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ABSTRACT 

 
STRUCTURAL PERFORMANCE EVALUATION OF DYNAMIC MESSAGE 

SIGNS WITH ADHESIVE AND WELDED JOINTS 

 
IBIN AMATYA 

 
2020 

 
The ultimate objective of this study was to determine the structural performance of 

the Dynamic Message Sign (DMS) bonded with chemical adhesive in terms of ultimate 

strength and fatigue strength. To achieve this objective, this study first investigated the 

effects of various parameters, including humidity and temperature on tensile, shear, peel, 

and cleavage strength through small-scale tests of adhesive specimens with variation in 

specimen width. The tensile, shear, peel, and cleavage specimens were conditioned in a 

temperature-humidity controlled chamber prior to its testing. The tensile, shear, peel, and 

cleavage specimens with different widths were tested according to American Society for 

Testing and Materials (ASTM) after conditioning them in different temperature and 

humidity conditions. Numerous data resulting from the tests were analyzed through 

graphical comparisons and statistical analysis, in order to explore the effect of the 

considered parameters on each of the strengths. As part of the statistical analysis, two 

separate regression models, Multiple Linear Regression (MLR) and Response Surface 

Metamodels (RSM), were developed. It was found that humidity and width were the most 

significant parameters negatively affecting the tensile and peel strength, respectively. The 

MLR and RSM regression models developed in this study can be used for the prediction 

of tensile, shear, peel, and cleavage strength of the adhesive joints for different 



xxi 

 

temperature and humidity conditions that aid the design of adhesive joints in the DMS. 

Welded specimens were also tested at the same condition as in the adhesive specimen 

testing, and the results were compared with those from the adhesive testing. In addition to 

the small-scale tests, four full-scale DMS tests were performed to examine their structural 

performance. Specifically, the ultimate strength testing was carried out on one DMS with 

adhesive joints and one with typically welded connections, and the fatigue testing was 

also conducted for one DMS system with adhesive joints and one with welded 

connections. For the ultimate strength testing, a monotonic loading was applied to each 

DMS until failure, whereas for the fatigue testing, each of the DMSs were applied by a 

load of 0.818 kN equivalent to natural wind gust up to 500,000 cycles. The ultimate 

strength testing demonstrated that the adhesive DMS failed at 125 kN, while the weld 

DMS failed at 146 kN. During the fatigue test, stress ranges observed in the panel were 

much below the threshold of the aluminum panel of the DMS. No sign of damage was 

observed in both adhesive and welded DMSs from the fatigue tests. The results indicated 

that DMS with adhesively bonded connections is relatively better than welded DMS with 

respect to the stress induced in the aluminum panel.



1 

 

INTRODUCTION 

 

An adhesive has the potential to increase the production of Dynamic Message Signs 

(DMSs) due to its efficient applications, less labor work, and the ability to join different 

metals. The majority of the clients such as State Departments of Transportation prefer 

welded connections for connecting the aluminum back-skin with the frame of the DMS. 

The adhesive is a decent alternative to join lightweight metals with different melting 

points. In adhesive joints, loads are more homogeneously distributed than in welded 

joints. Different complexities such as difficulties in joining irregular seams and panel 

distortion (Tsai et al. 1999) have been observed in the course of manufacturing of welded 

connections. Further, the probability of noticing residual stresses and distortion is also 

high in welded connections. Even with such high potential of adhesive joints, limited 

experimental studies (Çolak et al. 2009, Agarwal et al. 2014, Savvilotidou et al. 2017, 

Kim et al. 2012, Goglio and Rezaei 2014, Silva et al. 2016, Sousa et al. 2018, Moussa et 

al. 2012, Da Silva et al. 2009, Neto et al. 2012) have been carried out to study the 

adhesive joint performance of DMSs.  

To further examine the structural performance of DMS with adhesive joints, this 

study conducted small- and full-scale testings. For the small-scale testing, an 

experimental program was initially designed to examine the tensile, shear, peel, and 

cleavage strength of the adhesive and welded specimens at different temperature and 

humidity conditions. All the specimens with different specimen widths were tested 

according to American Society for Testing and Materials (ASTM) after conditioning 

them in different temperature and humidity conditions. Note, the welded specimens were 
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fabricated following the guideline from American Welding Society (AWS). Numerous 

data resulting from each of the small-scale tests were analyzed through graphical 

comparisons and statistical analysis, so as to investigate the effect of the temperature, 

humidity, and width on the tensile, shear, peel, and cleavage strengths. As part of the 

statistical analysis, Multiple Linear Regression (MLR) and Response Surface 

Metamodels (RSM) for adhesive specimens were utilized not only to determine 

statistically significant parameters (i.e., temperature, humidity, and width) affecting the 

strengths, but also to develop separate regression models for each of the strengths.  

 

Apart from the small-scale testing, the full-scale load testing was conducted with 

DMSs. In detail, one DMS with adhesive joints and one with welded connections were 

tested to examine the ultimate strength, whereas one DMS with adhesive joints and one 

with welded connections were utilized to perform their fatigue testing. The full-scale 

testing setup and instrumentation plans were developed that were identical for all the 

tests. A network of strain and deflection gauges was installed to record strains and 

displacements when loaded to ultimate load failure and under fatigue load conditions. 
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RESEARCH OBJECTIVES 

 

The goal of this study is to provide comprehensive knowledge of the structural 

behavior of DMSs with adhesive joints and welded connections subjected to ultimate and 

fatigue loads. The following objectives are designed to achieve this goal as follows: 

1. Study the effects of environmental and geometrical characteristics on joint 

performance of adhesive and welded small-scale specimens. 

2. Examine the ultimate strength and fatigue performance of DMSs with adhesive 

connections 

3. Compare the structural performance between adhesive bonded DMSs and welded 

DMSs. 

SCOPE OF RESEARCH 

 

To achieve the aforementioned objectives, the scope of work can be listed as follows: 

• Literature review of the state of the art and practice on adhesive joints. 

• Small-scale testing and data investigation for adhesive specimens. 

• Comparison with small-scale testing data of welding specimens. 

• Ultimate load and fatigue testing of full-scale DMS systems 

• Full-scale testing data analysis. 
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OUTLINE OF THESIS 

 

This thesis is divided into five different chapters, assembling five different research 

papers, investigating the strength of adhesive connection in DMSs and comparing the 

results with that of welded connections. Chapter 1 presents the tensile and shear testing 

results obtained from small-scale testing of the adhesive specimens that were performed 

incorporating three different parameters including conditioning temperature, conditioning 

humidity, and specimen’s width. Chapter 2 details the peel and cleavage strengths of the 

adhesive specimens that were also tested with variation in conditioning temperature, 

conditioning humidity, and specimen’s width. Chapter 3 provides a detail comparison of 

the tensile and shear strengths of the welded and adhesive specimens. Adhesive and 

welded specimens with different widths were also tested after conditioning at extreme 

high and extreme low temperature. In Chapter 4, peel and cleavage strength of the welded 

specimens is compared with the peel and cleavage strength of the adhesive specimens 

with variation in conditioning temperature and specimen’s width. Chapter 5 presents the 

results and discussion on the ultimate strength tests and fatigue load tests conducted for 

full-sized adhesive and welded DMSs. 
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CHAPTER 1: TENSILE AND SHEAR STRENGTH TESTS WITH ADHESIVE 

CONNECTIONS IN DYNAMIC MESSAGE SIGNS 

 

1.1 ABSTRACT 

A Dynamic Message Sign (DMS) is made up of a display, cabinet sheet aluminum 

skin, and internal structure along with electrical components. The aluminum skin is 

connected to the internal structure usually with a welded connection; however, adhesive 

or chemical bonding can be used instead for the connection between these two 

components. The goal of this paper is to examine the tensile and shear strengths along 

with other mechanical properties of adhesives used in the DMS under varying 

environmental and geometrical conditions. Adhesive tensile and shear specimens with 

different widths were tested according to the American Society for Testing and Materials 

(ASTM) standards after conditioning them in different temperature and humidity 

conditions. Numerous data resulting from the tests were analyzed through graphical 

comparisons and statistical analysis, so as to explore the effect of the considered 

parameters on tensile and shear strengths. As part of the statistical analysis, Multiple 

Linear Regression (MLR) and Response Surface Metamodels (RSM) were utilized not 

only to determine statistically significant parameters affecting the strengths, but also to 

develop separate regression models for the tensile and shear strengths. Key findings 

revealed that an increase in humidity decreases the tensile strengths. The MLR and RSM 

model-based analysis also found humidity to be the most significant parameter negatively 

affecting the tensile stress. Finally, this work found adhesive or chemical bonding to be a 

possible substitute to welding for assembly of the DMS. 
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Keywords: DMS, Strength, Aluminum; Adhesive; Connection, Statistical analysis. 

1.2 INTRODUCTION 

A Dynamic Message Sign (DMS) is a digital sign that provides real-time traffic 

information to road users during traveling. The use of DMSs has been rapidly increasing 

since it is the most convenient way to deliver useful information to the commuters such 

as road closures, service stations, and rest areas. A DMS is conventionally fabricated with 

thin aluminum skins and internal frame structure. The most common connection used in 

the DMS assembly is a weld connection. However, some manufacturers have started 

using adhesive for the connection between the back-skin and frame of the DMS. Due to 

efficient applications, less labor work, and ability to join different metals, adhesives are 

becoming popular with these manufacturers. An adhesive is a decent alternative to join 

metals with different melting points (Sakiyama et al. 2013). In adhesive joints, loads are 

more homogeneously distributed than in welded joints (Chapman 2010). Different 

complexities are observed in welding in the course of manufacturing like difficulties in 

joining irregular seams. Further, the residual stresses and distortion are found to be higher 

in welded connections. Even with such high potential of adhesive joints, limited 

experimental studies have been carried out to study the performance of adhesive joints 

for DMSs. 

Inconsistent research results on adhesive have restricted its potential in DMSs. The 

strengths of the adhesive have been investigated to a great extent to understand the effects 

of moisture (Colak et al. 2009, Agarwal et al. 2014, Savvilotidou et al. 2017, Kim et al. 

2012). Colak et al. (2009) indicated that the strength of the adhesive was reduced the 

most during the formation of the bond under saturated conditions. A directly proportional 
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relationship was found between strength reduction and the amount of moisture absorbed. 

Agarwal et al. (2014) studied the effects of freeze-thaw cycles on the adhesive connection 

of steel-carbon fiber reinforced polymer joints. Single-lap shear specimens were tested 

and a reduction in shear strength between 12-18% was found after freeze-thaw cycles. 

The elastic modulus was decreased by 14-19% when tensile specimens entirely made of 

adhesive were tested; however, the tensile strength was not changed considerably. 

Savvilotidou et al. (2017) investigated the adhesives to observe the effects of moisture. 

The results found a reduction in elastic modulus and tensile strength due to humidity after 

saturation when submerged in water. The adhesive bonded joints were studied by Kim et 

al. (2012) for shear strength using double-lap joint specimens after repeated freeze-thaw 

cycles. A slight increase in shear strength was found due to further curing of the adhesive 

as a result of moisture. 

Several studies (Lettieri and Frigione 2011, Goglio and Rezaei 2014, Silva et al. 2016 

Sousa et al. 2018, Moussa et al. 2012, Na et al. 2017, 2016) have been performed to 

evaluate the combined effects of temperature and moisture on the bond strength of 

adhesive. Lettieri and Frigione (2011) tested three different epoxy adhesives and had 

varying results between them. It was observed that flexural strength and modulus were 

increased in one adhesive, while a decrease in strength with no change in modulus was 

observed in the next, and the final had a decrease in both. Goglio and Rezaei (2014) 

conditioned the specimens at 100% relative humidity and 50° C for five weeks to study 

the effects of warm temperatures and moisture on mechanical properties of epoxy 

adhesives. It was reported that tensile strength was reduced by 75% before failure, while 

the modulus of elasticity and shear modulus were reduced by 20%. Silva et al. (2016) 
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studied the effects of thermal cycles (-15° C to 60° C) and immersion in water on 

adhesives. The thermal cycles resulted in an increase in tensile strength and modulus of 

elasticity, but the exposure to water resulted in decreases in tensile strength and modulus 

of elasticity due to plasticization. Sousa et al. (2018) studied the effects of moisture and 

temperature on the durability of adhesives, demonstrating that the shear modulus 

decreased by 43%, but the shear strength increased by nearly 25% due to immersion in 

water. Moussa et al. (2012) subjected a structural adhesive to temperatures above the 

glass transition temperature and found that a slight increase in tensile stiffness and 

strength was observed. Na et al. (2017) tested adhesive tensile dog-bone specimens at 

−40° C, room temperature, and 90° C. The increment in temperature reduced the modulus 

of elasticity, tensile strength, and failure strain. Na et al. (2016) further investigated the 

effect of seven different temperatures ranging from -40° C to 90° C on the tensile and 

shear strength of automotive polyurethane adhesive. Increase in temperature lowered 

both tensile and shear strength of the adhesive joint. Da Silva et al. (2009) found that lap 

shear strength was improved almost linearly with the increase in overlap length 

contributing 45.5% of the lap shear strength, and Neto et al. (2012) demonstrated that in 

ductile adhesive, the increase in overlap length increased the failure load consistently for 

the overlap length tested between 10 mm to 80 mm. Banea et al. (2015) examined 

structural polyurethane adhesive to determine the influence of adhesive thickness on the 

mechanical behavior of adhesive. Double-cantilever beam tests were performed for 

adhesive layer varying between 0.2 mm to 2 mm thickness. The lap shear strength was 

observed to be decreased, while fracture toughness was increased with the increase in 

thickness of adhesive layer. 
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The aforementioned studies have shown that temperature and moisture can affect the 

strength and durability of adhesives; however, the severity of the effects due to these 

parameters has not been conclusive. The variance between studies can be attributed to the 

difference in chemical composition between adhesives. It is also important to note that 

many of these studies have subjected the adhesives to extreme conditions unlikely to be 

seen in practice. For example, most DMS applications would rarely be immersed in 

water, especially for extended periods, and high humidity conditions are generally 

intermittent. Therefore, the effects of practical exposure to moisture and temperature 

should be graphically and statistically researched at or slightly above expected service 

conditions for individual adhesives to measure its performance. In addition to the 

moisture and temperature conditions, adhesive joints are required to be examined with 

variation in geometry such as overlap length and width. The application of overlap length 

is not practical for tensile specimens; therefore, width of both tensile and shear specimens 

is consistently considered for the variation in geometry in this study. 

This paper aims at establishing an experimental program to investigate the tensile and 

shear strengths of adhesively bonded connections along with other mechanical properties, 

such as modulus of elasticity and ductility. Tensile and shear specimens were tested to 

failure at different environmental and geometrical conditions. 64 adhesive specimens, 

including 32 tensile and 32 shear specimens, were tested according to the American 

Society for Testing and Materials (ASTM) Standards (ASTM 2014, 2010). 
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1.3 BACKGROUND FOR STATISTICAL ANALYSIS 

Statistical analysis was performed for evaluation of tensile and shear testing data in 

an efficient manner. To that end, Multiple Linear Regression (MLR) and Response 

Surface Metamodels (RSM) were utilized in this study for the determination of 

significant parameters affecting tensile and shear strength. Note, MLR (Seo and Pokhrel 

2019, Kokaly and Clark 1999) and RSM (Seo and Linzell 2010, 2012, 2013) models have 

been used in previous studies to investigate the effect of different input parameters on 

outputs such as structural or mechanical behaviors. A well-organized set of input 

parameters, temperature, humidity, and width of specimen was required in order to 

generate the statistical models. During the analysis, probability values were acquired for 

each parameter per model. Based upon the probability values, significant parameters 

affecting the tensile and shear strength were identified. The better fit model can be used 

for the prediction of response variable (tensile and shear strength) within distinct range of 

input parameters. 

1.4 EXPERIMENTAL PROGRAM 

The experimental program was designed to study the results of tensile and shear tests 

at different widths and temperature and humidity conditions. This section discusses the 

specimens, testing matrix and conditioning, manufacturing, and testing necessary for the 

determination of the ultimate shear and tensile strengths and other mechanical properties. 

1.4.1 SPECIMENS 

Tensile and shear specimens were fabricated based on ASTM D638 (ASTM 2014) 

and ASTM D1002 (ASTM 2010), respectively. The bone-shaped tensile specimens were 

entirely made up of LORD 406-19GB (LORD Corporation 2018) acrylic adhesive. The 
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shear specimens were built with two 5052 aluminum metal bars having 1.62 mm 

thickness bonded with the same LORD acrylic adhesive at the overlap in the middle of 

each specimen. An extra aluminum piece was added to each of the shear specimens to 

facilitate efficient installation of an extensometer. The specimens were left for two weeks 

to ensure proper curing of the adhesive after conditioning. The geometry of 

representative tensile specimen is shown in Figure 1.1a and Figure 1.1b, whereas 

geometry of representative shear specimen is shown in Figure 1.1c and Figure 1.1d, 

correspondingly. The width of both tensile and shear specimens is defined as W with 

tolerance of ± 0.5 mm for tensile and ± 0.254 mm for shear specimens. In this study, 

tensile and shear specimens having width (W) 13 mm, 25 mm, and 38 mm are 

considered.  

 

   

                                             (a)             (b) 

 

                                                      (c) 
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                                                         (d) 

Figure 1.1: Geometry of adhesive specimens (a) top view of tensile; (b) cross-section of 

tensile dog bone; (c) top view of shear and (d) side view of shear (All dimensions are in 

mm). 

1.4.2 TESTING MATRIX AND CONDITIONING 

To study the performance of the adhesive connection, sixteen different combinations 

comprising different parameters were developed using Plackett-Burman Design (PBD) 

(Seo 2013, Chandorkar et al. 2008, Seo and Linzell 2013) through JMP, commercially 

available statistical software (SAS Institute Inc. 2008). Note, PBD was used to develop 

statistical models in an efficient manner. Included in the parameters were temperature, 

humidity, and width of the specimens. These parameters were considered inputs for 

statistical analysis. The combinations consisted of a low, medium, and high value for 

each of the considered input parameters. For example, three different widths of 13 mm, 

25 mm, and 38 mm were used to account for variation in geometry of the specimens. The 

developed sixteen combinations with three different values for each parameter can be 

seen in Table 1.1. It consists of five combinations with 13 mm width, six combinations 

with 25 mm width, and five combinations with 38 mm width specimens. Note, each 

combination consisted of two tensile specimens and two shear specimens; thus, the total 

number of specimens was 64, including 32 tensile and 32 shear specimens. 
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Table 1.1 Testing specimen combinations with different temperature, humidity, and 

width 

Combination ID 
Temperature 

(°C) 

Humidity 

(%) 

Width 

(mm) 

C1 20T/48H/13W 20 48 13 

C2 20T/48H/38W 20 48 38 

C3 20T/71H/25W 20 71.5 25 

C4 20T/95H/13W 20 95 13 

C5 20T/95H/38W 20 95 38 

C6 52T/48H/25W 52.5 48 25 

C7 52T/71H/13W 52.5 71.5 13 

C8 52T/71H/25W 52.5 71.5 25 

C9 52T/71H/25W 52.5 71.5 25 

C10 52T/71H/38W 52.5 71.5 38 

C11 52T/95H/25W 52.5 95 25 

C12 85T/48H/13W 85 48 13 

C13 85T/48H/38W 85 48 38 

C14 85T/71H/25W 85 71.5 25 

C15 85T/95H/13W 85 95 13 

C16 85T/95H/38W 85 95 38 

The specimens per combination were conditioned in a temperature and humidity-

controlled chamber as seen in Figure 1.2a. Specifically, the specimens grouped with the 

same humidity, yet different temperatures were first conditioned at the lowest 

temperature of the group for 96 hours for its moisture saturation. Then, the combinations 

conditioned at the lowest temperature among the group were first taken out of the 

chamber for the test, and the temperature was increased up to the next lower temperature 

to condition the remaining specimens for additional 24 hours. For example, the 

specimens for the combinations C1, C2, C6, C12 and C13 were placed inside the 

chamber at 20°C and 48% humidity. The specimens for combinations C1 and C2 were 

taken out for test after conditioning for 96 hours and the temperature of the chamber was 

increased to 52.5°C for the remaining specimens. The specimens for combination C6 

were taken out of the chamber for testing after conditioning for additional 24 hours and 
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the temperature of the chamber was again increased to 85°C for the specimens with 

combination C12 and C13. The remaining specimens were tested after conditioning for 

additional 24 hours. The humidity was kept constant at 48% throughout this period. The 

specimens conditioned at 20°C, 52.5°C, and 85°C were conditioned for 96, 120, and 144 

hours, respectively.  To observe the change in moisture, the specimens were weighed 

prior to conditioning, after conditioning, after transporting to the lab and after testing. 

Mylar bags were used to minimize any loss of humidity during transportation of the 

specimens from the conditioning lab to the testing lab. The specimens were transported in 

a thick Styrofoam (see Figure 1.2b) cooler to prevent the loss of heat after taking the 

specimens out of the chamber. Temperatures were recorded after transporting the 

specimens to the lab and after the test for each of the specimens. 

Change in moisture and temperature for both tensile and shear specimens were 

calculated. Note, changes in moisture between before and after conditioning phases, 

between after conditioning and after transporting phases, and after transporting and after 

the testing phases were calculated. The change in moisture for the tensile and shear 

specimens remained below 1.015% and 2.086%. It appears that there is insignificant 

change in moisture for the majority of the specimens during each of the three phases. 

Change in temperature was calculated by comparing the temperature measured after it 

was transported to the lab and after the test was completed. For the tensile specimens, 

change in temperature was observed below 9.6%, 41.5%, and 43% for specimens 

conditioned at 20°C, 52.5°C, and 85°C, respectively. For the shear specimens, change in 

temperature was observed below 12%, 30%, and 48.3% for the specimens conditioned at 

20°C, 52.5°C, and 85°C, respectively. The specimens conditioned at higher temperatures 
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showed a greater loss in temperature than those conditioned at lower temperatures due to 

the difference in ambient conditions during the shear or tensile testings. 

 

              

                                (a)                                                                      (b) 

Figure 1.2: Conditioning of the specimens (a) temperature-humidity controlled chamber 

and (b) styrofoam cooler 

1.4.3 MANUFACTURING 

For the fabrication of tensile specimens shown in Figure 1.1a and Figure 1.1b, moulds 

having appropriate dimensions were prepared from acetal material first. The moulds were 

filled with LORD acrylic adhesive and covered with thin metal from the top. Accurate 

weights were placed on the metal to acquire proper thickness of the tensile specimens. 

The tensile specimens were left to cure at room temperature and humidity for two weeks. 

Minimal voids were observed in some specimens during the fabrication, however, the 

tensile specimens with no external voids were only considered for the study. To make 

shear specimens, aluminum metal bars were cut with appropriate dimensions. LORD 

acrylic adhesive was spread over 13 mm length at the end of one aluminum bar and 

overlapped by another aluminum bar with 13 mm overlap length for each shear specimen. 

An average thickness of 0.385 mm was maintained for adhesive layer of shear specimens 
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by applying pressure after spreading the adhesive in aluminum surface. During 

installation of the extensometer in shear specimens in preliminary tests, the extensometer 

could not be installed in a vertical alignment parallel to the shear specimen. Therefore, an 

extra aluminum piece was added to ensure the proper installation of the extensometer. 

The extensometer was mounted at the overlap area of the shear specimen for the 

calculation of strain value. 

1.4.4 TESTING  

Tensile and shear tests with each specimen were performed using an MTS 370 

Landmark (MTS Systems Corporation 2018) 100-kN servo-hydraulic load unit calibrated 

to 20% of its load capacity. Each specimen was mounted and aligned in the grips of the 

MTS. An MTS 634.31F-24 clip-on extensometer with a gauge length of 20 mm was 

mounted to each of the specimens to measure the longitudinal strains of the specimens 

during each test. Note, the extensometer was a class B2 calibrated with an accuracy of 

±0.25% of measured strain. The tests were performed under a monotonic loading with a 

free crosshead speed of 5 mm/min for the tensile specimen following ASTM D638 

(ASTM 2014) and 1.3 mm/min for the shear based on ASTM D1002 (ASTM 2010). The 

testing setups for the tensile specimen and for the shear specimen are shown in Figure 

1.3a and Figure 1.3b, respectively. It should be noted that all the tests were performed at 

room temperature. 
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                        (a)                                                           (b) 

Figure 1.3: Installation of the specimens in the testing machine (a) tensile and 

(b) single-lap shear 

1.5 RESULTS AND DISCUSSION 

Results from the tensile and shear tests are summarized and discussed herein. Stress-

strain curves were plotted for each of the tests along with the determination of various 

mechanical properties such as strength. 

1.5.1 TENSILE TESTING DATA 

Stress-strain curves for the tensile specimens are presented in Figure 1.4. Mechanical 

properties encompassing ultimate stress, modulus of elasticity, and ductility are 

determined from the stress-strain curve. The calculated mechanical properties at varying 

environmental and geometrical parameters are summarized in Table 1.2. The ultimate 

tensile stress and tensile strain were calculated from the Equation 1.1 and Equation 1.2 

presented below. Ductility is calculated as percentage of elongation of the specimen at 

rupture or breaking point. 

𝑓𝑢 =
𝑃𝑢

𝐴⁄              (Equation 1.1) 
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𝜀 = ∆𝑙
𝑙0

⁄              (Equation 1.2) 

where fu is ultimate tensile stress, Pu is ultimate tensile load, A is cross-sectional area 

of the tensile specimen, 𝜀 is tensile strain, ∆l is change in extensometer gauge length, and 

l0 is initial extensometer gauge length. 

 

Figure 1.4: Stress-strain curves for tensile specimens 
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Table 1.2 Mechanical properties from the tensile tests 

ID 
Modulus of 

elasticity, E (MPa) 

Ultimate tensile 

stress, fu (MPa) 

Ductility, 

e (%)  

20T/48H/13W 1339.49 17.9 14.81 

20T/48H/38W 1303.06 17.6 13.02 

20T/71H/25W 1289.87 17.6 14.86 

20T/95H/13W 1227.73 16.2 18.34 

20T/95H/38W 1227.02 17.2 17.55 

52T/48H/25W 1025.97 17.1 18.79 

52T/71H/13W 971.62 17.3 17.74 

52T/71H/25W 1075.74 17.1 16.45 

52T/71H/25W 1081.75 17.0 14.91 

52T/71H/38W 888.87 15.7 17.08 

52T/95H/25W 1279.08 16.9 16.29 

85T/48H/13W 896.23 17.8 11.75 

85T/48H/38W 1261.39 17.8 11.93 

85T/71H/25W 932.76 16.1 11.31 

85T/95H/13W 1029.21 15.7 15.79 

85T/95H/38W 1010.92 16.0 13.19 

 

Representative failure modes of the tensile specimens are shown in Figure 1.5. 

During the test, all tensile specimens failed with rupture with no sign of necking. The 

rupture in all the tested specimens was observed to be almost perpendicular to the loading 

direction as depicted in Figure 1.5a and Figure 1.5b. 
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                               (a)                                                           (b) 

Figure 1.5: Representative failure modes of tensile specimens (a) 13 mm and (b) 25 mm 

 

1.5.1.1 EFFECT OF TEMPERATURE 

An effort has been made to understand the effect of temperature on the ultimate 

tensile stress as shown in the graphical representation in Figure 1.6. In addition to the 

tensile stress examination, the other mechanical properties focusing on ductility were 

investigated. Ductility is a crucial property of the adhesive in the structural system of 

DMS. The effect of temperature on the ultimate tensile stress and ductility in terms of the 

percent difference between combination pairs is further examined using a bar chart as 

seen in Figure 1.7. For specimens of 13 mm width, the stress is reduced by 0.4% at 48% 

humidity and 3.3% at 95 % humidity, respectively when the temperature is increased 

from 20 °C to 85 °C as shown in pairs C1-C12 and C4-C15 in this figure. At 71.5 % 

humidity, when the temperature is increased from 20 °C to 52.5 °C, the stress declines by 

2.9 % for 25 mm specimens. The stress decreases by 5.7 % after the temperature rises 

from 52.5 °C to 85 °C as displayed in pairs C3-C8 and C8-C14 in this figure. The stress 

is increased by 0.8 % at 48 % humidity, however, decreased by 7.2 % at 95 % humidity 
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for specimens of 38 mm width after the elevation of temperature to 85 °C from 20 °C as 

depicted in pairs C2-C13 and C5-C16. 

For 13mm wide specimens, ductility declines by 20.7% at 48% humidity and 13.9% 

at 95% humidity, respectively when the temperature is increased from 20 °C to 85 °C as 

presented in pairs C1-C12 and C4-C15. When the temperature is increased from 20 °C to 

52.5 °C, ductility increases by 10.7% for 25 mm specimens at 71.5% humidity. Ductility 

is reduced by 31.2 % after the temperature is elevated to 85 °C from 52.5 °C as depicted 

in pairs C3-C8 and C8-C14 in this figure. Ductility is decreased by 8.3% at 48% 

humidity and 24.8 % at 95 % humidity for 38 mm specimens when the temperature is 

increased from 20 °C to 85 °C as presented in pairs C2-C13 and C5-C16. 

 

 

Figure 1.6: Temperature effect on ultimate stress for tensile specimens 
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Figure 1.7: Percent difference in ultimate tensile stress and ductility due to variation in 

temperature with a fixed humidity and width 

1.5.1.2 EFFECT OF HUMIDITY 

Figure 1.8 shows the graphical representation of the effect of humidity on the ultimate 

tensile stress. Figure 1.9 shows a bar chart to further illustrate the humidity effect in 

ultimate tensile stress and ductility in terms of percent difference among combination 

pairs. For specimens of 13 mm width, the stress is reduced by 9.3% at 20 °C and 11.9% 

at 85 °C, respectively when the humidity is increased from 48% to 95 % as depicted in 

pairs C1-C4 and C12-C15 in this figure. At 52.5 °C, when the humidity was increased 

from 48% to 95 %, the stress decreases by 0.3% for 25 mm specimens. The stress is 

decreased by 1.2 % after the humidity is elevated to 95% from 48% as shown in pairs C6-

C8 and C8-C11. The stress is decreased by 2.2% at 20 °C and 9.9 % at 95 % humidity for 
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specimens of 38 mm width after the humidity is increased from 48% to 95 % which is 

shown in pairs C2-C5 and C13-C16. 

In Figure 1.9, for specimens of 13 mm width, ductility increased by 23.9% at 20 °C 

and 34.5% at 85 °C respectively when humidity is increased from 48% to 95 % (see 

comparison C1-C4 and C12-C15). At 52.5 °C temperature, when humidity was increased 

from 48% to 71.5 %, ductility declined by 12.5% for 25 mm specimens. Ductility was 

slightly decreased by 0.9 % after the elevation of humidity to 95% from 71.5% (see 

comparison C6-C8 and C8-C11). Ductility, however, increased by 34.8% at 20 °C with 

an increment of 10.6% at 85 °C for specimens of 38 mm after the elevation of humidity 

to 95% from 48% (see comparison C2-C5 and C13-C16). 

 

Figure 1.8: Humidity effect on ultimate stress for tensile specimens  
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Figure 1.9: Percent difference in ultimate tensile stress and ductility due to the variation 

in humidity with a fixed temperature and width 
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2% at 95% humidity for specimens conditioned at 85°C with an increment of specimen 

width from 13mm to 38mm (see comparison C12-C13 and C15-C16). 

In Figure 1.11, for specimens at 20 °C, ductility declined by 12.1% at 48% humidity 

and 4.3% at 95 % humidity respectively when specimen width is increased from 13mm to 

38mm as portrayed in pairs C1-C2 and C4-C5. For specimens conditioned at 52.5 °C, 

when the width is increased from 13mm to 25mm, ductility is reduced by 7.2% at 71.5% 

humidity. Ductility, however, increased by 3.8 % with the further increment of 

specimens’ width from 25mm to 38 mm as presented in C7-C8 and C8-C10. The ductility 

is increased by 1.6% at 48% humidity, though, decreased by 16.5 % at 95 % humidity for 

the specimens conditioned at 85 °C with the increment of width from 13mm to 38mm as 

shown in pairs C2-C13 and C5-C16. 

 

Figure 1.10: Width effect on ultimate stress for tensile specimens  
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Figure 1.11: Percent difference in ultimate tensile stress and ductility due to the variation 

in width with a fixed temperature and humidity 

 

1.5.2 SHEAR TEST 
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where τu is ultimate shear stress, Vu is ultimate shear load, A0 is overlap area of the 

shear specimen, γ is shear strain, ∆l is change in extensometer gauge length, and ta is 

adhesive thickness. 

 

Figure 1.12: Stress-strain curves for shear specimens 
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Table 1.3 Mechanical properties from the shear tests 

ID 

Shear 

modulus, G 

(MPa) 

Ultimate 

shear stress, τu 

(Mpa) 

Ductility, 

e (%)  

20T/48H/13W 26.1 17.5 4.17 

20T/48H/38W 43.4 16.1 4.45 

20T/71H/25W 35.7 18.0 4.66 

20T/95H/13W 34.9 15.8 3.40 

20T/95H/38W 27.3 16.4 3.49 

52T/48H/25W 27.8 17.8 4.00 

52T/71H/13W 32.2 16.0 3.64 

52T/71H/25W 37.2 15.0 3.66 

52T/71H/25W 27.3 14.9 3.20 

52T/71H/38W 33.5 17.8 3.42 

52T/95H/25W 26.4 16.0 3.70 

85T/48H/13W 29.6 17.0 3.53 

85T/48H/38W 32.7 17.7 3.20 

85T/71H/25W 29.1 15.5 3.76 

85T/95H/13W 34.6 15.6 3.50 

85T/95H/38W 28.8 15.4 3.47 

 

Representative failure modes of the shear specimens after the test are shown in Figure 

1.12. Three different failure modes were observed during the shear test. Only one 

specimen from combination 13 was failed with adhesive failure mode as shown in Figure 

1.13. In this type of failure mode, adhesive is observed when the adherend separates from 

the adhesive layer. Figure 1.13b, presents the cohesive failure mode which is the 

predominant failure mode in this study for shear test. A cohesive failure occurs when the 

failure plane is through the adhesive itself. A total of 28 specimens failed with cohesive 

failure. A mixture of the two failure modes named as adhesive/cohesive failure mode is 

also observed in this study as shown in Figure 1.13c. Two specimens from combination 

C2 and one specimen from combination C13 were observed to have this failure mode. 



29 

 

  

                               (a)                                                           (b) 

 

                               (c) 

Figure 1.13: Representative failure modes of shear specimens (a) adhesive failure, (b) 

cohesive failure and (c) adhesive/cohesive failure 

 

1.5.2.1 EFFECT OF TEMPERATURE 

Figure 1.14 shows the graphical illustration of the effect of temperature on the 

ultimate shear stress. A figure showing the change in ultimate shear stress and ductility in 

terms of percent difference due to temperature effect is further shown in Figure 1.15. For 

specimens of 13 mm width, the shear stress is reduced by 2.5% at 48% humidity and 

1.4% at 95 % humidity, respectively when the temperature is increased from 20 °C to 85 

°C as presented in pairs C1-C12 and C4-C15. At 71.5 % humidity, when the temperature 
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is increased from 20 °C to 52.5 °C, the shear stress is significantly declined by 16.8% for 

25 mm specimens. The shear stress, on the contrary, is increased by 3.4 % after the 

elevation of temperature to 85 °C from 52.5 °C as displayed in pairs C3-C8 and C8-C14. 

The shear stress is increased by 10% at 48% humidity, however, decreased by 6% at 95 

% humidity for specimens of 38 mm after the elevation of temperature to 85 °C from 20 

°C as shown in pairs C2-C13 and C5-C16. 

In Figure 1.15, for specimens of 13 mm width, the ductility is declined by 15.2% at 

48% humidity, yet, increased by 2.8% at 95 % humidity respectively when the 

temperature is increased from 20 °C to 85 °C as shown in pairs C1-C12 and C4-C15. At 

71.5 % humidity, when the temperature is increased from 20 °C to 52.5 °C, ductility is 

lowered by 21.6% for 25 mm specimens. The ductility is increased by 2.7 % after an 

additional increase of temperature to 85 °C from 52.5 °C as shown in pairs C3-C8 and 

C8-C14. The ductility is reduced by 28.1% at 48% humidity and 0.6% at 95 % humidity 

for specimens of 38 mm width after the elevation of temperature to 85 °C from 20 °C as 

presented in pairs C2-C13 and C5-C16. 
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Figure 1.14: Temperature effect on ultimate stress for shear specimens  

 

 

Figure 1.15: Percent difference in ultimate shear stress and ductility due to the variation 

in temperature with a fixed humidity and width 
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1.5.2.2 EFFECT OF HUMIDITY 

Figure 1.16 shows the graphs representing the effect of humidity in the ultimate shear 

stress. The effect of humidity in ultimate shear stress and ductility is further depicted in 

Figure 1.17 for different conditioning. For specimens of 13 mm width, the shear stress is 

reduced by 9.3% at 20 °C and 8.3% at 85 °C respectively when humidity is increased 

from 48% to 95 % (see comparison C1-C4 and C12-C15). At 52.5 °C, when humidity is 

increased from 48% to 95 %, ultimate shear stress is declined by 15.7% for 25 mm 

specimens. The shear stress, however, increases by 7% after the elevation of humidity to 

95% from 48% (see comparison C6-C8 and C8-C11). The shear stress is increased by 

2.1% at 20 °C but decreased by 12.7 % at 95 % humidity for specimens of 38 mm after 

the elevation of humidity from 48% to 95 % (see comparison C2-C5 and C13-C16). 

In Figure 1.17, for specimens of 13 mm width, ductility is declined by 18.3% at 20 °C 

and 0.9% at 85 °C respectively when the humidity is increased from 48% to 95 % as 

illustrated in pairs C1-C4 and C12-C15. At 52.5 °C, when the humidity is increased from 

48% to 71.5 %, the ductility reduces by 8.6% for 25 mm specimens (see pair C6-C8). The 

ductility, however, increases by 1.3 % after the elevation of humidity from 71.5% to 95% 

as shown in pair C8-C11 in this figure. The ductility decreases by 21.5% at 20 °C and 

increases by 8.6% at 85 °C for specimens of 38 mm humidity is increased from 48% to 

95% as presented in pairs C2-C5 and C13-C16 in this figure. 
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Figure 1.16: Humidity effect on ultimate stress for shear specimens with different widths  

 

Figure 1.17: Percent difference in ultimate shear stress and ductility due to the variation 

in humidity with a fixed temperature and width 
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1.5.2.3 EFFECT OF WIDTH  

The effect of width on the ultimate shear stress is graphically explored in Figure 1.18. 

The effect of width on the ultimate shear stress and ductility in percentage is further 

illustrated in a bar chart as shown in Figure 1.19. For specimens at 20°C, the shear stress 

is reduced by 8.1% at 48% humidity and increased by 3.4% at 95% humidity respectively 

when the width of the specimens is increased from 13mm to 38mm as shown in pairs C1-

C2 and C4-C5. At 52.5°C, when the specimen width is increased from 13 mm to 25 mm, 

the shear stress declines by 6.5% at 71.5% humidity. The shear stress, however, increases 

by 19.3% after the increment of width to 38 mm from 25 mm as presented in pairs C7-C8 

and C8-C10. The shear stress increases by 3.6% at 48% humidity and decreases by 1.4% 

at 95% humidity for specimens at 85°C when the specimen width is increased from 

13mm to 38mm as displayed in pairs C12-C13 and C15-C16. 

In Figure 1.19 for specimens at 20 °C, the ductility is increased by 6.7% at 48% 

humidity and 2.5% at 95 % humidity while at an increase in width from 13mm to 38mm 

as displayed in pairs C1-C2 and C4-C5 in this figure. For specimens conditioned at 52.5 

°C, when the width changes from 13mm to 25mm, ductility increases by 0.4% at 71.5% 

humidity (see pair C7-C8). Ductility, however, dropped off by 6.4 % with a further 

increment of specimen width from 25mm to 38mm as depicted in pair C8-C10. As shown 

in pairs C12-C13 and C15-C16, the ductility decreases by 9.5% at 48% humidity and 0.8 

% at 95 % humidity for the specimens conditioned at 85 °C with the increase of specimen 

width from 13mm to 38mm. 
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Figure 1.18: Width effect on ultimate stress for shear specimens at different temperatures  

 

Figure 1.19: Percent difference in ultimate shear stress and ductility due to the variation 

in width with a fixed temperature and humidity 
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1.6 STATISTICAL ANALYSIS ON TESTING DATA 

This section discusses findings gained through statistical analysis of the testing data. 

The following subsection focuses on sensitivity analysis necessary for the determination 

of statistically significant parameters on each of the strengths and statistical model 

selection required for the prediction of the respective strengths in an efficient and 

accurate manner. 

1.6.1 REGRESSION MODEL DEVELOPMENT  

Multiple Linear Regression (MLR) and Response Surface Metamodels (RSM) 

models were created only for the ultimate tensile and shear stresses from the testing, 

which are the most critical to design the adhesive connection for DMSs. The testing data 

at each input parameter were modeled to generate both MLR and RSM models using R, a 

commercially available statistical software. Three parameters were considered in each of 

the statistical models, including temperature, humidity, and width of the specimens. The 

MLR and RSM models for prediction of the ultimate tensile stress are shown in Equation 

1.5 and Equation 1.6, respectively. 

 

𝑓𝑢(𝑀𝐿𝑅) = 19.4329 − 0.0098𝑇 − 0.0263𝐻 − 0.0378𝑊   (Equation 1.5) 

 

𝑓𝑢(RSM) = 21.104 + 0.004 𝑇 − 0.096 𝐻 + 0.026𝑊 − 0.0003𝑇𝐻 − 0.0002𝑇𝑊 +

0.0007H𝑊 + 0.0001𝑇2  + 0.0005𝐻2 − 0.0014𝑊2   (Equation 1.6) 

where fu is ultimate tensile stress, T is conditioning temperature, H is conditioning 

humidity, and W is width of the specimen. 
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The MLR and RSM models for prediction of the ultimate shear stress are provided in 

Equation 1.7 and Equation 1.8, correspondingly. 

𝜏𝑢(MLR) = 18.583 − 0.008𝑇 − 0.029 𝐻 + 0.011𝑊   (Equation 1.7) 

 

𝜏𝑢(RSM) = 21.161 + 0.006 𝑇 − 0.072 𝐻 − 0.122𝑊 − 0.0004𝑇𝐻 + 0.0004𝑇𝑊 +

0.0005H𝑊 + 0.00004𝑇2 + 0.0004𝐻2 + 0.0015𝑊2   (Equation 1.8) 

where τu is ultimate shear stress 

1.6.2 SENSITIVITY ANALYSIS 

To determine significant parameters on both ultimate tensile and shear stress data, 

probability values for the developed MLR and RSM models were calculated through 

statistical analysis. The standard level of significance was set at 5% for the analysis 

where a probability value less than 0.05 was considered significant. Table 1.4 shows the 

resulting probability value of each parameter with regard to tensile and shear stress. By 

analyzing the probability values from the MLR and RSM models, humidity was found to 

be the most significant parameter for the tensile stress. Meanwhile, the shear stress didn’t 

show any parameters to be significant in any of the models created. 
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Table 1.4 Probability values from the statistical analysis on the tensile and shear stress 

data 

Parameter 

MLR RSM 

Tensile 

stress 

Shear 

stress 
Tensile stress Shear stress 

T 0.09473 0.435 0.17736 0.5596 

H 0.00427 0.053 0.02529 0.1518 

W 0.78412 0.671 0.82129 0.7503 

T:H - - 0.36704 0.5429 

T:W - - 0.80011 0.7386 

H:W - - 0.41685 0.7685 

T2 - - 0.77909 0.9565 

H2 - - 0.53467 0.8070 

W2 - - 0.59727 0.7655 

Note: T, H, and W represent temperature, humidity, and the width of the specimens, respectively. 

 

 

1.6.3 COMPARISON BETWEEN MLR AND RSM 

To better predict the ultimate tensile and shear stress for the adhesive connection with 

respect to different parameters taken for this study, the most reliable model between 

MLR and RSM models was determined by comparing coefficient of determination 

acquired from each (see Table 1.5). The coefficient of determination values of the RSM 

model on the tensile and shear stress are higher than those from the MLR model. It turns 

out that the predicted ultimate tensile and shear stress from the RSM model were more 

accurate than the MLR-derived values; thus, the RSM model was chosen for predicting 

the tensile and shear stress at different conditions of temperature, humidity, and width. To 

graphically evaluate the accuracy of RSM and MLR models, the testing data versus 

predicted ultimate tensile and shear stress from each are compared as seen in Figure 1.20. 

Based on the statistical and graphical comparisons with the experimental data, it was 

proven that the RSM model was a better fit for the tensile and shear testing data. 
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Table 1.5 Coefficient of determination values for MLR and RSM models 

MLR RSM 

Tensile stress Shear stress Tensile stress Shear stress 

0.5670 0.3123 0.6949 0.412 

 

 

                                                             (a) 

 

                                                            (b) 

Figure 1.20: Experimental stress versus predicted stress from the MLR and RSM model: 

(a) tensile data and (b) shear data 
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1.6.4 RSM SURFACES 

The RSM model was used to create three-dimensional (3D) surface plots for ultimate 

tensile stress with respect to different parameters. The tensile stress was plotted against 

two parameters at a time, while the remaining parameter was considered a fixed value; 

thus, three separate figures (see Figure 1.21a, b, and c) showing the effects of two 

parameters were developed. Specifically, an average value of the remaining parameter is 

taken for developing the plots between the two input parameters deemed as variables. For 

instance, an average value of width (25 mm) is taken for the RSM model to explore the 

effect of temperature and humidity on tensile stress and to develop the corresponding plot 

as shown in Figure 1.21a. Figure 1.21b shows the plot for width and temperature 

variation with the constant of humidity, while Figure 1.21c displays the plot regarding 

different values of width versus humidity with the fixed value of temperature. 

In Figure 1.21a, at lower humidity (48%), increase in temperature (20 °C to 85 °C) 

decreased the ultimate tensile stress slightly by 1.12%. At higher humidity (95%), the 

tensile stress is reduced by 6.41% when the temperature is increased (20 °C to 85 °C). 

When the ultimate tensile stress is observed at higher temperature (85 °C), there is a 

significant drop of 9.52% with the increase in humidity (48% to 95%). At lower 

temperature (20 °C), when the humidity is increased (48% to 95%), ultimate tensile stress 

is dropped by 4.40%. The tensile stress for different width and temperature is shown in 

Figure 1.21b. The increase in width from 13 mm to 38 mm is observed to increase the 

tensile stress with a slight reduction up to 1.39%. The increased temperature (20 °C to 85 

°C) resulted in a significant decrease in tensile stress by 3.00% at smaller width (13 mm) 

and by 4.45% at larger width (38 mm) specimens. It can be observed in Figure 1.21c that 
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humidity plays a vital role in tensile stress. The tensile stress is dropped considerably by 

9.34% at smaller width (13 mm) and by 4.81% at larger width (38 mm) when the 

humidity is increased from 48% to 95%. Only a slight increase of 1.92% in tensile stress 

is observed at high humidity of 95% when the width is increased (13 mm to 38 mm). The 

tensile stress, however, is reduced by 2.81% at low humidity (48%) when the specimen 

width is increased from 13 mm to 38 mm. 

 

                                                  (a) 
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                                                   (b) 

 

                                                   (c) 

Figure 1.21: 3D RSM surfaces of ultimate tensile stress showing effects of (a) 

temperature and humidity (b) temperature and width and (c) humidity and width 

 

3D surface plots for ultimate shear stress were also developed using the RSM 

function presented in Equation 1.8. 3D plots of the ultimate shear stress are shown in 
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Figure 1.22. The plots show the behavior of shear stress with respect to two different 

parameters. In Figure 1.22a, the increase in temperature (20 °C to 85 °C) at lower 

humidity (48%) increased the ultimate shear stress by 0.47%, however, at higher 

humidity (95%), the ultimate shear stress is reduced by 6.72%. The increase in humidity 

(48% to 95%) is observed to decrease the ultimate shear stress by 4.47% at lower 

temperature (20 °C) and by 11.31% at the higher temperature (85 °C). When the width is 

plotted with respect to temperature in Figure 1.22b, an increase in width (13 mm to 38 

mm) decreased the shear stress by 0.30% at a lower temperature (20 °C), however, the 

shear stress is increased by 3.72% at the higher temperature (85 °C). When the 

temperature is increased (20 °C to 85 °C), the shear stress is decreased rapidly at smaller 

width (13 mm) by 4.98%, however, the effects seem to be minimal at wider specimen (38 

mm) with 1.08% reduction in the shear stress. The shear stress for width and humidity is 

plotted in Figure 1.22c. At lower humidity (48%), with the increase in width (13 mm to 

38 mm), the shear stress is reduced only by 0.05%, however, increased by 3.59% at 

higher humidity (95%). The increase in humidity (48% to 95%) decreased the shear stress 

by 9.47% at smaller width (13 mm) and 6.16% at larger width (38 mm). 
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                                                   (a) 

 

                                                   (b) 
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                                                   (c) 

Figure 1.22: 3D RSM surfaces of ultimate shear stress showing effects of (a) temperature 

and humidity (b) temperature and width and (c) humidity and width 

 

From the above discussion, it was found that humidity plays a significant role in 

determining both the ultimate tensile and shear stress in adhesive connection. Increase in 

humidity changed the ultimate tensile stress up to 9.52% and ultimate shear stress up to 

11.31%. A maximum percentage change of 6.41% and 6.72% is observed for ultimate 

tensile and shear stress respectively with the increase in temperature, but the effect of 

width while predicting ultimate stress cannot be neglected either. The ultimate tensile 

stress is found to be changed up to 2.81% and the ultimate shear stress is changed up to 

3.72% when the width of the specimens is increased. It should be noted that the 

developed RSM functions can be used for a certain range of input parameters only to 

predict the ultimate tensile and shear stress at low uncertainties. The temperature should 

be in the range of 20°C to 85°C, humidity should be limited to 48% to 95% and the width 
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of the adhesive joints should be within 12.7 to 38.1 mm only. Beyond that range, 

significant uncertainties can be expected for the outputs from the RSM functions. 

 

1.7 CONCLUSIONS 

The effects of tensile and shear loads were investigated on the mechanical properties 

of adhesive specimens that serve as the basis to examine structural behaviors of main 

connections in Dynamic Message Sign (DMS). To that end, tensile and shear tests were 

carried out with 16 different combinations created with variations in temperature, 

humidity, and width of the adhesive specimens. Effects of temperature, humidity, and 

width of the specimens on their mechanical properties were graphically and statistically 

examined for tensile and shear tests separately. As part of the statistical examination, 

Multiple Linear Regression (MLR) and Response Surface Metamodels (RSM) functions 

were generated, and the most accurate function was selected for forecasting the ultimate 

tensile and shear stresses. Then, three-dimensional RSM surfaces were created to visually 

examine the effects of each parameter on the tensile and shear properties. The following 

major conclusions can be derived from the experimental and statistical results: 

1. In the tensile test, when the temperature was increased, the ultimate tensile stress 

reduced for all the tested combination pairs excepted for one pair (20T/48H/38W-

85T/48H/38W). With the increase in humidity, the ultimate tensile stress showed a 

decreasing trend for all the combination pairs examined. When the width of the 

specimens was increased in the tensile test, ultimate tensile stress reduced for four 

combination pairs with increment in other two pairs (20T/95H/13W-20T/95H/38W and 

85T/95H/13W-85T/95H/38W).  
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2. In the shear test, when the temperature was increased, the ultimate shear stress 

decreased for four combination pairs and increased for two pairs (52T/71H/25W-

85T/71H/25W and 20T/48H/38W-85T/48H/38W). With the increase in the humidity 

during the shear tests, the ultimate shear stress dropped for four combination pairs with 

increment in two combination pairs (52T/71H/25W-52T/95H/25W and 20T/48H/38W-

20T/95H/38W). With the increment in width, the ultimate shear stress reduced for three 

combination pairs with highest reduction (8.1%) in the pair (20T/48H/13W-

20T/48H/38W) and increased for three combination pairs.  

3. Two statistical models (MLR and RSM) were created for the prediction of ultimate 

tensile and shear stress. It was found that the RSM model was more accurate than MLR 

with a comparison of the coefficient of determination and visual inspection values. 

4. A significant effect of humidity was identified for the ultimate tensile stress from 

the statistical analysis. Probability values obtained from the statistical analysis indicates 

that humidity is the decisive parameter causing the most significant effect on ultimate 

tensile stress. A probability value of 0.427% and 2.529% was observed for MLR and 

RSM model of ultimate tensile stress. 
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CHAPTER 2: PEEL AND CLEAVAGE STRENGTH TESTS WITH ADHESIVE 

CONNECTIONS IN DYNAMIC MESSAGE SIGNS 

 

2.1 ABSTRACT 

This paper aims to examine the mechanical properties of the adhesive focusing on 

peel strength and cleavage strength for varying environmental and geometrical 

conditions. To that end, peel and cleavage specimens with variations in width were 

fabricated and examined according to American Society for Testing and Materials 

(ASTM) after conditioning them in different environmental conditions, including 

temperature and humidity. The effect of temperature, humidity, and width on peel and 

cleavage strengths were graphically and statistically examined by analyzing the testing 

data. As part of the statistical analysis, regression models, encompassing multiple linear 

regression (MLR) and response surface metamodels (RSM), were established to predict 

the peel and cleavage strengths. Through evaluation of R-squared values and graphs of 

the predicted values against the testing data, it was found that the RSM was more 

accurate than MLR. Key results indicated that the peel strength of tested adhesive 

specimens was increased with the increment in humidity up to 30.1% and was decreased 

by the maximum reduction of 28.2% with increment in specimen’s width, while the 

cleavage strength of the tested specimens improved with the peak increment of 27.4% 

and 28.5% when the temperature and specimen’s width was increased, respectively. The 

cleavage strength, however, was decreased up to 13.7% with the increment in humidity. 

Findings from 3-D surfaces generated from the RSM to observe the effect of different 

parameters on the peel and cleavage strength of adhesive joints were in agreement to the 
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testing results. The statistical analysis indicated that the width was a significant parameter 

affecting the peel strength. 

Keywords: Dynamic message sign; Peel; Cleavage; Strength; Adhesive. 

2.2 INTRODUCTION 

A dynamic message sign (DMS) is a digital message board that displays vital traffic 

information to commuters while traveling through highways for the convenience and safety 

of travelers. The DMS comprises a cabinet sheet aluminum skin, internal aluminum frame, 

sign controller, interconnect cable, and a traffic cabinet enclosure. The aluminum back-

skin needs to be connected to the aluminum frame. The majority of the clients such as State 

Departments of Transportation prefer welded connections for connecting the aluminum 

back-skin with the frame of the DMS. However, an adhesive can be an appropriate 

substitute for these connections to be used in the DMS. The manufacture of various 

structures for automobile and aircraft is performed by bonding with adhesive. Higgins 

(2000) has stated that adhesive has been used for the fabrication of wing structures in 

aerospace from 1945. Some DMS producers have started using adhesives due to their 

advantages such as efficient fabrications and manufacturing labor reduction. Further, the 

adhesive can be a suitable replacement due to its ability to join metals with different 

melting points. More uniformly distributed loads can be observed in the connections 

bonded with adhesive than the welded connections. During the welding process, welders 

frequently find it difficult to join asymmetrical connections due to high residual stresses 

and distortion. 

If adhesives have the potential to replace welding in DMS, there is a need to investigate 

cleavage and peel strength of adhesively bonded joints. Adhesives have been studied to 
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explore their mechanical properties resulting from tensile and shear tests by Seo and Lim 

(2005), Ferreira et al (2002), He et al. (2013), and recently the tensile and shear strength of 

the adhesive in DMS has been investigated considering varying environmental and 

geometrical parameters by Amatya et al. (2020). However, there are rarely studies 

pertaining to investigation of the effects of environmental and geometrical factors on the 

cleavage and peel strengths of the adhesive used for DMSs. Meanwhile, some studies 

performed by Shahid and Hashim (2000, 2002), You et al. (2008), and Cognard (1988) 

have been investigated to better understand the cleavage strength of small-scale adhesive 

specimens. Shahid and Hashim (2000) tested adhesively bonded cleavage specimens to 

determine their cleavage strengths with different adhesive thickness. The adhesive 

thickness was found to be highly insignificant to the measured cleavage strengths. Shahid 

and Hashim (2002) further investigated the effect of surface roughness on the cleavage 

strength of specimens through experimental testing. It was observed that the increase in 

roughness and surface area of adherend increased the cleavage strength. You et al. (2008) 

conducted laboratory testing of the cleavage joints to analyze the effect of recessing and/or 

gap length and reported slight decrement in the failure load of cleavage joints due to the 

gap length lower than 10 mm. Cognard (1988) investigated the cleavage of adhesive joints 

for the effect of water and indicated humidity beyond 70% increased the progression of 

crack in the adhesive joints. 

Several studies (Kim and Aravas(1988, De Freitas and Sinke 2014, Broughton et al. 

1999, Noori et al. 2016, Arouche 2018, Price and Sargent 1997) on peel strength tests 

have been also conducted for adhesively bonded substrates to understand the properties 

of the adhesive when subjected to peel loadings. For peel strength, previous research 
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accomplished by Kim and Aravas (1988), showed that peel strength was significant to the 

yield strength, Young’s modulus, ductility and thickness of flexible adherend. De Freitas 

and Sinke (2014) determined the properties of adhesive using peel tests for bonded 

composite-to-aluminum joints, demonstrating that the peel load decreased when 

composite adherend was used instead of the flexible adherend. Broughton et al. (1999) 

conducted T-peel tests of the adhesively bonded specimens subjected to temperature, 

humidity, and load to determine their peel strength. It was reported that average peeling 

force was observed to be higher for smaller specimens due to higher and more uniform 

clamping forces being applied during curing. Noori et al. (2016) conducted the peel test 

of polymer laminated sheet metal specimens. It was found that the interfacial peel 

strength was greatly influenced by residual stress in the polymer adherend. Arouche 

(2018) delved into the effect of moisture on the peel strength of adhesive joints by 

immersing the specimens in salt water through floating roller peel tests and found 

decrease in peel strength due to the higher moisture uptake. Price and Sargent (1997) 

tested peel specimens to measure the fracture energy of adhesive with aluminum 

adherends, revealing that there was no significant change in peeling strength for the large 

width specimens. 

The goal of this paper is to determine the peel and cleavage strength of the adhesive 

in use for DMS under various environmental and geometrical conditions. To pursue this 

goal, 64 adhesive specimens, including 32 peel and 32 cleavage specimens, were tested 

according to American Society for Testing and Materials (ASTM) to determine the peel 

and cleavage strength. The resulting strength quantities were graphically and statistically 

analyzed for the examination of the effect of temperature, humidity, and specimen width 
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on each of the strengths. Then, two regression models were further developed not only to 

predict the peel and cleavage strength, but also to better understand mechanical behaviors 

at different parametric conditions. Excluding this section, this paper deals with an 

overview of the experimental program, testing data and discussion, and statistical 

analysis along with data-driven conclusions. 

 

2.3 EXPERIMENTAL PROGRAM 

The experimental program involves the study of peel and cleavage tests with a variety 

of width, temperature and humidity conditions to determine the peel strength and 

cleavage strengths of respective specimens. This section explains the details of the 

experimental program used for testing the specimens. This includes the testing matrix and 

conditioning, description of the specimens, and testing. 

 

2.3.1 TESTING MATRIX AND CONDITIONING 

As shown in Table 2.1, sixteen different combinations considering three levels of 

temperature, humidity, and width were created to study the peel strength and cleavage 

strengths of adhesive connections in the use of DMS. It should be noted that each 

combination was comprised of two peel strength specimens and two cleavage specimens; 

thus, the total number of specimens was 64, including 32 peel and 32 cleavage 

specimens. A commercially available statistical software, JMP, was used based on to 

develop these combinations that served as a basis for efficient data analysis, according to 

Plackett-Burman Design (PDB) which was also used by Seo (2013). PDB allows an 

effective range of the critical parameters and development of statistical models that are 
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discussed in a later section of the paper. Temperature, humidity, and width of the 

specimens were used as inputs for statistical analysis. The experiment was designed for 

low, medium and high values for each of the input parameters studied (i.e., temperature, 

humidity, and width). Temperature values of 20°C, 52.5°C, and 85°C, humidity values of 

48%, 71.5%, and 95%, and width values of 13 mm, 25 mm, and 38 mm were considered 

for variation in temperature, humidity, and width of specimens. The range of temperature 

and humidity were selected considering the capacity of the conditioning chamber where 

both temperature and humidity in the chamber can be achieved safely and efficiently. The 

recommended width of the peel and cleavage specimens as per ASTM D1876 (2008) and 

ASTM D1062 (2008) was 25 mm, however, specimen widths of 13 mm and 38 mm are 

also taken into account to explore the effect of width on the peel and cleavage strength. 
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Table 2.1 Combination table for the experimental program 

Combination Humidity (%) Width (mm) 
Temperature 

(°C) 

C1 48.0 13.0 20.0 

C2 48.0 38.0 20.0 

C3 71.5 25.0 20.0 

C4 95.0 13.0 20.0 

C5 95.0 38.0 20.0 

C6 48.0 25.0 52.5 

C7 71.5 13.0 52.5 

C8 71.5 25.0 52.5 

C9 71.5 25.0 52.5 

C10 71.5 38.0 52.5 

C11 95.0 25.0 52.5 

C12 48.0 13.0 85.0 

C13 48.0 38.0 85.0 

C14 71.5 25.0 85.0 

C15 95.0 13.0 85.0 

C16 95.0 38.0 85.0 

 

All the specimens were conditioned in a temperature and humidity-controlled 

chamber in the Daktronics reliability lab (see Figure 2.1). For complete moisture 

saturation, all the specimens with the same humidity were grouped and conditioned in the 

chamber for 96 hours at the lowermost temperature. The specimens from the combination 

with the lowest temperature from the group were taken out of the chamber initially for 

the test. To condition the remaining specimens, the temperature was increased to the next 

lower temperature for an extra 24 hours. For instance, the specimens from the 

combinations C3, C7, C8, C9, C10, and C14 were left inside the chamber at 20°C and 

71.5% humidity. The specimens from combination C3 were removed from the chamber 

and transported to the lab for testing after 96 hours of conditioning. The chamber 

temperature was increased to 52.5°C and conditioned for an additional 24 hours at the 
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same humidity. The specimens from the combinations C7, C8, C9, and C10 were taken to 

the lab for testing and the temperature of the chamber was further increased to 85°C at 

71.5% humidity for the specimens with combination C14. The remaining specimens were 

tested after conditioning 24 hours. A graphical representation of the conditioning time for 

specimens at different temperatures and humidity are shown in Figure 2.2a and Figure 

2.2b, respectively. The specimens were weighed prior conditioning, after conditioning, 

after transporting to the lab and after the test to observe the moisture absorption. 

Specimens were weighed at regular intervals. Moisture saturation was considered when 

no or minimum change in weight of the specimens were observed. Mylar bags were used 

to prevent the loss of moisture during transportation of the specimens from conditioning 

lab to the testing lab. A thick Styrofoam cooler was used to transport the specimens to 

avoid heat loss. Temperatures of the specimens were recorded after the specimens were 

brought to the lab and after the testing. 

 

 

Figure 2.1: Temperature-humidity controlled chamber for conditioning of the specimens 
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(a) 

 
(b) 

Figure 2.2: Conditioning period of the specimens for (a) temperature and (b) humidity 
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Each specimen was labeled with a specimen ID for efficient conditioning and testing. 

An example of the specimen ID is A-P-25TH-20T/71H-C3. The first letter represents the 

type of the specimens (A-adhesive), and the second letter denotes the type of test (P-

peel/S-cleavage). The third letter (13TH, 25TH, and 38TH) stands for whether the width 

of the specimen is 13 mm, 25 mm or 38 mm. T/H indicates the temperature (20°C, 

52.5°C, and 85°C) and humidity (48%, 71.5%, and 95%)  of the conditioning chamber 

and C is the combination number from the testing matrix shown in Table 2.1. Table 2.2 

presents the moisture and temperature change in the peel and cleavage specimens. The 

change in moisture and temperature presented in Table 2.2 represents the average value 

calculated from each of the two specimens for each combination. Note that in Table 2.2 

change in moisture of the specimens before and after conditioning intervals is termed 

“moisture change after chamber (%)”, between after conditioning and after transporting 

intervals is called “moisture change after transportation (%)”, and between after 

transporting and after the testing intervals is called “moisture change after testing (%).” 

Absorption in moisture is specified by the positive change in moisture and loss in 

moisture is suggested by a negative change in moisture. At each interval, the majority of 

the specimens noticed an insignificant change in moisture. The temperature was 

measured after transporting the specimens to the testing lab and compared with the 

temperature measured after the test to evaluate the temperature change. This is termed 

“temperature change after testing (%)” in Table 2.2. The rise in temperature is denoted by 

a positive temperature change, whereas the loss in temperature is shown by a negative 

temperature change. It was revealed that the specimens conditioned at lower temperatures 

observed smaller temperature loss than the specimens conditioned at higher temperatures. 
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Table 2.2 Moisture and temperature change in peel and cleavage specimens 1 

Test type Combination Specimen ID 

Moisture 

change after 

chamber (%) 

Moisture change 

after transportation 

(%) 

Moisture 

change after 

testing (%) 

Temperature 

change after testing 

(%) 

Peel 

C1 A-P-13TH-20T/48H-C1 -0.013 0.000 -0.011 +9.1 

C2 A-P-38TH-20T/48H-C2 +0.003 -0.011 -0.005 +9.1 

C3 A-P-25TH-20T/71H-C3 -0.001 -0.003 -0.007 +6.8 

C4 A-P-13TH-20T/95H-C4 +0.001 -0.003 -0.015 0.0 

C5 A-P-38TH-20T/95H-C5 +0.011 +0.009 -0.023 +9.1 

C6 A-P-25TH-52T/48H-C6 -0.011 -0.001 -0.004 -23.8 

C7 A-P-13TH-52T/71H-C7 -0.009 -0.003 -0.009 -26.5 

C8 A-P-25TH-52T/71H-C8 -0.006 -0.002 -0.004 -10.7 

C9 A-P-25TH-52T/71H-C9 -0.006 -0.003 -0.004 -10.7 

C10 A-P-38TH-52T/71H-C10 +0.007 -0.012 0.000 -9.1 

C11 A-P-25TH-52T/95H-C11 0.000 -0.004 -0.008 -25.0 

C12 A-P-13TH-85T/48H-C12 -0.029 -0.001 -0.006 0.0 

C13 A-P-38TH-85T/48H-C13 -0.002 -0.013 0.000 -35.8 

C14 A-P-25TH-85T/71H-C14 -0.011 0.000 -0.004 -26.7 

C15 A-P-13TH-85T/95H-C15 -0.001 -0.005 -0.013 -20.0 

C16 A-P-38TH-85T/95H-C16 +0.015 -0.015 0.000 -12.1 

Cleavage 

C1 A-C-13TH-20T/48H-C1 -0.001 0.000 +1.566 +4.5 

C2 A-C-38TH-20T/48H-C2 -0.002 +0.001 -0.003 +4.5 

C3 A-C-25TH-20T/71H-C3 +0.001 0.000 -0.001 0.0 

C4 A-C-13TH-20T/95H-C4 +0.003 -0.004 -0.003 6.4 

C5 A-C-38TH-20T/95H-C5 +0.001 -0.002 -0.003 +4.3 

C6 A-C-25TH-52T/48H-C6 -0.007 +0.002 -0.001 -27.0 

C7 A-C-13TH-52T/71H-C7 -0.002 0.000 0.000 -8.9 

C8 A-C-25TH-52T/71H-C8 -0.003 0.000 -0.001 -10.7 

C9 A-C-25TH-52T/71H-C9 -0.001 0.000 0.000 -12.5 

C10 A-C-38TH-52T/71H-C10 -0.002 0.000 0.000 -12.5 

C11 A-C-25TH-52T/95H-C11 0.000 -0.002 -0.002 -28.1 

C12 A-C-13TH-85T/48H-C12 -0.007 0.000 +0.002 -43.3 

C13 A-C-38TH-85T/48H-C13 -0.006 -0.001 +0.001 -40.5 

C14 A-C-25TH-85T/71H-C14 -0.002 -0.001 0.000 -37.7 

C15 A-C-13TH-85T/95H-C15 +0.004 -0.003 -0.003 -21.8 

C16 A-C-38TH-85T/95H-C16 0.000 -0.002 -0.003 -24.2 

2 
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2.3.2 SPECIMENS 

The peel and cleavage specimens were fabricated based on ASTM D1876 (2008) and 

ASTM D1062 (2008), respectively. For the fabrication of peel specimens, two 5052 

aluminum metal bars were bent 90° to 76 mm from the end. The bent aluminum bars are 

adhesively bonded with LORD 406-19GB acrylic adhesive with a glass transition 

temperature of 72 °C. Cleavage specimens were fabricated with two metal blocks 

adhesively bonded with LORD 406-19GB acrylic adhesive in the middle of each 

specimen. Specimens were set aside for two weeks to allow for effective curing of the 

adhesive. The geometry of the representative peel and cleavage specimens with a width 

of 13 mm is shown in Figure 2.3. 

 

                                                                     (a) 

 

                                                                  (b) 
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        (c)         (d) 

Figure 2.3: Geometry of adhesive test specimens (a) top view of peel; (b) side view of 

peel; (c) side view of cleavage and (d) front view of cleavage (All dimensions are in 

mm). 

 

2.3.3 TESTING  

Peel tests were performed using an MTS Insight 5 whereas cleavage tests were 

performed using an MTS 370 Landmark 100-kN servo-hydraulic load unit calibrated to 

20% of its load capacity. Each specimen was mounted and aligned in the grips of the 

testing machine. Tests were performed under a monotonic loading with a free crosshead 

speed of 254 mm/min for the peel specimens and 1.27 mm/min for the cleavage 

specimens. The load rating for the peel and cleavage tests are specified by ASTM D1876 

and ASTM D1062, respectively. The testing setups for the peel specimen and for the 

cleavage specimen are shown in Figure 2.4a, and Figure 2.4Figure 1.4b, respectively. All 

the experiments were performed at room temperature. 
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                               (a)                                                                           (b) 

Figure 2.4: Installation of the specimens in the testing machine (a) peel and (b) cleavage 

 

2.4 RESULTS AND DISCUSSION 

Experimental results from the peel and cleavage tests are analyzed herein for the 

investigation of the effects of temperature, humidity, and specimen width on each strength. 

The results are, in detail, summarized and discussed in the following subsections.  

 

2.4.1 PEEL STRENGTH 

Load-displacement curves for all the tested peel specimens is presented in Figure 2.5. 

The peel strength (fap) of the first and second specimens is calculated by evaluating the 

average load per unit width for the first 127 mm of peeling after the initial peak from the 

load-displacement curve. This process was repeated to determine the first and second 

specimens under each combination, and the average and standard deviation of both the 

specimens’ peel strengths per combination were calculated. The resulting peel strengths 
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with the standard deviations for all the combinations and corresponding failure modes are 

summarized in Table 2.3. Note, the peel strength (ASTM D1876 2008) was calculated 

from the Equation 2.1. 

𝑓𝑎𝑝 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑃
𝑊⁄ )       (Equation 2.1) 

where fap is the peel strength, P is the load recorded during the test, and W is the width 

of the peel specimen. 

 

 
Figure 2.5: Load-displacement curves for all the tested peel specimens 
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Table 2.3 Mechanical properties from all the peel tests 

Combination Specimen 
Peel strength, 

fap(N/mm) 

Failure 

mode 

C1 A-P-13TH-20T/48H-C1 8.10 ± 0.10 Cohesive 

C2 A-P-38TH-20T/48H-C2 5.82 ± 2.13 Cohesive 

C3 A-P-25TH-20T/71H-C3 4.41 ± 0.62 Cohesive 

C4 A-P-13TH-20T/95H-C4 8.28 ± 0.80 Cohesive 

C5 A-P-38TH-20T/95H-C5 6.55 ± 2.46 Cohesive 

C6 A-P-25TH-52T/48H-C6 5.77 ± 2.35 Cohesive 

C7 A-P-13TH-52T/71H-C7 7.73 ± 0.77 Cohesive 

C8 A-P-25TH-52T/71H-C8 7.51 ± 2.27 Cohesive 

C9 A-P-25TH-52T/71H-C9 6.54 ± 3.33 Cohesive 

C10 A-P-38TH-52T/71H-C10 6.10 ± 2.95 Cohesive 

C11 A-P-25TH-52T/95H-C11 5.03 ± 0.96 Cohesive 

C12 A-P-13TH-85T/48H-C12 6.79 ± 1.08 Cohesive 

C13 A-P-38TH-85T/48H-C13 5.84 ± 1.96 Cohesive 

C14 A-P-25TH-85T/71H-C14 7.63 ± 0.56 Cohesive 

C15 A-P-13TH-85T/95H-C15 7.75 ± 5.05 Adhesive  

C16 A-P-38TH-85T/95H-C16 6.16 ± 2.38 Cohesive 

 

Figure 2.6 presents the representative failure modes of the tested peel specimens. The 

peel specimens failed with two different types of failure modes, which encompass 

cohesive or adhesive failure. The fracture surfaces of the tested specimens were analyzed 

to determine the failure mode of each of the tested specimens. Only combination 15 

specimens were failed with an adhesive failure mode as shown in Figure 2.6a. Adherend 

was separated from the adhesive layer when the specimens failed with the adhesive 

failure mode. In this figure, adhesive appears to be completely detached from one surface 

of the aluminum. A cohesive failure mode is observed in all the other combination 

specimens. Figure 2.6b displays a representative picture for the cohesive failure mode. In 

this figure, the adhesive is observed in both surfaces of the failed peel specimen.  
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(a) 

 

(b) 

Figure 2.6: Representative failure modes of peel specimens (a) adhesive failure and (b) 

cohesive failure  

 

2.4.1.1 EFFECT OF TEMPERATURE 

To investigate the influence of temperature on the peel strength of adhesive, the 

specimens conditioned at different temperatures were compared. Figure 2.7 depicts the 

temperature effect on the average peel strength in the bar graph with the percent 

difference. For specimens of 13 mm width, the peel strength is reduced by 16.3% at 48% 

humidity and by 6.4% at 95% humidity when the temperature is increased from 20 °C to 

Cohesive failure 

Adhesive failure 
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85 °C as illustrated in pairs C1-C12 and C4-C15 in this figure. At 71.5% humidity, when 

the temperature elevates from 20 °C to 52.5 °C, the peel strength is increased by 70.4% 

for 25 mm width specimens as depicted in C3-C8 pair. The peel strength further increases 

by 1.6% after the elevation of temperature to 85 °C from 52.5 °C as shown in C8-C14 

pair. As presented in a pair of C2-C13, the peel strength is increased by 0.4% at 48% 

humidity after the elevation of temperature to 85 °C from 20 °C, however, it is decreased 

by 5.9 % at 95 % humidity for specimens with 38 mm width from 20 °C to 85 °C (see 

C5-C16 in Figure 2.7). Other than a significant increase of 70.4% in the peel strength 

with the increment of temperature from 20 °C to 52.5 °C, the peel strength is not found to 

be significantly affected by temperature of the conditioning environment. Figure 2.8 also 

shows a representative, graphical representation of the effect of temperature on the peel 

strength based on the average value and standard deviation of peel strengths acquired 

from the tested peel specimens with 38 mm width. When the temperature of 38 mm width 

specimens is increased to 85 °C from 20 °C, the peel strength increases at 48% humidity, 

however, it decreases at 95% humidity.  
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Figure 2.7: Percent difference in peel strength due to the variation in temperature with a 

fixed humidity and width. 

 

Figure 2.8: Temperature effect on the representative peel strength for the specimens with 

38 mm width 
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specimens with 13 mm width, the peel strength is raised by 2.2% at 20 °C (see a pair of 

C1-C4) and 14.3% at 85 °C (see a pair of C12-C15), respectively, when the humidity is 

increased from 48% to 95%. At 52.5 °C, when humidity is elevated from 48% to 71.5%, 

the peel strength is increased by 30.1% for 25 mm width specimens as shown in C6-C8 

pair. The peel strength is, however, decreased by 33% after the elevation of humidity 

from 71.5% to 95% as shown in C8-C11. The peel strength is increased by 12.5% at 20 

°C as shown in pair C2-C5 and by 5.5% at 85 °C as displayed in pair C13-C16 for 

specimens of 38 mm width after the elevation of humidity from 48% to 95 %. The trend 

of the testing results indicated improvement in the peel strength of the specimens with 

increment in humidity, although a peak reduction of 33% in the peel strength of 25 mm 

specimens is observed when humidity is increased from 71.5% to 95%. The effect of 

humidity on the average peel strength with the standard deviations is also graphically 

examined as shown in Figure 2.10 for an example for the peel specimen pairs with 38 

mm width. In this figure, as the humidity of 38 mm width specimens is increased from 

48% to 95%, the peel strength is observed to be improved at both 20 °C and 85 °C. 
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Figure 2.9: Percent difference in peel strength due to the variation in humidity with a 

fixed temperature and width 

 

Figure 2.10: Humidity effect on peel strength for specimens with for 38 mm width 
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2.4.1.3 EFFECT OF WIDTH  

Figure 2.11 portrays the percent difference of peel strength in a bar graph due to the 

effect of width. For specimens at 20°C, the peel strength is reduced by 28.2% at 48% 

humidity (see a pair of C1-C2) and by 20.9% at 95% humidity (see a pair of C4-C5), 

when the width of the specimen is increased from 13mm to 38mm. At 52.5°C, when the 

specimen width is increased from 13 mm to 25 mm, peel strength declines by 2.8% at 

71.5% humidity as seen in C7-C8. At the same humidity as in C7-C8, the peel strength 

further decreases by 18.8 % after the increment of width to 38 mm from 25 mm (refer to 

C8-C10). The peel strength is dropped by 13.9% at 48% humidity (see C12-C13) and 

20.5% at 95% humidity (see C15-C16) for the four specimens conditioned at 85°C with 

the increment of specimen width from 13mm to 38mm. Based on these results, it can be 

concluded that the width of specimen is inversely proportional to its peel strength, which 

can explain the negative effect of the specimen’s width on the peel strength. This trend 

occurs because increase in the adherend surfaces of each of the specimens that were 

predominantly failed with cohesive failure, which means low adhesion between the 

surfaces, was caused by the increment in the specimen width. As an example of the 

investigation of the width effect on the average peel strengths and corresponding standard 

deviations, Figure 2.12 shows the tested specimens at 20°C among the considered 

specimen pairs. It appears that the peel strength reduces at both 48% and 95% humidity 

due to the increase in width from 13 mm to 38 mm.  
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Figure 2.11: Percent difference in peel strength due to the variation in width with a fixed 

temperature and humidity 

 

 

 

Figure 2.12: Width effect on peel strength for specimens at 20°C 
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2.4.2 CLEAVAGE TEST 

Load-displacement curves encompassing the behavior of all the cleavage specimens 

is shown in Figure 2.13. The cleavage strength of the specimens was calculated by taking 

the maximum load from the load-displacement curve and dividing that load by respective 

specimen width. Then, the average of both the specimens was determined for this 

combination. This was applied to specimens conditioned at each of the remaining 

combinations to determine the average cleavage strengths. All the results of cleavage 

tests with failure modes are summarized in Table 2.4. The cleavage strength was 

calculated from Equation 2.2. 

 

𝑓𝑐 =
𝑃𝑐𝑢

𝑊⁄          (Equation 2.2) 

 

where fc is the cleavage strength, Pcu is the maximum load, and W is the width of the 

cleavage specimen. 
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Figure 2.13: Load-displacement curves for cleavage specimens 

 

Table 2.4 Mechanical properties from the cleavage tests 

Combination Specimen 
Cleavage 

strength, (N/mm) 
Failure mode 

C1 A-C-13TH-20T/48H-C1 173.52 ± 25.90 Cohesive 

C2 A-C-38TH-20T/48H-C2 191.19 ± 12.67 Cohesive 

C3 A-C-25TH-20T/71H-C3 195.01 ± 22.86 Cohesive 

C4 A-C-13TH-20T/95H-C4 149.75 ± 31.15 Cohesive 

C5 A-C-38TH-20T/95H-C5 185.77 ± 1.72 Cohesive 

C6 A-C-25TH-52T/48H-C6 216.15 ± 6.10 Cohesive 

C7 A-C-13TH-52T/71H-C7 198.32 ± 38.41 Cohesive 

C8 A-C-25TH-52T/71H-C8 198.11 ± 8.73 Cohesive 

C9 A-C-25TH-52T/71H-C9 208.16 ± 10.00 Cohesive 

C10 A-C-38TH-52T/71H-C10 254.55 ± 49.38 Cohesive 

C11 A-C-25TH-52T/95H-C11 180.67 ± 12.43 Cohesive 

C12 A-C-13TH-85T/48H-C12 220.62 ± 2.85 Cohesive 

C13 A-C-38TH-85T/48H-C13 191.54 ± 2.65 Cohesive 

C14 A-C-25TH-85T/71H-C14 188.74 ± 0.11 Cohesive 

C15 A-C-13TH-85T/95H-C15 190.76 ± 2.70 Cohesive 

C16 A-C-38TH-85T/95H-C16 202.82 ± 12.46 Cohesive 
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Failure modes of the cleavage specimens are shown in Figure 2.14. The failure modes 

of the cleavage specimens were categorized by observing the fracture surfaces of the 

tested cleavage specimens. As shown in Figure 2.14, adhesive was found on the both 

aluminum surfaces of specimens after failure. All cleavage specimens are found to be 

failed with the cohesive failure mode. Adhesive layer of the representative cleavage 

specimens after the test is shown in Figure 2.14a for 13 mm width and Figure 2.14b for 

38 mm width, respectively.  

 

                                                     (a) 

   

                                                    (b) 

Figure 2.14: Representative failure modes of cleavage specimens (a) 13 mm and (b) 38 

mm 

Cohesive failure 

Cohesive 

failure 

Cohesive 

failure 
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2.4.2.1 EFFECT OF TEMPERATURE 

Figure 2.15 demonstrates the bar graph depicting the temperature effect in cleavage 

strength. For specimens of 13 mm width, cleavage strength is increased by 27.1% at 48% 

humidity as shown in pairs C1-C12 and by 27.4% at 95% humidity as shown in pairs C4-

C15 when the temperature is increased from 20 °C to 85 °C. At 71.5% humidity, when 

the temperature increases from 20 °C to 52.5 °C, cleavage strength is slightly improved 

by 1.6% for 25 mm width specimens (see a pair of C3-C8). The cleavage strength, on the 

contrary, is decreased by 4.7% after the elevation of temperature to 85 °C from 52.5 °C 

as depicted in pair C8-C14. The cleavage strength is only increased by 0.2% at 48% 

humidity as depicted in pair C2-C13 and by 9.2% at 95 % humidity as displayed in pair 

C5-C16 for specimens of 38 mm width after the elevation of temperature from 20 °C to 

85 °C. While a slight decrement of 4.7% in the cleavage strength of 25 mm specimens is 

observed with increment of temperature from 52.5 °C to 85 °C, the general trend of the 

cleavage testing results suggests rise in the cleavage strength with increment in the 

conditioning temperature. In addition to the bar graph, the effect of temperature on the 

average cleavage strength with the standard deviations is shown diagrammatically in 

Figure 2.16 for the specimens with 38mm width in particular. This indicates that the 

cleavage strength is slightly increased at 48% humidity, and is moderately increased at 

95% humidity as a result of increase of temperature from 20°C to 85°C.   
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Figure 2.15: Percent difference in cleavage strength due to the variation in temperature 

with a fixed humidity and width 

 

Figure 2.16: Temperature effect on cleavage strength for specimens with 38 mm width 
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2.4.2.2 EFFECT OF HUMIDITY 

Figure 2.17 shows the effect of humidity on cleavage strength in terms of percent 

difference among combination pairs. For specimens of 13 mm width, the cleavage 

strength is reduced by 13.7% at 20 °C (see a pair of C1-C4) and by 13.5% at 85 °C (see a 

pair of C12-C15), respectively, when humidity is increased from 48% to 95%. At 52.5 

°C, when humidity is increased from 48% to 71.5%, the cleavage strength declines by 

8.3% for 25 mm width specimens as displayed in pair C6-C8. The cleavage strength of 

25 mm width specimens is further decreased by 8.8% after the elevation of humidity to 

95% from 71.5% as depicted in pair C8-C11. The cleavage strength decreases by 2.8% at 

20 °C (see a pair of C2-C5) but is increased by 5.9 % at 85 °C for 38 mm specimens after 

the elevation of humidity from 48% to 95% as shown in pair C13-C16. Following the 

general trend of the test results, increase in the conditioning humidity is found to have 

negative effect with reduction in the cleavage strength. Increase in humidity increased the 

moisture penetrations, which in turn decreased the cleavage strength of the tested 

specimens. A representative comparison of the effect of humidity in the average cleavage 

strength with corresponding standard deviations for the specimens with 38mm width is 

shown in Figure 2.18. In this figure, the cleavage strength of 38 mm width specimens 

decreases at 20 °C, however, cleavage strength increases at 85 °C due to the increase in 

humidity from 48% to 95%. 
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Figure 2.17: Percent difference in cleavage strength due to the variation in humidity with 

a fixed temperature and width 

 

Figure 2.18: Humidity effect on cleavage strength for specimens with 38mm width 
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2.4.2.3 EFFECT OF WIDTH 

Figure 2.19 illustrates the percent difference of cleavage strength due to the effect of 

width in a bar graph. For specimens at 20°C, the cleavage strength is increased by 10.2% 

at 48% humidity as shown in pair C1-C2 and by 24.1% at 95% humidity as shown in pair 

C4-C5 when the width of the specimen increases from 13mm to 38mm. At 52.5°C, when 

the specimen width increases from 13 mm to 25 mm, cleavage strength declines by 0.1% 

at 71.5% humidity (C7-C8). At the same temperature and humidity, the cleavage 

strength, however, increases by 28.5% after the increment of width to 38 mm from 25 

mm as displayed in pair C8-C10. The cleavage strength decreases by 13.2% at 48% 

humidity (C12-C13), however, the cleavage strength increases by 6.3% at 95% humidity 

(C15-C16) for specimens at 85°C with the increment of specimen width from 13mm to 

38mm. Even though decrement of 0.1% and 13.2% is found in the cleavage strength for 

two combination pairs, increment in specimen’s width is observed to have positive 

influence in the cleavage strength while examining the overall trend. This is 

understandable as increase in width increases the area of adhesive region, which 

ultimately increases the load resisting capacity of the cleavage specimens. This result is 

in agreement with the findings from the literature of Shahid and Hashim (2002), where 

cleavage strength was increased with the increase in surface area of the adherend. Figure 

2.20 shows the effect of width on the average cleavage strength and standard deviations 

for the specimens at 85°C particularly. This reveals that the cleavage strength decreases 

at 48% humidity, but it increases at 95% humidity for specimens at 85°C with the 

increment of specimen width from 13mm to 38mm.  
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Figure 2.19: Percent difference in cleavage strength due to the variation in width with a 

fixed temperature and humidity 

 

Figure 2.20: Width effect on cleavage strength for specimens at 85°C 
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2.5 STATISTICAL ANALYSIS ON TESTING DATA 

The results obtained from the testing is further investigated through statistical 

analysis. The following sections attempt to find the significant parameters affecting the 

peel and cleavage strength and generate a statistical model for the prediction of respective 

peel and cleavage strength at various geometrical and environmental conditions. 

2.5.1 REGRESSION MODEL 

To explore the significance of each parameter on the peel and cleavage strength of 

specimens in a efficient manner, multiple linear regression (MLR) model and response 

surface metamodels (RSM) were developed. Note, Kokaly and Clark (1999) has used 

MLR model, whereas RSM model has been applied by Seo and Linzell (2010, 2012, 

2013) to evaluate the effect of various input factors on outcomes of respective research. 

A statistical software R was employed to generate both MLR and RSM models using the 

data resulting from the experimental program. Three input parameters, including 

temperature and humidity of the conditioning environment and width of the specimens, 

were considered in the statistical model. Equation 2.3 and Equation 2.4 present the MLR 

and RSM models, respectively for the prediction of the peel strength. 

𝑓𝑎𝑝(𝑀𝐿𝑅) = 7.6609 + 0.0031 ∗  𝑇 + 0.0061 ∗ 𝐻 − 0.0644 ∗ 𝑊   (Equation 2.3) 

 

𝑓𝑎𝑝(𝑅𝑆𝑀) = 11.4711 − 0.2503 ∗  𝑇 + 0.1656 ∗ 𝐻 − 0.1796 ∗ 𝑊 + 0.0462 ∗ 𝑇 ∗ 𝐻 +

0.0072 ∗ 𝑇 ∗ 𝑊 − 0.0004 ∗ 𝐻 ∗ 𝑊 + 0.0796 ∗ 𝑇2 − 0.5353 ∗ 𝐻2 + 0.0015 ∗ 𝑊2 

          (Equation 2.4) 
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where fap = the peel strength, T = the conditioning temperature, H = the conditioning 

humidity, and W = the specimen width. 

The equations for the prediction of the cleavage strength from the MLR and RSM 

models are shown in Equation 2.5 and Equation 2.6, respectively. 

 

𝑓𝑐(𝑀𝐿𝑅) = 187.3232 + 0.3054 ∗  𝑇 − 0.3543 ∗ 𝐻 + 0.7315 ∗ 𝑊 (Equation 2.5) 

 

𝑓𝑐(𝑅𝑆𝑀) = 243.5033 + 26.9055 ∗  𝑇 − 22.6119 ∗ 𝐻 − 1.7691 ∗ 𝑊 + 1.3262 ∗ 𝑇 ∗

𝐻 − 0.3479 ∗ 𝑇 ∗ 𝑊 + 0.2927 ∗ 𝐻 ∗ 𝑊 − 20.4477 ∗ 𝑇2 − 13.9127 ∗ 𝐻2 + 0.0218 ∗

𝑊2           (Equation 2.6) 

where fc = the cleavage strength, T = the conditioning temperature, H = the conditioning 

humidity, and W = the specimen width. 

2.5.2 SIGNIFICANT PARAMETERS 

To determine the significant parameters affecting each of the peel and cleavage 

strengths, P-values from both MLR and RSM models were examined. The P-values were 

acquired from each model during the creation of individual MLR and RSM models. The 

standard level of significance was set at 5% for the analysis where P-value less than 0.05 

was considered significant. The P-value for each parameter subjected to the peel and 

cleavage strength is presented in Table 2.5. The width was found to be the most 

significant parameter for the peel strength as the P-value of the MLR model for the peel 

strength is less than 0.05. The significance of the specimen’s width on the peel strength 

observed from the statistical analysis is also analogous to the results acquired from the 

experimental testing. A substantial effect of width was observed for the peel strength of 
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the tested specimens. Both MLR and RSM models did not found input parameters 

(temperature, humidity, and width) significant as the P-values for each parameter were 

observed to be greater than 0.05. 

 

Table 2.5 P-values acquired from the statistical analysis to evaluate peel and cleavage 

strength 

Parameter 

MLR RSM 

Peel 
strength 

Cleavage 
strength 

Peel 
strength 

Cleavage strength 

T 0.75540 0.1580 0.80105 0.1188 

H 0.65950 0.2300 0.72175 0.1778 

W 0.02480 0.1840 0.07834 0.1394 

T:H - - 0.91470 0.8351 

T:W - - 0.68182 0.1974 

H:W - - 0.97824 0.2685 

T2 - - 0.91737 0.1026 

H2 - - 0.50150 0.2383 

W2 - - 0.24176 0.2324 

Note: T, H, and W represent temperature, humidity, and the width of the specimens, respectively. 

 

2.5.3 MLR AND RSM MODEL COMPARISON 

The aim of this section is to present a reliable model that can predict the peel and 

cleavage strength for the adhesive connection with respect to different parameters taken 

for the study. The coefficient of determination (R2 value) of the RSM models for the peel 

and cleavage strength is higher than the MLR model as presented in Table 2.6. The 

higher R2 value of the model indicates better reliability of the model for the prediction of 

peel and cleavage strength. The predicted peel and cleavage strength from the RSM 

models were observed to be more accurate than the strength values predicted from MLR 
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models; thus, the RSM models were considered for predicting the peel and cleavage 

strengths with various environmental and geometrical parameters.  

The experimental versus predicted strengths from the MLR and RSM models are also 

shown in Figure 2.21 to compare the precision of the models graphically. The 

comparison of MLR and RSM models for the peel strength is presented in Figure 2.21a. 

In this figure, the lowest variation of peel strength found between the RSM values and 

experimental data is only 0.07%, however, the MLR values and experimental data are 

differed by 0.82%. As shown in Figure 2.21b, the cleavage strengths predicted from the 

MLR and RSM models are compared against the corresponding experimental values. It 

should be noted that the lowest variations between the predicted values from each of the 

MLR and RSM models and experimental cleavage strength were calculated. The 

cleavage strength from the RSM model varies by only 0.53%, while that from the MLR 

model is differed by 1.51%. Based on the graphical comparisons, it was confirmed that 

the RSM models better predicted both the strengths than the MLR models. 

 

Table 2.6 Multiple R-squared values for MLR and RSM models 

Multiple linear regression (MLR) 
Response surface metamodels 

(RSM) 

Peel 
strength 

Cleavage 
strength 

Peel 
strength 

Cleavage 
strength 

0.3646 0.328 0.5346 0.7695 
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                                                   (a) 

 

                                                    (b) 

Figure 2.21: Experimental strength versus predicted strength from the MLR and RSM 

model (a) peel strength and (b) cleavage strength  
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2.5.4 RSM SURFACES 

This section presents the use of an RSM model to determine the effects of 

temperature, humidity, and width on the peel and cleavage strength. The RSM model, 

Equation 2.4, was used to create a three-dimensional (3-D) surface for the peel strength to 

explore the RSM responses with respect to variation in a pair of different considered 

parameters. Specifically, the peel strength was plotted for two input parameters at a time 

with a fixed average value for the third parameter as shown in Figure 2.22a through 

Figure 2.22c. For example, an average value of humidity is considered for the RSM 

model to examine the effects of temperature and width on the peel strength and to 

develop the corresponding surface plot as displayed in Figure 2.22b.  

In Figure 2.22a, an increase in temperature decreased the peel strength by 5.06% at 

lower humidity and 1.77% at higher humidity. The peel strength is observed to increase 

at first reaching a maximum and then dropping to a minimum when humidity is increased 

without regard to temperature. The peel strength is ultimately increased by 3.33% at a 

lower temperature and 6.91% at a higher temperature after dropping from the highest 

value. The peel strength for different width and temperature is shown in Figure 2.22b. 

The increase in width is observed to decrease the peel strength with a slight increment at 

the end. At a lower temperature, the increase in width decreased the peel strength 

significantly by 24.29% and the peel strength is reduced by 15.66% at a higher 

temperature with the increase in specimen width. At smaller widths, an increase in 

temperature resulted in the reduction of peel strength by 2.05%, however, the peel 

strength is increased by 9.11% at larger widths when the temperature is increased. Figure 

2.22c shows the plot of peel strength against humidity and width. The increase in width 
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decreased the peel strength considerably by 21.59% at lower humidity and 21.51% at 

higher humidity. The increase in humidity but increased the peel strength by 4.44% at a 

smaller width and by 4.56% at a larger width.  

 

                                                    (a) 
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                                                     (b) 

 

                                                     (c) 

Figure 2.22: 3-D surface plots of peel strength showing effects of (a) temperature and 

humidity (b) temperature and width and (c) humidity and width 
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The RSM model, Equation 2.6, is utilized to create the 3-D surface plots for the 

cleavage strength. The 3D plots of the cleavage strength are shown in Figure 2.23. In 

Figure 2.23a, the cleavage strength is increased by 9.85% at lower humidity and by 

14.19% at higher humidity, when the temperature is increased. The cleavage strength is 

reduced by 10.82% at lower a temperature and by 7.30% at higher temperature with the 

increment in humidity. In Figure 2.23b, at a lower temperature, an increase in width 

improved the cleavage strength significantly by 20.70% and at a higher temperature, the 

cleavage strength increased slightly by 0.57%. Increase in temperature increased the 

cleavage strength by 21.27% at lower width and by 1.04% at higher width. In Figure 

2.23c, at lower humidity, the cleavage strength is increased by 1.71% with the increase in 

specimen width. The cleavage strength is raised significantly by 18.17% at higher 

humidity when the specimen width is increased. An increase in humidity decreased the 

cleavage strength by 14.59% at smaller width and by 0.77% at larger width specimens. 
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                                                     (a) 

 

                                                     (b) 
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                                                     (c) 

Figure 2.23: 3-D surface plots of cleavage strength showing effects of (a) temperature 

and humidity (b) temperature and width and (c) humidity and width 

In Figure 2.22a and Figure 2.22c, increase in humidity amplified the peel strength, 

which is similar to the peel testing results. Increase in width is observed to decrease the 

peel strength in Figure 2.22b and Figure 2.22c, which validates the results obtained from 

the experimental testing of peel specimens. In Figure 2.23a and Figure 2.23b, the effect 

of increasing temperature increased the cleavage strength, which follows the trend of the 

results obtained from cleavage testing. The cleavage strength is decreased with the 

increase humidity as presented in Figure 2.23a and Figure 2.23c, whereas in Figure 2.23b 

and Figure 2.23c, cleavage strength is increased with the increment in specimen’s width. 

Results acquired from these 3-D surface plots follows the trend of the cleavage strength 

determined from the cleavage tests. The RSM models presented in this work, however, 

can be efficiently yet reliably used for a certain range of input parameters only to predict 
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the peel and cleavage strength: the temperature, humidity, and width should be in the 

range of 20°C to 85°C, within 48% to 95%, and between 12.7 mm to 38.1 mm, 

respectively.  

 

2.6 CONCLUSIONS 

Peel and cleavage strengths of the adhesive connection to be used in dynamic 

message signs (DMS) were studied herein. According to American Society for Testing 

and Materials (ASTM), 64 adhesive specimens, including 32 peel and 32 cleavage 

specimens, were tested under 16 different variations of temperature, humidity, and 

specimen width to study the effect of each parameter on the peel and cleavage strength. 

Experimental and statistical comparisons of the peel and cleavage loadings were 

performed. Two separate regression models, encompassing multiple linear regression 

(MLR) and response surface metamodels (RSM), were developed, and statistically and 

graphically compared with testing data. Then, the RSM models for both strengths, which 

was more accurate than the MLR models, were used to efficiently explore the effects of 

different parameters on the peel and cleavage strengths. The following conclusions can 

be derived from the experimental and statistical studies: 

1. No significant effect of the conditioning temperature was observed for the peel 

strength, whereas increase in conditioning humidity was found to improve the peel 

strength up to 30.1%. The peel strength of the tested specimens was revealed to be 

decreased up to 28.2% with the increase in the specimen’s width. Cohesive failure was 

also observed to be the predominant failure mode for the peel specimens that were tested.  
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2. Increment in conditioning temperature had positive effects on the cleavage strength 

with increase in cleavage strength by 27.4%, however, cleavage strength was observed to 

be decreasing up to 13.7% with the rise in humidity. Increase in the cleavage strength by 

28.5% with the increase in the specimen’s width is understandable as increase in width 

increases the area of adhesive region. This result was supported by the conclusion from 

Shahid and Hashim (2002). All the tested cleavage specimens were observed to be failed 

in cohesive failure mode indicating high cohesion of the adhesive.  

3. The RSM models were found to be more reliable for the prediction of both the peel 

and cleavage strength than the MLR model by evaluating the coefficient of determination 

(R2) of the models and comparison of peel and cleavage strength predicted from the 

model with experimental data. The MLR-based statistical analysis indicated that the 

specimen width was the most significant parameter for the peel strength as the P-value of 

0.00248 was less than 0.05. Results obtained from the experimental tests were in 

agreement with the observations from the 3-D surface plots created using the RSM 

models.  



98 

 

2.7 REFERENCES 

Higgins, A. (2000). Adhesive bonding of aircraft structures. International Journal of 

Adhesion and Adhesives, 20(5), 367-376. 

Seo, D. W., & Lim, J. K. (2005). Tensile, bending and shear strength distributions of 

adhesive-bonded butt joint specimens. Composites science and technology, 65(9), 1421-

1427. 

Ferreira, J. A. M., Reis, P. N., Costa, J. D. M., & Richardson, M. O. W. (2002). 

Fatigue behaviour of composite adhesive lap joints. Composites science and 

technology, 62(10-11), 1373-1379. 

He, P., Chen, K., Yu, B., Yue, C. Y., & Yang, J. (2013). Surface microstructures and 

epoxy bonded shear strength of Ti6Al4V alloy anodized at various 

temperatures. Composites Science and Technology, 82, 15-22. 

Amatya, I., Seo, J., Letcher, T., & Bierschbach, D. (2020). Tensile and shear strength 

tests with adhesive connections in dynamic message signs. Mechanics of Materials.   

Shahid, M., & Hashim, S. A. (2000). Cleavage strength of steel/composite joints. The 

Journal of Adhesion, 73(4), 365-384. 

Shahid, M., & Hashim, S. A. (2002). Effect of surface roughness on the strength of 

cleavage joints. International Journal of Adhesion and Adhesives, 22(3), 235-244. 

You, M., Li, Z., Zheng, X. L., & Yan, Z. M. (2008). Effect of Recessing Length in 

Adhesive Layer on the Cleavage Joints. In Key Engineering Materials (Vol. 385, pp. 

225-228). Trans Tech Publications Ltd. 

Cognard, J. (1988). Influence of water on the cleavage of adhesive 

joints. International Journal of Adhesion and Adhesives, 8(2), 93-99. 



99 

 

Kim, K. S., & Aravas, N. (1988). Elastoplastic analysis of the peel test. International 

Journal of Solids and Structures, 24(4), 417-435. 

De Freitas, S. T., & Sinke, J. (2014). Adhesion properties of bonded composite-to-

aluminium joints using peel tests. The Journal of Adhesion, 90(5-6), 511-525. 

Broughton, W. R., Mera, R. D., & Hinopoulos, G. Project PAJ3—Combined Cyclic 

Loading and Hostile Environments 1996-1999: Report No. 13—Creeping Testing of 

Adhesive Joints T-Peel Test, Oct. 1999. NPL Report CMMT (A), 193, 4-5. 

Noori, H., Jain, M., Nielsen, K., & Brandys, F. (2016). Effect of Deformation-

induced Residual Stress on Peel Strength of Polymer Laminated Sheet Metal. The 

Journal of Adhesion, 92(10), 862-876. 

Arouche, M. M., Budhe, S., Alves, L. A., de Freitas, S. T., Banea, M. D., & de 

Barros, S. (2018). Effect of moisture on the adhesion of CFRP-to-steel bonded joints 

using peel tests. Journal of the Brazilian Society of Mechanical Sciences and 

Engineering, 40(1), 10. 

Price, A. J., & Sargent, J. P. (1997). Small scale aluminium/epoxy peel test specimens 

and measurement of adhesive fracture energy. International journal of adhesion and 

adhesives, 17(1), 27-32. 

Seo, J. (2013). Statistical determination of significant curved I-girder bridge seismic 

response parameters. Earthquake Engineering and Engineering Vibration, 12(2), 251-

260. 

ASTM D1876-08. (2008). Standard test method for peel resistance of adhesives (T-

peel test). West Conshohocken: American Society of Testing and Materials. 



100 

 

ASTM D1062-08. (2008). Standard test method for cleavage strength of metal-to-

metal adhesive bonds. West Conshohocken: American Society of Testing and Materials. 

Kokaly, R. F., & Clark, R. N. (1999). Spectroscopic determination of leaf 

biochemistry using band-depth analysis of absorption features and stepwise multiple 

linear regression. Remote sensing of environment, 67(3), 267-287. 

Seo, J., & Linzell, D. G. (2010). Probabilistic Vulnerability Scenarios for 

Horizontally Curved Steel I-Girder Bridges Under Earthquake Loads. Transportation 

Research Record, 2202(1), 206-211. 

Seo, J., & Linzell, D. G. (2013). Use of response surface metamodels to generate 

system level fragilities for existing curved steel bridges. Engineering Structures, 52, 642-

653. 

Seo, J., & Linzell, D. G. (2012). Horizontally curved steel bridge seismic 

vulnerability assessment. Engineering Structures, 34, 21-32. 

  



101 

 

CHAPTER 3: TENSILE AND SHEAR BEHAVIOR FOR ADHESIVE AND 

WELDED THIN-WALLED CONNECTIONS IN DYNAMIC MESSAGE 

SIGNS 

 

3.1 ABSTRACT 

This paper was intended to investigate the strength of adhesive and welded thin-

walled connections to be used in a dynamic message sign (DMS). The tensile strength 

and shear strength were studied for both of the adhesive and welded specimens. A 

number of tensile specimens and shear specimens with variations in width and 

temperature were tested until failure according to the ASTM D638 and ASTM D1002, 

respectively. The specimens with a range of width from 13 mm to 38 mm were 

conditioned with temperatures between -56.67 °C and 93.33 °C. The effects of 

temperature and width on each of the strengths were evaluated by analysing the testing 

data in a graphical and statistical manner. As expected, all the tests revealed that the 

welded specimens have significantly higher strength compared to the adhesive specimens 

in tensile and shear loadings. For the adhesive specimens, due to the increment of 

temperature, the highest increments were found to be 31.9% and 30.4%. In addition to the 

tests, Response Surface Metamodels (RSMs) and practical design equations were 

developed with regression analysis of the testing data, so as to predict tensile and shear 

stresses of both adhesive and welded specimens in an efficient way. 3D plots generated 

from the RSMs showed a higher effect of the temperature and width on the ultimate 

tensile and shear strength for both adhesive and welded specimens, and the practical 
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design equations were founded to be more reliable for the overall tensile and shear stress 

prediction compared to the RSMs. 

Keywords: Dynamic message sign; Tensile; Shear; Strength; Adhesive; Weld. 

 

3.2 INTRODUCTION 

Structural components in Dynamic Message Sign (DMS) primarily comprising 

aluminum frames and thin aluminum sheets are required to be connected properly to 

assure structural integrity and public safety. Adhesives can be a good alternative to 

conventional welded connections for use in DMS due to several benefits, including low 

labor cost, faster manufacturing, uniform load distribution, and the ability to join 

dissimilar metals Lee et al. (2006). With these benefits, adhesives are burgeoning in its 

use among many DMS producers (Higgins 2000, Hill 2003). However, there are limited 

studies attempted in the strength of adhesive connections and its comparison with welded 

connections. To shed light on the possibility of adhesives as a substitute for welded thin-

walled connections in DMS, a detailed experimental and statistical study to compare the 

strength of adhesive and welded thin-walled connections is required. Strictly speaking, 

tensile and shear tests need to be completed to provide an insight for the prospect of the 

use of adhesive in DMS connections. 

Adhesives have not been used to their full potential albeit its excellence as a bonding 

agent. The strength of adhesive connections has been investigated under various loading 

conditions (Colak et al. 2009, Savvilotidou et al. 2017, Goglio and Rezaei 2014, Silva et 

al. 2016). Colak et al. (2009) observed that adhesives with high glass transition 

temperatures performed adequately at high temperatures, whereas adhesives having lower 
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glass transition temperatures were inappropriate to be used at high temperatures. 

Savvilotidou et al. (2017) found the tensile strength of adhesive was decreased after 

reaching saturation point. Goglio and Rezaei (2014) revealed a reduction in tensile 

strength of adhesive when tested after conditioning the specimens at 50 °C with 100% 

relative humidity. Silva et al. (2016) determined the effects of thermal cycles ranging 

from -15 °C to 60 °C that increased the tensile strength of adhesives. Zhang et al. (2010) 

studied the effects of temperature ranging between -35 °C and 60 °C on the tensile 

strength of adhesive connecting pultruded glass fiber-reinforced polymer laminates. It 

was found that the tensile strength and stiffness of the adhesive connection was decreased 

when the temperature was increased above the glass transition temperature range from 40 

°C to 50 °C. Hu et al. (2019) tested tensile specimens cured at various temperatures for 

different time duration to determine the mechanical properties of adhesive for analyzing 

the performance of adhesively bonded corrugated sandwich structures. Both length of 

curing and temperature were observed to have considerable effect on the strength 

properties. Fernando et al. (2009) studied five different adhesives to determine their 

tensile properties to investigate the strength of rectangular hollow section steel tube 

adhesively bonded with carbon fiber reinforced polymer plates and found that adhesive 

with higher ultimate strain provided better strength for the bonded tube. 

Shear strength of the adhesives have also been studied (Agarwal et al. 2014, Kim et 

al. 2012, Ferreira et al. 2002, Sugiman et al. 2013, Sousa et al. 2018) to some extent. 

Agarwal et al. (2014) examined the adhesive connection in steel-carbon fiber reinforced 

polymer to delve into the effects of freeze-thaw cycles. It was reported that shear strength 

declined by 12-18% after freeze-thaw cycles in single-lap shear specimens. Kim et al. 
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(2012) tested double-lap shear specimens and observed a slight increase in shear strength 

after the repeated freeze-thaw cycles. Ferreira et al. (2002) studied the effects of 

immersion of water, elevated temperatures, and joint length on the static and fatigue 

shear strength of adhesive. Results indicated that shorter bond lengths had higher static 

and fatigue strength, while the effects of water were dependent on the water temperature. 

Sugiman et al. (2013a, b) tested single-lap joints specimens at a temperature of 50 °C. 

The exposure to the temperature decreased the number of cycles for the failure of the lap-

joints. Sousa et al. (2018) investigated the shear strength of adhesives due to the effects 

of temperature ranging from 20 °C to 40 °C and found an increment of nearly 25% in the 

shear strength of the adhesive. 

Although some of the aforementioned past studies have reported that temperature can 

affect the strength and durability of adhesives, a comprehensive experimental study to 

examine tensile and shear strength is necessary for demonstrating the use of adhesive 

bonded DMSs exposed to varying temperatures and other geometric factors is needed. To 

that end, this study experimentally determined the effect of temperatures and width of 

thin-walled specimens on the tensile and shear strength and compare with respective 

strength of weld to use in the design of DMSs. This paper is structured into six sections, 

including this section, laboratory testing, results and discussion, statistical analysis for 

Response Surface Metamodels (RSMs), design equations, and conclusions. 
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3.3 LABORATORY TESTING 

The testing involves the study of tensile and shear tests in variation with width and 

temperature conditions. This section discusses the testing combinations, tested 

specimens, and testing procedures. 

3.3.1 TESTING COMBINATIONS 

To investigate the tensile and shear strength for the adhesive and welded thin-walled 

specimens, 15 and 9 combinations were considered, respectively, as shown in Table 3.1. 

Note, each combination consisted of two specimens for tensile and shear specimens 

individually. The adhesive specimen combinations (A1-A6) and welded specimen 

combinations (W1-W9) were tested for each strength type for this work. In addition to 

A1-A6 and W1-W9, data presented for adhesive specimen combinations C1, C2, C3, C7, 

C8, C10, C12, C14, and C16 were recycled from the previous work (Amatya et al. 2020) 

to facilitate examination of the effects of temperature and width over a broader range on 

each strength. Note, the previous work (Amatya et al. 2020) initially generated 16 

different combinations created based on Plackett-Burman Design (Seo 2013, Chandorkar 

et al. 2008, Seo and Linzell 2010, 2012, 2013) incorporating temperature, humidity, and 

width parameters with help of commercially available statistical software JMP (SAS 

Institute Inc. 2008). Further information on the recycled combinations can be found 

elsewhere (Amatya et al. 2020). Table 3.1 presents all the combinations along with the 

respective temperature and width. 

 

The specimens per combination were conditioned in a temperature and humidity-

controlled chamber. Each specimen was assigned an ID;, for example, W-T-25TH-93.3T-
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A2, where the first character is the specimen type (A-adhesive/W-welded), and the 

following character represents the test type (T-tensile/S-shear). The width of the 

specimens is denoted by 13TH, 25TH, and 38TH for 13 mm, 25 mm, and 38 mm 

specimen width. The temperature of the conditioning chamber is represented by T, and 

the last character symbolizes the combination number shown in Table 3.1. The specimens 

having the same conditioning temperatures were placed collectively in the chamber for at 

least 24 hours to be conditioned before testing them. For instance, the specimens under 

the combinations A1, A2, A3, W1, W2, and W3 were conditioned in the chamber at 93.3 

°C together.   
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Table 3.1 Combinations for the experimental program 

Specimen type Combination Specimen ID Temperature (°C) Width (mm) 

Adhesive 

A1 A-T/S-13TH-93.3T-A1 93.3 13 

A2 A-T/S-25TH-93.3T-A2 93.3 25 

A3 A-T/S-38TH-93.3T-A3 93.3 38 

A4 A-T/S-13TH-(-56.7)T-A4 -56.7 13 

A5 A-T/S-25TH-(-56.7)T-A5 -56.7 25 

A6 A-T/S-38TH-(-56.7)T-A6 -56.7 38 

C1 [20-21] A-T/S-13TH-20.0T-C1 20.0 13 

C2 [20-21] A-T/S-38TH-20.0T-C2 20.0 38 

C3 [20-21] A-T/S-25TH-20.0T-C3 20.0 25 

C7 [20-21] A-T/S-13TH-52.5T-C7 52.5 13 

C8 [20-21] A-T/S-25TH-52.5T-C8 52.5 25 

C10 [20-21] A-T/S-38TH-52.5T-C10 52.5 38 

C12 [20-21] A-T/S-13TH-85.0T-C12 85.0 13 

C14 [20-21] A-T/S-25TH-85.0T-C14 85.0 25 

C16 [20-21] A-T/S-38TH-85.0T-C16 85.0 38 

Welded 

W1 W-T/S-13TH-93.3T-W1 93.3 13 

W2 W-T/S-25TH-93.3T-W2 93.3 25 

W3 W-T/S-38TH-93.3T-W3 93.3 38 

W4 W-T/S-13TH-(-56.7)T-W4 -56.7 13 

W5 W-T/S-25TH-(-56.7)T-W5 -56.7 25 

W6 W-T/S-38TH-(-56.7)T-W6 -56.7 38 

W7 W-T/S-13TH-20.0T-W7 20.0 13 

W8 W-T/S-25TH-52.5T-W8 52.5 25 

W9 W-T/S-38TH-85.0T-W9 85.0 38 

 

3.3.2 TESTED SPECIMENS 

Two different types of strength tests were performed for both adhesive and welded 

specimens. This section focuses on the fabrication and geometry of the tensile and shear 

specimens. 

3.3.2.1 ADHESIVE SPECIMENS 

The adhesive tensile and shear specimens were fabricated based on ASTM D638 

(ASTM D638 2010) and ASTM D1002 (ASTM D1002 2010), respectively. The 
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representative tensile and shear specimens with a width of 13 mm is shown in Figure 3.1 

and Figure 3.2, respectively. The tensile specimens were completely made from LORD 

406-19GB (LORD Corporation 2018) acrylic adhesive in a standard dog-bone geometry. 

5052 aluminum metal bars having 3.2 mm thickness were used to prepare the shear 

specimens. To install the extensometer on the shear specimens fabricated following 

ASTM D1002, a small piece of 5052 aluminum with 3.2mm thick and 13mm wide was 

glued with the acrylic adhesive to each of the shear specimens. The specimens were 

cured for at least two weeks after their fabrication and all the specimens were prepared 

and distributed by a local DMS producer in the United States. 

 

                                                      (a)                        (b) 

Figure 3.1: Geometry of adhesive tensile specimens (a) top view and (b) cross-section 

(All dimensions are in mm). 
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                                                                      (a) 

 

                                                                    (b) 

Figure 3.2: Geometry of adhesive shear specimens (a) top view and (b) side view (All 

dimensions are in mm). 

 

3.3.2.2 WELDED SPECIMENS 

The welded tensile and shear specimens were designed according to ASTM D638 

(ASTM D638 2010) and ASTM D1002 (ASTM D1002 2010), respectively following the 

guidelines of American Welding Society (American Welding Society 2015). All the 

specimens were manufactured by the local DMS producer using weld of 4043 aluminum 

alloy. The entirety of the dimensions was kept as close as possible to the adhesive 

specimens. The sample welded tensile and shear specimens with a width of 13 mm is 

shown in Figure 3.3 and Figure 3.4, correspondingly. As in the adhesive specimens, the 

5052 aluminum was used to fabricate all types of the specimens. Specifically, the tensile 



110 

 

specimens were fabricated by joining two aluminum bars with 3.2 mm square groove 

welds in dogbone shape. Two 5052 aluminum metal bars with 6.4 mm thickness were 

overlapped and bonded by transverse fillet welds in the middle to build the shear 

specimens. To install the extensometer, a small piece of additional aluminum piece was 

glued to each of the welded shear specimens.  

 

 

                                                     (a)           (b) 

Figure 3.3: Geometry of welded tensile specimens (a) top view and (b) cross-section view 

(all dimensions are in mm). 

 

 

                                                                              (a) 
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                                                                       (b) 

 

                                  (c) 

Figure 3.4: Geometry of welded shear specimens (a) top view, (b) side view and (c) front 

view (All dimensions are in mm). 

 

3.3.3 TESTING PROCEDURE 

All the specimens were tested to failure using MTS (Material Testing System) 

Universal Testing System. Note that all the tests were performed at room temperature and 

each specimen was mounted and aligned in the grips of the MTS. In detail, the tensile and 

shear specimens were tested using an MTS 370 Landmark (MTS Systems Corporation 

2018) 100-kN servo-hydraulic load unit calibrated to 20% of its load capacity. The 

longitudinal strains of the tensile and shear specimens were calculated by measuring the 

extension recorded from a MTS 634.31F-24 clip-on extensometer with a gauge length of 

20 mm mounted to each specimen during the test. The extensometer was a class B2 

calibrated with an accuracy of ±0.25% of measured strain. The tests were conducted by 
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applying a loading with a free crosshead speed of 5 mm/min for the tensile specimens 

and 1.3 mm/min for the shear specimens. The testing procedures for the tensile and shear 

tests are specified by ASTM D638 (ASTM D638 2010) and ASTM D1002 (ASTM 

D1002 2010), respectively. The testing setups for the tensile and shear specimens are 

shown in Figure 3.5. 
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                                 (a)                                                                       (b) 

 

                   
                                  (c)                                                                       (d) 

Figure 3.5: Installation of the specimens in the testing machine (a) adhesive tensile, (b) 

welded tensile, (c) adhesive shear and (d) welded shear 

 

3.4 RESULTS AND DISCUSSION 

Results from the tensile and shear tests are presented and discussed herein. Specifically, 

stress-strain curves were plotted for each of the tests to calculate the strengths, and the 



114 

 

influence of temperature and width on each strength of both adhesive and welded 

specimens is graphically explained. 

 

3.4.1 TENSILE TEST 

Figure 3.6 shows stress-strain curves generated from all the tensile tests. The stress-strain 

curves for the adhesive tensile specimens are shown in Figure 3.6a. The maximum 

ultimate tensile stress occurs for the 25 mm specimens conditioned at 93.33 °C from 

combination C2, while the minimum ultimate tensile stress is observed for the 38 mm 

specimens conditioned at 52.5 °C from combination C10. Among all the specimens, the 

13 mm specimen conditioned at 20 °C showed the median ultimate tensile stress. Figure 

3.6b presents the stress-strain curves for the welded tensile specimens. The 13 mm 

welded tensile specimen from combination W4 conditioned at -56.67 °C showed the 

maximum ultimate tensile stress, whereas the 25 mm welded tensile specimen from 

combination W8 conditioned at 52.5 °C exhibited the minimum tensile stress. The 13 mm 

tensile specimens showed the median ultimate tensile stress between all the welded 

tensile specimens tested. The ultimate tensile stresses at varying temperature and width 

considered in this study are tabulated in  
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Table 3.2. Note, the ultimate tensile stress per combination shown in this table represents 

the ultimate tensile stress averaged from the two specimens’ data for each combination. It 

appears that all the adhesive specimens fail with rupture failure and all the welded 

specimens are broken at weld throat failure. 
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                                                           (b) 

Figure 3.6: Representative stress-strain curves for tensile specimens (a) adhesive and (b) 

welded 
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Table 3.2 Ultimate tensile strength from the tensile test 

Specimen ID 

Ultimate 

tensile stress, 

fu(MPa) 

Failure mode 

A-T-13TH-93.3T-A1 20.76 Rupture failure 

A-T-25TH-93.3T-A2 21.28 Rupture failure 

A-T-38TH-93.3T-A3 20.40 Rupture failure 

A-T-13TH-(-56.7)T-A4 19.37 Rupture failure 

A-T-25TH-(-56.7)T-A5 19.62 Rupture failure 

A-T-38TH-(-56.7)T-A6 19.80 Rupture failure 

A-T-13TH-20.0T-C1 17.87 Rupture failure 

A-T-38TH-20.0T-C2 17.63 Rupture failure 

A-T-25TH-20.0T-C3 17.61 Rupture failure 

A-T-13TH-52.5T-C7 17.30 Rupture failure 

A-T-25TH-52.5T-C8 17.10 Rupture failure 

A-T-38TH-52.5T-C10 15.75 Rupture failure 

A-T-13TH-85.0T-C12 17.80 Rupture failure 

A-T-25TH-85.0T-C14 16.13 Rupture failure 

A-T-38TH-85.0T-C16 16.00 Rupture failure 

W-T-13TH-93.3T-W1 117.74 Weld throat failure 

W-T-25TH-93.3T-W2 110.84 Weld throat failure 

W-T-38TH-93.3T-W3 122.77 Weld throat failure 

W-T-13TH-(-56.7)T-W4 170.99 Weld throat failure 

W-T-25TH-(-56.7)T-W5 116.45 Weld throat failure 

W-T-38TH-(-56.7)T-W6 107.78 Weld throat failure 

W-T-13TH-20.0T-W7 103.05 Weld throat failure 

W-T-25TH-52.5T-W8 81.36 Weld throat failure 

W-T-38TH-85.0T-W9 121.23 Weld throat failure 

 

Figure 3.7a and Figure 3.7b show the failure modes of the adhesive tensile specimens 

with 13 mm width and 38 mm width, respectively. During the testing, all the adhesive 

specimens were observed to be failed due to rupture at a proximity to center of the 

specimens as the width near the middle section of the specimens is narrow compared to 

width at the edges. The line of rupture after failure was observed to be approximately 

perpendicular to the direction of load applied to the specimens. All the tested adhesive 

specimens did not show any indication of necking as presented in the figures. Figure 3.7c 
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and Figure 3.7d show the representative failure modes of the welded tensile specimens 

with 13 mm width and 38 mm width. All welded tensile specimens were observed to fail 

at the weld metal, and the failure modes are designated as weld throat failure as the 

strength of base metal was higher compared to the strength of weld metal at the center of 

specimens.  

 

  

                                     (a)                                                                    (b) 

  

                                     (c)                                                                    (d) 

Figure 3.7: Representative failure modes of tensile specimens (a) adhesive with 13 mm 

width, (b) adhesive with 38 mm width, (c) welded with 13 mm width, and (d) welded 

with 38 mm width 
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3.4.1.1 EFFECT OF TEMPERATURE 

The effect of temperature on the ultimate tensile stress at different temperatures is 

shown in Figure 3.8. In Figure 3.8a, the ultimate stress for the adhesive tensile specimens 

with different widths is plotted against temperature. For 13 mm specimens, the ultimate 

stress decreases by 7.7% and 3.2% when the temperature increases from -56.67 °C to 20 

°C and 20 °C to 52.5 °C, respectively. The ultimate stress, however, is increased by 2.9% 

and 16.7% when the temperature elevates from 52.5 °C to 85 °C and 85 °C to 93.33 °C as 

shown in A4-C1-C7-C12-A1. For 25 mm specimens, the ultimate stress declines by 

10.3% and 2.9% when the temperature rises from -56.67 °C to 20 °C and 20 °C to 52.5 

°C. The ultimate stress of the 25 mm specimens is further reduced by 5.7% when the 

temperature increases from 52.5 °C to 85 °C. When the temperature was increased from 

85 °C to 93.33 °C, the ultimate stress is increased significantly by 31.9% as displayed in 

A5-C3-C8-C14-A2. The ultimate stress of 38 mm specimens is decreased by 11% and 

10.7% with an increment of temperature from -56.67 °C to 20 °C and 20 °C to 52.5 °C, 

simultaneously. The ultimate stress is increased by 1.6% and 27.5% when the 

temperature was elevated from 52.5 °C to 85 °C and 85 °C to 93.33 °C, respectively as 

illustrated in A6-C2-C10-C16-A3. Interestingly, the ultimate tensile stress is observed to 

be decreasing with the increase in temperature from 20 °C to 52.5 °C which is below the 

glass transition temperature of adhesive (75 °C). The ultimate tensile stress, however, is 

found to be increasing when the temperature was increased from 52.5 °C to 93.33 °C 

which is above glass transition temperature (75 °C). When the adhesive is conditioned at 

a temperature above glass transition temperature, adhesive initiates to transform from 

hard glassy surface to soft rubbery surface. As the flexibility of the adhesive is increased, 
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cohesion within the adhesive is increased, which increased the load resisting capacity of 

the adhesive joint.  

In Figure 3.8b, the effect of temperature on the ultimate tensile stress for the welded 

tensile specimens with different widths is presented. The ultimate  stress of 13 mm 

specimens is decreased by 39.7% when the temperature is raised from -56.67 °C to 20 °C 

whereas the ultimate stress is increased by 14.3% with a further elevation of temperature 

from 20 °C to 93.33 °C (see W4-W7-W1). The rise in temperature from -56.67°C to 

52.5°C declined the ultimate stress of 25 mm specimens by 30.1%. The ultimate stress, 

however, increases by 36.2% when temperature is further elevated to 93.33 °C from 52.5 

°C as shown in W5-W8-W2. For 38 mm specimens, the ultimate stress rises slightly by 

12.5% when temperature was increased from -56.67 °C to 85 °C. The increment of 

temperature from 85 °C to 93.33 °C increased the ultimate stress by 1.3% as portrayed in 

W6-W9-W3. In this figure, the design tensile strength of the 4043 aluminum filler weld 

(165 MPa) acquired from Aluminum Design Manual (Aluminum Association 2010) is 

observed to be higher for all the welded tensile specimens tested, except for  the 13 mm 

welded specimens conditioned at -56.67 °C from combination W4.  
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                                                                 (a) 

 
                                                                  (b) 

Figure 3.8: Temperature effect on ultimate stress for tensile specimens (a) adhesive and 

(b) weld 

 

3.4.1.2 EFFECT OF WIDTH 

The effect of the specimen width on the ultimate tensile stress is shown in Figure 3.9. 

The ultimate stress for the adhesive tensile specimens having different widths at various 
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temperatures is plotted in a bar chart in Figure 3.9a. At -56.67 °C, the ultimate stress is 

increased by 1.3% and 0.9% when the specimen width increases from 13 mm to 25 mm 

and 25 mm to 38 mm, respectively as shown in A4-A5-A6. The ultimate stress is decreased 

by 1.5% and increased by 0.1% with increment of specimen width from 13 mm to 25 mm 

and 25 mm to 38 mm at 20 °C as shown in C1-C3-C2. For specimens at 52.5 °C, the 

ultimate stress declines by 1.2% and 7.9% when width of specimen increases from 13 mm 

to 25 mm and 25 mm to 38 mm as displayed in C7-C8-C10. The ultimate stress of 

specimens at 85 °C is reduced by 9.4% and 0.8% as depicted in C12-C14-C16 with 

increment of specimen width from 13 mm to 25 mm and 25 mm to 38 mm. When the width 

of the specimens at 93.33 °C is increased from 13 mm to 25 mm, the ultimate stress is 

increased by 2.5%, whereas the ultimate stress decreases by 4.1% when the specimen width 

is increased from 25 mm to 38 mm as displayed in A1-A2-A3. There is no doubt that 

insignificant effect of width was observed for the ultimate tensile stress when tensile stress 

at different conditioning temperatures were considered. 

In Figure 3.9b, the effect of width on the ultimate stress for the welded tensile 

specimens at different temperatures is shown. The ultimate stress at -56.67 °C is decreased 

by 31.9% and 7.4% with an increment of specimen width from 13 mm to 25 mm and 25 

mm to 38 mm as displayed in W4-W5-W6. As shown in W1-W2-W3 at 93.33 °C, the 

ultimate stress is decreased by 5.9% with increment of specimen width from 13 mm to 25 

mm, however, the ultimate stress is increased by 10.8% with further increment of specimen 

width from 25 mm to 38 mm. The ultimate stress is decreased by 21.1% when the stress of 

25 mm specimens at 52.5 °C is compared with that of 13 mm specimens at 20 °C (see W7 

and W8). The comparison between 38 mm specimens at 85 °C and 25 mm specimens at 
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52.5 °C shows 49% increment in ultimate tensile stress (see W8 and W9). As shown in the 

figure, the design tensile strength of the welded specimens (165 MPa) is observed to be 

significantly higher than the tensile strength obtained from testing, excluding 13 mm 

welded specimens conditioned at -56.67 °C from combination W4.  

 

                                                                (a) 

 

                                                                    (b) 

Figure 3.9: Width effect on ultimate stress for tensile specimens (a) adhesive and (b) 

weld 
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3.4.1.3 COMPARISON BETWEEN ADHESIVE AND WELDED SPECIMENS 

Figure 3.10 shows a comparative representation of ultimate tensile stress between the 

adhesive and welded specimens. For 13 mm specimens, the welded specimens have more 

the ultimate stress than the adhesive specimens by 467%, 783%, and 477% at 93.33 °C, -

56.67 °C, and 20 °C, respectively as displayed in pairs A1-W1, A4-W4, and C1-W7. The 

welded specimens with 25 mm width at 93.33 °C, -56.67 °C, and 52.5 °C are observed to 

have 421%, 493%, and 376% higher ultimate tensile stress compared to the adhesive 

specimens as shown in pairs A2-W2, A5-W5, and C8-W8. For specimens at 93.33 °C, -

56.67 °C, and 85 °C, the welded specimens are found to have 502%, 444%, and 658% 

higher ultimate tensile stress relative to the adhesive specimens (see pairs A3-W3, A6-

W6, and C16-W9). The highest difference in ultimate tensile stress between the adhesive 

and welded specimens were observed for the 13 mm specimens at -56.67 °C for pair A4-

W4 as welded tensile specimens from combination W4 possessed the maximum tensile 

strength. Variation in ultimate tensile stress was observed to be minimum for pair C8-W8 

(25 mm specimens at 52.5 °C) welded tensile specimens from combination W8 exhibited 

the least tensile strength during the test. 
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Figure 3.10: Percent difference in ultimate tensile stress between adhesive and welded 

specimens 

3.4.2 SHEAR TEST 

Stress-strain curves generated from the testing result of shear specimens are depicted 
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mode for the adhesive shear specimens, whereas all the welded shear specimens are 

found to be failed with weld throat failure mode. 
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                                                          (a) 

 

                                                           (b) 

Figure 3.11: Representative stress-strain curves for shear specimens (a) adhesive and (b) 

welded 
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Table 3.3 Ultimate shear strength from the shear test 

Specimen ID 

Ultimate 

shear stress, 

τu (MPa) 

Failure mode 

A-S-13TH-93.3T-A1 19.38 cohesive failure 

A-S-25TH-93.3T-A2 20.17 cohesive failure 

A-S-38TH-93.3T-A3 19.18 cohesive failure 

A-S-13TH-(-56.7)T-A4 18.68 cohesive failure 

A-S-25TH-(-56.7)T-A5 18.10 cohesive failure 

A-S-38TH-(-56.7)T-A6 18.39 cohesive failure 

A-S-13TH-20.0T-C1 17.48 cohesive failure 

A-S-38TH-20.0T-C2 16.06 Adhesive/cohesive failure  

A-S-25TH-20.0T-C3 17.97 cohesive failure 

A-S-13TH-52.5T-C7 16.00 cohesive failure 

A-S-25TH-52.5T-C8 14.96 cohesive failure 

A-S-38TH-52.5T-C10 17.84 cohesive failure 

A-S-13TH-85.0T-C12 17.05 cohesive failure 

A-S-25TH-85.0T-C14 15.47 cohesive failure 

A-S-38TH-85.0T-C16 15.41 cohesive failure 

W-S-13TH-93.3T-W1 150.86 Weld throat failure 

W-S-25TH-93.3T-W2 149.07 Weld throat failure 

W-S-38TH-93.3T-W3 171.21 Weld throat failure 

W-S-13TH-(-56.7)T-W4 134.16 Weld throat failure 

W-S-25TH-(-56.7)T-W5 135.72 Weld throat failure 

W-S-38TH-(-56.7)T-W6 134.79 Weld throat failure 

W-S-13TH-20.0T-W7 147.21 Weld throat failure 

W-S-25TH-52.5T-W8 150.76 Weld throat failure 

W-S-38TH-85.0T-W9 144.56 Weld throat failure 

 

Figure 3.12a and Figure 3.12b present the sample failure modes of adhesive shear 

specimens having a width of 13 mm and 38 mm, respectively. Cohesive failure is 

observed to be the predominant failure mode. In this failure mode, adhesive can be 

observed in both surfaces of aluminum that represents high adhesion between the 

surfaces in the adhesive joint. As there is high adhesion between the surfaces in the 

adhesive joint, failure occurs within the interface of adhesive, resulting in the cohesive 

failure in the shear specimens. Remarkably, two adhesive specimens of combination C2 
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failed in adhesive/cohesive failure mode. In this failure mode, only certain part of 

adhesive joint in the shear specimens is observed to fail in cohesive failure mode. This 

type of failure mode is observed when the adhesion between the aluminum surfaces is not 

uniform throughout the adhesive joint. Representative failure modes of the welded shear 

specimens are also shown in Figure 3.12c and Figure 3.12d. All welded specimens 

appeared to fail in weld throat failure mode as in the welded tensile specimens. In each 

specimen, failure was detected at the weld between the connections of thin-walled 

aluminum specimens. As the base aluminum of the welded shear specimens possess 

higher shear strength than the shear strength of the weld throat at welded section, weld 

throat failure is observed.  

  



130 

 

  

                                     (a)                                                                    (b) 

  

                                     (c)                                                                    (d) 

Figure 3.12: Representative failure modes of shear specimens (a) adhesive with 13 mm 

width, (b) adhesive with 38 mm width, (a) welded with 13 mm width, and (d) welded 

with 38 mm width 
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increased by 6.5% and 13.7%, as shown in A4-C1-C7-C12-A1. For 25 mm specimens, 

the ultimate stress is decreased by 0.7% and 16.8% with an increment of temperature 

from -56.67 °C to 20 °C and 20 °C to 52.5 °C. The ultimate stress of the 25 mm 

specimens increases by 3.4% and 30.4% when the temperature is increased from 52.5 °C 

to 85 °C and 85 °C to 93.33 °C (see A5-C3-C8-C14-A2). For 38 mm shear specimens, 

the ultimate stress reduces by 12.7% and increases by 11.1% when the temperature 

increases from -56.67 °C to 20 °C and 20 °C to 52.5 °C. The ultimate stress is reduced by 

13.6% when the temperature further increases from 52.5 °C to 85 °C, whereas the 

ultimate stress is increased by 24.5% with an increment of temperature from 85 °C to 

93.33 °C as shown in A6-C2-C10-C16-A3. Although 38 mm specimens between the 

temperatures of 20 °C to 85 °C are observed to have a different trend, the ultimate shear 

stress is appeared to decrease from 20 °C to 52.5 °C and increase from 52.5 °C to 93.33 

°C. Again, the glass transition temperature of the adhesive is 75 °C. The shear stress is 

observed to decrease below the glass transition temperature, whereas the shear stress is 

observed to increase when the temperature is increased beyond the glass transition 

temperature. This increase in shear stress can be attributed to the fact that above glass 

transition temperature, adhesive begins to transition from hard to soft, rubbery substance 

which increases the cohesive nature of the adhesive. This increases the shear stress of the 

adhesive when specimens are conditioned beyond glass transition temperature. 

Figure 3.13b presents the temperature effect on the ultimate shear stress for the 

welded shear specimens. As shown in W4-W7-W1, the ultimate stress of 13 mm 

specimens is increased by 9.7% and 2.5% with the increment of temperature from -56.67 

°C to 20 °C and 20 °C to 93.33 °C successively. The ultimate stress of 25 mm specimens 
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increases by 11.1% when temperature is increased from -56.67 °C to 52.5 °C but 

decreases by 1.1% with further increment in temperature from 52.5 °C to 93.33 °C (see 

W5-W8-W2). For 38 mm specimens, when the temperature was increased from -56.67 

°C to 85 °C, the ultimate stress is surged by 7.3%. The ultimate stress is increased by 

18.4% when the temperature further increases from 85 °C to 93.33 °C as displayed in 

W6-W9-W3. Observing the general trend of tested welded shear specimens, increase in 

temperature is found to have positive effects in the ultimate shear stress. Further, the 

shear stress of the welded shear specimens is found to be substantially higher than the 

design shear stress of the 4043 aluminum filler weld (80 MPa) calculated according to 

Aluminum Design Manual (Aluminum Association 2010). 
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                                                                  (b) 

Figure 3.13: Temperature effect on ultimate stress for shear specimens (a) adhesive and 

(b) weld 
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The effect of specimen’s width on the ultimate shear stress is shown in Figure 3.14 in 
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with an increment of specimen width from 13 mm to 25 mm. When the specimen width 
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decreased by 6.5% and increased by 19.3% with the increment of specimen width from 

13 mm to 25 mm and 25 mm to 38 mm as depicted in C7-C8-C10. At 85 °C, when the 
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stress is decreased by 9.3% and 0.3%, respectively (see C12-C14-C16). The ultimate 

stress of specimens at 93.33 °C increases by 4% when the specimen width is increased 

from 13 mm to 25 mm. The ultimate stress, however, decreases by 4.9% when the width 

of the specimen is increased from 25 mm to 38 mm as shown in A1-A2-A3. 

In Figure 3.14b, the effect of width on the ultimate shear stress for the welded shear 

specimens at different temperatures is illustrated. The ultimate stress at -56.67 °C is 

increased by 1.2% when width of welded shear specimen is increased from 13 mm to 25 

mm and is decreased by 0.7% with increment of specimen width from 25 mm to 38 mm 

as shown in W4-W5-W6. At 93.33 °C, the ultimate stress of welded specimens is 

decreased by 1.2% with the increment of specimen width from 13 mm to 25 mm, 

however, the ultimate stress increases by 14.9% with further increment of specimen 

width from 25 mm to 38 mm as shown in W1-W2-W3. The 25 mm welded shear 

specimens at 52.5 °C observed to have 2.4% higher ultimate stress than 13 mm welded 

shear specimens at 20 °C (see W7 and W8). The 38 mm welded shear specimens at 85 °C 

is observed to have 4.1% lower ultimate stress than the 25 mm specimens at 52.5 °C (see 

W8 and W9). The shear stress of the welded specimens was observed to be significantly 

greater compared to the shear stress of 4043 aluminum filler weld (80 MPa) obtained 

from according to Aluminum Design Manual (Aluminum Association 2010).  
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                                                                      (a) 

 

                                                                     (b) 

Figure 3.14: Width effect on ultimate stress for shear specimens (a) adhesive and (b) 

weld 
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specimens are observed to have 678% higher shear stress than the adhesive specimens at 

93.33 °C as shown in pair A1-W1. At -56.67 °C and 20 °C, the 13 mm welded specimens 

are found to be stronger than the adhesive specimens by 618% and 742%, respectively, as 

shown in pairs A4-W4 and C1-W7. The 25 mm welded specimens at 93.33 °C, -56.67 

°C, and 52.5 °C observed 639%, 650%, and 908% higher ultimate shear stress in 

comparison to the adhesive specimens as displayed in pairs A2-W2, A5-W5, and C8-W8. 

For 38 mm specimens at 93.33 °C, -56.67 °C, and 85 °C, the welded specimens are found 

to have 792%, 633%, and 838% higher ultimate shear stress compared to the adhesive 

specimens (see pairs A3-W3, A6-W6, and C16-W9). 
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Figure 3.15: Percent difference in ultimate shear stress between adhesive and welded 

specimens 

3.5 STATISTICAL ANALYSIS FOR RSMS 

RSMs that can be used to efficiently explore the effects of temperature and width on 

each strength were created through regression analysis of the tensile and shear stress data 

acquired from the testings of both adhesive and welded specimens. Note, RSMs have 

been successfully used to replicate the structural and mechanical characteristics of 

various engineering structures (Seo, and Pokhrel 2019, Seo et al. 2012, Seo and Park 

2017). A commercially available statistical software, R (Team 2015), was used to 

develop the RSMs through least squares regression of each set of the tensile and shear 

stress data corresponding to individual input parameters. The temperature and width of 

the specimens were deemed as the input parameters. The RSMs created for the prediction 

of the ultimate tensile stress of adhesive and welded specimens are presented in Equation 

3.1 and Equation 3.2, respectively.  
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𝑓𝑢𝑎 = 16.9452 − 0.3531 𝑇 − 0.2429 𝑊 − 0.4066𝑇𝑊 + 2.5069𝑇2  − 0.0860𝑊2  

(Equation 3.1) 

𝑓𝑢𝑤 = 75.4433 − 6.8095 𝑇 − 13.4666𝑊 + 17.7163𝑇𝑊 + 38.6953𝑇2  + 16.0623𝑊2      

(Equation 3.2) 

where fua is the ultimate tensile stress for adhesive specimens (MPa), fuw is the 

ultimate tensile stress for welded specimens (MPa), T is the conditioning temperature 

(°C), and W is the width of the specimen (mm). 

The RSMs for the prediction of the ultimate shear stress of adhesive and welded 

specimens are shown in Equation 3.3 and Equation 3.4. 

𝜏𝑢𝑎 = 15.9363 − 0.2526𝑇 + 0.0499𝑊 − 0.1092𝑇𝑊 + 1.8089𝑇2 + 0.786𝑊2 

          (Equation 3.3) 

 

𝜏𝑢𝑤 = 145.4880 + 9.3148 𝑇 + 1.6987𝑊 + 2.0960𝑇𝐻 − 2.3364𝑇2 + 1.7918𝑊2 

          (Equation 3.4) 

where τua is the ultimate shear stress of adhesive specimens (MPa) and τuw is the 

ultimate shear stress of welded specimens (MPa). 

 

3D surface plots were also generated for the ultimate tensile stress of adhesive and 

welded specimens utilizing the RSMs presented in Equation 3.1 and Equation 3.2. These 

plots present the trend of the ultimate tensile stress with respect to both temperature and 

width of the specimens as shown in Figure 3.16.  
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The effect of temperature and width on ultimate tensile stress of adhesive specimens 

is observed closely to be of concave shape as displayed in Figure 3.16a. It appears that 

with the increase in width from 13 mm to 38 mm at lower temperature (-56.67 °C), the 

ultimate tensile stress is increased by 1.67%. The increment of width at higher 

temperature of 93.33 °C decreased the ultimate tensile stress by 6.61%. With the increase 

in temperature, the ultimate tensile stress is observed to be decreasing initially with 

significant rise after reaching the minimum value. At lower width of 13 mm, the ultimate 

tensile stress is increased by 0.55% with the increase in temperature (-56.67 °C to 93.33 

°C), however, at higher width of 38 mm, the tensile stress decreases by 7.64% with the 

increase in temperature (-56.67 °C to 93.33 °C).  

The plot of ultimate tensile stress for welded specimens in terms of temperature and 

width is observed to be of concave shape as presented in Figure 3.16b. In this figure, the 

tensile stress is decreased significantly by 37.08% with increment of width (13 mm to 38 

mm) at lower temperature of -56.67 °C. At higher temperature (93.33 °C), with the 

increase in width (13 mm to 38 mm), the tensile stress is increased by 7.13%. The 

ultimate tensile stress is decreased by 29.16% with the increase in temperature (-56.67 °C 

to 93.33 °C) at lower width of 13 mm, whereas, at higher width (38 mm), the tensile 

stress is raised by 20.61% with the increase in temperature from -56.67 °C to 93.33 °C. 
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                                                                 (a) 

 

                                                                  (b) 

Figure 3.16: RSM plots of ultimate tensile stress showing effects of temperature and 

width for (a) adhesive specimens and (b) welded specimens 

The RSMs presented in Equation 3.3 and Equation 3.4 were also used to develop 3D 

surface plots for the ultimate shear stress of adhesive and welded specimens as shown in 

Figure 3.17. A concave shape of the plot can be observed due to the effect of temperature 
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and width on the ultimate shear stress of adhesive specimens as shown in Figure 3.17a. In 

Figure 3.17a, the increment of width from 13 mm to 38 mm at lower temperature of -

56.67 °C increased the ultimate shear stress by 1.71%, whereas, the ultimate shear stress 

decreased by 0.65% at higher temperature (93.33 °C) due to the increment of width (13 

mm to 38 mm). The increase in temperature decreased the ultimate shear stress at first, 

however, the ultimate shear stress is improved significantly after a minimum value. The 

ultimate shear stress is dropped by 1.54% at lower width of 13 mm and by 3.82% at 

higher width of 38 mm with the increase in temperature (-56.67 °C to 93.33 °C). 

The plot of ultimate shear stress for welded specimens showing the effect of 

temperature and width is found to be of planar shape as presented in Figure 3.17b. In this 

Figure, the shear stress is decreased by 0.58% with increment of width (13 mm to 38 mm) 

at lower temperature of -56.67 °C. At higher temperature of 93.33 °C, the ultimate shear 

stress is increased by 5.04% with the increase in width (13 mm to 38 mm). The increment 

of temperature from-56.67 °C to 93.33 °C increased the ultimate shear stress by 10.61% at 

lower width of 13 mm and by 16.88% at higher width of 38 mm. 
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                                                                  (a) 

 

                                                                   (b) 

Figure 3.17: RSM plots of ultimate shear stress showing effects of temperature and width 

for (a) adhesive specimens and (b) welded specimens 

From the study of 3D surface plots, conditioning temperature was found to affect the 

tensile and shear stress of welded specimens significantly. The width of specimens was 

observed to have a substantial influence on the tensile stress of welded specimens. 
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3.6 DESIGN EQUATIONS 

Practical design equations were further proposed for the better prediction of ultimate 

tensile and shear stress of adhesive and welded specimens. As in the testing program, 

conditioning temperature and width of specimens were considered parameters for the 

development of design equations. The design equations were developed in Microsoft 

excel solver following the generalized reduced gradient method (Sharma and 

Glemmestad 2013, Lasdon et al. 1974). This method utilizes an algorithm that solves the 

nonlinear problem by computing reduced gradient. The developed equations for the 

ultimate tensile stress of adhesive and welded specimens are presented in Equation 3.5 

and Equation 3.6, correspondingly. 

 

𝑓𝑢𝑎 = 𝐶𝐴
𝑃𝐴(2.2939(𝑇 + 273.15)0.2348) × 𝐶𝐴

𝑃𝐴(1.7390 × 𝑊0.1)  (Equation 3.5) 

𝑓𝑢𝑤 = 𝐶𝑊
𝑃𝑊 (2.2939(𝑇 + 273.15)0.2348) × 𝐶𝑊

𝑃𝑊(1.7390 × 𝑊0.1)   (Equation 3.6) 

 

where fua, fuw, T, W, CA, CW, PA, and PW represent the ultimate tensile stress for 

adhesive specimens (MPa), ultimate tensile stress for welded specimens (MPa), the 

conditioning temperature (°C), specimen’s width (mm), coefficient value for adhesive 

tensile specimens, coefficient value for welded tensile specimens, variable value for 

adhesive tensile specimens, and variable value for welded tensile specimens. Values of 

CA, CW, PA, and PW calculated for the Equation 3.5 and Equation 3.6 are 0.4830, 4.4415, 

0.1000, and 0.5599, respectively. 

The equations have an average error of 10.64% for the adhesive tensile specimens 

and 12.09% for the welded tensile specimens. Figure 3.18 presents a scatter plot of the 
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ultimate tensile stress developed to check the precision of the equations for the ultimate 

tensile stress. The ultimate tensile stress obtained from the tests is plotted against those 

computed from the equations. The residuals of the measured ultimate tensile stress with 

those calculated by the equations are represented by the identity line shown in this figure. 

The coefficient of determination for the proposed equations for the ultimate tensile stress 

was found to be 0.8864 and except for few outliers, most data lie close to the identity 

line, indicating high accuracy for the equations for the prediction of ultimate tensile stress 

of adhesive and welded specimens. 

 

Figure 3.18: Scatter plot of ultimate tensile stress to observe proposed equation’s 

accuracy 
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Equation 3.7 and Equation 3.8 present the developed equations for the prediction of 

ultimate shear stress for adhesive and welded specimens, respectively. 

 

𝜏𝑢𝑎 = 𝐶𝐴
𝑃𝐴(2.8778(𝑇 + 273.15)0.1460) × 𝐶𝐴

𝑃𝐴(2.1817 × 𝑊0.1)   (Equation 3.7) 

𝜏𝑢𝑤 = 𝐶𝑊
𝑃𝑊 (2.8778(𝑇 + 273.15)0.1460) × 𝐶𝑊

𝑃𝑊 (2.1817 × 𝑊0.1)   (Equation 3.8) 

 

where 𝜏ua, 𝜏uw, T, W, CA, CW, PA, and PW denotes ultimate shear stress for adhesive 

specimens , ultimate shear stress for welded specimens, the conditioning temperature 

(°C), specimen’s width (mm), coefficient value for adhesive shear specimens, coefficient 

value for welded shear specimens, variable value for adhesive shear specimens, and 

variable value for welded shear specimens. Values of CA, CW, PA, and PW calculated for 

the Equation 3.7 and Equation 3.8 are 0.5648, 4.8203, 0.1000, and 0.6301, respectively. 

The equations for the prediction of ultimate shear stress for the adhesive and welded 

specimens are observed to have an average percentage error of 9.37% and 5.32%, 

respectively. A scatter plot is also created to investigate the accuracy of the equations as 

shown in Figure 3.19. The plot shows the shear stress quantities obtained from the shear 

testing and equations. The identity line displayed in this figure denotes the residuals of 

the predicted shear stress with the equation from the measured results. As in the trend of 

tensile stress data, the majority of data points were found at a proximity to the identity 

line. Further, the coefficient of determination for the equation was determined to be 

0.9920. Discussion above implies that the equations generated for the prediction of 

ultimate shear stress of adhesive and welded specimens exhibit high precision. 
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Figure 3.19: Scatter plot of ultimate shear stress to observe proposed equation’s accuracy 

 

Furthermore, the coefficient of determination of the RSMs and the design equations 

were compared as listed in Table 3.4 to determine the most reliable equations for the 

prediction of ultimate tensile and shear stress. Observation of the coefficient of 

determination suggests higher reliability of the design equations for the prediction of 

ultimate stresses except for the ultimate tensile stress of the welded specimens. It is 

recommended to utilize the design equations for the prediction of ultimate tensile and shear 

stress of adhesive and welded specimens in general. The RSM, however, would be more 

precise for the prediction of ultimate tensile stress of the welded specimens. 
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Table 3.4 Coefficient of determination values for RSMs and proposed equations 

Strength type 
RSM Design equation 

Adhesive Welded Adhesive Welded 

Tensile stress 0.4386 0.9821 0.8864 0.8864 

Shear stress 0.3134 0.6635 0.9920 0.9920 

 

3.7 CONCLUSIONS 

In this study, the tensile and shear strength testings with the adhesive and weld 

specimens were conducted not only to study the effect of temperature and width on each 

strength, but also to help better understand the mechanical behavior of adhesive and 

welded connections used in dynamic message signs (DMSs). For the testings, the single 

set of 30 combinations was tested per strength under nine different variations of 

temperature and width. Each combination comprised two specimens for each strength. 

The effect of temperature and width on each strength for both adhesive and welded 

specimens was studied with the established experimental program in associated with 

American Society of Testing and Materials (ASTM) and American Welding Society 

(AWS). Each strength of adhesive specimens was also compared with that of welded 

specimens. The tensile and shear testing data were analyzed statistically to generate 

Response Surface Metamodels (RSMs) and 3D surface plots to observe the effect of 

temperature and specimen’s width on the both stresses. The following conclusions can be 

derived from experimental testing and evaluation: 

1. Due to the effect of temperature, in the tensile strength test of adhesive 

specimens, the highest increment and decrement in the tensile stress were 31.9% and 
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11%. For the welded specimens, the highest increment and decrement were 36.2% and 

39.7%. Owing to the effect of width, for the tensile adhesive strength testing, the peak 

increment and decrement in the tensile stress were 2.5% and 9.4%. With the welded 

specimens, the peak increment and decrement in the tensile stress were 49% and 31.9%. 

All the adhesive tensile specimens failed with rupture failure, whereas all the welded 

tensile specimens failed with weld throat failure.  

2. For the adhesive tensile specimens, tensile stress was observed to be decreasing 

when temperature was increased below glass transition temperature of the adhesive, 

whereas tensile stress was found to be increasing with the increment of temperature 

above adhesive’s glass transition temperature. This can be attributed to the increase in 

adhesive’s flexibility which improved the cohesive behavior of the adhesive in the joint 

when temperature was increased above adhesive’s glass transition temperature. For the 

welded tensile specimens, tensile stress of the majority of the tested specimens was found 

to be lower than the design tensile stress of the weld acquired from Aluminum Design 

Manual (Aluminum Association 2010). 

3. With the effect of temperature, in the shear strength test of adhesive specimens, 

the maximum increment and decrement in the shear stress were 30.4% and 16.8%. For 

the welded specimens, the maximum increment and decrement were 18.4% and 1.1%. 

Along with the effect of width, in the shear strength test of adhesive specimens, the 

highest increment and decrement in the shear stress were 19.3% and 10.6%. For the 

welded specimens, the highest increment and decrement were 14.9% and 4.1%. All the 

adhesive shear specimens failed with cohesive failure mode except for two specimens, 

whereas weld throat failure was observed in all welded shear specimens. 
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4. For the adhesive shear specimens, increment of temperature below adhesive’s 

glass transition temperature observed decreasing trend in the shear stress, while 

increment of temperature beyond adhesive’s glass transition temperature followed 

increasing trend in the shear stress. For the welded shear specimens, shear stress of all the 

tested specimens was observed to be significantly higher compared to the design shear 

stress of the weld obtained from Aluminum Design Manual (Aluminum Association 

2010). 

5. The tensile stress of welded specimens was found to be significantly higher than 

the adhesive specimen with the maximum difference of 783% for 13 mm width at -56.67 

°C and the minimum difference of 376% for 25 mm width at 52.5 °C. In the shear test, 

each of the welded specimens was observed to have higher shear strength than adhesive 

specimens with the maximum difference of 908% for 25 mm width at 52.5 °C and 

minimum difference of 618% for 13 mm width at -56.67 °C. 

6. The RSMs that were developed were used to efficiently predict the ultimate 

tensile and shear stresses of both adhesive and welded specimens and to visibly observe 

the effect of temperature and width on both stresses. A significant effect of temperature 

was observed for the tensile and shear stress of welded specimens, whereas the effect of 

width was found to be substantial for the tensile stress of welded specimens. The 

practical design equations were also developed for the prediction of both ultimate tensile 

and shear stresses of the tested specimens. Overall, the developed design equations were 

able to better predict the measured ultimate tensile stress of adhesive specimens and shear 

stress of both adhesive and welded specimens than the RSMs. The RSM, however, was 
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more reliable for forecasting the ultimate tensile stress of welded specimens relative to 

the corresponding design equation. 
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CHAPTER 4: PEEL AND CLEAVAGE CHARACTERISTICS OF ADHESIVE 

AND WELDED JOINTS IN DYNAMIC MESSAGE SIGNS 

 

4.1 ABSTRACT 

This paper was intended to examine the peel and cleavage strength of adhesive and 

welded connections in a dynamic message sign (DMS). For this study, 30 peel specimens 

and 30   cleavage specimens were fabricated with different widths, conditioned with 

various extreme temperatures, and tested to determine their peel and cleavage strengths 

following the guidelines of ASTM D1876 and ASTM D1062, respectively. Effects of 

temperature and width on the peel and cleavage strength were evaluated by interpreting 

the test data in a graphical and statistical manner. For the adhesive specimens, due to the 

increment of temperature, the maximum increments were found to be 70.4% and 37.8%, 

and the maximum increments owing to the increment of width were 32% and 28.5% for 

the respective peel and cleavage strength. The welded specimens were found to be more 

resilient than the adhesive specimens in terms of peel strength, but to have lower 

cleavage strength up to 31% compared to the adhesive specimens. Response Surface 

Metamodels (RSMs) acquired from the statistical analysis of testing data was employed 

to create 3D surface plots that served as the basis to efficiently explore the effects of 

temperature and width on each strength. 

Keywords: Dynamic message sign; Peel; Cleavage; Strength, Adhesive; Weld. 
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4.2 INTRODUCTION 

The major structural components, frames and aluminium back skin in a Dynamic 

Message Sign (DMS), are typically bonded with welded connections. Adhesives are 

being popular among DMS industrialists (Higgins 2000, Hill 2003) with its numerous 

advantages such as workability with dissimilar metals and efficient manufacturing. 

Further, loads are distributed homogeneously in adhesive connections compared to 

welded connections, where high residual stresses and distortion are often observed during 

the welding process. Therefore, adhesives can be a good alternative to conventional 

welded connections for use in DMSs. To increase the possible use of adhesives, a 

comprehensive experimental program is required for comparison of adhesive and welded 

connections, and their peel and cleavage tests need to be performed. 

Most of the studies (Amatya et al. 2020a, 2020b, Savvilotidou et al. 2017, Goglio and 

Rezaei 2014, Silva et al. 2016, Zhang et al. 2010, Agarwal et al. 2014, Kim et al. 2012, 

Ferreira et al. 2002, Sugiman et al. 2013a, 2013b, Sousa et al. 2018) have focused on 

determining the tensile and shear strength of adhesive, but adhesives have been rarely 

examined for peel (Amatya et al. 2020b, Kim and Aravas (1988, De Freitas and Sinke 

2014, Broughton et al. 1999) and cleavage strength (Amatya et al. 2020b, Shahid and 

Hashim 2000, 2002, Zheng et al. 2007). Kim and Aravas (1988) concluded that peel 

strength was significant to the yield strength, Young’s modulus, ductility and thickness of 

flexible adherend. De Freitas and Sinke (2014) performed the roller peel tests for bonded 

composite-to aluminum joints to examine the properties of adhesive. A lower peel 

strength was observed for the specimens with composite adherend rather than the flexible 

adherend. Adhesively bonded T-peel specimens exposed to temperature were tested by 
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Broughton et al. (1999), indicating that higher static strength and average peeling were 

observed for smaller specimens due to greater application of uniform clamping forces in 

the course of curing process. Regarding the investigation of cleavage strength, Shahid 

and Hashim (2000) investigated the cleavage strength of adhesively bonded specimens, 

which observed adhesive thickness insignificant to the cleavage strength. Shahid and 

Hashim (2002) also studied the effect of surface roughness in the cleavage strength of 

standard steel/steel specimens and found that cleavage strength was increased with the 

increment in surface area and roughness of adherend. Zheng et al. (2007) demonstrated 

that the hardness of the adhesively bonded area increased the cleavage strength slightly.  

Studies have shown that strength and durability of adhesives are affected by 

temperature, however, many studies have been performed for tensile and shear tests while 

peel and cleavage strengths have been scarcely examined. A detail study to investigate 

peel and cleavage strength of adhesives and welded connections for varying temperatures 

is required to be used in DMSs. In this study, peel and cleavage strength of adhesive was 

investigated for the effect of temperatures, comprising extreme high and low temperature 

surroundings and compared with strength of weld connections. Excluding this section, 

this paper covers laboratory strength testing, results and discussion, statistical analysis, 

and conclusions. 

4.3 LABORATORY STRENGTH TESTING 

The testing details the study of peel and cleavage tests in variation with width and 

temperature conditions. This section provides information about the testing combinations, 

tested specimens, and testing procedures. 
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4.3.1 TESTING COMBINATIONS 

30 peel specimens and 30 cleavage specimens were tested to study the strength of 

adhesive and welded connections. Note, each combination consisted of two specimens 

for peel and cleavage strengths individually. 12 adhesive specimens (A1-A6) and 18 

welded specimens (W1-W9) were tested for both peel and cleavage strength evaluation. 

The combination table comprising respective temperature and width is presented in Table 

4.1. Data provided in combinations C1, C2, C3, C7, C8, C10, C12, C14, and C16 for 

adhesive specimens were recycled from (Amatya et al. 2020c) to investigate the effects of 

temperature and width for a wide range on each strength. The different combinations 

were generated by Amatya et al. (2020c) with Plackett-Burman Design (Seo 2013, 

Chandorkar et al. 2008, Seo and Linzell 2010, 2012, 2013a, 2013b) using commercially 

available statistical software JMP (SAS Institute Inc. 2008). Additional details for the 

combinations can be obtained elsewhere (Amatya et al. 2020c).  

 

A temperature-controlled chamber was utilized for conditioning the specimens per 

combination. An ID was provided for each specimen, for instance, W-T-13TH-20T-W7, 

where the first character is the specimen type (A-adhesive/W-welded), and the following 

character is to identify the test type (P-peel/C-cleavage). The width of the specimens is 

characterized by 13TH, 25TH, and 38TH for 13 mm, 25 mm, and 38 mm specimen 

width. T represents the temperature of the conditioning environment, and the last 

character denotes the combination number depicted in Table 1. The specimens with 

identical conditioning temperatures were deposited in a group and conditioned for at least 
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24 hours before testing. For example, the specimens for combinations A4, A5, A6, W4, 

W5, and W6 were placed in the chamber at -56.67 °C collectively before testing them. 

Table 4.1 Combinations for the experimental program 

Specimen 

type 
Combination Specimen ID Temperature (°C) 

Width 

(mm) 

Adhesive 

A1 A-P/C-13TH-93.3T-A1 93.3 13 

A2 A-P/C-25TH-93.3T-A2 93.3 25 

A3 A-P/C-38TH-93.3T-A3 93.3 38 

A4 A-P/C-13TH-(-56.7)T-A4 -56.7 13 

A5 A-P/C-25TH-(-56.7)T-A5 -56.7 25 

A6 A-P/C-38TH-(-56.7)T-A6 -56.7 38 

C1 A-P/C-13TH-20.0T-C1 20 13 

C2 A-P/C-38TH-20.0T-C2 20 38 

C3 A-P/C-25TH-20.0T-C3 20 25 

C7 A-P/C-13TH-52.5T-C7 52.5 13 

C8 A-P/C-25TH-52.5T-C8 52.5 25 

C10 A-P/C-38TH-52.5T-C10 52.5 38 

C12 A-P/C-13TH-85.0T-C12 85 13 

C14 A-P/C-25TH-85.0T-C14 85 25 

C16 A-P/C-38TH-85.0T-C16 85 38 

Welded 

W1 W-P/C-13TH-93.3T-W1 93.3 13 

W2 W-P/C-25TH-93.3T-W2 93.3 25 

W3 W-P/C-38TH-93.3T-W3 93.3 38 

W4 W-P/C-13TH-(-56.7)T-W4 -56.7 13 

W5 W-P/C-25TH-(-56.7)T-W5 -56.7 25 

W6 W-P/C-38TH-(-56.7)T-W6 -56.7 38 

W7 W-P/C-13TH-20.0T-W7 20 13 

W8 W-P/C-25TH-52.5T-W8 52.5 25 

W9 W-P/C-38TH-85.0T-W9 85 38 

 

4.3.2 TESTED SPECIMENS 

This section discusses the geometry and fabrication of adhesive and welded specimens 

for peel and cleavage tests. 
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4.3.2.1 ADHESIVE SPECIMENS 

The adhesive peel and cleavage specimens were fabricated based on ASTM D1876 

(ASTM D1876 2008) and ASTM D1062 (ASTM D1062 2008), respectively. The 

representative peel and cleavage specimens with a width of 13 mm is shown in Figure 4.1 

and Figure 4.2. The peel specimens were fabricated by bending two 5052 aluminum metal 

bars 90°, leaving 76 mm from the tail of the specimen unbent. The bent aluminum bars 

were uniformly bonded with the LORD 406-19GB (LORD Corporation 2018) acrylic 

adhesive to the length of 229 mm. The cleavage specimens were manufactured by attaching 

two 5052 aluminum blocks with the acrylic adhesive. The specimens were cured for at 

least two weeks after their fabrication and all the specimens were prepared and distributed 

by a local DMS producer in South Dakota in the United States.  
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                                                                       (a) 

 

                                                          (b) 

Figure 4.1: Geometry of adhesive peel specimens (a) top view and (b) side view (All 

dimensions are in mm). 

 

   

        (a)         (b) 

Figure 4.2: Geometry of adhesive cleavage specimens (a) side view and (b) front view 

(All dimensions are in mm). 
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4.3.2.2 WELDED SPECIMENS 

The welded peel and cleavage specimens were manufactured following ASTM 

D1876 (ASTM D1876 2008) and ASTM D1062 (ASTM D1062 2008) standards, 

respectively following the guidelines of American Welding Society (American Welding 

Society 2015). The local DMS producer used 4043 aluminum alloy for welding in order 

to fabricate the welded specimens. The dimension of the welded specimens was 

maintained closely to that of adhesive specimens for consistency. The sample welded 

peel and cleavage specimens with a width of 13 mm is shown in Figure 4.3 and Figure 

4.4, correspondingly. As in the adhesive specimens, the 5052 aluminum was used to 

fabricate all types of the welded specimens. The peel specimens were fabricated by 

bending two 5052 aluminum bars 90° up to 76 mm from the tail of the specimen. The 

bent aluminum bars were joint by 3.2 mm fillet welds up to the length of 229 mm. The 

cleavage specimens were manufactured by attaching two aluminum blocks with 6.35 mm 

fillet welds.  

 

 

                                                               (a) 
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                                                              (b) 

Figure 4.3: Geometry of welded peel specimens (a) top view and (b) side view (All 

dimensions are in mm). 

 

   

(a)             (b) 

Figure 4.4: Geometry of welded cleavage specimens (a) side view and (b) front view (All 

dimensions are in mm). 

 

4.3.3 TESTING PROCEDURE 

Two different types of MTS (Material Testing System) Universal Testing Systems 

were utilized for the testing of peel and cleavage specimens. Each specimen was mounted 

in MTS grips before the tests, and all specimens were tested to failure at room 
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temperature. Cleavage specimens were tested using an MTS 370 Landmark (MTS 

Systems Corporation 2018) 100-kN servo-hydraulic load unit calibrated to 20% of its 

load capacity whereas the peel tests were performed using MTS Insight 5 (MTS Systems 

Corporation 2019). The tests were performed with the application of loading at a free 

crosshead speed of 254 mm/min for the peel specimens and 1.27 mm/min for the 

cleavage specimens. The testing procedures for peel and cleavage tests are provided in 

ASTM D1876 (ASTM D1876 2008) and ASTM D1062 (ASTM D1062 2008) standards. 

The testing setups for the peel and cleavage specimens are presented in Figure 4.5. 

 

                 

                             (a)                                                                       (b) 
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                              (c)                                                                       (d) 

Figure 4.5: Installation of the specimens in the testing machine (a) adhesive peel, (b) 

welded peel, (c) adhesive cleavage and (d) welded cleavage. 

 

4.4 RESULTS AND DISCUSSION 

Peel and cleavage strength tests along with their results are discussed here. Load-

displacement relationships were examined for all the tested specimens to calculate the 

strength of each. A graphical description for the effect of temperature and width on each 

of both adhesive and welded specimens is provided as follows. 

 

4.4.1 CHARACTERISTICS FOR PEEL SPECIMENS 

Figure 4.6 presents the load-displacement curves for the peel specimens. The peel 

strength was computed as the average load per unit width of the specimens for the first 

127 mm of peeling after the initial peak. As two specimens were tested for each 

combination generated in Table 4.1, an average peel strength value was calculated from 

the peel strengths obtained from the first and second tested specimens. Figure 4.6a 
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presents the behavior of each adhesive peel specimen with load-displacement graphs. 25 

mm adhesive peel specimen from combination C8 conditioned at 52.5 °C displayed the 

maximum peel strength, whereas 38 mm adhesive peel specimen from combination C10 

conditioned at 52.5 °C exhibited the minimum peel strength. The load-displacement 

curves of welded peel specimens is shown in Figure 4.6b. For welded peel specimens, the 

specimen from combination W7 having 13 mm width conditioned at 20 °C and the 

specimen from combination W3 having 38 mm width conditioned at 93.33 °C were 

found to have maximum and minimum peel strengths, respectively. The peel strengths 

and failure modes of the adhesive and welded peel specimens tested for all the 

combinations are tabulated in Table 4.2. The peel strengths presented in this table 

correspond to the average peel strength computed from two peel specimens tested per 

combination. The equation for the computation of peel strength is provided in Equation 

4.1. 

 𝑓𝑎𝑝 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑃
𝑊⁄ )       (Equation 4.1) 

where fap denotes the peel strength, P represents the load observed during the test, and 

W is the width of the peel specimen. 
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                                                                   (a) 

 

                                                                    (b) 

Figure 4.6: Representative load-displacement curves: (a) adhesive peel specimens and (b) 

welded peel specimens 
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Table 4.2 Peel strength from the peel test 

Specimen 

type 
Combination Specimen ID 

Peel strength, 

fap(N/mm) 
Failure mode 

Adhesive 

A1  A-P-13TH-93.3T-A1 5.06 cohesive 

A2  A-P-25TH-93.3T-A2 5.26 cohesive 

A3 A-P-38TH-93.3T-A3 3.47 cohesive 

A4 A-P-13TH-(-56.7)T-A4 5.42 cohesive 

A5 A-P-25TH-(-56.7)T-A5 6.61 cohesive 

A6 A-P-38TH-(-56.7)T-A6 5.34 cohesive 

C1  A-P-13TH-20.0T-C1 8.10 cohesive 

C2  A-P-38TH-20.0T-C2 5.82 cohesive 

C3 A-P-25TH-20.0T-C3 4.41 cohesive 

C7 A-P-13TH-52.5T-C7 7.73 cohesive 

C8 A-P-25TH-52.5T-C8 7.51 cohesive 

C10 A-P-38TH-52.5T-C10 6.10 cohesive 

C12 A-P-13TH-85.0T-C12 6.79 cohesive 

C14 A-P-25TH-85.0T-C14 7.63 cohesive 

C16 A-P-38TH-85.0T-C16 6.16 cohesive 

Welded 

W1 W-P-13TH-93.3T-W1 40.42 Weld throat failure 

W2 W-P-25TH-93.3T-W2 14.67 Weld throat failure 

W3 W-P-38TH-93.3T-W3 4.52 Weld throat failure 

W4 W-P-13TH-(-56.7)T-W4 16.06 Weld throat failure 

W5 W-P-25TH-(-56.7)T-W5 19.98 Weld throat failure 

W6 W-P-38TH-(-56.7)T-W6 10.74 Weld throat failure 

W7 W-P-13TH-20.0T-W7 65.88 Weld throat failure 

W8 W-P-25TH-52.5T-W8 35.80 Weld throat failure 

W9 W-P-38TH-85.0T-W9 14.81 Weld throat failure 

 

Representative failure modes of the peel specimens are shown in Figure 4.7. During 

the test, cohesive failure was observed in all the adhesive peel specimens, indicating good 

adhesion between the aluminum surface. Figure 4.7a and Figure 4.7b illustrates the 

representative failure modes of peel specimens with 13 mm and 38 mm widths. Figure 

4.7c and Figure 4.7d presents the example of weld throat failure in peel specimens with 
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13 mm and 38 mm widths. All peel specimens were observed to have this failure mode. 

In this failure mode, failure occurs at the weld throat connecting the aluminums. 

 

  

                                     (a)                                                                    (b) 

 

  

                                     (c)                                                                    (d) 

Figure 4.7: Representative failure modes of peel specimens (a) adhesive with 13 mm 

width, (b) adhesive with 38 mm width, (a) welded with 13 mm width, and (d) welded 

with 38 mm width 
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4.4.1.1 EFFECT OF TEMPERATURE 

The effect of temperature on the peel strength of both the adhesive and welded peel 

specimens is shown in Figure 4.8. The behavior of adhesive specimens on the peel 

strength due to the temperature effect is depicted in Figure 4.8a. The peel strength of 13 

mm specimens is increased by 49.7% with the increment of temperature from -56.67 °C 

to 20 °C. When the temperature is further increased from 20 °C to 52.5 °C, 52.5 °C to 85 

°C, and 85 °C to 93.33 °C, the peel strength declines by 4.7%, 12.2%, and 25.5%, 

respectively as shown in A4-C1-C7-C12-A1. For 25 mm specimens, the decrement in the 

peel strength is 33.3% when the temperature elevates from -56.67 °C to 20 °C. The peel 

strength is increased by 70.4% and 1.6% with an additional increment of temperature 

from 20 °C to 52.5 °C and 52.5 °C to 85 °C respectively. However, the peel strength 

decreases significantly by 31.1% when the temperature increases by 85 °C to 93.33 °C as 

depicted in A5-C3-C8-C14-A2. The peel strength of 38 mm specimens improved by 

8.9%, 4.8%, and 1.0% with an elevation of temperature from -56.67 °C to 20 °C, 20 °C to 

52.5 °C, and 52.5 °C to 85 °C. The peel strength decreases by 43.7% when the 

temperature increases from 85 °C to 93.33 °C (see A6-C2-C10-C16-A3). 

The influence of temperature on the peel strength of the welded specimens is 

presented in Figure 4.8b. For the 13 mm specimens, the peel strength is raised 

substantially by 310.3% with the increment of temperature from -56.67 °C to 20 °C, 

however, it is decreased by 38.7% when temperature is increased from 20 °C to 93.33 °C 

as shown in W4-W7-W1. The peel strength of 25 mm welded specimens is increased by 

79.1% when temperature is increased from -56.67 °C to 52.5 °C whereas the peel 

strength is decreased by 59.0% with a further elevation of temperature from 52.5 °C to 



172 

 

93.33 °C as shown in W5-W8-W2. As shown in W6-W9-W3, the peel strength of 38 mm 

welded specimens is increased by 37.9% with the increase of temperature from -56.67 °C 

to 85 °C. The increment of temperature from 85 °C to 93.33 °C decreased the peel 

strength by 69.5%.  
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                                                                 (a) 

 

                                                                  (b) 

Figure 4.8: Temperature effect on peel strength: (a) adhesive and (b) weld 
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at various temperatures is plotted in a bar chart in Figure 4.8a. At -56.67°C, the peel 

strength is increased by 22.1% and decreased by 19.2% when the specimen width 

increases from 13 mm to 25 mm and 25 mm to 38 mm, respectively, as shown in A4-A5-

A6. The peel strength is decreased by 45.6% and increased by 32% with an increment of 

specimen width from 13 mm to 25 mm and 25 mm to 38 mm at 20 °C as shown in C1-

C3-C2. For the specimens at 52.5 °C, the peel strength declines by 2.8% and 18.8% when 

width of specimen increases from 13 mm to 25 mm and 25 mm to 38 mm as displayed in 

C7-C8-C10. The peel strength of specimens at 85 °C is improved by 12.5% but reduced 

by 19.2% as depicted in C12-C14-C16 with an increment of specimen width from 13 mm 

to 25 mm and 25 mm to 38 mm. When the width of the specimen at 93.33 °C is increased 

from 13 mm to 25 mm, the peel strength is increased by 4.1% only, whereas the peel 

strength decreases by 34.1% when the specimen width is increased from 25 mm to 38 

mm as displayed in A1-A2-A3. 

In Figure 4.9b, the effect of width on the peel strength for the welded specimens at 

different temperatures is shown. The peel strength at -56.67 °C is increased by 24.4% and 

decreased by 46.2% with an increment of specimen width from 13 mm to 25 mm and 25 

mm to 38 mm, respectively as displayed in W4-W5-W6. As shown in W1-W2-W3 at 

93.33 °C, the peel strength is decreased by 63.7% with an increment of specimen width 

from 13 mm to 25 mm. The peel strength is further decreased by 69.2% with an 

increment of specimen width from 25 mm to 38 mm. The peel strength is decreased by 

45.7% when the peel strength of the 25 mm welded specimens at 52.5 °C is compared 

with that of the 13 mm welded specimens at 20 °C (see W7 and W8). The comparison 
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between the 38 mm specimens at 85 °C and 25 mm specimens at 52.5 °C shows 58.6% 

decrement in peel strength (see W8-W9). 

 
                                                                 (a) 

 
                                                                (b) 

Figure 4.9: Width effect on peel strength: (a) adhesive and (b) weld 
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resilient than the adhesive specimens by 699%, 197%, and 713% at 93.33 °C, -56.67 °C, 

and 20 °C, individually, as displayed in pairs A1-W1, A4-W4, and C1-W7. The 25 mm 

welded specimens at 93.33 °C, -56.67 °C, and 52.5 °C were found to have 179%, 202%, 

and 376% higher peel strength compared to the adhesive specimens as shown in pairs 

A2-W2, A5-W5, and C8-W8. For the 38 mm specimens at 93.33 °C, -56.67 °C, and 85 

°C, the welded specimens are observed to have 30%, 101%, and 140% higher peel 

strength compared to the adhesive specimens (see pairs A3-W3, A6-W6, and C16-W9).  

 

Figure 4.10: Percent difference in peel strength between adhesive and welded specimens 
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width specimen conditioned at 93.33 °C from combination A3 resists the maximum load, 

whereas the 13 mm width specimen conditioned at 20 °C from combination C1 produces 

the minimum load. The curves of each specimen are displayed in Figure 4.11b. The peak 

load was observed by the 38 mm cleavage specimen conditioned at 85 °C from W9, 

while the least load was showed by the 25 mm cleavage specimen conditioned at 52.5 °C 

from W8. The cleavage strength at the considered temperature and width for both 

adhesive and welded specimens with their respective failure modes are presented in Table 

4.3. It should be noted that the cleavage strength shown in this table represents the 

average value of cleavage strength acquired from the first and second cleavage specimens 

tested for each combination. Equation 4.2 shown below was used for the calculation of 

cleavage strength. 

𝑓𝑐 =
𝑃𝑐𝑢

𝑊⁄         (Equation 4.2) 

where fc is cleavage strength, Pcu is the peak load recorded during the test, and W is 

width of the cleavage specimen. 
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                                                               (a) 

 

                                                               (b) 

Figure 4.11: Load-displacement curve: (a) adhesive cleavage specimens and (b) welded 

cleavage specimens 
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Table 4.3 Cleavage strength from the cleavage test 

Specimen type Combination Specimen ID 
Cleavage strength 

(N/mm) 
Failure mode 

Adhesive 

A1  A-C-13TH-93.3T-A1 261.19 cohesive 

A2  A-C-25TH-93.3T-A2 260.17 cohesive 

A3 A-C-38TH-93.3T-A3 236.44 cohesive 

A4 A-C-13TH-(-56.7)T-A4 242.24 cohesive 

A5 A-C-25TH-(-56.7)T-A5 201.12 cohesive 

A6 A-C-38TH-(-56.7)T-A6 215.30 cohesive 

C1 A-C-13TH-20.0T-C1 173.52 cohesive 

C2 A-C-38TH-20.0T-C2 191.19 cohesive 

C3 A-C-25TH-20.0T-C3 195.01 cohesive 

C7 A-C-13TH-52.5T-C7 198.32 cohesive 

C8 A-C-25TH-52.5T-C8 198.11 cohesive 

C10 A-C-38TH-52.5T-C10 254.55 cohesive 

C12 A-C-13TH-85.0T-C12 220.62 cohesive 

C14 A-C-25TH-85.0T-C14 188.74 cohesive 

C16 A-C-38TH-85.0T-C16 202.82 cohesive 

Welded 

W1 W-C-13TH-93.3T-W1 453.77 Weld throat failure 

W2 W-C-25TH-93.3T-W2 217.07 Weld throat failure 

W3 W-C-38TH-93.3T-W3 162.76 Weld throat failure 

W4 W-C-13TH-(-56.7)T-W4 499.92 Weld throat failure 

W5 W-C-25TH-(-56.7)T-W5 253.82 Weld throat failure 

W6 W-C-38TH-(-56.7)T-W6 148.23 Weld throat failure 

W7 W-C-13TH-20.0T-W7 449.88 Weld throat failure 

W8 W-C-25TH-52.5T-W8 216.42 Weld throat failure 

W9 W-C-38TH-85.0T-W9 191.13 Weld throat failure 

 

As listed in Table 4.3, all the adhesive cleavage specimens were observed to fail with 

cohesive failure mode. Figure 4.12 presents the typical failure modes of the adhesive and 

welded cleavage specimens having a width of 13 mm and 38 mm, respectively. As shown 

in Figure 4.12a and Figure 4.12b, in this failure mode, adhesive can be seen on both 

surfaces of aluminum block after the test. For the welded specimens, weld throat failure 

was found to be the only failure mode as in the tested peel welded specimens. Figure 

4.12c and Figure 4.12d represents the typical failure modes of the welded cleavage 
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specimens for specimens with 13 mm and 38 mm width. Failure is observed only on the 

weld throat connecting aluminum blocks. 

 

  

                                     (a)                                                                    (b) 

   

                                     (c)                                                                    (d) 

Figure 4.12: Representative failure modes of cleavage specimens (a) adhesive with 13 

mm width, (b) adhesive with 38 mm width, (c) welded with 13 mm width, and (d) welded 

with 38 mm width 
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cleavage specimens is presented. The cleavage strength of 13 mm specimens is observed 

to be decreased by 28.4% with the increase in temperature from -56.67 °C to 20 °C. The 

cleavage strength is elevated by 14.3% when the temperature increases beyond 20 °C to 

52.5 °C. With further increment of temperature from 52.5 °C to 85 °C and 85 °C to 93.33 

°C, the cleavage strength of adhesive specimens is increased by 11.2% and 18.4%, 

respectively, as depicted in A4-C1-C7-C12-A1. The cleavage strength of 25 mm 

specimens is declined by 3% when temperature of the specimens is increased from -56.67 

°C to 20 °C and increased by 1.6% with further increment of temperature from 20 °C to 

52.5 °C. The cleavage strength is decreased by 4.7% and increased by 37.8% when 

temperature increases from 52.5 °C to 85 °C and 85 °C to 93.33 °C (see A5-C3-C8-C14-

A2). For the 38 mm cleavage specimens, the strength is decreased by 11.2% when 

temperature is raised from -56.67 °C to 20 °C, however, is increased by 33.1% when 

temperature rises from 20 °C to 52.5 °C. The cleavage strength is observed to be 

decreased by 20.3% and increased by 16.6% with the increment of temperature from 52.5 

°C to 85 °C and 85 °C to 93.33 °C (see A6-C2-C10-C16-A3). 

The temperature effect for welded specimens on cleavage strength is displayed in 

Figure 4.13b. When the temperature is increased from -56.67 °C to 20 °C, the strength for 

13 mm welded specimens is declined by 10%, whereas additional increment of 

temperature from 20 °C to 93.33 °C raised the cleavage strength by 0.9% only as shown 

in W4-W7-W1. With the elevation of temperature from -56.67 °C to 52.5 °C for the 25 

mm specimens, the strength is decreased by 14.7%, however, the strength is slightly 

increased by 0.3% when temperature increases from 52.5 °C to 93.33 °C as portrayed in 

W5-W8-W2. In W6-W9-W3 for 38 mm specimens, it is observed that the strength is 
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increased by 28.9% with the increment of temperature from -56.67 °C to 85 °C, whereas 

it is decreased by 14.8% when temperature increases from 85 °C to 93.33 °C. 

 
                                                                (a) 

 
                                                                (b) 

Figure 4.13: Temperature effect on cleavage strength (a) adhesive and (b) weld 
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4.4.2.2 EFFECT OF WIDTH 

The effect of specimen’s width on the cleavage strength is shown in Figure 4.14 in 

the form of a bar chart. Figure 4.14a shows the effect of width in the strength of adhesive 

specimens at different temperatures taken for study. The cleavage strength at -56.67 °C 

reduces by 17% with an increment of specimen width from 13 mm to 25 mm, but the 

strength is increased by 7.1% at -56.67 °C with the increment from 25 mm to 38 mm 

width as presented in A4-A5-A6. At 20 °C, the strength is improved by 12.4% and 

decreased by 2% with the increment of specimen width from 13 mm to 25 mm and 25 

mm to 38 mm as shown in C1-C3-C2. The strength of the specimens at 52.5 °C is only 

decreased by 0.1% but increased by 28.5% with the increment of specimen width from 13 

mm to 25 mm and 25 mm to 38 mm (see C7-C8-C10). At 85 °C, when the specimen 

width is increased from 13 mm to 25 mm, the strength is decreased by 14.4% and 

increased by 7.5% when the specimen width is increased from 25 mm to 38 mm (refer to 

C12-C14-C16). The strength at 93.33 °C decreases by 0.4% and 9.1% when the specimen 

width is increased from 13 mm to 25 mm and 25 mm to 38 mm as shown in A1-A2-A3. 

In Figure 4.14b, the effect of width on cleavage strength for welded cleavage 

specimens is presented. The strength at -56.67 °C is decreased by 49.2% and 41.6% when 

the width of welded cleavage specimen is increased from 13 mm to 25 mm and 25 mm to 

38 mm as shown in W4-W5-W6. At 93.33 °C, the strength of welded specimens is 

decreased by 52.2% and by 25.0% with the increment of specimen width from 13 mm to 

25 mm and from 25 mm to 38 mm as illustrated in W1-W2-W3. The 25 mm specimens at 

52.5 °C are observed to have 51.9% less strength than 13 mm welded cleavage specimens 

at 20 °C (see W7 and W8). The 38 mm specimens at 85 °C exhibit 11.7% reduction in 
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the cleavage strength compared to the 25 mm specimens at 52.5 °C as shown in W8 and 

W9. 

 
                                                                (a) 

 
                                                                (b) 

Figure 4.14: Width effect on cleavage strength for cleavage specimens (a) adhesive and 

(b) weld 
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4.4.2.3 COMPARISON BETWEEN ADHESIVE AND WELDED SPECIMENS 

A comparative demonstration of cleavage strength between each combination of 

adhesive and welded cleavage specimens is shown in Figure 4.15. The 13 mm welded 

specimens are observed to have higher cleavage strength than the adhesive specimens by 

74% at 93.33 °C, 106% at -56.67 °C, and 159% at 20 °C as shown in pairs A1-W1, A4-

W4, and C1-W7. At 93.33 °C, the 25 mm welded specimens are found to have 17% less 

cleavage strength than the adhesive specimens as shown in pair A2-W2. The 25 mm 

welded specimens at -56.67 °C, and 52.5 °C observed 26% and 9% higher cleavage 

strength in comparison to the adhesive specimens as displayed in pairs A5-W5 and C8-

W8. For the 38 mm width at 93.33 °C, -56.67 °C, and 85 °C, the welded specimens are 

shown to have 31%, 31%, and 6% lower cleavage strength compared to the adhesive 

specimens (see pairs A3-W3, A6-W6, and C16-W9). 

 

Figure 4.15: Percent difference in cleavage strength between adhesive and welded 

specimens 
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4.5 STATISTICAL ANALYSIS 

Response Surface Metamodels (RSMs), which have been formerly studied by Seo 

and Linzell (2010, 2012, 2013) were generated for the prediction of peel and cleavage 

strengths with respect to temperature and width parameters and its interaction. A 

statistical software, R (Team 2015), was used to create a separate RSM using each of the 

datasets obtained from the peel and cleavage tests through regression analysis. The RSMs 

for the adhesive peel strength, the welded peel strength, the adhesive cleavage strength, 

and the welded cleavage strength are shown in Equation 4.3, Equation 4.4, Equation 4.5, 

and Equation 4.6, respectively.  

 

𝑓𝑎𝑝𝑎 = 7.2529 − 0.0279 𝑇 − 0.7197 𝑊 − 0.1547𝑇𝑊 − 1.1328𝑇2  − 0.7080𝑊2 

          (Equation 4.3) 

𝑓𝑎𝑝𝑤 = 46.7757 + 2.2097 𝑇 − 10.4159𝑊 − 6.9719𝑇𝑊 − 32.1094𝑇2  + 4.9385𝑊2 

          (Equation 4.4) 

𝑓𝑐𝑎 = 183.9167 + 8.8019𝑇 + 0.2911𝑊 + 1.9458𝑇𝑊 + 35.9261𝑇2 + 12.1350𝑊2 

          (Equation 4.5) 

𝑓𝑐𝑤 = 215.8688 − 8.4411 𝑇 − 154.5978𝑊 + 19.6156𝑇𝐻 + 19.7272𝑇2 +

84.4435𝑊2         (Equation 4.6) 

where fapa and fapw are the peel strength for the adhesive and welded specimens, fca and 

fcw are the cleavage strength of the adhesive and welded specimens, T is the conditioning 

temperature, and W is the specimen width. 
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The RSMs shown in Equation 4.3 through Equation 4.6 for the prediction of the 

adhesive and welded peel and cleavage strength were further analysed to develop 3D peel 

strength surface plots that can be used for efficient exploration of the effects of 

temperature and width on each strength without omission of the considered parameters 

between all the ranges considered in this study. Figure 4.16 presents the 3D surface plots 

of the predicted peel strength of adhesive and welded specimens for different values of 

temperature and width. The effect of these two parameters on the peel strength of 

adhesive specimens is shown in Figure 4.16a. The plot of peel strength for the adhesive 

specimens is found to be of convex shape due to the effect of temperature and specimen’s 

width. The increase in width from 13 mm to 38 mm decreased the peel strength by 

18.82% at lower temperature of -56.67 °C and by 27.94 % at higher temperature of 93.33 

°C. With the increase in temperature (-56.67 °C to 93.33 °C), the peel strength is 

increased by 4.22% at lower width (13 mm), however, at higher width (38 mm), the peel 

strength is dropped by 7.49% with the increment in temperature (-56.67 °C to 93.33 °C). 

The 3D surface plot for the peel strength of welded specimens for various temperature 

and width is observed to be of tunnel shape as displayed in Figure 4.16b. With the 

increment in width of the specimens from 13 mm to 38 mm, significant decrements in 

peel strength is observed. The peel strength is reduced by 33.05% at lower temperature (-

56.67 °C) and by 88.71% at higher temperature (93.33 °C). Due to increment in 

temperature from -56.67 °C to 93.33 °C, the peel strength is increased substantially by 

88.12% at lower width (13mm) and by 68.27% at higher width (38 mm). 
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                                                              (a) 

 

                                                               (b) 

Figure 4.16: RSM surface plots of peel strength showing effects of temperature and width 

for (a) adhesive specimens and (b) welded specimens 

Figure 4.17 presents the 3D surface plots for the cleavage strength of adhesive and 

welded specimens generated using the RSMs presented in Equation 4.5 and Equation 4.6. 

The plot of the cleavage strength for adhesive specimens is shown in Figure 4.17a. The 
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surface is observed to be of concave shape due to the effect of temperature and width on 

the cleavage strength. In Figure 4.17a, the increment of width from 13 mm to 38 mm 

reduced the cleavage strength of adhesive specimens by 1.47% at higher temperature 

(93.33 °C), whereas the cleavage strength is improved by 1.88% due to increment in the 

width. With the increase in temperature, the cleavage strength is dropped initially, 

whereas the cleavage strength increased significantly later. The cleavage strength is 

increased by 6.10% at smaller width (13 mm) and 9.70% at larger width (38 mm) due to 

increment in the temperature from -56.67 °C to 93.33 °C. Figure 4.17b presents the 3D 

surface plot of the cleavage strength for welded specimens at different temperature and 

width. The plot is observed to be approximately to that of plane surface. The increase in 

width of the specimen reduced the cleavage strength considerably regardless of the 

temperature. The cleavage strength is declined by 69.31% at lower temperature of -56.67 

°C and by 60.45% at higher temperature of 93.33 °C due to increment of specimen’s 

width (13 mm to 38 mm). At smaller width (13 mm), when temperature is increased (-

56.67 °C to 93.33 °C), the cleavage is reduced by 11.16%, however with the increment in 

temperature from-56.67 °C to 93.33 °C at larger width (39 mm), the cleavage is improved 

by 14.49%. 
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                                                               (a) 

 

                                                               (b) 

Figure 4.17: RSM surface plots of cleavage strength showing the effects of temperature 

and width for (a) adhesive specimens and (b) welded specimens 

 

From the observation of the 3D surface plots, both temperature and width were found 

to significantly affect the peel and cleavage strength of the adhesive and welded 
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specimens. Peel strength of both specimen types (adhesive and welded) and cleavage 

strength of adhesive specimens is observed to be affected most by temperature, whereas 

the influence of width is observed higher for peel strength of adhesive and welded 

specimens along with cleavage strength of welded specimens.  

4.6 CONCLUSIONS  

The peel and cleavage strength of the adhesive and welded specimens were 

experimentally and statistically investigated to substantiate the influence of temperature 

and width on each strength type. 30 peel specimens and 30 cleavage specimens were 

tested for nine different variations of temperature and width following the guidelines of 

American Society of Testing and Materials (ASTM) and American Welding Society 

(AWS) standards with an experimental program. Further, the strength of adhesive and 

welded specimens was also compared to understand the difference between them in terms 

of peel and cleavage strength. The data obtained from the peel and cleavage strength tests 

were analyzed to produce Response Surface Metamodels (RSMs) and associated 3D 

surface plots to graphically examine the effect of the temperature and width on each 

strength. The following conclusions can be derived from the experimental testing and 

statistical evaluation: 

1. On account of the effect of temperature, in the peel strength test of adhesive 

specimens, the peak increment and decrement in the peel strength were 70.4% and 

43.7%. For the welded specimens, the peak increment and decrement were 310.3% and 

69.5%. Attributable to the effect of width, in the peel strength test of adhesive specimens, 

the maximum increment and decrement in the peel strength were 32% and 45.6%. For the 

welded specimens, the maximum increment and decrement were 24.4% and 69.2%. The 
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peel strength of all the tested welded specimens was observed to be higher than the 

adhesive specimens with the highest difference of 713% for 13 mm width at 20 °C and 

the lowest difference of 30% for 38 mm width at 93.33 °C.  

2. Owing to the effect of temperature, in the cleavage strength test of adhesive 

specimens, the highest increment and decrement in the cleavage strength were 37.8% and 

28.4%. For the welded specimens, the highest increment and decrement were 28.9% and 

14.8%. On account of the effect of width, in the cleavage strength test of adhesive 

specimens, the peak increment and decrement in the cleavage strength were 28.5% and 

17%. For welded specimens, the peak decrement was 52.2%. The cleavage strength was 

not found to be increased with the increment in width. It was also found that the welded 

specimens (including combinations W1, W4, W5, W7, and W8) that were tested had 

higher cleavage strength than the adhesive specimens with the maximum difference 

159%, while the remaining welded specimens possessed lower cleavage strength than the 

adhesive specimens with the maximum difference of 31%. 

3. 3D surface plots generated by the RSMs efficiently observed the effect of both 

temperature and width on the peel and cleavage strength of adhesive and welded 

specimens. The effect of temperature was found to be most for the peel strength of both 

adhesive and welded specimens along with the cleavage strength of adhesive specimens. 

Obviously, the width had a high influence on the peel strength of adhesive and welded 

specimens and the cleavage strength for welded specimens. 
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CHAPTER 5: ULTIMATE AND FATIGUE LOAD TESTINGS OF DYNAMIC 

MESSAGE SIGNS WITH ADHESIVE AND WELDED CONNECTIONS 

 

5.1 ABSTRACT 

This paper discusses the results from ultimate strength and fatigue tests conducted on 

four full-sized dynamic message signs (DMSs) fabricated by a local producer located in 

South Dakota in the United States. Specifically, the ultimate strength testing was carried 

out on one DMS with adhesive joints and one with typical welded connections, and the 

fatigue testing was also conducted on one DMS with adhesive joints and one with welded 

connections. For the ultimate testing, monotonic loadings were applied to each of the 

DMSs by a hydraulic actuator under the displacement-based control until failure. For the 

fatigue testing, each of the DMSs was loaded up to 500,000 cycles with a constant force 

of 0.818 kN equivalent to design the natural wind gust pressure based on a yearly mean 

speed of 18.02 km/hr according to the AASHTO specifications for structural supports for 

highway signs, luminaires and traffic signals. During each test, strain, deflection, and 

load data along with visual inspection imagery were collected to gain a better 

understanding of structural behaviors and failure modes of each of the individually tested 

DMSs. The ultimate testing demonstrated that the adhesive DMS failed at 125 kN with 

the peak deflection of 96.14 mm, while the welded DMS failed at 146 kN with the peak 

deflection of 91.49 mm. During the fatigue load testing, all the stress ranges observed in 

each of the tested DMSs were considerably below the threshold of the DMS panel, which 

was determined by generating its S-N curve. It was also found that any damage was not 

observed in both the adhesive and welded DMSs subjected to the fatigue loading. 
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5.2 INTRODUCTION 

A dynamic message sign (DMS) is a highway electronic sign that conveys useful road 

and traffic information to drivers. A frame of the DMS is conventionally connected to an 

aluminum sheet with welded assemblies. However, high residual stresses and 

complications in joining irregular joints are frequently observed during welding. An 

adhesive can be used instead of the conventional welded connections between the frame 

and aluminum sheets with reduced cost and efficient fabrication. Specifically, the 

adhesive is capable of joining aluminium sheets with different melting points and 

uniform distribution of load. With these advantages, several DMS producers prefer 

adhesively bonded DMSs over welded DMSs, although the structural performance of the 

adhesive DMS has not been experimentally evaluated. Hence, the use of adhesive 

connections on DMSs needs to be brought to attention with a thorough study on their 

structural performance. 

Numerous studies have been performed to investigate various mechanical 

characteristics such as shear and peel strengths of the small-sized adhesive specimens 

considering varying environmental and geometrical parameters. Stricly speaking, the 

majority of the studies (Amatya et al. 2020a, Da Silva et al. 2009, Silva et al. 2012, 

Agarwal et al. 2014, Kim et al. 2012, Silva et al. 2016, Goglio and Rezaei 2012, Sousa et 

al. 2018, Savvilotidou et al. 2017) have focused on the examination of the shear and 

tensile strength of adhesives. For example, single lap-shear joint adhesive specimens 

were tested by Da Silva et al. (2009), and it was found that the shear strength was 
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affected by the overlap length of specimens, adhesive thickness, and specimen thickness. 

In addition to the shear and tensile strength studies, several studies (Amatya et al. 2020b, 

Shahid and Hashim 2000, 2002, Zheng et al. 2007, Kim and Aravas 1988, De Freitas and 

Sinke 2004, Broughton et al. 1999), have been performed to examine the cleavage and 

peel strengths of adhesives. In particular, De Freitas and Sinke (2004) bonded composite 

and aluminum with adhesive to fabricate the peel specimens. Composite adherend was 

found to have lower resistance to peel load than flexible adherend. Recently, Amatya et 

al. (2020b) tested a series of small-scale tests of 64 adhesive specimens with variation in 

temperature, humidity, and width to examine their peel and cleavage strengths according 

to ASTM D1876 (2008) and ASTM D1062 (2008). It was reported that the width was the 

most significant parameter negatively affecting the peel strength of the adhesive. 

Full-scale testing can provide a wealth of information about the behavior of the entire 

DMS system with adhesive connections, however, only few studies (Connor and Altstadt 

2013, Huckelbridge and Metzger 2009) have been conducted on frame structures 

supporting DMSs using welded connections. In detail, Connor and Altstadt (2013) 

investigated the after-fracture reserve strength of two four-chord aluminum trusses that 

support the DMS with destructive testing. Truss members were cut to replicate the 

fractures in chords and simulated DMS dead load, and wind load were applied on the 

truss. It was found that the truss member possessed a significant reserve strength even in 

its severe condition. Huckelbridge and Metzger (2009) conducted a detailed field 

monitoring of an aluminum sign support truss in Ohio that was fractured in two truss 

members near one truss support. It was revealed that the truss failed due to excessive 

fatigue of the chord-web diagonal welded connection. As far as the authors are aware, the 



200 

 

ultimate strength test of the DMS with adhesive connections have not been conducted to 

date. 

Several studies (Puckett et al. 2010 Arabi et al. 2018, Chang et al. 2014, Hamilton et 

al. 2000, Hosch and Fouad 2009, Fouad and Calvert 2005, Park and Stallings 2006) have 

been conducted in terms of fatigue load tests. However, all the studies have been limited 

to investigating the performance of structure supporting the DMS. For instance, Puckett 

et al. (2010) delved into the fatigue resistance of the DMS supporting structure with 

welded specimens in accordance with the American Association of State Highway and 

Transportation Officials (AASHTO) Standard Specifications for Structural Supports for 

Highway Signs, Luminaires and Traffic Signals (AASHTO 2001a, b). It was 

demonstrated that the fatigue resistance of ring-stiffened box connection was better than 

the standard box connection. Arabi et al. (2018) also performed a complete field test to 

study the damage due to fatigue loads in the DMS sign support structures during 

transportation, indicating that the failure damage of 0.01% in the most vital member of 

the support structure was observed. Chang et al. (2014) studied the overhead truss 

structures supporting the DMS to determine the impact of wind loads resulting from 

truck-induced wind gusts and thermal-induced loads, and found that the wind loads 

generated unnoticeable stresses and minimal damage on the DMS support structures. 

Park and Stallings (2006) performed field testing for fatigue evaluations of DMS support 

structures due to natural and truck-induced wind gusts, signifying that natural wind gusts 

caused highest critical stress cycles in the structures. 
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While all the aforementioned studies have been researched to investigate either 

mechanical properties of small-scale adhesive specimens or the strength and/or fatigue 

performace of the structure to support the DMS, the structural adequacy of any DMS 

with adhesive connections have not been examined in a satisfactory manner until now. 

Therefore, an extensive body of research on the structural performance of DMSs with 

adhesive connections is needed. Ultimate strength testing is required to determine the 

maximum load resisting capacity of the DMS. Fatigue loadings, on the other hand, are 

caused regularly and repeatedly due to wind. Specifically, for DMS structure, fatigue is 

caused due to repeatition of various wind loads. Although fatigue loads are significantly 

lower than the ultimate load, DMSs can be failed in fatigue due to repetition of loading. 

Both ultimate and fatigue load tests are essential to determine the structural adequacy of 

DMS. Therefore, this study is intended to perform full-scale ultimate strength and fatigue 

testings to determine the structural behavior of DMSs with adhesive connections and 

compare the results with those from the same testing of the welded DMSs. To that end, a 

total of four full-sized aluminium DMS specimens (including two DMSs with adhesive 

connections and two DMSs with welded connections) were  tested for the ultimate load 

and fatigue load cycles following the guidelines of the AASHTO specifications 

(AASHTO 2015). This paper is composed of four sections encompassing the presented 

introduction herein followed by ultimate strength and fatigue load testing, results and 

discussion, and conclusions. 
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5.3 ULTIMATE STRENGTH AND FATIGUE LOAD TESTING 

The full-scale testing was aimed to study the ultimate strength and fatigue behavior of 

the DMS with adhesive connections and the DMS with welded connections. Strain and 

displacement gauges were installed on individual DMS specimens to record two 

fundamental sets of physical parameters: strains and displacements, when loaded to 

failure and under fatigue load conditions. This section further discusses the DMS 

specimens and the testing setup of the ultimate strength test and fatigue load test.  

 

5.3.1 FULL-SIZED DMS SPECIMENS 

In the ultimate strength testing, two full-sized aluminium DMS specimens, which 

encompass one DMS specimens with adhesive connections and one DMS with welded 

connections, were utilized. Each DMS specimen mainly consists of aluminum back skin, 

aluminum internal frame structure and channels to properly function with the support 

structure. The back skin was fabricated with 5052-H32 aluminum alloy (Aluminum 

Association 2010), whereas the internal frame structure and channels were made of 6061-

T6 aluminum alloy (Aluminum Association 2010). As shown in Figure 5.1, the 

dimension of each of the DMSs was 1.52 m in length, 1.43 m in width, and 0.28 m in 

depth. Each was connected with two 1.27 m long channels on the top and bottom end. 

The channels were connected to the frame with a bolt connection. Generally, DMSs are 

designed as per the requirements of each client and design are also varied on the type of 

connection requested by the client. All DMSs are not compatible with both adhesive and 

welded connections. As DMSs fabricated with this particular geometry is compatible 

with both adhesive and welded connections, DMS with the geometry shown in Figure 5.1 
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is selected. The DMS specimen with adhesive connections was bonded with 64.7 mm 

wide and 0.39 mm thick LORD 406-19GB (LORD 2018) acrylic adhesive on the north 

and south end of the DMS for the connection between the back skin and the frame. 

Meanwhile, an adhesive connection of 5.91 cm width was applied on the east and west 

end of the DMS for connecting the back skin and the frame. The geometry of the 

adhesive DMS with the top and the side view is also shown in Figure 5.1a and Figure 

5.1b, respectively. On the other hand, the DMS specimen with weld connections was 

connected with 3.18 mm fillet weld to connect the back skin and the frame on the outer 

edge. The weld connections were completed using the 4043 aluminum filler used to 

fabricate the welded DMS. The geometry of the welded DMS with the top view and the 

side view is shown in Figure 5.1c and Figure 5.1d, respectively. For the fatigue load 

testing, additional two full-sized DMS specimens, including one adhesively bonded DMS 

specimen and one welded DMS specimen, were used. Note, each test was only once 

performed due to expensive cost requiring the fabrication of the four full-scale 

specimens, but all the tests were completed through a systematic testing protocol, so as to 

minimize uncertainty in the test results. It should be also noted that the adhesive and 

welded specimens used for the fatigue testing are identical to the respective adhesive and 

welded specimens used in the ultimate testing. In DMS, the frame of the DMS is required 

to be connected to the aluminum back skin. Loads exerted on the aluminum back skin are 

transferred to the frame through the adhesive or welded connection. Connection used in 

the DMS is also one of the major elements for the design of DMS. Therefore, the strength 

of each connection type should be investigated. No experimental study has been 

performed to determine the strength of connections in the DMS through its full-scale 
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tests. Therefore, the strength of DMS with respect to each connection type should be 

investigated and compared thoroughly for the ultimate and fatigue strengths. Figure 5.2 

shows a representative photo of the DMS installed on the US highway. The mechanical 

properties of the adhesive and weld metal along with the aluminum materials are 

presented in Table 5.1. 

 
           (a)         (b) 
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           (c)         (d) 

Figure 5.1: Geometry of DMS specimens for ultimate strength and fatigue load testing: 

(a) top view of adhesive DMS, (b) side view of adhesive DMS, (c) top view of welded 

DMS, and (d) side view of welded DMS. 
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Figure 5.2: Representative picture for DMSs installed in the US highway  

 

Table 5.1: Mechanical properties for the adhesive and weld metal and aluminum 

materials 

Material Tensile strength (Mpa) Shear Strength (Mpa) 

5052 aluminum 228 138 

6061 aluminum 310 207 

Adhesive 1307.9 53.4 

4043 aluminum weld 165 80 

 

5.3.2 TESTING SETUP 

Both the ultimate strength and fatigue load tests followed an identical instrumentation 

plan. The instrumentation plan is made up of 24 strain-gauges installed on the surface of 
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the aluminum skin inside the DMS near the corners, edges, and perimeter of the loaded 

region near the center. 15 displacement gauges were installed at the bottom inside the 

DMS to record displacement data, including 14 linear variable differential transformers 

(LVDTs) and 1 string potentiometer. Strictly speaking, the LVDTs were installed near 

the corners, edges, and perimeter of the loaded region near the center and the string 

potentiometer was attached to the center. The strain and displacement data were obtained 

using a 128-channel data acquisition system. Figure 5.3 shows the details of the 

instrumentation plan. 

 

                                                   (a) 
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               (b) 

 

               (c) 

Figure 5.3: Instrumentation plan for strain and displacement gauges: (a) Bottom view, (b) 

Elevation view of section A-A, and (c) Elevation view of section B-B (All dimensions 

are in mm). 

The testing setup for the ultimate strength tests and fatigue load tests is shown in 

Figure 5.4. An actuator of 649.44 kN capacity with 38.1 cm stroke length was used to 

load each of the DMS specimens at the center of the panel as shown in Figure 5.4a. Two 

W 6 X 12 steel I-beams were connected to the channels on the rear of the DMS. The 

DMS attached with the I-beams was placed on two abutments located at the north and 

south end of the test lab during each of the tests. Four 444.8 kN load cells (LC) were 

installed under the I-beams at each corner to measure the reaction forces. Rubber pads 

were also placed at the center of the panel followed by a 38.1 cm X 38.1 cm steel plate on 

the aluminum back skin to facilitate uniform load transfer from the actuator as shown in 

Figure 5.4b. All the tests including the ultimate and fatigue load tests were performed at a 
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room temperature of approximately 23 °C in Structure lab at South Dakota State 

University. 

 

                                               (a) 
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    (b) 

Figure 5.4: Test setup: (a) cross-section view and (b) top view. 

5.3.2.1 ULTIMATE STRENGTH TESTING 

As stated before, the ultimate strength of one adhesive DMS and one welded DMS 

were examined in this study. The ultimate strength tests were performed under 

displacement control by applying a monotonic load to the back-skin of the aluminum 

panel with a displacement rate of 0.178 mm/sec until failure. Strain, displacement, and 

load data were recorded until failure. A regular inspection of the DMS was conducted to 
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check the damage on the structure during the test. The testing setup of the adhesive DMS 

for the ultimate strength test is shown in Figure 5.5. 

  

                                               (a) 

 

                                                (b) 

Figure 5.5: Ultimate strength test of adhesive DMS: (a) isometric view and (b) close-up 

view. 

Aluminum panel 

Adhesive joints 

Actuator 

I-beam 

Adhesive 

joints 



212 

 

5.3.2.2 FATIGUE LOAD TEST 

One adhesive DMS and one welded DMS were tested under a fatigue design load of 

0.818kN for 500,000 cycles. The load was calculated from the AASHTO Specifications 

(2015) simulating the wind load exerted by natural wind gust pressure based on a yearly 

mean speed of 18.02 km/hr. The actuator was operated at a frequency of 1 Hz in a 

displacement control manner. Strain, displacement, and load responses were logged every 

hour during the test. Each of the DMSs was inspected for the existence of any damage 

every four hours initially up to 100,800 cycles, every two hours between 100,800 and 

302,400 cycles, which later truncated to an hourly observation. The fatigue testing setup 

of the welded DMS is shown in Figure 5.6. 

 

                                                 (a)  
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                                                  (b) 

Figure 5.6: Fatigue load test of welded DMS: (a) isometric view and (b) close-up view. 

5.4 RESULTS AND DISCUSSION 

Results from the ultimate strength and fatigue load tests are summarized and 

discussed in this section. Details on the results with a focus on load-displacement curves 

and strain profiles are presented in the following subsections. 

 

5.4.1 ULTIMATE STRENGTH  

5.4.1.1 ADHESIVE DMS STRENGTH  

A schematic for the detailed four damage states (including aluminum panel 

distortion) and load transferring mechanisms during the test are presented in Figure 5.7. 

As shown in the figure, the DMS was loaded with a square steel plate placed at the center 

of DMS. Load exerted by the actuator was transferred to the adhesive joints of the DMS 

diagonally through the aluminum panel. Adhesive debonding and distortion of the 
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aluminum panel were two types of primary damage observed during the test. The damage 

state designated as DS-1 is the first damage state observed during the test. In this damage 

state, adhesive debonding was initated at the north-east corner of the DMS with slight 

distortion of the aluminum panel. At this stage, only 0.504% of the adhesive area was 

found to be damaged. The second damage state labeled as DS-2 shows the propagation of 

adhesive debonding observed on the east side of the DMS at north east corner. The 

damage in the adhesive area was found to be 4.318%. Excessive damage in the adhesive 

area of the DMS was found at third damage state indicated as DS-3 at which damage in 

the adhesive area was increased to 7.535%. The final damage state, defined as DS-4 was 

observed at both east and north edge of the DMS as shown in the figure. At DS-4, the 

DMS was failed completely with 32.864% damage in the adhesive area of the DMS. The 

damage observed in the adhesive DMS at four damage stages is also tabulated in Table 

5.2. 

 

Figure 5.7: Top view of damage states in adhesive DMS.  
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Table 5.2: Damage in adhesive DMS at different damage states 

Damage 

state 

Distortion of 

panel 

Adhesive 

debonding state 

Adhesive 

debonding (%) 

DS-1 Slight Initiation 0.504% 

DS-2 Moderate Propagation 4.318% 

DS-3 Extensive Excessive 7.535% 

DS-4 Complete Ultimate failure 32.864% 

 

Figure 5.8 shows the elevation views of the adhesive DMS with respect to each 

damage state. The DS-1 of the DMS observed is presented in Figure 5.8a. It appears that 

the debonding of adhesive at the east edge of panel in the north-east corner was initiated, 

and the aluminum panel was observed to be slightly distorted. The damage was observed 

when the centerline deflection was 76.2 mm and can be considered least possible 

damage. The DS-2 is shown in Figure 5.8b, indicating that the adhesive debonding 

observed in DS-1 in north-east corner is propagated significantly at the east edge of the 

panel with moderate distortion of the aluminum panel due to a significant transfer of load 

(116.50 kN) from the actuator. The DS-3 is presented in Figure 5.8c. The adhesively 

bonded aluminum panel was found to be debonded excessively during this damage state. 

At this instant, extensive distortion of the panel was observed at the center, whereas east 

edge of the panel was slightly lifted at the north-east corner. Figure 5.8d illustrates the 

DS-4, where complete distortion of the aluminum panel was spotted at the center. The 

excessive debonding observed in DM-3 at the east edge of the panel was found to be 

significantly propagated. The adhesive debonding was also observed in the north edge of 

the panel at the north-east corner as shown in the figure. Substantial uplift of the panel 

was observed at the north edge and east edge of the panel at the north-east corner. At DS-

1 (see Figure 5.8a), when the actuator load in DMS was 62.05 kN, only slight distortion 
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in the panel was observed. At each of the following damage states DS-2, DS-3, and DS-4, 

distortion in the the panel was observed to be increasing correspondingly. Although the 

overall shape of the deflected panel was almost identical, the magnitude of distortion was 

found to be increased at each damage states causing high stress concentration at the edge 

and corner locations of DMS. The increment in the stress at corners due to rise in actuator 

load triggered the initiation of adhesive debonding at the north-east corner which 

propagated to ultimately fail.  
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Figure 5.8: Elevation view of damage states in adhesive DMS: (a) DS-1, (b) DS-2, (c) DS-3, and (d) DS-4. 
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A load-displacement curve for the ultimate strength test of the adhesive DMS is 

presented in Figure 5.9. The adhesive DMS was loaded at the center of the back-skin 

aluminum of the DMS. As mentioned previously, four different damage states were 

observed during the test. The first damage state (DS-1) was observed when the actuator 

load reached to 62.05 kN. Pior to DS-1 at 62.05 kN, no visible damage was observed. An 

abrupt drop in the actuator load from 102.57 kN to 70.74 kN was observed as shown in 

this figure. The actuator was pulled up for the removal of the LVDTs that were installed 

at the bottom of the DMS to avoid any damage on the LVDTs which explains the unusual 

behavior of the load-displacement curve. The second (DS-2), third (DS-3), and fourth 

(DS-4) damage states were observed at 116.50 kN, 120.12 kN, and 123. 41 kN. The 

adhesive DMS failed at 123.41 kN when the center-line deflection was 133.35mm. The 

results from the ultimate strength test found that adhesive DMS can easily resist up to 

62.05 kN as DS-1 with relatively small damage in the adhesive area was observed at that 

instant. Damage due to propagation of adhesive debonding (DS-2) was observed at 127 

mm centerline-deflection of the aluminum panel. Damage states DS-3 and DS-4 were 

also observed when the centerline-deflection of the aluminum panel were 130.81 mm and 

133.35 mm, respectively. As presented in Figure 5.9, three damage states DS-2, DS-3, 

and DS-4 were spotted at a narrow interval. Therefore, DS-2 (adhesive debonding 

propagation) was found to be the crucial damage state for the adhesive DMS, rather than 

DS-1 (adhesive debonding initiation). As DS-3 and DS-4 were observed immediately 

after DS-2, adhesive DMS can be considered unsafe after propagation of adhesive 

debonding (DS-2). 
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Figure 5.9: Load-displacement curve for tested adhesive DMS. 

 

Figure 5.10 shows representative actuator load versus strains of the adhesive DMS. 

The representative strain profile of the strain gauges installed on the north and west end 

of the adhesive DMS is presented in Figure 5.10a and Figure 5.10b, respectively. It 

should be noted that tensile strains observed are well below the yield strains of the 

aluminum on the north, south, east, and west end of the adhesive DMS. The aluminum 

panel in all four edges experienced compression at the beginning of the test. Maximum 

strains observed on the aluminum panel on the north, south, east, and west end of the 

adhesive DMS are found to be lower than half of the yield strain of the aluminum. This 

result indicates that these locations are not affected significantly when subjected to the 

loading. In Figure 5.10a, all three strain gauges (SG-3, SG-4, and SG-5) were observed to 

be in compression at DS-1, however the strain at SG-4 and SG-5 were close to zero and 
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SG-3 was found to be tension with maximum strain. Figure 5.10c and Figure 5.10d 

illustrate the strain profiles at the corners in the longitudinal and transverse directions, 

respectively. Note, a direction along east-west is considered as the longitudinal direction, 

whereas a direction along north-south is deemed as the transverse direction. Strains at the 

corners of the adhesive DMS were found to be substantially higher than the yield values 

of the aluminum, as expected. Each corner of the aluminum panel was on compression at 

the beginning of the test, however, it was observed that there were extreme strains 

experienced near the failure of the DMS. At DM-4, strains in the longitudinal directions 

are higher than three times the yield strain of aluminum, whereas strains in the transverse 

directions are greater than five times the yield strain of the aluminum. At DS-4, SG-2 

observed the highest strain in longitudinal direction as shown in Figure 5.10c and SG-1 

recorded the highest strain in transverse direction as shown in Figure 5.10d. Strain 

profiles of the four strain gauges installed around the perimeter of the loading plate at the 

center are also shown in Figure 5.10e. The aluminum panel was found to be in tension 

throughout the test until failure and the peak strain was observed at SG-11 during 

ultimate failure. The highest tensile strains were observed for the strain gauges installed 

at the corners in the transverse direction followed by the longitudinally installed strain 

gauge group. It was found that the corner sections of the aluminum panel in the DMS 

play a more critical role as strain gauges installed in the corners observed highest strains 

than the other locations and should be designed carefully. At DS-4, SG-3 observed the 

maximum strain among the three strain gauges installed at the north edge of the panel, 

SG-2 recorded the peak strain between the four strain gauges installed at the corners in 

longitudinal direction, SG-1 observed the highest strain among the four strain gauges 
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installed at the corners in transverse direction, and SG-11 detected the maximum strain 

among the four strain gauges installed at the center of the panel. These results can be 

attributed to the failure of adhesive DMS due to adhesive debonding at the north and east 

edge in the north-east corner of the aluminum panel. 
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                                  (a)                                                              (b) 

  

                                   (c)                                                               (d) 

 

                                (e) 

Figure 5.10: Strain profile for adhesive DMS at: (a) north end, (b) west end, (c) corners in 

the longitudinal direction, (d) corners in the transverse direction and (e) center 

0

25

50

75

100

125

150

-1000 0 1000 2000 3000

L
o
a

d
 (

k
N

)

Strain (microstrain)

SG-3 SG-4 SG-5

Yield strain (ɛy)

DS-4DS-3

DS-1

DS-2

0

25

50

75

100

125

150

-1000 0 1000 2000 3000

L
o

a
d

 (
k

N
)

Strain (microstrain)

SG-9 SG-15 SG-17

Yield strain (ɛy)

DS-4DS-3

DS-1

DS-2

0

25

50

75

100

125

150

-3000 0 3000 6000 9000 12000 15000 18000

L
o

a
d

 (
k

N
)

Strain (microstrain)

SG-2 SG-6 SG-19 SG-23

Yield strain (ɛy)

DS-4DS-3

DS-1

DS-2

0

25

50

75

100

125

150

-3000 3000 9000 15000 21000 27000 33000 39000

L
o

a
d

 (
k

N
)

Strain (microstrain)

SG-1 SG-7 SG-18 SG-24

Yield strain (ɛy)

0

DS-4DS-3

DS-1

DS-2

0

25

50

75

100

125

150

-1000 0 1000 2000 3000

L
o
a
d

 (
k

N
)

Strain (microstrain)

SG-11 SG-12 SG-13 SG-14

Yield strain (ɛy)

DS-4DS-3

DS1

DS-2



223 

 

Figure 5.11 shows the load versus deflection responses at all LVDT locations in the 

panel. All deflection profiles are nearly linear. The LVDTs installed near the center of the 

adhesive DMS (V-6, V-7, V-8, and V-9) were removed at 83.04 kN, whereas the rest of 

the LVDTs were removed at 102.57 kN to prevent any damage to the LVDTs. The 

LVDTs installed near the center of the DMS (V-6, V-7, V-8, and V-9) recorded 

maximum deflections, followed by the LVDTs installed at the corners of the DMS (V-1, 

V-3, V-12, and V-14). Only DS-1 was plotted in the figure, as the LVDTs were removed 

before the DMS reached the damage state DS-2. Although the LVDT profile for all the 

damage states could not be plotted, the peak deflection prior to LVDT removal was 

observed near the center of the DMS for V-7 with 91.49 mm. The maximum deflection at 

V-7 justifies the failure observed at the north edge of the DMS to some extent. 
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Figure 5.11: LVDT profile for adhesive DMS2 
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Figure 5.12 shows the reaction force from the load cells installed at four ends of the 

adhesive DMS. The load cells were installed at each corner of the DMS. The progression 

of the reaction force with respect to time following different damage states is shown in 

Figure 5.12a. The reaction force is observed to be increasing with the increase in the 

actuator load during the ultimate strength test. Significant decrements in the load can be 

observed in all the load cells prior to DS-2. This was because the actuator was pulled up 

to remove LVDTs at that instant due to which load was dropped in each load cell. A bar 

chart for the reaction force in the four load cells when reaching the yield strength of the 

aluminum panel is shown in Figure 5.12b. It appears that LC-3 observed the maximum 

reaction force of 11.92 kN, whereas LC-4 experienced the lowest reaction force of 6.27 

kN up to the yield strength. Figure 5.12c presents another bar chart of the reaction force 

recorded at the failure of the adhesive DMS. It turned out that the adhesive DMS 

experienced the maximum reaction force of 35.74 kN in LC-3 and minimum reaction 

force of 25.06 kN in LC-4. LC-3 installed at the south-east corner of the DMS recorded 

the peak load at each damage state, however LC-1 installed at the north-east corner was 

expected to record the highest load as failure was observed at that location. This result 

suggests that failure of the adhesive DMS is not only contributed by the load acting on 

the DMS. Failure of the DMS at the north-east corner can be considered due to better 

cohesion of the adhesive in other corners than in the north-east corner. As cohesion of the 

adhesive was lower, adhesive debonding initiated which later propagated and ultimately 

failed. 
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                                                                 (c) 

Figure 5.12: Reaction force from load cells for adhesive DMS: (a) load vs time, (b) at 

yield strength, and (c) at ultimate strength 

5.4.1.2 WELDED DMS STRENGTH  
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Figure 5.13: Top view of failure modes in welded DMS. 
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concentration at the corner locations increased owing to increment in distortion of the 

aluminum panel which justifies the failure of interior welds at corners of DMS. Further, 

increment in load amplified the stress at corners which ultimately ruptured the frame of 

DMS at the south-west corner.
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Figure 5.14: Elevation view of failure modes in welded DMS: (a) weld failure and (b) rupture failure. 
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Figure 5.15 shows the load-displacement curve for ultimate strength test of the 

welded DMS. The welded DMS was also loaded at the center of the back-skin aluminum 

of the DMS. The first failure due to the failure of the interior welds was observed at 

153.46 kN when the center of DMS was deflected to 158.57 mm deflection. The load was 

decreased up to 113.38 kN after the first failure. The second failure due to the rupture of 

the frame was observed at 145.18 kN with center line deflection of 175.95 mm. Although 

the failure of internal welds were initially observed in the DMS, no damage in the 

exterior weld was observed during the test. Although the actuator load decreased after the 

first failure mode, the DMS can not be considered to be completely failed until rupture of 

the frame. Design shear strength of the fillet weld connecting the back skin and the frame 

on the exterior edge of the welded DMS calculated following the guidelines of 

Aluminum Design Manual (Aluminum Association 2010) was found to be 169.52 kN. 

The calculated design shear strength of the weld was found to be higher than the peak 

load (153.46 kN) resisted by the tested DMS. The DMS was failed due to the rupture of 

frame before the entire failure of the internal and external welds. Therefore, the design 

shear strength of the weld in the DMS was found to be higher than the maximum strength 

of the welded DMS from the ultimate strength test. The testing results demonstrated the 

strength of exterior weld connection higher than the strength of frame for rupture failure. 

 



232 

 

 

Figure 5.15: Load-displacement curve for welded DMS 
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installed around the perimeter of the loading plate at the center are shown in Figure 

5.16e. For the strain gauges installed near the center, the aluminum panel was found to be 

in tension throughout the test until failure. All four strain gauges located near the center 

observed strains below yield strain, excluding SG-11. The highest tensile strains were 

observed for the strain gauges installed at the corners in the transverse direction followed 

by the longitudinally installed strain gauge group. The general strain behavior of the 

welded DMS is found to be analogous to that of the adhesive DMS, although the strain 

values are different between welded and adhesive DMSs on each test and location. 

Particularly, in Figure 5.16c, during the weld failure, strain at SG-23 was found to be 

lower than the strain recorded at SG-2, SG-6, and SG-19. Longitudinal welds near SG-2 

(north-east corner), SG-6 (north-west corner), and SG-19 (south-east corner) were failed 

which justifies the high tensile strains at those locations than in SG-2. In Figure 5.16d, 

strain at SG-24 was observed to be higher than strain recorded at SG-9 and SG-15. High 

stress concentration at SG-24 can be considered due to rupture failure of the frame. 
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                                  (c)                                                           (d) 

 

                                (e) 

Figure 5.16: Strain profiles for welded DMS at: (a) north end, (b) west end, (c) corners in 

the longitudinal direction, (d) corners in the transverse direction and (e) center 
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in the welded DMS is similar to that of the adhesive DMS. LVDT profile shown in this 

figure does not include any failure state as LDVTs were removed before the tested DMS 

attained any failure state. LVDTs installed at the center recorded the maximum deflection 

as expected, however, except for the LVDTs installed at the center, V-14 recorded the 

maximum deflection before the removal of LVDTs during the test. This result supports 

the second failure state of the welded DMS due to the rupture of frame at south-west 

corner. 

 



236 

 

 

Figure 5.17: LVDT profile for welded DMS
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The reaction force from the load cells installed at all the corners of the welded DMS 

is shown in Figure 5.18. Figure 5.18a displays the plot of the reaction force versus time 

during the test. The reaction force is observed to be increasing with the increase in the 

actuator load throughout the test. A bar chart for the reaction force in each load cell 

during the first yield of the aluminum panel is shown in Figure 5.18b. At the first yield of 

the aluminum panel, the highest reaction force of 8.36 kN is detected in LC-1, and the 

lowest reaction force of 5.96 kN is noted in LC-3. Figure 5.18c illustrates an additional 

bar chart of the reaction force at the weld failure with the maximum reaction force of 

39.72 kN in LC-1 and the minimum reaction force of 35.50 kN in LC-4. Again, the 

failure of the welded DMS was observed due to rupture of the frame at the south-west 

corner (LC-4) because the reaction force recorded by LC-4 at the south-west corner was 

lower than the load recorded by LC-1, LC-2, and LC-3 at other corner locations. 
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                                                                (c) 

Figure 5.18: Reaction force from load cells for welded DMS: (a) load vs time, (b) at 1st 

yield, and (c) at weld failure 
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DMS resisted higher strength than the adhesive DMS when compared with respect to 

equivalent identical centerline-deflection in the DMSs.  

 

Figure 5.19: Comparison of load-displacement curve for both adhesive and welded DMS 
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north-east corner. Debonding of adhesive at the north-east corner caused the slippage of 

aluminum panel from the original position which further increased deflection of the 

aluminum panel at the center. Therefore, deflections of aluminum panel recorded from 

LVDTs near the center was found to be greater in the adhesive DMS than in the welded 

DMS, although deflections at other locations were observed to have opposite phenomena. 

The maximum strains in both tension and compression are compared along with the 

percent difference. The comparison of peak strains in tension field between the adhesive 

and welded DMSs is also presented in  

Figure 5.21. The welded DMS observed higher strain values in 15 strain gauge 

locations with a maximum percent difference of 240% for SG-10 located on the east side 

of the DMS. 6 strain gauges observed lower value of strains in the welded DMS than the 

adhesive DMS with a peak decrement of 100% for SG-7 installed at the north-west 

corner and SG-22 installed at the south end of the DMS. These results suggest that during 

the ultimate strength test, the elongation of the aluminum panel in the welded DMS was 

higher than in the adhesive DMS. Figure 5.22 displays the comparison of peak strains in 

compression between the adhesive and welded DMSs. The welded DMS observed higher 

strain values in 13 strain gauge locations with the maximum percent difference of 454% 

for SG-6 installed at the north-west corner in the longitudinal direction. 8 strain gauges in 

the welded DMS observed lower strain values compared to that of the adhesive DMS 

with the percent difference of 100%, which is observed in SG-7 installed at the north-

west corner and SG-21 located at the south end of DMS. Percent difference values shown 

in Figure 5.22 also indicate that the compression of the aluminum panel observed in the 

welded DMS is significantly higher than the compression in the adhesive DMS. Tensile 
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and compression strains in the welded DMS are found to be significantly higher than in 

the adhesive DMS as the welded DMS resisted the higher load than the adhesive DMS 

during the ultimate strength test.  
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Figure 5.20: Percent difference in vertical deflection between adhesive and welded DMSs 
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Figure 5.21: Percent difference between adhesive and welded DMSs for peak strains in tension 
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Figure 5.22: Percent difference between adhesive and welded DMSs for peak strains in compression 
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5.4.2 FATIGUE TESTING DATA 

5.4.2.1 ADHESIVE DMS 

Figure 5.23 shows the representative strain profiles for the fatigue load test of the 

adhesive DMS plotted against the number of cycles. The strain profile of strain gauges 

installed on the north and west end of the DMS is presented in Figure 5.23a and b 

respectively. The strains observed in all gauge locations in the DMS during the cyclic 

loading is significantly less than the aluminum yield strain of 2745.4 µɛ. At the north end 

of the adhesive DMS, SG-3 is observed to be under tensile strain, whereas SG-4 and SG-

5 are observed under tensile and compression cycles of strains (see Figure 5.23a). Two 

strain gauges (SG-9 and SG-17) installed near the west end of the DMS are under tensile 

and compression cycles of strains with the other strain gauge (SG-15) being completely 

in compression. The strain profiles of the strain gauges installed at the corners in the 

longitudinal and transverse directions are presented in Figure 5.23c and d, respectively. 

In the longitudinal direction, all the strain gauges experienced both tensile and 

compression strains except for SG-2, which is under tension during the test (see Figure 

5.23c). In the transverse direction, two strain gauges are found to be under tension (SG-

18 and SG-24) with the other two strain gauges under compression (SG-1 and SG-7). 

Strains recorded from the gauges installed near the center are plotted against the number 

of fatigue load cycles which is shown in Figure 5.23e. SG-11 and SG-14 observed both 

tensile and compression strains while SG 13 experienced tensile strain only, and finally, 

SG-12 was under compression throughout the fatigue test. The results from the strain 

profiles from the fatigue test suggest that the design fatigue load from the AASHTO 

Specifications (AASHTO 2015) is safer than expected for 500,000 cyclic loads since 
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strains observed in the aluminum panel are substantially less than the yield strain of the 

aluminum. 

  
(a)                                                        (b) 

  
(c)                                                         (d) 

 
                              (e) 

Figure 5.23: Strain profile for adhesive DMS from fatigue load test at: (a) north end, (b) 

west end, (c) corners in the longitudinal direction, (d) corners in the transverse direction 

and (e) center 
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figure represents the stress range observed in the aluminum back-skin at different 

locations of the strain gauges during the test. The S-N curve for the aluminum panel was 

generated utilizing the properties (ultimate tensile strength and fatigue strength) of the 

5052 aluminum material (Aluminum Association 2010). The highest maximum stress 

range is observed for SG-10 (located at the east end) at around 316,000 cycles of fatigue 

load, whereas the maximum stress range is the least for SG-7 (located at north-east 

corner) at around 323,500 cycles of fatigue load. The stress ranges observed during the 

test of the adhesive DMS are not over the fatigue threshold of the aluminum panel. It can 

be thus concluded that the adhesive DMS is adequate for 500,000 cycles of the 

considered design fatigue load. 

 

 

Figure 5.24: Fatigue performance of adhesive DMS with maximum stress range 
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The performance of the adhesive DMS during the test with respect to deflection is 

shown in Figure 5.25. The deflection ranges for the LVDTs located near the center of the 

DMS are observed significantly higher than the deflection ranges observed in the other 

locations. The maximum deflection range is the highest for LVDT V-8 (center) at around 

469,500 cycles and is the lowest for LVDT V-12 (south end) at around 418,700 cycles of 

fatigue load. This indicates that the DMS is subjected to higher vibrations near the center 

than the other locations when encountered with cyclic wind loads. Note, no sign of 

damage was observed in the adhesively bonded region of the DMS as well as in all the 

other parts of the DMS.  

 

 

Figure 5.25: Fatigue performance of adhesive DMS with maximum deflection range at 

LVDT locations 
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5.4.2.2 WELDED DMS 

Figure 5.26 shows the representative strain profiles for the fatigue load test of the 

welded DMS plotted against the number of cycles. The strain profiles of the gauges 

installed on the north and west end of the welded DMS are presented in Figure 5.26a and 

b, respectively. Strains observed in all gauge locations in the DMS during the cyclic 

loading is substantially less than the aluminum yield strain. At the north end of the 

welded DMS, SG-3 and SG-5 are observed to be under compression strain, whereas SG-4 

is observed to be under tensile and compression cycles of strains (see Figure 5.26a). Two 

strain gauges (SG-9 and SG-15) installed near the west end of the DMS are completely 

under compression strains with the other strain gauge (SG-17) being under tensile and 

compression cycles. The strain profile of the strain gauges installed at the corners in 

longitudinal and transverse directions is presented in Figure 5.26c and d respectively. In 

longitudinal direction, all the strain gauges are observed to be under compression except 

for SG-2 which is under compression initially, however, SG-2 is found to be under 

tension at the end of the test (see Figure 5.26c). In transverse direction, all the strain 

gauges are found to be under compression (SG-1, SG-7, and SG-18) except for SG-24 

which is observed to be under both tension and compression. Strains recorded from the 

strain gauges installed near the center are plotted against the number of fatigue load 

cycles and shown in Figure 5.26e. SG-12 and SG-13 observed both tensile and 

compression strains, whereas SG 11 and SG-14 were under compression only throughout 

the fatigue test. The  strain profiles from the fatigue load test of the welded DMS suggest 

that the design fatigue load from AASHTO (2015) is safer than expected for 500,000 
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cyclic loads since strains observed in the aluminum panel are significantly less than the 

yield strain of the aluminum. 

 

  
 (a)                                                           (b) 

  
 (c)                                                            (d) 

 
                               (e) 

Figure 5.26: Strain profile for welded DMS from fatigue load test at: (a) north end, (b) 

west end, (c) corners in the longitudinal direction, (d) corners in the transverse direction 

and (e) center 
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The plot of maximum stress range (observed in each strain gauge locations) in the 

welded DMS with the S-N curve of 5052-H32 aluminum is shown in Figure 5.27. The 

highest maximum stress range is observed for SG-23 (located at the south end) at around 

444,600 cycles of fatigue load, whereas the maximum stress range is the least for SG-17 

(located at west end) at around 17,700 cycles of fatigue load. The stress ranges observed 

during the fatigue test of welded DMS are also below the fatigue threshold of aluminum 

panel. The results from the plot indicate the welded DMS is also reliable for 500,000 

cycles of design fatigue wind load. 

 

Figure 5.27: Fatigue performance of welded DMS with maximum stress range 
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V-6 (center) at around 22,300 cycles and is the least for LVDT V-13 (south end) at 

around 217,900 cycles of fatigue load. Based on the results of the deflection range, a 

higher vibration of aluminum panel of the welded DMS is expected near the center than 

in the other locations. 

 

Figure 5.28: Fatigue performance of welded DMS with maximum deflection range at 

LVDT locations 
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testing was performed on one DMS with adhesive joints and one with typical welded 

connections, and the fatigue testing was also performed on one DMS with adhesive joints 

and one with welded connections. The ultimate strength testings were performed with a 

monotonic load until failure, and the fatigue load testings were carried out with the 

application of wind-gust-based design fatigue load from the AASHTO (2015) for 

500,000 cycles. Load, deflection, and strain responses were recorded for each test and 

analysed in depth. Based on the results from each of the tests, the following conclusions 

can be drawn. 

1. The ultimate strength testing revealed that four different damage states through 

DS-1 through DS-4 were identified for the adhesive DMS of which DS-2 due to 

signficiant propagation of adhesive debonding was found to be utmost crucial damage 

state, whereas welded DMS failed with two failure modes. In the testing, the strains at the 

corner location of the adhesive DMS and the welded DMS were found to surpass the 

yield strain of the aluminum DMS panel, indicating high tensile strength at its corners. 

From the testing, the measured strains near the damage locations observed the highest 

strains in adhesive as well as in welded DMS and the strength of the adhesive DMS was 

found to be 24% higher than the welded DMS. 

2. For the ultimate strength testing, the maximum deflection near the center of the 

welded DMS (V-6, V7, V8, and V9) was higher up to 8% than the adhesive DMS. The 

maximum deflection in the boundary and corner locations of the welded DMS (V-1 

through V-5 and V-10 through V-14), however, was lower up to 31% than the adhesive 

DMS. The ultimate strength testing demonstrated that the maximum strain in the tension 

sof the welded DMS was up to 240% higher than that of the adhesive DMS, and the 
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maximum strain in compression of the welded DMS was up to 454% higher compared to 

the adhesive DMS. 

3. In the fatigue strength testing, the maximum stress ranges observed in both the 

adhesive and welded DMSs were below the fatigue threshold of aluminum panel for 

500,000 cycles according to the S-N curves. From the testing, the maximum deflection 

range was found to be highest near the center for both adhesive (V-8) and welded (V-6) 

DMSs. The results indicated that the DMSs were exposed to higher vibrations near the 

center than the corner or bourndary locations when encountered with the fatigue loads. 
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