cope with these wastes. According 

to the United Nations (2018), out of the nine billion tons of plastic ever produced, only 

nine percent  has been recycled and the rest ends up in the landfills and marine 

environment.  

 

The UN predicts that if the currently high consumption patterns and poor waste 

management practices continue, there will be 12 billion tons of plastic waste in the 

environment by 2050. The situation is made worse because petroleum-based packages do 

not degrade. Plastic bags and containers need thousands of years to decompose. They are 

slowly broken down into smaller fragments  known as microplastics and nano plastics that 

contaminate the soil and water (Smith, Love, Rochman and Neff, 2018; Eriksen, Thiel, 

Prindiville and Kiessling, 2017). Furthermore, they have been associated with detrimental 

health impacts due to the leaching chemicals from the landfills and their accumulation in 

the natural and marine environment (Gallo et al., 2018). 
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The wastes generated from agribusiness activities are gaining significant interest regarding 

value addition. Agricultural commodity residues are currently being used in the 

development of biodegradable films (Arevalo, Aleman, Rojas, Morales, and Galan, 2009). 

Biodegradability contributes to the alleviation of waste problem, consequently reduction 

in the production of wastes due to landfill diversion and material recycling (Jeong, Moon, 

Jeong, Koh and Lee, 2018). Therefore, it is possible to completely switch to homogeneous 

wastes consisting of biodegradable packaging that are beneficial to the ecosystem (Razza 

and Innocenti, 2012). Nature produces cellulose and starch in substantial quantities, which 

are biodegradable. Food wastes are also available as sources of these biopolymers. They 

could be used as alternatives to develop biodegradable films and packages and hence to 

reduce non-biological wastes (Xu et al., 2016).  

 

1.1 Justification 

Plastics are non-biodegradable and are associated with detrimental health impacts due to 

chemical leaching from the landfills and their accumulation in natural and marine 

environment. The growing concerns on environmental sustainability and depletion of 

petroleum resources demand for green and bio-economic products and resulted in the 

design and development of biopolymers-based products (Garrison, Murawski and Quirino, 

2016). Natural polymers such as starch, and cellulose are attractive owing to their 

biodegradability, composability, renewability, availability, cost-effectiveness, and 

ecological functions (Ghanbarzadeh and Almasi, 2013).   
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The realization of the harm caused by improper disposal of petroleum-based packaging 

materials has prompted many governments to impose bans along with improving the waste 

management practices. The enactment of such policies demands further research and 

development of alternative packaging materials. Polymers from agricultural residues have 

potential to replace the petroleum-based polymers. These are eco-friendly and available in 

abundance in nature, hence lower cost of production. Since they are biodegradable, light, 

biocompatible and less toxic, they are considered “green” and safe (Ghanbarzadeh and 

Almasi, 2013).  

 

Cellulose and starch can be derived from various sources such as corn stoves, cassava, 

cotton, wood (hardwoods and softwoods), potato, sisal, kenaf, wood fibers (hardwoods and 

softwoods), jute, hemp, flax, grasses, rice, bamboo, bagasse, and rye (Yadav, Kale, Hicks 

and Hanah, 2017). This research provides viable use of biowastes derived from agricultural 

residues toward developing economically and technically practicable alternatives to plastic 

packages. 

 

1.2 Hypothesis 

Cellulose is biodegradable and hence products such as films will be less toxic to the 

environment and better alternatives to food packaging, and to address the concerns of 

petroleum-based materials. 

 

1.3 Research Objectives 
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1.3.1 Major Objective 

To prepare biodegradable films from microcrystalline cellulose and cellulose-extract of 

agriculture residues (e.g. corn stover and cassava peel). 

 

1.3.2 Specific Objectives 

1 To extract and solubilize cellulose from corn stover and cassava peel. 

2 To establish the physicochemical properties of cellulose films. 

3 To determine the effect of starch on cellulose films. 

CHAPTER 2: LITERATURE REVIEW 

 

The world is moving towards the “green environment” to phase out non-biodegradable 

polymers. The growing demand to replace petroleum-based packages with biodegradable 

carrier bags significantly allows for the increase in volume production of cellulose-based 

sheets and films. Polymers such as cellulose and starch have recently gained  technological 

interest because of their availability and biodegradability, hence their potential application 

in the development of novel renewable materials. The polymers are  environmentally 

friendly and  sustainable resources. The successful prospects and application of these 

polysaccharides depend on their physical, mechanical, and chemical properties, 

abundance, low weight, renewability, biodegradability, and biocompatibility. Starch and 

cellulose and their derivatives exhibit the required mechanical strength that is desirable for 

applications such as pharmaceuticals, textile, tissue engineering, food packaging 

industries.  
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Starch and cellulose are made up of -D-glucose and -D-glucose, respectively. The starch 

granule is heterogeneous physically composed of crystalline and amorphous regions, and 

chemically has linear (amylose) and branched (amylopectin) chains (Bertoft, 2017). 

Amylopectin is made of α-1,4 glycosidic bonds along with highly branching at the α-1,6 

positions (Alcázar-Alay and Meireles, 2015). On the other hand, amylose consists of a 

linear chain of α-1,4 glucans but the branching points at the α-1,6 positions are limited. 

Amylose has a molecular weight ranging between  105–106 and a degree of polymerization 

(DP) as high as 600. The molecular weight of amylopectin ranges between 107 to 109. 

Amylopectin is about 70 to 85%, while amylose is 15-30% of common starches (Bertoft, 

2017).  

2.1. Cellulose 

Cellulose is the most common organic polymer and it is the structural and principal cell-

wall component of higher plants. It makes up about 33 to 90% of the plant and high-quality 

cellulose could be obtained through pulping and purification. It has high-molecular weight 

with a linear and repetitive β-D-glucopyranose unit of (1,4) glyosidic linkages and is 

insoluble in water (Kim, Yun & Ounaies, 2006). Due to the stereo regular (flat) and 

linearity nature, cellulose molecules associate and extend to form long fibrous and 

polycrystalline bundles. Numerous hydrogen bonds hold the crystalline regions together 

while amorphous regions connect them in the microfibrils.   

2.1.2 Sources of cellulose 

Cellulose is the most abundant biodegradable and renewable polymer that has the potential 

of being applied in various industries. It is naturally available with an annual production 

estimated to be over 7.5 × 1010 tons (Liew et al., 2015). It exists naturally, either in its pure 
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form as in the case of seed hairs of the cotton plant, or in association with hemicelluloses 

in the cell wall of higher plants (Varshney & Naithani, 2011). The benefits and versatility 

of cellulose are more apparent and has been found to be a useful functional and structural 

material. It is derived from various sources such as cotton, wood (hardwoods and 

softwoods), sisal, kenaf, wood fibers (hardwoods and softwoods), hemp, flax, ramie, jute, 

grasses, bamboo, bagasse, corn stovers, rice, rye, and marine algae (Yadav, Kale, Hicks & 

Hanah, 2017). In addition, it could be obtained from biomass such as agricultural crops, 

forestry, animal, and industrial residues. The extracted biomass obtained from these 

resources contains three significant components namely cellulose, hemicellulose and lignin 

in varying amounts ranging from 40 to 50, 25 to 35, and 18 to 35%, respectively. The 

percentage of these components depends on the source. The extracted biomass must be 

processed to separate the different polymers and isolate cellulose. The cellulose percentage 

in various plant sources is narrated in Table 1 (Menon, Selvakumar, Kumar & 

Ramakrishna, 2017).  
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Table 1: The percentage of cellulose present in various plant sources 

Source Cellulose content (%) 

Rice husk 94.2 

Eucalyptus 76 

Wheat straw 43 

Rice straw 71 

Flax fibers 72 

Cotton fibers 85–90 

Corn silage 32 

Hemp fibers 68 

Sisal fibers 65.5 

Cassava bran 16.71 

 

Animals and microbes are also good source of cellulose. The bacteria Gluconacetobacter 

xylinus can synthesize cellulose extracellular pellicles from glucose (Moniri et al., 2017; 

Khalid, Khan, Ul-Islam, Khan & Wahid, 2017). Some other strains such are Acetobacter, 

Agrobacterium, Achromobacter, Azotobacter, Salmonella, Sarcina, Escherichia, 

Pseudomonas, and Aerobaeter, Alcaligene, and those of genera Rhizobium (Khalid, Khan, 

Ul-Islam, Khan & Wahid, 2017).  Azotobacter and agro-bacterium depict flocculent 

growth because of the formation of cellulose fibrils. Bacterial cellulose has unique 

properties such as high crystallinity, high water holding capacity, biocompatibility, high 

water-holding capacity, high tensile strength, and a fine fibre network (Paximada et al., 

2016, Sukhtezari, Almasi, Pirsa, Zandi & Pirouzifard, 2017). Another source of cellulose 

is from marine animals like tunicate which deposits cellulose on its cell walls. The 
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formation of cellulose is a common property of Gram-negative and floe-forming bacteria 

too. 

 

Despite being abundant in nature, cellulose and its modified forms lack significant 

nutritional value and only serve as dietary fibre for humans. Consequently, it passes 

through the digestive system. Nevertheless, it is a functional component of the diet because 

it adds to the bulk of intestinal contents, lowering the transit time, hence increases the rate 

of absorption for other nutrients. Cellulose is a source of dietary fiber that contributes to 

the health of individuals because it reduces absorption of bile salts (Dhingra, Michael, 

Rajput & Patil, 2011). This is significant because it lowers the concentration of cholesterol 

in the blood. The bulk also results in the high amounts of hydrophilic molecules in the 

intestinal content so that individuals could retain a sufficient amount of water resulting in 

an easier and smooth easier passage into the large intestine. 

 

2.1.3 The Structure of Cellulose 

Cellulose is a large polysaccharide having 7,000 and 15,000 degrees of polymerization 

(DPs). It contains 44 to 45% carbon, 6 to 6.5% hydrogen and the rest consisting of oxygen. 

The empirical formula is C6H10O5. The glycosyl forming unit is glucose, hence the polymer 

is a homoglycan. It is a regular and linear polymer characterized by (1→4) linkages of β-

D-glucopyranosyl units. The β-(1→4) configuration in combination with the 

intramolecular hydrogen bonds result in a rigid structure. The crystalline or aggregate 

forms are due to the inter-molecular hydrogen bonds found between the hydroxyl groups. 

This association makes cellulose insoluble in water and hence its limited utility. It forms 
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flat ribbon-like structures that can undergo extensive hydrogen bonding within the chain 

so that the crystallites are parallel and ordered and separated by amorphous regions. The 

linear chain crystallization gives cellulose fibers the insolubility, strength, and resistance 

to breakdown because the regions are inaccessible to enzyme penetration. Another 

explanation for the insolubility is that the cellulose network which has its adjacent layers 

separated by around 3.9Å (Nishiyama et al., 2002, 2003; Wada et al., 2006., Xu et al., 

2016). This results in a tight arrangement and a stiff and sheet-like molecular structure so 

that water cannot penetrate. 

 

The molecular structure of the cellulose consists of several repeating domains. The semi-

crystalline cellulose polymer can adopt several forms in the plant cell wall. The amorphous 

regions, also known as the low-order, coexists with high-order crystalline domains. The 

degree of crystallinity depends on the source or the pre-treatment of cellulose. 

 

Figure 1: The native cellulose, chains held together through strong hydrogen bonding 

(broken lines) interactions (adapted from Xu et al., 2016).  

 

In the solid state, the glucose units are rotated by 180° with respect to each other because 

of the constraints of β-linkage. Every units has three hydroxyl (OH) groups on the C-2, C-

3 and C-6 positions. The terminal group at the either end of the cellulose molecule is 
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different in nature from the other. The C-1 OH on one end of the molecule is an aldehyde 

group that has reducing activity. Aldehyde groups form intramolecular hemiacetal form 

that result in a 13-pyranose ring. In contrast, the C-4 OH end of the chain is an OH 

constituent, hence an alcohol borne with non-reducing properties. The glucose ring adopts 

the 4C1-chair formation therefore exists as a pyranose ring. This formation constitutes the 

lowest energy conformation. 

 

Native cellulose (I) is a polymorph structure that exists in two crystalline forms which are 

Iα as in the bacteria and algae and Iβ as in the higher plants. Cellulose I has a sheet like 

structure that is stabilised by the intermolecular hydrogen bonds (Figure 1). The bonds are 

aligned parallel to the pyranose rings and the sheets are stacked in equivalent distances to 

half-glucose rings in the crystalline forms along the axis of the cellulose chain (Nishiyama, 

Langan & Chanzy, 2002). The difference in the two allomorphs is in the mode of 

staggering: Cellulose Iα has a continuous staggering while cellulose Iβ has an alternating 

staggering occurs in. If cellulose I is regenerated from a solvent such as ionic liquids or 

when it is treated with a strong alkaline solution it adopts a crystal structure polymorph of 

cellulose II. This new structural form of cellulose has two antiparallel chains. 

 

2.1.4 Solubility of Cellulose 

There have been challenges regarding the extraction of cellulose because of the pulping 

processes or technologies applied previously such as the Kraft processes which 

significantly degrade hemicellulose and lignin. Other drawbacks include, utilization of 

high pH and temperature and release of toxic compounds which result in water 
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contamination (Isik, Sardon & Mecerreyes, 2014). Cellulose is insoluble in water and most 

common organic solvents. The insolubility is due to complexity of the crystalline structure, 

biopolymeric network and the non-covalent interactions between the molecules, and the 

strong intermolecular and intramolecular hydrogen bonds in the individual chains (Kayikci 

et al., 2018; Alves, 2015). Despite its poor water solubility characteristics, cellulose has a 

wide range of applications such as packaging, netting, composites, coatings, upholstery, 

and paper. The polymer is chemically modified to obtain cellulose derivatives that can be 

utilized in different industrial applications. The chemical and reactivity characteristics of 

cellulose depend on the presence of the hydroxyl groups which are positioned on the 

equatorial in the glucose unit. It is also attributed to the β-glycosidic linkages in the chain 

that are susceptible to hydrolytic attacks. The OH groups in the cellulose play critical role 

in the solubility and reactions with other groups of compounds such as primary and 

secondary alcohols.  

 

Cellulose is neither soluble nor meltable in most organic solvents or water (Mohd, Draman, 

Salleh and Yusof, 2017; Alves, 2015). Cellulose dissolution solvents are divided into 

derivatizing and non-derivatizing solvents. Derivatizing solvents comprise of the 

dissolution of the system of cellulose that occur through chemical formation of an unstable 

ester, ether or acetal intermediate (Sen, Martin and Argyropoulos, 2013; Trygg and Fardim, 

2011). The common derivatizing method used at large scale is the viscose process (NaOH 

+ CS2). An alternative to this process utilizes urea as an ingredient which forms an 

intermediate of cellulose known as carbamate. This dissolves in an aqueous sodium 

hydroxide solution, in the presence or absence of additives such as ZnO (Alves, 2015). 
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Numerous solvents have been identified to dissolve cellulose. For instance, 

ethylenediamine was used in the early 19th Century as an alternative to ammonia (Alves, 

2015). Other complex solvents such as nickel oxide and cadmium hydroxide in aqueous 

ethylenediamine were further identified on their potential to dissolve cellulose. Over the 

years, the significant transition has been characterized by using different metals such as 

palladium and zinc combined with ammonium or an amine compound (Shen and Hartwig, 

2006). However, these systems did not fully achieve the targeted commercial success 

(Alves, 2015). There are also problems associated with these approaches, such as pollution 

due to non-biodegradability and toxicity especially if they are disposed into the soil or the 

aquatic environment. There is a problem of scalability and the implicated costs that make 

them difficult for solvents to be applied at the industrial level. Ionic liquids (ILs) have also 

been touted as “green” solvents and have attracted much attention. ILs have the ability to 

fully or partially disrupt the intermolecular hydrogen bonding present in cellulose network. 

 

Zinc chloride can dissolve cellulose directly without activation or pre-treatment. The liquid 

has a molar water-salt ratio that is close to the coordination number of the strongest 

hydrated ion because of the number of closely bonded atoms to each centered ion. The 

main ions in aqueous ZnCl2 solution are H+, Zn2+ and Cl-. Cellulose interacts with the 

cations to form a viscous Zn-cellulose solution (Xu et al., 2016). Though the network is 

strengthened by the C3…O3H hydrogen bonds which are responsible for the formation of 

the molecular structure, Zn2+ ions can penetrate adjacent cellulose layers, pushing them 
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apart, resulting in the formation of O3H· · ·Zn interactions. The cellulose chain becomes 

flexible and hence solubilization of the polymer. 

 

2.1.5 Prospects of Cellulose 

2.1.5.1 Plastic replacement. 

Currently, most governments are encouraging the use of alternatives of petroleum-based 

packaging materials due to the realization of harms of plastic wastes to the marine and 

natural environment. Cellulose is a potential substitute to the plastic packages because it 

has similar properties of plastics in addition to being biodegradable. Cellulose from plant-

based materials can be used to prepare coatings and films (Ghanbarzadeh, Almasi & 

Entezami, 2010). It certainly offers solution to the problem of degradation caused by the 

non-biodegradable polymers.  

 

Petroleum-based polymers pose a dual threat of environmental pollution and depletion of 

non-renewable energy. Cellulose is a naturally occurring polymers that has proven to be 

efficient in its utilization and development of renewable, available, affordable, 

biocompatible, and biodegradable materials. Since it is available in nature and in 

abundance it has the potential to meet the current and future demands hence phase out 

dependence on petroleum-based polymers (UN, 2018). It is regenerated through an 

environmentally friendly process which avoids the use of harsh chemicals because most of 

the reagents (coagulants and solvents) can be reused or recycled (Wang, Lu & Zhang, 

2016). The functional materials fabricated directly from cellulose solutions are utilized in 

packaging, textile, water-treatment, biomedicine, and optical/electrical devices, to name a 
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few. The cellulose-based films are densely packed and exhibit good mechanical properties 

because of homogeneous bulk structure. Such properties show the potential application in 

food engineering and drug delivery.  

 

2.1.5.2 Health and Medicine 

In the medical field, there is a new paradigm shift to use cellulose as a regenerative material 

that works while in contact with biological surfaces such as cells, tissues, organs, 

biomolecules, and physiological fluids. The polymer’s recent interest and applications 

focus on designing biomedical devices such as artificial blood vessels and artificial skin. 

The chemical feasibility of cellulose indeed enables its widespread utility in the health and 

medical field. 

2.1.5.3 Tissue Engineering 

Cellulose has a future application in tissue engineering where matrices can be developed 

to support cells, promote their differentiation and proliferation, and finally form a new 

tissue. From a physical property aspect, cellulose possess the tensile strength required for 

soft tissue repair or for an artificial blood vessel and the compressive strength necessary 

for bone tissue engineering. On a chemical basis, the high water-holding capacity of 

cellulose is beneficial as it allows anchorage of adhesive protein that promotes cell 

adhesion hence tissue repair. Therefore, cellulose has the potential to meet the demands for 

materials that can be used for wound cover, dressing and skin repair especially for burn 

incidences.   
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2.1.5.4 Pharmaceuticals 

Cellulose can be used in the pharmaceutical industry as a drug delivery system. It is used 

as a tablet coating for drugs that are administered orally. There is the potential use in 

various forms of cellulose such as bacterial nanocellulose (BNC), cellulose nanofibers 

(CNFs), and cellulose nanocrystals (CNCs) in drug-loaded systems based on novel drug 

carriers or tablet dissolution. The regulation and influence that nanocrystalline cellulose 

have on drug release, and the interaction between the molecules of the drug are still under 

investigation. Cellulose can be used in bone regeneration. However, studies and application 

of nanocrystalline cellulose in bone regeneration is still in its fundamental stage.  

 

2.1.5.5 Binary Blends 

Another potential application of cellulose and its derivatives is as binary blends. Cellulose 

could be blended with other polymers such as starch, chitosan and gums to create new 

materials such as fibers, composite films and sponges. The films made from such blends 

are expected to have improved properties such as tensile strength, thermo-dynamics, 

biodegradability, and water sorption than the as compared to that of cellulose film alone 

(Douglass, Avci, Boy, Rojas & Kotek, 2017). Cellulose has been extensively used in 

combination with chitosan to produce new blend materials with antibacterial activity (Wu 

et al., 2004), metal ions adsorption (Liu et al., 2012), odour treatment properties (Twu, 

Huang, Chang, & Wang, 2003), improved water absorption capacity and mechanical 

characteristics (Liu et al., 2011), good antistatic and moisture absorption properties (Xu et 

al., 2010), high porosity and interconnected  porous structures (Wang, Zhu, & Zhang, 

2014), self-healing characteristics (Duan, Han, Liu, Jiang, & Li, 2016), to name a few.  
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2.1.5.6 Food packaging 

The most significant food preservation method is through packaging because it protects the 

product from adverse environmental conditions and enhances shelf life. Due to the 

increased interest in protecting nature and consumer requirements, there is the need to 

develop active and functional packaging systems (Sanches-Silva et al., 2014; Schaefer & 

Cheung, 2018). Consequently, packaging industry is utilizing cellulose, along with other 

biopolymers, to develop bio-nanocomposite films since they are renewable, biodegradable, 

biocompatible and less toxic. More specifically, nanocomposite films are gaining attention 

because they are an excellent biomaterial suitable for the conservation and packaging of 

food. 

 

2.2  The Polymer Starch 

Starch is also a plentiful natural polymer found in fruits, leaves, seeds, flowers, stem, and 

roots of plants. It serves as a carbohydrate reserve for the plants, hence a source of carbon 

and energy (MacNeill et al., 2017). The synthesis of starch involves a biochemical chain 

reaction in the chloroplasts of green leaves to produce glucose molecules, a process known 

as photosynthesis. Organelles are responsible and reserve starch in cereals and tubers 

(Pfister and Zeeman, 2016). Its production happens rapidly and is performed diurnally in 

the chloroplasts. Conversely, amyloplasts produce starch that is deposited in the reserves 

over several days to weeks.  
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2.2.1 Sources of Starch 

Starch is found as granules, each containing millions of amylopectin and a larger number 

of amylose molecules. The major source of starch is maize (corn). It is also isolated from 

roots and tubers such as sweetpotato, potato and cassava; and grains such as rice, wheat, 

and legumes. Fruits contain approximately 70% starch on dry weight basis (Chandrasekara 

and Josheph Kumar, 2016). In cereals, the main location of starch synthesis and storage is 

the endosperm. Recently, starch crops are being genetically modified to enhance the 

development and functionality of starches (Hebelstrup, Sagnelli and Blennow, 2015).  

 

Each botanical species has a unique accumulation pattern of starch granules which varies 

depending on the plant tissue, composition of molecules, size, shape, and structure. The 

starch granule is heterogeneous: physically, it has both crystalline and amorphous regions, 

and  chemically, it has linear (amylose) and branched (amylopectin) structures (Bertoft, 

2017). Linear chains of glucose units are linked by the α-1,4 glycosidic bonds to form 

amylopectin. It is highly branched at the α-1,6 positions (Alcázar-Alay and Meireles, 

2015). Amylose consists of  a linear chain of α-1,4 glucans but the branching points at the 

α-1,6 positions are limited. Amylopectin ranges between 70 to 85%, while amylose is 15-

30% in most of the common starches. The structural units of starch, amylose, and 

amylopectin are shown in Figure 2, while Table 2 lists the amylose and amylopectin 

content of different starch sources.  
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Figure 2: a) the glucose unit; b)Amylose; c)Amylopectin structures (adapted from Bertoft, 

2017).  
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Table 2: Content of amylose and amylopectin in different sources of starch 

Source Amylose Amylopectin 

Corn 21 76 

Corn-Waxy 1 99 

Corn- high amylose 75 25 

Rice 18 82 

Rice-waxy 1 99 

Potato 23 77 

Sorghum 25 75 

Banana 17 83 

 

Different sizes, grouping of branch points and polymodal distribution of α-glucans chains 

in the amylopectin molecule result in the formation of double helical chains. Amylose and 

amylopectin are arranged in a semi crystalline structure that forms a matrix of starch 

granules with alternating crystalline (amylopectin) and amorphous (amylose) regions. 

These are known as the growth rings (Cornejo-Ramírez et al., 2018). Some starches are 

known as waxy” starches because they contain a minimal amount of amylose (<30%). 

Consequently, the endosperm tissue appears waxy. The starches may contain other 

molecules of a different polysaccharide molecules that they exhibit a slight deformation in 

the granule appearance.  

 

The amylose fraction is associated with lipid molecules in the form of free fatty acids and 

phospholipids in the cereal grains (Bertoft, 2017; Alcázar-Alay and Meireles, 2015). The 

lipid complexes within the starch granules are observed as  hydrophobic nucleus located in 
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the helices of the amylose chains. The lipid complexes range between 0.15 to 0.55% of the 

amylose fraction in starches sourced from cereals. The presence of lipids in starch granules, 

though represented as a small fraction, can significantly lower the swelling capacity of the 

starch paste (Svihus, Uhlen and Harstad, 2005). Another molecule that could be embedded 

in the starch matrix is protein, which is approximately 0.6%. The protein and lipids on 

starch are located on the granule surface and significantly influence starch physical and 

chemical properties and hence its functionality. For example, in wheat starch, presence of 

protein in the starch granules results in grain hardness.  

 

2.2.2 Characteristics of starch granules: size, morphology, crystallinity, and 

composition  

Starch granules are microscopic with their diameters ranging between 0.1 and 200 µm. The 

morphology varies depending on the botanical source to form different shapes, such as 

ellipsoidal, oval, smooth, spherical, lenticular, and angular (Singh, Singh, Kaur, Singh 

Sodhi and Singh Gill, 2003). The size distribution could be  uni-, bi-, or polymodal. The 

A-type  starch granules are large in size and have a lenticular shape, for example in 

common cereals such as barley, wheat, and rye. The B-type of starch granules are small in 

size with a spherical shape, e.g. potato starch (Tetlow, 2010). The morphology of a granule 

typically contains a central line known as the hilum or “Maltese cross” (Figure 3). A starch 

granule may contain several Maltese crosses, a characteristic that reduces its birefringence 

(Cornejo-Ramírez et al., 2018). It is important to consider an isolation method that does 

not affect the original size of the starch granule.  
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Figure 3: Maltese cross of potato and corn starch in polarized light (adapted from 

Cornejo-Ramírez et al., 2018). 

 

The functional and physicochemical properties of starch significantly depend on the 

amount of amylose in the granule. The amylose content varies between same botanical 

varieties due to differences in environmental, cultural, and geographic origin (Patindol, 

Siebenmorgen and Wang, 2014; Gao et al., 2014). Amylose plays important role in the 

swelling and solubility of starch granules. The rate of swelling increases rapidly after 

amylose molecules are leached. However, if the amylose molecules form lipid complexes, 

they are not leached and this prevents the swelling capacity (Wang et al., 2018; Singh et al., 

2003). Since amylose is amorphous, it is important in the industrial application of film 

preparation. Films formed by starches with high amylose content are very strong, odorless, 

colorless, and tasteless, non-toxic, transparent, and biodegradable (Lu, Xiao, and Xu, 2009; 

Campos et al., 2011).  

 

Non-carbohydrate components in the starch granule also affect starch functionality. For 

example, monoester phosphates are linked to the amylopectin fraction by covalent bonds 

are known to increase viscosity and clarity of starch paste. Phospholipids could cause a 

low viscous and opaque paste (Debet and Gidley, 2006). Wheat and rice starches have high 
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phospholipid content hence produce pastes with low transmittance power. On the other 

hand, starches from corn and potato have less phospholipid thus yield high transmittance 

(Singh et al., 2003). 

 

2.2.3 Starch applications in the food industry  

Starch serves as a food since it is a significant digestible polysaccharide. Common sources 

of starches in food include grains and seeds (rice, wheat, corn and barley), roots (cassava) 

and tubers (potato). Approximately 70-80% of calories consumed by humans are derived 

from starch. Starch functions as a structural agent because of the modifications introduced 

during manufacturing. The food industry is the principal utilizer of starch to modify 

viscosity, texture, adhesion, gel formation, moisture retention and films  preparation, to 

name a few (Waterschoot et al., 2015a). The bakery sector  utilizes starch in making bread 

and cakes which are highly consumed. It is also used in the preparation of extrusion 

products such as pasta, noodles, fried and  instant foods.  

 

Starch is also proven to be important contributor to biobased films. Starch films have 

received much attention because of their advantages over synthetic films mainly to control 

pollution as they could degrade faster. They act as barriers that prevent gas exchange, 

moisture transfer, movement, and oxidation of solutes along with maintaining quality and 

organoleptic properties (Dhall, 2013). Such films could be functionalized with flavors, 

plasticizers, colors, sweeteners, antimicrobials, and antioxidants.  
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2.2.4 Starch used for non-food applications  

The increase in demand for renewable and biodegradable resources has highlighted the 

importance and versatility of starch in new processing techniques. Starch has a chemical 

feedstock that enables its conversion into numerous products of substantial value. The 

pharmaceutical industry utilizes starch as an excipient to bond active drugs. The amylose 

of starch is capable of forming inclusion complex with food ingredients such as fatty acids, 

essential oils and flavor molecules. Starch is also used as encapsulant and to improve shelf 

life of products (Kim and Lim, 2009).  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Materials 

Microcrystalline cellulose Avicel was obtained from FMC Corporation, USA. Corn stovers 

were from the Northeast Research station at the South Dakota. Cassava peels were from 

IITA (Zambia). CaCl2, ZnCl2 and glycerol were purchased from VWR, and Ethanol was 

from Fisher Scientific. 

 

3.2 Extraction 

Dry corn stovers and cassava peelings were ground to 40-mesh size particles and were 

defatted using a standard Soxhlet hexane extraction. They were washed to remove 

impurities. Around 30 grams was washed with 1 L of 2-3% NaOH solution with agitation 

at 90 ℃. The resulting solution was washed 3-5 times to remove soluble components and 

to obtain the pulp. Subsequently, α-amylase treatment was  carried out to remove starch, if 

any, and to obtain cellulose extract that was dried for further use.  

 

3.3 Preparation of Zn-cellulose salts 

3.3.1 Zn-Microcrystalline cellulose 

A range of ZnCl2 solutions (50–78% w/w) and cellulose (1-3% w/w) were used for the 

solubilization and dissolution process. The best concentration, which was 68% was 

selected for further experiments.  Initially, cellulose paste was prepared by adding 0.8 g of 

Avicel to 1.6 mL of distilled water. In a separate beaker, pre-determined weights of ZnCl2 

were dissolved in 6.0 mL of distilled water to make solutions with weight percentage of 

50–78% and equilibrated at 65(±1) ◦C in a water bath for about 10 min. Later, ZnCl2 
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solution will be added to the cellulose paste and mixed thoroughly for 30 mins. This was 

termed as the control sample. Later, various concentrations of starch (corn and potato) were 

added to develop starch-cellulose films.  

 

3.3.2 Zn-Corn stovers cellulose 

About 68% (w/w) of  ZnCl2 solutions  and corn stover cellulose extract (1-3% w/w) were  

used.  Initially cellulose paste was prepared by adding 0.4 g (w/w) of corn stover cellulose 

extract to 1.6 mL of distilled water. In a separate beaker, predetermined weights of ZnCl2 

were dissolved in 6.0 mL of distilled water to make solutions with weight percentage of 

50–78 and equilibrated at 65(±1) ◦C in a water bath for about 10 min. Later, ZnCl2 solution 

was added to the cellulose paste and mixed thoroughly for 30 mins. 20 L of HNO3 was 

added to the solution for further dissolution and were thoroughly mixed overnight in a 

water bath at 85 ℃. 

 

3.4 Crosslinking 

Variable amounts of CaC12 (0-40 g) were added to Zn-Cellulose extract solutions at room 

temperature to crosslink the cellulose chains.  

 

3.5 Film preparation 

The films were hand-casted on a glass plate (21 x 30 cm) using a thin-layer 

chromatographic plate applicator. The glass plate along with the film were  immersed in 

500 mL ethanol. The film was coagulated for 30 mins and immersed in fresh ethanol bath 

(500 mL) for another 30 mins. The film was then fixed on a frame and air dried at the room 
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temperature, then it was placed in a water bath for 30 mins to remove any excess salt and 

subsequently soaked in glycerol (5% v/v) for another 30 mins. Finally, the film was air-

dried for further characterization. 

  Extraction from corn stovers/cassava peels 

Solubilization 

Dissolution 

Crosslinking 

Film Preparation 

Plasticization 

Film Characterization 
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3.6 Film Characterization 

 3.6.1 Films color 

A Konica Minolta colorimeter was used to evaluate the color profile using Hunter L*a* 

b* scale to understand the effect of cellulose, starch and CaCl2 on the quality of the films. 

The films were placed on a white standard plate and the L, a, and b values were measured. 

L values range from O (black) to 100 (white), a value ranges from -80 (greenness) to 100 

(redness), and b values ranges from -80 (blueness) to 70 (yellowness). All measurements 

will be performed in triplicate. Total color difference (Δ E), yellowness index (YI), and 

whiteness index (WI) were calculated using the following equations (Ghanbarzadeh et al., 

2010). 

            ΔE = [(Lstandard – Lsample)
2 + (a standard – a sample)

2 + (b standard – b sample) 
2 ]0.5 ……(1) 

      142.86 b/L ………………….(2) 

W1= 100- [(100-L)2 +a2+b2]0.5….. (3) 

 

3.6.2 Film thickness 

Film was cut into 4 equal halves and film thickness was measured at five different positions 

with hand- held digital micrometer with a precision of 0.01 mm. Average readings from 

duplicate measurements are reported. 

 

3.6.3 Water solubility 

The water solubility of films is defined as the percentage of the dry matter solubilized in 

water after 24 hrs. immersion . The water solubility of the films was determined according 

to Singh, Chatli and Sahoo, 2014 but with some modification. The 3 cm x 3 cm cut films 

Figure 4: The preparation and characterization of films 
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are dried at 105 ℃ overnight and weighed. Then they are immersed in 50 mL water 

container with mild agitation (175 rpm) at 25 ℃ for 24 hrs. The final insolubilized dry 

matter of film was determined gravimetrically in the vacuum oven (105 ℃/24 hrs). The 

percentage of total soluble matter in the film was calculated as a function of the initial dry 

matter.  

  % TSM = 
W1−w2

W1
 X 100 

where W is the water solubility (%), W1 is the initial dry weight of films (g) Films weight 

after immersion and W2 is the films weight after drying. Average value from duplicate 

measurements are reported. 

 

3.6.4 Moisture absorption 

The moisture absorption of the films is the amount of water it can uptake or hold and was 

determined at room temperature using the procedure outlined by Ghanbarzadeh et al., 

(2010) but with a slight modification. The films were cut into patches of 3 x 3 cm and 

dried at 105 ℃ overnight. Initial mass (W1) of the dried films was quantified and 

immersed in a beaker containing 100 mL of distilled water for different time intervals, 5, 

10, 15, 20, 30, 60, 90 and 120 mins. The wet samples were carefully blotted using a paper 

towel to remove excess water from surface and reweighed (W2). The water uptake of each 

sample was calculated as follows: 

Water uptake % = 
W1−w2

W1
 X 100  

Where W1 and W2 are the weights of the sample after desired interval time and the initial 

weight of the dried sample, respectively. All measurements were performed in duplicates 

and average values reported. 
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3.6.5 Moisture content 

The films are cut into 3 x 3 cm and placed in a forced air convection oven for 2 hrs.at 135 

oC. The loss of water was used to calculate the moisture content (AOAC, 2005). The 

analysis was carried out in duplicate for an average reading. 

 

3.6.6  Water vapor permeability 

Water vapor permeability (WVP) was measured using method by Ghanbarzadeh et al., 

(2010) but with some modification. Special glass cups with an average diameter of 1.8 cm 

were used. Films were cut into discs with a diameter slightly larger than the diameter of 

the cup. Four grams of anhydrous CaSO4 was placed at the bottom of the cup to maintain 

relative humidity (RH) of 0 and then films were glues at the top. The cups were placed in 

a desiccator containing saturated K2SO4 solution on the bottom desiccator that provides a 

RH of 97% at room temperature. Cups were weighed at 1 hr intervals for 8 hrs and water 

vapor transport was determined by the weight gain. 

 

The changes in the weight of the cups was recorded as a function of time and slopes were 

determined by linear regression (weight change vs. time). The water vapor transmission 

rate (WVTR) was calculated as the slope (g/h) divided by the transfer area (m2). WVP (g 

m-ls-1 Pa-1) was calculated using the following equation: 

WVP = 
WVTR

P(R1−R2)
 X  

where P is the saturation vapor pressure of water (Pa) at the test temperature (25 ℃), R1 

is the RH in the desiccator, R2, the RH in the cup and X is the film thickness (m). Under 
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these conditions, the driving force [P (R1 - R2)] is 3073.93 Pa. All measurements were 

performed in triplicate and average values reported. 

3.6.7 Tensile strength of films 

The tensile strength of the films was determined using the established protocol (Xu, 

Chen, Rosswurm, Yao, and Janaswamy, 2016) but with some modification. Briefly, films 

were cut into rectangular strips of 8 cm long and 1 cm wide, and the tensile strength was 

measured using the MTS EM Tensile with mechanical grip at room temperature. The 

experimental parameters included an initial grip spacing of 60 mm with extension rate l5 

mm/s, data collection frequency of 50 Hz and a trigger force of 50 N. The initial grip 

spacing was set at 60 mm. Average values from triplicate measurements were used to 

calculate the films strength as follows:  

TS = 
F

S
  

where TS is the tensile strength (Pa), F is the maximum force when the film breaks (N) 

and S is the cross-sectional area of the films (width x thickness as m2). 

 

3.6.8 Film Transparency 

A smooth and undamaged films were selected and cut it into ten strips of 30 x 10 mm. 

Each strip was adhered on one side of a dry glass cuvette. Transparency of the films was 

calculated from the percent transmittance of light by exposing the films in the optical 

pathway at a wavelength of 600 nm on a spectrophotometer (Genesys 20,

ThermoSpectronic) (Lan, He, & Liu, 2018; Czon et al., 2018). Dry, clean, and clear glass 

cuvette was used as the control and the transmittance was set to be 100% (Abs = 0) and 
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then relative transmittance of the films was measured. Transparency was calculated using 

following equation. 

Transparency = (log(%T600)  

   X 

Wherein, %T600 is the transmittance at 600 nm  and X is the film thickness (mm).  

 

3.6.9 Fourier-transform infrared spectroscopy (FTIR) 

FTIR spectroscopy was performed to establish the presence or absence of the various 

vibrational modes of the cellulose and starch in the films. Spectra was recorded using the 

Thermo Scientific Nicolet 380 FT-IR Spectrometer equipped with ZnS ATR Crystal 

(Thermo Fisher Scientific Inc., USA) in mono-reflection at an angle of incidence of 450. 

Powdered film was placed on the ATR crystal, pressed collected data using the established 

procedure (Rao and Rao, 2015) with some modification. Each spectrum of the sample was 

recorded at  8 cm-1 resolution and 256 scans in the wavenumber range 650 - 4000 cm-1 

against an empty cell as a background. Data was be analyzed using the OMNIC software. 

 

3.6.10 Biodegradability of films 

Films were cut into 8 x 8 cm strips and initial weight was measured. They were then buried 

in soil and weights were determined at 1st, 3rd, 5th, 7th, 15th, and 30th day to assess left over 

film.  

 

3.7 Statistical analysis  

The results were analyzed by R program and Microsoft Excel (version 2016) software. 

Least Significant Difference (LSD) was determined through ANOVA and further Post Hoc 
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comparison by using Tukey HSD test to find out difference between means. P value of 0.05 

was utilized for defining the implication of the results.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Agricultural -based cellulose (Corn Stovers and Cassava Peels)  

4.1.1 Film color 

The color of films affects their acceptability to a great extent. It is important that the 

transparency is preserved or at least their color is as close as possible to the natural pigment 

of the food it is intended to be used on. The Hunter lab color scale gave the L*a*b* 

parameters , total color difference (∆E), whiteness index (W1), and yellowness index (YI) 

of the agricultural-based cellulose compared to pure cellulose and petroleum-based films 

are presented in Figure 5. The films are brownish in color and there are significant 

differences (p < 0.05) between corn-stover and cassava cellulose prepared with different 

concentrations of CaCl2. The L values of corn stover cellulose are in between 47.43 and 

59.03 while those for cassava peel range between 62.67 and 63.91 implying films of light 

brown nature. The  values of a (<0) and b (<0) indicate that  cellulose-based films to be 

more of red and yellow too.  

 

The color of the films can further be described using the color function ΔE, which is the 

degree of total color difference against the standard white plate. Films with higher L* 

values and lower b* values have a relatively lower color function. Herein, it has been 

observed that increase in a and b, total color difference (∆E), whiteness index (W1), and 

yellowness index (YI) with increase in the calcium chloride concentration. The Least 

Significant Difference (LSD) test shows a significant difference between the agricultural-

based cellulose films (corn stover and cassava peel) and the microcrystalline and 
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petroleum-based films. Both the MCC films and plastic films are whiter (L > 99.00), green 

(a < 0) and yellow (b > 0). The agricultural-cellulose based films could be conveniently 

used to package food products that are light, while the MCC films for products requiring a 

clear or transparent packaging.  
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Figure 5: L a b color scale for a) Corn stover and Cassava peel cellulose films b) Avicel 

and plastic films. 
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there is a need for more research to ascertain how these factors influence film thickness 

and other physical and mechanical properties.   

 

Figure 6: Film thickness for corn stover (red), cassava peel (blue), Avicel and plastic films. 
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slight increase of solubility observed in the cassava-peel cellulose films. The films water 

solubility ranges between 45.8 and 58.65%. There is a significant difference between the 

pure Avicel films and agricultural-based films (p < 0.05). The MCC films have a water 

solubility of 78.86%. This means that the pure cellulose films swell more when immersed 

in water compared to the corn-stover and cassava peel cellulose films. The petroleum-based 

films solubility was 11.01% which is significantly different from the pure cellulose and 

agricultural-based films. Films with high solubility are best suited for consumption while 

those with low solubility are good as food packages (Domene-López, García-Quesada, 

Martin-Gullon & Montalbán, 2019, and Garcia, Pinotti & Zaritzky, 2006). The high 

solubility of the agricultural-based films also suggests that they could degrade at a higher 

rate than the petroleum-based films (Domene-López, García-Quesada, Martin-Gullon & 

Montalbán, 2019). 
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Figure 7: Percentage of water solubility for corn stover, cassava peel, Avicel and plastic 

films. 

 

4.1.4 Moisture absorption 

Moisture absorption is an important parameter for bio-based polymers with regard to their 
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The cellulose-based films have a relatively high absorption rate that can be attributed to 

the hygroscopic and swelling characteristic of cellulose fibers (Célino, Fréour, Jacquemin 

& Casari, 2014; Laxmeshwar, Madhu Kumar, Viveka & Nagaraja, 2012: Kalia et al., 2011. 

This means that the films would disintegrate completely due to the high absorptivity rate, 

hence degrade at a high rate. Swelling occurs because water penetrates into the film matrix 

(Cornejo-Ramírez et al., 2018). Further studies are warranted on the films to determine 

how the addition of fillers such as nanofillers can lower the sensitivity of films to moisture 

absorption and hygroscopy.  

 

Figure 8: Moisture absorption for corn stover, cassava peel, Avicel and plastic films. 
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environment, consequently, prevent food deterioration. Figure 9 highlights the percentage 

moisture content of agricultural-based cellulose compared to those of pure cellulose and 

petroleum-based films. There is no significant difference (p < 0.05) in the cellulose-based 

films (corn stover, cassava peels and pure cellulose). The moisture content of the films 

ranges between 54.5 to 59.9 % for the cellulose-based films. However, there is a significant 

difference between the petroleum-based films and the cellulose based films. Plasticizer 

such as glycerol influences the attractive forces between cellulose chains and increases the 

free volume so that the resulting will films have higher moisture content (Arık Kibar & Us, 

2013). Similar research is warranted on the agricultural-based cellulose films. 

 

Figure 9: Moisture content for corn stover, cassava peel, Avicel and plastic films. 
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4.1.6 Film transparency 

One major factor for the deterioration of foods such as nuts, dairy products, wine, and meat 

products is photo-oxidation. It results in both sensorial quality and nutritional value of these 

products and could even lead to the formation of toxins (Kwon et al., 2018). Therefore, 

there is need to determine the embedding light absorption or blocking properties for active 

packages compared to the petroleum-based plastics. Figure 10 highlights the rate of 

transparency of agricultural-based cellulose compared to those of pure cellulose and 

petroleum-based films. There is  no significant difference (p < 0.05) in the cellulose-based 

films (corn stover, cassava peels and pure cellulose). Film transparency decreased 

significantly (p < 0.05) with an increase in the CaCl2 concentration.  The decrease in the 

light  transmittance of films could be attributed to lower light passage when more of the 

crosslinking agents were added. (Khoirunnisa, Joni, Panatarani, Rochima & Praseptiangga, 

2018) made similar results in their study to determine how metallic nanoparticles influence 

the water barrier properties, UV-screening, and transparency of  gelatin films. An increase 

in total solids results in lower amount of light is being transmitted through the films leading 

to lower transparency. However, there is a significant difference between the transparency 

rate in petroleum -based films and the cellulose based films. The difference would be due 

to the variations in color and thickness.  
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Figure 10:Transparency in corn stover, cassava peel, Avicel and plastic films. 
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for cellulose fibre-reinforced with poly(vinyl alcohol) films (Laxmeshwar, Madhu Kumar, 

Viveka & Nagaraja, 2012). The films developed in this research have good biodegradation 

behavior that should help to combat non-degradation and accumulation of petroleum-based 

plastics. 

 

Figure 11: Biodegradability for corn stover, cassava peel, Avicel and plastic films. 
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tensile strength. There is a significant difference between the films prepared with different 

proportions of the crosslinking agent. For instance, at a concentration of 40 g CaCl2, the 

corn-stover films have a higher tensile strength of 2.61 Mpa compared to films prepared 

with 20 g CaCl2 tensile strength is 1.16 Mpa. Films developed from MCC have a much 

lower tensile strength at 1.45 Mpa. This shows that the agricultural-based cellulose films 

are stronger and can resist mechanical damage during handling, processing, and storage 

more than pure microcrystalline cellulose films.  

. 

 

Figure 12:Tensile Strength for corn stover (blue), and Avicel (green). 
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key functional property of the films and consequently a significant determinant of product 

stability. Figure 13 highlights the rate of WVP agricultural-based cellulose films compared 

to petroleum-based films. There is no significant difference between the rate of WVP for 

the cellulose-based films. Generally, an increase in the rate of WVP is observed with the 

increase in addition of CaCl2 used for crosslinking the cellulose chains. The observed 

increase in the WVP values would have been due to the to an increase in chain immobility 

in the films and crosslinking. There is significant difference between films developed from 

cellulose and the petroleum-based films (p < 0.05). This can be attributed to the differences 

in film thickness, which influences the rate of moisture permeability and transfer (Phan et 

al., 2005).  

 

Figure 13: WVP of corn stover, cassava peel, Avicel and plastic films. 
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4.1.10 FTIR Characterization 

FTIR spectroscopy is a significant analysis because it provides information about the 

presence or absence of molecular fragments and the specific functional groups. It helps to 

determine the structure of the cellulose fibers (Hospodarova, Singovszka & Stevulova, 

2018). Figure 14 shows the percentage transmittance and wavenumber for the agricultural-

based cellulose films compared to Avicel and petroleum-based films. There is no 

significant difference the films containing cellulose (corn-stover, cassava peel and MCC) 

despite the addition of CaCl2. Peaks in the range 3400 - 3000 cm-1 are characteristic of 

stretching vibration of C-H and O-H bonds. A broad smooth peak at 3334 cm-1 is 

characteristic of the hydroxyl groups vibration. The peak also includes the vibrations due 

to inter- and intra-molecular hydrogen bonds in cellulose (Rosa et al., 2010). The bands in 

the region of 1000 - 900 cm-1 correspond to vibration of water molecules that are absorbed 

during cellulose dissolution (Poletto, Pistor, Zeni & Zattera, 2011). The bands at around 

1320 - 1400 cm-1 are linked to crystalline structure of cellulose, while these at 800-900 cm-

1 is associated with amorphous regions. There is a significant difference between the 

petroleum-based and cellulose-based films.  
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Figure 14: FTIR characterization of corn stover, cassava peel, Avicel and plastic films.  
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4.2 Starch-cellulose blended Films 

4.2.1 Film color 

The color of the films may influence their acceptability. Generally, the desirable 

characteristics in edible film packaging and coating are high transparency and lightness. 

The Hunter lab color scale gave the L*, a* and b* parameters, total color difference (∆E), 

whiteness index (WI), and yellowness index (YI) of corn and potato starch-Avicel, Avicel 

and plastics films are presented in Figure 15. 

 

The potato starch and corn starch films are white. There were no significant differences (p 

< 0.05) in color in films developed from different concentrations of CaCl2 used for 

crosslinking or the potato and corn starch.  The high L values (< 99.00) observed in both 

the potato and corn starch-Avicel films imply that they are white. The impact of different 

L* value readily reflects on the whiteness index (WI) of the films. The values of a (<0) and 

b (>0) indicated that potato and corn starch films tended to be green and yellow.  

 

Generally, the a and b total color difference (∆E), whiteness index (WI), and yellowness 

index (YI) increased with concentration of starch and calcium chloride. The color of the 

films can further be described using the color function ΔE, which is the degree of total 

color difference against the standard white plate. Films with higher L* values and lower 

b* values have a relatively lower. However, the Least Significant Difference (LSD) does 

not show significant difference between the films. This is because the microcrystalline 

cellulose, potato and corn starch are predominantly white therefore have less effect on the 

color of the films. The Least Significant Difference (LSD) test shows that there is no 
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significant difference between the starch-cellulose blend films and the microcrystalline as 

well as the  petroleum-based films. Therefore, the films can be conveniently used for 

products requiring a clear to white packaging. The films could be further described using 

another color function namely ΔE, which indicates the degree of total color difference 

against the standard white plate. Films with lower b* and higher L* values show relatively 

lower ∆E than those with higher b* and lower L*.   
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Figure 15: The Hunter color values (L, a and b), total color difference (ΔE), yellowness 

index (YI) and whiteness index (WI) of films of (a) corn starch-Avicel and (b) potato 

starch-Avicel films (c) control films (Avicel and plastic films). 
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4.2.2 Film thickness 

Thickness is one of the important parameters that affects the mechanical and physical 

properties of films. The thickness of the films ranges between 0.12 and 0.16 mm ±  0.01. 

The film thickness depends on the levels of starch and CaCl2. An increase in concentration 

of starch and CaCl2 results to an increase in thickness as shown in Figure 16. Indrianti, 

Pranoto & Abbas, (2018) made similar observations in edible films from modified potato 

starch. The increase in thickness is due to an increase in the total solids in the solution. For 

instance, 50% increase in starch concentration results in an increase in thickness from 0.13 

to 0.15 mm. There is no significant difference (p <0.05) between the films prepared from 

potato and corn starch, though the potato starch films were slightly thicker. However, there 

are significant differences (p>0.05) between the cellulose-based films and petroleum-based 

film (0.08 mm ±0.01), hence cellulose-based films are thicker; difference in the 

amylopectin amount in the corn and potato starches might be the reason. There is a need 

for more research to ascertain how the starch components influence the film thickness. 
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(a) 

 

 

Figure 16: The thickness of (a) corn starch-Avicel and (b) potato starch-Avicel, Avicel, 

and plastic films. 
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Films are expected to be water resistant so as to enhance product integrity and shelf life. 

Water solubility is an important indicator of water resistance of the biodegradable films. 

The degree of water solubility of biodegradable films made from water-sensitive 

biopolymers such as starch is a key parameter, and water solubility is closely related to 

biodegradability. The percentage water solubility of all films is illustrated in Figure 17. 

The results demonstrate that the higher the starch and CaCl2 concentration, the lower the 

water solubility of films. There are significant differences between the corn starch and 

potato starch-Avicel films (p < 0.05). Corn starch-Avicel films have a lower water 

solubility of 33.20-38.99% than the potato starch-Avicel films (50.73-54.95%).  These 

values are higher than those reported by Domene-López, García-Quesada, Martin-Gullon 

& Montalbán,( 2019) and Garcia, Pinotti & Zaritzky, (2006) who studied on the influence 

of starch composition and molecular weight on physicochemical properties of 

biodegradable films. Due to higher solubility, the films are better suited as edible films. 

The solubility could be due to a disruption on the starch network, reduced cohesiveness of 

the starch matrix leading to increase in water solubility. There is a significant difference (p 

< 0.05) between the starch-Avicel, blended films and the pure MCC films. The MCC films 

have a water solubility of 78.86%, but with addition of starch and crosslinking agents, the 

water solubility decreases. The pure cellulose films possibly swell more when immersed 

in water but the starch and CaCl2 reduce the rate of solubility. The petroleum-based films 

solubility was 11.01% which is significantly different from the pure cellulose and 

agricultural-based films. Based on these findings it can be inferred that water solubility, as 

in the case of moisture content is greatly influenced by the starch-cellulose composition or 
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(a) 

molecular weight of the blended polymers starch (Domene-López, García-Quesada, 

Martin-Gullon & Montalbán, 2019).  

 

 

 

a

ab

b

a

c

a

ab

b

a

ab

b

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

S
o
lu

b
il

it
y
 (

%
)

CaCl2 Concentration (g)

a

ab

b

a

c

a

ab

b

a

ab

b

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

S
o
lu

b
il

it
y
 (

%
)

CaCl2 Concentration (g)

(b)



55 

 

 

Figure 17: The  water solubility of (a) corn starch-Avicel and (b) potato starch-Avicel, 

Avicel, and plastic films. 

 

4.2.4 Moisture absorption 

The moisture absorption characteristic of the films is important for predicting the stability 

of the films during storage since the shelf life of the biodegradable packages at different 

storage conditions is dependent on the moisture uptake. The percentage water solubility of 

films is illustrated in figure 18. There was significant difference (p < 0.05) between corn 

starch-Avicel and potato starch-Avicel films. The moisture absorption rate ranges between 

79-84%. These are relatively high absorption rates presumably due to strong tendency of 

intermolecular associations between starch and cellulose chains and their hygroscopic and 

swelling characteristic (Othman, Kechik, Shapi’i, Talib & Tawakkal, 2019). This means 

that the films would disintegrate completely. There was a significant difference (p < 0.05) 

between the starch-Avicel blended films and films developed from MCC. As is the case 

with water solubility, the starch and CaCl2 influence the rate of moisture absorption. The, 

petroleum-based films were significantly different from the cellulose-based films with a 

moisture absorption rate of 19.14%. The cellulose-based films have a relatively high 

absorption rate that can be attributed to the hygroscopic and swelling characteristic of 

cellulose fibers (Célino, Fréour, Jacquemin & Casari, 2014; Laxmeshwar, Madhu Kumar, 

Viveka & Nagaraja, 2012: Kalia et al., 2011). Swelling occurs because water penetrates 

into the film matrix (Cornejo-Ramírez et al., 2018). The presence of hydrophilic groups in 

starch dictate the swelling nature, hence moisture absorption rate of the films.  
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Figure 18:The water absorption of (a) corn starch-Avicel and (b) potato starch-Avicel, 

Avicel, and plastic films. 
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4.2.5 Moisture content 

The moisture content of the films is important because moisture is  transferable from the 

package into food product and in-turn influences the shelf-stability of products (Othman, 

Kechik, Shapi’i, Talib & Tawakkal, 2019). The amount of moisture present in a film is the 

indication of the hydrophilicity and indeed is influenced by the nature of the biopolymer(s), 

humidity, presence or absence of hydrophilic and hydrophilic polymers and other additives. 

Figure 19 highlights the effect of starch and calcium chloride on the moisture content of 

cellulose films. There is a significant difference (p < 0.05) in the films with higher 

concentration of total solids. As in thickness, higher the amount of total solids (starch and 

calcium chloride), lower the moisture content. There is a significant difference (p < 0.05) 

in the starch-cellulose blended films and those developed from pure cellulose. The degree 

of crosslinking also reduces the moisture (Alcázar-Alay & Meireles, 2015). The starch-

mineral complex forms films that are hydrophobic in nature hence reduction in the 

moisture. The moisture content of the films is a reflection of their water solubility and 

water sorption properties. Also, there is a significant difference between the  petroleum-

based films and the cellulose based films due to the minimal weight loss observed on the 

plastic film. 
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Figure 19: The moisture content of (a) potato starch-Avicel films and (b) corn starch-

Avicel, Avicel, and plastic films. 
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4.2.6 Water vapor permeability  

The nature of packaging material determines the rate of moisture transfer between the food 

and its surrounding atmosphere. This is why the determination of permeability is a key 

functional property of the films. The developed films should completely avoid or retard the 

moisture transfer. Figure 20 highlights the WVP of corn starch-Avicel and potato starch-

Avicel films. As was with thickness, water solubility, moisture content, WVP decreased 

with increase in starch and CaCl2 amounts. A reduction in the WVP would have been due 

to the to the reduced chain mobility in the films due to crosslinking (Shah, Naqash, Gani 

& Masoodi, 2016). There are significant difference between corn starch-Avicel films and 

potato starch-Avicel films (p < 0.5). An increase in starch and CaCl2 levels led to a 

significant decrease in the rate of water vapor permeability. For instance, without CaCl2 

and starch at 50 g, the WVP of corn-Avicel films is 9.48 gm-ls-1Pa-1, while that of potato 

starch-Avicel starch was 9.28 gm-ls-1Pa-1. When the starch concentration was increased to 

200 g and CaCl2 at 40 g, the WVP of corn starch-Avicel was 3.72 gm-ls-1Pa-1 while that 

of potato starch-Avicel was  3.95 gm-ls-1Pa-1. There is a significant difference between 

films developed from cellulose and the petroleum-based films (p < 0.05). This can be 

attributed to differences in film thickness, the nature and molecular weight of the cellulose 

based films which allows them to swell and influence the rate of moisture permeability and 

transfer (Phan et al., 2005).  
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(b) 

 

 

Figure 20: The water vapor permeability of (a) corn starch-Avicel and (b) potato starch-

Avicel, Avicel, and plastic films. 
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4.2.7 Film transparency 

High light absorbance of films due to high opacity is a desirable property of food packaging 

films since it is an excellent barrier to light-induced lipid oxidation. On the other hand, 

consumers may prefer packages with  higher transparency so that they can see the food that 

is being packaged. Film transparency decreased significantly (p <  0.05) with an increase 

in starch and the crosslinking calcium ions. An increase in concentration of starch and 

CaCl2 decreases the transparency (Figure 21). Lower amount of light is being transmitted 

through the films leading to lower transparency. Corn starch films reinforced with CaCO3 

nanoparticles showed similar trend (Sun, Xi, Li & Xiong, 2014). There is a significant 

difference between the transparency rate in petroleum-based films and the starch-Avicel 

films. The difference in opacity is in line with increase in film thickness. 
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(b) 

 

Figure 21: The transparency of (a) corn starch-Avicel and (b) potato starch-Avicel, Avicel, 

and plastic films. 
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(a) 

amylose in the potato starch compared to relatively low levels of corn starch could 

significantly influence to the lower tensile strength of the films. Also, there is a significant 

difference (p < 0.05) between the starch-Avicel blended films and the Avicel-only film. 

This could be due to the increase in starch and CaCl2 concentration that increases films 

tensile strength. 
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(b) 

 

Figure 22: Tensile strength comparison of (a) corn starch-Avicel and (b) potato starch-

Avicel, Avicel and plastic films. 
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Avicel and potato starch-Avicel films. These results agree with the findings of starch films 

with a total weight loss of more than 90% after 31 days (Torres, Troncoso, Torres, Díaz & 

Amaya, 2011). There is a significant difference observed (p < 0.05) between decrease in 

the starch-cellulose based films and the petroleum-based film. The weight of the plastic 

film is fairly constant over the period and only 20% is lost. Similar findings were observed 

on cellulose fiber-reinforced with poly(vinyl alcohol) films (Laxmeshwar, Madhu Kumar, 

Viveka & Nagaraja, 2012). Overall, the prepared films have the desirable biodegradability 

rate that could help to combat problems associated with degradation of petroleum-based 

plastics.  
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(b) 

 

 

Figure 23: The biodegradability comparison of (a) corn starch-Avicel and (b) potato starch-

Avicel,  

Avicel, and plastic films.  

b b b b

a

b b bb b b

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

w
ei

g
h

t 
le

ft
 (

%
)

CaCl2 Concentration (g)

(a)

b b b b

a

b b bb b b

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

w
ei

g
h

t 
le

ft
 (

%
)

CaCl2 Concentration (g)



67 

 

4.2.10 FTIR Characterization 

Fourier-Transform Infrared Spectroscopy (FTIR) spectroscopic analysis gives useful 

information about chemical structure and changes that occur in a polymer system due to 

blending and casting process. Figure 24 shows the FTIR spectra of MCC-corn starch-

Avicel and  potato starch-Avicel cellulose films. There is no significance difference 

between the corn starch-cellulose and potato starch cellulose blended films. The 

biopolymer films show FTIR bands similar to those reported by Harunsyah, Sariadi & 

Raudah, (2018). The polymers starch and cellulose are chemically similar, with the same 

glycosidic units so that the absorptions peaks are same. The observed peaks in the wave 

number range of 3300 - 3200 cm-1 that are characteristic for stretching vibration of C-H 

and O-H bonds. A broad smooth peak at 3334 cm-1 is due to the vibrations of the inter- and 

intra-molecular hydrogen bonds between starch and cellulose chains and characteristics of 

stretching vibration of the hydroxyl groups (Rosa et al., 2010). The peak at 1650 - 1660 

cm-1 represents the C=O vibration. The bands at 1150 - 1200 cm-1 represent the C–O–C 

asymmetrical stretching. Interestingly, no new bonds are noticed due to complex formation 

of cellulose and starch chains. There is a significant difference between the starch-Avicel 

blended films, and the petroleum-based films as shown in the figures below. The plastic 

films generate peaks at different wavelengths than the starch-cellulose films due to 

presence of different compounds present in the petroleum-based films. This could help 

explain differences in biodegradation rates in the cellulose-based films and plastic films. 
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Figure 24: FTIR spectra of  (a) corn starch-Avicel and (b) potato starch-Avicel, Avicel, 

and plastic films. 
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CHAPTER 5:  CONCLUSIONS 

Cellulose and starch are naturally found in abundance and are inexpensive biopolymers 

and can be easily processed to develop biodegradable films that are viable alternatives to 

petroleum-based plastics. The films prepared in this research have an array of favorable 

characteristics with unique physicochemical properties with myriad food applications. The 

potato starch films display higher tensile strengths compared to corn starch films due to the 

presence of higher amount of amylose.  The cellulose-potato starch and corn starch blended 

films are white  and can be conveniently used for products requiring a clear to white 

packaging. The films have a degree of water solubility, moisture absorption, and water 

vapor permeability that are closely related to biodegradability which means that the films 

would disintegrate completely due to the  high  absorptivity rate. The presence of 

hydrophilic groups  in starch determine the swelling nature, hence moisture absorption rate 

of the films. Their degradation behavior is important to obtain controlled-release or to 

reduce the time required for the plastic to disappear from the environment; studies on the 

influence of specific starch structures on the films degradation can help to design starch 

materials for different purposes with desirable degradation rates. The FTIR spectra reveal 

the presence of organic matter in the starch-Avicel blend films which translates to high 

degradability. The agricultural-cellulose based films can be conveniently used to package 

foods products that are light and oxygen sensitive, while the MCC films can be used on 

products requiring  a clear or transparent packaging.   

The films have the functional properties of packaging material and could have potential to 

preserve food and extend storability, which needs to be proved. The films are eco-friendly 

and fit-for-purpose substitute to petroleum-based packages. The bio-based films can be a 
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sustainable replacement for the single-use plastics because the polymers are abundantly 

available in nature. Since the films are biodegradable, they will help to alleviate the 

pollution menace that has resulted from petroleum-based packages. These bio-based films 

will also improve human health along with guaranteed food safety and security, efficient 

utilization of resources, reduced cost of production of packaging materials and finally, an 

equivalent of non-plastic alternative. 
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CHAPTER 6: FUTURE WORKS/ RECOMMENDATIONS 

1. Further studies on the addition of substituents such as nanofillers and their ability 

to lower the sensitivity of films to moisture absorption and hygroscopy have to be 

established.  

2. There is a need for more research to ascertain how the morphology and high 

molecular weight factors influence film thickness and other physical and 

mechanical properties. 

3. The polymers can be used to develop edible films, and further establishment of their 

nutritional benefits, sensory evaluation, and their safety through  microbiological 

analysis is in need.  

4. The rate of atmospheric transfers due to the nature of the packaging material and 

its effectiveness in storing food need to be established too.  

5. More importantly, large scale production of agriculture-based films needs to be 

established.  
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