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Abstract

A computer model was developed which used weather data and
initial field counts of green-bug aphids to predict the
behavior of the aphid population throughout the season. The
model considered the effects'of heat, food supply, predation
and rainfall on the population. Data were obtéined~on the
life-cycle of aphids grown in a controlled laboratory
setting. These data were used to postulate a stochastic
model of aphid growth which could be applied to a population
in the field. A modified Leslie matrix model was used to
predict the population's future behavior. Factors were then
added to this basic model to account for mortality due to
old age and predation, and the fecundity of .the adult
population. The completed model was compared with the
actuallfield data obtained for several years; This
comparison showed that the model generally performed well.
As a last step, sensitivity analysis was done to determine
which factors in the model would most profit by closer
scrutiny. It was found that predation, in particular,

needed to be analyzed more carefully.



Chapter One
Literature Review

Population modeling proceeds in the following general
manner. A cohort of aphids is reared in the laboratory
under controlled conditions and constant tempeféture.
Regular observation of the aphids' development yields data
on the length of time each individual spends in each
life-stage. This is used to postulate the behavior of the
aphids in a natural environment.

The crudest estimation methods utilize only the
observed mean development time to estimate the development
time in nature. It is possible, thever, to get much better
estimates by using more of the information that the
laboratory study yields.

Two different methods exist for doing this. Manetsch
[3] proposed setting up a system of differential eguations
which describe the changes in the population. Solving the
system at time t will yield the size of the population at
that time.

Leslie [1] devised a different approach. His is based
on the assumption that population growth is controlled by a
small number of factors acting on the present population.
The cumulative effect of these factors can be expressed as

survival and reproductive probabilities on the present



population. Thus, the survival and reproductive
probabilities, when multiplied by the current size of the
population, will yield the future population size.

Manetsch proved that solutions to the set of
differential equations he proposed would necessarily be
distributed as a gamma random.variable. For this reason, it
was decided that incorporating the gamma distriéution into
the Leslie model would be more efficient and require less
computer time than repeatedly solving differential

equations.



Chapter Two
The Model

We are attempting to model a greenbug aphid population.
Aphids do not over-winter in South Dakota, because the cold
is too intense. Instead, winged aphids migrate in on the
southerly winds of spring. Tﬁey land on small grain plants
and start feeding and reproducing. «

The aphid life-cycle can be summarized as follows.
Newborn aphids begin to feed on plant juices and grow. As
they grow, they must occasionally shed their exoskeletons
for larger.ones. The period between two such molts is
called an instar. Greenbugs have four immature instars
before reaching adulthood. Shortly after adulthood, the
aphids begin reproducing, and continue to do .so until death.

When the aphid population begins to experience
crowding, some of the aphids produced will be'winged
(alatae). Alate aphids are winged when they reach
adulthood, and immediately ride the winds to a new area.
Upon landing at a new site, their wing muscles degenerate,
and the aphids begin reproducing.

When the cereal plants mature in summer, the aphids.
migrate to later-growing crops and non-crop grasses.

It should be noted that cereal crops will be harmed
only if aphid populations become sufficiently large in the

early season, while the plants are still small. In larger



plants, it is not possible for the aphids to remove enough
of the plant's nutrients to affect crop growth and yield.
The Model

This model attempts to consider all aspects of the
aphid life-cycle. Since aphids do not over-winter in South
Dakota, the life-cycle can be‘considered to begin when
aphids -are first sighted in the field. At thié‘time, an
initial count or estimate is made, and is used to start the
model.

Leslie's matrix model was chosen. Leslie [1] assumed
that the age-structure of the population at some time t was
known. He then used this information to predict the
age-structure of the population at a future time.

In practice, ‘however, the age étructure-is'usually not
known; the stage-structure is much more easily obtained.
Woodward [2] suggested that Leslie's method céuld be
modified to be used on a population where only the
stage-structure was known. Woodward began by assuming that
development times in each stage were normally distributed.
This was done so that the age-structure of the population
could pe "recovered" (actually estimated) from the
stage;structure. Woodward proceeded by dividing each
life-stage into a number of sub-stages. This is done so
that one can approximate the amount of time that an
individual has spent in its current life-stage. Then the

Leslie matrix is modified to include all of these



sub-stages.

For our purposes, it did not seem necessary to estimate
the age-structure of the population, and so normality
assumptions were unnecessary. In fact, they are probably
unwarranted, since visual examination of developmental data
show that development times afe markedly skewed to the left.
(Manetsch [3], using a distributed delay method; derives the
result that development times have a gamma distribution.)

When constructing the model it is necessary first to
estimate how many sub-stages will be needed. Clearly, too
few sub-stages will 12ad to a crude approximation, while too
many will make the model cumbersome to operate. Matetsch
suggested that good results could be obtained by choosing
the number of sub-stages to be equ&l to the shape parameter
of the gamma distribution. This proved to be feasible,
since the gamma distributions we modeled all ﬁad shape
parameters between one and ten.

The model is based on the Leslie matrix model.

Briefly, the Leslie matrix is a modified Markov Chain in
which the diagonal elements represent the probabilities of
an individual's surviving to the next time-step. 1In
addition, the first row of the matrix contains the averaée
numbers of female births to individuals in each age class in
the time-step that survive until the next time-step.. The

remaining elements of the matrix are zero. This matrix is



called the A matrix. We also define a vector whose elements
are the numbers of individuals in each life-stage. This is

called the F vector. If we take the matrix product

F* = A x F, the F* will contain the number of individuals in
each life-stage after one time-step.

Example: Suppose the nuﬁbers of aphids in each of five
life-stages are 5, 3, 2, 1 and 6, respectively.\ Also
suppose the average number of females born to a female in
age-class 5 is 0.78, and the average number of females born
to younger females is 0. Finally, suppose that the

Jrobability of surviving to the next age-class is 0.95 for

all age classes. Then
e — o T
0 0 0 0 0.78 5
0.95 0 - 0 0 0 | J
A = 0 10,95 0] 0 0 F = 2
0 0 1095 0 0 1
- 0] 0 0 0.95 QJ p 6 J
and [4.68 |
4.75
F* = 2.85
1.90
0.95
£ .

For our purposes, it was considered more realistic to



modify the model in several ways. The original Leslie model
assumes that survival and fecundity probabilities are
constants which are known or estimated. 1In fact, it appears
that the probabilities (e.g. 0.78 and 0.95 in the example
above) are functions which may depend upon the present size
and structure of the population, as well as the quantity and
quality of food - -available. Although this is oniy a small
change in theory, it necessitates a major change in the
computations, since the elements of the A matrix must be
re-calculated at each time-step, to reflect changes in the
population and environment. Some of the necessary
considerations are discussed below.

Time Measurements

Aphid developmental rate is knbwn to be-linearly
related to temperature [11]. This linear felationship holds
true over a wide range of temperatures. An aéhid has a base
temperature, below which no development will occur, and an
upper limit temperature beyond which no additional increase
in developmental rate will result from higher temperatures.
Between these two, developmental rate is essentially 1linear.
However, since temperatures in nature fluctuate greatly in
time, aphid developmental rate is not in any sense 1ineaf,
or indeed predictable, with respect to time. Because of
this, a "time scale" in degree-days (DD) was used. One

degree-day is defined to be a temperature.of one degree



celcius above base temperature, experienced for 24 hours.
The total degree-days accumulated in a day can be estimated
from the maximum and minimum temperatures for the day.
Degree-day estimation was done by the method of Allen [4].
For details, see Appendix A.

Laboratory Study

A ‘cohort of aphids was reared in the 1abor5tory under
constant temperature and infinite food supply. The constant
temperature made the calculation of accumulated degree-days
particularly simple. It is known that a cohort of aphids
that anter a life-stage simultaneously will emerge
distributed in time, where "time" is measured in
degree-days. Thus, the time at which an individual matures
to the naxt life-stage can be considered a random variable.

To construct the model, we need to know the
distribution of that random variable. Previoﬁsly, this has
often been assumed to have a gamma-type distribution. On
the other hand, Wagner, et. al. (5] postulated a Weibull
distribution and obtained good results from it. There is
some theoretical justification for this, since the Weibull
distribution was developed specifically to model
failura-time data. The gamma distribution has density
function ;

£(x,x, p ) = ;TFZ; x*~! e_X/p
while the Weibull distribution has density function

f(x, de ) = OL,IB“ X_(dwe—ét/[j)ds
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Preliminary examination of the laboratory data
suggested that either a Gamma or Weibull distribution might
be appropriate (the two are similar in shape), but no method
was found to evaluate which distribution would provide a
better description. 1In fact, no adequate method was found
to estimate the parameters ofvsuch a Weibull distribution.
This estimation is decidedly non-trivial, and ié may be that
the Weibull is not commonly used for just such computational
reasons. In contrast, the parameters of a Gamma
distribution can be easily estimated from the sample mean
and standard deviation of the population in question.

Such estimates were made from the laboratory data, and
the resulting Gamma distribution was tested against the
laboratory data, in an attempt to méasure now well the
proposed distribution fit the facts. A value of R2 was
calculated for each life-stage. This is usuaily interpreted
as representing the fraction of the total variation in the
random variable which can be accounted for by the
distribution. In five of the six life-stages, the value of
R2 was in excess of 0.90. This was felt to be an
excellent fit; therefore, the Gamma distribution was used to
construct the model.

The poor fit of the fifth set of parameters can bhe

explained by the fact that we are attempting to predict when

an individual moves from the fifth life-stage




11

(pre-reproductive adult) to the sixth (reproducing adult).
The time that an individual spends in the fifth life-stage
is typically quite short -- often only a few hours. Since
the aphids were monitorad at =ight-hour intervals, it is
likely that the data collected were not very accurate on
this point. However, it was also felt that even a poor
estimate would be adequate, since the estimate would not be
wrong by more than a few hours. Table 1 contains a list of
the parameters and R2 values for all six life-stages.

Maturation Probabilities

Aphids have four immature life-stages, and a mature
life-stage. For ease in computation, the mature life-stage
was divided into two: pre-reproductive matures, and
reproducing matures. This gives us-a total of six
life-stages. Since individuals who enter a life-stage at
the same time will leave it at different times, each
life-stage is divided into a number of sub-stages, so that a
better estimate could be made of the length of time an
individual had spent in its present life-stage. Knowing the
Darameters of the underlying distribution enables us to
estimate how many of the individuals in any sub-stage will
mature to the next life-stage in a time-step. Thes=2 ‘
indivicduals are transferred by the model to the first
sub-stage of the next life-stage. Figure 1 shows
graphs of the empirical distribution functions, and the

gamma curves that were fitted to them.



Table One

Parameters of the Gamma Distribution

12

Life-stage Scale Parameter Shape Parameter R2
1 3.16987 9.19488 0.901
2 2.47643 8.96503 0.924
3’ 3.78789 4.14873 0.915
4 3.08195 7.29780 0.976
5 6.73449 1.97160 0.604
6 59. 9,85034 0.956

7507
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Mortality

Aphid mortality is caused by several factors:
predation, inadequate food supply, old age and excessive
rainfall. In the model, each of these factors needs to be

considered separately.

Food Supply. Studies by Kiekiefer [12] indicate that
within limits, the quality of food supplied has no
significant effect on aphid development. That is, the
growth stage of the plant and the nutritive quality can vary
greatly and have only a minor effect on aphid development.
For this reason, the piant was considered to be an infinite
food source for the aphids. Of course, the plant's maturing
and drying in summer does affect the aphid population, but
this effect was not considered, sinée we are not concerned
with aphid development at such a late date.

Excessive Rainfall. It is known that a hard rain-storm

can be damaging to the aphid population. A very hard rain
can wash the aphids off the plant entirely. However, no
quantitative data on the effect were available. Therefore,
the model contains a "dummy" subprogram to calculate the
probability of an individual's being killed by excessive:
rainfall. Currently, the subprogram computes a probability
of zero. If data become available on this subject, the

subprogram can be re-written

Age-Specific Mortality. A cohort of .aphids was raised




1Ko

in the laboratory, and careful counts were made of how many
died in any given time-span. Non-linear regression was used
to fit this data to a curve, using an equation described by
Graf, et.al. [6]. The equation is:

MORT =1 - a * EXP[b * EXP(c * DD))].

This method appeared to yield a very good fit. The
estimated parameters are a = 0.908589, b = -0.006861, c =
0.006561

Predation. Aphids have two major predators:

Hippodamia convergens and H. tridecimpunctata tibialis

(abbreviated HC and HT in the program). It was not
considered practical or necessary to model the entire
oredator life-cycle, since in the early part of the season,
predator numbers r2main essentia11y~constant.' Since there
was very little data on which to base any assumptions, the
simplest possible functional model was used. A Type I
functional response (7] was chosen, in which the amount (in
weight) of aphids eaten is assumed to be a linear function
of the size of the apnid population, unless the population
is effectively infinite, in which case the amount eaten is
constant.

Data were obtained in the following manner. Counts
were taxen of how many aphids of a particular life-stage
were eaten in one day by a starved predator. This was

considered to be the maximum amount that a.predator could
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eat in one day. Aphids of different life-stages were
weighed to determine their relative average weights.

Since aphids of different life-stages have greatly
different average weights, a new measurement of "aphid
units" was introduced into the model. An aphid unit (AU) is
defined to be the average weight of a first instar aphid.
The average weights of all the instars, expressea as aphid
units, appear in Table 3. Thus for predator purposes,. the

population can be considered to consist of a certain number

of aphid units. 1In addition, the predators' "appetites" can
also be expressed in aphid units. Then only two cases can
eccur;

Case 1: The aphid population is so large that the
predators can eat as much as they wish. In this case, the
predators will eat a constant amount of aphid units. Then
for any individual aphid, the probability of ﬂeing preyed
upon is simply the fraction of the total population that is
eaten. Unfortunately, we do not know how large the aphid
population must be for these conditions to exist. An
estimate of 25 adult aphids per predator per day was used.
This is called the critical number of aphids, and is
abbreviated in the program as NCA.

Case 2: The predators cannot eat as much as they wish.
The number of aphids eaten when the aphid population is zero

will, of course, be zero. The number of aphids eaten when
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the aphid population reaches the critical number is also
known. Between these two values, consumption is assumed to
be a linear function of the size of the population. Hence,
the probability of an individual aphid's falling prey to a
type HT predator during one degree-day is proportional to
TUNITS / NCAl.
individual aphid's falling prey to a type HC predator is

Similarly, the probability of an

proportional to TUNITS / NCA Here TUNITS is the total

2
weight of the aphid population, in aphid units; NCA1 and

NCA2 are the critical numbers of aphids for type HT and
HC predators respectivély.

Now, if the number of HT »redators is NHT, and the
number of HC predators is NHC, the probability of an

individual aphid's not being preyed upon (i.2., surviving)

is i
P(survival) = (1 - Pl)NHT (1 - Pz)NHC
Then, the probability of being preyed upon is
PRED = 1 - (1 - Pl)NHT (1 - P, NHC

where Pl and P2 represent the probhability of b»eing eaten

by an HT and HC predator, respectively. We assume that

all of the predators are acting independently. Now for épy
individﬁal in the population, if we let M represent age-
specific mortality, P .represent predation, and R represent

rainfall mortality (all expressed as probabilities), and we

assume that these factors operate independently on the
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population, then the probability of the individual's
surviving to the next time-step is

P(survival) =1 - M - P - R + M*P + M*R + P*R

- M*P*R.

Fecundity.

The same cohort used to model mortality above was also
used to model-the fecundity function. This was élso modeled
according to Graf's equation:

Pergidity.= [a * DD] -4 [bDD]-

The estimated parameters were a = 0.008, b = 1.001.
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Chapter Three
Testing the Model

Field data were gathered over a period of years at a
number . of experimental sites in South Dakota. Information
gathered included the number of nymphs, adult aiéte and
adult apterate aphids of four different species present, as
well as the number of predators sighted. These were
recorded as number present in a quadrat. At each location,
40 guadrats were sampléd at weekly intervals, beginning in
early spring and continuing through the summer.

Four of these sampling periods were chosen to test the
model. These four periods were felé to represent
particularly complete and accurate sampling. Those chosen
were Site I, 1963; Site II, 1963; Site I, 1966 and Site I,
1967. For each sampling period, the counts were averaged
over the 40 guadrats sampled, and the averages were then
converted from number per guadrat to number per 500 tillers.
The first aphic counts and corresponding predator counts for
the year were. then used as initial conditions to start the
model running. The model would then predict the future
behavior of the population, which could be compared to the
observed behavior. This comparison is useful in assessing

the utility of the model.

The model runs made in this way showed several
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discrepencies in the program. The model consistently
underestimated the observed population. This suggests that
some factor, such as predation or age-specific mortality,
may be given too much weight in the model. Also, adult
aphids in the model die off much more quickly than is
consistent with observed behavior. Clearly, these are areas

deserving of more attention. Graphs of the actual and

oredicted population growth appear in Figure 2.
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Figure 2d
Site I, 1967
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Chapter Four
Sensitivity Analysis

The next step in analyzing the model is to assess which
factors'may be the most important, and therefore suggestive
of further attention. Typically, this is done by
introducing small changes into various factors. Those.
factors in which a relatively small change produces a
markedly different result are conéidered to be factors which
should be examined moreiclosely. In this model, the factors
chosen for sensitivity analysis were precdation, rainfall,
age-specific mortality, and fecundity.

Rainfall. It proved almost iméossible to analyze a
dummy subroutine. As might be expected, a small constant
pProbability of rainfall-induced mortality produced a small
change in the population, but did not affect its over-all
behavior. Introducing small rainfall effects at random
seemed to have little effect. 1In reality, however, rainfall
effects, although occurring at irregular intervals, might be
cuite large and have a significant effect. This topic

clearly needs further research.

Age-Specific Mortality. The proposed model for

age-specific mortality is

MORT = 1 - a * EXP[b * EXP(c * DD))]..

Even slight changes in the parameters affect the populaticn
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size. Also, since this function has three parameters, the
inﬁeraction of changes in the three parameters must be
investigated. Furthermore, if age-specific mortality is
over-estimated for adults, this affects the reproductive
capability of the population, and hence the age structure as
well as the size of the population.

Fecundity. The proposed fecundity function is

FERT = [a * DD] / bP°P.

Again, it appears that slight changes in the parameters have
a significant effect. It would be worthwhile to estimate
these parameters more ﬁrecisely, if only because they have
extremely small values, so that a small change produces a
large effect.

Predation. In examining the pgedation function, a
number of problems come to light. The number pf predators
present in the early season appears to be quite high in
relation to the number of aphids available for consumption.
This suggests one of two situations: 1. We have estimated
how many aphids must be present for the population to be
effectively infinite. Perhaps our estimate is much too
high. 2. There may be other insects at the site which also
serve aé food for the predators. In this case, we must bé
able to make some sort of estimate of how many of these
"other" insects the predators are consuming, or incorporate

some sort of correction factor into the model.



31

Clearly, both of the above possibilities need to be
investigated further. It must also be considered that the
aphid model in use is very crude. It does not take into
consideration the searching time, eating time, resting time,
etc. which are generally considered important in estimating
predatibn.

In summary, it appears that these probhlems are causing
predation to be over-estimated, which produces a damping
effect on population growth. The whole predation function

undoubtedly merits further attention.

w 9/

N
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Chapter Five
Sugegestions for Further Research

Predation. . It is generally felt that either a Type II
or Type III predator/prey_modeL is a better predictor than a
Type I ﬁodel. [7] These models take into account such
factors as searching time, resting time and feeding time.
They also allow for the fact that at very low prey
densities, predation is generally lower than a linear model
would predict.

It is also necessafy to explore the predator/prey
interaction more deeply. For instance, does the number of
prey eaten per day depend only on the biomass of the prey?
We have assumed this to be true. ‘

Finally, some way must be found to quantify the
presence of other »nrey in the field. Perhaps there is some
way to estimate this from available data.

Hypothesis Testing. Frequently, it is assumed that

development times for the first three instars come from the
same underlying distribution. This hypothesis ‘should be
tested. If we are assuming a gamma distribution, this is
equivaleﬁt to testing the hypothesis that three means are
equal ané that at the same time, three standard deviations
are also equal. One possibility for this would be a

Kolmogorov-Smirnov Test [8].

It should also be noted that a separate base
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temperature was found for each life-stage. Since these
temperatures are fairly close together, the hypothesis that
all or several of the life-stages have the same base
temperature should be tested.

Choosing the Underlying Distribution. In this model

the undérlying distribution of development times was assumed
to be gamma. A more rigorous approach to éhoosing a
distribution could be used.

The data should be fitted to a generalized
three-parameter gamma distribution [9]. This disﬁribution
may be: Gamma, Lognormal or Weibull depending on the choice
of parameters.

Fitting the data to this model would provide a way
guantitatively assessing the goodnesé-of—fit.'
Unfortunately, we found no way to fit the parameters of such
a model, but feel sure that some numerical method could be
found.

Rainfall. Some way must be found to work deaths cdue to
excessive rainfall into the model. There is also some
suggestion in the literature that prolonged periods of high
humidity may make the aphids more succeptible to fatal

fungal infections.[lo]

Yl
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Appendix A
Degree-Day Approximations

If we let y(t) = temperature (in °C) at time t,
(0O €t < 24), and if y is a continuous function, then the
accumulated degree-hours for tﬁe day will be the area between
the curve y = y(t) and y = tyr where tb is the base
temperature (i.e. the temperature below which no develaopment
will take place). Then we can obtain degree-days by dividing
degree-hours by 24. That is,

a4

DD = (1/24) (y - tb)dt
o

In actual practice, the function y = y(t) is not known.
Instead, we must find an approximation for y, and several

methods exist for doing this. The methods discussed here have
in common that they require knowing only the maximum and

minimum temperatures for the day.

Method 1: We assume that y = (MAX + MIN)/2. That is, we

use a rough approximation of the average temperature for the

day as an estimate for y. Note that although this is a very

crude approximation for y, it may yield a good approximation

for accumulated degree-days. This method has the advantage of

quick and easy calculation, and has long been used with good

&
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results. The formula is:

DD = (MAX + MIN)/2 - tb.
Method 2: Temperature appears to vary in a generally

sinusoidal fashion. We can assume that y is a sine wave with

minimum at t = 0 (midnight) and maximum at t = 12 (noon). We

obtain

y(t) = (MAX - MIN)/2 * [sin((12/17)t + 6)]

+ (MAX + MIN)/2.

If we assume that Y(t) 2 tb for all values of't,.this will

exactly the same approximation as Method 1. However, if

b

y(t) € t. for any value of t, the graphs look like this:

LK}

The desired degree-days will be only the shaded areas It
appears that the two methods may not yield the same result. To

obtain degree-days, we must first find tl and t2' We can

find t, by observing that y(tl) = ty, or
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tb = (MAX - MIN)/2 * [sin((12/1'r)t1 + 6)]

+ (MAX + MIN)/2.

Solving for t1 yields:

t, = (1Y /12) = sin~!

(t, = (MAX + MIN)/2 o 6
~  (MAX - MIN)/2

This equation has infinitely many solutions, and we must choose

one such that 0O s t1 € 12. Then, by symmetry of the curve,

t2 = 24 - tl. Thus, we 'can calculate
ta
BDD== (1 /24y (y(t) - tb)dt.
t,

Method 2 is also fairly easy to compute, and has been in
general use until recent times.

Method 3: Allen [4] noted that an assumption of Method 2,
that the minimum temperature occurs at midnight and that the
maximum temperature occurs at noon, is génerally untrue. As a
rule of thumb, the minimum temperature will be at dawn (about 6
a.m.) and the maximum at about 2:00 p.m. (or t = 14). Then the

sinusoidal curve will look like this:
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n

Note that we have constructed the wave by assuming that the
maximum and minimum temperatures do not vary from one day to

the next. If we allow these to vary from day to-day, the curve

becomes:

Then
m, + m2[sin( (t + 48)/16] 0t ¢£6
y = my + m4[sin( (t + 6)/8] 6 £ t & 14
mg + m6[sin( (t - 6)/16] 14 $ t ¢ 24

NS
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where

m1 = (MAX1 + MINl)/z m4 = (MAX2 - MINZ)/Z
m2 = (MAX1 - MINl)/Z m5 = (MAX2 + MINZ)/Z
m3 = (MAX2 + MINl)/2 m6 = (MAX2 - MINZ)/Z.

Now suppose that for some t, y(t) € tb. Fdr example, suppose

€ t.. Then our curve looks like this:

MIN b

p

ny (93] 2 (3] an

0 b e ‘
6 0t 6t 12 48 24 30

and we have

DD = (A; + A;)/24.



)

To find this area, we must first find t1 and tz. To find

t note that

1’

. = m, + m, sin[ﬂ(tl + 48)/16]

Solving for t1:

tl = (16/17) sin-l[tb - ml)/mz] - 48.

Again, we must choose the appropriate value so that

0 €t 6. If no such t, exists, then A1 = OF

£
1 1
Otherwise,
| &
A1 = L [m1 + m, sin(1r(t + 48)/16) - tbldt.

This process must be repeated to find t2 and A2.

The situation becomes further complicated if either MAX1

or MAX2 falls below tb'

At this point, the algorithm is not practical to use "by
hand". As Allen points out, however, the method can be easily
adapted-to a computer. A subroutine to utilize this methéd is

cumbersome to write, since so many different possibilities must

be considered, but it will be quite efficient to run.

A A
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Appendix B

Model Program

2
/




//MA12 JoB 1099967025 MARIE,CLASS=J,MSGCLASS=M
/*ROUTE PRINT N2.MUSIC
// EXEC WATFIV,0UT=M

0B
P22 2222222222 22222222 22222222222 2222222222222

THIS IS A FORTRAN PROGRAM
TO MODEL APHID DEVELOPMENT TIMES

*
*
»*
*
. NAME: MODEL
*
*
*
»
*

ss s TS

WRITTEN BY: MARIE COFFIN

FIRST ATTEMPT: 2/11/87

LATEST REVISION: 3/20/88 ’.
00000.0000.0000-0000 000 00.00-00-00-40-0000-0000 000 0000000400040 0100 000 000 004000 000000 00 0 0

OC)OC)OC’OC)O!’O(1E

INTEGER TAU,DD,NDAYS, STAGE, SUBSTG, GDD, DAY ,MN, DY, YR, CONJUL ,JDATE
INTEGER YTEMP,MTEMP,DTEMP,HTEMP, LTEMP

REAL A,F, FTEMP FIN, TOTAL FERT HORT EXTRA,M,P,R,HIGH, LOW

DIMENS 10N A(60 60) F(60), FTENP(60) FIN(60) HIGN(60) LOW(60)
DIMENSION BASTMP g RELDD(6) TOTALS(T) ATEHP(GO) INIT(6
DIMENSION DEGDAY(7

(2]

DATA A,ATEMP,DEGDAY/3600%0.0,60%0.0, 7’0 0/
DATA BASTHP/6 29,6.54,10.36,7.59,6. 56,8.17,0.0/

(222222222222 222222222 22222222 222222222222222 3

o THIS IS THE INITIAL COHORT d
00000000 00000000 00 00 00 00 000 40-00-00-00-00.00 00 00 00 000 00 4000000000 00 00 00 0 00 00 40000000 90 00

o0000

READ 5,MN,DY,YR
FORMAT  (ThO, 3( 12, 1X))

5
JDATE = CONJUL(MN,DY,YR)
PRINT 7
7 FORMAT ('1')
PRINT 40,JDATE
c
READ 10, INIT
10 .FORMAT (27X,615)
c
READ 15, NHT, NHC
. 15 FORMAT (54X,215)
READ 20, NDAYS
20 FORMAT (29X, 13/)
c
READ 25,YTEMP,MTEMP, DTEMP, HTEMP, LTEMP
25 FORMAT (5X,3(12,1X),2(13,1X))
WHILE (MTEMP.LT,MN.OR.DTEMP.LT.DY) DO
READ 25, YTEMP,MTEMP, DTEMP, HTEMP, LTEMP
2 ENDWHI LE
HIGH(1) = CENTIG(HTEMP)
LOW(1) = CENTIG(LTEMP)
DO 110 | = 2,NDAYS
READ 30, HTEMP, LTEMP
30 FORMAT (T15,13,1X,13)
HIGH( 1) = CENTIG(HTEMP)
LOW( 1) = CENTIG(LTEMP)
. 110 CONTINUE

NEWDAY = NDAYS - 1
DO 120 | = 2,NEWDAY
DO 115 4 = 1,7

A/

fIet7



ADD = ACCDD(HIGH(I), LOH(I) HIGH(I 1),LOW( 1+1),BASTMP(J))
DEGDAY(J) = DEGDAY(J) +
115  CONTINUE
ATEMP(1-=1) = BEGDAY(7)
120 CONT I NUE

NSTEPS = INT(DEGDAY(7)/12 0)
D0 130 | =
RELDO(I) DEGDAY( 1 )/ FLOAT(NSTEPS)
130 CONT INUE
RELDD(6) = RELDO(6) * 2u.0
ABSDD = 12.0

CALL DIST(F, INIT,RELDD, TOTALS)

PRINT 50, (TOTALS(I),| = 1,6)
PRINT 60, TOTALS(7)

DAY = 1
DO 210 TAU = 1,NSTEPS

0000000000 00 00 00 00 00 00 00 00 08 00 00 00 08 30 00 08 00 00 00 08 30 00 08 0 00 00 08 30 00 00 0 00 00 08 3 00 08 0

B THIS SECTION CALCULATES THE NUMBER o

# THAT HAVE MATURED TO THE NEXT LIFESTAGE *
000000000 00000 000000000 0000 00 000000 00000 0 0000 0 0000 00 0000 000000 0000000000 0000 0 00

o

o000 00

140 CONTINUE
00 150 | = 1, 50
CALL CALSTG( |, STAGE, SUBSTG)

GDD = INT(RELDD(STAGE) * SUBSTG)
PROMAT = PMAT(STAGE,GDD)
NMAT = PROMAT * F( 1)

LSTAGE = NXYSTG( )

F(1) = F(1) = NMAT
FIN(LSTAGE) = FIN(LSTAGE) + NMAT
150  CONTINUE

0000000 00 00 0000 08 00 00 08 30 00 00 08 0 06 08 00 00 08 0 00 06 08 00 00 08 08 00 00 08 00 00 08 08 00 00 08 08 00 04 08

*  THIS SECTION CALCULATES THE FERTILITY *
*  AND MORTALITY ELEMENTS OF THE A MATRIX #

0000000000 00 00 00 00 00 00 00 00 00 00 00 08 00 00 08 00 00 00 08 00 00 08 00 00 00 08 00 00 08 00 00 00 08 90 00 08 0 00 00

o

oO00000

DO 160 J = 51,60
CALL CALSTG(J, STAGE, SUBSTG)
A(1,J) = FERT(SUBSTG,RELOO(6))
BABIES = A(1,J) * F(J)
FTEMP(1) = FTEMP(1) + BABIES
160  CONTINUE

DO 170 : = 2,60
CALL CALSTG(J, STAGE, SUBSTG)
= MORT(STAGE, SUBSTG, RELDD( STAGE ) )
P = PRED(J,STAGE, TOTALS, F,ABSDD, NHT, NHC)
= RAIN(J)
A(l J) =1 =M= P =R + M#P &+ MSR + PR - MHPOR

\N %

4



N

v ¥/

SURVIV = A(I,J ) 4 F(J)
IF (1.LT.51) T
FTEMP( 1) = FTEHP(I) + SURVIV

_FRACT = SURVIV/24.0
FTEMP(1) = FTEMP(1) + FRACT
FTEMP(J) = FTEMP(J) + 23.0 * FRACT

170 CONTINUE

DO 180 | = 1,60
F(l) FTEMP(1) + FIN(1)
180 CONTIN

TOTALS(7) = 0.0
DO 200 | = }.

10 + J
) F(K) =0
’ OTALS( 1) + F(K)
190 CONT INUE

TOTALS(7) = TOTALS(7) + TOTALS(!)
200 CONT INUE

TEMP = TAU * ABSDD
IF (TEMP.GE.ATEMP(DAY)) THEN
DAY = DAY + 1
JDATE = JDATE + 1
PRINT 40, JDATE
40 FORMAT (10", 'DATE = *
PRINT 50'(TOTALS(I) |
50 FORMAT (' ' 6(F8.1,2X))
PRINT 60'TOTALS(7)
60 FORMAT (' ','TOTAL = ',F12.1)
ENDIF

dO  d

210 CONT INUE
STOP

END
FUNCTION PMAT(STAGE, TIME)

C
(G SH 00000000 000000 00 00 0000 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 06 08 00 0
C * THIS FUNCTION CALCULATES THE PROBABILITY *
C * OF MATURING TO THE NEXT LIFE-STAGE, AS *
Cc* A FUNCTION OF ACCUMULATED DEGREE-DAYS *
© 000000000 00 0 000000 00 000 000000 00 00 000000 00 00 00 00 0000 0 00 0000000 00 00 00000 00 40 000000 00 00
C ¢
INTEGER STAGE, TIME
C
- IF (STAGE.EQ.1) THEN
B = 3.16987
C = 9.19488
ELSEIF (STAGE EQ.2) THEN
B = 2.47643
C = 8.96503
ELSEIF (STAGE.EQ.3) THEN
B = 3.7878
C = U4,1487
ELSEIF (STAGE.EQ.U4) THEN
8 = 3.0819
C = 17.2978
ELSEIF (STAGE.EQ.5) THEN

€Y



Dt

o0ooo00n 000000

Q00000

B = 6.73449
= 1.9716

B = 59.7507
= 9.85034

PMAT = 0.0
| =

‘!
PMAT = PMA
100  CONTINUE

RETURN

END

FUNCTION F(N,B,C)

TIME
T + F(1,8,C)

RRARRRRBRRRRRRRRRRNRRRRRRRRRRRRRRRRRRRNRRRRRRRRR0N
®* THIS FUNCTION CALCULATES THE PROBABILITY *
. DENSITY FUNCTION (GAMMA DISTRIBUTION) *#
RNERRRRRRRRBRARRRRRRARBRBRRRRRRNARRRRRRRRRRRRRRN
F = (N/B) *% (C-1) * EXP(-N/B)/(B ® GAMMA(C))
RETURN
END
FUNCTION FERT(SUBSTG,RELDD)
RERRRRRRBRBRRRRRRARARRRRRRARARRRRRRRRRRRRRRNN
* THIS FUNCTION CALCULATES THE FERTILITY ®
®  ASSOCIATED WITH THE NUMBER OF DD »
RRARRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRNS
INTEGER SUBSTG
DD = RELDD * SUBSTG
FERT = (0.008 * DD)/(1.001 *# pD)
RETURN
END
REAL FUNCTION MORT(STAGE, SUBSTG,RELDD)
®  THIS FUNCTION CA}CULATES THE MORTALITY # .
» ASSOCIATED WITH THE NUMBER OF DD .
INTEGER STAGE, SUBSTG
REAL DD
DIMENSION AVGDD(5)
DATA AVGDD/29.1466,22.2013, 15.7149,22.4915,13,2777/
LAST = STAGE - 1
DD = 0.0
t=1 -
WHILE (1.LE.LAST) DO
DD = DD + AVGOD(1)
=141
ENDWH I LE
DD = DD + RELDD * SUBSTG
IF (DD.GE.1500) THEN
MORT = 1.0
ELSE
MORT = 1.0 - 0.908589 * EXP(-0.006861*EXP(0.006561%DD))
ENDIF
RETURN

END

707



FUNCTION ACCDD(MAX2,MIN1,MAX1,MIN2,TB)

000 000000 00 000000 00 0000 08 00 00 00 00 0000 08 00 00 08 00 00 00 08 00 00 06 00 00 00 08 0 00 08 08 80 00 08 00 00 08 08 0 0

“
L THIS FUNCTION CALCULATES ACCUMULATED =
L DEGREE-DAYS FOR THE DAY. bl
0000 000000 00 00000000 0 00 00 0 10,00 00 0000 00 000 00 00 0 0000 00 0000 00 000 00000000 00 000 00 000 00 00 0 04

REAL MINY,MIN2,MAX1, MAX2,TB, M1, M2, M3, M4, M5, M6
DATA P1/3.14159/

IF (HlN\ GE TB) THEN
3#(MAXT + MINT) - 1.5719925%(MAX1 - MIN1) - 6%TB
Y2 Y4#(MAX2 + MIN1) - 8*TB
ELSE

IF (MAX1.LT.TB) THEN
Y1 = 0.0

= (MAX1 + MIN1)/2.0
M2 = (MAX1 - MIN1)/2.0

= 16.0/PI * ARSIN((TB - M1)/M2) - 48.0
/16.

QUAD(X1)
FACTOR = 1 + COS(P1/16.0 * (X1 + 48.0))
Y1 = X1 ® (M1 - TB) = 16.0/P| * M2 #* FACTOR
ENDIF

IF (MAX2.LT.TB) THEN
Y2 =0

MAX2 +‘Hlﬂl;/2
MAX2 - MIN1)/2
8.0/P1 * ARSIN(
CALL QUAD(X2)
IF (X2.L7.6.0) X2 =
FACTOR = COS(PI/O 0
Y2 = (14 - X2) * (M3
ENDIF
ENDIF

IF (MIN2.GE.TB) THEN 4
Y3 = S5%(MAX2 + MIN2) + 2.35264%(MAX2 - MIN2) - 10*TB
ELSE

IF (MAX2.LT.TB) THEN
Y3 = 0.0

X
&
nnau

T
(TB = M3)/Mu) = 6.0
12.0 =

» (X * 0))

-'TB) + o 0/PI * M4 * FACTOR

(MAX2 + MIN2)/2.0

(MAX2 - MIN2)/2.0

16.0/P1 * ARSIN((TB - M5)/M6) + 6.0

CALL QUAD(X3)

IF (X3.LT.14.0) X3 = 36.0 - X3

X3 = AMIN1(24.0,X3

fAcTOR = -cos((Pl/ 6.0) * (X3 - 6.0))

= (24 - X3) * (M5 - TB) + 16.0/PI * M6 * FACTOR

X
(=
nuu

ENDIFv
ENDIF

ACCDD = (Y1 + Y2 + Y3)/24.0
RETURN
END
FUNCTION PRED(J, STAGE, TOTALS,APHIDS ,DD, NHT, NHC)

000000 00000000 00 300000 00 300000 30 30 00 00 00 90 00 30 30 00 00 3000 30 3000 38 30 00 00 36 90 06 36 90 96 36 90 04 4

“
* THIS FUNCTION COMPUTES THE PROBABILITY #
hd THAT AN INDIVIDUAL WILL BE KILLED »

o000

| A

SY



& L

C*
(G SO0 000000 00 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 08 08 08 08 00 00 00 00 00 00 08 30 30 00 08 08 3 9 36 96 90 90 90 4

C

0O 0oonOOOn

ooo00on

100

BY PREDATION. .

REAL NAU, NCON

INTEGER STAGE

DIMENSION APHIDS(60),UNITS(6),TOTALS(7),AU(6)
DATA AU/1.0,2.26,5.08,7.63,12.2,12.2/

- NCA = 305.0 * (NHC + NHT)
IF (APHIDS(J).LT.0.01.0R.TOTALS(STAGE).LT.0.01) THEN

PRED = 0.0
ELSE
TUNITS = 0.0
D0 100 | = 1,6
UNITS(1) = TOTALS(1) * AU(I)
TUNITS = TUNITS + UNITS(|
CONT INUE
IF (TUNITS.GE.NCA) THEN
NAU1 = 0.85 * DD
NAU2 = 1.13 * DD
ELSE
NAU1 = 0.85 * DD * TUNITS / NCA
NAU2 = 1.13 # DD * TUNITS / NCA
ENDIF
PRED = 1.0=(1.0-NAU1/TUNITS)*#NHT#(1.0-NAU2/TUNITS)*#*NHC
ENDIF
RETURN

END
FUNCTION RAIN(1)

00000000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00 000000 08 08 08 08 08 08 08 08 08 08

*

THIS FUNCTION COMPUTES THE PROBABILITY ]

THAT AN INDIVIDUAL WILL BE KILLED -

BY EXCESSIVE RAINFALL. S ‘
LI 4900000 00400000 00 0 409090 00 00 0 04 40 90

RAIN = 0.0
RETURN

END
SUBROUTINE DIST(F, INIT,LENGTH, TOTALS)

THIS SUBROUTINE DISTRIBUTES THE .

REAL LENGTH(6)
INTEGER TIME
DIMENSION F(60),CDF(10), INIT(6),TOTALS(7)

TOTALS(7) = 0.0
D0 200 J = 1,6
TOTALS(J) = FLOAT(INIT(J))
D0 100 | = 1,10
K=(Jd=-1) %10+ |
TIME = INT(I % LENGTH(J))
COF(1) = PMAT(J,TIME)

IF (1.EQ.1) THEN

9%



F(K) = COF(1) * INIT(J)
ELSE
F(K) = (CDF(1) - COF(1-1)) * INIT(J)
ENDIF
100 CONT INUE

TOTALS(7) = TOTALS(7) + TOTALS(J)
200 CONT INVE

Cc
RETURN
END
INTEGER FUNCTION CONJUL(MONTH, DAY, YEAR)

3030 30 30 00 30 3 0 3 3 3 3 30 3 3 30 30 30 30 0 0 8 9 9 9 3 3 3 3 50 5 00 00 00 0 0 0 0 0 4 8 00 00 48 80 %

THIS FUNCTION CONVERTS AN ORDINARY .

(GREGORIAN) DATE TO A JULIAN DATE. *
0000000 09000900000 000090 000000 000000 000000 00000 00000 0 0000 0 0000 0 0000 0 0000 0 0090 0 000

0o000O00
PR XN ]

INTEGER MONTH, DAY, YEAR, DAYSUM
DIMENSION NDAYS(12)
DATA NDAYS/31,28,31,30,31,30,31,31,30,31,30,31/

IF .(MOD(YEAR,4).EQ.O) NDAYS(2) = NDAYS(2) + 1

DAYSUM = 0

=1

WHILE (1.LT.MONTH) DO
DAYSUM = DAYSUM + NDAYS( )
L= 1 +1

ENDWH I LE

DAYSUM = DAYSUM + DAY

CONJUL = 1000 * YEAR + DAYSUM

RETURN
END
SUBROUTINE CALSTG( |, STAGE, SUBSTG)

00000000000 000000000000 000000 000000 0000 000000 000000 000000 000000 00000 0 0000 0 0000 0 0090 0 000
THIS SUBROUTINE TAKES THE SUBSCRIPT- FROM #
THE F ARRAY AND CALCLULATES THE STAGE *

AND SUBSTAGE CORRESPONDING TO IT, d
000000000000 00000000 04000 00000 0000000000000 0-00-00 00000 0-00-000-00-000-00-00-0-00-90 000 0

L EE R E 3

INTEGER STAGE, SUBSTG, REM
REM = MOD(1,10)

O O o0o0O00n

IF (REM.EQ.O) THEN
STAGE = 1/10
SUBSTG.= 10
ELSE '
STAGE = 1/10 + 1
SUBSTG = REM
ENDIF

RETURN
END
FUNCTION NXTSTG( 1)

00900000 00 09000 00 00 00-00-00 00 0 00-00-00 00 0 00 00-00-00 00 0 00 0000 0000 00 00 0 00 00 000000 00 0000 0000 00 0
THIS FUNCTION CALCULATES WHAT STAGE THE *
INDIVIDUALS FROM ANY STAGE WILL MATURE #

TO (J-VALUES ARE CALCULATED, NOT STAGES) *

“'Oﬁﬂl“..’“llﬂ)”’““““""‘l'Oﬂﬁ““."ﬂ“l“’“.."’

o0o0000O0
L & 3

N4

g7



T2

0000000

0O 000000000

J=0
WHILE (J*10.LT.I1) DO
J=J+

ENDWHI LE
NXTSTG = J * 10 + 1

RETURN
END
SUBROUT INE QUAD(X)

0000000 0000000000 0000 0000 0000 0000 00.0000-0000-0000-0000-0000 0000 0000 0000 0000 000000 0000 0000 0090 4 00
hd THIS SUBROUTINE CONVERTS AN ANGLE X, IN *
* RADIANS, .TO AN EQUIVALENT ANGLE IN THE *
. FIRST REVOLUTION. .

FRACT = X/6.2832

X = FRACT - INT(FRACT)

IF (X.LT.0) X = X + 6.2832
RETURN

END

FUNCTION CENTIG(FTEMP)

THIS FUNCTION CONVERTS A FAHRENHEIT s
TEMPERATURE TO CENTIGRADE. bl
THE FAHRENHEIT TEMPERATURE IS INTEGER *
AND THE RESULT OF CONVERSION :

»

IS REAL.
00000400000 00 0 00-00 00 00 00-00-00-00 0000 000000 0 000000 00 0 400000 00 0 00 400000 0000 0 40000000 0 0 00

[ N R ¥ ]

INTEGER FTEMP

CENTIG = 5.0/9.0 * (FTEMP - 32)
RETURN
END

8Y
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SAS Program to Fit Gamma Curves
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//MA12 JOB 1099967025, ELLIOT,CLASS=J, MSGCLASS=M
/*ROUTE PRINT N2.MUSIC
//_EXEC SAS,O0UT=M
LITLE 'MODELS OF GREEN-BUG APHID DEVELOPMENT';
ATA A;
INPUT MO DAY YEAR SP § TEMP 11 12
13 14 B MORPH §;

o
o
w
wWnnnn
— -
mmm
XXX
- B - B -
s '
t.tt.musau

=}
m
<
w
nwanunun
-
w
~N
L)
&

KEEP TEMP DEV1- DEV5 MORPH;
S;

PROC SORT DATA=A;

BY DEV1;
DATA B;
SET A;BY DEV1;

If DEVI = . THEN DELETE;

IF FIRST.DEV1 THEN NMAT = 1;

ELSE NMAT + 1;

IF LAST.DEV1 THEN OUTPUT;
PROC MEANS MEAN STD SUM N NOPRINT;

VAR DEV1 NMAT;

OUTPUT OUT = STATS HEAN = MEANA MEANB

= STDA STDB
SUN = NA NB
N = NOBSA NOBSB;

DATA VARBLS; SET STATS;

MEAN = MEANA;STD = STDA;N = NB;NOBS = NOBSA;

B = STD*#2/MEAN;

C = (MEAN/STD)%#2;

KEEP MEAN STD B C N NOBS;
PROC PRINT DATA = VARBLS;

TITLE2 'PARAMETERS FOR FIRST LIFE-STAGE: GAMMA MODEL';
DATA C;

IF _N_ = 1 THEN SET VARBLS;

SET B;
PROC PRINT DATA = C;
DATA COMPLETE;

SET C;
CF + NMAT/N,
-PCF = 0;

DO X =1TO DEV1;
PCF + (X/B)**(C-1) * EXP(-X/B)/(B*GAMMA(C));
END;

»
OSQR = (CF - PCF) % 2;
SSE + OSQR;
YSUM #+ CF;
YSQR % CF ## 2;
IF _N_ = NOBS THEN DO;
SST = YSQR - (YSUM ## 2)/NOBS;
RSQR = 1 - SSE/SST;
OUTPUT;
END;

oS



PROC PRINT DATA = COMPLETE;
PROC SORT DATA=A;

BY DEV2;
DATA B;
SET A BY DEV2;
IF DEVZ o THEN DELETE;

IF FIRST.DEV2 THEN NMAT = 1;
ELSE NMAT + 1;
IF LAST.DEV2 THEN OUTPUT;
PROC MEANS MEAN STD SUM N NOPRINT;

VAR DEV2 NMA

OUTPUT OUT = STATS MEAN = MEANA MEANB
STD = STDA STDB
SUM = NA NB

N = NOBSA NOBSB;
DATA VARBLS; SET STATS;
MEAN = MEANA;STD = STDA;N = NB;NOBS = NOBSA;
B = STD#%2/MEAN;
C = (MEAN/STD)%%2;
KEEP MEAN STD B C N NOBS;
PROC PRINT DATA = VARBLS;

TITLEZ ' PARAMETERS FOR SECOND LIFE-STAGE: GAMMA MODEL';

DATA C
IF N = 1 THEN SET VARBLS;
SET B
PROC PRINT DATA = C;
DATA COMPLETE;
SET C;
Cf + NBAT/N,

Do X = 1 T0 DEV2 2;
PCF + (X/B)“'(c 1) * EXP(=X/B)/(B*GAMMA(C));
END;
DSQR = (CF = PCF) %% 2;
SSE + DSQR;
YSUM + CF;
YSQR + CF #% 2,
IF _N_ = NOBS THEN Do;
SST = YSQR - (YSUM b 2)/N0BS;
RSQR = 1 - SSE/SST;
OUTPUT;
END;
PROC PRINT DATA = COMPLETE;
PROC SORT DATA=A;
BY DEV3;
DATA B;
SET A;BY DEV3;
IF DEV3 = . THEN DELETE;
IF FIRST.DEV3 THEN NMAT = 1;
ELSE NMAT + 1;
IF LAST.DEV3 THEN OUTPUT;
PROC MEANS MEAN STD SUM N NOPRINT;
VAR DEV3 NMAT;
OUTPUT OUT = STATS MEAN = MEANA MEANB
STD = STDA STDB
SUM = NA NB
N = NOBSA NOBSB;
DATA VARBLS; SET STATS;
MEAN = MEANA;STD = STOA;N = NB;NOBS = NOBSA;
B = STD**2/MEAN;
C = (MEAN/STD)**2;
KEEP MEAN STD .B C N NOBS;
PROC PRINT DATA’= VARBLS;

TITLE2 'PARAMETERS FOR THIRD LIFE-STAGE: GAMMA MOREL';
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DATA C;

IF N = 1 THEN SET VARBLS;

SET B

PROC PRINT DATA = C;

DATA COMP

LETE;

SET C; i
CF + NMAT/N;

PCF = 0;
DO X =
PCF +
END;
DSQR =
SSE + D
YSUM +
YSQR +
IF _N_
SST =
RSQR

110 DEV3;
(X/B)"(C-l) * EXP(=X/B)/(B*GAMMA(C));

(CF - PCF) ** 2;
SQR;
CF;
cF e 2.
= NOBS THEN DO
YSQR - (YSUM Oba 2)/NOBS;
=1 - SSE/SST;

OUTPUT;

END;

PROC PRINT DATA = COMPLETE;

PROC SORT

DATA=A;

BY DEVY;

DATA B;

SET A;BY DEVY;

IF DEVY

= . THEN DELETE;

IF FIRST.DEVY4 THEN NMAT = 1;

ELSE

NMAT + 1;

|F LAST,.DEVY4 THEN OUTPUT;
PROC MEANS MEAN STD SUM N NOPRINT;
VAR DEVY NMAT;

OUTPUT

OUT = STATS MEAN = MEANA MEANB
STD = STDA STDB
SUM = NA NB
N = NOBSA NOBSB;

DATA VARBLS; SET STATS;

MEAN = MEANA;STD = STDA N = NB;NOBS = NOBSA;
B = STD"Z/NEAN'

C = (MEAN/STD)%é2;

KEEP MEAN STD B C N NOBS,

PROC PRINT DATA = VAR

TITLE2
DATA C;

IF _N_

SET B;
PROC PRIN
DATA COMP

' PARAMETERS FOR FOURTH LIFE-STAGE: GAMMA MODEL';
= 1 THEN SET VARBLS;

T DATA = C;
LETE;

SET C;
CF + NMAT/N;

PCF = 0;

DO X =
PCF +
END;

DSQR =

SSE + DSQR

1 TO DEVW;
(X/B)*#*(C-1) * EXP(-X/B)/(B*GAMMA(C));

(CF - PCF) #% 2;

YSUM + CF;
YSQR + CF ## 2;

IF _N_
SST =
RSQR =

= NOBS THEN DO;
YSQR = (YSUM o 2)/N0BS;
1 - SSE/SST;

OUTPUT;

END;

PROC PRINT DATA = COMPLETE;

PROC SORT

DATA=A;

@S
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SET A;BY DEVS;
DEV5 = . THEN DELETE;
IF PIRST.DEVS THEN NWAT = ;
ELSE NMAT + 1;
IF LAST.DEVS THEN OUTPUT;
PROC MEANS MEAN STD SUM N NOPRINT;
VAR DEV5 NMAT;
OUTPUT OUT = STATS MEAN = MEANA MEANB
STD = STDA STDB
SUM = NA NB
N = NOBSA NOBSB;
DATA VARBLS; SET STATS;
MEAN = MEANA;STD = STDA;N = NB;NOBS = NOBSA;
B = STD¥#2/MEAN;
C = (MEAN/STD)*#2;
KEEP MEAN STD'B C N NOBS;
PROC PRINT DATA = VAR
TUTLEZ " PARAMETERS FOR FIFTH LIFE-STAGE: GAMAA MODEL';
DATA C;
IF _N_ =1 THEN SET VARBLS;

SE
PROC PRINT DATA = C;
DATA COMPLETE;

SET C;
CF + NMAT/N;
PCF = 0;
DO X = 1 TO DEVS;

Ecr + (x/n)~~(c-1) * EXP(=X/B)/(B*GAMMA(C));

ND

DSQR = (CF - PCF) *# 2;

SSE + DSQR;

YSUM + CF;

YSQR + CF #% 2;

IF _N_ = NOBS THEN 0O;
SST = YSQR - (YSUM #% 2)/NOBS;
RSQR = 1 - SSE/SST;
OUTPUT;

END;
PROC PRINT DATA = COMPLETE;
DATA DEATH;

INPUT T6 60;
DEV6 = T6 * 13.84;
CARDS;

PROC SORT DATA = DEATH;
BY DEV6;

DATA B; SET DEATH;
BY DEV6

IF FIRST. DEV6 THEN NDEAD 1;
ELSE NDEAD + 1;
AF LAST.DEV6 TMEN OUTPUT;
PROC MEANS MEAN STD SUM N NOPRINT;
VAR DEV6 NDEAD;
OUTPUT OUT = STATS MEAN = MEANA MEANB
gsg STDA STDB

NA NB
N = NOBSA NOBSB;
DATA VARBLS; SET STATS;
MEAN = MEANA;STD = STDA;N = NB;NOBS = NOBSA;
B = STD“’Z/MEAN;
C = (MEAN/STD)%#2;
KEEP MEAN STD B C N NOBS;
PROC PRINT DATA = VARBLS;

€S



TITLE2 'PARAMETERS FOR SIXTH LIFE-STAGE: GAMMA MODEL';
DATA C;
IF _N_ = 1 THEN SET VARBLS;
SET B;
PROC PRINT DATA = C;
DATA COMPLETE; = -
SET C; ,
CF + NDEAD/N;
PCF = 0;
00 X = 1 TO DEV6;
PCF + (X/B)#%(C=1) ® EXP(-X/B)/(B*GAMMA(C));
END;
DSQR = (CF - PCF) *% 2;
SSE + DSQR;
YSUM + CF;
YSQR + CF #% 2;
IF _N_ = NOBS THEN DO;
SST = YSQR - (YSUM &% 2)/NOBS;
RSQR = 1 - SSE/SST;
OUTPUT;
ND;

E
PROC PRiNT DATA = COMPLETE;
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